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Dynamical systems with different characteristic behavior at multiple scales can be
modeled with hybrid methods combining a discrete model (e.g., corresponding to
the microscale) triggered by a continuous mechanism and vice versa. A data-driven
black-box-type framework is proposed, where the discrete model is parametrized
with adaptive regression techniques and the output of the continuous counterpart
(e.g., output of partial differential equations) is coupled to the discrete system of
interest in the form of a fixed exogenous time series of external factors. Data avail-
ability represents a significant issue for this type of coupled discrete-continuous
model, and it is shown that missing information/observations can be incorporated
in the model via a nonstationary and nonhomogeneous formulation. An unbiased
estimator for the discrete model dynamics in presence of unobserved external
impacts is derived and used to construct a data-based nonstationary and nonhomo-
geneous parameter estimator based on an appropriately regularized spatiotemporal
clustering algorithm. One-step and long-term predictions are considered, and
a new Bayesian approach to discrete data assimilation of hidden information is
proposed. To illustrate our method, we apply it to synthetic data sets and compare
it with standard techniques of the machine-learning community (such as maximum-
likelihood estimation, artificial neural networks and support vector machines).

1. Introduction

Discrete/categorical dynamical processes with a finite state space represent a chal-
lenge for standard data-based analysis tools. Heterogeneity of model properties over
time and space as well as the discreteness of the data complicate the employment
of standard time-series analysis techniques. Moreover, parametrization of the
underlying process is often hampered by incompleteness of observational data.

Illia Horenko is the corresponding author.
MSC2010: primary 62-07, 62H30, 62M05, 62M10, 65C60; secondary 62M02, 62M20, 62M30,
62M45, 62H11.
Keywords: nonstationary, nonhomogeneous, discrete spatiotemporal time-series analysis, Markov

regression, logistic, data assimilation.

1

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2014.9-1
http://dx.doi.org/10.2140/camcos.2014.9.1
http://msp.org


2 JANA DE WILJES, LARS PUTZIG AND ILLIA HORENKO

In this paper, we want to address these problems by introducing a nonstationary,
nonhomogeneous regression framework that allows taking a lack of observed
information into account.

Adequate modeling and proper statistical handling of discrete processes (e.g.,
jump processes) is especially important for the proper description of multiscale
dynamical systems. A typical modeling approach to multiscale dynamical systems
is based on the employment of hybrid models, consisting of continuous and discrete
model components [19; 20; 21]. While the continuous dynamics can be described
with suitable PDEs, the discrete model can be estimated with appropriate data-based
analysis methods. Communication between the two models can be achieved via
incorporating the continuous data components (e.g., the output of PDEs or ODEs)
as external statistical impact factors (or covariates) in the discrete part of the model.

Regression analysis [11] or pattern-recognition techniques such as artificial neural
networks (ANN) [2; 24] or support vector machines (SVM) [8; 35] are popular
instruments to approach the parametrization of dynamical processes. A common
ansatz to model discrete-, categorical- and jump-processes is to deploy discrete
choice models (e.g., logit or probit regression), which belong to the family of
generalized linear models (GLM) [12; 10]. However, these classical techniques are
usually restricted to time-independent model parameters, i.e., stationary models.

In this manuscript, we propose a nonstationary logistic regression model and also
provide a direct approach to the discrete structure in the form of a nonstationary
Markov regression. The key advantage of the proposed framework is that it allows
us to parametrize the considered dynamical system corresponding to the data while
taking all external influences into account, even those not explicitly available in the
form of observation data. This is achieved by introducing an explicit dependency of
the model parameters on time and location, i.e., by including an explicit temporal
nonstationarity and spatial nonhomogeneity into the resulting model. Necessary
assumptions and details will be given in Proposition 2.1. A new numerical algorithm
for the solution of the obtained inverse problem is formulated, and its numerical
complexity is compared with the complexities of the standard algorithms of discrete
data analysis. An adapted version of Akaike’s information criterion is used to
determine the best model fit corresponding to the data [30]. The resulting optimal
parameters can then be employed to make predictions about future states of the
process. In this context, a Bayesian approach to assimilate new hidden information
(describing the impact of unresolved external factors) is proposed. Training and
testing of the techniques are done on several sets of synthetic data, and the quality
of one-step and long-term predictions is investigated.

The remainder of the paper is structured as follows. In Section 2, spatiotemporal
ensemble data is considered and the possibility to incorporate implicit external
factors via a nonstationary Markov model formulation is demonstrated. A short
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introduction to the nonstationary spatiotemporal Markov and logistic regression
is given in Section 3, where new aspects are emphasized and existing theory is
reviewed. In Section 4, a self-containing strategy to make predictions by means
of the determined model parameters and a new approach to assimilate additional
hidden data after obtaining new observations are introduced. Proposed methods of
discrete data modeling, prediction and assimilation are investigated numerically in
Section 5 for different synthetic model scenarios and systematically compared to
the standard methods of the machine learning community, i.e., ANN [2; 24; 18; 3]
and SVM [8; 35]. A comparison of the different numerical methods is given in
terms of the information content (i.e., Akaike information criterion) and the quality
of long- and short-term data-based online model predictions.

2. Ensemble data and exterior quantities

In the following, the discrete state si ∈ {s1, . . . , sNS } of a microscopic cell ω( j, l),
with l ∈ {1, . . . , Nens} being the index of cells of a lattice on a microscopic level and
j ∈ {1, . . . , NJ } the corresponding macroscopic cell, is considered. Put differently,
a macroscopic lattice, with each cell being further subdivided into smaller grid
cells of a microscopic scale, is regarded. It is assumed that it is possible to assign
each microscopic cell ω( j, l) its discrete state si via a stochastic process σ(t, j, l)
dependent on the time t ∈ {1, . . . , NT }. Discrete dynamical systems of such form
are common natural phenomena, e.g., representing the spatiotemporal dynamics of
changes in the aggregate states of water in climate/atmosphere/ocean sciences.
However, such systems represent a challenge for existing data-based analysis
tools as it is usually not possible to have access to the corresponding data on
a microscopic scale. Since observations of a single discrete realization σ(t, j, l)
in many realistic applications are not directly accessible, one resorts to the often
available information on relative frequencies (with respect to the states) of a finite
ensemble of microscopic locations on a macroscopic level. In detail, this means
considering all the cells ω( j, l) with l ∈ {1, . . . , Nens} for fixed j (corresponding
to the macroscopic scale) and measuring/observing the empirical probability

π̃i (t, j)=
Nsi (t, j)

Nens
, (1)

which is the ratio of Nsi (t, j), the number of cells ω( j, l) currently (i.e., for fixed
time t) in state si , to Nens, the total number of microscopic lattice cells contained
in each macroscopic grid location (i.e., for fixed j). Formally, the total number of
microscopic cells ω( j, l) currently in state si is defined as

Nsi (t, j)=
Nens∑
l=1

δsi (σ (t, j, l)), (2)
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whereas δsi ( · ) is the Kronecker delta for the value si , i.e., δsi (σ (t, j, l)) = 1 if
σ(t, j, l)= si , otherwise it is zero. Further, a vector of empirical probabilities

π̃(t, j)=

 π̃1(t, j)
...

π̃NS (t, j)

 ∈ [0, 1]NS×1 (3)

is a good estimate of the actual probability distribution as the number of microscopic
cells Nens in each macroscopic cell j is usually exceptionally large, i.e.,

πi (t, j) := P[σ(t, j, l)= si ] ≈ π̃i (t, j) (4)

with

π(t, j)=

 π1(t, j)
...

πNS (t, j)

 ∈ [0, 1]NS×1. (5)

Thus, for the remainder of this manuscript, we assume that the observed relative
frequencies are equal to the probabilities, i.e., that π(t, j) can be observed for
t ∈ {1, . . . , NT } and j ∈ {1, . . . , NJ }. Further, it is assumed that the process σ is
driven by time- and space-dependent external forces u(t, j)∈RNF×1, influencing the
underlying system. A graphical interpretation of the discrete dynamical process σ
by means of an example realization σ(t, j, l) for fixed time t with only two possible
states s1 and s2 (displayed in gray and white) is shown in Figure 1. The image
also displays the relation of the different lattice scales; i.e., each macroscopic cell
contains a microscopic lattice with Nens cells.

In the following, the aim is to approximate the dynamical system of interest
underlying the stochastic process σ with data-based analysis tools by means of obser-
vations π(t, j) and available measurements of exterior influencing quantities u(t, j).

Implicit external factors. In the following section, we will continue under the
assumption that the stochastic process σ(t, j, l) is a Markov process, i.e., the
probability of the process to be in state si depends on the time-wise previous state.1

A Markov process can be described via a transition matrix P(u(t, j))∈ [0, 1]NS×NS .
The transition probabilities π(t + 1, j) for the next time step can then be expressed
through the so-called master equation:

π(t + 1, j)> = π(t, j)>P(u(t, j)). (6)

Simultaneous measurement/modeling of all of the external factor components
may impose a serious problem for realistic applications as it is impossible to have

1Existing spatial correlations are going to be considered by including information on neighboring
cells in the external factors.
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ω(j, l)
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l

microscopic lattice

macroscopic lattice

Figure 1. The above figure displays a graphical interpretation of the relation between the
microscopic locations ω( j, l) and the macroscopic observation π(t, j). The time t is fixed,
and the considered system has two states, i.e., NS = 2, which are displayed in white and
gray. Thus, the process σ(t, j, l) takes values in the set {s1, s2}={white, gray}. The honey-
comb lattice on the left-hand side corresponds to the macroscopic cells j ∈ {1, . . . , NJ }
associated with the observations π(t, j). The microscopic lattice indexed l ∈ {1, . . . , Nens}
is illustrated using a fine grid only clearly visible with a magnifying glass (see the hexagonal
lattice on the right) and is contained in each cell of the coarse-grid. Additionally, the
dependence of the dynamics of σ on external factors u(t, j) is visualized.

access to all the quantities influencing a system of interest in general. Therefore, in
the following, we will distinguish between explicit and implicit external factors

u(t, j)=
[

u(t, j)
uunres(t, j)

]
∈ R(NE+NI )×1 (7)

and consider the known

u(t, j)=

 u1(t, j)
...

uNE (t, j)

 ∈U⊂ RNE×1 (8)

as well as the unresolved factors

uunres(t, j)=

uunres
1 (t, j)

...

uunres
NI

(t, j)

 ∈ RNI×1, (9)

according to their availability in the measurement/observation process.2 It is im-
portant to stress that a vector of external factors u(t, j) consists of any quantities
potentially playing a role in the dynamics of the regarded system including random,

2 NF = NE + NI .
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deterministic or artificially added elements. For instance, the vector can contain in-
fluences other than the currently regarded scales t ∈{1, . . . , NT } and j ∈{1, . . . , NJ }

(time-wise as well as location-wise). Specifically, this means that important external
forces coming from the microscopic scale as well as exterior factors having an
impact on the state of the microscopic grid cells are included in uunres(t, j). Note, in
particular, that the vector of implicit external factors is, as already mentioned above,
not limited to deterministic factors but can have stochastic random processes as en-
tries. Further, in order to consider existing spatial correlations, the mean of previous
neighboring cell states that are calculated from the observational data π(t − 1, j)
are added to the vector of explicit external factors representing another example
of the wide range of possible and allowed quantities contained in u(t, j). Along
the lines of [16], the abstract dependency of the transition matrix P(u(t, j)) on
unresolved external factors uunres(t, j) is approached by approximating the matrix
with an appropriate linear combination of explicitly time- and space-dependent
matrices. Specifically, such a nonstationary and nonhomogeneous formulation is
possible under the following conditions:

Proposition 2.1. (1) If the function P(u(t, j)) is continuously differentiable and
has bounded second derivatives, it can be decomposed in the form

P(u(t, j))= P0(t, j)+
NE∑
e=1

Pe(t, j)ue(t, j)+ ε(t, j) (10)

with E[ε(t, j)] = 0 and Pe(t, j) ∈ RNS×NS .

(2) If in addition to (1) the deviations of the entries of vector u(t, j) from their
respective means are statistically independent in j and t , also the different
realizations of ε(t, j) are independent of each other in j and t.3

(3) If the function P(u(t, j)) is three times continuously differentiable and has
bounded third derivatives, it can be decomposed in the form

P(u(t, j))= P0(t, j)+
NE∑
e=1

(Pe(t, j)+ ρe(t, j))ue(t, j)+ ε(t, j) (11)

with E[ε(t, j)] = 0 and E[ρe(t, j)] = 0. Realizations of the noise process
ρe(t, j) for different t , j and e are not necessarily independent of each other
or of ε(t, j) realizations.

