
Communications in
Applied

Mathematics and
Computational

Science

msp

vol. 9 no. 1 2014

ON INFERENCE OF STATISTICAL REGRESSION
MODELS

FOR EXTREME EVENTS BASED ON
INCOMPLETE OBSERVATION DATA

OLGA KAISER AND ILLIA HORENKO



COMM. APP. MATH. AND COMP. SCI.
Vol. 9, No. 1, 2014

dx.doi.org/10.2140/camcos.2014.9.143 msp

ON INFERENCE OF STATISTICAL REGRESSION MODELS
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OLGA KAISER AND ILLIA HORENKO

We present a computationally efficient, semiparametric, nonstationary framework
for statistical regression analysis of extremes with systematically missing covari-
ates based on the generalized extreme value (GEV) distribution. It is shown that
the involved regression model becomes nonstationary if some of the relevant
model covariates are systematically missing. The resulting nonstationarity and
the ill-posedness of the inverse problem are resolved by deploying the recently
introduced finite-element time-series analysis methodology with bounded vari-
ation of model parameters (FEM-BV). The proposed FEM-BV-GEV approach
allows a well-posed problem formulation and goes beyond probabilistic a priori
assumptions of methods for analysis of extremes based on, e.g., nonstationary
Bayesian mixture models, smoothing kernel methods or neural networks. FEM-
BV-GEV determines the significant resolved covariates, reveals directly their
influence on the trend behavior in probabilities of extremes and reflects the im-
plicit impact of missing covariates. We compare the FEM-BV-GEV approach to
the state-of-the-art GEV-CDN methodology (based on artificial neural networks)
on test cases and real data according to four criteria: (1) information content of
the models, (2) robustness with respect to the systematically missing information,
(3) computational complexity and (4) interpretability of the models.

1. Introduction

Modeling of extreme events plays a crucial role in different areas of science (e.g., in
weather/climate research, economics, biology/medicine) Simulation and prediction
of such events is challenging since by definition they are rare and occur irregularly.
To approach these challenges, statistical modeling of extreme events is widely
accepted (as an alternative to deterministic physical/mathematical modeling based
on “first principles”). Extreme value analysis (EVA) is a standard tool in statistics
for description of probability distributions of extremes; its foundations were laid by
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E. Gumbel, W. Weibull and M. Fréchet already in the first half of the 20th century;
for more details, see [13; 17; 19]. EVA distinguishes between two types of extremes:
(a) exceedances over a higher or lower threshold and (b) block maxima or minima,
e.g., annual extremes. In this work, we focus on block maxima. Consider a sample
of identical and independently distributed (i.i.d.) variables Y1, . . . , Yn with common
distribution F( · ). Analogously to the limit distribution of the partial sums of the
sample, described by the central limit theorem, there exists a limit distribution for
the sample extremes Xn =max{Y1, . . . , Yn} (or Xn =min{Y1, . . . , Yn}) as n→∞:
the limit distribution of P[Xn ≤ x] = Fn(x), as n→∞, is the generalized extreme
value (GEV) distribution introduced by Fisher and Tippet (1928) and Gnedenko
(1943), which has the form (see [17, Theorem 1.1.13])

G(x;µ, σ, ξ)= exp
(
−

[
1+ ξ

x −µ
σ

]−1/ξ)
(1)

with location, scale and shape parameters µ, σ, ξ ∈ R, respectively, and subject to
[1+ ξ(x −µ)/σ ]> 0 and σ > 0. By fitting model (1) to a series of block maxima,
we imply an unchanging behavior of the underlying dynamics (stationarity). This is
obviously not always the case; e.g., in the context of climatology/meteorology, the
monthly maxima of temperature or precipitation should be affected by the periodic
seasonal effects. The most general way to release the stationarity assumption is to
include external influence (denoted as covariates, modes or factors) by constructing
the GEV parameters as functions of covariates, i.e., as regression models. And
thus, the aim of data-based analysis of block maxima will be to infer the values
of the GEV regression parameters from observed data. Standard state-of-the-art
methods applicable to this task can be roughly divided into two groups: parametric
and nonparametric regression approaches. In parametric approaches, the GEV
parameters can be expressed as linear combinations of some explicitly known
and given functions (e.g., sine/cosine functions to model the seasonal trends in
meteorology). The nonlinearity of explicit covariate combinations is achieved
deploying the standard tools from machine learning, e.g., artificial neural networks
(ANNs) [8] and support vector machines (SVMs) [35]. Combination of GEV with
a special form of ANN called conditional density-estimation network (CDN) has
recently led to a creation of the GEV-CDN [8], a robust and flexible approach to
the nonstationary and nonlinear extension of (1). However, GEV-CDN as well as
all other parametric nonstationary extensions of (1) rely on the explicit availability
of all of the relevant covariates and some strong probabilistic assumptions about the
systematically missing/unresolved covariates, e.g., i.i.d. assumption for unresolved
covariates. As a result, these methods implicitly assume time independence of
regression coefficients (e.g., of the hidden neurons weights and biases in the case
of GEV-CDN). But due to the multiscale nature of most of the realistic applications



INFERENCE OF STATISTICAL REGRESSION MODELS FOR EXTREME EVENTS 145

(e.g., in climate research, economics or biology/medicine), one would never be
able to guarantee that the set of information collected about the analyzed system is
complete. One would also not be able to guarantee that all of the necessary proba-
bilistic assumptions are fulfilled a priori for the analyzed system. As demonstrated
in this paper, the violation of the i.i.d. condition for the systematically missing
covariates leads to the conceptual and practical problems of the standard parametric
approaches and may result in the wrong/biased analysis of the statistics of extremes.

Nonparametric approaches for regression analysis of block maxima exploit local
likelihood smoothing [16] or Bayesian techniques [15; 42]. The limitations of
these methods are their locality (e.g., a local stationarity assumption) and a priori
parametric assumptions about the distributions of the GEV parameters. Another
strategy is to involve mixture models and hidden Markov models (HMM) [38; 3; 2].
Such approaches require a priori knowledge about the probabilistic model for the
time-dependent GEV parameters, e.g., stationarity and Markov assumptions for
the hidden parameter switching process. Additionally, all of the above-mentioned
state-of-the-art methods may lead to the ill-posed parameter identification problems
(in sense of Hadamard [22]), resulting in the over-fitting of the available data. Most
of the above approaches are realized as optimization algorithms for some nonlinear,
nonconvex and often nondifferentiable quality functionals. That is, the obtained
results are not unique and depend strongly on the initial values and other tuning
parameters of the respective computational algorithms. One of the most frequently
used methods of transforming an ill-posed problem to a well-posed one is called
regularization. This approach is based on imposing some additional (reasonable)
assumptions on the original problem formulation, e.g., that the solution should
be “small” in an appropriately chosen norm [45]. In statistics and different areas
of applied data analysis, approaches like Tikhonov and LASSO regularization are
widely used in the context of, e.g., parametric regression and spline-interpolation
problems [48; 44; 24], support vector machines [47], compressed sensing and
matrix-completion methods [7].

Here we exploit a regularized and nonparametric strategy for general parameter
identification in nonstationary problems [26; 27; 41]. It is based on the finite-element
discretization (FEM) of the resulting inverse problem subject to bounded variation
(BV) of the nonstationary model parameters in time. The FEM-BV framework
allows computationally very efficient and highly scalable numerical implementation,
either based on the adaptive FEM solvers (usually deployed for the adaptive numeri-
cal solution of partial differential equations) [25] or based on adaptive Markov-chain
Monte Carlo (MCMC) schemes [18]. Resulting framework was demonstrated to be
appropriate for a wide range of nonstationary inverse problems and applications,
ranging from climate/weather research [26; 27], molecular dynamics [29] and DNA
sequence analysis [41] to sociology [28] and economics [41].
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In this paper, we present a unified approach for joint solving of all of the above
discussed difficulties (i.e., the problem of systematically missing covariates, numer-
ical complexity and the ill-posedness/over-fitting problem) in data-based analysis of
block maxima. To address the issue of missing covariates, we exploit the central limit
theorem for independent variables and express each GEV parameter by a fully non-
stationary regression model, based only on resolved covariates, with a nonstationary
additive noise. The resulting nonstationarity of (1) is interpolated by a linear convex
combination of K ≥ 1 local stationary models and a nonstationary switching process
between them. The corresponding inverse problem is regularized by employing
FEM-BV methodology [25; 41]. The resulting quality functional is optimized by
adjusting the adaptive MCMC methodology (originally proposed in [18]) to a numer-
ical solution of the resulting FEM-BV-GEV problem in optimization formulation.

