
Communications in
Applied
Mathematics and

Computational
Science

msp

vol. 10 no. 1 2015

REVISIONIST INTEGRAL DEFERRED
CORRECTION

WITH ADAPTIVE STEP-SIZE CONTROL

ANDREW J. CHRISTLIEB, COLIN B. MACDONALD,
BENJAMIN W. ONG AND RAYMOND J. SPITERI

COMM. APP. MATH. AND COMP. SCI.
Vol. 10, No. 1, 2015

dx.doi.org/10.2140/camcos.2015.10.1 msp

REVISIONIST INTEGRAL DEFERRED CORRECTION
WITH ADAPTIVE STEP-SIZE CONTROL

ANDREW J. CHRISTLIEB, COLIN B. MACDONALD,
BENJAMIN W. ONG AND RAYMOND J. SPITERI

Adaptive step-size control is a critical feature for the robust and efficient numerical
solution of initial-value problems in ordinary differential equations. In this paper,
we show that adaptive step-size control can be incorporated within a family of
parallel time integrators known as revisionist integral deferred correction (RIDC)
methods. The RIDC framework allows for various strategies to implement step-
size control, and we report results from exploring a few of them.

1. Introduction

The purpose of this paper is to show that local error estimation and adaptive step-
size control can be incorporated in an effective manner within a family of parallel
time integrators based on revisionist integral deferred correction (RIDC). RIDC
methods, introduced in [10], are “parallel-across-the-step” integrators that can be
efficiently implemented with multicore [10; 6], multi-GPGPU [4], and multinode
[9] architectures. The “revisionist” terminology was adopted to highlight that (1)
RIDC is a revision of the standard integral defect correction (IDC) formulation [12],
and (2) successive corrections, running in parallel but (slightly) lagging in time,
revise and improve the approximation to the solution.

RIDC methods have been shown to be effective parallel time-integration methods.
They can typically produce a high-order solution in essentially the same amount
of wall-clock time as the constituent lower-order methods. In general, for a given
amount of wall-clock time, RIDC methods are able to produce a more accurate
solution than conventional methods. These results have thus far been demonstrated
with constant time steps. It has long been accepted that local error estimation
and adaptive step-size control form a critical part of a robust and efficient strategy
for solving initial-value problems in ordinary differential equations (ODEs), in
particular problems with multiple timescales; see [15], for example. Accordingly, in
order to assess the practical viability of RIDC methods, it is important to establish

MSC2010: 65H10, 65L05, 65Y05.
Keywords: initial-value problems, revisionist integral deferred correction, parallel time integrators,

local error estimation, adaptive step-size control.

1

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2015.10-1
http://dx.doi.org/10.2140/camcos.2015.10.1
http://msp.org

2 CHRISTLIEB, MACDONALD, ONG AND SPITERI

whether they can operate effectively with variable step sizes. It turns out that
there are subtleties associated with modifying the RIDC framework to incorporate
functionality for local error estimation and adaptive step-size control: there are a
number of different implementation options, and some of them are more effective
than others.

The remainder of this paper is organized as follows. In Section 2, we review
the ideas behind RIDC as well as strategies for local error estimation and step-size
control. We then combine these ideas to propose various strategies for RIDC meth-
ods with error and step-size control. In Section 3, we describe the implementation
of these strategies within the RIDC framework and suggest avenues that can be
explored for a production-level code. In Section 4, we demonstrate that the use of
local error estimation and adaptive step-size control inside RIDC is computationally
advantageous. Finally, in Section 5, we summarize the conclusions reached from
this investigation and comment on some potential directions for future research.

2. Review of relevant background

We are interested in numerical solutions to initial-value problems (IVPs) of the
form {

y′(t)= f (t, y(t)), t ∈ [a, b],
y(a)= ya.

(1)

where y(t) : R→ Rm , ya ∈ Rm , and f : R× Rm
→ Rm . We first review RIDC

methods, a family of parallel time integrators that can be applied to solve (1). Then,
we review strategies for local error estimation and adaptive step-size control for
IVP solvers.

2.1. RIDC. RIDC methods [10; 6; 4] are a class of time integrators based on
integral deferred correction [12] that can be implemented in parallel via pipelining.
RIDC methods first compute an initial (or provisional) solution, typically using a
standard low-order scheme, followed by one or more corrections. Each correction
revises the current solution and increases its formal order of accuracy. After initial
startup costs, the predictor and all the correctors can be executed in parallel. It has
been shown that parallel RIDC methods with uniform step-sizes give almost perfect
parallel speedups [10]. In this section, we review RIDC algorithms, generalizing
the overall framework slightly to allow for nonuniform step-sizes on the different
correction levels.

We denote the nodes for correction level ` by

a = t [`]0 < t [`]1 < · · ·< t [`]N [`] = b,

where N [`] denotes the number of time steps on level `. In practice, the nodes on
each level are obtained dynamically by the step-size controller.

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 3

2.1.1. The predictor. To generate a provisional solution, a low-order integrator is
applied to solve the IVP (1). For example, a first-order forward Euler integrator
applied to (1) gives

η[0]n = η
[0]
n−1+

(
t [0]n − t [0]n−1

)
f (t [0]n−1, η

[0]
n−1), (2)

for n = 1, 2, . . . , N [0], with η[0]0 = ya , and where we have indexed the prediction
level as level 0. We denote η[`](t) as a continuous extension [15] of the numerical
solution at level `, i.e., a piecewise polynomial η[0](t) that satisfies

η[0](t [0]n)= η[0]n .

The continuous extension of a numerical solution is often of the same order of
accuracy as the underlying discrete solution [15]. Indeed, for the purposes of this
study, we assume η[`](t) is of the same order as η[`]n .

2.1.2. The correctors. Suppose an approximate solution η(t) to IVP (1) is com-
puted. Denote the exact solution by y(t). Then, the error of the approximate
solution is e(t)= y(t)− η(t). If we define the defect as δ(t)= f (t, η(t))− η′(t),
then

e′(t)= y′(t)− η′(t)= f (t, η(t)+ e(t))− f (t, η(t))+ δ(t).

The error equation can be written in the form[
e(t)−

∫ t

a
δ(τ) dτ

]′
= f (t, η(t)+ e(t))− f (t, η(t)), (3)

subject to the initial condition e(a) = 0. In RIDC, the corrector at level ` solves
for the error e[`−1](t) of the solution η[`−1](t) at the previous level to generate the
corrected solution η[`](t),

η[`](t)= η[`−1](t)+ e[`−1](t).

