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A NITSCHE-BASED CUT FINITE ELEMENT METHOD
FOR A FLUID-STRUCTURE INTERACTION PROBLEM

ANDRÉ MASSING, MATS G. LARSON,
ANDERS LOGG AND MARIE E. ROGNES

We present a new composite mesh finite element method for fluid-structure
interaction problems. The method is based on surrounding the structure by a
boundary-fitted fluid mesh that is embedded into a fixed background fluid mesh.
The embedding allows for an arbitrary overlap of the fluid meshes. The coupling
between the embedded and background fluid meshes is enforced using a stabilized
Nitsche formulation that allows us to establish stability and optimal-order a priori
error estimates. We consider here a steady state fluid-structure interaction problem
where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes
equations. We evaluate an iterative solution procedure based on splitting and
present three-dimensional numerical examples.

1. Introduction

In fluid-structure interaction applications, the underlying geometry of the computa-
tional domain may change significantly due to displacement of the structure. In order
to deal with this situation in a standard setting with conforming elements, a mesh
motion algorithm must be used. If the displacements are significant, the deformation
of the mesh may lead to deteriorating mesh quality, which may ultimately require
remeshing of the computational domain. Alternative, more flexible, techniques are
therefore of significant practical interest.

In this paper, we consider a combination of standard moving meshes and so-
called CutFEM technology [8]. Essentially, the structure or elastic solid is first
embedded into a boundary-fitted fluid mesh that moves along with the deformation
of the solid to keep the fluid-structure interface intact. The motion of the fluid mesh
surrounding the structure is obtained by solving an elasticity problem with given
displacement at the fluid-structure interface. The boundary-fitted fluid mesh is then
embedded into a fixed background mesh where we allow for an arbitrary overlap of

MSC2010: 65N12, 65N30, 74B20, 76D07, 65N85.
Keywords: fluid-structure interaction, overlapping meshes, cut finite element method, embedded
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the fluid meshes in order to facilitate the repositioning of the moving fluid mesh
within the fixed background mesh. The fluid is then discretized on both the moving
overlapping domain, using an arbitrary-Lagrangian–Eulerian-type (ALE) approach
[14; 15], and on the fixed background mesh, using a standard discretization posed
in an Eulerian frame.

The coupling at the fluid-fluid interface between the overlapping and underlying
fluid meshes is handled using a stabilized Nitsche method developed for the Stokes
problem in [41]. The stabilization is constructed in such a way that the resulting
scheme is inf-sup stable and the resulting stiffness matrix is well-conditioned inde-
pendent of the position of the overlapping fluid mesh relative to the fixed background
fluid mesh. As a result, optimal-order error estimates are also established. In order
to deal with the cut elements arising at the interface, we compute the polyhedra
resulting from the intersections between the overlapping and background meshes.
These polyhedra may then be described using a partition into tetrahedra; this partition
may in turn be used to perform numerical quadrature. We refer to [39] for a detailed
discussion of the implementation aspects of cut element techniques in three spatial
dimensions. We remark that Nitsche-based formulations for Stokes boundary and
interface problems where the surface in question is described independently of a
single, fixed background mesh were proposed in [10; 40; 25; 9]. A Nitsche-based
composite mesh method was first introduced for elliptic problems in [23].

One may also consider formulations where the structure is described via its
moving boundary, which is immersed into a fixed background fluid mesh. Prominent
examples are Cartesian grid methods, e.g., [42], the classical immersed boundary
method introduced by Peskin [44; 45], its finite element pendant proposed in [7;
57; 56] and formulations based on Lagrange multipliers [57; 55; 20; 19; 46] and on
Nitsche’s method [24]. However, the use of an additional boundary-fitted fluid mesh
as in the current work is attractive since it allows for the resolution of boundary
layers and computation of accurate boundary stresses. Often, the construction of
the surrounding fluid mesh can easily be generated by extending the boundary
mesh in the normal direction. We plan to further investigate the properties of the
fluid-structure coupling in future work.

As our proposed scheme combines an ALE-based discretization on the fluid
mesh surrounding the structure with an Eulerian-based discretization on the fixed
background fluid mesh, it can be classified as a hybrid Eulerian-ALE or Chimera
approach. Such hybrid schemes are built upon the concept of overlapping meshes
introduced for finite difference and finite volume schemes in the early works of
Volkov [52], Starius [48; 49] and Steger et al. [50] and later by Chesshire and
Henshaw [12] and Aftosmis et al. [1], where the primary concern was to ease the
burden of mesh generation by composing individually meshed, static geometries.
The idea of gluing meshes together was then explored for finite element methods
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by Cebral and Löhner [11] and Löhner et al. [37; 36] to study the flow around
independently meshed complex objects such as cars, collections of buildings or
stents in aortic vessels. In these works, relatively simple interpolation schemes
were used to communicate the solution between overlapping meshes. To achieve a
physically more consistent coupling between the solution parts presented on different
domains, Schwarz-type domain iteration schemes using Dirichlet–Neumann and
Robin coupling on overlapping domains have been proposed for the Navier–Stokes
equations in [27]. A completely different route was taken by Day and Bochev [13],
who reformulated elliptic interface problems as suitable first-order systems aug-
mented with least-square stabilizations to enforce the interface conditions between
the mesh domains to be tied together.

Introducing special interpolation stencils close to the fluid-fluid interface, a finite-
volume-based Chimera method for flow problems involving multiple moving rigid
bodies was formulated in [54; 18] and [26], where higher-order Godunov fluxes
were used. This method was then extended by Banks et al. [6] to deal with (linearly)
elastic solids in two space dimensions and thus represents an instance of a hybrid
ALE-fixed-grid method. This approach has barely been explored in the context of
finite element methods for fluid-structure interaction problems: Wall et al. [53] and
later Shahmiri et al. [47] used interpolation between fluid meshes and extended
finite element techniques to couple fluid-fluid meshes and Baiges and Codina [5]
introduced an auxiliary ALE step to convect information on the fixed background
mesh between two consecutive time-steps.

In contrast to these contributions, our method is based on a variational finite
element approach that leads to a monolithic and physically consistent coupling
between the overlapping and underlying fluid meshes, which eliminates the need
to introduce inconsistent interpolation operators. In addition, opposed to similar
finite-element-based approaches presented, e.g., in [53; 47], our scheme used for
the fluid problem is proven stable and optimally convergent, even for higher-order
elements, independent of the location of the interface as shown in [41]. Thus,
the new scheme for the fluid-structure interaction problem proposed in this work
exhibits the necessary robustness that is essential for developing reliable hybrid
ALE-fixed-mesh methods.

In the current work, we consider the steady state deformation of a hyperelastic
solid immersed into a viscous fluid governed by the Stokes equations. We solve for
the steady state solution using a fixed-point iteration where in each iteration the fluid,
solid and mesh motion problems are solved sequentially. We present two numerical
examples in three dimensions, including one example with a manufactured reference
solution.

The outline of the remainder of this paper is as follows. In Section 2, we
summarize the governing equations of the fluid-structure interaction (FSI) problem.
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Figure 1. Fluid and structure domains for the stationary fluid-structure interaction problem.

In Section 3, we describe the overlapping mesh method. In Section 4, we present
an algorithm for the solution of the stationary fluid-structure interaction model
problem. In Section 5, we present three-dimensional numerical examples before
drawing some conclusions in Section 6.

2. A stationary fluid-structure interaction problem

We consider a fluid-structure interaction problem posed on a domain �=� f
∪�s

where � f is the domain occupied by the fluid and �s is the domain occupied by the
solid. We assume that both � f and �s are open and bounded and that they are such
that � f

∩�s
=∅. Furthermore, we decompose the fluid domain into two disjoint

subdomains � f
1 and � f

2 such that � f
=� f

1 ∪�
f
2 . Here, � f

2 represents a part of
the fluid domain surrounding the solid domain �s ; more precisely, we assume that
∂� f

1 ∩ ∂�
s
= ∅. The fluid-structure interface and the interface between the two

fluid domains are denoted respectively by

0 f s
= ∂� f

2 ∩ ∂�
s and 0 f f

= ∂� f
1 ∩ ∂�

f
2 .

Here, the topological boundary ∂X for any given set X is defined by ∂X = X \ X̊
where X and X̊ denote the closure and interior of X , respectively. For simplicity,
we assume that the fluid domain boundary consists of two disjoint parts ∂� f

=

0 f s
∪ ∂� f

D and that the solid domain boundary decomposes in a similar manner:
∂�s
= 0 f s

∪ ∂�s
D . This notation is summarized in Figure 1.

We assume that the fluid dynamics are governed by the Stokes equations of
the following form: find the fluid velocity u f

: � f
→ R3 and the fluid pressure

p f
:� f
→ R such that

−∇ · (ν f
∇u f
− p f I)= f f in � f , (2-1)

∇ · u f
= 0 in � f , (2-2)

where f f is a given body force and ν f is the fluid viscosity.
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Next, we assume that the velocity is prescribed on both the fluid-structure
interface and on the remainder of the fluid boundary:

u f
= 0 on 0 f s, (2-3)

u f
= g f on ∂� f

D. (2-4)

Moreover, we enforce the continuity of the fluid velocity and of the fluid “stress”
on the fluid-fluid interface by the following conditions:

[u f
] = 0 on 0 f f , (2-5)

[(ν f
∇u f
− p f I) · n] = 0 on 0 f f . (2-6)

Here [v] = v1− v2 denotes the jump in a function (or each component of a vector
field) v over the interface 0 f f where vi = v|� f

i
denotes the restriction of v to � f

i
for i = 1, 2. Furthermore, n is the unit normal of 0 f f directed from � f

2 into � f
1 .

Correspondingly, we assume that the structure deforms as an elastic solid sat-
isfying the following equations: find us

:�s
→ R3 such that

−∇ · σ s(us)= f s in �s, (2-7)

where σ s is the (Cauchy) stress tensor and f s is a given body force. The precise
form of the Cauchy stress tensor will depend on the choice of the elastic constitutive
relation. In later sections, we will consider both linearly elastic and hyperelastic con-
stitutive equations relating the displacement to the stress. As boundary conditions,
we assume that the displacement of the structure is given on part of the boundary and
that the structure experiences a boundary traction ts

N on the fluid-structure interface:

us
= gs

D on ∂�s
D, (2-8)

σ s(us) · n= ts
N on 0 f s . (2-9)

The coupling between the fluid and the structure problems requires the fluid
and solid stresses and velocities to be in equilibrium at the interface 0 f s . In the
stationary case considered here, these kinematic and kinetic continuity conditions
are taken care of by ensuring that (2-3) and

ts
N = σ

f (u f ) · n (2-10)

hold, where σ f is the fluid stress tensor σ f (u f , p f )= 2ν f ε(u f )− p f I and ε(u f )

is the symmetric gradient ε(u f )= 1
2(∇u f

+∇(u f )T).
In summary, the stationary fluid-structure interaction problem considered in this

work is completely described by the set of equations (2-1)–(2-10).
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Figure 2. Chimera mesh configuration of the computational domain in the starting step of
the fixed-point iteration. Left: fixed fluid background mesh T0 overlapped by the structure
mesh T̂ s and a surrounding fitting fluid mesh T̂ f

2 . Right: reduced fluid background mesh
T ∗1 and fluid overlap region �O .

3. An overlapping finite element discretization of the FSI problem

The nonlinear nature of the fluid-structure interaction problem (2-1)–(2-10) man-
dates a nonlinear solution scheme such as a Newton-type or fixed-point method.
A classical and well-studied approach is to decompose the coupled problem into
separate systems of equations via a Dirichlet–Neumann fixed-point iteration [43;
32; 31]. This is also the route taken here. Alternatively, more sophisticated iteration
schemes based on a Robin-type reformulation of the interface conditions (2-3),
(2-9) and (2-10) might be employed; see for instance [3; 4]. The basic idea
of the Dirichlet–Neumann fixed-point iteration is to start with solving the fluid
problem (2-1)–(2-6) on a given starting domain. The resulting fluid boundary
traction acting on the fluid-structure interface then serves as Neumann data for the
structure problem (2-7)–(2-10). The structure deformation dictates a displacement
of the fluid domain boundary and, in turn, a new configuration of the fluid domain.
This sequence of steps is repeated until convergence.

Each of the three subproblems (the fluid problem, the structure problem and
the domain deformation) will be solved numerically using separate finite element
discretizations. Overall, we will employ an overlapping mesh method in which a
fixed background mesh is used for part of the fluid domain and a moving mesh
is used for the combination of the structure domain and its surrounding fluid
domain. We note that methods based on overlapping meshes (as the one considered
here) are sometimes also called Chimera methods. Before describing each of the
discretizations, we present an overview of the setup of the computational domains.

For simplicity, we assume that the computational domain � is fixed throughout
the fixed-point iteration while the fluid and structure subdomains will be updated
in each iteration step. In each step, we consider the following setup, illustrated in
Figure 2, of the computational domains. First, we assume that � is tessellated by
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a background mesh T0. Second, we assume that the current representation of the
subdomains � f

2 and �s are tessellated by meshes T f
2 and T s , respectively, and that

these meshes match at their common interface. As a result, T f s
= T f

2 ∪T
s defines

an admissible and conforming mesh of the combined domain � f s
= (� f

2 ∪�
s)◦.

All meshes are assumed to be admissible and to consist of shape-regular simplices.
We further note that the background tessellation T0 may be decomposed into

three disjoint subsets:
T0 = T0,1 ∪ T0,2 ∪ T0,0. (3-1)

Here T0,1, T0,2 and T0,0 are defined with reference to � f s and denote the sets
of elements in T0 that are not, completely or partially overlapped by � f s . More
precisely, T0,1= {T ∈ T0 : T ⊂� f

1 }, T0,2= {T ∈ T0 : T ⊂� f s} and T0,0 = {T ∈ T0 :

|T ∩� f
1 |> 0 and |T ∩� f s

|> 0}. In addition, we assume that T0 is sufficiently fine
near the fluid-fluid interface in the sense that T ∩�s

=∅ for all T ∈ T0,0 . In other
words, the elements in the fluid background mesh have to be small enough close
to 0 f f such that a single element does not stretch from the fluid-fluid interface to
the fluid-structure interface. Next, we introduce the reduced background mesh T ∗1 ,
consisting of the elements in T0 that are either not or only partially overlapped
by � f s , and associated domain �∗1:

T ∗1 = T0,1 ∪ T0,0, �∗1 =
⋃

T∈T ∗1

T . (3-2)

Note that �∗1 contains (but is generally larger than) � f
1 . We further define the

so-called fluid overlap region �O = �
f
2 ∩�

∗

1. In general, for each overlapping
mesh configuration described by some (background) mesh and some overlapping
domain, the procedure described above defines what we shall refer to as the reduced
(background) mesh.