Proof. (1) For this proof, without loss of generality, we will assume that the external
factors are ordered such that the explicit factors are the first NE entries of u(t, j).

3 This does not necessarily imply that ε(t, j) should also be identically distributed, i.e., i.i.d.
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By performing a Taylor expansion on the transition matrix P(u(t, j)) around the
means µ(t, j)= [E(u1(t, j)), . . . ,E(uNE+NI (t, j))] ∈ R(NE+NI )×1, we obtain

P(u(t, j))= P(µ(t, j))+
NE∑
e=1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=2

Rα(u(t, j))(u(t, j)−µ(t, j))α, (12)

where α is a multi-index and

Rα(u(t, j))=
2
α!

∫ 1

0
(1− x)DαP

(
µ(t, j)+ x(u(t, j)−µ(t, j))

)
dx . (13)

Note that Rα(u(t, j)) is bounded as the second derivatives of P are assumed to be
bounded. Resorting the terms and defining

Pe(t, j)=
∂P(µ(t, j))
∂ue(t, j)

, e = 1, . . . , NE , (14)

ε(t, j)=
NE+NI∑

e=NE+1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=2

Rα(u(t, j))(u(t, j)−µ(t, j))α

−E

[ NE+NI∑
e=NE+1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=2

Rα(u(t, j))(u(t, j)−µ(t, j))α
]
, (15)

P0(t, j)= P(µ(t, j))−
NE∑
e=1

∂P(µ(t, j))
∂ue(t, j)

µe(t, j)

+E

[ NE+NI∑
e=NE+1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=2

Rα(u(t, j))(u(t, j)−µ(t, j))α
]

(16)

yields (10) and especially E[ε(t, j)] = 0.

(2) If the entries of the vector u(t, j) − µ(t, j) for fixed e ∈ {1, . . . , NF } are
independent for all j and t , the ε(t, j) (as defined above) are just functions of the
independent variables; thus, they are independent of each other again.
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(3) The proof of this statement is given in Appendix A. �

Remarks 2.2. • The noise processes ρe(t, j) and ε(t, j) are not pairwise indepen-
dent for fixed j and t . Further, there are no a priori assumptions concerning the
distribution of ρe(t, j) and ε(t, j).

• Although the error ε(t, j) is expected to be close to zero, it is important to
mentioned that the variance of ε(t, j) can take any value and therefore can lead to
an arbitrary error term. This problem occurs most likely when the main influencing
quantities are not available in the form of observational data.

• As the result of the proposition, the two expansions (10) and (11) deploy two
conceptually different models of the noise for the master equation (6). Whereas (10)
deploys a purely additive noise term, next-order expansion (11) contains a mixture
of additive and multiplicative noise processes. Because of its simplicity, expansion
(10) will be used for the construction of the nonhomogeneous and nonstationary
data-driven Markov estimators in Section 3.

Summarizing, an approach to address the predicament of missing data, specifi-
cally in the context of external influences, is proposed for dynamical system with
an underlying Markovian process. It is assumed that the transition matrix has a
linear structure so that the implicit dependency on unresolved external factors can
be reflected in the explicit dependency on time and location.

3. Method

In this section we introduce methods for the analysis of discrete spatiotemporal
data. As the details of nonstationary analysis of temporal data have already been
addressed in earlier papers [16; 17; 9; 30], we will restrict this introduction to a
short overview and will only emphasize new aspects concerning, e.g., the spatial
component of the data or the details concerning the logistic regression.

3A. Inverse problem formulation. For a general consideration of the observed
processes σ(t, j, l), we assume that the correlation between the dynamical sys-
tem and the measurements π(t, j) ∈ [0, 1]NS×1 can be expressed with a direct
mathematical model

π(t + 1, j)= f
(
π(t, j), . . . , π(t − NM , j), θ(u(t, j))

)
, (17)

defined by a model function f ( · ) dependent on current and previous observations
up to a memory depth NM and model parameters θ(u(t, j)) from some parameter
space � dependent on external factors u(t, j)∈RNF×1. Note that u(t, j) is a vector
of all influences driving the system of interest. In particular, it can include informa-
tion from the microscopic scale (e.g., from locations ω( j, l) with l ∈ {1, . . . , Nens})
and other spatial components (e.g., neighboring cells), thus allowing to model
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any existing spatial correlations. Further, the analytic expression of the model
function f can also include random processes, e.g.,

f (θ(t, j)) := θ(t, j)+ λ(t, j). (18)

In this basic example, the random process λ(t, j) has an expected value zero for
all t and j , is i.i.d. (independent identically distributed) and can be interpreted as
measurement errors or implicit quantities influencing the considered system. The
reader is referred to [30] for more model function examples. For a given model
function f and parameter function θ(u(t, j)), the problem of finding an appropriate
time series π(t, j) is called the direct mathematical problem. In this manuscript, we
consider the opposite inverse problem: given the observations π(t, j), which param-
eters θ(u(t, j)) with respect to the model function f describe the data “best”? In
order to find model parameters θ(u(t, j)) that minimize the “distance” between the
data and the model-based time series, we need to introduce a measuring functional

g
(
π(t + 1, j), . . . , π(t − NM , j), θ(u(t, j))

)
:

[0, 1]NS × · · ·× [0, 1]NS ×�→ R≥0, (19)

which we will refer to as a model distance function. The corresponding inverse
problem is defined as

L(θ(u(t, j)))

=

NT∑
t=1

NJ∑
j=1

g
(
π(t + 1, j), . . . , π(t − NM , j), θ(u(t, j))

)
→ min

θ(u(t, j))
(20)

and is referred to as an averaged clustering functional. A suitable function g can
be derived from any metric d( · , · ):

g
(
π(t + 1, j), . . . , π(t − NM , j), θ(u(t, j))

)
=
(
d
(
π(t + 1, j),E

[
f
(
π(t, j), . . . , π(t − NM , j), θ(u(t, j))

)]))2
. (21)

We will consider the Euclidean metric d2(x, y)= ‖x− y‖2 for the remainder of the
manuscript. We will introduce two different model functions, f logit and f Markov, on
which we will focus for the remainder of the paper. In particular, these two models
will be numerically investigated in Section 5.

3A1. Logistic regression. The model f logit, introduced in the following, is a non-
stationary and nonhomogeneous spatiotemporal extension of discrete choice models,
which are standard techniques in the context of discrete data regression. This model
class is a member in the generalized linear model (GLM) family [12; 10]. Discrete
choice models can be derived from utility theory where the state of the regarded
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process σ(t, j, l) is assumed to be associated with a benefit or utility measure. In
detail, this means that the process can be expressed as the function

σ(t, j, l)=


s1 if C1[u(t, j), B1(t, j)]> Ci [u(t, j), Bi (t, j)] ∀ i 6= 1,
...

sNS if CNS [u(t, j), B NS (t, j)]> Ci [u(t, j), Bi (t, j)] ∀ i 6= NS,

(22)

whereas

Ci [u(t, j), Bi (t, j)] := β i
0(t, j)+

NE∑
e=1

β i
e(t, j)ue(t, j)+ ξ i (t, j) (23)

is the utility measure dependent on unknown coefficients

Bi (t, j)=

 β i
0(t, j)
...

β i
NE
(t, j)

 ∈ R(NE+1)×1 (24)

on observable (explicit) factors u(t, j)∈U⊂RNE×1 and on errors ξ i (t, j) character-
izing the influences that could not be obtained through measurement (e.g., implicit
external factors) [28; 29]. This implies that the probability for the dynamical process
σ(t, j, l) to be in state si can be expressed as follows:4

P[σ(t, j, l)= si ] = P
[
Ci [u(t, j), Bi (t, j)]> Ch[u(t, j), Bh(t, j)] ∀ h 6= i

]
(25)

= P

[
β i

0(t, j)+
NE∑
e=1

β i
e(t, j)ue(t, j)+ ξ i (t, j)

> βh
0 (t, j)+

NE∑
e=1

βh
e (t, j)ue(t, j)+ ξ h(t, j) ∀ h 6= i

]

=P

[
β i

0(t, j)−βh
0 (t, j)+

NE∑
e=1

[β i
e(t, j)−βh

e (t, j)]ue(t, j)+ξ i (t, j)

> ξ h(t, j) ∀ h 6= i
]
.

Various discrete choice models arise assuming different parametric forms of distri-
butions for the random error terms ξ 1(t, j), . . . , ξ NS (t, j). The logistic regression
and the probit model are the most prominent examples of that model class; e.g., for
logit models, the random part of the utility is assumed to be i.i.d. extreme value
distributed (also know as Gumbel distribution), and for probit models, it is assumed
to be multivariate normal. Results gained with either approach are similar, and

4Note that the probability of Ci [u(t, j), Bi (t, j)] = Ch[u(t, j), Bh(t, j)] is assumed to be zero
(see [29]).
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significant differences are rare [26]. A multinomial logistic model, i.e., NS ≥ 2, is
considered in the following. Consequently, the errors ξ 1(t, j), . . . , ξ NS (t, j) are
assumed to be i.i.d. with the Gumbel distribution resulting in the state probabilities

P[σ(t, j, l)= si ] =

exp
(
β i

0(t, j)+
NE∑
e=1

β i
e(t, j)ue(t, j)

)
NS∑

h=1
exp

(
βh

0 (t, j)+
NE∑
e=1

βh
e (t, j)ue(t, j)

) ∀ i. (26)

The reader is referred to [29; 36] for a detailed probabilistic derivation. The
corresponding model function f logit with logistic regression parameter B(t, j)=
[B1(t, j), . . . , B NS (t, j)] ∈ R(NE+1)×NS is expressed as

π(t, j) := θ logit(B(t, j), u(t, j))+ ζ(t, j), (27)

where

θ logit(B(t, j), u(t, j))=

 P[σ(t, j, l)= s1]
...

P[σ(t, j, l)= sNS ]

 ∈ RNS×1 (28)

and ζ(t, j) is assumed to be an error process (e.g., please see the error of example
model function given in (18)) related to the unknown implicit external influences and
possible measurement errors. Note that there is no additional assumption concerning
the probability distribution of ζ(t, j). The inverse problem corresponding to (27)
with a model distance function g induced by the Euclidean metric has the form

L(B(t, j))=
NT∑
t=1

NJ∑
j=1

∥∥π(t, j)− θ logit(B(t, j), u(t, j))
∥∥2

2→ min
B(t, j)

. (29)

The standard logit model is one of the most used discrete choice models; neverthe-
less, it is important to check whether the problem setting of a certain considered
application fits the model properties and whether it would be more reasonable to
deploy a different discrete choice model. In this context, it is important to note that
the logit model exhibits the independence of irrelevant alternatives (IIA) property
[27], which states that for any two alternatives states si and sh the ratio of the
corresponding probabilities is

exp
(
β i

0(t, j)−βh
0 (t, j)+

NE∑
e=1

(
β i

e(t, j)−βh
e (t, j)

)
ue(t, j)

)
. (30)

In other words, the ratio does not depend on any state other than si and sh and the
relative odds remain the same [36]. Although this property might be realistic in
some choice situations, it might be inappropriate in others [7]. Specifically, for
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sets with similar states, i.e., states that are good substitutes of one another in the
regarded system/application, the IIA property becomes implausible. This issue is
often motivated with an example originating from a discussion McFadden offered
in [29] on the subject: an individual takes one of the choices in the alternative set
of states {auto, blue bus} with probability distribution [2/3 1/3], and then a red bus
is added to the set of states, which causes the “intuitive” probability distribution,
i.e., [2/3 1/6 1/6], to vary from the one implied by the IIA axiom [1/2 1/4 1/4].

The direct model function given in (27) can be extended in order to describe
processes with memory, e.g., by including the previous (in time) and/or neighbor-
ing (in location space) values of the probability density π(t, j) as the additional
components of the external factors vector u(t, j), e.g.,

uNE+1(t, j) := π1(t − 1, j). (31)

Such logit models with Markov effects incorporated in the above form of external
factors are known as dynamical logit models [32; 15]. One of the main drawbacks of
the logistic regression ansatz is the internally embedded mapping (from the closed
interval [0, 1] to the continuum of real numbers (−∞,∞)) used to approach the
discrete/categorical data with continuous regression techniques. This transformation
causes computational instability on the boundaries of the logistic cumulative density
function. Further, it is not possible to directly access the impact of the explicit
external factors, which complicates the interpretations of the exterior influences.