For example, a corrector at level ` that corrects η[`−1](t) by applying a first-order
forward Euler integrator to the error equation (3) takes the form

e[`−1](t [`]n)− e[`−1](t [`]n−1)−

∫ t [`]n

t [`]n−1

δ[`−1](τ) dτ =

1t [`]n
[

f
(
t [`]n−1, η

[`−1](t [`]n−1)+ e[`−1](t [`]n−1)
)
− f

(
t [`]n−1, η

[`−1](t [`]n−1)
)]
,

where 1t [`]n = t [`]n − t [`]n−1. After some algebraic manipulation, one obtains

η[`]n = η
[`]
n−1+1t [`]n

[
f
(
t [`]n−1, η

[`](t [`]n−1)
)
− f

(
t [`]n−1, η

[`−1](t [`]n−1)
)]

+

∫ t [`]n

t [`]n−1

f
(
τ, η[`−1](τ)

)
dτ . (4)

4 CHRISTLIEB, MACDONALD, ONG AND SPITERI

The integral in (4) is approximated using quadrature,∫ t [`]n

t [`]n−1

f
(
τ, η[`−1](τ)

)
dτ ≈

| ET[`]n |∑
i=1

α
[`−1]
n,i f (τi , η

[`−1](τi)), τi ∈ ET
[`]
n , (5)

where the set of quadrature nodes, ET[`]n , for a first-order corrector satisfies

1. | ET[`]n | = `+ 1,

2. ET[`]n ⊆ {t
[`−1]
n }

N [`−1]

n=0 ,

3. min(ET[`]n)≤ t [`]n−1,

4. max(ET[`]n)≥ t [`]n .

The quadrature weights, α[`−1]
n,i , are found by integrating the interpolating Lagrange

polynomials exactly,

α
[`−1]
n,i =

| ET[`]n |∏
j=1, j 6=i

∫ t [`]n

t [`]n−1

(t − τ j)

(τi − τ j)
dt, τi ∈ ET

[`]
n . (6)

The term f
(
t [`]n−1, η

[`−1](t [`]n−1)
)

in (4) is approximated using Lagrange interpolation,

f
(
t [`]n−1, η

[`−1](t [`]n−1)
)
≈

| ET[`]n |∑
i=1

γ
[`−1]
n,i f

(
τi , η

[`−1](τi)
)
, τi ∈ ET

[`]
n , (7)

where the same set of nodes, ET[`]n , for the quadrature is used for the interpolation.
The interpolation weights are given by

γ
[`−1]
n,i =

| ET[`]n |∏
j=1, j 6=i

(t [`]n−1− τ j)

(τi − τ j)
, τi ∈ ET

[`]
n . (8)

2.2. Adaptive step-size control. Adaptive step-size control is typically used to
achieve a user-specified error tolerance with minimal computational effort by varying
the step-sizes used by an IVP integrator. This is commonly done based on a local
error estimate. It is also generally desirable that the step-size vary smoothly over
the course of the integration. We review common techniques for estimating the
local error, followed by algorithms for optimal step-size selection.

2.2.1. Error estimators. Two common approaches for estimating the local trunca-
tion error of a single-step IVP solver are through the use of Richardson extrapolation
(commonly used within a step-size selection framework known as step doubling)
and embedded Runge–Kutta pairs [15]. Step doubling is perhaps the more intuitive
technique. The solution after each step is estimated twice: once as a full step and

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 5

once as two half steps. The difference between the two numerical estimates gives
an estimate of the truncation error. For example, denoting the exact solution to
IVP (1) at time tn+1t as y(tn+1t), the forward Euler step starting from the exact
solution at time tn and using a step-size of size 1t is

η1,n+1 = y(tn)+1t f (tn, yn),

and the forward Euler step using two steps of size 1t/2 is

η2,n+1 =

(
y(tn)+

1t
2

f (tn, yn)

)
+
1t
2

f
(

tn +
1t
2
, y(tn)+

1t
2

f (tn, yn)

)
.

Because forward Euler is a first-order method (and thus has a local truncation error
of O(1t2)), the two numerical approximations satisfy

y(tn +1t)= η1,n+1+ (1t)2φ+O(1t3)+ · · · ,

y(tn +1t)= η2,n+1+ 2
(
1t
2

)2

φ+O(1t3)+ · · · ,

where a Taylor series expansion gives that φ is a constant proportional to y′′(tn).
The difference between the two numerical approximations gives an estimate for the
local truncation error of η2,n+1,

en+1 = η2,n+1− η1,n+1 =
1t2

2
φ+O(1t3).

An alternative approach to estimating the local truncation error is to use embedded
RK pairs [11]. An s-stage Runge–Kutta method is a single-step method that takes
the form

ηn+1 = ηn +1t
s∑

i=1

bi ki ,

where

ki = f
(

ti + ci h, ηn +1t
s∑

j=1

ai j k j

)
, i = 1, 2, . . . , s.

The idea is to find two single-step RK methods, typically one with order p and the
other with order p− 1, that share most (if not all) of their stages but have different
quadrature weights. This is represented compactly in the extended Butcher tableau

c A
b
b̂

6 CHRISTLIEB, MACDONALD, ONG AND SPITERI

Denoting the solution from the order-p method as

η∗n+1 = ηn +1t
s∑

i=1

b̂i ki , (9a)

and the solution from the order-(p− 1) method as

ηn+1 = ηn +1t
s∑

i=1

bi ki , (9b)

the error estimate is

en+1 = ηn+1− η
∗

n+1 =1t
s∑

i=1

(bi − b̂i)ki , (9c)

which is O(1t p).
A third approach for approximating the local truncation error is possible within

the deferred correction framework. We observe that in solving the error equation (3),
one is in fact obtaining an approximation to the error. As discussed in Section 3.3,
it can be shown that the approximate error after ` first-order corrections satisfies
o(1t p0+`+1). We shall see in Section 3.3 that this error estimate proves to be a
poor choice for optimal step-size selection because in our formulation the time step
selection for level ` does not allow for the refinement of time steps at earlier levels.

2.2.2. Optimal step-size selection. Given an error estimate from Section 2.2.1 for
a step 1t , one would like to either accept or reject the step based on the error
estimate and then estimate an optimal step-size for the next time step or retry the
current step. Following [16], Algorithm 1 outlines optimal step-size selection given
an estimate of the local truncation error. In lines 1–4, one computes a scaled error
estimate. In line 5, an optimal time step is computed by scaling the current time
step. In lines 6–10, a new time step is suggested; a more conservative step-size is
suggested if the previous step was rejected.

3. RIDC with adaptive step-size control

There are numerous adaptive step-size control strategies that can be implemented
within the RIDC framework. We consider three of them in this paper as well as
discuss other strategies that are possible.

3.1. Adaptive step-size control: prediction level only. One simple approach to
step-size control with RIDC is to perform adaptive step-size control on the prediction
level only, e.g., using step doubling or embedded RK pairs as error estimators for the
step-size control strategy. The subsequent correctors then use this grid unchanged
(i.e., without performing further step-size control). With this strategy, corrector ` is

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 7

Input:
yn: approximate solution at time tn;
yn+1: approximate solution at time tn+1;
en+1: error estimate for yn+1;
p: order of integrator;
m: number of ODEs;
atol, rtol: user specified tolerances;
prev_rej: flag that indicates whether the previous step was rejected;
α < 1: safety factor;
β > 1: allowable change in step-size.

Output:
accept_flag: flag to accept or reject this step;
1tnew: optimal time step

1 Set a(i)=max{|yn(i)|, |yn+1(i)|}, i = 1, 2, . . . ,m.
2 Compute τ(i)= atol+ rtol ∗ a(i), i = 1, 2, . . . ,m.

3 Compute ε =

√∑m
i=1(e(i)/τ(i))

2

m
.