3.1. An overlapping mesh method for the fluid problem. Here we present a finite
element discretization of (2-1)–(2-6) posed on a pair of overlapping meshes, first
proposed by Massing et al. [41]. The pair of meshes consist of an overlapped mesh
and an overlapping mesh: in our case, the reduced background mesh T ∗1 plays the
role of the overlapped mesh while T f

2 is the overlapping mesh.
For any given mesh T , let Vh(T ) be the space of continuous piecewise linear

vector fields and let Qh(T ) be the space of continuous piecewise linear scalar fields,
both defined relative to T . We define the composite finite element spaces Vh and
Qh for the overlapping fluid meshes by

V f
h = Vh(T ∗1 )⊕ Vh(T

f
2 ), Q f

h = Qh(T ∗1 )⊕ Qh(T
f

2 ). (3-3)

Moreover, we denote by V f
h,g f the subspace of V f

h that satisfies the boundary
conditions (2-3)–(2-4) and by V f

h,0 the corresponding homogeneous version. The
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overlapping mesh discretization of (2-1)–(2-6) is then: find (u f
h , p f

h ) ∈ V f
h,g f × Q f

h
such that

A f
h (u

f
h , p f

h ; v, q)= L f
h (v, q) for all (v, q) ∈ V f

h,0× Q f
h , (3-4)

where A f
h is defined for all u, v ∈ V f

h and all p, q ∈ Q f
h by

A f
h (u, p; v, q)= a f

h (u, v)+ b f
h (v, p)+ b f

h (u, q)+ i f
h (u, v)− j f

h (p, q) (3-5)

and the forms a f
h , b f

h , i f
h and j f

h are given by

a f
h (u, v)= (∇u,∇v)

� f
1 ∪�

f
2
− (〈∂nu〉, [v])0 f f

− (〈∂nv〉, [u])0 f f + γ (h−1
[u], [v])0 f f , (3-6)

b f
h (v, q)=−(∇ · v, q)

� f
1 ∪�

f
2
+ ([v] · n, 〈q〉)0 f f , (3-7)

i f
h (u, v)= (∇(u1− u2),∇(v1− v2))�O , (3-8)

j f
h (p, q)= δ

∑
T∈T ∗1 ∪T

f
2

h2
T (∇ p,∇q)T (3-9)

for δ > 0. Here and throughout, ( · , · )K denotes the L2(K ) inner product over
some domain K while 〈v〉 denotes a convex combination 〈v〉 = α1v1+ αv2 with
α1 + α2 = 1 of v across the interface 0 f f . In particular, we choose 〈v〉 = v2 in
accordance with Hansbo et al. [23]. Finally, the linear form L f

h is defined by

L f
h (v, q)= ( f f , v)− δ

∑
T∈T ∗1 ∪T

f
2

h2
T ( f f ,∇q)T (3-10)

for all v ∈ V f
h and all q ∈ Q f

h .
A major strength of the employed scheme for the fluid problem is that the

extension of the stabilization term (3-9) from the physical domain � f
1 to the overlap

region �O in combination with the least-square stabilization (3-8) results in a
well-conditioned and optimally convergent scheme, independent of the location
of the overlapping mesh with respect to the fixed background mesh. Thereby,
typical difficulties arising from potentially small cut cells where |T ∩� f

2 | � |T |
for T ∈ T0,0 are completely eliminated. Consequently, for a continuous solution
(u f , p f ) satisfying (2-1)–(2-6) and a discrete solution (u f

h , p f
h ) satisfying (3-4),

the following optimal error estimate holds independently of the fluid-fluid interface
position [41]:

|||(u f
− u f

h , p f
− p f

h )|||6 Ch|u f
|2,� f + |p f

|1,� f . (3-11)

Here, ||| · ||| is an appropriate version of the standard norm on H 1(� f )× L2(� f )

accounting for the fluid overlap region �O ; see [41] for more details.
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3.2. A finite element discretization of the structure problem. The structure prob-
lem is described by (2-7)–(2-9) in the current solid domain. As the current solid
domain is actually unknown, a standard approach to discretizing such problems is
to map the governing equations back to a fixed reference (Lagrangian) frame. We
choose a reference domain �̂s with coordinates x̂ and denote the deformation map
from the reference to the current solid domain by φs :

x = φs(x̂) for x̂ ∈ �̂s . (3-12)

In general, the notation for all domains and quantities pulled back to the Lagrangian
framework will be endowed with a ˆ ; for instance, �̂s and ûs denote the solid
reference domain and solid displacement in the reference frame, respectively. In
particular, φs

= I + ûs .
In the Lagrangian frame, the problem reads: find the solid displacement ûs

:

�̂s
→ R3 such that

−∇ · 5̂(ûs)= f̂ s in �̂s, (3-13)

ûs
= ĝs

D on ∂�̂s
D, (3-14)

5̂(ûs) · n̂= t̂s
N on 0̂ f s . (3-15)

Here, the displacement ûs and the boundary displacement ĝs
D result from the

standard affine pull-back of the corresponding quantities in the current domain,
for instance ûs(x̂) = us(x), and n̂ is the outward normal of the fluid-structure
interface in the reference frame. Further, let Fs

= ∇φs and J s
= det Fs . We let

f̂ s(x̂)= J s f s(x). Moreover, 5̂(ûs) denotes the first Piola–Kirchhoff stress tensor,
resulting from a Piola transformation of the Cauchy stress tensor σ s :

5̂(ûs)(x̂)= J s(x̂)σ s(φs(x̂))(Fs)−T(x̂). (3-16)

In view of (2-10), we will enforce that the boundary traction acting on the solid
in the reference domain is the Piola transform of the fluid traction exerted on the
fluid-structure interface by the fluid in the current or physical configuration. This
will be detailed in Section 4.

The governing equations (3-13)–(3-15) must be completed by a constitutive
equation relating the stress to the strain. In the case of a hyperelastic material, by
definition, there exists a strain energy density 9 such that

5̂(F)=
∂9

∂F
. (3-17)

One example is the Saint-Venant–Kirchhoff material model, in which

9(F)= µ tr E2
+

1
2λ(tr E)2, where E = 1

2(F
T F− I), (3-18)

for Lamé constants µ, λ > 0.
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In the special case of a linearly elastic material, we assume that the reference
and physical configurations coincide so that (2-7)–(2-9) hold over �̂s directly
with σ s(us)= 2µε(us)+ λ tr(ε(us))I .

To solve (3-13)–(3-15) numerically, let T̂ s be a tessellation of �̂s such that
T s
= φs(T̂ s) and introduce the finite element approximation space

V̂ s
h,g = {v ∈ Vh(T̂ s) : v|∂�̂s

D
= g}, (3-19)

where Vh(T̂ s) is the space of continuous piecewise linear vector fields defined
relative to T̂ s as before. The finite element formulation of (3-13)–(3-15) then reads:
find ûs

h ∈ V̂ s
h, ĝs

D
such that

(5̂(ûs
h),∇v)�̂s − ( t̂s

N , v)0̂ f s − ( f̂ s, v)�̂s = 0 for all v ∈ V̂ s
h,0. (3-20)

Note that the generally nonlinear constitutive relation and the geometric nonlinearity
mandate a nonlinear solution scheme, such as a Newton method or an inner fixed-
point iteration for (3-20).

3.3. Deformation of the surrounding fluid domain. The overlapping mesh method
relies on keeping the background part of the fluid domain� f

1 fixed while moving the
part of the fluid domain � f

2 surrounding the structure. This movement ensures that
the mesh T f

2 of the latter part of the fluid domain and the structure mesh T s match at
the fluid-structure interface. The movement is dictated by the structure deformation
only at the fluid-structure interface: the motion of the interior of the fluid domain
� f

2 is subject to numerical modeling. Standard approaches for the domain motion
include mesh smoothing via diffusion-type equations or treating the fluid domain
as a pseudoelastic structure. Here, we choose the latter approach and model the
deformation of the fluid domain as a linearly elastic structure. This approach
allows for typically larger deformations than a simple diffusion-equation-based
mesh smoothing while avoiding unnecessary complexity.

We start with a fixed reference domain �̂ f
2 and consider the following mesh

deformation problem over this domain: find the mesh displacement ûm
: �̂ f

2 → R3

such that

−∇ · σ̂m(ûm)= 0 in �̂ f
2 , (3-21)

σ̂m(ûm) · n̂= 0 on 0̂ f f , (3-22)

ûm
= ûs on 0̂ f s, (3-23)

where the stress tensor σ̂m is given by

σ̂m(ûm)= 2µmε(ûm)+ λm tr(ε(ûm))I (3-24)

for chosen Lamé constants µm, λm > 0. Let now T̂ f
2 be a tessellation of �̂ f

2 .
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We define the finite element space V̂ m
h,g by

V̂ m
h,g = {v ∈ Vh(T̂

f
2 ) : v|0̂ f s = g}. (3-25)

The corresponding finite element formulation of the mesh problem (3-21)–(3-23) is
then: find ûm

h ∈ V̂ m
h,ûs such that

(σ̂m(ûm
h ), v)�̂ f

2
= 0 for all v ∈ V̂ m

h,0. (3-26)

Finally, we define T f
2 =φ

m
h (T̂

f
2 )with the discrete mesh deformation φm

h = I+ûm
h .

The current surrounding fluid domain is then defined accordingly: � f
2 = φ

m
h (�̂

f
2 ).

The use of boundary condition (3-22) ensures that the fluid-structure interface is
preserved in the sense that

0 f s
= ∂� f

2 ∩ ∂�
s
= φm

h (0̂
f s)= φs

h(0̂
f s), (3-27)

where φs
h is the solid deformation given by the discrete solution ûs

h of prob-
lem (3-20).

4. Solution algorithm for the discretized FSI problem

We are now in a position to give a detailed description of the overall solution scheme
for the fully coupled fluid-structure interaction problem. We start with reviewing
the formulation of the fluid-structure coupling in the discrete setting. For the
discrete formulation, a third interface condition (3-23) needs to be added to the two
interface conditions (2-3) and (2-9) due to the additional mesh deformation problem
described in Section 3.3. The mesh deformation allows us to express the fluid stress
tensor acting on 0 f s in the reference configuration 0̂ f s via a Piola transformation.
Consequently, the stress equilibrium condition (2-9) at the fluid-structure interface
can be reformulated in the Lagrangian frame according to (3-15). In summary, the
discrete formulation of the fluid-structure interface conditions reads:

u f
= 0 on 0 f s, (4-1)

ûs
= ûm on 0̂ f s, (4-2)

5̂(ûs)(x̂) · n̂(x̂)= J m(x̂) σ f (φm(x̂))(Fm)−T(x̂) · n̂(x̂) on 0̂ f s . (4-3)

As outlined in Section 3, we employ a classical Dirichlet–Neumann fixed-point iter-
ation approach to ensure that the interface conditions (4-1)–(4-3) are approximately
satisfied by the computed solution within a user-provided tolerance. The iteration
scheme is presented in detail in Algorithm 1, where the relaxation parameter ωi

was chosen dynamically to accelerate the convergence of the fixed-point iteration.
Moreover, the fluid boundary traction is incorporated as Neumann data in the weak
formulation of the structure problem by a properly chosen functional representing the
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ûs,k
:= 0

ûm,k
:= 0

do
Update overlapping fluid meshes
�s,k+1

:= (I + ûs,k)(�̂s)

�
f,k+1
2 := (I + ûm,k)(�̂ f

2 )

� f s,k+1
:=�s,k+1

∪�
f,k+1
2

Compute reduced background mesh (T f,k+1
1 )∗ with respect to � f s,k+1.

T f,k+1
:= (T f,k+1

1 )∗ ∪ T f,k+1
2

Solve fluid problem
Find (u f,k+1

h , p f,k+1
h ) such that for all (v f,k+1

h , q f,k+1
h ) ∈ V f,k+1

h × Q f,k+1
h

A f,k
h (u f,k+1

h , p f,k+1
h ; v

f,k+1
h , q f,k+1

h )= L f,k+1(v
f,k+1

h , q f,k+1
h ).

Update boundary traction functional
Define L f s,k+1( · ) by

L f s,k+1(v̂
s,k+1
h ) := R f,k+1(u f,k+1

h , p f,k+1
h ; v

f,k+1
h ).

Solve structure problem
Find ûs,k+1

h such that for all v̂ ∈ V̂ s
h

As
h(û

s,k+1
h , v̂)= Ls(v̂)+ L f s,k+1(v̂).

Dynamic relaxation
Compute ωk+1 according to (4-6).
ûs,k+1

h := ωk+1ûs,k+1
h + (1−ωk+1)ûs,k

h

Solve mesh problem
Find ûm,k+1

h such that for all v̂ ∈ V̂ m
h

Am
h (û

m,k+1
h , v̂)= Ls(v̂),

ûm,k+1
h = ûs,k+1

h on 0̂ f s .

while ‖ûs,k+1
h − ûs,k

h ‖6 tol

Algorithm 1. Fixed-point iteration.

boundary traction weighted with some given test function. A thorough explanation
of both of these intermediate steps will be given in the next sections.

4.1. Dynamic relaxation. Let U k
S

denote the coefficient vector of the finite element
approximation ûs,k

h of (3-20) computed in the k-th iteration step. To accelerate the
convergence of the iteration scheme, a relaxation step is introduced:

U k+1
S
:= ωkU k+1

S
+ (1−ωk)U k

S
, (4-4)

where the relaxation parameter ωk is dynamically chosen in each iteration step.
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Here, we employed Aiken’s method, which is a simple scheme, yet it can greatly
improve the convergence rate compared to a fixed choice of ωk , as demonstrated
by Küttler and Wall [30; 31]. Introducing the residual displacement 1kUS by

1kUS :=U k
S
−U k−1

S
, (4-5)

the new relaxation parameter ωk+1 is then computed by

ωk =max
{
ωmax, ωk−1

(
1−

1k+1US

‖1k+1US −1
kUS‖

2

)}
, (4-6)

where ωmax is a safety parameter chosen to avoid too-large over-relaxation. The
convergence of the fixed-point iteration might be accelerated further by employ-
ing more sophisticated schemes based on Robin–Robin coupling [3; 4] or vector
extrapolation [31].

4.2. Computation of the boundary traction. Given the solution u f and a pressure
solution p f of the fluid subproblem (2-1)–(2-4), the incorporation of the fluid
boundary traction into the weak formulation of the structure problem (3-20) requires
the evaluation of the so-called weighted fluid boundary traction on 0 f s defined by

L f s(v)= (σ f (u f , p f ) · n, v)0 f s (4-7)

for test functions v ∈V s . The functional (4-7) possesses various equivalent represen-
tations in the continuous case that are no longer equivalent when fluid velocity u f

and pressure p f and test function v are replaced by their discrete counterparts u f
h ,

p f
h and vh ∈ V s

h (�), respectively. It has been observed by Dorok [16], John [28]
and Giles et al. [21] that using (4-7) directly might lead to an inaccurate evaluation
of the weighted boundary traction. In our work, we therefore employ an alternative
formulation of the weighted boundary traction in the form

L f s(vh)= (σ
f (u f

h , p f
h ),Ext vh)� f − ( f f ,Ext vh)� f , (4-8)

which was proposed and investigated by Giles et al. [21] in the context of a posteriori
error estimation. Here, Ext v is any function in H 1(� f s) such that Ext(vh)|0 f s = vh .
Compared to the naive evaluation using (4-7), the formulation (4-8) was shown to
compute the weighted boundary traction more accurately and to greatly improve
the convergence of stress-related quantities such as the lift and drag coefficients.

5. Numerical results

We conclude this paper with two numerical tests, both in three spatial dimensions.
The numerical experiments were carried out using the DOLFIN-OLM library. We
first study the convergence rates for the finite element approximations of the fluid
velocity, fluid pressure and structure displacement by constructing an artificial
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fluid-structure interaction problem possessing an analytical solution. Second, we
consider the flow around an elastic flap immersed in a three-dimensional channel.

5.1. Software for overlapping mesh variational formulations. The assembly of
finite element tensors corresponding to standard variational formulations on con-
forming, simplicial meshes, such as (3-20), involves integration over elements
and possibly interior and exterior facets. In contrast, the assembly of variational
forms defined over overlapping meshes, such as (3-6)–(3-9) and (3-10), additionally
requires integration over cut elements and cut facets. These mesh entities are of
polyhedral, but otherwise arbitrary, shape. As a result, the assembly process is
highly nontrivial in practice and requires additional geometry-related preprocessing,
which is challenging in particular for three-dimensional meshes.

As part of this work, the technology required for the automated assembly of
general variational forms defined over overlapping meshes has been implemented
as part of the software library DOLFIN-OLM. This library builds on the core
components of the FEniCS Project [34; 33], in particular DOLFIN [35], and the
computational geometry libraries CGAL [51] and GTS [22]. DOLFIN-OLM is
open source and freely available from http://launchpad.net/dolfin-olm.

There are two main challenges involved in the implementation: the computational
geometry and the integration of finite element variational forms on cut cells and
facets. The former involves establishing a sufficient topological and geometric de-
scription of the overlapping meshes for the subsequent assembly process. To this end,
DOLFIN-OLM provides functionality for finding and computing the intersections
of triangulated surfaces with arbitrary simplicial background meshes in three spatial
dimensions; this functionality relies on the computational geometry libraries CGAL
and GTS. These features generate topological and geometric descriptions of the cut
elements and facets. Based on this information, quadrature rules for the integration
of fields defined over these geometrical entities are produced. The computational
geometrical aspect of this work extends, but shares many of the features of, the
previous work [39] and is described in more detail in the aforementioned reference.

Further, by extending some of the core components of the FEniCS Project,
in particular FFC [29; 34, Chapter 11] and UFC [34, Chapter 16], this work
also provides a finite element form compiler for variational forms defined over
overlapping meshes. Given a high-level description of the variational formulation,
low-level C++ code can be automatically generated for the evaluation of the cut
element, cut facet and surface integrals, in addition to the evaluation of integrals over
the standard (uncut) mesh entities. The generated code takes as input appropriate
quadrature points and weights for each cut element or facet; these are precisely
those provided by the DOLFIN-OLM library.

As a result, one may specify variational forms defined over finite element spaces
on overlapping meshes in high-level UFL notation [2; 34, Chapter 17], define the

http://launchpad.net/dolfin-olm
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overlapping fluid meshes {T0, T
f

2 } and then invoke the functionality provided by the
DOLFIN-OLM library to automatically assemble the corresponding stiffness matrix.
In particular, the numerical experiments presented below, employing the variational
formulation defined by (3-4), have been carried out using this technology.

5.2. Convergence test. While numerical studies presented in [41] confirmed the
theoretically predicted convergence rates for the overlapping mesh method for the
pure flow problem presented in Section 3.1, we here conduct a convergence study
of the coupled FSI problem to verify the overall solution algorithm as described
in Algorithm 1. To examine the convergence rates for the finite element approxima-
tions of the fluid velocity, fluid pressure and structure displacement, we construct a
stationary FSI problem with a known analytical solution by employing the method
of manufactured solutions as outlined in the following. The detailed analytical
derivation of the fluid- and structure-related quantities are not included here to keep
the presentation at an appropriate length but can be obtained as an IPython-based
notebook available at http://nbviewer.ipython.org/6291921.