The FEM-BV-GEV approach described in the current manuscript avoids a pri-
ori assumptions on stationarity and trend behavior of the GEV parameters. The
proposed method allows an explicit data-driven recovery of the implicit impacts of
unresolved modes in the situations when these unresolved modes are neither i.i.d. nor
available in the measurement. The local linearity of the GEV parameter functions
enables direct interpretation of the influence of covariates on the underlying dynam-
ics of block maxima but can lead to the biased results in cases when the dynamics is
locally highly nonlinear (i.e., in the scenarios where parametric GEV-CDN methodol-
ogy based on neural networks is supposed to produce better estimates). We show that
under appropriate assumptions FEM-BV-GEV includes/extends standard techniques
based on HMM or kernel smoothing and, therefore, consider the nonlinear GEV-
CDN approach as a main competitor for the FEM-BV-GEV in a series of numerical
studies. This work shows that the resulting numerical framework, despite the local
linearity, addresses the above-mentioned difficulties of the standard methods and
demonstrates high robustness with respect to systematically missing covariates and
is computationally highly efficient. These issues make the proposed methodology
an adequate tool for analysis of extremes in very large realistic applications.

This manuscript is organized as follows. In Section 2, we derive in detail the FEM-
BV-GEV approach. We compare FEM-BV-GEV to the state-of-the-art methods
from conceptual and applied viewpoints in Section 3. The iterative numerical
algorithm of FEM-BV-GEV is described in Section 4. In Section 5, we exemplify
the application of FEM-BV-GEV and compare its performance with GEV-CDN
[8] on test-cases and regression analysis of temperature extremes (30-day maxima
for the period between 1950 and 2011) for Lugano and Berlin. Comparison is
performed according to the four criteria: (1) information content of the models
(jointly measuring complexity and quality of the model fit), (2) robustness with
respect to the systematically missing information, (3) computational complexity
and (4) understandability/interpretability of the models.
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2. FEM-BV-GEV

In this work, we focus on the fully time-dependent GEV distribution defined by its
probability density function (pdf)

f (x;µ(t), σ (t), ξ(t))= c(t) exp
(
−

[
1+ ξ(t)

x −µ(t)
σ (t)

]−1/ξ(t))
, (2)

where t denotes the time variable and c(t) the normalization constant

c(t)=
1
σ(t)

[
1+ ξ(t)

x −µ(t)
σ (t)

]−1/ξ(t)−1
(3)

and the model parameters have to fulfill the constraints[
1+ ξ(t)

x −µ(t)
σ (t)

]
> 0 and σ(t) > 0 ∀t. (4)

In order to address the time-dependence, we intend to express each GEV parameter
as a function dependent on covariates as a linear regression model. However, in
real applications, one is usually confronted with the problem that some (or most)
potentially relevant covariates are missing in the measurements.

One possible source for the systematically missing covariates is the multiscale
dynamics of the underlying process; e.g., processes in climate or molecular dynamics
may involve multiple time and length scales [39; 40; 11]. That is, only observing
modes on a slow time scale (resolved modes), we neglect modes on the faster scale
(unresolved modes). An additional reason for the missing information/measurements
is that, even on just one single time scale, one cannot resolve all covariates because
one is interested in regression models with a finite number of degrees of freedom.
In particular, this is true for regression analysis of extremes because of the relatively
small statistics. Thus, we have to select a set of resolved covariates and to account
for the influence coming from the systematically unresolved/missing information.

Several disciplines cover the issue of missing information; e.g., in statistical
regression analysis, the issue of unresolved information is often addressed under
the theme “unobserved heterogeneity” [6]. Thereby, the unobserved covariates are
included via a stationary error term into the regression model and the posterior
model depends on the a priori assumption about the distribution of this error term.
However, there is often no closed expression of the posterior.

In this work, we reduce the involved linear regression model by splitting it into
two linear parts, corresponding to resolved and unresolved modes, and incorpo-
rate the influence of unresolved modes as a nonstationary additive noise. In the
following, we consider all possible modes dependent on time t and split them into
resolved U (t) ∈ RS and unresolved U un(t) ∈ RQ factors, further on denoted as
Ut = (u1(t), . . . , uS(t)) and U un

t = (u
un
1 (t), . . . , uun

Q (t)). Then we normalize the
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latter and obtain

µ(Ut ,U un
t )= µ0+

S∑
s=1

µsus(t)+
1
Q

Q∑
q=1

νquun
q (t), (5)

where µs ,s= 1, . . . , S, and νq , q = 1, . . . , Q, are the regression coefficients. Under
the assumption that the unresolved modes are i.i.d. for all t , application of the
central limit theorem reduces the unresolved modes to the additive noise

µ(Ut)= µ0+

S∑
s=1

µsus(t)+ ε with ε ∼ N(µ̂, σ̂ ). (6)

In real applications, the i.i.d. assumption may be too strong. Instead, we can
apply the central limit theorem for independent variables in a formulation that
requires a much weaker Lindeberg condition [36]. And in case the modes are not
independent, the Karhunen–Loève transformation can be used to decorrelate the
processes [37; 33]. Thus, under the assumption that the Lindeberg condition holds,
we rewrite (5):

µ(Ut ,U un
t )= µ0+

S∑
s=1

µsus(t)

+
1
Q

Q∑
q=1

νq
(
uun

q (t)− E[uun
q (t)]

)
︸ ︷︷ ︸

→ε(t)

+
1
Q

Q∑
q=1

νqE[uun
q (t)]. (7)

By inserting µ0(t)= µ0+ (1/Q)
∑Q

q=1 νqE[uun
q (t)] and ε(t)∼N(0, σ̂ (t)) into (7),

we obtain the reduced, nonstationary regression model:

µ(t,Ut)= µ0(t)+
S∑

s=1

µsus(t)+ ε(t). (8)

Note that in the regression formulation (8) parameter µ0(t) is a time-dependent
function and not a constant number as in the case of parametric statistics. That
is, application of parametric approaches would produce biased results, and thus,
nonparametric statistical methods would be required in such situations. More-
over, without loss of consistency, we generalize (8) by releasing the stationarity
assumption of the coefficients µs for s = 1, . . . , S:

µ(t,Ut)= µ0(t)+
S∑

s=1

µs(t)us(t)+ ε(t). (9)

Analogously to (9), we express the scale and the shape parameters:
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σ(t,Ut)= σ0(t)+
S∑

s=1

σs(t)us(t)+ ε̃(t), ε̃(t)∼ N(0, σ̃ (t)), (10)

ξ(t,Ut)= ξ0(t)+
S∑

s=1

ξs(t)us(t)+ ε(t), ε(t)∼ N(0, σ (t)). (11)

The regression models in (9)–(11), which are reduced to resolved covariates only,
become stochastic. Thereby, each GEV model parameter has, e.g., a normal dis-
tribution as a prior in Bayesian inference context [13]. Since there is no closed
formulation for the resulting posterior, MCMC-based algorithms can be used to
obtain the distribution of the posterior [13]. In the current manuscript, we focus on
the mean behavior of parameters and thus omit the normal distributed noise terms
in (9)–(11). Please note, by considering the mean behavior, we obtain deterministic
model parameters, which still account for the unresolved information through the
nonstationary bias/off-set terms µ0(t), σ0(t) and ξ0(t). The consideration of the
complete stochastic regression model with explicit error terms remains for future
study. Finally, the nonstationary GEV distribution (2) is parametrized by

2(t)=
(
µ0(t), . . . , µS(t), σ0(t), . . . , σS(t), ξ0(t), . . . , ξS(t)

)
. (12)

In this work, we aim to avoid a priori probabilistic or deterministic assumptions
on 2(t). Instead, we approximate the nonstationary distribution of block maxima
by K ≥ 1 local stationary GEV distributions and a hidden/latent switching process.
Thereby, we consider a nonparametric and nonstationary hidden switching process
in order to avoid a priori assumptions like stationarity or Gaussian or Markovian
behavior (necessary for mixture models and HMMs [38; 3; 2]). Elimination of a
priori assumptions implies ill-posedness of the optimization problem in the sense
of [22]: in each time step, there will be infinitely more unknown variables than
observations. To regularize the problem, we apply the FEM-BV methodology for
time-series analysis introduced in [25; 26; 27]. FEM-BV formulates the inverse
problem for nonstationary dynamical systems as a regularized variational problem
by discretizing the hidden switching process with finite elements and restricting its
bounded variation. In the following, we formulate the FEM-BV-GEV approach in
two steps: (a) interpolation and (b) regularization.