4 Compute 1topt =1t (1
ε
)1/(p+1).

5 if prev_rej then
6 1tnew = αmin{1t,max{1topt ,1t/β}}
7 else
8 1tnew = αmin{β1t,max{1topt ,1t/β}}
9 end

10 if ε > 1 then
11 accept_flag= 1
12 else
13 accept_flag= 0
14 end

Algorithm 1: Optimal step-size selection algorithm. The approximate solution,
the error estimate, and its order are provided as inputs. For the numerical
experiments in Section 4, we fix α = 0.9, β = 10.

lagged behind corrector `−1 so that each node simultaneously computes an update
on its level (after an initial startup period). This is illustrated graphically in Figure 1.
In principle, near optimal parallel speedup is maintained with this approach provided
the computational overhead for the RIDC method (i.e., the interpolation, quadrature,
and linear combination of solutions) is small compared to the advance of predictor

8 CHRISTLIEB, MACDONALD, ONG AND SPITERI

prediction (`= 0)

correction (`= 1)

correction (`= 2)

correction (`= 3)

t. . . t4 t5 t6 t7 t8 t9 t10 . . .

Figure 1. Schematic diagram of step-size control on the prediction level only. The filled
circles denote previously computed and stored solution values at particular times. The
corrections are run in parallel (but lagging in time) and the open circles indicate which
values are being simultaneously computed. The stencil of points required by each level
is shown by the “bubbles” surrounding certain grid points; the thick horizontal shading
indicates the integrals needed in (4).

from tn to tn+1; in this implementation, a small memory footprint similar to [10]
can be used. Additionally, an interpolation step is circumvented because the nodes
are the same on each level. There are however a few potential drawbacks to this
approach. First, it is not clear how to distribute the user-defined tolerance among the
levels. Clearly, satisfying the user-specified tolerance on the prediction level defeats
the purpose of the deferred correction approach. Estimating a reduced tolerance
criterion may be possible a priori, but such an estimate would at present be ad hoc.
Second, there is no reason to expect the corrector (4) should take the same steps to
satisfy an error tolerance when computing a numerical approximation to the error
equation (3).

3.2. Adaptive step-size control: all levels. A generalization of the above formula-
tion is to utilize adaptive step-size control to solve the error equations (3) as well.
The variant we consider is step doubling on all levels, where each predictor and
corrector performs Algorithm 1; embedded RK pairs can also be used to estimate
the error for step-size adaptivity on all levels. Intuitively, step-size control on every
level gives more opportunity to detect and adapt to error than simply adapting using
the (lowest-order) predictor. For example, this allows the corrector take a smaller
step if necessary to satisfy an error tolerance when solving the error equation. Some
drawbacks are: (i) an interpolation step is necessary because the nodes are generally
no longer in the same locations on each level, (ii) more memory registers are
required, and (iii) there is a potential loss of parallel efficiency because a corrector
may be stalled waiting for an adequate stencil to become available to compute a
quadrature approximation to the integral in (4). Another issue — both a potential
benefit and a potential drawback — is the number of parameters that can be tuned

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 9

prediction (`= 0)

correction (`= 1)

correction (`= 2)

correction (`= 3)

t

Figure 2. Schematic diagram of a scenario when step-size control is applied on all levels.
Unlike in Figure 1, here each level has its own grid in time. Solid circles indicate particular
times and levels where the solution is known. In this particular diagram, levels `= 0, 1, 3
are all able to advance simultaneously to the open circles. However, correction level `= 2
is unable to advance to the time indicated by the triangle symbol because correction level
` = 1 has not yet computed far enough. The stencil of points required by each level
is shown by the “bubbles” surrounding certain grid points; the thick horizontal shading
indicates the integrals needed in (4). Note in particular that the dashed stencil includes a
open circle at level `= 1 that is not yet computed.

for each problem. A discussion on the effect of tolerance choices for each level is
provided in Section 4. One can in practice also tune step-size control parameters
α, β, atol, and rtol for Algorithm 1 separately on each level. Figure 2 highlights
that some nodes might not be able to compute an updated solution on their current
level if an adequate stencil is not available to approximate the integral in (4) using
quadrature. In this example, the level `= 2 correction is unable to proceed because
it would require interpolated solution values not yet available from level ` = 1,
whereas the prediction level `= 0 and corrections `= 1 and `= 3 are all able to
advance the solution by one step.

3.3. Adaptive step-size control: using the error equation. A third strategy one
might consider is adaptive step-size control for the error equation (3) using the
solution to the error equation itself as the error estimate. (One still uses step
doubling or embedded RK pairs to obtain an error estimate for step-size control
on the predictor equation (1).) At first glance, this looks promising provided the
order of the integrator can be established because it is used to determine an optimal
step-size. One would expect computational savings from utilizing available error
information, as opposed to estimating it via step doubling or an embedded RK pair.

If first-order predictor and first-order correctors are used to construct the RIDC
method, the analysis in [17] can be easily extended to the proposed RIDC methods
with adaptive step-size control. We note that the numerical quadrature approximation
given in (5) and the numerical interpolation given in (7) are accurate to the order
O(1t`+2

n); this is sufficient for the inductive proof in [17] to hold. Hence, one

10 CHRISTLIEB, MACDONALD, ONG AND SPITERI

can show that the method has a formal order of accuracy O(1t`+2), where 1t =
maxn,`(t [`]n − t [`]n−1).

Although the formal order of accuracy can be established, using the error estimate
from successive levels is a poor choice for optimal step-size selection. Consider
step-size selection for level `, time step t [`]n , using η[`]n − η

[`−1](t [`]n) as the error
estimator in Algorithm 1. The optimal step-size is chosen to control the local
error estimate via the step-size 1t [`]n = t [`]n − t [`]n−1. However, the local error for the
correctors generally contains contributions from the solutions at all the previous
levels. The validity of the asymptotic local error expansion of the RIDC method in
terms of 1t [`]n requires that 1t =maxn,`(t [`]n − t [`]n−1) be sufficiently small, and it is
not normally possible to guarantee this in the context of an IVP solver. In other
words, the step-size controller for a corrector at a given level cannot control the
entire local error, and hence standard step-control strategies, which are predicated
on the validity of error expansions in terms of only the step-size to be taken, cannot
be expected to perform well. We present some numerical tests in Section 4.2.4
to illustrate the difficulties with using successive errors as the basis for step-size
control.

3.4. Further discussion. There are many other strategies/implementation choices
that affect the overall performance of the adaptive RIDC algorithm. Some have
already been discussed in the previous section. We summarize some of the imple-
mentation choices that must be made:

• The choice of how to estimate the error of the discretization must be made. Three
possibilities have already been mentioned: step doubling, embedded RK pairs,
and solutions to the error equation (3). A combination of all three is also possible.

• If an IVP method with adaptive step-size control is used to solve (3), choices
must be made as to how the tolerances and step-size control parameters, α and β,
are to be chosen for each correction level.

We also list a few implementation details that should be considered when de-
signing adaptive RIDC schemes.

• If adaptive step-size control is implemented on all levels, some correction levels
may sit idle because the information required to perform the quadrature and
interpolation in (4) is not available. This idle time adversely affects the parallel
efficiency of the algorithm. One possibility to decrease this idle time is instead
of taking an “optimal step” (as suggested by the step-size control routine), one
could take a smaller step for which the quadrature and interpolation stencil is
available. There is some flexibility in choosing exactly which points are used
in the quadrature stencil, and it might also be possible to choose a stencil to
minimize the time that correction levels are sitting idle.