In the reference configuration, the fluid domain �̂ f consists of a straight tube of
length L = 1.0 and diameter R f

= 0.4. We decompose �̂ f into a tube of radius
R f

1 = 0.3 and a cylinder annulus satisfying 0.3 6 r 6 0.4= R f
2 . The solid domain

�̂s is given by a cylinder annulus of thickness H s
= 0.1 surrounding the fluid

domain �̂ f . Using cylinder coordinates, the displacement ûs of the solid domain is
prescribed by a purely radial, z-dependent translation

ûs(r, ϕ, z)= H(z)er , (5-1)

where H(z)= H s2z(1− z). Correspondingly, the deformation of the fluid domain
is determined by a radial stretching of the form

ûm(r, ϕ, z)= ρ(1+ H(z)/R f )er . (5-2)

The reference and physical configuration of the various domains are depicted in
Figure 3.
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Figure 3. Cross-section through the cylinder-symmetric reference (left) and physical
(right) domains for the analytical FSI reference problem.

http://nbviewer.ipython.org/6291921
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To obtain a divergence-free velocity field in the final physical configuration, the
fluid velocity is defined as a simple parabolic channel flow on the reference domain
and then mapped to the physical domain via the Piola transformation induced by the
fluid domain deformation (5-2). For the pressure, we simply choose p(x, y, z)=
1− z. Since the interface condition (4-3) is not satisfied exactly, we introduce an
auxiliary traction ta given by the nonvanishing jump in the normal stresses:

ta =
(
5̂(ûs)(x̂)− J m(x̂)σ f (φm(x̂))(Fm)−T(x̂)

)
· n̂s on 0̂ f s . (5-3)

Regarding the remaining boundary parts, the solid displacement is uniquely deter-
mined by imposing the given displacement ûs as a Dirichlet boundary condition
on ∂�̂s

\ 0̂ f s . For the fluid problem, we prescribed the velocity profile on the inlet
and impose the zero pressure on the outlet.

In the reference configuration, a discretization of the solid domain �̂s and the
fluid domain �̂ f

2 is provided by two fitted and conforming meshes T̂ s and T̂ f
2 ,

respectively, while the fluid domain �̂ f
1 is represented by a structured Cartesian mesh

T̂ f
1 overlapped by the mesh T̂ f

2 ; see Figures 4 and 5. The numerical approximation

Figure 4. Computed velocity (top) and pressure (bottom) solutions on the fixed fluid
background mesh T f

1 (left) and entire overlapping fluid mesh {T f
1 , T

f
2 } (right) for the

analytical FSI problem.
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Figure 5. Displacements for the analytical FSI reference problem. Left: structure dis-
placement of the solid tube. Right: displacement of the fluid mesh added.

of the fluid velocity, fluid pressure and structure displacement are then computed on
a sequence of four overlapping meshes. The mesh sizes of the initial meshes T̂ f

1 ,
T̂ f

2 and T̂ s are 0.246, 0.14 and 0.212, respectively, and each of the subsequent
meshes is generated from the previous one by uniformly refining each mesh. Based
on the manufactured exact solution, the experimental order of convergence (EOC)
is then computed by

EOC(k)=
log(Ek−1/Ek)

log 2
,

where Ek denotes the error of the numerical solution computed at refinement level k.
The numerical experiment was conducted using ν f

= 0.001 for the fluid viscosity
and Lamé parameters given by

µ= E/(2+ 2ν), λ= E · ν/((1+ ν)(1− 2ν)) (5-4)

in �s with E = 10 and ν = 0.3.
For the penalty parameters in the stabilized overlapping mesh method for the

fluid problem, we pick γ = 10 and δ = 0.5. Since the overall computational time is
dominated by the assembly and solution of the fluid system, the displacement field
is conveniently solved using a direct solver while the linear system arising from the
fluid problem is solved by applying a transpose-free quasiminimal residual solver
with an algebraic multigrid preconditioner.

Using continuous piecewise linear functions for the approximation of the fluid
velocity, fluid pressure and the structure displacement, the theoretically predicted
convergence rate for a corresponding uncoupled problem is at least 1.0 when
measuring the velocity and displacement error in the H 1-norm and the pressure
error in the L2-norm. Note that it is common to observe a higher experimental order
of convergence of ∼ 1.5 for the pressure approximation when stabilized, equal-
order interpolation elements are used to discretize the flow problem. Assuming
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Refinement ‖u f
h − u f

‖1 EOC ‖p f
h − p f

‖0 EOC ‖us
h − us

‖1 EOC

0 1.01188 3.61948 · 10−3 3.87181 · 10−4

1 0.51000 0.99 1.55216 · 10−3 1.22 1.40771 · 10−4 1.46
2 0.21912 1.22 3.70746 · 10−4 2.06 4.39062 · 10−5 1.68
3 0.12485 0.81 1.29430 · 10−4 1.52 1.17800 · 10−5 1.9

Table 2. Convergence rates of the overlapping mesh finite element method for the analyti-
cal FSI problem.

at most quadratic convergence of the displacement solution in the L2-norm, the
L2-error will be reduced by approximately 0.52·3

≈ 0.016 after three uniform mesh
refinements. To not pollute the overall convergence rate with the iteration error,
we therefore chose tol= 0.001 for the relative L2-error between two consecutive
displacement solutions computed in the iteration loop. With the given tolerance,
the Dirichlet–Neumann iteration converged after 5–7 iterations for each refinement
level. The resulting errors for the sequence of refined meshes are summarized in
Table 2. For the fluid velocity and fluid pressure, the observed convergence rates
are in agreement with the theoretical error decrease expected from an uncoupled
problem. For the solid displacement, the observed convergence rates 1.46–1.9 for
the H 1-error are better than the theoretically expected rate of ∼ 1.

5.3. Flow around an elastic flap. In the second numerical example, we consider a
channel flow around an elastic flap for different orientations of the flap with respect
to the channel geometry. Here, we can take full advantage of the developed method
and techniques as the overlapping mesh approach handles large deformation within
a single simulation easily. As an additional benefit, our proposed scheme allows
us to seamlessly reposition the flap for a series of numerical experiments and thus
has great potential for future applications in design and optimization processes that
involve fluid-structure interaction problems in their forward simulation; see for
instance [38; 17].

Within the channel domain � = [0, L] × [0,W ] × [0, H ] with L = 2.5 and
W = H = 0.41, the bottom side of the flap of dimensions Ls

= 0.06, W s
= 0.2

and H s
= 0.24 is centered around the point (L/2,W/2, 0). In the first numerical

experiment, the flap is clamped on the boundary [(L − Ls)/2, (L + Ls)/2] ×
[(W −W s)/2, (W +W s)/2]×{0} while the flap is rotated 65◦ around the z-axis in
a second experiment. For the numerical experiment, we assume that the flow can be
described by the Stokes equations with fluid viscosity ν f

= 0.001 while the flap is
modeled as an hyperelastic material satisfying the Saint-Venant–Kirchhoff constitu-
tive equation (3-18) with the Lamé constants µ and λ defined by (5-4) for E s

= 15
and νs

= 0.3. We set the inflow profile u f
= (16 · 0.45y(W − y)z(H − z), 0, 0)

at the inlet {0} × [0,W ] × [0, H ], a “do-nothing” boundary condition given by
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Figure 6. Flow around an elastic flap for two different flap orientations. Left: magnitude
and streamlines of the velocity approximation in x-z (top) and x-y (bottom) cross-sections.
The transparent block around the gray-colored flap visualizes the fluid mesh T f

2 surround-
ing the structure. The streamlines within T f

2 are drawn slightly thicker to illustrate the
smooth transition of the velocity approximation from the outer to the inner fluid domain.
Right: pressure distribution and magnitude of the structure displacement.

ν∂nu− pn = 0 at the outlet {L} × [0,W ] × [0, H ] and a no-slip condition u = 0
elsewhere on the boundary.

The numerical results for aligned and rotated flaps are shown in Figure 6. We
especially note the smooth transition of the velocity and pressure solutions from
fluid background T f

1 to the solid-surrounding fluid mesh T f
2 ; the interface is not

visible. The meshes used for simulation of the rotated flap are shown in Figure 7.

6. Conclusions

We presented a Nitsche-based cut and composite mesh method for fluid-structure
interaction problems. The method utilizes a Nitsche-type coupling between two



116 ANDRÉ MASSING, MATS G. LARSON, ANDERS LOGG AND MARIE E. ROGNES

Figure 7. Background fluid mesh, structure mesh and its surrounding fluid mesh in the
reference configuration.

fluid meshes: one fixed background mesh and one moving overlapping fluid mesh
that is fitted to the boundary of a hyperelastic object and deforms with the object.
The fluid-fluid coupling is monolithic in the sense that it determines a coupled
system involving both the underlying and overlapping degrees of freedom. In
previous work [41], we have shown that the coupling is stable and that the solution
has optimal-order convergence for a stationary model problem.

To solve for the steady state solution of a fluid-structure interaction problem with
large elastic deformations, we consider a fixed-point iteration where we solve for
the fluid, compute a boundary traction for the solid, solve for the solid, solve for the
mesh motion of the overlapping fluid mesh and finally update the geometry. This
involves computing new intersections between underlying and overlapping meshes.
Employing a provably stable overlapping mesh method for fluid-fluid coupling, the
proposed scheme for the fluid-structure problem is guaranteed to be robust and
insensitive to the overlap configuration.

We verified the expected convergence rates for a model problem with a manufac-
tured solution and demonstrated the flexibility of our approach by computing the
steady state solution for an elastic flap in a channel at two different orientations. It
should be noted that the overlapping mesh method allows the flap to be repositioned
in the channel without requiring the generation of a single conforming fluid mesh
for each configuration. Only an elementwise, local representation of the cut cells
near the interface together with some appropriate quadrature schemes are required;
see for instance [39].

Future work involves extending our method to fully time-dependent flow gov-
erned by the incompressible Navier–Stokes equations. We note that the nonlinear
convection term can be handled in our setting using a discontinuous Galerkin
coupling with up-winding and that, from a computational point of view, taking a
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time step is closely related to taking one step in our fixed-point iteration algorithm.
Another area of interest is the direct coupling between fluids and solids.
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AN ADAPTIVE MULTIBLOCK HIGH-ORDER
FINITE-VOLUME METHOD FOR SOLVING

THE SHALLOW-WATER EQUATIONS ON THE SPHERE

PETER MCCORQUODALE, PAUL A. ULLRICH,
HANS JOHANSEN AND PHILLIP COLELLA

We present a high-order finite-volume approach for solving the shallow-water
equations on the sphere, using multiblock grids on the cubed sphere. This ap-
proach combines a Runge–Kutta time discretization with a fourth-order-accurate
spatial discretization and includes adaptive mesh refinement and refinement in
time. Results of tests show fourth-order convergence for the shallow-water
equations as well as for advection in a highly deformational flow. Hierarchical
adaptive mesh refinement allows solution error to be achieved that is comparable
to that obtained with uniform resolution of the most refined level of the hierarchy
but with many fewer operations.

1. Introduction

In this paper, we present a method of local refinement applied to the 2D shallow-
water equations, using test cases that capture some of the essential features that arise
in 3D atmospheric models. We extend a uniform-grid finite-volume discretization
on the surface of a sphere to a locally refined, nested grid hierarchy that can evolve
in time, and can therefore resolve or track small-scale and synoptic features, without
refining the entire computational domain. Similar high-accuracy block-structured
adaptive mesh refinement (AMR) approaches have been applied to problems in
compressible gas dynamics [32; 19]. For climate applications, AMR techniques
hold the promise of spanning global and regional scales as well as tracking synoptic
features that contribute significantly to climate means in the Earth system. Com-
putational cost limits the finest resolution of uniform-resolution climate models
to around 10 km, far larger than the grid spacing necessary for resolving clouds
and features of regional climate. The highest-resolution simulations have become
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important for regional planning issues, which rely on accurate representation of
changes in the behavior of mesoscale storm systems, pressure-blocking events driven
by topography (responsible for heat waves and cold spells), mountain snowpack,
wildfires, topographically driven precipitation, watershed-level hydrology, and urban
development and agriculture. As emphasized in [58], addressing these challenges
requires high-resolution regional climate modeling via either dynamical downscaling
or highly refined grids. Moving synoptic features, such as extratropical and tropical
cyclones, would benefit from space-time adaptivity to better resolve their dynamics.
Thus, AMR can both improve the resolution of atmospheric flows and help test
physical parametrizations across spatial and temporal scales in a global context,
without refining the entire computational domain.

As a first step in the development of a global atmospheric modeling system, in
this paper, we solve the 2D shallow-water equations, which capture many of the
important properties of the equations of motion for the atmosphere. In particular, the
dynamical character of the global shallow-water equations is governed by features
common with atmospheric motions, including barotropic Rossby waves and inertia-
gravity waves, without the added complexity of a vertical dimension. There already
exists a comprehensive literature on the development of numerical methods for the
global shallow-water equations spanning the past several decades. Examples include
the spectral-transform method [25], semi-Lagrangian methods [41; 4; 53; 63; 54;
38], finite-difference methods [21; 42], Godunov-type finite-volume methods [43;
57], staggered finite-volume methods [29; 39; 40], multimoment finite-volume
methods [8; 27; 7], and finite-element methods [51; 12; 52; 17; 33; 26; 11; 2].

As of the time of writing, work targeting AMR for the global shallow-water
equations is much more sparse. Two adaptive numerical methods (finite-volume on
a latitude-longitude grid and nonconservative finite-element on a cubed-sphere grid)
are described in [49]. A discontinuous Galerkin formulation for global tsunami sim-
ulation is described in [5]. The multimoment finite-volume approach has also been
extended to an adaptive formulation by [9]. The present article introduces an AMR
approach for the shallow-water equations that also supports refinement in time.

Atmospheric models include a wide variety of computational grids on the sphere
such as the latitude-longitude mesh [62; 28], icosahedral and hexagonal grids [16;
48; 18; 45; 59], and cubed-sphere meshes [56; 13; 36]. In particular, icosahedral,
hexagonal, and cubed-sphere meshes have become popular over the last decade as
they provide an almost-regular grid-point coverage on the sphere. The uniform dis-
tribution of elements avoids the coordinate singularities at the poles that complicate
the design of stable and accurate methods for such coordinate systems.

The approach in this paper is based on the finite-volume mapped-grid technology
in [10], which is extended to work with AMR in [19]. We apply these methods on
cubed-sphere meshes, which consist of six panels with a separate mapping on each
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panel. To coordinate the different mappings along panel boundaries, we use the
mapped-multiblock approach of [31] with the following modifications:

(1) Because the computational domain is on the surface of a sphere, which is a 2D
manifold in a 3D space, the evolution equations must include metric terms.

(2) Because we have vector quantities (velocities and momenta) that are expressed
in different bases on different panels, the procedure for coordinating them
across a panel boundary must include a basis transformation.

For smooth solutions, this approach can provide fourth-order-accurate results as
also achieved in [57]. Comparing these results to those of [43] shows the advantage
of fourth-order over second-order methods in avoiding artifacts at the boundaries
of the cubed-sphere panels. The dispersive properties of this method have been
analyzed by [55], where it was demonstrated that the use of a fourth-order finite-
volume discretization led to a doubling of the effective resolution compared to a
second-order approach. High-order accuracy is also necessary in the context of grid
refinement since there is a formal drop of one order of accuracy (in the maximum
norm) at grid-refinement boundaries. Hence, a second-order adaptive method would
drop to first-order accuracy in the presence of grid refinement, with disastrous
consequences to the quality of the solution, whereas a fourth-order method only
drops to third-order. Further, compared to other numerical methods, including
standard finite-element discretizations, central finite-volume methods provide the
largest maximum stable time-step size and do not suffer from issues such as the
“spectral gap” that arise from nonuniform treatments. In the absence of limiters
and explicit dissipation, these schemes are also energy-conservative up to temporal
truncation order.

2. Partial differential equations in cubed-sphere coordinates

The equiangular cubed-sphere grid [44; 42] consists of a cube with six Cartesian
patches arranged along each face, which is then “deflated” onto a tangent spherical
shell, as shown in Figure 1. It is a quasiuniform spherical grid; that is, it is
in the class of grids that provide an approximately uniform tiling of the sphere
(see [50], for example, for a review of different options for global grids). The
equiangular cubed-sphere grid has the advantage of being among the most uniform
of cubed-sphere grids: at high resolutions, the ratio of largest to smallest grid cell
approaches

√
2, compared to the equidistant gnomonic cubed-sphere grid, which

approaches a ratio of 3
√

3, and the conformal cubed-sphere grid, where this ratio is
unbounded. Although even more uniformity can be attained via the application of
grid-relaxation techniques such as spring dynamics (see, for example, [37]), these
techniques also lead to nonanalytical forms of the curvature metrics, which in turn
increases the complexity of the discretization.
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x
y

z

1

2
4

5

6
Figure 1. A cubed-sphere grid, shown with labels on panels. Panels 1–4 all straddle the
equator (z = 0) of the unit sphere. Panel 5 is centered on the north pole (z = +1) and
Panel 6 on the south pole (z =−1). On the cubed-sphere grid shown here, Nc = 16 (each
panel contains 16× 16 grid cells).