Nevertheless, logistic regression is a good option for systems with nonlinear
behavior. As a matter of fact, a nonlinear process can also be interpolated via a
sequence of piecewise linear but nonstationary and nonhomogeneous local models.
But in a case when the dynamics of the observed process are nonlinear as well as
nonstationary and nonhomogeneous, it is more sensible to describe the system with
an intrinsically nonlinear model (e.g., the nonstationary nonhomogeneous logistic
regression).

3A2. Markov regression. As a locally linear alternative to the logistic regression
model described above, we consider a nonstationary nonhomogeneous Markov
regression. In order to incorporate all external factors in the model, we assume that
the transition matrix P(u(t, j)) corresponding to an observed Markovian dynamical
process σ(t, j, l) is continuously differentiable and has bounded second derivatives.
Employing the results of Proposition 2.1, the following decomposition of the
transition matrix is considered:

P(t, j, u(t, j))= P0(t, j)+
NE∑
e=1

Pe(t, j)ue(t, j). (32)

The model function f Markov is defined on the basis of an adapted stochastic master
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equation (6):

π(t + 1, j)> := π(t, j)>
(
P(t, j, u(t, j))+ ε(t, j)

)
. (33)

Then it is possible to formulate the following inverse problem:

L(P(t, j, u(t, j)))

=

NT∑
t=1

NJ∑
j=1

∥∥π(t + 1, j)>−π(t, j)>P(t, j, u(t, j))
∥∥2

2→ min
P(t, j,u(t, j))

. (34)

3B. Interpolation. The optimization problem (20) exhibits several computational
drawbacks such as ill-posedness (in the sense of Hadamard [13]) and therefore
needs to undergo a series of changes in the form of regularizations. In the fol-
lowing, we make use of the fact that many real-life systems from various areas
of application exhibit a certain level of persistence. Subsequently, it is possible
to interpolate the model parameter function θ(u(t, j)) with a fixed number of
NK stationary and homogeneous model parameters θk(u(t, j)) and corresponding
affiliations γk(t, j) with k ∈ {1, . . . , NK }. This approach leads to a less ill-posed
description of the considered dynamical system. Thus, assuming the existence
of such local models 2(u(t, j)) = [θ1(u(t, j)), . . . , θNK (u(t, j))] and weights
0(t, j) = [γ1(t, j), . . . , γNK (t, j)] ∈ [0, 1]1×NK , the model distance functional
first introduced in (19) can be phrased in the following interpolated formulation:

g
(
π(t + 1, j), . . . , π(t − NM , j), θ(u(t, j))

)
=

NK∑
k=1

γk(t, j)g
(
π(t + 1, j), . . . , π(t − NM , j), θk(u(t, j))

)
. (35)

The affiliation process 0(t, j) characterizes the regime behavior and the nonstation-
ary and nonhomogeneous nature of the dynamical system. The weights γk(t, j)
have the specification to take positive values and sum up to one over all NK local
models, i.e.,

NK∑
k=1

γk(t, j)= 1 ∀ j ∈ {1, . . . , NJ }, t ∈ {1, . . . , NT }, (36)

γk(t, j)≥ 0 ∀ j ∈ {1, . . . , NJ }, t ∈ {1, . . . , NT }, k ∈ {1, . . . , NK }. (37)

Then the corresponding inverse problem can formally be expressed by

L(0(t, j),2(u(t, j)))=
NJ∑
j=1

L j (0( : , j),2(u(t, j)))→ min
0(t, j),2(u(t, j))

(38)
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with
L j (0( : , j),2(u(t, j)))

=

NT∑
t=1

NK∑
k=1

γk(t, j)g
(
π(t + 1, j), . . . , π(t − NM , j), θk(u(t, j))

)
. (39)

Note that the constraints are independent for each location j . This independence
in space and the structure of the functional L will be exploited in the numerical
optimization of (38) with respect to 0(t, j). The main idea is that every location j
can be regarded separately due to the fact that the overall functional L is a sum of
local (uncoupled in 0( : , j)) functionals L j with (uncoupled in 0( : , j)) constraints
(36) and (37). A corresponding numerical algorithm exploiting this structure of
the problem will be discussed in detail in Section 3D. The influence of the implicit
external factors uunres(t, j) is reflected in the explicit time- and space-dependence
of the affiliation process 0(t, j).

In case of the logistic regression, this regularization means that we need to find
a set of locally stationary and homogeneous (i.e., not dependent on time t and loca-
tion j) model parameters {B1, . . . , BNK } with Bk = [B1

k , . . . , B NS
k ] ∈ R(NE+1)×NS

∀ k ∈ {1, . . . NK }. For the Markov regression, the interpolated version of (34) is

L(0(t, j), P(u(t, j)))

=

NJ∑
j=1

NT∑
t=1

NK∑
k=1

γk(t, j)
∥∥π(t+1, j)>−π(t, j)>Pk(u(t, j))

∥∥2
2→ min

0(t, j),P(u(t, j))
, (40)

where the local Markovian transition operators P(u(t, j)) = [P1(u(t, j)), . . . ,
P NK (u(t, j))] ∈RNS×NS NK for fixed t and j are defined in a linear approximation:

Pk(u(t, j))= Pk
0 +

NE∑
e=1

Pk
e ue(t, j) ∀ k ∈ {1, . . . , NK }. (41)

To ensure that the stochasticity of the Markov transition operator remains preserved,
the optimization problem is subject to a number of constraints. Since the transition
matrices Pk(u(t, j)) are stochastic matrices, the matrices Pk

e are required to satisfy
the equalities

Pk
0 1= 1 ∀ k ∈ {1, . . . , NK }, (42)

Pk
e 1= 0 ∀ e ∈ {1, . . . , NE }, k ∈ {1, . . . , NK }, (43)

whereas 1 ∈RNS×1 is a column vector with all entries equal to one and analogously
0 ∈ RNS×1 refers to the corresponding vector with all entries equal to zero. Fur-
thermore, the entries of Pk(u(t, j)) need to be greater than or equal to zero. In the
case of a rectangular domain U, the feasible number of 2NE inequality constraints
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(consisting of all possible combinations of suprema and infima of the NE explicit
external factors ue(t, j))

{Pk
0 }n,m +

NE∑
e=1

{Pk
e }n,m

[
supt, j ue(t, j)
inft, j ue(t, j)

]
≥ 0 ∀ k, n,m (44)

is sufficient to satisfy this condition. See [30] for more details and a proof of (44)
for the purely temporal case; extension to the spatiotemporal case given in equations
(41)–(44) above is straightforward.

3C. Spatial and temporal persistence. The problem formulation is still ill-posed
since its solution may not be unique due to many possibilities to choose the switching
process 0. Therefore, we need to make further assumptions/restrictions on the
function space that contains the switching process and add another constraint to the
optimization problem. More precisely, to approach this issue, we limit the number
of transitions of γk( : , j), introducing a persistency constraint on the time interval

|γk( : , j)|BV(1,NT ) =

NT−1∑
t=1

|γk(t + 1, j)− γk(t, j)| ≤ NC (45)

that holds for every location j ∈ {1, . . . , NJ }. Without an additional spatial regular-
ization, the constraints for parameter 0(t, j) are still independent for every location.
This structural advantage allows us to compute each 0( : , j) separately if the value
of the parameter 2(u(t, j)) is kept fixed. In some situations, it might be reasonable
to limit the variation along the locations as well (e.g., a limitation concerning only
the neighboring cells of a location), but constraints on the switching process 0 would
result in a global coupling (in j) for different optimization problems L j from (39),
leading to immense numerical costs. Furthermore, an identification of the best
model in terms of parameter choice, discussed in the next paragraph, would have to
be pursued for all possible combinations of choices for NC( j), j ∈ {1, . . . NJ }, as
well, leading to a computationally expensive analysis. This additional regularization
over spatial locations is an aspect of further research.

3D. Numerical approach and computational complexity. The inverse problem
posed in (38) has no general analytic solution and is not convex (i.e., it is not possible
to obtain an unique global minimum with standard approaches, e.g., gradient descent
or Newton methods). But the global optimizers 0∗(t, j) and 2∗(u(t, j)) can be
approximated combining a subspace algorithm and simulated annealing [22]. The
main idea of the subspace algorithm is to exploit the above-mentioned structural
property of the optimization problem (38), i.e., that the simple convex optimization
problems can be stated for 0 and 2 separately, i.e., for (i) an optimization with
respect to 0( : , j) for a fixed 2 and (ii) an optimization with respect to 2 for
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a fixed 0. Dividing the optimization problem with two sets of unknowns into
two minimizations over just one set of parameters reduces the originally high-
dimensional and nonconvex problem to two manageable problems that can be
approached with standard optimization techniques, e.g., simplex method for the
above subspace step (i) and quadratic minimization with linear equality and inequal-
ity constraints for the above subspace step (ii). It is straightforward to demonstrate
that the subsequent repetition of steps (i) and (ii) leads to a strict minimization
of the original functional L, and since the average model distance functional is
bounded with zero from below, this procedure will converge to a local minimum
of L. Iterations over the subproblems only converge to local minima, and simulated
annealing approaches [22; 25] can be deployed in combination with the subspace-
iteration algorithm to avoid getting trapped in the local minimum. The details of
the algorithm are now given in the pseudocode in Algorithm 1.

In contrast to the time-dependent algorithm introduced in [30], the additional
spatial dimension j is involved in the above scheme. Since a spatial regularization
is not included, the affiliations 0( : , j) are determined for each location j separately
(see the for-loop on line 6), i.e., the problem of optimizing L with respect to 0
is equivalent to separate optimization of NJ suboptimization problems given by
functionals L j defined in (39). The local stationary and homogeneous model
parameters θi , on the other hand, are computed for all t and j simultaneously
(line 9). A separate computation for every spatial component is not possible here
since different L j are coupled through 2.

In order to obtain a global minimizer of (38), the subspace-iteration algorithm is
repeated N FEM

anneal times with different randomly sampled initial parameters 0[0] (see
lines 2 and 3). This form of simulated annealing helps to avoid local minima by
trying to consider the entire parameter space. Since the annealing steps can be run
independently, it is possible to reduce the corresponding computational complexity
via an “embarrassingly parallel” implementation. The necessary memory capacity as
well as the computing time can be further decreased by using a time-discretized (with
finite elements) version of the full process 0 [30]. This form of dimension reduction
is especially beneficial when modeling time-persistent dynamical systems with few
transitions between the local models (i.e., systems where a comparatively small num-
ber of finite element functions (N FEM

basis � NT ) is sufficient for qualitative results).
Computational cost of the proposed technique is dependent on the number of

locations NJ and the number N FEM
basis of finite elements for the time discretization.

The run time for the 0 calculation is proportional to O(NJ NK (2N FEM
basis −1)κ), where

κ ≥ 1 is the parameter dependent on the choice of the numerical scheme for the
0( : , j)-optimization (Step 1 of Algorithm 1). As already indicated above, the
computational complexity of the determination of 2 varies for different model
classes and the spatial component can be regarded as an additional dimension in the
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input :Set number of different regimes NK , value for time-wise transition
boundary NC , number of simulated annealing steps N FEM

anneal and optimization
tolerance value τol (optional: number of finite-element functions N FEM

basis ).
output :Global optimizers 0∗(t, j) and 2∗(u(t, j))

1 Lmin = 1000000
2 for r = 1 : Nanneal do
3 Generate random initial 0[0]r and compute 2[0]r .
4 while |L(0[s]r ,2

[s]
r )−L(0[s−1]

r ,2[s−1]
r )| ≥ τol do

5 Step 1:
6 for j = 1 : NJ do
7 Determine 0[s+1]

r ( : , j)= arg min L j (0( : , j),2[s]r ) subject to
constraints (36), (37) and (45), whereas 2[s−1]

r denotes the current fixed
approximation of the optimal 2∗. Apply standard methods of linear
minimization with linear equality and inequality constraints (e.g., simplex
method).

8 Step 2:
9 Compute 2[s+1]

r = arg min L(0[s+1]
r ,2) (additional constraints depend on the

model, e.g., constraints (42)–(44) in case of the Markovian process and no
constraints in the logistic regression case). Apply standard methods of
quadratic optimization with linear equality and inequality constraints.