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 11

• Because values are needed from lower-order correction levels, the storage required
by a RIDC scheme depends on when values can be overwritten (see, e.g., the
stencils in Figures 1 and 2). Thus to avoid increasing the storage requirements,
the prediction level and each correction level should not be allowed to get too far
ahead of higher correction levels. Although this is also the case for the nonadaptive
RIDC schemes [10; 6], if adaptive step-size control is implemented on all levels
(Figure 2), the memory footprint is likely to increase. Some consideration should
thus be given to a potential trade-off between parallel efficiency and the overall
memory footprint of the scheme.

• It is important to reduce round-off error when computing the quadrature weights (6)
and the interpolation weights (8). This can be done by through careful scaling
and control of the order of the floating-point operations [3].

• If one wishes to use higher-order correctors and predictors to construct RIDC
integrators, we note that the convergence analysis in [7; 8; 5] only holds for
uniform steps. A nonuniform mesh introduces discrete “roughness” (see [8]);
hence, an increase of only one order per correction level is guaranteed even though
a high-order method is used to solve (3).

• RIDC methods necessarily incur computational overhead costs, for example, quad-
rature evaluation (5), interpolation evaluation (7), and the combination of these
components in (4). Parallel speedup can only be expected if the computational
overhead is small compared to the advance of predictor from tn to tn+1.

Additionally, the RIDC framework, by construction, solves a series of error
equations to generate a successively more accurate solution. This framework can
be potentially be exploited to generate order-adaptive RIDC methods. For example,
one might control the number of corrector levels adaptively based on an error
estimate.

4. Numerical examples

We focus on the solutions to three nonlinear IVPs. The first is presented in [1]; we
refer to it as the Auzinger IVP:


y′1 =−y2+ y1(1− y2

1 − y2
2),

y′2 = y1+ 3y2(1− y2
1 − y2

2),

y(0)= (1, 0)T , t ∈ [0, 10],

(AUZ)

that has the analytic solution y(t)= (cos t, sin t)T .

12 CHRISTLIEB, MACDONALD, ONG AND SPITERI

The second is the IVP associated with the Lorenz attractor:
y′1 = σ(y2− y1),

y′2 = ρy1− y2− y1 y3,

y′3 = y1 y2−βy3,

y(0)= (1, 1, 1)T , t ∈ [0, 1].

(LORENZ)

For the parameter settings σ = 10, ρ = 28, β = 8/3, this system is highly sensitive
to perturbations, and an IVP integrator with adaptive step-size control may be
advantageous.

The third is the restricted three-body problem from [15]; we refer to it as the
Orbit IVP:

y′′1 = y1+ 2y′2−µ
′
y1+µ

D1
−µ

y1−µ
′

D2
,

y′′2 = y2− 2y′1−µ
′

y2

D1
−µ

y2

D2
,

D1 = ((y1+µ)
2
+ y2

2)
3/2, D2 = ((y1−µ

′)2+ y2
2)

3/2,

µ= 0.012277471, µ′ = 1−µ.

(ORBIT)

Choosing the initial conditions

y1(0)= 0.994, y′1(0)= 0, y2(0)= 0,

y′2(0)=−2.00158510637908252240537862224,

gives a periodic solution with period tend = 17.065216560159625588917206249.
We now present numerical evidence to demonstrate that:

1. RIDC integrators with nonuniform step-sizes converge and achieve their de-
signed orders of accuracy.

2. RIDC methods with adaptive step-size constructed using step doubling (on the
prediction level only) and embedded RK error estimators (on the prediction
level only) converge.

3. RIDC methods with adaptive step-size control based on step doubling to
estimate the local error on the prediction and correction levels converge;
however, the step-sizes selected are poor (many rejected steps), even for the
smooth Auzinger problem.

4. RIDC methods with adaptive step-size control based on step doubling to
estimate the local error on the prediction level but using the solution to the
error equation for step-size control results is problematic.

The numerical examples chosen are canonical problems designed to illustrate the
step-size adaptivity properties of the RIDC methods. Because the computational

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 13

overhead is significant compared to the advance of an Euler solution from time
tn to tn+1, a runtime analysis does not reveal parallel speedup for any of these
examples. Whereas the number of function evaluations is an effective parameter for
comparing algorithms, we need a different metric to compare a parallel algorithm
to a sequential algorithm. Where appropriate, we tabulate the number of sets of
concurrent function evaluations as a proxy for measuring parallel speedup when
the function evaluation costs dominate. A set of concurrent function evaluations
consists of function evaluations that can be evaluated in parallel.

4.1. RIDC with nonuniform step-sizes. For our first numerical experiment, we
demonstrate that RIDC integrators with nonuniform step-sizes converge and achieve
their design orders of accuracy. Figure 3 shows the classical convergence study
(error as a function of mean step-size) for the RIDC integrator applied to (AUZ).
Figure 3(a) shows the convergence of RIDC integrators with uniform step-sizes;
Figure 3(b)–(d) shows the convergence of RIDC integrators when random step-sizes
are chosen. The random step-sizes are chosen so that

1t [`]n ∈

[
1
ω
1t [`]n−1, ω1t [`]n−1

]
, ω ∈ R,

where ω controls how rapidly a step-size is allowed to change. The figures show
that RIDC integrators with nonuniform step-sizes achieve their designed order of
accuracy (each additional correction improves the order of accuracy by one), at
least up to order 6. In Figure 3 (corresponding to RIDC with uniform step-sizes),
we observe that the error stagnates at a value significantly larger than machine
precision. This is likely due to numerical issues associated with quadrature on
equispaced nodes [14]. We note that ω = 1 gives the uniformly distributed case.
We also observe that as the ratio of the largest to the smallest cell increases, the
performance of higher-order RIDC methods degrades, likely due to round-off error
associated with calculating the quadrature and interpolation weights.

Figure 4 shows the convergence study (error as a function of mean step-size)
for (LORENZ). The reference solution is computed using an RK-45 integrator
with a fine time step. Similar observations can be made that RIDC methods with
nonuniform step-sizes converge with their designed orders of accuracy (at least up
to order 6).

4.2. Adaptive RIDC. We study four different variants of RIDC methods with adap-
tive step-size control: (i) step doubling is used for adaptive step-size control on
the prediction level only (Section 4.2.1); (ii) an embedded RK pair is used for
adaptive step-size control on the prediction level only (Section 4.2.2); (iii) step
doubling is used for adaptive step-size control on the prediction and correction
levels (Section 4.2.3); and (iv) step doubling is used for adaptive step-size control

14 CHRISTLIEB, MACDONALD, ONG AND SPITERI

10−3 10−2
10−15

10−12

10−9

10−6

10−3

Average 1t

‖
e‖
∞

pred
corr1
corr2
corr3
corr4
corr5
corr6
corr7

10−3 10−2
10−16

10−13

10−10

10−7

10−4

10−1

Average 1 t
‖
e‖
∞

(a) Uniform steps. (b) Random steps, ω = 2.