On the equiangular cubed-sphere grid, coordinates are given as (α, β, np), with
central angles α, β ∈ [−π/4, π/4] and panel index np ∈ {1, 2, 3, 4, 5, 6}. By
convention, we choose Panels 1–4 to be along the equator and Panels 5 and 6 to be
centered on the northern and southern poles, respectively.

We will also use spherical coordinates (λ, φ) with longitude λ ∈ [0, 2π ] and lati-
tude φ ∈ [−π/2, π/2] for plotting and specification of tests. Coordinate transforms
between spherical and equiangular coordinates can be found in [56, Appendix A].

2.1. Metrics. Coordinates (X, Y ) are related to equiangular coordinates (α, β) via
the transform

X = tanα, Y = tanβ. (1)

Any straight line in (X, Y ) coordinates is also a great circle arc, which is not the
case for general line segments in equiangular coordinates. Throughout this paper,
we will be making use of the metric term

δ = (1+ tan2 α+ tan2 β)1/2, (2)

which appears frequently in geometric calculations on the cubed-sphere grid.
Cartesian coordinates are related to the equiangular coordinates of a particular

cubed-sphere panel by x(α, β) = (x(α, β), y(α, β), z(α, β)). The natural basis
vectors of the equiangular coordinate system are gα= (∂x/∂α)β and gβ= (∂x/∂β)α ,
which have units of length.

The covariant 2D metric on the cubed sphere of radius r is given by

gpq = gp · gq =
r2(1+ X2)(1+ Y 2)

δ4

(
1+ X2

−XY
−XY 1+ Y 2

)
, (3)
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with contravariant inverse

g pq
=

δ2

r2(1+ X2)(1+ Y 2)

(
1+ Y 2 XY

XY 1+ X2

)
. (4)

The Jacobian on the manifold is then

J =
√

det gpq =
r2(1+ X2)(1+ Y 2)

δ3 (5)

and induces the infinitesimal area element d A = J dα dβ.
For a comprehensive mathematical description of the equiangular cubed-sphere

grid, see [33, Appendices A, B, and C] or [56, Appendices A and B].

2.2. The shallow-water equations in cubed-sphere coordinates. In conservative
coordinate-invariant form, the 2D shallow-water equations on the sphere can be
written as

∂H
∂t
+∇ · (hu)= 0, (6)

∂hu
∂t
+∇ ·

(
huu+I

Gh2

2

)
=−Gh∇zs− f gr × (hu), (7)

where H denotes the fluid surface height above the reference depth z = 0, h is the
fluid depth above the bottom topography z = zs(λ, φ), u is the velocity vector, uu
denotes the outer product of the velocity, I is the identity matrix, G=9.80616 m·s−2

is the acceleration due to gravity, f = 2� sinφ is the Coriolis parameter in terms
of the rotation rate �= 7.292× 10−5 s−1, and gr is the unit vector perpendicular
to the surface of the sphere. The quantities H , h, and zs are related via H = h+ zs.

Under equiangular coordinates, the velocity field is written as

u = uα gα + uβ gβ . (8)

The coefficients uα and uβ are known as the contravariant components of the
velocity vector and have units of rad/s in the natural basis.

The height evolution equation (6) then takes the form

∂H
∂t
+

1
J
∂

∂α
(Jhuα)+

1
J
∂

∂β
(Jhuβ)= 0. (9)

The momentum evolution equation (7) can be decomposed into an evolution equation
for huα and huβ ,

∂

∂t

(
huα

huβ

)
+

1
J
∂

∂α

(
JTαα

JTβα

)
+

1
J
∂

∂β

(
JTαβ

JTββ

)
=9M+9B+9C, (10)

where Tkn
= hukun

+ gkn 1
2 Gh2 and 9M, 9B, and 9C denote source terms due to

the curvature of the manifold, bottom topography, and Coriolis force, respectively.
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The manifold source term takes the form

9M =

(
−0αnkTkn

−0
β

nkTkn

)
=

2
δ2

(
−XY 2huαuα + Y (1+ Y 2)huαuβ

X (1+ X2)huαuβ − X2Y huβuβ

)
, (11)

where 0m
nk are the Christoffel symbols of the second kind associated with the

metric. The source term due to bottom topography can be written in terms of
derivatives of zs as

9B =−Gh
(

gαk
∇kzs

gβk
∇kzs

)
=−Gh

(
gαα gαβ

gβα gββ

)(
∂zs/∂α

∂zs/∂β

)
. (12)

The Coriolis source term differs depending on whether the underlying panel is
equatorial or polar since

sinφ =
{

Y/δ if np ∈ {1, 2, 3, 4},
p/δ if np ∈ {5, 6},

(13)

where p is a panel indicator given by, for instance,

p = signφ =
{
+1 on the northern panel (np = 5),
−1 on the southern panel (np = 6).

(14)

For equatorial panels, the Coriolis source term is given by

9C,eq =
2�
δ2

(
−XY 2 Y (1+ Y 2)

−Y (1+ X2) XY 2

)(
huα

huβ

)
(15)

and on polar panels by

9C,pol =
2p�
δ2

(
−XY (1+ Y 2)

−(1+ X2) XY

)(
huα

huβ

)
. (16)

Multiplying both sides of the shallow-water equations (9)–(10) by J and using the
fact that J and the topography zs = H − h are independent of t , these evolution
equations can be written

∂

∂t
(J U)+∇ · (J EF)= J9, (17)

where

U =

 h
huα

huβ

 , Fk
=

huk

Tαk

Tβk

 , 9 =

(
0

9M+9B+9C

)
. (18)
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Here U contains the conserved variables, which are functions of the primitive
variables,

W =

 h
uα

uβ

 . (19)

The components of EF are functions of the primitive variables and the metric.

2.3. Advection in cubed-sphere coordinates. In conservative coordinate-invariant
form, the 2D advection equation on the sphere is just the first equation of (17):

∂

∂t
(J U)+∇ · (J EF)= 0 (20)

with only one component, U = h and Fk
= huk . Here, h is interpreted as the

density of the advected quantity, and u(α, β, t) is a prescribed velocity vector field.

3. Finite-volume discretization on cubed-sphere grids

3.1. Discretization of the cubed sphere. The discrete resolution of the cubed
sphere is typically written in the form c{Nc}, where each coordinate direction
consists of Nc grid cells. For instance, the cubed-sphere grid shown in Figure 1
is c16. The total number of grid cells on a cubed sphere is Nc× Nc× 6. A grid
cell on a particular panel is denoted by Vi, j with indices (i, j) ∈ [0, . . . , Nc− 1]2,
which refers to the region bounded by

α ∈ [i1α− 1
4π, (i + 1)1α− 1

4π ], β ∈ [ j1β − 1
4π, ( j + 1)1β − 1

4π ], (21)

where on an equiangular grid the grid spacing is

1α =1β =
π

2Nc
. (22)

The center of Vi, j is the point (αi , β j ) with

αi = (i + 1
2)1α−

1
4π, β j = ( j + 1

2)1β −
1
4π. (23)

Some properties of the cubed-sphere grid for a variety of resolutions are given
in Table 1.

3.2. PDE discretization. We can integrate a PDE of the form

∂

∂t
(J U)+∇ · (J EF)= J9 (24)

over a grid cell Vi, j , giving

d
dt

∫∫
Vi, j

J U dα dβ +
∫∫

Vi, j

∇ · (J EF) dα dβ =
∫∫

Vi, j

J9 dα dβ. (25)
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Resolution 1x Aavg Amin/Amax RLLequiv Tequiv

c16 625 km 3.321× 105 km2 0.7434 6.5◦ T 17
c32 313 km 8.302× 104 km2 0.7249 3.2◦ T 34
c64 156 km 2.076× 104 km2 0.7159 1.6◦ T 68
c128 78.2 km 5.189× 103 km2 0.7115 0.82◦ T 136
c256 39.1 km 1.297× 103 km2 0.7093 0.41◦ T 272

Table 1. Properties of the cubed-sphere grid for different resolutions. Here 1x is the grid
spacing at the equator, Aavg is the average area of all cubed-sphere grid cells, Amin is the
minimum cell area, and Amax is the maximum cell area. RLLequiv denotes the equivalent
grid spacing (in degrees) on the regular latitude-longitude grid with the same number of cells,
and Tequiv denotes the approximate triangular truncation of a spectral transform method.

Then applying the divergence theorem to the second term on the left-hand side
of (25):

d
dt

∫∫
Vi, j

J U dα dβ +
∮
∂Vi, j

J EF · n̂ d`=
∫∫

Vi, j

J9 dα dβ. (26)

We can represent the integrals in (26) in terms of averages over Vi, j and its faces.
The notation for an average of a quantity A(α, β) over Vi, j is

〈A〉i, j =

∫∫
Vi, j

A(α, β) dα dβ∫∫
Vi, j

dα dβ
=

∫ β j+
1
21β

β j−
1
21β

∫ αi+
1
21α

αi−
1
21α

A(α, β) dα dβ

1α1β
. (27)

Averages over faces of Vi, j with constant α = αi ±
1
21α and β = β j ±

1
21β are

denoted, respectively,

〈A〉i± 1
2 , j =

∫ β j+
1
21β

β j−
1
21β

A(αi ±
1
21α, β) dβ

1β
, (28)

〈A〉i, j± 1
2
=

∫ αi+
1
21α

αi−
1
21α

A(α, β j ±
1
21β) dα

1α
. (29)

Then dividing both sides of (26) by 1α1β and substituting the averages as
defined in (27)–(29):

d
dt
〈J U〉i, j =−

1
1α

(
〈J Fα

〉i+ 1
2 , j −〈J Fα

〉i− 1
2 , j

)
−

1
1β

(
〈J Fβ

〉i, j+ 1
2
−〈J Fβ

〉i, j− 1
2

)
+〈J9〉i, j . (30)



A FINITE-VOLUME METHOD FOR SOLVING SHALLOW-WATER EQUATIONS 129

3.3. Temporal discretization. We apply the classical fourth-order Runge–Kutta
method to integrate (30), which can be written in the form

d
dt
〈J U〉i, j = K (〈J U〉)i, j (31)

over grid cell Vi, j , where

K (〈J U〉)i, j =−
1
1α

(
〈J Fα

〉i+ 1
2 , j −〈J Fα

〉i− 1
2 , j

)
−

1
1β

(
〈J Fβ

〉i, j+ 1
2
−〈J Fβ

〉i, j− 1
2

)
+〈J9〉i, j . (32)

In Section 3.4, we show how to derive fourth-order accurate approximations
to K (〈J U〉) on grid cells given 〈J U〉 on grid cells.

The classical Runge–Kutta method applied to the ordinary differential equation
(31) integrated over time step 1t starting with 〈J U〉(0) at the initial time is

k1 = K (〈J U〉(0))1t, (33)

〈J U〉(1) = 〈J U〉(0)+ 1
2 k1, k2 = K (〈J U〉(1))1t, (34)

〈J U〉(2) = 〈J U〉(0)+ 1
2 k2, k3 = K (〈J U〉(2))1t, (35)

〈J U〉(3) = 〈J U〉(0)+ k3, k4 = K (〈J U〉(3))1t. (36)

Then to integrate one time step:

〈J U〉(tn
+1t)= 〈J U〉(tn)+ 1

6(k1+ 2k2+ 2k3+ k4)+ O((1t)5). (37)

With local truncation error of O((1t)5), as shown in (37), the accumulated error
for the classical Runge–Kutta method is then O((1t)4).

3.4. Spatial discretization. If � is the set of ordered pairs of indices (i, j) over
which we find 〈J U〉i, j , then let Gm,n(�), with m and n integers, be the set of grid
cells � expanded by m layers of additional cells at both ends in the α direction and
n layers of additional cells at both ends in the β direction. These additional cells
are called ghost cells. For a set of indices 3 of grid cells and ghost cells, let Fα(3)

be the set of their faces of constant α and Fβ(3) the set of their faces of constant β.
In the remainder of this section, we show how to compute the right-hand side

of (30), the evolution equation for 〈J U〉. The method is motivated by that in [32] for
Cartesian grids, extended to mapped grids in [10] and to mapped multiblock grids
in [31]. What is new here is that we are calculating on a 2D manifold in 3D and also
that we have vector components that require a basis transformation (Step (2) below).

The discrete undivided-difference formulae denoted by Dα and Dβ with various
superscripts are defined in Appendix A.
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Figure 2. Sample interpolation stencils of two different ghost cells, used in Step (2). The
procedure for finding the stencil is explained in [31]. The set of grid cells in the stencil is
found as follows. First, find the center of the ghost cell on the cubed sphere, as marked
with ∗ in this figure, and let c be the valid grid cell on a neighboring panel that contains
that point. The stencil set then consists of all the valid cells sharing a vertex with c and also
the cells two away from c in both directions along both coordinate dimensions, making the
appropriate transformation when crossing a panel boundary.

(1) From 〈J U〉 on � and 〈J 〉 on G1,1(�), obtain 〈U〉 on � by using (B-32), with
adjustments at panel boundaries as described in Appendix B4. We then have 〈U〉
accurate to fourth order in 1α =1β.

(2) Interpolate 〈U〉 from � to the ghost cells G3,3(�)−� by the method of least
squares from stencils in [31]. See Figure 2 for an illustration of interpolation stencils
for two sample ghost cells.

Once we find the set of stencil cells for a particular ghost cell, we rotate the
entire sphere so that the center of the ghost cell lies on the equator. Let λ and φ
denote the latitudinal and longitudinal displacements, respectively, of any point
from the ghost cell’s new center on the equator. For each stencil cell indexed by s,
let λs and φs be the latitudinal and longitudinal displacements of its center from
the rotated ghost-cell center. Define the stencil’s average angular distance

θ =
1
N

∑
s

√
λ2

s +φ
2
s , (38)

where N is the number of stencil cells.
For the scalar component 〈h〉 of 〈U〉, we follow the procedure in [31], ap-

proximating h by a Taylor polynomial over latitude and longitude and finding its
coefficients apq for p, q ≥ 0 and p+ q ≤ 3 satisfying as closely as possible the
overdetermined system of N equations∑

p,q≥0;p+q≤3

apq

〈(
λ

θ

)p(
φ

θ

)q〉
s
= 〈h〉s (39)



A FINITE-VOLUME METHOD FOR SOLVING SHALLOW-WATER EQUATIONS 131

for all stencil cells s, where the notation 〈 · 〉s represents averaging over cell s and
(λ, φ) ranges over its values in cell s. The system is overdetermined because there
are 10 coefficients apq for which to solve and the number of equations, N , is either
12 or 13. (It is 12 only if the ghost cell is near the intersection of three panels.) We
then evaluate the Taylor polynomial averaged over the ghost cell g:

〈h〉g =
∑

p,q≥0;p+q≤3

apq

〈(
λ

θ

)p(
φ

θ

)q〉
g
. (40)

The procedure above applies to the scalar component 〈h〉 of 〈U〉, but 〈U〉 also
contains 〈huα〉 and 〈huβ〉, which are components in different bases in adjacent
panels, so in order to find 〈huα〉 and 〈huβ〉 at the ghost cell, a basis transformation
must be made.

At a point (λ, φ), let the basis-transformation matrix from a source panel S,
containing a stencil cell, to a destination panel D, containing the ghost cell, be
denoted

TS→D(λ, φ)=

(
T αα

S→D(λ, φ) T αβ

S→D(λ, φ)

T βα

S→D(λ, φ) T ββ

S→D(λ, φ)

)
.