2.1. FEM-BV interpolation. The FEM-BV approach assumes that the model pa-
rameter2(t) changes slower than the observed series X (t) (in the following denoted
by X t with t = 1, . . . , T ). Then the underlying dynamics can be approximated
by a set of K ≥ 1 local stationary models and a nonstationary switching process
0(t)= (γ1(t), . . . , γK (t)). For that, FEM-BV interpolates the model distance func-
tion g(X t ,2(t)) (describing the error of the nonstationary model with parameters
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2(t) at time t in reproducing the observation X t ) by a linear convex combination
of K local stationary model distance functions.

The FEM-BV approach can be ranged into the class of clustering-based methods,
where the K local stationary models correspond to K clusters and the switching
process 0(t) is the affiliation of the data to one of the clusters. Most popular standard
methods of data clustering (such as K-means, Gaussian mixture model, hidden
Markov models, etc.) can be obtained as unregularized special cases of this more
general FEM-BV-framework. These standard methods can be obtained in FEM-
BV-framework for some specific choices of the model error function g(X t ,2(t));
e.g., the choice of the l2-distance between X t and 2(t) as g(X t ,2(t)) with no
further regularization of 0(t) results in the standard K -means clustering [41]. The
connection to classical mixture models and hidden Markov models is discussed in
Section 3. We apply the FEM-BV interpolation to our problem by considering for
each local GEV model the parametrization

µi (Ut)= µi0+

S∑
s=1

µisus(t), i = 1, . . . , K , (13)

and analogous expressions for σi (Ut) and ξi (Ut) and defining the local model dis-
tance function as the local negative log-likelihood function with θi = (µi0, . . . , µi S,

σi0, . . . , σi S, ξi0, . . . , ξi S), i = 1, . . . , K ,

gGEV(X t , θi )= log(σi (Ut))+
(

1+ ξi (Ut)
X t −µi (Ut)

σi (Ut)

)−1/ξi (Ut )

+

(
1+

1
ξi (Ut)

)
log
(

1+ ξi (Ut)
X t −µi (Ut)

σi (Ut)

)
. (14)

Then for 2= (θ1, . . . , θK ), the averaged (interpolated) model distance functional
is defined by

L(0(t),2)=
T∑

t=1

K∑
i=1

γi (t)gGEV(X t , θi ) (15)

with constraints on model parameters[
1+ ξi (Ut)

X t −µi (Ut)

σi (Ut)

]
> 0 and σi (Ut) > 0

for t = 1, . . . , T and i = 1, . . . , K (16)

and with convexity constraints on 0(t)= (γ1(t), . . . , γK (t))

K∑
i=1

γi (t)= 1, t = 1, . . . , T, (17)

γi (t)≥ 0, t = 1, . . . , T, i = 1, . . . , K . (18)
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2.2. FEM-BV regularization on 0(t). Minimization of (15) with constraints (16)–
(18) is ill-posed. FEM-BV regularization exploits the observation that many real
processes feature persistent behavior. Persistence can be imposed through the
bounded variation of the switching process 0(t) by

|γi |BV(0,T ) =

T−1∑
t=1

|γi (t + 1)− γi (t)| ≤ Ci , i = 1, . . . , K , (19)

where Ci denotes the maximal number of allowed transitions between the model i
and all the other models in the time interval [1, T ]; further on, we will refer to
C = max{C1, . . . ,CK }. Please notice that, since the natural boundary of C is
given by T (the number of observed time steps), involving constraint (19) into the
optimization problem does not confine the solution space. Now the minimization
of (15) with constraints (16)–(19) is well-posed according to 0(t). In the following,
we denote the minimization problem

(0∗(t),2∗)= argmin
0(t),2

L(0(t),2) with respect to constraints (16)–(19) (20)

as the FEM-BV-GEV approach and the optimal FEM-BV-GEV parameters as
(0∗(t),2∗).

2.3. Model selection. In this section, we discuss how to choose the optimal FEM-
BV-GEV parameters K and C . Moreover, we aim to detect the most significant
combination of resolved covariates Ut ∈RS (S is the number of resolved covariates);
in the following, we denote each combination by ucomb. Thus, for different K , C
and ucomb, we apply the FEM-BV-GEV approach and obtain a candidate model M .
Denoting the number of all possible K as NK and the number of all possible C
as NC , we obtain in total

NK NC

S∑
s=1

S!
(S− s)! s!

(21)

different models and choose the optimal one according to model selection criteria,
e.g., the second-order Akaike information criteria (AICc) [30]

AICc = 2L + 2|M | +
2|M |(|M | + 1)

T − |M | − 1
, (22)

where L is the negative log-likelihood function for the estimated model M, |M |
denotes the number of parameters in model M and T is the length of the data.
In FEM-BV-GEV formulation, the averaged model distance functional (15) cor-
responds to the averaged negative log-likelihood (NLL): −L = L(0(t),2). The
number of parameters depends on K , C and the dimension of ucomb so that
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|M | = |M(K ,C, ucomb)|. AICc is a valid estimate for information content of
data with finite length [5]. We compute AICc for each model M and choose
the best model, denoted by M∗, with respect to min(AICc). Thus, incorporating
the model selection criteria, the “complete FEM-BV-GEV formulation” is given
by (20) and (22). In case S is big, the number of models M in (21) increases very
fast and running over all possible combinations of Ut becomes computationally
expensive. Instead, we can incorporate the LASSO shrinkage technique [44] on
model parameter 2:

|θi |L1 ≤ CL , i = 1, . . . , K . (23)

This constraint provides not only the most significant ucomb by setting the coefficients
of insignificant covariates to zero but also improves the prediction accuracy of the
regression by shrinking the coefficients [48; 24]. Also here we have to find the
optimal CL . Thus, with NL as the number of all possible CL , the total number of
all models is NK NC NL . The “LASSO FEM-BV-GEV formulation” is described
by (20), (23) and (22), where now |M | = |M(K ,C, S)|.

3. Conceptual comparison with standard methods

The FEM-BV-GEV is a semiparametric approach as a combination of the parametric
GEV and the nonparametric FEM-BV description of the hidden switching process.
The influence of unresolved factors, expressed as the nonstationarity of model
parameters (9)–(11), is reflected by 0(t). The key issue that makes the FEM-BV-
GEV problem well-posed is the fact that decreasing the value of C in (19) results in
shrinking of the parameter space for 0(t), limiting the number of the local minima
for L(0(t),2) in (20). The current realization of the FEM-BV-GEV approach
assigns γi (t)∈ {0, 1}, i = 1, . . . , K , for all t . That is, according to the result in [41],
interpolation of the model distance function provides the direct interpolation of the
nonstationarity of the model parameter 2(t):

2(t)≈
K∑

i=1

γi (t)θi . (24)

Moreover, the FEM-BV-GEV approach includes some state-of-the-art approaches as
special cases: in case the whole information is provided for the regression analysis
of extremes, FEM-BV-GEV with C = 0 (no transitions between the models and
thus K = 1) corresponds to stationary parametric regression models and results
in a well-posed inverse problem. For K ≥ 2, FEM-BV-GEV provides a nonlocal
extension of the nonparametric kernel smoothing approach: equivalently to adaptive
multimodal optimization, the nonstationary switching process 0(t) enables us to
consider all observations that underlie similar dynamics as one ensemble (in contrast
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to, e.g., methods based on a moving window [16; 10] where the kernel is a priori
chosen as some fixed local parametric function, e.g., a Gaussian of a certain width).