10−3 10−2 10−1
10−16

10−13

10−10

10−7

10−4

10−1

Average 1t

‖
e‖
∞

pred
corr1
corr2
corr3
corr4
corr5
corr6
corr7

10−3 10−2 10−1

10−13

10−10

10−7

10−4

10−1

Average 1t

‖
e‖
∞

(c) Random steps, ω = 4. (d) Random steps, ω = 100.

Figure 3. Auzinger IVP: The design order is illustrated for the RIDC methods.

on the prediction level, and the computed errors from the error equation (3) are
used for adaptive step-size control on the correction levels.

4.2.1. Step doubling on the prediction level only. In this numerical experiment, we
solve the orbit problem (ORBIT) using a fourth-order RIDC method (constructed
using forward Euler integrators), and adaptive step-size control on the prediction
level only, where step doubling is used to provide the error estimate. As shown in

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 15

10−3 10−2

10−14

10−11

10−8

10−5

10−2

101

Average 1t

‖
e‖
∞

pred
corr1
corr2
corr3
corr4
corr5
corr6
corr7

10−3 10−2

10−14

10−11

10−8

10−5

10−2

101

Average 1t
‖
e‖
∞

(a) Ratio = 1 (uniform). (b) Ratio = 2.

10−3 10−2
10−13

10−10

10−7

10−4

10−1

102

Average 1t

‖
e‖
∞

pred
corr1
corr2
corr3
corr4
corr5
corr6
corr7

10−3 10−2

10−10

10−8

10−6

10−4

10−2

100

Average 1t

‖
e‖
∞

(c) Ratio = 4. (d) Ratio = 100.

Figure 4. Lorenz IVP: the design order is illustrated for the RIDC methods.

Figure 5, successive correction loops are able to reduce the error in the solution
and recover the desired orbit. The red circles in Figure 5(a) indicate rejected
steps. Figure 6(a) shows that RIDC with step doubling only on the prediction level
converges as the tolerance is reduced. In this experiment, the RIDC integrator is
reset after every 100 accepted steps. By “reset” [10], we mean that the highest-
order solution after every 100 steps is used as an initial condition to reinitialize the

16 CHRISTLIEB, MACDONALD, ONG AND SPITERI

−1 0 1

−1

0

1

x

y

−1 0 1

−1

0

1

x

y

(a) Prediction. (b) First correction.

−1 0 1

−1

0

1

x

y

−1 0 1

−1

0

1

x

y

(c) Second correction. (d) Third correction.

Figure 5. Orbit problem: although the prediction level gives a highly inaccurate solution,
successive correction loops are able to reduce the error and produce the desired orbit. The
red circles on the prediction level (a) indicate rejected steps.

provisional solution; e.g., instead of solving (1), one solves a sequence of problems{
y′(t)= f (t, y), t ∈ [t100(i−1),min(b, t100i)],

y(t100(i−1))= η
[P−1]
100(i−1),

if (L−1) correctors are applied and η[L−1]
0 = ya . The time steps chosen by the RIDC

integrator with resets performed every 100 and 400 steps are shown in Figure 6(b)
and (c).

In Figure 6(b), 1tmin= 1.06×10−4. If a nonadaptive fourth-order RIDC method
was used with 1tmin, 160814 uniform time steps would have been required. By
adaptively selecting the time steps for this example and tolerance, the adaptive RIDC
method required approximately one one-hundredth of the functional evaluations,
corresponding to a one hundred-fold speedup. The effective parallel speedup can be
computed by taking the ratio of the total number of function evaluations required and
the number of sets of concurrent function evaluations required. For the computation
in Figure 6(b) where a reset is performed after every 100 steps, the parallel speedup

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 17

10−5 10−4

10−5

10−3

10−1

rtol

er
ro

r

rtol atol error naccept nreject

10−3.5 10−6.5 2.72·10−1 1456 99
10−4.0 10−7.0 2.08·10−2 2650 81
10−4.5 10−7.5 5.35·10−5 4730 68
10−5.0 10−8.0 7.39·10−5 8436 42
10−5.5 10−8.5 6.72·10−6 15031 10

(a) Convergence study.

0 5 10 15

10−4

10−3

10−2

t

1
t

(b) Adaptive step-sizes selected (reset every 100 steps).

0 5 10 15

10−4

10−2

t

1
t

(c) Adaptive step-sizes selected (reset every 400 steps).

Figure 6. Orbit problem: (a) convergence of a fourth-order RIDC method constructed
with forward Euler integrators and adaptive step-size control on the prediction level (using
step doubling). Convergence is measured relative to the exact solution as the tolerance is
decreased. A reset is performed after every 100 accepted steps for this convergence study.
In (b), the step-sizes selected for rtol= 10−3.5 and atol= 10−6.5 are displayed as the
solid curve and rejected steps as ×s; a reset is performed after every 100 steps. In (c), the
reset is performed after every 400 steps. Observe that although the number of rejected
steps increases, the overall 1t chosen remains qualitatively similar.

(if four processors are available) can be computed using

(1456× 5)+ 99
(1456× 2)+ (14× 6)+ 99

= 2.38.

18 CHRISTLIEB, MACDONALD, ONG AND SPITERI

The numerator consists of the total number of function evaluations arising from
the number of steps taken and the computation of the error estimate using step
doubling and the number of function evaluations arising from the rejected steps. The
denominator consists of the number of concurrent function evaluations (including
startup costs for the RIDC method). Note that three of the processors sit idle while
that step doubling computation is being processed. The parallel speedup can be
improved if more levels are chosen, or if the number of resets are reduced. If a
reset is performed after every 400 steps (Figure 6(c)), the parallel speedup is

(1591× 5)+ 88
(1591× 2)+ (4× 6)+ 88

= 2.44.

4.2.2. Embedded RK on the prediction level only. In this numerical experiment, we
repeat the orbit problem (ORBIT) using a fourth-order RIDC method constructed
again using forward Euler integrators, but the step-size adaptivity on the prediction
level uses a Heun–Euler embedded RK pair. This simple scheme combines Heun’s
method, which is second order, with the forward Euler method, which is first order.
Figure 7(a) shows the convergence of this adaptive RIDC method as the tolerance
is reduced. As the previous example, the RIDC integrator is reset after every 100
accepted steps for the convergence study. In Figure 7(b) and (c), we show the time
steps chosen by the RIDC integrator with resets performed after 100 or 400 steps,
respectively.

For the computation in Figure 7(b) where a reset is performed after every 100
steps, the parallel speedup (if four processors are available) is

(2441× 5)+ 60
(2441× 2)+ (24× 6)+ 60

= 2.41.

If a reset is performed after every 400 steps (Figure 7(c)), the parallel speedup is

(2276× 5)+ 80
(2276× 2)+ (5× 6)+ 80

= 2.46.