Then our modification to (39)–(40) is to find coefficients bpq and cpq of two
Taylor polynomials in the basis of the panel P(g) containing the ghost cell g,
satisfying as closely as possible the overdetermined system of 2N equations

∑
p,q≥0;p+q≤3

bpq

〈
T αα

P(s)→P(g)(λ, φ)

(
λ

θ

)p(
φ

θ

)q〉
s

+

∑
p,q≥0;p+q≤3

cpq

〈
T αβ

P(s)→P(g)(λ, φ)

(
λ

θ

)p(
φ

θ

)q〉
s
= 〈huα〉s, (41)

∑
p,q≥0;p+q≤3

bpq

〈
T βα

P(s)→P(g)(λ, φ)

(
λ

θ

)p(
φ

θ

)q〉
s

+

∑
p,q≥0;p+q≤3

cpq

〈
T ββ

P(s)→P(g)(λ, φ)

(
λ

θ

)p(
φ

θ

)q〉
s
= 〈huβ〉s (42)

for all stencil cells s, where P(s) is the panel containing cell s. Then we evaluate

〈huα〉g =
∑

p,q≥0;p+q≤3

bpq

〈(
λ

θ

)p(
φ

θ

)q〉
g
, (43)

〈huβ〉g =
∑

p,q≥0;p+q≤3

cpq

〈(
λ

θ

)p(
φ

θ

)q〉
g
. (44)
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(3) On cells in G3,3(�), deconvolve from averages 〈U〉 to U at centers by

Ui, j = 〈U〉i, j −
1
24(D

2c
α 〈U〉)i, j −

1
24(D

2c
β 〈U〉)i, j for (i, j) ∈ G2,2(�). (45)

This formula is from (B-23) in Appendix B3 and is accurate to fourth order in
1α =1β.

(4) Obtain averages 〈W〉 of primitive variables on G2,2(�) as follows. Set

Wi, j =W(Ui, j ) for (i, j) ∈ G2,2(�), (46)

W i, j =W(〈U〉i, j ) for (i, j) ∈ G3,3(�) (47)

with W(U) being the pointwise function converting conserved variables to primitive
variables. Then convolve:

〈W〉i, j =Wi, j +
1
24(D

2c
α W)i, j +

1
24(D

2c
β W)i, j for (i, j) ∈ G2,2(�). (48)

The result is accurate to fourth order in 1α =1β because it uses (B-22) from
Appendix B3, and W i, j −Wi, j is second-order in 1α =1β. In (48), we apply the
difference operators to W instead of W to reduce the depth of ghost cells required,
without dropping order.

(5) Interpolate 〈W〉 from averages over grid cells and ghost cells to averages over
faces, using the fourth-order-accurate formulae from [32]:

〈W〉i+ 1
2 , j =

7
12(〈W〉i, j +〈W〉i+1, j )−

1
12(〈W〉i−1, j +〈W〉i+2, j )

for (i + 1
2 , j) ∈ Fα(G0,1(�)), (49)

〈W〉i, j+ 1
2
=

7
12(〈W〉i, j +〈W〉i, j+1)−

1
12(〈W〉i, j−1+〈W〉i, j+2)

for (i, j + 1
2) ∈ Fβ(G1,0(�)). (50)

(6) Deconvolve from face-averaged 〈W〉 to face-centered W , using (B-27) to obtain
Wi+ 1

2 , j for (i + 1
2 , j) ∈Fα(�) and (B-29) to obtain Wi, j+ 1

2
for (i, j + 1

2) ∈Fβ(�).
These are fourth-order-accurate in 1α =1β.

(7) Set face-centered fluxes:

Fα

i+ 1
2 , j
= F(Wi+ 1

2 , j ) for (i + 1
2 , j) ∈ Fα(�), (51)

Fα

i+ 1
2 , j
= F(〈W〉i+ 1

2 , j ) for (i + 1
2 , j) ∈ Fα(G0,1(�)), (52)

Fβ

i, j+ 1
2
= F(Wi, j+ 1

2
) for (i, j + 1

2) ∈ Fβ(�), (53)

Fβ

i, j+ 1
2
= F(〈W〉i, j+ 1

2
) for (i, j + 1

2) ∈ Fβ(G1,0(�)). (54)

The difference Fα

i+ 1
2 , j
− Fα

i+ 1
2 , j

is second-order in 1α =1β as is the difference
Fβ

i, j+ 1
2
− Fβ

i, j+ 1
2
.
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(8) Convolve face-centered Fα to obtain face averages 〈Fα
〉 and convolve face-

centered Fβ to obtain face averages 〈Fβ
〉 with the fourth-order accurate formulae

〈Fα
〉i+ 1

2 , j = Fα

i+ 1
2 , j
+

1
24(D

2f
β Fα)i+ 1

2 , j for (i + 1
2 , j) ∈ Fα(�), (55)

〈Fβ
〉i, j+ 1

2
= Fβ

i, j+ 1
2
+

1
24(D

2f
α Fβ)i, j+ 1

2
for (i, j + 1

2) ∈ Fβ(�). (56)

We take derivatives of F instead of F in order to reduce the depth of ghost cells re-
quired. Since F and F differ only by second order in1α=1β, we see from (A-14)
that including F rather than F in (55)–(56) results in a difference in 〈Fα

〉i+ 1
2 , j or

〈Fβ
〉i, j+ 1

2
that is fourth-order in 1α =1β.

(9) Add artificial dissipation: to smooth out oscillations due to the central difference
operator, we add an artificial dissipation to the fluxes. The effect of this modification
is a sixth-order diffusive operator, which retains the order of accuracy of the
underlying scheme.

First set vmax to be the maximum wave speed over the whole domain, which for
advection is the maximum of r(|uα| + |uβ |) and for shallow-water equations is the
maximum of

√
Gh+ r max{|uα|, |uβ |}, where h, uα, and uβ are the components

of W . Then modify the fluxes with fifth undivided differences:

〈Fα
〉i+ 1

2 , j = 〈F
α
〉i+ 1

2 , j − γ vmax(D5f
α 〈U〉)i+ 1

2 , j for Fα(�), (57)

〈Fβ
〉i, j+ 1

2
= 〈Fβ

〉i, j+ 1
2
− γ vmax(D5f

β 〈U〉)i, j+ 1
2

for Fβ(�), (58)

where γ = 1
128 for advection and γ =

√
2/64 for shallow-water equations. The

coefficient γ has been chosen empirically so that the artificial dissipation is enough
to smooth out oscillations but not so large as to detract from accuracy.

(10) Find the fourth-order convolution products

〈J Fα
〉i+ 1

2 , j = 〈J 〉i+ 1
2 , j 〈F

α
〉i+ 1

2 , j +
1
12(D

1f
β 〈J 〉)i+ 1

2 , j (D
1f
β 〈F

α
〉)i+ 1

2 , j

for Fα(�), (59)

〈J Fβ
〉i, j+ 1

2
= 〈J 〉i, j+ 1

2
〈Fβ
〉i, j+ 1

2
+

1
12(D

1f
α 〈J 〉)i, j+ 1

2
(D1f

α 〈F
β
〉)i, j+ 1

2

for Fβ(�). (60)

We take differences of Fα and Fβ instead of 〈Fα
〉 and 〈Fβ

〉 in order to reduce the
depth of ghost cells required, without dropping order. These approximations are
fourth-order-accurate in 1α =1β.

(11) For each grid-cell face that is shared by two panels, after 〈J Fα
〉 or 〈J Fβ

〉

is computed on that face separately for each panel in Step (10), replace it by its
average with the corresponding 〈J Fα

〉 or 〈J Fβ
〉 calculated on the same face in
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the other panel that shares it. Note that 〈J Fα
〉 or 〈J Fβ

〉 from the other panel may
need to be reoriented as follows:

• Faces that are shared with equatorial panels 2 or 4 and either of the polar
panels, 5 or 6, have constant β on the equatorial panel and constant α on the
polar panel; hence, on these faces, 〈J Fβ

〉 on the equatorial panel is averaged
with 〈J Fα

〉 on the polar panel.

• Before averaging, sign changes are required for faces on the other panel along
the following interfaces: 〈J Fβ

〉 on Panel 2 with 〈J Fα
〉 on Panel 5, 〈J Fβ

〉 on
Panel 4 with 〈J Fα

〉 on Panel 6, and 〈J Fβ
〉 on Panel 3 with 〈J Fβ

〉 on either
of the polar panels, 5 or 6.

For the vector fluxes, Tαk and Tβk , this is more complicated because the com-
ponents are in different bases in different panels. Write

8α = J
(

Tαα

Tβα

)
on faces of constant α, (61)

8β = J
(

Tαβ

Tββ

)
on faces of constant β. (62)

Then we set the following from (52), (54), and (59)–(60):

• 〈8α〉i+ 1
2 , j , vector components of 〈J Fα

〉i+ 1
2 , j , for (i + 1

2 , j) ∈ Fα(�),

• 8α
i+ 1

2 , j
, vector components of Ji+ 1

2 , j Fα

i+ 1
2 , j

, for (i + 1
2 , j) ∈ Fα(G0,1(�)),

• 〈8β〉i, j+ 1
2
, vector components of 〈J Fβ

〉i, j+ 1
2
, for (i, j + 1

2) ∈ Fβ(�),

• 8
β

i, j+ 1
2
, vector components of Ji, j+ 1

2
Fβ

i, j+ 1
2
, for (i, j + 1

2) ∈ Fβ(G1,0(�)).

We deconvolve to face centers

8α
i+ 1

2 , j
= 〈8α〉i+ 1

2 , j −
1

24(D
2f
β 8

α)i+ 1
2 , j for (i + 1

2 , j) ∈ Fα(�), (63)

8
β

i, j+ 1
2
= 〈8β〉i, j+ 1

2
−

1
24(D

2f
α 8

β)i, j+ 1
2

for (i, j + 1
2) ∈ Fβ(�) (64)

and convert to the orthonormal frame with orthonormalization matrices Oα
i+ 1

2 , j
and

O
β

i, j+ 1
2

(see [56]) at face centers:

2α
i+ 1

2 , j
= Oα

i+ 1
2 , j
8α

i+ 1
2 , j

for (i + 1
2 , j) ∈ Fα(�), (65)

2
β

i, j+ 1
2
= O

β

i, j+ 1
2
8
β

i, j+ 1
2

for (i, j + 1
2) ∈ Fβ(�), (66)

2α
i+ 1

2 , j
= Oα

i+ 1
2 , j
8α

i+ 1
2 , j

for (i + 1
2 , j) ∈ Fα(G0,1(�)), (67)

2
β

i, j+ 1
2
= O

β

i, j+ 1
2
8
β

i, j+ 1
2

for (i, j + 1
2) ∈ Fβ(G1,0(�)). (68)
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On each face of a panel boundary, we replace each of 2α and 2α, or each of 2β

and 2β , with the averages from the two panels sharing that face. In the case of
faces shared by either Panel 2 or 4 and either Panel 5 or 6, we flip the sign of the
quantity from the opposite panel before averaging.

Finally, we set the vector components of 〈J Fα
〉i+ 1

2 , j and 〈J Fβ
〉i, j+ 1

2
to

〈8̃α〉i+ 1
2 , j = (O

α

i+ 1
2 , j
)−12α

i+ 1
2 , j
+

1
24(D

2f
β ((O

α)−12α))i+ 1
2 , j

for (i + 1
2 , j) ∈ Fα(�), (69)

〈8̃β〉i, j+ 1
2
= (O

β

i, j+ 1
2
)−12

β

i, j+ 1
2
+

1
24(D

2f
β ((O

β)−12β))i, j+ 1
2

for (i, j + 1
2) ∈ Fβ(�). (70)

Now for (i, j) ∈�, we have fourth-order-accurate 〈J Fα
〉i± 1

2 , j and 〈J Fβ
〉i, j± 1

2
on the right-hand side of (30), the evolution equation for 〈J U〉i, j .

The source term 〈J9〉i, j in (30) is computed as follows. From (46), we have Wi, j

on centers of grid cells (i, j)∈G2,2(�). Since9 is a function of W , we can find9i, j

for (i, j) ∈ G1,1(�), multiply it by Ji, j , and apply the convolution formula (B-22)
to find the averaged 〈J9〉i, j for (i, j) ∈� to fourth-order accuracy.

4. Adaptive mesh refinement

With adaptive mesh refinement (AMR), we extend the approach of [19] on single-
block mapped grids to the mapped-multiblock grids of the cubed sphere. What
makes the cubed sphere different from single-block mapped grids is that the solution
is on a manifold, we are able to use analytic formulae for integrals of 〈J 〉, and
adjacent panels have different mappings.

To implement adaptive mesh refinement, we make use of the Chombo library
for parallel AMR [1] and follow the strategies used therein. Adaptive-mesh-
refinement calculations are performed on a hierarchy of nested meshes �` ⊂ 0`,
with �` ⊃ Cn`ref

(�`+1) where n`ref denotes the refinement ratio between levels `
and `+ 1 and Cn`ref

denotes coarsening by this ratio. At level `, we label all cells
inside �` as being valid and all cells outside �` (such as ghost cells) as being
invalid. Typically, �` is decomposed into a disjoint union of rectangles in order to
perform calculations efficiently. We assume that there are a sufficient number of
cells on level ` separating the level-(`+ 1) cells from the level-(`− 1) cells such
that interpolations to fill invalid ghost cells on finer levels can be independently
performed. We will refer to grid hierarchies that meet this condition as being
properly nested.

The top-level procedure for advancing level ` from time t` by a time step of
length 1t` is shown in Figure 3.
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Advance(`, t`,1t`):

(1) Regrid levels finer than ` if required (see Section 4.1).

(2) Advance level ` using the methods described in Section 3 with a Runge–Kutta
time-stepping method.

(3) Interpolate to the invalid ghost cells surrounding level `+ 1 (see Section 4.2).
A least-squares algorithm is used to compute the interpolating polynomial
in each coarse cell. The interpolation need not be conservative because the
resulting values in the ghost cells are only used to reconstruct the flux on the
faces of the valid cells.

(4) Start level `+ 1 at Step (1). Level `+ 1 is refined in time (subcycled) with a
time step 1t`+1

=1t`/n`ref.

(5) Average the solution from level `+1 and correct fluxes at coarse-fine interfaces
to ensure conservation.

Figure 3. Pseudocode for advancing level ` from time t` to time t`+1t`.

4.1. Regridding. Periodically, it is necessary to change the grid hierarchy in re-
sponse to changes in the solution. During a regrid, we generate a new grid hierarchy,
{�`,new

}`=`base+1,...,`max leaving the mesh at `base and all coarser levels unchanged.
For ` = `base, . . . , `

new
max − 1, we use a least-squares algorithm to interpolate

ghost values. For each ghost cell Vi, j , let I(i, j) denote the set of grid cells of its
interpolation stencil. We solve a least-squares system for the coefficients ai, j

p,q of a
polynomial interpolant of U ,∑

p≥0;q≥0;p+q≤3

ai, j
p,q〈α

pβq
〉i ′, j ′ = 〈U〉i ′, j ′ for all (i ′, j ′) ∈ I(i, j) (71)

(where α p and βq indicate powers of α and β), subject to a conservation constraint
on J U , ∑

(i ′, j ′)∈C−1({(i, j)})

∑
p≥0;q≥0;p+q≤3

ai, j
p,q〈Jα

pβq
〉i ′, j ′ = 〈J U〉i, j . (72)

The moments 〈α pβq
〉 can be determined analytically, and the 〈Jα pβq

〉 are computed
using the product formula. Given this interpolant, we can construct 〈J U〉 on the
grid cells at level `+ 1 within Vi, j :

〈J U〉i ′, j ′ =
∑

p≥0;q≥0;p+q≤3

ai, j
p,q〈Jα

pβq
〉i ′, j ′ for all (i ′, j ′) ∈ C−1({(i, j)}). (73)

This interpolation is conservative.
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4.2. Interpolating to ghost cells at next finer level. As shown in Section 3.4, ad-
vancing one time step by the method of Section 3 requires three layers of ghost cells.
In Step (3) of the algorithm of Figure 3, we must interpolate 〈J U〉 from level ` to
the ghost cells of level `+ 1. In particular, after Step (2) of Advance(`, t`,1t`)
advances the solution at level ` from time t` to time t`+1t`, Step (3) interpolates the
level-` solution to ghost cells of level `+1 at times t`+s1t`+1 for s=0, . . . , n`ref−1,
where 1t`+1

=1t`/n`ref is the length of the time step at level `+ 1. Step (3) has
the following substeps:

(a) Interpolate 〈J U〉 on grid cells of level ` to the same grid cells at the intermediate
times t` + s1t`+1 for s = 1, . . . , n`ref − 1. This temporal interpolation uses
initial 〈J U〉(0) = 〈J U〉(t`) and k1, k2, k3, and k4 in the Runge–Kutta method
defined in (33)–(36) in Section 3.3. As derived in [20], for 0≤ χ ≤ 1, we have

〈J U〉(t`+χ1t`)= 〈J U〉(t`)+χk1+
1
2χ

2(−3k1+ 2k2+ 2k3− k4)

+
2
3χ

3(k1− k2− k3+ k4)+ O((1t`)4). (74)

(b) At each of the times t`+ s1t`+1 for s = 0, . . . , n`ref− 1, fill in d(L + 2)/n`refe

layers of extrapanel ghost cells of 〈J U〉 at level `, by the method of least
squares using interpolation stencils, described in Step (2) of Section 3.4.

(c) Fill in ghost cells of level `+ 1, by least-squares interpolation from the valid
cells and ghost cells at level `.

The temporal interpolation in Step (a) is the same as in [32]. With error of
O((1t`)4), this interpolation preserves the order of the Runge–Kutta temporal
discretization of Section 3.3. The spatial interpolation of Steps (b)–(c) is also
fourth-order in the grid spacing.