10 s := s+ 1.

11 if Lmin ≥ L(0∗r (t, j),2∗r (u(t, j))) then
12 Lmin = L(0∗r (t, j),2∗r (u(t, j)))
13 0∗ = 0∗r

14 2∗ =2∗r

15 Return 0∗ and 2∗.

Algorithm 1: Subspace algorithm with annealing steps.

problem. In Step 2 of the algorithm, one needs to solve a quadratic minimization
problem subject to linear constraints (equalities and inequalities) to compute the
matrices Pk

e considering the nonstationary nonhomogeneous Markov regression
(see (40)). Such problems are know to be NP-complete [37]. For the logistic
model (see (27)), the computational complexity of the Step 2 can be expressed as
O(NK NT NJ ) [31]. The overall resulting numerical cost of the proposed method
is in the range of the average complexity of standard approaches such as artificial
neural networks (O((N ANN

weights)
3) where N ANN

weights is the number of ANN parameters,
i.e., neural biases and weights5) and support vector machines (O(N 2

T NE) with NE

5This number is directly proportional to the number of neurons and depends on the type of the
transfer functions and network architecture.
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referring to the number of explicit external factors). Details of the techniques and
their computational time complexity will be discussed in Section 5.

3E. Information criterion. A further issue originates from the selection of the
parameters NK and NC , which can lead to a variety of models differing in terms
of quality and complexity. This problem is addressed by applying a modified
formulation of Akaike’s information criterion (mAIC). The main idea of the
method is based on approximating the time series of the obtained model errors
g(π(t + 1, j), . . . , π(t − NM , j), θk(u(t, j))) through an optimal nonparametric
scalar-valued stochastic process, followed by the comparison of the mAIC values
for the obtained processes from different models. A detailed description of the
method can be found in [30]. The main advantage of this approach is that no a priori
parametric probabilistic assumptions about the analyzed data are necessary.6

The main idea of an information criterion is that the quality of the determined
model is weighted against the total number of parameters involved in the calculation
of the model [1]. In other words, the aim is to identify the model that fits best with
the fewest number of necessary model parameters, e.g.,

mAIC(NK , NC)=−2 log(L(NK , NC))+ 2|M(NK , NC)|. (46)

Here the likelihood L(NK , NC) corresponds to the underlying model characterized
by NK different regimes with a maximum of NC transitions between them and is
defined as
L(NK , NC)

=

NJ∏
j=1

NT∏
t=1

NK∑
k=1

γk(t, j)φk
(
g
(
π(t+1, j), . . . , π(t−NM , j), θk(u(t, j))

)
|Nφk

)
. (47)

A detailed derivation of the likelihood function for the nonstationary case can also
be found in [30]. The expression above is its straightforward extension to the
nonstationary and nonhomogeneous case. The functional M(NK , NC) describes
the total number of involved model parameters, which in the case of the logistic
regression consists of

|M logit(NK , NC)| = |0| + NK (NE + 1) (48)

and for the Markov regression is

|MMarkov(NK , NC)| = |0| + NK NS(NS − 1)(NE + 1). (49)

This modified version of Akaike’s information criterion coupled with the nonsta-
tionary and nonhomogeneous logistic and Markov regression (introduced above)

6Such parametric a priori assumptions are needed to compute the log-likelihood of the data in
context of standard information criteria like AIC.
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allows us to simultaneously identify the optimal model and the optimal values of
the parameters NK and NC .

In practice, mAIC values for different cluster values NK ∈ S1 and persistency
parameter values NC ∈ S2 might not vary substantially. By appointing only one
model, other suitable ones are discarded, resulting in an unnecessary information
loss [5]. In this case, the mAIC values of the possible models are ranked via the
deviation from the lowest mAIC value, i.e.,

1(NK , NC)

= exp
[min(N ′K ,N ′C )∈S1×S2(mAIC(N ′K , N ′C))−mAIC(NK , NC)

2

]
. (50)

If there is more than one probable model, then the overall model can be considered
as a multimodel, i.e., a weighted linear combination of individual models with the
model weights [5] given by

w(NK , NC) :=
1(NK , NC)∑

(N ′K ,N
′

C )∈S1×S2
1(N ′K , N ′C)

. (51)

Besides determining the optimal model with respect to the parameters NK and NC ,
the criterion can also be used to determine the better model in terms of the prior
assumptions. Since different models are compared with respect to the same observa-
tion data and the same form of the nonparametric likelihood-estimation procedure
described in [30] (based on fitting the optimal stochastic process to the time series of
the model residuals), resulting mAIC values can be used to identify the statistically
optimal model from a given class of models (e.g., Markov, logit, ANN and SVM).
Practical examples of this data-based model-discrimination procedure will be given
in the last sections of this manuscript.

4. Prediction and assimilation of additional information

Suppose the global optimal model parameters 0∗(t, j) and2∗(u(t, j)) with respect
to the average model distance functional L(0(t, j),2(u(t, j))) introduced in (38)
can be determined with the proposed numerical scheme (see Algorithm 1); then it
is possible to approximate the observed time series

π(t + 1, j)≈ f
(
π(t, j), . . . , π(t − NM , j),

NK∑
k=1

γ ∗k (t, j)θ∗k (u(t, j))
)

(52)

on the basis of the formal definition of the direct model function. This ansatz, used to
approximate the vector of state probabilities, is discussed in detail in [30] and allows
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us to directly concatenate the two model parameters 0∗(t, j) and 2∗(u(t, j)).7

In most of the practical applications, a further aspect of interest is a prediction
π̂(NT + Npred, j) of the probability distribution π(NT + Npred, j) outside of the
observed time sequence {1, . . . , NT }. The quantity Npred denotes the prediction
depth, i.e., the total number of prediction steps in time. The difficulty lies in the
nonstationarity and nonhomogeneity of the model formulation; i.e., any prediction
crucially depends on 0∗(t, j), which is only defined for the observed time sequence
{1, . . . , NT }. In order to predict future affiliations 0̂(NT + Npred, j), the process
0∗(t, j) can be regarded as an observed time series of probabilities to be in NK

different discrete states. Subsequently, the proposed Markov regression framework
(given in (40)) can be applied to determine the model parameters describing 0∗(t, j).
To avoid an infinite sequence of prediction problems caused by nonstationarity
and nonhomogeneity, the model of the affiliation process 0∗(t, j) is assumed to
have only one regime (i.e., NK = 1). Although this is a strong restriction, it is
important to note that stationarity as well as homogeneity are common assumptions
in time-series analysis. This self-contained strategy to determine

0̂(NT + Npred, j)= 0∗(NT , j)
Npred−1∏
τ=0

([
P00 +

NE∑
e=1

P0e ue(NT + τ, j)
])

(53)

has been introduced in [16] (in the context of purely time-dependent data) and
further discussed and deployed in [30]. The model transition matrix, characterizing
the dynamics of the affiliation 0∗(t, j), is denoted P0(u(t, j)) and is a linear
combination of explicit external factors u(t, j) and matrices P00 , . . . , P0NE

(see (41)
for NK = 1). In a case when the data π(NT + 1, j) for the next time step can
be obtained, the new information can be used to update the 0̂(t, j)-predictor. A
strategy for updating the prediction 0̂(NT + 1, j) conditioned on the additional
information π(NT + 1, j) has recently been introduced in [16; 30] and is based on
the maximum-likelihood principle, i.e.,

γ ∗k (NT + 1, j)

=

{
1 if k = arg minh g(π(t + 1, j), . . . , π(t − NM , j), θh(u(t, j))),
0 otherwise.

(54)

The update γ ∗k (NT + 1, j) is assumed to be optimal (hence the superscript ∗). In
detail, this means that it is possible to identify all local regimes θk describing the
dynamical process σ(t, j, l) on the basis of the available data measured in the time
sequence {1, . . . , NT }. Further, it is necessary to assume the affiliation process 0∗

7Note that the model function f needs to be linear in its parameters and the model distance
functional g has to be strictly convex to pursue the equation given in (52) (for a detailed derivation
see [30]). This is the case for the proposed Markov as well as for the logistic model.
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is deterministic (i.e., takes only values in the set {0, 1}). In the following, a new
update method is proposed on the basis of Bayes’ theorem that allows for a fuzzy
affiliation. We denote 0(NT + 1, j) to be the true but unknown cluster affiliation
of the dynamical system under observation and 0̂(NT + 1, j) the (prior) prediction,
calculated only with the information from the previous time steps t ∈ {1, . . . NT },
and as 0̇(NT +1, j), we denote the posterior estimate based on the new observation
π(NT + 1, j). The following proposition gives an analytical form of the posterior
estimate of the hidden model affiliation function and shows how the implicit impact
of the unresolved external factors can be assimilated into the model:

Proposition 4.1. Let the entries of γk(t, j) for all j , t and k only assume values
zero or one and the predictor 0̂(NT + 1, j) be a prior probability distribution for
0(NT + 1, j) in the sense that

P[γk(NT + 1, j)= 1] = γ̂k(NT + 1, j). (55)

Moreover, let the distribution of the observation π(NT +1, j) given the information
about the affiliation γk at time t be independent of the prediction 0̂(t, j). Then the
posterior distribution of the regime assigning process 0(NT + 1, j) is of the form

γ̇k(NT + 1, j)=
P
[
π(NT + 1, j)|γk(NT + 1, j)= 1

]
γ̂k(NT + 1, j)∑NK

h=1 P
[
π(NT + 1, j)|γh(NT + 1, j)= 1

]
γ̂h(NT + 1, j)

. (56)

Proof. Using the above assumptions and Bayes’ theorem, the following holds:

P
[
γk(NT + 1, j)= 1|π(NT + 1, j)

]
=

P
[
γk(NT + 1, j)= 1;π(NT + 1, j)

]
P[π(NT + 1, j)]

=
P
[
π(NT + 1, j)|γk(NT + 1, j)= 1

]
P[γk(NT + 1, j)= 1]

P[π(NT + 1, j)]

=
P
[
π(NT + 1, j)|γk(NT + 1, j)= 1

]
P[γk(NT + 1, j)= 1]∑NK

h=1 P
[
π(NT + 1, j)|γh(NT + 1, j)= 1

]
P[γh(NT + 1, j)= 1]

. �

As will be demonstrated by numerical examples in the next section, formula
(56) improves an estimation of the new affiliations in comparison to the maximum-
likelihood approach (54) deployed in [16; 30]. Although the affiliation is “fuzzy”
(i.e., resulting affiliations may take values between zero and one), it is (as demon-
strated by the numerical tests) less prone with respect to introducing unjustified
switches between the local models.
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5. Numerical investigation

To explore the characteristic properties of the introduced nonstationary and nonho-
mogeneous regression framework, we apply it to three different synthetic data sets.
Note that we actively chose to work with artificial rather than real-life examples due
to the specific settings necessary to analyze the proposed framework. In a real-life
observation, for example, there is no reliable information about the influencing
factors uunres(t, j) that are not available in form of measurements.

Different model functions (e.g., Markov and logit) for the framework proposed in
Section 3 as well as other standard techniques of time-series analysis (e.g., SVM and
ANN) are considered in the following. It is necessary to distinguish between the dif-
ferent resulting model parameters via additional superscript tags (e.g., 0Markov(t, j)
or 0logit(t, j)). The same labeling system is employed for approximations of
the actual observations π(t, j) determined with model parameters computed with
various methodologies (e.g., πMarkov(t, j) or π logit(t, j) or πANN(t, j)). Due to the
fact that the considered observations are artificial, all parameters and variables used
to generate the synthetic data are tagged with the superscript syn (e.g., 0logit(t, j)).
Some tags are specifying the settings used for a specific algorithm such as the number
of annealing steps (e.g., N ANN

anneal or N FEM
anneal) or the regularization factor (e.g., N FEM

C
or N SVM

C ). Note that the regularization factor NC can have superscripts FEM as well
as Markov or logit although all of those labels correspond to the technique proposed
in Section 3. This further distinction is necessary as the abbreviation FEM is a
general reference to the framework introduced in the current manuscript. Resulting
parameters derived with any technique, which are considered to be optimal in the
sense that the corresponding model has the lowest AIC, have a superscript ∗.