Not surprisingly, the time steps chosen by the RIDC method are dependent on
the specified tolerances and the error estimator (and consequently the integrators
used to obtain a provisional solution to (1)) used for the control strategy. One
can easily construct a RIDC integrator using higher-order embedded RK pairs to
solve for a provisional solution to (1), and then use the forward Euler method to
solve the error equation (3) on subsequent levels. For example, Figure 8 shows the
step-sizes chosen when the Bogacki–Shampine method [2] (a 3(2) embedded RK
pair) and the popular Runge–Kutta–Fehlberg 4(5) pair [13] are used to compute
the provisional solution (and error estimate) for the RIDC integrator. The same

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 19

10−5 10−4
10−6

10−4

10−2

rtol

er
ro

r
rtol atol error naccept nreject

10−3.5 10−6.5 4.91·10−2 2082 93
10−4.0 10−7.0 2.96·10−3 3754 71
10−4.5 10−7.5 2.36·10−4 6703 50
10−5.0 10−8.0 2.28·10−5 11945 20
10−5.5 10−8.5 1.77·10−6 21277 10

(a) Convergence study.

0 5 10 15

10−4

10−3

10−2

t

1
t

(b) Adaptive step-sizes selected (reset every 100 steps).

0 5 10 15
10−5

10−4

10−3

10−2

t

1
t

(c) Adaptive step-sizes selected (reset every 400 steps).

Figure 7. Orbit problem: (a) convergence of a fourth-order RIDC method constructed
with forward Euler integrators and adaptive step-size control on the prediction level (using
an embedded RK pair to estimate the error). Convergence is measured relative to the
exact solution as the tolerance is decreased. A reset is performed after every 100 accepted
steps for this convergence study. In (b), the step-sizes selected for rtol = 10−3.5 and
atol = 10−6.5 are displayed as the solid curve and rejected steps as ×s; a reset is
performed after every 100 steps. In (c), the reset is performed after every 400 steps.

tolerance of rtol = 10−3.5 is used to generate both graphs. As the order and
accuracy of the predictor increases, one can take larger time steps. For this example,
using higher-order embedded RK pairs as step-size control mechanisms for RIDC
methods result in less variations in time steps.

20 CHRISTLIEB, MACDONALD, ONG AND SPITERI

0 5 10 15

10−4

10−2

100

t

1
t

ERK-23
ERK-45

Figure 8. Step-sizes selected by RIDC methods constructed using a Bogacki–Shampine
method, a 3(2) embedded pair (red) and the Runge–Kutta–Fehlberg 4(5) pair. Rejected
steps are indicated with ×s.

4.2.3. Step doubling on all levels. As mentioned in Section 3.2, it might be ad-
vantageous to use adaptive step-size control when solving the error equations.
This affords a myriad of parameters that can be used to tune the step-size control
mechanism. In this set of numerical experiments, we explore how the choice of
tolerances for the prediction/correction levels affect the step-size selection.

We first solve the Auzinger IVP using step doubling on all the levels, i.e., both
predictor and corrector levels. In Figure 9, we show the computed step-sizes when
we naively choose the same tolerances on each level. As expected, the predictor
has to take many steps (to satisfy the stringent user-supplied tolerance), whereas
life is easy for the correctors. The effective parallel speedup is

(5479+ 196+ 19+ 24)× 2+ 15
(5481× 2)+ 15

= 1.04.

0 0.5 110−8

10−5

10−2

t

1
t

pred
cor1
cor2
cor3

` rtol atol error naccept nreject

0 10−8 10−10 2.028·10−5 5479 0
1 10−8 10−10 8.793·10−7 196 0
2 10−8 10−10 2.618·10−8 19 6
3 10−8 10−10 1.486·10−6 24 9

Figure 9. Auzinger IVP: step-size control is implemented on all prediction and correction
levels. The same tolerances are used for each level. As expected, the predictor has a hard
time (forward Euler must satisfy a stringent tolerance); on the other hand, life is easy for
the correctors. Rejected steps are indicated with ×s. For this set of tolerances, 5481 sets of
concurrent function evaluations are needed.

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 21

In principle, the correctors are not even needed. Equally important to note is that
the error increases after the last correction loop. This might seem surprising at first
glance but ultimately may not unreasonable because the steps selected to solve the
third correction are not based on the solution to the error equation but rather the
original IVP.

Instead of naively choosing the same tolerances on each level, we now change
the tolerance at each level, as described in Figure 10. By making this simple change,
the number of accepted steps on each level are now on the same order of magnitude.
Not surprisingly, the predictor still selects good steps. Interestingly in Figure 10(a),
the first correction is “noisy”, especially initially. For this set of tolerances, the
effective parallel speedup is

(58+ 7+ 30+ 61)× 2+ (52+ 7+ 24)
(135× 2)+ (52+ 7+ 24)

= 1.52.

0 0.5 1
10−5

10−3

10−1

t

1
t

pred
cor1
cor2
cor3

` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.026·10−3 58 0
1 1 ·10−6 1·10−8 6.945·10−5 78 52
2 1 ·10−8 1·10−10 1.265·10−7 30 7
3 1 ·10−10 1·10−12 9.579·10−8 61 24

(a) Set 1 of tolerances.

0 0.5 1
10−5

10−3

10−1

t

1
t

pred
cor1
cor2
cor3

` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.026·10−3 58 0
1 1 ·10−5 1·10−7 1.805·10−4 29 12
2 1 ·10−7 1·10−9 1.172·10−6 20 6
3 1 ·10−9 1·10−11 7.216·10−7 39 11

(b) Set 2 of tolerances.

Figure 10. Auzinger IVP: different tolerances at each level. With the first set of tolerances,
the step-size controller for the predictor is well behaved, as it is for the second and third
correctors. The step-size controller for the first corrector however is noisy. 135 sets
of concurrent function evaluations are needed to generate (b). With the second set of
tolerances, the step-size controller for all correctors is reasonably well behaved. Here, 64
sets of concurrent function evaluations are needed.

22 CHRISTLIEB, MACDONALD, ONG AND SPITERI

By picking a different set of tolerances, we can eliminate the noise, as shown in
Figure 10(b). For this set of tolerances, the parallel speedup is

(58+ 24+ 20+ 39)× 2+ (12+ 6+ 11)
(64× 2)+ (12+ 6+ 11)

= 1.98.

4.2.4. Using solutions from the error equation. As mentioned in Section 3.3, using
the solution from the error equation (3) as the local error estimate for step-size
control on a given level is potentially problematic because the step-size controller
can only control the local error introduced on that level whereas the true local error
generally contains contributions from all previous levels. For completeness, we
present the results of this adaptive RIDC formulation applied to the Orbit problem
(Figure 12) and the Auzinger problem (Figure 11). Step doubling is used for step-
size adaptivity on the predictor level, solutions from the error equation are used to
control step-sizes for the corrector levels. For the Auzinger problem, we observe
in the top figure that if the tolerances are held fixed on each level, each correction
level improves the solution. If the tolerance is reduced slightly on each level, the
step-size controller gives a poor step-size selection (many rejected steps), even
for this smoothly varying problem. For the Orbit IVP, Figure 12 shows that the
corrector improves the solution if the tolerances are held fixed at all levels; however
the corrector requires many steps. A second correction loop was not attempted.
Reducing the tolerance for the first corrector resulted in inordinately many rejected
steps.