Furthermore, under an additional a priori assumption that 0(t) is a homogenous
Markov process, FEM-BV-GEV is restrained to the family of hidden Markov models
(HMMs) as applied to GEV, e.g., becoming equivalent to the standard HMM-based
methods of extreme value analysis [2; 1]. However, the difference between the
FEM-BV-GEV and Bayesian techniques for analysis of block maxima, e.g., based
on mixture models or HMMs, is in the modeling of the hidden process or the
hidden variable, respectively. In more detail, the main conceptual advantage of
FEM-BV in its general form over the Bayesian mixture models, e.g., HMM, is
that FEM-BV is a nonparametric approach. HMM is a purely parametric approach
with strong a priori assumptions. In the HMM context, the hidden process is
parametrized by a probabilistic model, e.g., homogenous Markov, and requires an
initial hidden probability. In contrast, FEM-BV avoids a priori parametrization and
is also applicable beyond these assumptions. The only two assumptions involved
in FEM-BV are (1) 0(t) is considered as a function in some (very broad) function
space, e.g., BV-space and (2) the smoothness of0(t) is bounded in the corresponding
function space (compare also discussions in [41]). The estimation of 0(t) results in
a linear minimization problem [25] or can be carried out using MCMC techniques
[18]. Both approaches result in very efficient computational numerical schemes
scaling well for very large problems unlike the expectation maximization algorithm
(the most prominent and widely used algorithm for Bayesian mixture models).

Thus, exploiting the advantages of FEM-BV and involving stochastic mode
reduction for linear regression analysis, the proposed FEM-BV-GEV provides
an unbiased estimator for GEV parameters in context of systematically missing
information. However, the linearity assumption for the GEV parameters may impose
a disadvantage as soon as the influence of covariates on the dynamics of extremes
is nonlinear. Considering a set of numerical examples, we will compare the pro-
posed FEM-BV-GEV to the intrinsically nonlinear GEV-CDN methodology, which
exploits a conditional density network (CDN) for nonlinear regression analysis
based on time-dependent covariates with time-independent (i.e., stationary) neuron
weights and biases [8].

4. Implementation

In the following, we discuss the algorithmic implementation of the “FEM-BV-GEV
framework”. The FEM-BV-GEV approach was integrated in the existing FEM-BV
MATLAB toolbox and can be provided by the authors on email request. The main
steps of the general FEM-BV formulation are sketched in Algorithm 1: (1) for
different K , C and ucomb, a candidate model M is estimated (see Algorithm 1, line 4),
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input :Observed series X t , list of ucomb, list of K , list of C
output :Optimal model M∗ (u∗comb and (0∗(t),2∗))

1 for ucomb do

2 for K list do

3 for C list do

4 Step 1 (0∗(t),2∗)= getOptimalParameterSet(ucomb, K ,C). For fixed ucomb,
K and C estimate the global optimal parameter set (0∗(t),2∗) (compare
Algorithm 2).

5 Step 2 M∗ = updateOptimalModel(0∗(t),2∗, u∗comb). Estimate the IC value
according to (22) for every model M . If the current IC value is smaller than the
previous one, assign M∗ = M .

Algorithm 1: The general FEM-BV algorithm.

and (2) the optimal model M∗, i.e., optimal K ∗, C∗ and u∗comb, is chosen according
to AICc in (22) (see Algorithm 1, line 5). Thereby, for a fixed set {K ,C, ucomb},
a model M is obtained by solving (20). The minimization is implemented as a
subspace iteration (see Algorithm 2): starting with a randomly initialized 0(t), in an
alternating order, we estimate2 for a fixed 0(t) and then 0(t) for a fixed2, thereby
obviously reducing in each step the value of (15). The subspace iteration converges
to a local optimum. The convergence is achieved if the decrease of the averaged
model distance functional (15) is less then a predefined minimization threshold Tol.
To obtain the global optimum FEM-BV framework involves an annealing-like
strategy: in each annealing step, 0(t) is initialized randomly (for more details on
the general FEM-BV annealing-like algorithmic strategy sketched above, see [41]).

The two steps of the subspace iteration are carried out as follows. For a fixed
parameter 2, 0(t) is discretized by the finite element method and estimation
of 0opt(t) results in a linear constrained minimization problem that can be solved
using standard numerical tools, e.g., the simplex method [26; 41]. For a fixed 0(t),
2opt is obtained by minimizing the averaged negative log-likelihood functional (15)
with respect to the constraints (16). For minimization, we take advantage of the
fact that the averaged model distance functional (15) is uncoupled for different
i = 1, . . . , K . Thus, 2opt can be estimated by solving

min
θi

T∑
t=1

γi (t)gGEV(X t , θi ), (25)

with respect to constraints (16) for i = 1, . . . , K , K times with standard likelihood
maximization techniques [13; 19]. Note that the corresponding function in (25)
is strongly nonlinear and nonconvex. Additionally, in practical applications, it
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input :Observed series X t , fixed {K ,C, ucomb}, minimization threshold value Tol, number of
annealing steps annealing, maximal number of subspace iterations maxSubspace

output :Global optimal parameter set (0∗(t),2∗)

1 L(0∗(t),2∗)= inf

2 for a = 1 : annealing do

3 0old(t) generate randomly with respect to constraints (17)–(19)
4 2old = argmin2 L(0old(t),2)

5 while |L(0opt(t),2opt)−L(0old(t),2old)|> Tol or maxSubspace do

6 Step 1 0opt(t)= argmin L(0(t),2old). The constrained minimization with respect
to 0(t) results for BV-regularization in a linear problem; standard methods, e.g.,
simplex method, can be applied.

7 Step 2 2opt = argmin L(0opt(t),2). The required numerical optimization method
with respect to 2 depends on the model distance function g( · ). In FEM-BV-GEV,
g( · ) is the negative log-likelihood and the minimization is carried out by applying the
MCMC method (compare Algorithm 3).

8 if L(0∗(t),2∗) > L(0opt(t),2opt) then
9 2∗ =2opt

10 0∗(t)= 0opt(t)

Algorithm 2: getOptimalParameterSet: annealing and subspace iteration.

may be nondifferentiable (or may exhibit very large values of the first derivative).
Because of these reasons, minimization using standard gradient-based methods like
Newton’s method and gradient-descent approaches would strongly depend on the
initial value and on the boundedness of the first derivatives (e.g., as in the case of
the Levenberg–Marquardt optimization algorithm deployed in GEV-CDN [8]). To
avoid this difficulty, we consider a gradient-free optimization technique based on
the Metropolis algorithm, which is a Markov-chain Monte Carlo (MCMC) method.
In particular, we employ the adaptive MCMC methodology proposed in [18], where
the adaptive MCMC optimization method considers the Boltzmann distribution as
the target density:

π( · )=
1
z

exp(−βh( · )) (26)

with normalization constant z, inverse temperature parameter β and some energy
function h( · ). For β→∞, Boltzmann-distributed samples converge towards the
minimal energy of h( · ). The adaptivity of the MCMC in [18] comes from adjusting
the noise, used for proposing the next sample, and from increasing β (i.e., from
annealing). Thus, this approach can be used as an optimization method to get 2opt

for fixed 0(t). For that, we set h(2)= L(0(t),2) and modify the MCMC in [18]
by adjusting the initialization and the proposed next step (taking into account the
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constraints (16) and the dimensionality of 2). The main steps of the deployed
adaptive MCMC are sketched in Algorithm 3 in Appendix A.

We would like to emphasize that in each run of the MCMC algorithm it is
sufficient to sample a parameter2new that provides a smaller value of L(0(t),2new)

instead of sampling the whole distribution (refer to Algorithm 3, lines 3 and 9).
The subspace iteration deployed by FEM-BV improves in each step the parameters
in the sense of minimizing L(0(t),2) and provides the optimal parameter set
(2opt, 0opt) for each annealing step. Moreover, MCMC optimization techniques
do not depend on the initial start values: the MCMC algorithm also allows us to
accept parameters with higher value of the functional (15); thus, there is a chance to
obtain the global minima starting from a bad initial value. As will be demonstrated
on the numerical examples below in Section 5, the deployed MCMC optimization
technique is efficient in terms of computational time.