A few variables remain free of labels as they are independent of the parameter-
identification process and are assumed to be the same for all the employed techniques,
e.g., the number of explicit external factors NE , the number of discrete states NS

or the number of considered locations NJ .
One aspect of the numerical investigation includes testing of the various con-

sidered parameter-identification techniques with respect to predictions, i.e., ap-
proximate data that was not given for the computation of corresponding model
parameters. Thus, it is necessary to divide the time sequence {1, . . . , NT } describing
the time-wise length of the observations π(t, j) into two components {1, . . . , NTtrain}

and {NTtrain+1, . . . , NT }. The first sequence will be referred to as training sequence
and the second one will be known as test sequence.

The first data set is discussed in Section 5A and is employed to demonstrate
the general feasibility of the proposed nonstationary and nonhomogeneous Markov
regression as well as the logistic regression frameworks under “good conditions”
(all relevant data is given for the computations, i.e., no unresolved external factors
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uunres(t, j)). In Section 5B, the focus is on the key attribute of the Markov regression
technique presented in this paper, which allows us to take missing/unavailable exter-
nal factors into account. To numerically investigate this theoretical incorporation of
unobserved information, a synthetic data set is generated with NF = 101 external
factors u(t, j) and only one of these 101 factors is made available for the calculation
of the model parameters (i.e., NE = 1 and NI = 100).

The last example data set is chosen to numerically investigate (again considering
the nonstationary and nonhomogeneous Markov regression) the newly proposed
update of the prediction 0̂(NT + 1, j) (see Proposition 4.1). The quality of the
determined model is analyzed and compared to the results of two standard frame-
works from machine learning (namely artificial neural networks [2; 24; 18; 3] and
support vector machines [8; 35]).

5A. Nonstationary example. Under ideal conditions, the regarded dynamical pro-
cess σ(t, j, l) has the Markov property and all external influences are available in
the form of observation data. The toy example considered in this section allows us to
check the basic feasibility of the proposed technique and also serves as a reference
for an example under “bad conditions”, investigated in Section 5B. The data is
generated using the proposed Markov model structure (see (32)) and pseudorandom
numbers generated by the computer. In the following, two algorithms are outlined
in order to explain the synthetic data. At first, the affiliation process 0syn(t, j)
subject to constraints (45), (36) and (37) is generated.

The synthetic parameter 0syn is generated with pseudorandom numbers that, for
simplicity, are restricted to the set {0, 1}. Furthermore, a certain level of persistency
is forced on 0syn(t, j), meaning that the total number of transitions is limited
to N syn

C (see lines 3–12 of Algorithm 2). As the weights γ syn
k (t, j), generated with

Algorithm 2, only take values in {0, 1}, it is possible to directly assume8

Psyn(t, j, u(t, j))≈
N syn

K∑
k=1

γ
syn
k (t, j)Pk syn(u(t, j)), (57)

whereas the definition of Pk syn(u(t, j)) is given in (41). Then a synthetic time
series π syn(t, j) can be computed on the basis of the definition of the ensemble
data by generating an ensemble of Nens Markov chain realizations σ syn(t, j, l) ∈
{s1, . . . , sNS } given the transition matrix Psyn(t, j, u(t, j)) (see Algorithm 3). The
transition matrix Psyn(t, j, u(t, j)) is calculated using the assumed model structure
given in (41) and (57) (see line 5). Further, it is assumed that Psyn(t, j, u(t, j))
also depends linearly on the implicit external factors uunres(t, j), given for the

8For more information on this approximation of the transition matrix Psyn(t, j, u(t, j)), see
elucidations in Section 4, or for a more detailed discussion on the matter (for purely time-dependent
model parameters), the reader is referred to [30].
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input :Choose values for N syn
K , N syn

C , NT and NJ .
output :0syn(t, j)

1 for j = 1 : NJ do
2 γ

syn
k ( : , j)= [ ] ∀ k ∈ {1, . . . , NK }

3 for c = 1 : N syn
C do

4 Ndummy = round(2NT /(N
syn
C ∗ rand([0, 1])))

5 dummy0= (0, . . . , 0) ∈ R1×Ndummy

6 dummy1= (1, . . . , 1) ∈ R1×Ndummy

7 r = rand({1, . . . , N syn
K })

8 for k = 1 : N syn
K do

9 if r == k then
10 γ

syn
k ( : , j)= [γ syn

k ( : , j) dummy1]

11 else
12 γ

syn
k ( : , j)= [γ syn

k ( : , j) dummy0]

13 if length(γ syn
1 ( : , j))≥ NT then

14 γ
syn
k ( : , j)= γ syn

k (1 : NT , j) ∀ k ∈ {1, . . . , N syn
K }

15 else
16 Ndummy = NT − length(γ syn

1 ( : , j))
17 dummy0= (0, . . . , 0) ∈ R1×Ndummy

18 dummy1= (1, . . . , 1) ∈ R1×Ndummy

19 γ
syn
1 ( : , j)= [γ syn

1 ( : , j) dummy1]
20 γ

syn
k ( : , j)= [γ syn

k ( : , j) dummy0] ∀ k ∈ {2, . . . , N syn
K }

21 0syn( : , j)= [γ syn
1 ( : , j), . . . , γ syn

N syn
K
( : , j)]

Algorithm 2: Generate synthetic affiliation 0syn(t, j).

generation of artificial data. Hence, analogously to the synthetic model matrices
Pk syn

1 , . . . , Pk syn
NE

, corresponding to the explicit external factors u(t, j), a set of
matrices Pk syn

NE+1, . . . , Pk syn
NE+NI

, related to the unresolved factors uunres(t, j), is chosen
for k ∈ {1, . . . , N syn

K }.
In order to generate samples from a distribution, as necessary in lines 7–9

of Algorithm 3, one can employ standard techniques such as rejection sampling
(also known as the acceptance-rejection method) [6; 33; 38]. Finally, the artificial
data π syn(t, j) can be computed considering the quotients Nsi (t, j)/Nens first in-
troduced in (1), which are assumed to be a good approximation of the probability
π syn(t, j) for large Nens. The affiliation γ syn

k (t, j) is generated with the following
setting: N syn

C = 10, N syn
K = 2, NT = 400, NJ = 24, NS = 2, NE = 2 and NI = 0. The

first explicit external influence u1(t, j) is set to be a time- and location-dependent
sinus function. As the second factor, we use the average of the neighboring cell
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input :Choose values for N syn
K , 0syn(t, j) for all t and j (already generated), NT , NJ ,

NE , NI , NS and Nens. Define synthetic model matrices
Pk syn

0 , . . . , Pk syn
NE

, Pk syn
NE+1, . . . , Pk syn

NE+NI
with k ∈ {1, . . . , N syn

K }, a finite set of
discrete states {s1, . . . , sNS } and explicit as well as implicit external factors,
i.e., u(t, j) and uunres(t, j).

output :π syn(t, j)
1 Initialize σ syn(0, j, l)= rand{s1, . . . , sNS } ∀ j ∈ {1, . . . , NJ }, l ∈ {1, . . . , Nens}

2 for t = 1 : NT do
3 for j = 1 : NJ do
4 P syn(t, j, u(t, j))=∑NK

k=1 γk(t, j)
(
Pk syn

0 +
∑NE

e=1 Pk syn
e ue(t, j)+

∑NI
e=1 Pk syn

NE+euunres
e (t, j)

)
5 for l = 1 : Nens do
6 h = index(σ syn(t − 1, j, l))

7 σ syn(t, j, l)=


s1 with probability {P syn(t, j, u(t, j))}h1,

...

sNS with probability {P syn(t, j, u(t, j))}hNS

8 (see rejection sampling [6; 33; 38])

9 for i = 1 : NS do
10 π

syn
i (t, j)= counter(σ syn(t, j, l)= si )/Nens

Algorithm 3: Generate synthetic data π syn(t, j).

states at the previous time step, i.e.,

u2(t, j) := average
r∈neigh( j)

(π(t, r)). (58)

It allows us to model the spatial relations and to evaluate the statistical impact of
adjacent location states. To be able to speak of neighbors in the spatial sense, a
honeycomb lattice is assumed and each hexagon is assigned to one location. The
choice of this lattice allows us to work with six neighbors for every location, each
sharing an edge with the considered cell. To generate the data, we define matrices

P1 syn
0 =

[
0.7 0.3
0.7 0.3

]
, P1 syn

1 =

[
0.28 −0.28
0.28 −0.28

]
, P1 syn

2 =

[
−0.01 0.01
−0.01 0.01

]
(59)

and

P2 syn
0 =

[
0.3 0.7
0.3 0.7

]
, P2 syn

1 =

[
0.24 −0.24
0.24 −0.24

]
, P2 syn

2 =

[
0.05 −0.05
0.05 −0.05

]
. (60)

The primary focus of this example lies on checking the techniques’ attributes.
This includes the ability to infer good (i.e., unbiased) approximations of the model
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Figure 2. The four panels display the mAIC values for different parameters N FEM
K ∈

{1, 2, 3} and N FEM
C ∈ {3, 5, 7, 10, 15, 20} whereas each panel corresponds to a different

model ansatz: Markov model, independent process, logistic model and dynamical logistic
model. Additionally, the mAIC value calculated for the ANN results is shown.

parameters (i.e., 0syn(t, j), Pk syn(u(t, j)), N syn
K and N syn

C ) as well as to gener-
ate a qualitative estimate of the distribution π syn(t, j). The proposed framework
(four different direct model functions are considered, i.e., Markov and logit both
with and without memory) is applied to the training sequence {1, . . . , 360} (i.e.,
NTtrain = 360) of the synthetic data π syn(t, j) and the subspace algorithm is iterated
N FEM

anneal = 10 (for all four model assumptions) times in order to find a global mini-
mum.9 The calculation is done for different parameters values N FEM

K ∈ {1, 2, 3} and
N FEM

C ∈ {3, 5, 7, 10, 15, 20}. Further, the corresponding mAIC values are computed
with the proposed adapted information criterion. The resulting values are displayed
in Figure 2. As can be seen in the panels on the left side of Figure 2, the mAIC values
for the originally chosen maximal number of transitions N syn

C and number of regimes
N syn

K are the lowest for the Markov framework with and without memory (i.e., the
variables N ∗Markov

C =N syn
C and N ∗Markov

K =N syn
K are correctly identified). The results

for the runs with logistic model assumptions (again with and without memory) have
much bigger mAIC values (displayed in the panels on the right-hand side of Figure 2).
Moreover, the mAIC value corresponding to the results of a neural network run

9For the remainder of the paper, we denote the AIC-optimal parameters computed by the framework
with a superscripted ∗.
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Figure 3. Approximations of the synthetic data π syn
1 (t, j) retrieved with two differ-

ent techniques: ANN (settings: N ANN
neurons = 20, Levenberg–Marquardt backpropaga-

tion and N ANN
anneal = 10) and nonstationary Markov regression (settings: no memory,

N Markov
anneal = 10, N∗Markov

C = 10 and N∗Markov
K = 2) are presented. Each of the panels

corresponds to a location. The vertical black line at time NTtrain = 360 marks the last data
point of the training data and the beginning of prediction sequence. The ANN approxi-
mation πANN

1 (t, j) is shown as a thin dashed line, and the approximation πMarkov
1 (t, j)

obtained with the Markov model is displayed as a thin solid line.

(details below) is also presented in each of the four panels. The calculated model
parameters of the Markov process without memory applied to the synthetic data
for N ∗Markov

K = 2 and N ∗Markov
C = 10 are used to simulate πMarkov(t, j) employing

Algorithm 3 with parameters 0∗(t, j) and P∗(u(t, j)) (see Figure 3). It is compared
to results obtained with artificial neural networks (ANN) [2; 24; 18; 3] and support
vector machines (SVM) [8; 35]. These techniques are popular pattern-recognition
algorithms and can both be used to model spatiotemporal data. As a representative
ANN, we consider a feedforward network, more specifically a multilayer perceptron
(MLP) [3]. According to the theory, a network of this particular architecture with two
hidden layers can be used to approximate an arbitrary nonlinear function [23]. For
many cases, a single-layer network (with an arbitrary depth, i.e., number of neurons)
is enough and can already describe most of the practically relevant functions [18].
Typically used transfer function classes are linear-, step- or sigmoid-functions.
Multilayer feedforward networks with logistic sigmoid transfer functions are uni-
versal approximators [18], and therefore, we will deploy this type of ANN in the
numerical tests below. We train networks with different numbers of hidden neurons
and continue with the network that has the smallest residuals (N ANN

neurons = 20). This
means that a particular ANN with N ANN

neurons =w neurons is considered to be the best
fit when

∑
t, j‖π

syn(t, j)− πANN(w)(t, j)‖22 ≤
∑

t, j‖π
syn(t, j)− πANN(v)(t, j)‖22

for all of the regarded neuron numbers v,w ∈ [5, 10, 15, 20, 25, 30, 40, 50]. The
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Figure 4. The mean relative error in % (in Euclidean metric) is shown dependent on the
prediction depth τ ∈ {1, . . . , Npred} (note that Npred = 39). More specifically, the shown
prediction error is computed as follows: mean j ($( j, τ )/‖π syn(NTtrain + τ, j)‖22) ∗ 100
with j ∈ {1, . . . , NJ } (details can be found in Algorithm 4).