5. Conclusions

In this paper, we formulated RIDC methods that incorporate local error estimation
and adaptive step-size control. Several formulations were discussed in detail: (i)
step doubling on the prediction level, (ii) embedded RK pairs on the prediction level,
(iii) step doubling on the prediction and error levels, and (iv) step doubling for the
prediction level but using the solution from the error equation for step-size control;
other formulations are also alluded to. A convergence theorem from [17] can be
extended to RIDC methods that use adaptive step-size control on the prediction level.
Numerical experiments demonstrate that RIDC methods with nonuniform steps
converge as designed and illustrate the type of behavior that might be observed
when adaptive step-size control is used on the prediction and correction levels.
Based on our numerical study, we conclude that adaptive step-size control on the
prediction level is viable for RIDC methods. In a practical application where a
user gives a specified tolerance, this prescribed tolerance must be transformed to a
specific tolerance that is fed to the predictor.

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 23

0 0.5 110−6

10−3

100

t

1
t

pred
cor1
cor2

` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.031·10−3 59 0
1 1 ·10−4 1·10−6 7.249·10−4 33 3
2 1 ·10−4 1·10−6 6.513·10−6 26 10

0 0.5 110−6

10−3

100

t

1
t

pred
cor1
cor2

` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.031·10−3 59 0
1 1 ·10−5 1·10−7 1.063·10−5 657 305
2 1 ·10−6 1·10−8 9.446·10−8 75 76

0 0.5 110−6

10−3

100

t

1
t pred

cor1

` rtol atol error naccept nreject

0 1 ·10−4 1·10−6 2.031·10−3 59 0
1 1 ·10−7 1·10−9 1.178·10−7 60571 94

Figure 11. Auzinger problem: step doubling on prediction level, using successive levels
for error estimation for step control on the error equation. Step-size controller for the
corrector is noisy.

Acknowledgments

This publication was based on work supported in part by award no. KUK-C1-013-04,
made by King Abdullah University of Science and Technology (KAUST), AFRL
and AFOSR under contract and grants FA9550-12-1-0455, NSF grant number DMS-
0934568, NSERC grant number RGPIN-228090-2013, and the Oxford Center for
Collaborative and Applied Mathematics (OCCAM).

24 CHRISTLIEB, MACDONALD, ONG AND SPITERI

0 5 10 1510−8

10−5

10−2

t

1
t

pred
corr1

` rtol atol error naccept nreject

0 1 ·10−4 1·10−4 2.405 2261 230
1 1 ·10−4 1·10−4 7.234·10−1 475181 84

Figure 12. Orbit problem: step doubling on prediction level, using successive levels for
error estimation for step control on the error equation.

References

[1] W. Auzinger, H. Hofstätter, W. Kreuzer, and E. Weinmüller, Modified defect correction algo-
rithms for ODEs, I: general theory, Numer. Algorithms 36 (2004), no. 2, 135–155. MR 2005h:
65096

[2] P. Bogacki and L. F. Shampine, A 3(2) pair of Runge–Kutta formulas, Appl. Math. Lett. 2 (1989),
no. 4, 321–325. MR 1025845 Zbl 0705.65055

[3] B. Bradie, A friendly introduction to numerical analysis: with C and MATLAB materials on
website, Pearson Education, Upper Saddle River, NJ, 2006.

[4] A. Christlieb, A. Melfi, and B. Ong, Distributed parallel semi-implicit time integrators, preprint,
2012. arXiv 1209.4297v1

[5] A. Christlieb, M. Morton, B. Ong, and J.-M. Qiu, Semi-implicit integral deferred correction
constructed with additive Runge–Kutta methods, Commun. Math. Sci. 9 (2011), no. 3, 879–902.
MR 2865808 Zbl 1271.65109

[6] A. Christlieb and B. Ong, Implicit parallel time integrators, J. Sci. Comput. 49 (2011), no. 2,
167–179. MR 2012k:65067 Zbl 1243.65076

[7] A. Christlieb, B. Ong, and J.-M. Qiu, Comments on high-order integrators embedded within
integral deferred correction methods, Commun. Appl. Math. Comput. Sci. 4 (2009), 27–56.
MR 2010e:65094 Zbl 1167.65389

[8] , Integral deferred correction methods constructed with high order Runge–Kutta integra-
tors, Math. Comp. 79 (2010), no. 270, 761–783. MR 2011c:65122 Zbl 1209.65073

[9] A. J. Christlieb, R. D. Haynes, and B. W. Ong, A parallel space-time algorithm, SIAM J. Sci.
Comput. 34 (2012), no. 5, C233–C248. MR 3023735 Zbl 1259.65143

[10] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM J. Sci.
Comput. 32 (2010), no. 2, 818–835. MR 2011g:65105 Zbl 1211.65089

[11] J. R. Dormand and P. J. Prince, A family of embedded Runge–Kutta formulae, J. Comput. Appl.
Math. 6 (1980), no. 1, 19–26. MR 81g:65098 Zbl 0448.65045

[12] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary
differential equations, BIT 40 (2000), no. 2, 241–266. MR 2001e:65104 Zbl 0959.65084

[13] E. Fehlberg, Low-order classical Runge–Kutta formulas with step size control and their applica-
tion to some heat transfer problems, technical report, R-315, NASA, 1969.

http://dx.doi.org/10.1023/B:NUMA.0000033129.73715.7f
http://dx.doi.org/10.1023/B:NUMA.0000033129.73715.7f
http:www.ams.org/mathscinet-getitem?mr=2005h:65096
http:www.ams.org/mathscinet-getitem?mr=2005h:65096
http://dx.doi.org/10.1016/0893-9659(89)90079-7
http://msp.org/idx/mr/1025845
http://msp.org/idx/zbl/0705.65055
http://arxiv.org/abs/1209.4297v1
http://dx.doi.org/10.4310/CMS.2011.v9.n3.a10
http://dx.doi.org/10.4310/CMS.2011.v9.n3.a10
http://msp.org/idx/mr/2865808
http://msp.org/idx/zbl/1271.65109
http://dx.doi.org/10.1007/s10915-010-9452-4
http://msp.org/idx/mr/2012k:65067
http://msp.org/idx/zbl/1243.65076
http://dx.doi.org/10.2140/camcos.2009.4.27
http://dx.doi.org/10.2140/camcos.2009.4.27
http://msp.org/idx/mr/2010e:65094
http://msp.org/idx/zbl/1167.65389
http://dx.doi.org/10.1090/S0025-5718-09-02276-5
http://dx.doi.org/10.1090/S0025-5718-09-02276-5
http://msp.org/idx/mr/2011c:65122
http://msp.org/idx/zbl/1209.65073
http://dx.doi.org/10.1137/110843484
http://msp.org/idx/mr/3023735
http://msp.org/idx/zbl/1259.65143
http://dx.doi.org/10.1137/09075740X
http://msp.org/idx/mr/2011g:65105
http://msp.org/idx/zbl/1211.65089
http://dx.doi.org/10.1016/0771-050X(80)90013-3
http://msp.org/idx/mr/81g:65098
http://msp.org/idx/zbl/0448.65045
http://dx.doi.org/10.1023/A:1022338906936
http://dx.doi.org/10.1023/A:1022338906936
http://msp.org/idx/mr/2001e:65104
http://msp.org/idx/zbl/0959.65084

RIDC WITH ADAPTIVE STEP-SIZE CONTROL 25

[14] S. Güttel and G. Klein, Efficient high-order rational integration and deferred correction with
equispaced data, Electron. Trans. Numer. Anal. 41 (2014), 443–464.