5. Numerical examples

In this section, we illustrate the proposed FEM-BV-GEV methodology on two test
cases and real data. The two test cases are used to investigate the robustness with
respect to the systematically missing covariates, the approximation of nonstationary
behavior and the computational performance of the framework (with respect to
accuracy and computational time). In the real-data example, we analyze a series of
block maxima surface temperatures for locations Lugano, Switzerland and Berlin,
Germany. In each application, the performance of the FEM-BV-GEV framework is
compared to the GEV-CDN approach. GEV-CDN exploits a conditional density
network (CDN) for nonlinear regression analysis based on time-dependent covariates
with constant weights and biases [8]. The GEV-CDN analysis is performed using
the package GEV-CDN provided in the statistical toolbox R [8; 9]. The main
tuning parameters of GEV-CDN are the number of hidden neurons (further on
denoted by NH ) in the network, the hidden layer transfer function (identity or
logistic function) and the number of trials (to avoid the local optima). In all of the
numerical examples considered below, an optimal configuration of GEV-CDN with
respect to these tuning parameters was determined according to the AICc criterion
in the way as described in [8].

5.1. Stationary test case. The first example aims to verify the regression analysis
of block maxima based only on resolved covariates. We would like to roughly mimic
the true underlying dynamics of block maxima in real meteorological applications.
Therefore, as covariates, we consider a linear trend, a periodic function with a
one-year period and daily averaged measurements of the total solar intensity (TSI)
[20; 21].1 In general, the TSI factor describes the total amount of the solar radiative

1Data were retrieved from http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.

http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
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Optimal models for stationary test case
Settings NLL |M | AICc

FEM-BV-GEV K = 3, C = 4 1.7173× 103 38 3.5144× 103

GEV-CDN NH = 12 2.1116× 103 75 4.3703× 103

Table 1. Optimal results for FEM-BV-GEV and GEV-CDN for a stationary test case.
The exact negative log-likelihood for X t using the original parameters is NLLexact =
1.7042×103. As described below, smaller values of NLL indicate the models with a better
fit, whereas smaller values of AICc indicate more informative models.

energy that is hitting the earth’s upper atmosphere [21]. However, for this example,
we consider only a segment of the TSI measurements (staring from the year 1950) of
length T = 800, and thus, this factor is only responsible for more fluctuation in the
generated block maxima. Now, with covariates Ût = (u1(t), u2(t), u3(t)) defined by

u1(t)= 1
400 t, u2(t)= sin

(
π
2 +

1
365 2π t

)
, u3(t)= TSI, (27)

we generate an artificial series of block maxima using the following parametrization
of the GEV model (2):

µ(Ût)=+1− 5u1(t)+ 2u2(t)+ 1u3(t), (28)

σ(Ût)=+2.1018− 0.7132u1(t)− 0.8203u2(t)+ 0.1356u3(t), (29)

ξ(Ût)=−0.0627− 0.4051u1(t)+ 0.0022u2(t)− 0.0026u3(t). (30)

By assigning a relatively high coefficient to the factor u1(t) in (28), we stress the
linear-trend behavior in the dynamics of block maxima. The coefficients in (29)–(30)
were generated randomly. We use MATLAB function gevrnd for sampling:

X t ∼ GEV(µ(Ût), σ (Ût), ξ(Ût)) for t = 1, . . . , 800. (31)

In the next step, we split the covariates Ût into resolved and unresolved subsets
Ut = (u2(t), u3(t)) and U un

t = u1(t), respectively, and apply the FEM-BV-GEV
and GEV-CDN methods for solving the inverse problem. For given X t and Ut , we
fit the model parameters to describe the distribution of X t . We want to emphasize
that by deliberately missing the most relevant covariate, the linear trend, we would
expect both methods to react to this issue by exploiting the intrinsic nonlinearity
in the case of GEV-CDN and the nonstationarity in the case of FEM-BV-GEV.

FEM-BV-GEV is supplied with Klist={1, 2, 3}, Clist={2 :1 :6} and the following
configurations: the number of annealing steps is set to 100, the maximal number of
the subspace iterations to 150 and the minimization threshold to Tol= 5.0× 10−5.
The GEV-CDN approach is configured with NH = {1, 2 : 2 : 18}, the hidden transfer
function is the logistic function and the number of trials is 100. The results are
summarized in Table 1, featuring the minimal AICc values achieved by the respective
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Figure 1. Stationary test case: this figure shows the results for the application of FEM-BV-
GEV and GEV-CDN to (31). The upper left figure shows the artificially generated series
of extremes X t versus the optimal switching process 0∗(t), expressed by the affiliation
vector A(t). The remaining panels represent the evaluation of the shape, scale and location
parameters according to the original (black solid line), optimal FEM-BV-GEV (dashed
line) and GEV-CDN (gray solid line) parameters.

methods. Resulting optimal models are K = 3 and C = 4 for FEM-BV-GEV and
NH = 12 for CDN-GEV. The regression analysis of X t based on resolved covariates
was performed better by the FEM-BV-GEV than by the GEV-CDN approach (with
a smaller NLL and a lower total number of model parameters). As seen from
Figure 1, top left, the optimal switching process 0∗(t), expressed by the affiliation
A(t) ∈ R (with A(t) = {i : i = argmax γ ∗i (t) over i = 1, . . . , K }), assigns X t to
three different models. Thereby, it explicitly resolves the implicit linear trend in
the systematically missing covariate U un via a switching process that subsequently
goes through three local parameter regimes. We cannot compare the original and
the resulting coefficients for the regression models explicitly. Instead, we evaluate
the approximated µ∗(Ut), ξ∗(Ut) and σ ∗(Ut) according to the FEM-BV-GEV and
the GEV-CDN models and compare them with the original evaluations according
to (28)–(30). The comparison is shown in Figure 1. The top right, bottom left
and bottom right panels represent the shape, the scale and the location parameters,
respectively. The parameters obtained from FEM-BV-GEV resolve the underlying
trend very reliably. In contrast, due to the intrinsic assumption that the neuron
weights and biases are constant, GEV-CDN is not able to recover the impact of this
missing covariate.
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Optimal models for nonstationary test case
Settings NLL |M | AICc

FEM-BV-GEV K = 2, C = 12 1.2041× 103 37 2.4859× 103

GEV-CDN NH = 7 1.2545× 103 52 2.6203× 103

Table 2. Optimal results for FEM-BV-GEV (K = 2 and C = 12) and GEV-CDN (NH = 7)
for the nonstationary test case. The exact negative log-likelihood for X t using the original
parameters is NLLexact = 1.2289× 103.

5.2. Nonstationary test case. Now we consider a nonstationary test case and use
it to verify the accuracy and the performance of the FEM-BV-GEV. We generate X t

according to a mixture model with a nonstationary switching process

X t ∼ γ1(t)GEV1+γ2(t)GEV2, (32)

where GEV1 is parametrized according to (28)–(30) and GEV2 according to

µ2(Ût)=−0.5− 3u1(t)+ 0.5u2(t)+ 0.5u3(t), (33)

σ2(Ût)=+0.6729+ 0.0183u1(t)− 0.4131u2(t)+ 0.1378u3(t), (34)

ξ2(Ût)=−0.0780− 0.1398u1(t)− 0.1608u2(t)+ 0.0266u3(t). (35)

Here we consider the same covariates Ût as in the stationary case. The nonstationary
switching process 0(t)= (γ1(t), γ2(t)) is generated artificially with C = 6 switches.
Now for given X t and Ut = (u1(t), u2(t), u3(t)), we apply FEM-BV-GEV and
the GEV-CDN approach to capture the nonstationarity of (32). FEM-BV-GEV is
supplied with Klist = {1, 2, 3} and Clist = {2 : 1 : 14}; remaining configurations are
the same as for the stationary test case. Also the configurations of the GEV-CDN
approach do not change. Because we provide the full information, Ut = Ût , to both
methods, they both perform well; compare Table 2 and Figure 2. FEM-BV-GEV
approximates the dynamics of X t with less parameters and a smaller NLL. The
inconsistency of the number of switches in 0∗(t) with C = 12 (Figure 2 upper left
panel) and the original 0(t) with C = 6 can be neglected due to the relatively large
confidence intervals for 0∗(t) and 2∗ (compare Appendix B, Figure 4 and Table 5).