Levenberg–Marquardt backpropagation is employed to optimize the network, and
since it only converges to a local minimum, we also use annealing steps (N ANN

anneal=10)
to approach a global solution.

An attempt to reconstruct the synthetic data π syn
1 (t, j) for the entire time sequence,

i.e., t ∈ {1, . . . , 400}, with the two different techniques, namely ANN and the
Markov regression proposed in Section 3, is shown in Figure 3. Regarding the
test sequence {1, . . . , NTtrain}, the approximation πANN

1 (t, j) (see the thin dashed
line in the panels of Figure 3), corresponding to ANN, mostly follows the original
path π syn

1 (t, j). The performance of the ANN framework is also satisfactory when
confronted with the test data (i.e., external factors u(t, j) with t ∈ {361, . . . , 400},
starting from the thick black vertical line in both panels of Figure 3). The Markov
regression technique (see the thin solid line in panels of Figure 3) restores the original
series in the training sequence, i.e., in the first 360 time steps, more accurately then
the ANN. In pursuance of approximating 0syn(t, j) for t ∈ {NTtrain, . . . , NT }, the
self-contained strategy outlined in Section 4 is employed. Details of the procedure
to obtain π̂Markov(t, j), i.e., approximating the synthetic data for the test sequence,
can be found in the pseudocode of Algorithm 4.

As can be seen in Figure 3 (right from the vertical black line), the nonstation-
ary nonhomogeneous Markov regression provides a high quality approximation
π̂Markov(t, j) of the artificial time series π syn(t, j) in the test sequence. The
quality of the calculated model can also be accessed comparing the estimated
local Markov parameters matrices with the synthetic ones Pk syn

0 , . . . , Pk syn
NE

with
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input :0∗(t, j) for t ∈ {1, . . . , NTtrain}, set maximal prediction depth Npred and
u(t, j) for t ∈ {1, . . . , NT }

output :$( j, τ ) with τ ∈ {1, . . . , Npred} and π̂Markov(t, j) with
t ∈ {NTtrain + 1, . . . , NT }

1 for j = 1 : NJ do
2 Determine model parameter P0(u(t, j)) characterizing the underlying model of

0∗(t, j) via stationary Markov regression.
3 for τ = 1 : Npred do
4 0̂(NTtrain + τ, j)= 0∗(NTtrain , j)

∏τ−1
h=0 P0(u(NTtrain + h, j)) (see (53))

5 Generate π̂(NTtrain + τ, j) employing Algorithm 3 (lines 3 to 10) using
0̂(NTtrain + τ, j).

6 $( j, τ )= ‖π syn(NTtrain + τ, j)− π̂Markov(NTtrain + τ, j)‖2
2

Algorithm 4: Prediction.

k ∈ {1, . . . , N syn
K } (given in (59) and (60)) that have been used to generate the data

P1 Markov
0 =

[
0.6999 0.3001
0.3001 0.6999

]
, P1 Markov

1 =

[
0.2801 −0.2801
0.2801 −0.2801

]
,

P1 Markov
2 =

[
−0.0125 −0.0515
−0.0125 −0.0515

] (61)

and

P2 Markov
0 =

[
0.3003 0.69971
0.3003 0.69971

]
, P2 Markov

1 =

[
0.24 −0.24
0.24 −0.24

]
,

P2 Markov
2 =

[
0.0515 −0.0515
0.0515 −0.0515

]
.

(62)

Furthermore, the error plot of Figure 4 also indicates the superiority of the Markov
model in terms of relative prediction error

$rel(τ )=mean
j
($( j, τ )/‖π syn(NTtrain + τ, j)‖22) ∗ 100 (63)

up to a prediction depth of approximately 23 time steps ahead. The computation
of the error term $( j, τ ) is explained in Algorithm 4. An alternative possibility to
model the discrete/categorical processes is provided by the support vector machines.
SVMs are used for the classification of a given data set u(t, j) with t ∈ {1, . . . , NT }

and j ∈{1, . . . , NJ }with respect to a set of different classes (or states) {s1, . . . , sNS }.
This is achieved via geometrical separation, i.e., appropriate placing of hyperplanes
in U, dividing the values u(t, j) in NS different segments, thus associating u(t, j)
for each t and j with one class/state si . In the training phase, the assignment of the
data values u(t, j) to the classes is computed according to the values of the discrete
process σ syn(t, j, l). As the microscopic information about the discrete states of the
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process is unavailable, a threshold of 0.5 is set and π syn(t, j) is rounded accordingly
so that the data has two categories, i.e., two classes. The optimization problem
corresponding to the SVMs can be formulated as a quadratic minimization procedure
resulting in a unique robust solution. In contrast, the ANNs (that are fitted through a
nonconvex gradient-based optimization procedure) do not provide a unique solution
of the inverse problem and therefore are in general less robust than SVMs. Different
kernel functions are considered (specifically linear, quadratic, polynomial and radial
basis functions), and the best fit (again regarding the residuals) was obtained for the
radial basis function. The SVM run takes less computing time than the MLP run but
needs a lot of support vectors to characterize the process. This overfitting is reflected
in the very big mAIC=3.5193∗104 value. In general, the computational complexity
of SVMs with Gaussian radial basis function kernel (in the worst case) is O(N 2

T NE)

for the training of each location [4]. But in most of the cases, it is possible to consid-
erably reduce the computation time, e.g., by working with small values of the regu-
larization parameter N SVM

C for a faster convergence or, alternatively, increasing the
number of training samples [34]. Determination of an optimal feedforward network
with a nonlinear transfer function for a set of considered training data also requires
solving a sequence of quadratic optimization problems. For the ANN calculations
in this paper, we employed the Levenberg–Marquardt backpropagation algorithm,
which is known to be very efficient [14]. Note, however, that the technique scales
badly with the number of involved weights N ANN

weights = N ANN
neurons(NE + N 2

E + biases)
(it is necessary to compute the inverse of the N ANN

weights × N ANN
weights Hessian matrix

in each iteration step, which has a complexity O((N ANN
weights)

3)). It is advisable to
switch to a different gradient-descent algorithm for high-dimensional systems (i.e.,
systems that require more than a couple hundred weights) [39]. Further, the ANN
fitting requires a longer run time due to the necessary annealing steps.

The SVM results are visualized in Figure 5 along with the approximations deter-
mined with the nonstationary Markov regression and the neural network (settings
like in Figure 3). The assignment calculated with the SVM in general corresponds
to the original data. Wrong categorization in the form of single outliers is mostly
caused by data values too close to the threshold 0.5. Longer periods of wrong
association especially in the test time sequence suggest that support vector machines
are not feasible for prediction of spatiotemporal data of this particular nature.

Summing up, the proposed regression framework provides feasible and qualitative
results. Nevertheless, it is important to mention that the considered synthetic data in
this section is inherently designed to suit the model technique. The aim here was not
to prove the overall superiority of the proposed algorithm in comparison to standard
methods like ANN and SVM but to give the reader an idea of its capabilities under
“good” conditions and as a contrast to the ill-posed example with missing external
factors outlined in the next section.
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Figure 5. Dotted approximations of π syn
1 (t, j) (for one fixed location) determined with

a nonstationary Markov regression and a feedforward neural network and an output of
support vector machines are shown. The beginning of the predicted time series is marked
with a vertical black line.

5B. Example with missing (implicit) external factors. A key conceptual advan-
tage of the proposed Markov regression framework is that implicit external factors,
influencing the data, can be reflected in the nonstationary and nonhomogeneous
formulation of the model. In order to numerically investigate this property, the
framework is applied to a synthetic time series π syn(t, j) (NS = 2) generated
employing Algorithm 3 with the number of implicit external factors set to NI = 100
and the number of regimes fixed to be one (N syn

K = 1), i.e., the artificial system
is stationary and homogeneous and influenced by forces uunres(t, j) not available
as observations.10 For the construction, we choose one explicit external factor
(computed as a mean of neighboring states of the previous time step) and 100 implicit
influences in the form of sinus functions (randomly chosen between: uunres

e (t, j) :=
sin2((2π te)/360+ j/20) and uunres

e (t, j) := cos2((2π te)/360+ j/20)) depending
on time t (NT := 400), location j (NJ := 24) and the index of the particular external
factor e ∈ {1, . . . NI }. Further, the model matrices for the one considered regime
are defined:

P1 syn
0 =

[
0.5 0.5
0.5 0.5

]
, P1 syn

1 =

[
0.05 −0.05
0.05 −0.05

]
, P1 syn

2 =

[
0.42 −0.42
0.42 −0.42

]
(64)

and

P1 syn
e+2 =

[
0.0002 −0.0002
0.0002 −0.0002

]
∀ e ∈ {1, . . . , NI − 2}. (65)

10Note that it is not necessary to use Algorithm 2 since 0syn(t, j) := ones(1, NT , NJ ).
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Figure 6. The mAIC values for runs of the Markov regression and the dynamical logistic
regression applied to the second synthetic data series run for different values of N FEM

C and
N FEM

K are displayed in this graph. Moreover, the value for the ANN result is shown.

The first implicit external factor u2(t, j)= uunres
1 (t, j) thereby has the most signifi-

cant influence, and all the other external factors have a much smaller impact. The
proposed nonstationary nonhomogeneous Markov regression is applied to part of
the generated data (i.e., π syn(t, j) with t ∈ {1, . . . , 360} and j ∈ {1, . . . , 24}) for
N FEM

K ∈ {1, 2, 3, 4, 5} and N FEM
C ∈ {5, 10, 15, 20, 25} with N FEM

anneal = 10. Note that
the implicit external factors uunres(t, j) are not made available for the regression
procedure. The optimal model fit is determined via the modified information
criterion (46). The resulting graphs can be seen in the left panel of Figure 6.

The lowest mAIC value has a model with up to 15 transitions between four
regimes, i.e., N ∗Markov

C = 15 and N ∗Markov
K = 4. Thus, the synthetic stationary

homogeneous model is described with a nonstationary and nonhomogeneous model
capturing the original process and reflecting the implicit external factors uunres(t, j).
In contrast, the dynamical logistic regression, applied to the data set, has bigger
mAIC values and hence represents a worse description for the analyzed data. Two
approximations of the ensemble distribution π syn(t, j) for different locations are
shown in Figure 7. The plots illustrate that the nonstationary nonhomogeneous
Markov regression is feasible even for observations where the biggest part of
the relevant information is not provided in the form of measurements. The data
π syn(t, j) in the test sequence, i.e., t ∈ {361, . . . , 400} ∀ j , is approximated by
computing a one-step prediction 0̂(361, j) (see (53)) and using Algorithm 3 to
determine π̂Markov(361, j) ∀ j . Then the proposed Bayesian-update scheme is
employed to update 0̂Markov(361, j) (see (56) in Proposition 4.1) using new data
information π syn(361, j). These steps are iterated until π̂Markov(NT , j) can be
calculated (note that the updated 0̇(t, j) is used as the affiliation parameter 0∗(t, j)
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Figure 7. Each graph displays approximations of the data π syn
1 (t, j) generated by

means of different models, i.e., Markov regression (settings: no memory, N FEM
anneal = 10,

N∗Markov
C =15, N∗Markov

K =4) and an optimal ANN (settings: N ANN
neurons=10, Levenberg–

Marquardt backpropagation, N ANN
anneal = 10). The artificial time series π syn

1 (t, j) is shown
as a thick gray line. The start of the prediction is marked with a black vertical line at
NTtrain = 360.

for all previous time steps t in the prediction sequence {361, . . . , 400}). The
resulting prediction has a good quality as can be seen from the right-hand side of
the vertical black line in the two panels of Figure 7.