[15] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations, I: Nonstiff
problems, 2nd ed., Springer Series in Computational Mathematics, no. 8, Springer, Berlin, 1993.
MR 94c:65005

[16] E. Hairer and G. Wanner, Solving ordinary differential equations, II: Stiff and differential-
algebraic problems, 2nd ed., Springer Series in Computational Mathematics, no. 14, Springer,
Berlin, 1996. MR 97m:65007 Zbl 0859.65067

[17] Y. Xia, Y. Xu, and C.-W. Shu, Efficient time discretization for local discontinuous Galerkin
methods, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, 677–693. MR 2008e:65307
Zbl 1141.65076

Received October 9, 2013. Revised December 10, 2014.

ANDREW J. CHRISTLIEB: Department of Mathematics, Michigan State University,
East Lansing, 48823, United States

COLIN B. MACDONALD: macdonald@maths.ox.ac.uk
Mathematical Institute, Oxford University, Oxford, OX2 6GG, United Kingdom

BENJAMIN W. ONG: ongbw@mtu.edu
Department of Mathematics, Michigan Technological University, Houghton, MI 49931, United States

RAYMOND J. SPITERI: spiteri@cs.usask.ca
Department of Computer Science, University of Saskatchewan, Saskatoon S7N 5C9, Canada

mathematical sciences publishers msp

http://etna.mcs.kent.edu/volumes/2011-2020/vol41/abstract.php?vol=41&pages=443-464
http://etna.mcs.kent.edu/volumes/2011-2020/vol41/abstract.php?vol=41&pages=443-464
http://msp.org/idx/mr/94c:65005
http://dx.doi.org/10.1007/978-3-642-05221-7
http://dx.doi.org/10.1007/978-3-642-05221-7
http://msp.org/idx/mr/97m:65007
http://msp.org/idx/zbl/0859.65067
http://dx.doi.org/10.3934/dcdsb.2007.8.677
http://dx.doi.org/10.3934/dcdsb.2007.8.677
http://msp.org/idx/mr/2008e:65307
http://msp.org/idx/zbl/1141.65076
mailto:macdonald@maths.ox.ac.uk
mailto:ongbw@mtu.edu
mailto:spiteri@cs.usask.ca
http://msp.org

Communications in Applied Mathematics and Computational Science
msp.org/camcos

EDITORS

MANAGING EDITOR

John B. Bell
Lawrence Berkeley National Laboratory, USA

jbbell@lbl.gov

BOARD OF EDITORS

Marsha Berger New York University
berger@cs.nyu.edu

Alexandre Chorin University of California, Berkeley, USA
chorin@math.berkeley.edu

Phil Colella Lawrence Berkeley Nat. Lab., USA
pcolella@lbl.gov

Peter Constantin University of Chicago, USA
const@cs.uchicago.edu

Maksymilian Dryja Warsaw University, Poland
maksymilian.dryja@acn.waw.pl

M. Gregory Forest University of North Carolina, USA
forest@amath.unc.edu

Leslie Greengard New York University, USA
greengard@cims.nyu.edu

Rupert Klein Freie Universität Berlin, Germany
rupert.klein@pik-potsdam.de

Nigel Goldenfeld University of Illinois, USA
nigel@uiuc.edu

Ahmed Ghoniem Massachusetts Inst. of Technology, USA
ghoniem@mit.edu

Raz Kupferman The Hebrew University, Israel
raz@math.huji.ac.il

Randall J. LeVeque University of Washington, USA
rjl@amath.washington.edu

Mitchell Luskin University of Minnesota, USA
luskin@umn.edu

Yvon Maday Université Pierre et Marie Curie, France
maday@ann.jussieu.fr

James Sethian University of California, Berkeley, USA
sethian@math.berkeley.edu

Juan Luis Vázquez Universidad Autónoma de Madrid, Spain
juanluis.vazquez@uam.es

Alfio Quarteroni Ecole Polytech. Féd. Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Eitan Tadmor University of Maryland, USA
etadmor@cscamm.umd.edu

Denis Talay INRIA, France
denis.talay@inria.fr

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/camcos for submission instructions.

The subscription price for 2015 is US $85/year for the electronic version, and $120/year (+$15, if shipping outside the US) for print and
electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Communications in Applied Mathematics and Computational Science (ISSN 2157-5452 electronic, 1559-3940 printed) at Mathematical
Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online.
Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

CAMCoS peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://msp.org/camcos
mailto:jbbell@lbl.gov
mailto:berger@cs.nyu.edu
mailto:chorin@math.berkeley.edu
mailto:pcolella@lbl.gov
mailto:const@cs.uchicago.edu
mailto:maksymilian.dryja@acn.waw.pl
mailto:forest@amath.unc.edu
mailto:greengard@cims.nyu.edu
mailto:rupert.klein@pik-potsdam.de
mailto:nigel@uiuc.edu
mailto:ghoniem@mit.edu
mailto:raz@math.huji.ac.il
mailto:rjl@amath.washington.edu
mailto:luskin@umn.edu
mailto:maday@ann.jussieu.fr
mailto:sethian@math.berkeley.edu
mailto:juanluis.vazquez@uam.es
mailto:alfio.quarteroni@epfl.ch
mailto:etadmor@cscamm.umd.edu
mailto:denis.talay@inria.fr
mailto:production@msp.org
http://msp.org/camcos
http://msp.org/
http://msp.org/

Communications in Applied Mathematics
and Computational Science

vol. 10 no. 1 2015

1Revisionist integral deferred correction with adaptive step-size control
Andrew J. Christlieb, Colin B. Macdonald, Benjamin W.
Ong and Raymond J. Spiteri

27An adaptively weighted Galerkin finite element method for boundary value
problems

Yifei Sun and Chad R. Westphal

43An adaptive finite volume method for the incompressible Navier–Stokes
equations in complex geometries

David Trebotich and Daniel T. Graves

83High-accuracy embedded boundary grid generation using the divergence
theorem

Peter Schwartz, Julie Percelay, Terry J. Ligocki, Hans

Johansen, Daniel T. Graves, Dharshi Devendran, Phillip

Colella and Eli Ateljevich

1559-3940(2015)10:1;1-O

C
om

m
unications

in
A

pplied
M

athem
atics

and
C

om
putationalScience

vol.10,
no.1

2015

	1. Introduction
	2. Review of relevant background
	2.1. RIDC
	2.1.1. The predictor
	2.1.2. The correctors

	2.2. Adaptive step-size control
	2.2.1. Error estimators
	2.2.2. Optimal step-size selection

	3. RIDC with adaptive step-size control
	3.1. Adaptive step-size control: prediction level only
	3.2. Adaptive step-size control: all levels
	3.3. Adaptive step-size control: using the error equation
	3.4. Further discussion

	4. Numerical examples
	4.1. RIDC with nonuniform step-sizes
	4.2. Adaptive RIDC
	4.2.1. Step doubling on the prediction level only
	4.2.2. Embedded RK on the prediction level only
	4.2.3. Step doubling on all levels
	4.2.4. Using solutions from the error equation

	5. Conclusions
	Acknowledgments
	References
	
	