Also GEV-CDN captures the underlying trend in parameters; compare Figure 2.
The computational performance of FEM-BV-GEV and GEV-CDN is compared
by considering the CPU time for one annealing step dependent on the increasing
number of parameters (configurations do not change). The results are shown in
Figure 3. The plots contain the average CPU time over 100 runs. FEM-BV-GEV
obviously outperforms the GEV-CDN approach with respect to the computational
performance for the growing number of parameters (e.g., corresponding to the
larger number of involved covariates or hidden neurons).
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Figure 2. Nonstationary test case: this figure shows the results for the application of FEM-
BV-GEV and GEV-CDN to (32). The upper left figure shows the artificial generated series
of extremes X t versus the optimal switching process 0∗(t), expressed by the affiliation
vector A(t). The remaining panels represent the evaluation of the shape, scale and location
parameters according to original (black solid line), optimal FEM-BV-GEV (dashed line)
and GEV-CDN (gray solid line) parameters.
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Figure 3. Nonstationary test case: this figure compares the computational time perfor-
mance of FEM-BV-GEV (diamonds marker for K =2 and circles for K =3) and GEV-CDN
(square markers) using a logarithmic time scale (seconds). The number of covariates is
fixed; thus, the increase of the number of model parameters is due to increasing of C for
FEM-BV-GEV and the number of hidden neurons for GEV-CDN.
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5.3. Real-data application. In this section, we apply FEM-BV-GEV and GEV-
CDN to real data, where we do not a priori have the knowledge about the underlying
dynamics and we have to deal with unresolved modes. In the following, we consider
historical daily records of temperature from January 1, 1950 until January 1, 2011
for Lugano, Switzerland (46◦N, 8.9667◦ E) and Berlin, Germany (52.4649◦N,
13.3017◦ E)2 [32]. We restrict the data to this period because observations for some
of the involved factors are only available starting from 1950. Before extracting
30-day block maxima, we deseasonalize the data. The dedicated series of block
maxima for each location contains 742 maxima in the observed period. For the
regression analysis, we consider the following set of covariates:

(1) arctic oscillation (AO),2

(2) North Atlantic oscillation (NAO),3

(3) total solar irradiance (TSI), averaged over one day [20; 21],4

(4) ENSO, represented through mean sea surface temperature anomalies in the
Nino3.4 region [46],

(5) log(CO2), with logarithmic dependence according to [43],

(6) seasonal periodical phase PerI = sin
( 1

365 2π t
)
,

(7) seasonal periodical phase PerII = sin
( 3

2.1π +
1

365 2π t
)
, and

(8) Madden–Julian oscillation (MJO) containing the first two empirical orthogonal
functions.5

The covariates Ut ∈ R8 are scaled, with us(t) ∈ [−1, 1] for s = 1, . . . , 8, so we can
interpret their relative influences on trends in model parameters. For the following
GEV regression analysis, we consider the covariates at the same time steps when
the maxima in each block are observed. First of all, we want to extract the most
significant ucomb out of all possible, in total 255, combinations of Ut . For this
task, we use the FEM-BV-GEV framework with the following configurations:
Klist = {1, 2, 3}, Clist = {5 : 5 : 100}, the number of annealing steps is fixed to 100,
the number of the subspace iterations is set to 250 and the minimization threshold
is set to Tol = 5.0 × 10−5. Then, according to the minimal AICc, we obtain
for each location the optimal model including the most significant combination,
denoted by u∗comb. For Lugano, u∗comb is [NAO, log(CO2),PerI,PerII], and for
Berlin, u∗comb = [AO,NAO,PerI]. In the second step, we compare FEM-BV-GEV
and GEV-CDN applied to two different settings: (a) we provide the complete set

2Data were retrieved from the NOAA’s National Climatic Data Center web page.
3Data were retrieved from ftp://ftp.cpc.ncep.noaa.gov/cwlinks/.
4Data were retrieved from http://pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant.
5Data were retrieved from http://cawcr.gov.au/staff/mwheeler/maproom/RMM/.

ftp://ftp.cpc.ncep.noaa.gov/cwlinks/
http://www.pmodwrc.ch/pmod.php?topic=tsi/composite/SolarConstant
http://cawcr.gov.au/staff/mwheeler/maproom/RMM/
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Location Lugano with Location Lugano with
u∗comb = [NAO, log(CO2),PerI,PerII] û∗comb = [NAO,PerI,PerII]

NLL |M | AICc NLL |M | AICc

FEM-BV-GEV 1.5739× 103 70 3.3026× 103 1.6089× 103 64 3.3580× 103

GEV-CDN 1.4940× 103 115 3.2606× 103 1.6729× 103 45 3.4416× 109

Table 3. Comparison of FEM-BV-GEV and GEV-CDN according to AICc model selection
criteria for Lugano according to the resolved and unresolved modes. The optimal models
for resolved modes are FEM-BV-GEV with K = 2 and C = 40 and GEV-CDN with
NH = 14. The optimal models for unresolved modes are FEM-BV-GEV with K = 2 and
C = 40 and GEV-CDN with NH = 6.

Location Berlin with Location Berlin with
u∗comb = [AO,NAO,PerI] û∗comb = [NAO,PerI]

NLL |M | AICc NLL |M | AICc

FEM-BV-GEV 1.6428× 103 109 3.5415× 103 1.6756× 103 89 3.5538× 103

GEV-CDN 1.7818× 103 45 3.6595× 103 1.7927× 103 39 3.6678× 103

Table 4. Comparison of FEM-BV-GEV and GEV-CDN according to AICc model selection
criteria for Berlin according to the resolved and unresolved modes. The optimal models for
resolved modes are FEM-BV-GEV with K = 2 and C = 85 and GEV-CDN with NH = 6.
The optimal models for unresolved modes are FEM-BV-GEV with K = 2 and C = 70 and
GEV-CDN with NH = 6.

of optimal covariates for the regression analysis u∗comb, and (b) we provide an
incomplete set û∗comb = [NAO,PerI,PerII] and keep back log(CO2) for Lugano
and provide û∗comb = [NAO,PerI] and keep back AO for Berlin. Note that u∗comb is
significant according to the FEM-BV-GEV approach and one could argue that for the
GEV-CDN approach another set of covariates could be more important.6 In return,
in real application, we will never know a priori which covariates may be important,
and in any case, we do not dispose of complete system measurements. Moreover, the
influence of u∗comb on the dynamics of block maxima can be interpreted physically;
refer to Appendix C. The results for settings (a) and (b) are shown in Table 3
for Lugano and in Table 4 for Berlin. Thereby, the optimal GEV-CDN model is
chosen from NH = {2 : 2 : 16}. Additionally, the more interested reader can find a
short postinference according to the optimal models in Appendix C: we compute
the expectation value of block maxima with the corresponding quantiles for both
locations and discuss its behavior.

6Application of GEV-CDN to identify the most significant combination of covariates is not feasible
because of prohibitively high computational cost to get through all 255 covariates combinations (see
Figure 3 for computational-cost comparisons of the two methods).
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Comparing the optimal FEM-BV-GEV and GEV-CDN models, we can conclude
that in the case when the set of covariates is “complete” the nonlinear GEV-CDN
provides a better description of the block maxima for Lugano in terms of information
theory (as measured by AICc), suggesting that the underlying dynamics is nonlinear
rather than nonstationary. In contrast, FEM-BV-GEV provides a better description
of block maxima for Berlin. Moreover, in case some information is “missing”,
the nonstationary FEM-BV-GEV approach approximates the underlying dynamics
better by reflecting the unresolved modes through the switching process for both
considered cases (Berlin and Lugano).