5. Numerical tests

The Courant–Friedrichs–Lewy (CFL) number is

1t
1α

cmax, (75)

where 1t is the time step and cmax is the maximum wave speed.
As shown in [10], the stability constraint for the classical Runge–Kutta method

we use is that the CFL number satisfy

1t
1α

cmax . 2.06. (76)

For advection, cmax is the maximum over the domain of r(|uα|+|uβ |). For shallow-
water equations, cmax is the maximum over the domain of the characteristic velocity
2
√

Gh+ r(|uα| + |uβ |).
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We note that the results presented here are for a method that does not employ
any limiters or nonlinear filters that would suppress oscillations at discontinuities.
We have constructed limiters for the Cartesian versions of the method in [32; 6].
While the extension of the approach used in that work to the present setting is
straightforward, we have chosen not to apply it here, in order to obtain a clean
assessment of the properties of the basic high-order method. There is a separate
issue regarding positivity preservation, which historically has been an additional
goal in the design of limiters. Our thinking on this issue is that the use of limiters
for positivity preservation is an excessive constraint on the design choices in the
method. Typically, a limiter can be thought of as a nonlinear hybridization of low-
and high-order fluxes. To obtain a positivity-preserving limiter, it is a necessary
condition for the low-order method to be positivity-preserving. For the case of
advection, it is easy to construct a combination of a discretely divergence-free
velocity field and a density distribution such that the only positivity-preserving
field is donor-cell plus an explicit diffusion, which has a CFL time-step constraint
that scales with the inverse of the dimensionality of the problem. Such a time-step
constraint is stricter than that of the high-order methods of the type described here,
even in 3D. For that reason, we are pursuing a different approach to positivity
preservation based on redistribution of mass as a postprocessing step at the end
of each time step [22]. Such an approach greatly expands the design space of
limiter-based methods; for a discussion, see [6].

5.1. Deformational flow. To test the performance of the model under horizontal
tracer transport, the deformational flow test [34, Test 4] is employed. This test is
significantly more challenging than the solid-body rotation test of [61] since it not
only tests divergent-free advection but also includes deformational stretching and
the formation of thin filaments in the tracer field followed by subsequent recovery
of the original profile. To obtain an analytical reference solution, the deformational-
flow test reverses the time-varying flow field after half the total simulation period.
The availability of an analytical reference solution at the final time means that
error norms can be easily computed. Further, the addition of a solid-body rotation
component to the flow field prevents the possible cancellation of errors when the
flow is reversed.

In the transport equation (20) for h, the longitudinal component uλ and latitudinal
component uφ of the flow field u take the form

uλ = k sin2(λ′) sin(2φ) cos
(π t

T

)
+

2π
T

cosφ, (77)

uφ = k sin(2λ′) cosφ cos
(π t

T

)
, (78)
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Figure 4. Plot of h at initial time in the deformational-flow test example of Section 5.1,
with grids of resolutions c32/c128/c512. At this time, there is 34.4% c128 coverage
and 27.9% c512 coverage. A dashed white contour line is drawn for h at the common
refinement threshold of 5× 10−5, and dotted black contour lines are drawn at values of
the positive tick marks in the legend.

where λ′ = λ− 2π t/T , k = 2, T = 5 days, and k = 2. The height field consists of
two superimposed smooth 2D Gaussian surfaces,

h(λ, φ)=
∑

i∈{1,2}

hi (λ, φ), (79)

hi (λ, φ)= hmax exp{−b0δxyz(λ, φ; λi , φi )}, (80)

where i ∈ {1, 2}, hmax = 1, b0 = 10, and δxyz(λ, φ; λi , φi ) is the 3D absolute
Cartesian distance between (λ, φ) and (λi , φi ) on the unit sphere,

δxyz(λ, φ; λi , φi )=
[
(cosφ cos λ− cosφi cos λi )

2

+ (cosφ sin λ− cosφi sin λi )
2
+ (sinφ− sinφi )

2]1/2. (81)

The centers of the Gaussian surfaces are located at (λ1, φ1) = (5π/6, 0) and
(λ2, φ2) = (7π/6, 0). Although [34] has the setting b0 = 5, here we instead set
b0 = 10 to narrow the width of the Gaussian surfaces, in order to highlight the
benefits of AMR.

We run this example with the following resolutions:

• uniform resolution, with Nc a power of 2 from 32 through 1024,

• on two levels, the coarser level Nc a power of 2 from 32 through 256 and the
finer level consisting of grids that are a factor of 4 finer and are located in
regions where |h| ≥ 8× 10−4/(Nc/64)4, and

• on three levels, the coarsest level Nc either 32 or 64, the middle level consisting
of grids that are a factor of 4 finer and are located in regions where |h| ≥
8× 10−4/(Nc/16)4, and the finest level consisting of grids that are a factor
of 4 finer than the middle-level grids and are located in the same regions.
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Finest Uniform resolution Two levels Three levels
resolution max error rate max error rate max error rate

c32 4.003× 10−2
0.88

c64 2.162× 10−2
1.73

c128 6.527× 10−3
3.33 6.544× 10−3

3.33
c256 6.507× 10−4

3.97 6.506× 10−4
3.97

c512 4.150× 10−5
4.00 4.150× 10−5

4.00 4.150× 10−5
4.00

c1024 2.586× 10−6 2.586× 10−6 2.586× 10−6

Table 2. Maximum solution error at the final time, and convergence rates, for the
deformational-flow test example of Section 5.1. When there is more than one level,
the refinement ratio between consecutive levels is set to 4. Hence, in the two-level runs
with results given here, where the finer levels are c128 through c1024, the coarser level is
c32 through c256. Of the three-level runs, the first one has the refinements of the levels as
c32/c128/c512 and the second has c64/256/c1024.

Figure 4 shows a plot of h at the initial time. The refinement thresholds have
been selected to be comparable to the predicted asymptotically fourth-order solution
error. We pick time step 1t = 0.4 day/Nc, and we find cmax = 5.99 rad/day, so the
CFL number from (75) is 1.53.

Table 2 shows the maximum solution error for each of the different runs. This
table also shows the convergence rate of the maximum solution error, computed
from two successively finer resolutions: since each successive resolution is re-
fined by a factor of 2, this rate is the base-2 logarithm of the ratio of the errors.
We see that the solution error converges to fourth order, and the error in each
multilevel run is as good as that in the single-level run with the resolution of
the finest level, with the level refinement criteria we use. Since the refinement
criteria are such that finer grids are added where h is above a certain thresh-
old, this example is not necessarily good for showing convergence at refinement
boundaries, and so in Section 5.4, we show results of an example with fixed
grids.

For the three simulations of deformational flow with coarsest level c32, Figure 5
shows plots of the error in h at the final time, where the maximum errors are the
numbers shown in the first rows of the columns of Table 2. For these same three
simulations, Figure 6 shows plots of h at the midpoint in time.

Figure 7 shows the fraction of the domains covered by finer-level grids during
the multilevel simulations. Owing to the pattern of deformational flow, domain
coverage of refined levels is highest near the midpoint in time and, in our runs,
reaches its maximum of 68.2% for coverage of c128 in the c32/c128/c512 run.
Because the refinement thresholds are equal, the coverage of c512 is almost the
same in the c128/c512 and c32/c128/c512 runs. For the same reason, the coverage
of c1024 is almost the same in the c256/c1024 and c64/c256/c1024 runs.
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Uniform resolution, c32, at t = T : |error| ≤ 4.003× 10−2

Two levels, c32/c128, at t = T : |error| ≤ 6.544× 10−3

Three levels, c32/c128/c512, at t = T : |error| ≤ 4.150× 10−5

Figure 5. Plots of the error in h at the final time in the deformational-flow test example of
Section 5.1, with c32 at the coarsest level. Grids at all levels at this time are shown. Black
contour lines are drawn at values of the tick marks in the legend: dotted for positive and
dashed for negative. For the two-level and three-level runs, dashed white contour lines are
drawn at the refinement threshold for the calculated h at this time.
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Uniform resolution, c32, at t = T/2

Two levels, c32/c128, at t = T/2: 24.2% c128 coverage, with refinement threshold 0.0128

Three levels, c32/c128/c512, at t = T/2: 59.0% c128 coverage and 32.0% c512 coverage,
both with refinement threshold 5× 10−5

Figure 6. Plot of h at the midpoint in time, t=T/2, in the deformational-flow test example
of Section 5.1, with c32 at the coarsest level. Grids at all levels at this time are shown.
Dotted black contour lines are drawn at values of the positive tick marks in the legend, and
in the two multilevel runs, dashed white contour lines are drawn at the refinement threshold.
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Figure 7. Plot of domain coverage of finer levels over time in the deformational-flow test
of Section 5.1. Left: coverage of the finer level in two-level runs. Coverage increases with
greater resolution because the refinement threshold is proportional to the fourth power of
the grid spacing at the coarser level. Right: coverage of the middle and finest levels in
three-level runs. As indicated by the red and dark-blue curves, coverage of the finest level
in each three-level run matches coverage of the finer level in the two-level run with the
same finest-level resolution because the refinement threshold is the same. In each three-
level run, coverage of the middle level (black and green curves) is necessarily higher than
coverage of the finest level (dark-blue and red curves) because proper-nesting conditions
must be maintained. The gap between each three-level run’s middle-level and finest-level
coverage shrinks as resolution increases because proper-nesting conditions are expressed
in terms of number of grid cells and grid cells become smaller with finer resolution.

5.2. Barotropically unstable jet without initial perturbation. The barotropic-
instability test case of [15] consists of a zonal jet with compact support at a latitude
of 45◦. As in [24; 60], we first show the results of this test without the initial height
perturbation that initiates the instability because we can check the order of accuracy
of our method by comparing with the exact steady-state solution.

We pick time step 1t = 0.25 day/Nc, and we find cmax = 10.1rad/day, so the
CFL number from (75) is 1.61. We run this example up to day 5 with the following
resolutions:

• uniform resolution, with Nc a power of 2, from 16 through 1024,

• on two levels, the coarser level Nc a power of 2 from 16 through 256 and the
finer level consisting of grids that are a factor of 4 finer and are located in
regions where relative vorticity exceeds 0.32/π day−1

= 0.102 day−1, and
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Figure 8. Plots of maximum error in height for the example in Section 5.2 of the steady-
state (but unstable) jet of [15] without the initial perturbation, shown at intervals of every
half day. Plots for runs with the same finest-level resolution have the same color.

• on three levels, the coarsest level Nc a power of 2 from 16 through 64,
the middle level consisting of grids that are a factor of 4 finer and are lo-
cated in regions where relative vorticity exceeds 0.32/π day−1

= 0.102 day−1,
and the finest level consisting of grids that are a factor of 4 finer than the
middle-level grids and are located in regions where relative vorticity exceeds
1.28/π day−1

= 0.407 day−1.

Figure 8 shows the maximum error in height for this example. We find that
on uniform grids (left plot), the error is approximately fourth-order in the spatial
resolution for c128 and finer; at coarser resolutions, the barotropic jet is not resolved,
leading to a loss of convergence. For the two-level runs (center plot), the curves of
maximum error over time match those of the finer level with uniform resolution
for c16/c64, c32/c128, and c64/c256; but with more grid resolution, the two-level
error is higher because the refinement threshold is too high to resolve it. For the
three-level runs (right plot), the maximum error for c16/c64/c256 is a little higher
than that for c64/c256 after day 3, and the maximum error for c32/c128/c512 is a
little higher than that for c128/c512 after day 4, but the maximum errors at earlier
times are higher because of the refinement threshold.

5.3. Barotropic instability. In the barotropic-instability test case of [15], a small
height perturbation is added atop the jet, which leads to the controlled formation of
an instability in the flow. The relative vorticity of the flow field at day 6 can then
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be visually compared against a high-resolution numerically computed solution [15;
49]. For comparison, we use the simulation without additional explicit diffusion
since the additional diffusion suggested in [15] leads to a significantly different
flow field.

As in Section 5.2, we pick time step 1t = 0.25 day/Nc. We now find cmax =

10.4 rad/day, so the CFL number from (75) is 1.66. We run this example up to day 6
with the same resolutions and refinement criteria as in Section 5.2. In the absence
of an exact solution, we compare with the uniform c1024 solution as a reference.

Figure 9 shows the relative vorticity field at the final time for uniform c32, two-
level c32/c128, and three-level c32/c128/c512. As shown in this figure, features are
not sufficiently resolved on uniform c32, but the addition of a finer level refined
by a factor of 4 improves the resolution in the region of instability (c32/c128), and
resolution is further improved with the addition of a third level (c32/c128/c512).

Figure 10, on the top half, shows the maximum difference in relative vorticity
between uniform c1024 and each other run at half-day intervals. Above the refine-
ment threshold of 0.102 day−1, curves of maximum difference with c1024 look
approximately the same when the finest level has the same resolution. Specifically,
the result for two-level c16/c64 matches that for uniform c64, c32/c128 matches
uniform c128, c64/c256 and c16/c64/c256 match uniform c256, and c128/c512 and
c32/c128/c512 match uniform c512 above the refinement threshold of 0.102 day−1.
The bottom half of Figure 10 shows the maximum difference in relative vorticity
between each two-level and three-level run and the corresponding run having
uniform resolution of the finest level; this difference stays below the refinement
threshold until approximately day 5, when the instability is fully formed.

Total energy E is invariant under the shallow-water equations and is defined by

E = 1
2 hu · u+ 1

2 G(H 2
− z2

s ). (82)

We calculate total energy by an area-weighted sum over the whole domain, accurate
up to O((1α)2)= O((1β)2). In regions covered by grids with multiple levels of
refinement, we take the sum over the finest level. Figure 11 shows the difference in
total energy over time from its initial value, normalized by the initial total energy,
for several runs: uniform c32, c128, and c512, two-level c32/c128, and three-
level c32/c128/c512. We observe that higher spatial resolution corresponds to a
substantial decrease in energy loss to numerical diffusion, with spatial convergence
occurring at roughly fourth-order accuracy up to about day 4. At the highest
resolutions, the calculation of total integrated shallow-water energy is dominated
by truncation errors, leading to highly oscillatory behavior during the early part of
the simulation. Results for the two-level c32/c128 and especially the three-level
c32/c128/c512 are even more oscillatory because refinement does not necessarily
preserve total energy. Nonetheless, all the simulations show a positive mean energy
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Uniform resolution, c32

Two levels, c32/c128: 54.2% c128 coverage, with refinement threshold 0.102 day−1

Three levels, c32/c128/c512: 54.2% c128 coverage, with refinement threshold 0.102 day−1,
and 32.9% c512 coverage, with refinement threshold 0.407 day−1

Figure 9. Relative vorticity field (in units of day−1) at the final time (6 days) in the
barotropic-instability test of Section 5.3, for c32 at the coarsest level. Black contour lines
are drawn at values of the tick marks in the legend: dotted for positive and dashed for
negative. In the two-level and three-level cases shown here, the second-level grids are the
same and cover an area that coincides approximately with the northern hemisphere.
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Figure 10. Plots of maximum differences in relative vorticity (in units of day−1) between
different runs of the barotropic-instability test of Section 5.3, shown at intervals of every
half day. Plots for runs with the same finest-level resolution have the same color. Top:
difference between uniform c1024 and (left to right) uniform, two-level, and three-level
runs having resolution given in each legend. Bottom: difference between (left to right)
two-level and three-level runs and the run with uniform resolution of the finest level in
each case. On every plot, the refinement threshold of 0.102 day−1 from the coarsest level
is marked with a dashed black line.
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uniform c512

Figure 11. Plot of absolute value over time of the relative difference in total energy from
initial value for five different runs of the barotropic-instability test of Section 5.3. Note
that the curves for uniform c128 and for c32/c128 mostly overlap. The relative difference
is negative at all steps after the initial time in all of these simulations with the exception of
the c32/c128/c512 simulation, in which the relative difference is positive at the time steps
marked with circles on the graph; as can be seen on the graph, all of these time steps occur
before the end of day 1 and the relative difference never exceeds 2× 10−8.

loss, which suggests stability of the underlying numerical scheme. The three-level
c32/c128/c512 simulation is the only one that shows total energy higher than its
initial value at any stage of the simulation, but the stages where this occurs are all
during the first day.

5.4. Gaussian pulse. The following example is included to test high-order conver-
gence across refinement boundaries that are not characteristic. The initial velocity
is zero, and the initial height field is a function of the latitude and is specified by a
smoothed Gaussian with parameters h0 = 5000 m as background, hδ = 500 m as
maximum perturbation, and w = π/10 as angular width. With latitude φ, setting

η =

1
2π −φ

w
,

then

h(η)=
{

h0+ hδ exp(−4η2) cos6(1
2πη) if η < 1,

h0 otherwise.
(83)
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t = 0 t = 1
2 day

Figure 12. Total-height field for the Gaussian-pulse test case of Section 5.4 at (left) initial
time t = 0 and (right) final time t = 1

2 day. The base level is c128. There are fixed grids
refined by a factor of 4 (hence a subset of c512) around the north pole, and these are shown
with darker outlines than the coarse grids. Black contour lines (dotted) are drawn on each
plot at values of the tick marks in the corresponding legend. Note the different color maps
as initial h ranges from 5000 to 5500 meters and final h ranges from 4964 to 5049 meters.