In order to give an impression on the feasibility of standard techniques under
“bad” conditions, such as artificially generated for this example, ANNs are applied
to π syn(t, j) (settings: N ANN

neurons = 10, Levenberg–Marquardt backpropagation and
N ANN

anneal = 10). The quality of the ANN results strongly depends on the location.
This is caused by the dependence of the implicit external factors on the location;
i.e., the implicit impact on the data is differing for each cell. In other words, the
ANN framework does not allow restoring the devolution of the data without the
additional information of the implicit external factors for location 19 and all other
locations that are strongly influenced by the unresolved quantities. This is due to the
fact that, in contrast to the nonstationary and nonhomogeneous Markov regression
model presented above, the parameters (such as neuron weights and biases) of the
standard ANN are time- and location-independent. In other words, ANN as well
as SVM represent intrinsically stationary and homogeneous models. Because of
this reason, both ANN and SVM as model classes have difficulties in capturing
the effects of unobserved external factors. Concluding, it is possible to obtain
qualitative results with ANN for the constructed dynamical system when enough
information is provided in the form of data (see Section 5A) but is not a reliable
option for realistic systems with data availability problems.

5C. Assimilation of additional information. The purpose of this example is to
demonstrate the application of the Bayesian-update scheme (see Proposition 2.1
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in Section 4) when compared to a simple maximum-likelihood allocation of new
data (see (54)) or machine-learning algorithms like SVMs or ANNs. To this end, a
transition path 0syn(t, j) (employing Algorithm 2) of length NT = 10000, switching
between N syn

K = 2 local models and N syn
C = 5 transitions, was generated for NJ = 10

different locations. This path was then used to generate a time series, switching
between NS = 2 discrete values s1 and s2 without external influences (i.e., NF = 0
and Nens = 1) according to the following rules:

(1) In the first model θ1, the process at time t is modeled by a Bernoulli-random
variable with a probability 0.6 to be in the state s1.

(2) For the second model θ2, a Markov chain is used to obtain the value of σ(t, j, l);
here the probability for the next value to be in different state than the previous
value is 0.3.

For the training of the model, the natural choice for this example is the nonsta-
tionary nonhomogeneous Markov regression model (as introduced in (34)); the
first 9000 time steps are chosen as a training set (i.e., NTtrain = 9000). To obtain
a statistically significant result, the analysis is done not only for one but for 200
different time series (as already mentioned, Nens= 1), all sharing the same transition
path 0syn(t, j). This allows us to draw first statistical conclusions and make the
comparison of different methods independent of a single stochastic realization of
the process. Since the focus is on the statistical significance rather than on the size
of the ensemble, it is necessary to interpret the outcome of a single observation as
the corresponding ensemble data, i.e.,

π
syn
i (t, j)= δsi (σ

syn(t, j, l)) for i ∈ {1, 2}, (66)

where δsi is the Kronecker delta for the value si (i.e, being one if si is observed, else
zero). To predict the incoming values of the time series (t > NTtrain = 9000), one
needs to predict the affiliation vector 0∗(t, j) first. To this end, a self-contained
strategy, proposed in Section 4, is employed. In other words, a transition matrix
P0 is fitted to the 9000 elements of the transition path. This Markov chain is then
used to propagate the current distribution of the affiliation to the next step and so
forth. Of course, this makes the prediction very sensitive to finding the correct
affiliation of data points [30] not included in the initial analysis of the time series.
To demonstrate this sensitivity, the updating procedure as in Section 4 is compared
to an SVM, an ANN and the maximum-likelihood affiliation (defined in (54)) of
the data points. The SVM and ANN are additionally provided with the previous
observation as this is used in the other two assimilation methods as well; thus,
all four methods can make use of the same input information. To this end, the
dimension of the data is doubled by creating the vectors [π syn(t, j) π syn(t − 1, j)].
Additionally, different kernel functions were tried for SVM and different transfer
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Figure 8. Average assimilation of 1000 untrained data points to the clusters for two
different transition paths (in two different locations). The sample consisted of 200 dif-
ferent realizations of the time series with 9000 training points. To improve visibility, the
allocations are shifted by up to 0.02. The beginning of the prediction is time step 9001.
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Figure 9. Left panel: Typical data set and the transition path used for the creation of the
data. Right panel: Result of the assimilation schemes; only the relevant points are shown.
The beginning of the assimilation is time step 9001. As can be seen, only the Bayesian
assimilation scheme (black dashed line) based on Proposition 2.1 completely recovers the
true persistent structure of the original hidden process (black solid line).

functions and numbers of neurons for the ANN; an optimal configuration in each
model class was obtained applying the standard AIC procedure. Out of the 10
locations, two are shown here, one with constant original allocation in the prediction
time frame (Figure 8, left panel) and one with a jump in the allocation (Figure 8,
right panel). Additionally, a typical data set is shown in Figure 9 (left panel) and the
affiliation functions resulting from the different assimilation methods are depicted
in the right panel of Figure 9.

All four updating procedures generate affiliations that are not free of errors. To
measure the quality of an allocation, the average distance
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1
(NT − NTtrain) ∗ NJ

NT∑
t=Npred+1

NJ∑
j=1

|γ̂1(t, j)− γ1(t, j)|

of the estimated affiliation and the original path is averaged over all 200 realizations.
Resulting error estimates are shown in Table 1.

Algorithm Error

maximum-likelihood affiliation 0.3142
Bayesian update (see Section 4) 0.0384
SVM-based affiliation 0.6188
ANN-based affiliation 0.4948

Table 1. Average distance of the affiliation of new data to the true path.

All estimators are then used to predict the next 10 time steps, i.e., Npred = 10,
according to the following algorithm:

input :data π syn(t, j), maximal prediction depth Npred and the affiliation 0∗(t, j) for
t ∈ {1, . . . , NTtrain}

output : π̂Markov(t, j) and $(t, j, τ ) for t ∈ {NTtrain + 1, . . . , NT }, j ∈ {1, . . . , NJ }

and τ ∈ {1, . . . , Npred}

1 Set start of test data NTtrain = 9000.
2 0̂(NTtrain , j) := 0∗(NTtrain , j) ∀ j
3 for j = 1 : NJ do
4 for t = NTtrain : NT − Npred do
5 for τ = 1 : Npred do
6 0̂(t + τ, j)= 0̂(t, j)

∏τ−1
h=0 P0(u(t + h, j)) (see (53))

7 Generate π̂(t + τ, j) employing Algorithm 3 (lines 3 to 10) using
0̂(t + τ, j).

8 $(t, j, τ )= ‖π syn
1 (t + τ, j)− π̂Markov

1 (t + τ, j)‖2
2

9 Incorporate the observation π syn(t + 1, j) into the data set, and estimate its
affiliation 0̇(t + 1, j) for all j .

Algorithm 5: Prediction.

The quality of the prediction is measured by $(t, j, τ ), the squared distance
of the synthetic data and the predicted probability for observing one (see line 8,
Algorithm 5). These errors are then averaged for every τ over the 200 different
realizations, the 10 locations and the prediction period.

As can be seen from Table 1 and Figure 10, the posterior estimators based on
Proposition 4.1 significantly outperforms other considered methods. Yet it should
be noted that the process is rapidly mixing and thus hard to predict in the first place.
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Figure 10. Mean of the sampled prediction errors for up to 10 time steps and four different
assimilation schemes. The sample consisted of 200 different realizations of sets of 10 time
series with length 1000.

This property increases the challenge all the assimilation methods have to face as
the two different model-states are hard to separate even visually (see, e.g., the gray
line in the left panel of Figure 9). Additionally, it should be noted that the average
errors of the predictions for all four assimilation methods are rather similar; this
is again a result of the low persistency of the rapidly mixing observed process.
Nevertheless, the better assimilation of the missing information in the form of the
affiliation function 0 (introduced in the current manuscript) leads to a reduction of
the prediction error even for this very tough case, raising hope for better predictive
models and better assimilation of the effects induced by the unresolved external
factors as captured by the affiliation functions 0.

6. Conclusion

The proposed nonstationary and nonhomogeneous regression framework represents
a very promising way for modeling of spatiotemporal discrete jump processes
under the presence of unobserved external impacts. As demonstrated in the current
manuscript, it can capture the most significant impacts of the unobserved external
factors described by Proposition 2.1.

This was demonstrated by means of an example with additionally incorporated
implicit external factors that were not made available for the calculation of the
model parameters. Since incomplete data sets represent one of the central challenges
in the field of time-series analysis, this property makes the presented methodology
potentially useful in many areas of multiscale modeling and simulation, where
discrete processes (e.g., associated with the phase transitions in physics) are subject
to unresolved subgrid-scale effects.
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Along the lines of traditional data assimilation, a new Bayesian algorithm to
assimilate the model affiliation function 0̂(t, j) (capturing an impact of the unre-
solved external factors) was introduced and shows promising results. The proposed
Bayesian algorithm for discrete data assimilation provides considerably better
results than the currently available standard methods (i.e., maximum-likelihood
assimilation, ANN and SVM) for the considered “tough” example of a rapidly
switching nonstationary and nonhomogeneous discrete process.

It should be stressed that the adequacy of the presented models is largely relying
on the validity of the underlying assumptions in Proposition 2.1 as well as on the
validity of the stationary homogeneous Markov assumption for the model-affiliation
process (capturing an impact of unresolved external factors).

Because of this reason, in some situations, it might be necessary to use a nonsta-
tionary model formulation for the affiliation process and to include the additional
necessary variables in the validation of the modified information criterion. In
other words, in such situations, the optimal fit given by the nonstationary discrete
regression model parameters and parametrization of the optimal spatiotemporal
model for the hidden process 0 (beyond the stationary approximation deployed
in this work) should be approached simultaneously. Although this new direction
will allow constructing more realistic models with less a priori assumptions, it
would also require many more computational resources than the proposed numerical
framework. Numerical complexity estimates presented in this paper demonstrate that
the deployment of concepts from high-performance computing and supercomputing
computational facilities will also be necessary to extend all of the considered
methods to realistic numbers of spatial locations and lengths of the time series. This
issue is also a matter of the ongoing research.

Appendix A: Proof of Proposition 2.1(3)

Proof. Without loss of generality, we can assume that the external factors are
ordered such that the explicit factors are the first NE entries of u(t, j). By per-
forming a Taylor expansion on the transition matrix P(u(t, j)) around the means
µ(t, j)= [E(u1(t, j)), . . . ,E(uNE+NI (t, j))] ∈ R(NE+NI )×1, we obtain

P(u(t, j))= P(µ(t, j))+
NE+NI∑

e=1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

NE+NI∑
e,h=1

∂2 P
∂ue(t, j)uh(t, j)

(ue(t, j)−µe(t, j))(uh(t, j)−µh(t, j))

+

∑
|α|=3

Rα(u(t, j))(u(t, j)−µ(t, j))α, (1)
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where α is a multi-index and

Rα(u(t, j))=
3
α!

∫ 1

0
(1− x)DαP

(
µ(t, j)+ x(u(t, j)−µ(t, j))

)
dx . (2)

Note that Rα(u(t, j)) is bounded as the third derivative of P is assumed to be
bounded. Resorting the terms and defining

ρh(t, j)= 2
NE+NI∑

e=NE+1

∂2 P
∂uh(t, j)ue(t, j)

(ue(t, j)−µe(t, j)), h = 1, . . . , NE , (3)

ε̌(t, j)=
NE+NI∑

e=NE+1

∂P(µ(t, j))
∂ue(t, j)

(ue(t, j)−µe(t, j))

+

∑
|α|=3

Rα(u(t, j))(u(t, j)−µ(t, j))α

+

NE∑
e,h=1

∂2 P
∂uh(t, j)ue(t, j)

(ue(t, j)−µe(t, j))(uh(t, j)−µh(t, j))

−

NE∑
e=1

µe(t, j)ρh(t, j)+
NE+NI∑

e,h=NE+1

∂2 P
∂uh(t, j)ue(t, j)

∗ (uh(t, j)−µh(t, j))(ue(t, j)−µe(t, j)), (4)

ε(t, j)= ε̌(t, j)−E[ε̌(t, j)] (5)

yields (11) whereas the definition of matrices Ph(t, j) is given in (14) for all t and j
and h ≥ 1 and P0(t, j) is defined as in (16), and replacing the expectation in the for-
mula by the expectation of ε̌(t, j). Moreover, E[ε(t, j)]=0 and E[ρh(t, j)]=0. �

Appendix B: Notation

The notation index is organized as follows. The numbers and sizes are listed
separately as their notation is very similar. The remaining notations are listed in
order of appearance in the manuscript. To improve readability, the titles of sections
and subsections are indicated. Moreover, the abbreviations used in the manuscript
are listed at the end of the notation index.