6. Conclusion and outlook

In this work, we presented an extension of the GEV methodology for statistical
regression analysis of block maxima with systematically missing covariates. We
applied the strategy of stochastic covariate reduction and expressed the GEV parame-
ters as fully nonstationary regression models based on resolved covariates only. The
involved nonstationarity is interpolated by K ≥ 1 local models and a nonstationary
hidden switching process. The corresponding inverse problem was regularized
using the nonparametric FEM-BV methodology by assuming persistence of the
switching process (the number of switches between the local models is limited
by a parameter C). The well-posed inverse problem is solved by deploying the
gradient-free optimization methodology based on the Metropolis algorithm. The
selection of optimal K and C and the significant subset of resolved covariates
is carried out using the AICc information criteria. The proposed FEM-BV-GEV
framework allows a computationally efficient, semiparametric and nonstationary
analysis and goes beyond strong a priori probabilistic and deterministic assumptions
typical for standard approaches deploying, e.g., mixture models, hidden Markov
models, spline interpolation or neural networks. FEM-BV-GEV includes methods
based on parametric regression, hidden Markov models and local kernel smoothing
as special cases. However, the linear regression, which is involved in FEM-BV-GEV
and provides an easily interpretable and understandable statistical model, becomes a
weakness as soon as the influence of covariates is strongly nonlinear. For that reason,
we considered the GEV-CDN approach as a main competitor. GEV-CDN is based on
GEV and neural networks: each model parameter is described as a nonlinear function
of covariates with constant coefficients exploiting the conditional density network.

We compared the two methods on test cases and real data according to the four
criteria: (1) information content of the models, (2) ability to handle unresolved
covariates, (3) computational complexity and (4) interpretability of the models.
The results in Section 5.1 show that if some relevant information is missing then
the nonstationary FEM-BV-GEV approach approximates the underlying dynamics
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better by reflecting the unresolved modes through the switching process. In contrast,
the GEV-CDN approach seems to average out the underlying trends and in these
situations performs worse. The second example (compare Section 5.2) investigates
the performance of the two methods applied to data, which is generated according
to a switching process and different models. The FEM-BV-GEV approach per-
forms better. GEV-CDN seems to capture the general dynamics but requires more
model parameters to describe the underlying switching process (implicitly resolving
the nonstationary switching process through the nonlinear stationary function).
The third example (compare Section 5.3) demonstrates the performance of FEM-
BV-GEV and GEV-CDN on real data analyzing 30-day block maxima surface
temperatures for locations Lugano, Switzerland and Berlin, Germany. The FEM-
BV-GEV approach allows a better description of block maxima for Berlin. Thereby,
FEM-BV-GEV indicates two different models (K = 2) pointing to systematically
missing covariates in the statistical regression analysis. GEV-CDN performs better
applied to block maxima for Lugano. The better performance of the nonlinear
GEV-CDN approach might lead to the suggestion that the dynamics of the block
maxima at Lugano can be better explained by the stationary nonlinear regression
than by the nonstationary linear one. Additionally, FEM-BV-GEV outperforms
GEV-CDN in the interpretability and understandability of the models and in the
far more favorable computational complexity and scalability. Consequently, we
conclude that the FEM-BV-GEV approach should be used in cases where not all
potentially significant covariates can be resolved explicitly and the observed data
(series of extremes and the number of resolved covariates) is big; correspondingly,
GEV-CDN should be applied in cases where the complete information is known
and the provided statistics are rather small.

Outlook. A point of interest in data-based analysis of block maxima in the context
of the FEM-BV-GEV approach is to understand the dynamics of the switching
process, implicitly reflecting the dynamics of the most relevant covariates that are
systematically missing in the analyzed data. One can either try to find a set of
covariates to resolve the observed dynamics or parametrize the switching process.
The latter can be done by considering the switching process as a discrete time series
and study the dynamics with time-series analysis methods, e.g., a FEM-BV-Markov
method [27]. Another extension of the presented FEM-BV-GEV methodology goes
toward space-time modeling of block maxima. The spatial extension of FEM-BV-
GEV requires appropriate regularization in space, e.g., based on distances between
the locations where the measurements are taken. Besides that, by replacing GEV by
the generalized Pareto distribution (GPD) methodology, we can straightforwardly
derive the FEM-BV-GPD framework to study threshold exceedances. All these
issues are matters of future research.
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input : X t series of extremes, ucomb, 0(t), L(0,2old)
output :2opt

1 2new = generateInitialValue(0(t), X t , ucomb)

2 if L(0(t),2new) < L(0(t),2old) then
3 2opt =2new
4 return 2opt

5 initialize δ, β,6, counterAccept= 0

6 for sampleStep= 1 : sampleSizeMCMC do
7 2next = proposeNext(2new, 0(t), X t , ucomb, 6, noise, β)

8 if L(0(t),2next) < L(0(t),2old) then
9 2opt =2next

10 return 2opt

11 else if checkAcceptance(β,2next,2new) then
12 2new =2next
13 counterAccept+= 1
14 updateCovMatrix(2new, 6)

15 if sampleStep>= 50 then
16 [δ, β] = adaptStep(δ, β, counterAccept, sampleStep)

17 2opt =2old

Algorithm 3: MCMC-based optimization algorithm for fixed 0(t).

Appendix A: Details of the adaptive MCMC algorithm

In the following, we point out the main steps of the deployed MCMC-based opti-
mization; see Algorithm 3. The algorithm is based on [18] and differs manly in two
steps: lines 3 and 6 (explained in more details in the next two sections). Please note
that the convergence condition for this algorithm is fulfilled if MCMC proposes
a new parameter set that provides a smaller L(0,2new) value for fixed 0(t). In
practical applications, in the beginning of the FEM-BV subspace-minimization
procedure, Algorithm 3 proposes a better parameter set already after few steps.
However, the number of samplings is limited by the parameter sampleSizeMCMC;
see Algorithm 3, line 5. In particular, it is recommended to limit the number of
samples because as soon as we get into the area of the local optima it becomes hard
to propose a better parameter set. And if the algorithm fails, meaning it does not
provide a better set of parameters, it returns with 2opt = 2old; see Algorithm 3,
line 16. For the applications presented in this work, this parameter was assigned to
sampleSizeMCMC= 1000.

A.1. Generate an initial value. MCMC sampling starts with generating an initial
value (we refer to Algorithm 3, line 3). The scale and the shape parameters have to
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fulfill the constraints

0< σi (Ut)= σ
(0)
i +

S∑
s=1

σ
(s)
i us(t) < const, i = 1, . . . , K , ∀t, (1)

−0.5< ξi (Ut)= ξ
(0)
i +

S∑
s=1

ξ
(s)
i us(t) < 0.5, i = 1, . . . , K , ∀t (2)

(constraint (2) ensures a regular likelihood estimator [14]). Applying a simple
uniform distribution would not necessarily provide an appropriate initial value.
To hold the constraints, we reformulate them: since ξi (Ut) and σi (Ut) attain their
unique maximum/minimum values in one of the corners of the convex hull defined
by Ut , t = 1, . . . , T [27], it is sufficient to fulfill the constraints (1)–(2) on all
corners of the convex hull of Ut . Using a matrix A ∈ R(S+1)×2S

that contains all
combinations of maximal/minimal values of U (t), t = 1, . . . , T , we can reformulate
the constraint for ξi = (ξ

(0)
i , . . . , ξ

(S)
i ):

−Aξi <−lbξ , lbξ =−0.5 · 1 ∈ R2S
,

Aξi <+ubξ , ubξ = 0.5 · 1 ∈ R2S
.

The same applies for σ . Finally, if we slightly strengthen the constraints

σi (Ut) ∈ [ε, const] and ξi (Ut) ∈ [−0.5+ ε, 0.5− ε]

with ε > 0 small and const ∈ R some high value, we can use some convex sampler
to get random, uniformly distributed values within this convex hull. The same
approach can be applied to sample µi = (µ

(0)
i , . . . , µ

(S)
i ) in a way such that the

constraint (16) in Section 2 is fulfilled. Another way is to estimate the initial
value for µi by applying ordinary least squares [14]. Note that this estimation is
not considered as the trend estimate for the GEV distribution but as a procedure
to generate an initial value that is adjusted within the MCMC and the subspace
(Algorithm 2 in Section 4) procedure. Both possibilities are implemented in the
FEM-BV-GEV framework. In this paper, the second one was deployed.