The smoothing factor cos6(1
2πη) is present in order to ensure that h is C6. We

calculate from times 0 to 1
2 day, at which time the Gaussian has spread to the

equator.
We pick time step1t = 0.4 day/Nc, and we find cmax= 6.30 rad/day, so the CFL

number from (75) is 1.60. We run tests with uniform refinement, Nc a power of 2
and c32 up to c4096, and then with two levels, the coarser level having Nc a power
of 2 and c32 up to c1024 and the finer level, with a refinement ratio of 4, consisting
of grid cells encompassed by a square centered on the north pole, with side length
half that of the north polar panel. Figure 12 shows h at initial time 0 and final
time 1

2 in a two-level c128/c512 run. The two-level runs are chosen so as to see the
effect of a Gaussian initially contained within the finer level but then spreading past
the coarse-fine boundary. Figure 13 shows a contour plot of calculated values of h
in the two-level c128/512 run, at longitude 45◦, as a function of latitude and time.

We take the solution with uniform c4096 to be a reference to compare results
with the other resolutions. As seen in Table 3, the results approach fourth-order
accuracy.

5.5. Zonal flow over an isolated mountain. Zonal flow over an isolated mountain
is a key test of the performance of the model in the presence of topography. However,
the traditionally employed shallow-water test of [61] has the disadvantage of being
only C0, hence preventing meaningful convergence studies beyond first order.
Consequently, this paper uses a modified version of this test where the bottom
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Figure 13. Total-height field for the Gaussian-pulse test case of Section 5.4 at longitude
45◦, over all latitudes from initial time t = 0 to final time t = 1

2 day. The base level is c128,
and there is a finer level, a subset of c512, north of the refinement boundary indicated by
the solid black line. At longitude 45◦, this refinement boundary occurs at a corner of the
grids shown in Figure 12. Contour lines are shown in black for every 25 meters above
5000 meters and in white for every 25 meters below 5000 meters.

topography is given by a C3 cosine hill,

zs =
z0

4

[
1+ cos

(πr
R

)]2
, (84)

where R=π/9 and r2
=min{R2, (λ−λc)

2
+(φ−φc)

2
}. The height of the mountain

is z0 = 2000 m, and its center is at (λc, φc)= (3π/2, π/6). The initial wind field is
given by

uλ = u0 cosφ, uφ = 0 (85)

and surface-height field by

H = h0−
u0

2g
(u0+ a�) sin2 φ (86)

with background height h0 and velocity amplitude u0 chosen to be

h0 = 5960 m, u0 = 20 m · s−1. (87)
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Coarser Uniform resolution Two levels
resolution max error rate max error rate

c32 1.489× 101
1.20 1.286× 101

1.12
c64 6.499× 100

2.11 5.914× 100
2.09

c128 1.509× 100
2.90 1.390× 100

2.86
c256 2.019× 10−1

3.62 1.912× 10−1
3.61

c512 1.641× 10−2
3.95 1.561× 10−2

3.95
c1024 1.059× 10−3 1.012× 10−3

Table 3. Maximum difference between height in meters at final time with given resolutions
and with uniform c4096 reference solution, and rates of convergence, for the Gaussian-
pulse test case of Section 5.4. In the two-level runs, the refinement ratio between the
coarser and finer levels is 4, so the resolution at the finer level is c128 through c4096.

We pick time step 1t = 0.4 day/Nc, and we find cmax = 7.20 rad/day, so the
CFL number from (75) is 1.83. We calculate up to 15 days with uniform refinement,
Nc a power of 2 and c32 up to c1024.

Figure 14 shows the total height after 5, 10, and 15 days of the c128 solution.
Although the mountain shape does not exactly match [61], we still observe an
analogous appearance of a mix of large-scale Rossby waves and smaller-scale
inertia-gravity waves.

We measure the error of the solution at a given time as the difference in total
height between that solution and a c1024 reference solution. For runs with uniform
resolutions from c32 to c512, Figure 15 shows the maximum magnitude of the error
over the sphere after each day of the simulation. Note that up to day 6, the solution
approaches fourth-order convergence. Figure 15 shows a jump in the maximum
error in the c512 solution between day 6 and day 7 and a decrease in convergence
rate to third order. In this case, the error in the c512 solution at day 7 is concentrated
near one of the panel boundaries, in a region where the flow is tangent to the panel
boundary. Where panel boundaries are characteristic, we expect a drop of one order
of accuracy as is happening here in this case.

The longer-term solution approaches second-order convergence. This rate is
expected because, as shown in [35; 47], once wave-breaking occurs the kinetic
energy spectra of large-scale atmospheric flows will approach a decay rate of k−3,
corresponding to, at most, continuity of first derivatives of prognostic quantities.

Figure 16 shows the L1 norm of the error after each day of the simulation, where
the L1 norm of a function is the integral of its absolute value over the sphere:

‖ f ‖1 =
∫
| f | d A. (88)

We see from Figure 16 that the L1 norm of the error converges to fourth order with
increasing refinement.
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Total-height field: day 5

Total-height field: day 10

Total-height field: day 15

Figure 14. Total-height field for the C3 mountain test case of Section 5.5, with c128
refinement. The base of the mountain is indicated with a dashed circle. Black contour lines
(dotted) are drawn at intervals of 50 meters, at values of the tick marks in the legend.
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Figure 15. Top: plot of maximum differences over time between total height in meters
in runs with given resolutions and the c1024 reference solution, for the C3 mountain test
case of Section 5.5. Bottom: plot of convergence rate over time, expressed as the base-2
logarithm of the ratio of the differences shown in the top plot for successive resolutions
refined by a factor of 2.

6. Conclusions and future work

In this paper, we have presented a fourth-order-accurate finite-volume method
on the cubed sphere. Despite formally third-order truncation-error accuracy at
panel boundaries, the approach achieved fourth-order accuracy overall in smooth
advection and the shallow-water equation test cases, with no evidence of panel-
boundary artifacts. In addition, our results with adaptive mesh refinement show that,
by using refined grids, it is possible to obtain overall solution error comparable to
that on a uniform grid having the resolution of the finest level in the AMR hierarchy.

The next step is to extend this approach to the Euler equations on 3D thin
spherical shells and complete a battery of dry atmospheric dynamical core tests. To
that end, future work will include orography, which in 3D can be treated with several
approaches such as cut-cell methods [59; 3], immersed-boundary methods [30], or
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Figure 16. Top: plot of L1 norm of differences over time between total height in meters
in runs with given resolutions and the c1024 reference solution, for the C3 mountain test
case of Section 5.5. Bottom: plot of convergence rate over time, expressed as the base-2
logarithm of the ratio of the differences shown in the top plot for successive resolutions
refined by a factor of 2.

terrain-following coordinates [14; 46]. In the near future, we anticipate incorporate
climate cloud and radiation physics (such as that used in CESM [23]) with the goal
of applying AMR to very high-resolution climate simulations.

Appendix A: Discrete undivided differences

This appendix gives the discrete undivided difference formulae that are used in
Section 3 and their relationships to derivatives. The undivided differences are all
denoted D with a subscript of α or β to indicate the direction in which the difference
is taken and superscripts to indicate the order of the difference and whether the
results are centered on the grid cells themselves (superscript c) or on their faces
(superscript f).
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A1. First differences on grid cells: D1c{C,L,R}

{α,β}
. First differences D1cC

α and D1cC
β

on a grid cell take the 3-point centered finite-difference stencils:

(D1cC
α a)i, j =

ai+1, j − ai−1, j

2
, (D1cC

β a)i, j =
ai, j+1− ai, j−1

2
. (A-1)

One-sided differences D1c{L,R}
α are given by

(D1cL
α a)i, j =

−3ai, j + 4ai+1, j − ai+2, j

2
, (A-2)

(D1cR
α a)i, j =

ai−2, j − 4ai−1, j + 3ai, j

2
(A-3)

and one-sided differences D1c{L,R}
β by

(D1cL
β a)i, j =

−3ai, j + 4ai, j+1− ai, j+2

2
, (A-4)

(D1cR
β a)i, j =

ai, j−2− 4ai, j−1+ 3ai, j

2
. (A-5)

These differences are related to partial derivatives as

D1c{C,L,R}
α a=1α

∂a
∂α
+O((1α)3), D1c{C,L,R}

β a=1β
∂a
∂β
+O((1β)3). (A-6)

A2. Second differences on grid cells: D2c
{α,β}

. Second differences D2c
α and D2c

β

take the 3-point centered finite-difference stencils:

(D2c
α a)i, j = ai+1, j−2ai, j+ai−1, j , (D2c

β a)i, j = ai, j+1−2ai, j+ai, j−1. (A-7)

These differences are related to partial derivatives as

D2c
α a = (1α)2

∂2a
∂α2 + O((1α)4), D2c

β a = (1β)2
∂2a
∂β2 + O((1β)4). (A-8)

A3. First transverse differences on faces of grid cells: D1f
{α,β}

. The first trans-
verse differences, D1f

β on faces of constant α and D1f
α on faces of constant β, take

the 3-point centered finite-difference stencils:

(D1f
β a)i+ 1

2 , j =
ai+ 1

2 , j+1− ai+ 1
2 , j−1

2
, (A-9)

(D1f
α a)i, j+ 1

2
=

ai+1, j+ 1
2
− ai−1, j+ 1

2

2
. (A-10)

These differences are related to partial derivatives as

D1f
β a =1β

∂a
∂β
+ O((1β)3), D1f

α a =1α
∂a
∂α
+ O((1α)3). (A-11)
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A4. Second transverse differences on faces of grid cells: D2f
{α,β}

. The second
transverse differences, D2f

β on faces of constant α and D2f
α on faces of constant β,

take the 3-point centered finite-difference stencils:

(D2f
β a)i+ 1

2 , j = ai+ 1
2 , j−1− 2ai+ 1

2 , j + ai+ 1
2 , j+1, (A-12)

(D2f
α a)i, j+ 1

2
= ai−1, j+ 1

2
− 2ai, j+ 1

2
+ ai+1, j+ 1

2
. (A-13)

These differences are related to partial derivatives as

D2f
β a = (1β)2

∂2a
∂β2 + O((1β)4), D2f

α a = (1α)2
∂2a
∂α2 + O((1α)4). (A-14)

A5. Fifth differences on faces of grid cells: D5f
{α,β}

. For the artificial dissipation
in Step (9) in Section 3.4, we need fifth undivided differences on faces, from data
on grid cells:

(D5f
α a)i+ 1

2 , j = 10(ai+1, j − ai, j )− 5(ai+2, j − ai−1, j )+ ai+3, j − ai−2, j , (A-15)

(D5f
β a)i, j+ 1

2
= 10(ai, j+1− ai, j )− 5(ai, j+2− ai, j−1)+ ai, j+3− ai, j−2. (A-16)

These differences are related to partial derivatives as

D5f
α a = (1α)5

∂5a
∂α5 + O((1α)7), D5f

β a = (1β)5
∂5a
∂β5 + O((1β)7). (A-17)

Appendix B: High-order averages over grid cells and faces

We use angle brackets 〈 · 〉i, j to denote the average of a quantity over a computational
grid cell Vi, j . An average over the face of Vi, j where α = αi ±

1
21α and β ∈

[β j −
1
21β, β j +

1
21β] is denoted by 〈 · 〉i± 1

2 , j , and an average over the face where
β = β j ±

1
21β and α ∈ [αi −

1
21α, αi +

1
21α] is denoted by 〈 · 〉i, j± 1

2
.

B1. Exact 〈J〉 on grid cells. For J defined in (5), the average 〈J 〉 on a grid cell Vi, j

can be computed exactly:

〈J 〉i, j =
1

1α1β

∫ β j+
1
21β

β j−
1
21β

∫ αi+
1
21α

αi−
1
21α

J dα dβ

=
r2

1α1β

1∑
p=0

1∑
q=0

(−1)p+q tan−1 X pYq√
1+ X2

p + Y 2
q

, (B-18)

where X0 = tan(αi −
1
21α), X1 = tan(αi +

1
21α), Y0 = tan(β j −

1
21β), and

Y1 = tan(β j +
1
21β).
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B2. Exact 〈J〉 on faces of grid cells. We can also compute exactly the average
of J over faces of grid cells.

• On faces of constant α = αi +
1
21α, with β extending from β j −

1
21β to

β j +
1
21β:

〈J 〉i+ 1
2 , j =

∫ β j+
1
21β

β j−
1
21β

J dβ =
r2Y1√

1+ X2+ Y 2
1

−
r2Y0√

1+ X2+ Y 2
0

, (B-19)

where X = tan(α), Y0 = tan(β j −
1
21β), and Y1 = tan(β j +

1
21β).

• On faces of constant β = β j +
1
21β, with α extending from αi −

1
21α to

αi +
1
21α:

〈J 〉i, j+ 1
2
=

∫ αi+
1
21α

αi−
1
21α

J dα =
r2 X1√

1+ X2
1 + Y 2

−
r2 X0√

1+ X2
0 + Y 2

, (B-20)

where X0 = tan(αi −
1
21α), X1 = tan(αi +

1
21α), and Y = tan(β).

B3. High-order conversion between averaged and centered values.

• If we have a at centers of grid cells, then by expanding Taylor series, we can
obtain averages of a over grid cells:

〈a〉i, j = ai, j +
(1α)2

24

(
∂2a
∂α2

)
i, j
+
(1β)2

24

(
∂2a
∂β2

)
i, j

+ O((1α)4, (1α)2(1β)2, (1β)4). (B-21)

Using the discrete-differences notation of Appendix A2, this can be written as

〈a〉i, j = ai, j +
1

24(D
2c
α a)i, j +

1
24(D

2c
β a)i, j

+ O((1α)4, (1α)2(1β)2, (1β)4), (B-22)

ai, j = 〈a〉i, j −
1

24(D
2c
α 〈a〉)i, j −

1
24(D

2c
β 〈a〉)i, j

+ O((1α)4, (1α)2(1β)2, (1β)4). (B-23)

• With a at centers of faces of grid cells, we can also expand the Taylor series
to obtain an approximation to averages over faces:

〈a〉i+ 1
2 , j = ai+ 1

2 , j +
(1β)2

24

(
∂2a
∂β2

)
i+ 1

2 , j
+ O((1β)4), (B-24)

〈a〉i, j+ 1
2
= ai, j+ 1

2
+
(1α)2

24

(
∂2a
∂α2

)
i, j+ 1

2

+ O((1α)4). (B-25)
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Hence, taking the discrete differences of Appendix A4,

〈a〉i+ 1
2 , j = ai+ 1

2 , j +
1
24(D

2f
β a)i+ 1

2 , j + O((1β)4), (B-26)

ai+ 1
2 , j = 〈a〉i+ 1

2 , j −
1
24(D

2f
β 〈a〉)i+ 1

2 , j + O((1β)4), (B-27)

〈a〉i, j+ 1
2
= ai, j+ 1

2
+

1
24(D

2f
α a)i, j+ 1

2
+ O((1α)4), (B-28)

ai, j+ 1
2
= 〈a〉i, j+ 1

2
−

1
24(D

2f
α 〈a〉)i, j+ 1

2
+ O((1α)4). (B-29)

B4. High-order product formulae.

• As shown in [10], the average of a product of a and b over a grid cell is

〈ab〉 = 〈a〉〈b〉+
(1α)2

12
∂a
∂α

∂b
∂α
+
(1β)2

12
∂a
∂β

∂b
∂β

+ O((1α)4, (1α)2(1β)2, (1β)4). (B-30)

Hence on Vi, j , using (A-6) with the undivided differences D1cC
α and D1cC

β from
Appendix A1,

〈ab〉i, j = 〈a〉i, j 〈b〉i, j +
1
12(D

1cC
α a)i, j (D1cC

α b)i, j +
1
12(D

1cC
β a)i, j (D1cC

β b)i, j

+ O((1α)4, (1α)2(1β)2, (1β)4), (B-31)

and the average of one of the factors can be obtained from the average of the
product by

〈b〉i, j=

〈ab〉i, j −
1

12

(
D1cC
α

〈ab〉
〈a〉

)
i, j
(D1cC

α 〈a〉)i, j −
1
12

(
D1cC
β

〈ab〉
〈a〉

)
i, j
(D1cC

β 〈a〉)i, j

〈a〉i, j

+ O((1α)4, (1α)2(1β)2, (1β)4). (B-32)

In (B-32), we can substitute the one-sided D1cL
α or D1cR

α for the centered D1cC
α

if Vi−1, j or Vi+1, j , respectively, is not a grid cell of the panel containing Vi, j .
Similarly, we can substitute D1cL

β or D1cR
β for D1cC

β if Vi, j−1 or Vi, j+1, respec-
tively, is not a grid cell of the panel containing Vi, j .