Numbers and sizes.

• NS total number of states si (associated index i , p. 3).
• Nens (associated index l, p. 3).
• NJ space dimension of observations π(t, j) for all time steps t (associated index j , p. 3).
• NT length of observed time series π(t, j) for fixed location j (associated index t , p. 3).
• Nsi (t, j) number of cells j currently (at time t) in state si (p. 3).
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• NE total number of explicit external factors (associated index e, p. 5).
• NI total number of implicit external factors (associated index e, p. 5).
• NF total number external factors (associated index e, p. 5).
• NM memory depth (p. 8).
• NK total number of local stationary homogeneous models θk (associated index k, p. 13).
• NC maximal number of allowed transitions of the affiliation processes γk(t, j) for fixed j .
• N FEM

anneal total number of annealing steps used for the FEM framework (p. 16).
• Nφk degree of a polynomial of parametric (conditional) probability density function φk

(p. 18).
• Npred prediction depth (p. 20).
• NTtrain time-wise length of training data (p. 22).
• N syn

C artificially chosen maximal number of transitions of the synthetic affiliation processes
γ

syn
k (t, j) (p. 24).
• N syn

K artificially chosen total number of local stationary homogeneous models θ syn
k (p. 24).

• N FEM
K number of local regimes considered for the general FEM framework (p. 26).

• N FEM
C number of maximal transitions considered for the general FEM framework (p. 26).

• Ndummy auxiliary quantity of Algorithm 2 (p. 24).
• N ∗Markov

C optimal in terms of the mAIC values (with respect to the data) maximal number
of transitions for the parameters computed with the Markov regression framework (p. 26).
• N ∗Markov

K optimal in terms of the mAIC values (with respect to the data) maximal number
of local stationary models computed with the Markov regression framework (p. 26).
• N ANN

neurons total number of employed neurons for an ANN run (p. 27).
• N ANN

anneal total number of annealing steps used for an ANN run (p. 28).
• N Markov

anneal total number of annealing steps used for the Markov regression (p. 27).
• N ANN

weights is the number of ANN parameters (p. 30).
• N FEM

basis number of finite elements used for the discretization (p. 16).
• N SVM

C regularization parameter of SVM (p. 30).

Ensemble data and exterior quantities.
• si discrete state (p. 3).
• ω( j, l) microscopic cell (p. 3).
• σ(t, j, l) with j ∈ {1, . . . , NJ } and l ∈ {1, . . . , Nens} dynamical process of a microscopic
cell ω( j, l) (p. 3).
• π̃i (t, j) empirical probability for process σ(t, j, l) to be in state si in location ω( j, l) at
time t (Definition (1), p. 3).
• Nsi (t, j) total number of microscopic cells ω( j, t) in state si for fixed t and j (Defini-
tion (2), p. 3).
• δsi ( · ) the Kronecker delta for the value si (p. 4).
• π̃(t, j) ∈ [0, 1]NS×1 vector of empirical probabilities (Definition (3), p. 4).
• πi (t, j) probability for process σ(t, j, l) to be in state si in location ω( j, l) at time t
(Definition (4), p. 4).
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• P[ · ] probability function.
• π(t, j) ∈ [0, 1]NS×1 vector of states probabilities (Definition (5), p. 4).

Implicit external factors.

• P(u(t, j)) ∈ [0, 1]NS×NS transition matrix dependent on all external factors (p. 4).
• u(t, j) ∈ R(NE+NI )×1 all influencing external factors (Definition (7), p. 5).
• R real numbers.
• ue(t, j) ∈ R explicit external factor.
• u(t, j) ∈ RNE×1 vector of explicit external factors (Definition (8), p. 5).
• U⊂ RNE×1 vector space of explicit external factors u(t, l).
• uunres

e (t, j) ∈ R implicit external factor.
• uunres(t, j) ∈ RNI×1 vector of implicit external factors (Definition (9), p. 5).
• ε(t, j) error term associated with decomposition of transition matrix P(u(t, j)) (Defini-
tion (15), p. 7).
• E( · ) expected value.
• ρe(t, j) second noise process for decomposition of P(u(t, j)) with second derivatives.
(Definition (3), Appendix A, p. 39).
• µ(t, j) ∈ RNF×1 vector of expected values for each of the entries of vector u(t, l) (p. 7).
• Rα(u(t, j)) Taylor-expansion error component (Definition (13), p. 7).
• α a multi-index (p. 7).
• Pe(t, j) matrix used in the linear combination equal to P(t, l, u(t, l)) corresponding to
ue(t, j) for e ∈ {1, . . . , NS} (Definition (14), p. 7).
• P0(t, j) matrix used in the linear combination equal to P(t, l, u(t, l)) (Definition (16),
p. 7).
• P(t, j, u(t, j)) ∈ [0, 1]NS×NS equal to P(u(t, j)) assuming the conditions of Proposition
2.1 are fulfilled.

Inverse problem formulation.

• f ( · ) a general direct mathematical model (Definition (17), p. 8).
• θ(u(t, j)) unknown model parameter dependent on all external factors (p. 8).
• � parameter space containing θ(u(t, j)) (p. 8).
• λ(t, j) error term of simple model example (p. 9).
• g( · ) model distance function (Definition (19), p. 9).
• L( · ) averaged clustering functional (Definition (20), p. 9).
• d( · , · ) metric (p. 9).
• d2( · , · ) Euclidean metric (p. 9).
• f logit logistic direct mathematical model function (p. 9).
• f Markov Markov direct mathematical model function (p. 9).

Logistic regression.

• Ci [u(t, j), Bi (t, j)] utility measure (Definition (23), p. 10).
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• Bi (t, j)∈R(NE+1)×1 logistic model parameter corresponding to state si for i ∈{1, . . . , NS}

(Definition (24), p. 10).
• β i

e(t, j) e-th entry of vector Bi (t, j).
• ξ i (t, j) error process of utility measure (p. 10).
• B(t, j) ∈ R(NE+1)×NS nonstationary nonhomogeneous logistic model parameter (p. 11).
• θ logit(B(t, j), u(t, j)) logistic model parameter (Definition (28), p. 11).
• ζ(t, j) error term of logistic model distance function (p. 11).

Interpolation.

• θk(u(t, j)) stationary homogeneous model parameter (p. 13).
• γk(t, j) weighting process corresponding to local model θk(u(t, j)) (p. 13).
• 2(u(t, j)) vector of stationary homogeneous model parameters (p. 13).
• 0(t, j) ∈ [0, 1]1×NK vector of affiliation processes (p. 13).
• L( · , · ) interpolated version of averaged clustering functional L( · ) (Definition (38),
p. 13).
• L j ( · , · ) one summand for a fixed location j of interpolated average clustering functional
(Definition (39), p. 14).
• Bk ∈ R(NE+1)×NS local logit model parameter (p. 14).
• Bi

k i-th entry of stationary and homogeneous logit model parameter vector Bk (p. 14).
• Pk(u(t, j)) local Markov model parameter matrix (Definition (41), p. 14).
• P(u(t, j)) ∈ RNS×NS NK vector of model matrices Pk(u(t, j)) (p. 14).
• Pk

0 , . . . , Pk
NE

for all k matrices used in the linear combination equal to Pk(u(t, l)) (p. 14).
• 1 auxiliary column vector containing only entries equal to one (p. 14).
• 0 auxiliary column vector containing only entries equal to zero (p. 14).
• {Pk

e }n,m entry of matrix Pk
e in n-th row and m-th column (p. 15).

Spatial and temporal persistence.

• | · |BV(1,NT ) bounded variation (BV) half-norm (Definition (45), p. 15).

Numerical approach and computational complexity.

• 0∗(t, j)=[γ ∗1 (t, j), . . . ,γ ∗NK
(t, j)]∈[0,1]1×NK global optimizer with respect to L(0(t, j),

2(u(t, j))) (p. 15).
• 2∗(u(t, j)) global optimizer with respect to L(0(t, j),2(u(t, j))) (p. 15).
• 0r computed 0 process dependent on annealing index (p. 17).
• 0[h]r determined 0 process dependent on annealing index and optimization iteration index
(p. 17).
• 2r computed model parameter 2 dependent on annealing index (p. 17).
• 2[h]r determined model parameter 2 dependent on annealing index and optimization
iteration index (p. 17).
• Lmin auxiliary variable of Algorithm 1 (p. 17).
• κ auxiliary variable used to describe the order of the computational costs (p. 16).



LOGISTIC AND MARKOV REGRESSION MODELS FOR SPATIOTEMPORAL DATA 43

Information criterion.
• mAIC( · , · ) modified version of Akaike information criterion for presented framework
(Definition (46), p. 18).
• L( · , · ) log-likelihood (Definition (47), p. 18).
• φk( · , . . . , · , · |Nφk ) parametric (conditional) probability density function (PDF) (p. 18).
• M( · , · ) function computing total number of involved parameters (p. 18).
• M logit( · , · ) function computing total number of involved parameters for a logistic model
(Definition (48), p. 18).
• MMarkov( · , · ) function computing total number of involved parameters for Markov model
(Definition (49), p. 18).
• S1 finite discrete set of different values for variable NK (p. 19).
• S2 finite discrete set of different values for variable NC (p. 19).
• 1( · , · ) mAIC model ranking (Definition (50), p. 19).
• w( · , · ) mAIC model weights (Definition (51), p. 19).

Prediction and assimilation of additional information.
• π̂(t, j) prediction of observation π(t, j) (p. 20).
• 0̂(t, j)= [γ̂1(t, j), . . . , γ̂NK (t, j)] ∈ [0, 1]1×NK prediction of future affiliations (p. 20).
• P0(t, j) transition matrix characterizing 0∗(t, j) (p. 20).
• P0

0 , . . . , P0
NE

matrices used in linear combination equal to P0(t, j) (p. 20).
• 0̇(NT + 1, j) posterior estimate based on the new observation π(NT + 1, j) (p. 21).
• ẏk(NT + 1, j) updated affiliation associated with local model θk (Definition (56), p. 21).

Numerical investigation.
• 0syn(t, j) synthetic affiliation process (p. 23).
• γ

syn
k (t, j) synthetic affiliation associated with θ syn

k (p. 24).
• dummy1 auxiliary vector of Algorithm 2 containing only ones (p. 24).
• dummy0 auxiliary vector of Algorithm 2 containing only zeros (p. 24).
• P syn(t, j, u(t, j)) synthetic transition matrix (Definition (57), p. 23).
• Pk syn(u(t, j)) synthetic model parameter matrix associated with affiliation γ syn

k (t, j)
(p. 23).
• σ syn(t, j, l) synthetic dynamical process (p. 23).
• π syn(t, j) synthetic data (p. 25).
• Pk syn

0 , . . . , Pk syn
NE

synthetic model matrices corresponding to explicit external factors
u(t, j) (p. 25).
• Pk syn

NE+1, . . . , Pk syn
NE+NI

synthetic model matrices corresponding to implicit external factors
uunres(t, j) (p. 25).
• π

syn
i (t, j) i-th vector entry of synthetic data π syn(t, j) (p. 25).

• πANN(w)(t, j) approximation of π syn(t, j) computed with an ANN based on a network
with w neurons (p. 27).
• πANN(t, j) approximation of π syn(t, j) computed with an ANN (p. 28).
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• πMarkov(t, j) approximation of π syn(t, j) computed with Markov regression framework
(p. 27).
• $( j, τ ) prediction error term dependent on location j and prediction depth τ (p. 29).
• $rel(τ ) relative mean prediction error (p. 29).
• $(t, j, τ ) prediction error term dependent on time t , location j and prediction depth τ
(p. 36).
• ε̌(t, j) auxiliary process used in the proof of Proposition 2.1 (p. 39).

Abbreviations.

• SVM support vector machines.
• ANN artificial neural networks.
• AIC Akaike information criterion.
• mAIC modified Akaike information criterion.
• GLM generalized linear models.
• PDEs partial differential equations.
• ODEs ordinary differential equations.
• FEM finite-element method.
• IIA independence of irrelevant alternatives.
• i.i.d. independent and identically distributed.
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