A.2. Propose next. The performance of the Metropolis algorithm can be improved
with an appropriate proposal distribution [4; 34]. However, it is not obvious which
proposal density should be chosen for the current target density. In this work,
we refer to the discussions in [4] and deploy the adaptive Metropolis algorithm
where the next proposal, denoted here by Yn+1, is sampled according to a mixture
distribution with respect to the information of all previous accepted samples, denoted
here by X0, . . . , Xn:

Yn+1 ∼ (1− δ)N
(

Xn,
2.382

d
6n

)
+ δN(Xn, 60), (3)
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Figure 4. Nonstationary test case: the figure compares the averaged optimal 0̂∗(t) (black
dashed line) with its confidence intervals (gray dashed lines) versus the original switching
process (gray solid line).

where d is the dimension of Xn and 6n ∈ Rd×d corresponds to the empirical
covariance matrix of X0, . . . , Xn . The parameter 0< δ < 1 controls the acceptance
rate of the Metropolis algorithm; the acceptance rate is increasing for δ→ 1 and
decreasing for δ→ 0. For more details on the adaption step, see [18].

Appendix B: Confidence intervals

In the following, we refer to the nonstationary test case in Section 5 and provide the
confidence intervals for the optimal estimation of (0∗(t),2∗) to verify the accuracy
of the proposed FEM-BV-GEV approach. We obtain the confidence intervals
via bootstrapping procedure [12]; i.e., we resample X t , t = 1, . . . , T , according
to (32) in Section 5 N times and apply FEM-BV-GEV (with Klist = {1, 2, 3}
and Clist = {2 : 1 : 14}) each time. Then each optimal result (0∗(t),2∗) is stored,
and we can estimate the averaged parameters as well as the confidence intervals.
For this example, we consider N = 150. Figure 4 shows the original 0(t) (gray
solid line), the averaged optimal 0̂∗(t) (black dashed line) and all other realizations
of 0∗(t) that can be considered as the confidence intervals (gray dashed lines).
Table 5 contains the corresponding confidence intervals for the averaged optimal
model parameters θ̂∗i for i = 1, 2.

Appendix C: Postinference

In this section, we discuss the postinference for Lugano and Berlin according
to the optimal FEM-BV-GEV and GEV-CDN models. The locally linear FEM-
BV-GEV model allows direct interpretation of the influence of covariates on the
dynamics of GEV parameters; see Table 6 for Lugano and Table 7 for Berlin. For
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Model Parameters
µ0 µ1 µ2 µ3 σ0 σ1 σ2 σ3

ξ0 ξ1 ξ2 ξ3

θ1 1.0000 −5.0000 2.0000 −1.0000 1.4983 −0.6987 0.1937 0.0353
−0.0627 −0.4051 0.0022 −0.0026

θ̂∗1 1.0502 −4.9507 1.9786 −1.0385 1.4821 −0.6654 0.1888 0.0297
−0.0719 −0.4490 0.0421 −0.0355

std± 0.1478 0.1690 0.2492 0.3418 0.1085 0.1652 0.0979 0.2109
0.0500 0.0550 0.0446 0.1051

θ2 −0.5000 −3.0000 0.5000 0.5000 0.6729 0.0183 −0.4131 0.1378
−0.0780 −0.1398 −0.1608 0.0266

θ̂∗2 −0.4938 −2.9626 0.5342 0.5300 0.7187 0.1113 −0.3720 0.1944
−0.0852 −0.1472 −0.1542 0.0122

std± 0.0715 0.1427 0.0897 0.1066 0.0573 0.1108 0.0645 0.0740
0.0684 0.1219 0.1175 0.1537

Table 5. The original parameters θ1 and θ2 according to (33)–(35) and (28)–(30) in
Section 5, averaged optimal parameters θ̂∗1 and θ̂∗2 and the corresponding standard devia-
tions (std±).

Model Parameters for Lugano with u∗comb = [NAO, log(CO2),PerI,PerII]

µ0 µ1 µ2 µ3 µ4 σ0 σ1 σ2 σ3 σ4

ξ0 ξ1 ξ2 ξ3 ξ4

θ∗1 3.92 0.78 −2.12 1.70 −0.34 1.71 0.60 −0.17 0.39 −0.42
−0.05 0.16 0.03 −0.19 −0.09

θ∗2 4.29 −0.19 1.97 0.74 −1.39 1.99 −0.10 0.05 0.21 −0.61
−0.37 0.39 0.40 −0.15 −0.09

Table 6. The table contains optimal parameters θ∗1 and θ∗2 (the values are rounded to two
decimal places).

Model Parameters for Berlin with u∗comb = [AO,NAO,PerI]

µ0 µ1 µ2 µ3 σ0 σ1 σ2 σ3

ξ0 ξ1 ξ2 ξ3

θ∗1 4.73 1.89 0.1 0.38 2.59 −0.52 −0.03 0.6873
−0.22 −0.27 −0.40 0.17

θ∗2 8.43 2.00 −1.13 0.59 2.15 −0.21 0.69 −0.12
−0.32 0.01 −0.10 0.00

Table 7. The table contains optimal parameters θ∗1 and θ∗2 (the values are rounded to two
decimal places).
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the neural-networks-based GEV-CDN approach, we obtain a matrix of weights
and have to evaluate the parameters according to the transfer function (a logistic
function in our particular case), making the fitted models not easy for interpretation
and understanding. The identification of these factors is physically meaningful.
Positive phase of AO causes dry and hot conditions in Mediterranean regions. AO
has a direct influence on atmospheric circulation blocking events: it induces a
ridge of high pressure in the mid-latitude jet streams that can cause persistently
high temperatures (as well as cold conditions) [23]. Positive phases of NAO cause
warm, wet winters in northern and dry winters in southern Europe. Due to the
anthropogenic influence of CO2 concentration, log(CO2) holds a positive trend
with oscillating dynamics (with maximum value in May and minimum in October)
[31]. The relevance of PerI and PerII points to strong seasonal dependence of block
maxima in both locations (this is obvious since we consider monthly maxima). In
order to study the long-term trend in distribution of block maxima, we evaluate the
nonstationary expectation value

EK=2[X t , t] =
2∑

i=1

γi (t)
(
µi (Ut)+ σi (Ut)

0̃(1− ξi (Ut))− 1
ξi (Ut)

)
, (1)

ECDN[X t , t] = µCDN(Ut)+ σCDN(Ut)
0̃(1− ξCDN(Ut))− 1

ξCDN(Ut)
(2)

with t = 1, . . . , 742, where K = 2 corresponds to FEM-BV-GEV (with parametriza-
tion according to (13) in Section 2) and CDN to GEV-CDN models and 0̃ denotes
the gamma function. Figures 5 and 7 show the results according to FEM-BV-GEV
and Figures 6 and 8 according to GEV-CDN. The 0.99- and 0.10-quantiles are the
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Figure 5. Location Lugano: the plot of the expectation value for the optimal FEM-BV-
GEV model, K = 2 and C = 40.
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Figure 6. Location Lugano: the plot of the expectation value for the optimal GEV-CDN
model with NH = 14.
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Figure 7. Location Berlin: the plot of the expectation value for the optimal FEM-BV-GEV
model, K = 2 and C = 85.

confidence intervals containing 89% of the distribution. In particular, the 0.99-
quantile corresponds to the 100-year return level. According to the FEM-BV-GEV
results, the mean for Lugano shows a slightly negative trend in the first model,
but after the 1980s, the second model dominates, where log(CO2) has a positive
influence and so the trend in block maxima becomes positive. In contrast, according
to the GEV-CDN model, there is no obvious trend; however, the confidence intervals
for the GEV distribution increase in the last ten years. For Berlin, the trend of
the expectation value is separated according to two FEM-BV-GEV models, one
model corresponds to higher block maxima. The GEV-CDN model averages these
dynamics and provides a unchanging behavior with some outliers.
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Figure 8. Location Berlin: the plots of the expectation value for the optimal GEV-CDN
model, NH = 6.
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