• Also from [10] and using (A-11), the average of a product of a and b over the
face of a grid cell with constant α is

〈ab〉i+ 1
2 , j = 〈a〉i+ 1

2 , j 〈b〉i+ 1
2 , j +

1
12(D

1f
β a)i+ 1

2 , j (D
1f
β b)i+ 1

2 , j + O((1β)4) (B-33)

and over the face of a grid cell with constant β is

〈ab〉i, j+ 1
2
= 〈a〉i, j+ 1

2
〈b〉i, j+ 1

2
+

1
12(D

1f
α a)i, j+ 1

2
(D1f

α b)i, j+ 1
2
+ O((1α)4). (B-34)
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LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS OF
BINARY LIQUID MIXTURES

ANDY NONAKA, YIFEI SUN, JOHN B. BELL AND ALEKSANDAR DONEV

Continuing on our previous work (A. Donev, A. Nonaka, Y. Sun, T. G. Fai, A.
L. Garcia and J. B. Bell, Comm. App. Math. and Comp. Sci. 9 (2014), no. 1,
47–105), we develop semi-implicit numerical methods for solving low Mach
number fluctuating hydrodynamic equations appropriate for modeling diffusive
mixing in isothermal mixtures of fluids with different densities and transport
coefficients. We treat viscous dissipation implicitly using a recently developed
variable-coefficient Stokes solver (M. Cai, A. J. Nonaka, J. B. Bell, B. E. Griffith
and A. Donev, Commun. Comput. Phys. 16 (2014), no. 5, 1263–1297). This
allows us to increase the time step size significantly for low Reynolds number
flows with large Schmidt numbers compared to our earlier explicit temporal
integrator. Also, unlike most existing deterministic methods for low Mach number
equations, our methods do not use a fractional time-step approach in the spirit of
projection methods, thus avoiding splitting errors and giving full second-order
deterministic accuracy even in the presence of boundaries for a broad range of
Reynolds numbers including steady Stokes flow. We incorporate the Stokes
solver into two time-advancement schemes, where the first is suitable for inertial
flows and the second is suitable for the overdamped limit (viscous-dominated
flows), in which inertia vanishes and the fluid motion can be described by a steady
Stokes equation. We also describe how to incorporate advanced higher-order
Godunov advection schemes in the numerical method, allowing for the treatment
of (very) large Péclet number flows with a vanishing mass diffusion coefficient.
We incorporate thermal fluctuations in the description in both the inertial and
overdamped regimes. We validate our algorithm with a series of stochastic and
deterministic tests. Finally, we apply our algorithms to model the development of
giant concentration fluctuations during the diffusive mixing of water and glycerol,
and compare numerical results with experimental measurements. We find good
agreement between the two, and observe propagative (nondiffusive) modes at
small wavenumbers (large spatial scales), not reported in published experimental
measurements of concentration fluctuations in fluid mixtures. Our work forms the
foundation for developing low Mach number fluctuating hydrodynamics methods
for miscible multispecies mixtures of chemically reacting fluids.

MSC2010: primary 76T99; secondary 65M08.
Keywords: fluctuating hydrodynamics, binary mixtures, giant fluctuations, Stokes solver, low Mach

flow.

163

http://msp.org/camcos
http://dx.doi.org/10.2140/camcos.2015.10-2
http://dx.doi.org/10.2140/camcos.2015.10.163
http://msp.org
http://dx.doi.org/10.2140/camcos.2014.9.47
http://dx.doi.org/10.2140/camcos.2014.9.47
http://dx.doi.org/10.4208/cicp.070114.170614a


164 ANDY NONAKA, YIFEI SUN, JOHN B. BELL AND ALEKSANDAR DONEV

I. Introduction

Flows of realistic mixtures of miscible fluids exhibit several features that make
them more difficult to simulate numerically than flows of simple fluids. Firstly,
the physical properties of the mixture depend on the concentration of the different
species composing the mixture. This includes both the density of the mixture
at constant pressure, and transport coefficients such as viscosity and mass dif-
fusion coefficients. Common simplifying assumptions such as the Boussinesq
approximation, which assumes a constant density and thus incompressible flow, or
assuming constant transport coefficients, are uncontrolled and not appropriate for
certain mixtures of very dissimilar fluids. Secondly, for liquid mixtures there is a
large separation of time scales between the various dissipative processes, notably,
mass diffusion is much slower than momentum diffusion. The large Schmidt
numbers Sc ∼ 103–104 typical of liquid mixtures lead to extreme stiffness and
make direct temporal integration of the hydrodynamic equations infeasible. Lastly,
flows of mixtures exhibit all of the numerical difficulties found in single component
flows, for example, well-known difficulties caused by advection in the absence of
sufficiently strong dissipation (diffusion of momentum or mass), and challenges
in incorporating thermal fluctuations in the description. Here we develop a low
Mach number approach to isothermal binary fluid mixtures that resolves many of
the above difficulties, and paves the way for incorporating additional physics such
as the presence of more than two species [5], chemical reactions [11; 1], multiple
phases and surface tension [50; 15], and others.

Stochastic fluctuations are intrinsic to fluid dynamics because fluids are composed
of molecules whose positions and velocities are random. Thermal fluctuations affect
flows from microscopic to macroscopic scales [26; 56] and need to be consistently
included in all levels of description. Fluctuating hydrodynamics (FHD) incorporates
thermal fluctuations into the usual Navier–Stokes–Fourier laws in the form of
stochastic contributions to the dissipative momentum, heat, and mass fluxes [22].
FHD has proven to be a very useful tool in understanding complex fluid flows
far from equilibrium [31; 50; 54; 4]; however, theoretical calculations are often
only feasible after making many uncontrolled approximations [22], and numerical
schemes used for fluctuating hydrodynamics are usually far behind state-of-the-art
deterministic computational fluid dynamics (CFD) solvers.

In this work, we consider binary mixtures and restrict our attention to isothermal
flows. We consider a specific equation of state (EOS) suitable for mixtures of
incompressible liquids or ideal gases, but otherwise account for advective and
diffusive mass and momentum transport in full generality. Recently, some of us
developed finite-volume methods for the incompressible equations [6]. We have
also developed low Mach number isothermal fluctuating equations [28], which
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eliminate the stiffness arising from the separation of scales between acoustic and
vortical modes [38; 47; 49]. The low Mach number equations account for the
fact that for mixtures of fluids with different densities, diffusive and stochastic
mass fluxes create local expansion and contraction of the fluid. In these equations
the incompressibility constraint should be replaced by a “quasi-incompressibility”
constraint [49; 40], which introduces some difficulties in constructing conservative
finite-volume techniques [46; 48; 21; 43; 42; 28]. In Section II we review the
low Mach number equations of fluctuating hydrodynamics for a binary mixture of
miscible fluids, as first proposed in Ref. [28].

The numerical method developed in Ref. [28] uses an explicit temporal integrator.
This requires using a small time step and is infeasible for liquid mixtures due
to the stiffness caused by the separation of time scales between fast momentum
diffusion and slow mass diffusion. In recent work [24], some of us developed
temporal integrators for the equations of fluctuating hydrodynamics that have several
important advantages. Notably, these integrators are semi-implicit, allowing one to
treat fast momentum diffusion (viscous dissipation) implicitly, and other transport
processes explicitly. These temporal integrators are constructed to be second-order
accurate for the equations of linearized fluctuating hydrodynamics (LFHD), which
are suitable for describing thermal fluctuations around stable macroscopic flows
over a broad range of length and time scales [22]. Importantly, the linearization
of the fluctuating equations is carried out automatically by the code, making the
numerical methods very similar to standard deterministic CFD schemes. Finally,
specific integrators are proposed in Ref. [24] to handle the extreme separation of
scales between the fast velocity and the slow concentration by taking an overdamped
limit of the inertial equations.

In this work, we extend the semi-implicit temporal integrators proposed in
Ref. [24] for incompressible flows to account for the quasi-incompressible nature of
low Mach number flows. We apply these temporal integrators to the staggered-grid
conservative finite-volume spatial discretization developed in Ref. [28], and addi-
tionally generalize the treatment of advection to allow for the use of monotonicity-
preserving higher-order Godunov schemes [8; 9; 41; 44].

Our work relies heavily on several prior works, which we will only briefly
summarize in the present paper. The spatial discretization we describe in more
detail in Section III B is identical to that proposed by Donev et al. [28], which itself
relies heavily on the treatment of thermal fluctuations developed in Refs. [6; 28]. A
key development that makes the algorithm presented here feasible for large-scale
problems is recent work by some of us [13] on efficient multigrid-based iterative
methods for solving unsteady and steady variable-coefficient Stokes problems on
staggered grids. Our high-order Godunov method for mass advection is based on
the work of Bell et al. [9; 41; 44].
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The temporal integrators developed in Section III D are a novel approach to low
Mach number hydrodynamics even in the deterministic context. In high-resolution
finite-volume methods, the dominant paradigm has been to use a splitting (fractional-
step) or projection method [16] to separate the pressure and velocity updates [3; 21;
7; 2; 37]. We followed such a projection approach to construct an explicit temporal
integrator for the low Mach number equations [28]. When viscosity is treated
implicitly, however, the splitting introduces a commutator error that leads to the
appearance of spurious or “parasitic” modes in the presence of physical boundaries
[32; 12; 23]. There are several techniques to reduce (but not eliminate) these
artificial boundary layers [12], and for sufficiently large Reynolds number flows the
time step size dictated by advective stability constraints makes the splitting error
relatively small in practice. At small Reynolds numbers, however, the splitting error
becomes larger as viscous effects become more dominant, and projection methods
do not apply in the steady Stokes regime for problems with physical boundary
conditions. Methods that do not split the velocity and pressure updates but rather
solve a combined Stokes system for velocity and pressure have been used in the
finite-element literature for some time, and have more recently been used in the
finite-volume context for incompressible flow [35]. Here we demonstrate how the
same approach can be effectively applied to the low Mach number equations for a
binary fluid mixture [28], to construct a method that is second-order accurate up to
boundaries, for a broad range of Reynolds numbers including steady Stokes flow.

We test our ability to accurately capture the static structure factor for equilibrium
fluctuation calculations. Then, we test our methods deterministically on two variable
density and variable viscosity low Mach number flows. First, we confirm second-
order deterministic accuracy in both space and time for a lid-driven cavity problem
in the presence of a bubble of a denser miscible fluid. Next, we simulate the
development of a Kevin–Helmholtz instability as a lighter less viscous fluid streams
over a denser more viscous fluid. These tests confirm the robustness and accuracy
of the methods in the presence of large contrasts, sharp gradients, and boundaries.
Next we focus on the use of fluctuating low Mach number equations to study
giant concentration fluctuations. In Section V we apply our methods to study the
development of giant fluctuations [58; 19; 56; 55] during free diffusive mixing of
water and glycerol. We compare simulation results to experimental measurements
of the time-correlation function of concentration fluctuations during the diffusive
mixing of water and glycerol [19]. The relaxation times show signatures of the
rich deterministic dynamics, and a transition from purely diffusive relaxation of
concentration fluctuations at large wavenumbers, to more complex buoyancy-driven
dynamics at smaller wavenumbers. We find reasonably good agreement given the
large experimental uncertainties, and observe the appearance of propagative modes
at small wavenumbers, which we suggest could be observed in experiments as well.
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II. Low Mach number equations

At mesoscopic scales, in typical liquids, sound waves are very low amplitude
and much faster than momentum diffusion; hence, they can usually be eliminated
from the fluid dynamics description. Formally, this corresponds to taking the zero
Mach number singular limit Ma→ 0 of the well-known compressible fluctuating
hydrodynamics equations system [39; 22]. In the compressible equations, the
coupling between momentum and mass transport is captured by the equation of
state (EOS) for the pressure P(ρ, c; T0) as a local function of the density ρ(r, t)
and mass concentration c(r, t) at a specified temperature T0(r), assumed to be
time-independent in our isothermal model.

The low Mach number equations can be obtained by making the ansatz that
the thermodynamic behavior of the system is captured by a reference pressure
P0(r, t), with the additional pressure contribution π(r, t) = O(Ma2) capturing
the mechanical behavior while not affecting the thermodynamics. We will restrict
consideration to cases where stratification due to gravity causes negligible changes
in the thermodynamic state across the domain. In this case, the reference pressure is
spatially constant and constrains the system so that the evolution of ρ and c remains
consistent with the thermodynamic EOS

P
(
ρ(r, t), c(r, t); T0(r)

)
= P0(t). (1)

Physically this means that any change in concentration must be accompanied by a
corresponding change in density, as would be observed in a system at thermodynamic
equilibrium held at the fixed reference pressure and temperature. The EOS defines
density ρ

(
c(r, t); T0(r), P0(t)

)
as an implicit function of concentration in a binary

liquid mixture. The EOS constraint (1) can be rewritten as a constraint on the
divergence of the fluid velocity v(r, t),

ρ∇ · v =−β ∇ · F, (2)

where F is the total diffusive mass flux defined in (10), and the solutal expansion
coefficient

β(c)=
1
ρ

(
∂ρ

∂c

)
P0,T0

is determined by the specific form of the EOS.
In this work we consider a specific linear EOS,

ρ1

ρ̄1
+
ρ2

ρ̄2
=

cρ
ρ̄1
+
(1− c)ρ
ρ̄2

= 1, (3)

where ρ̄1 and ρ̄2 are the densities of the pure component fluids (c = 1 and c = 0,
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respectively), giving

β = ρ

(
1
ρ̄2
−

1
ρ̄1

)
=

ρ̄1− ρ̄2

cρ̄2+ (1− c)ρ̄1
. (4)

It is important that for this specific form of the EOS β/ρ is a material constant
independent of the concentration; this allows us to write the EOS constraint (9)
in conservative form ∇ · v = −∇ · (βρ−1 F) and take the reference pressure P0

to be independent of time. The specific form of the density dependence (4) on
concentration arises if one assumes that two incompressible fluids do not change
volume upon mixing, which is a reasonable assumption for liquids that are not too
dissimilar at the molecular level. Surprisingly the EOS (3) is also valid for a mixture
of ideal gases. If the specific EOS (3) is not a very good approximation over the
entire range of concentration 0≤ c ≤ 1, it may be a very good approximation over
the range of concentrations of interest if ρ̄1 and ρ̄2 are adjusted accordingly. Our
choice of the specific form of the EOS will aid significantly in the construction of
simple conservative spatial discretizations that strictly maintain the EOS without
requiring complicated nonlinear iterative corrections.

In fluctuating hydrodynamics, stochastic contributions to the momentum and
mass fluxes are formally modeled as follows [6]:

6 =
√
ηkB T (W +WT ),

9 =
√

2χρµ−1
c kB T W̃,

(5)

where kB is Boltzmann’s constant, η is the shear viscosity, χ is the diffusion coeffi-
cient, µ(c; T0, P0) is the chemical potential of the mixture with µc = (∂µ/∂c)P0,T0 ,
and W(r, t) and W̃(r, t) are standard zero mean, unit variance random Gaussian
tensor and vector fields, respectively, with uncorrelated components,〈

Wi j (r, t)Wkl(r ′, t ′)
〉
= δikδ jl δ(t − t ′)δ(r − r ′),

and similarly for W̃ .
A standard asymptotic low Mach analysis [38], formally treating the stochastic

forcing as smooth, leads to the isothermal low Mach number equations for a binary
mixture of fluids in conservation form [28],

∂t(ρv)+∇π =−∇ · (ρvvT )+∇ · (η∇v+6)+ ρg (6)

∂t(ρ1)=−∇ · (ρ1v)+∇ · F (7)

∂t(ρ2)=−∇ · (ρ2v)−∇ · F (8)

∇ · v =−∇ · (βρ−1 F), (9)

where the deterministic and stochastic diffusive mass fluxes are denoted by

F = ρχ∇c+9. (10)
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Here ∇ = ∇ +∇
T is a symmetric gradient, ρ1 = ρc is the density of the first

component, ρ2 = (1− c)ρ is the density of the second component, and g is the
gravitational acceleration. The gradient of the nonthermodynamic component
of the pressure π (Lagrange multiplier) appears in the momentum equation as
a driving force that ensures the EOS constraint (9) is obeyed. We note that the
bulk viscosity term gives a gradient term that can be absorbed in π and therefore
does not explicitly need to appear in the equations. Temperature dynamics and
fluctuations are neglected in these equations; however, this type of approach can be
extended to include thermal effects. The shear viscosity η(c; T0, P0) and the mass
diffusion coefficient χ(c; T0, P0) in general depend on the concentration. Note that
the two density equations (7) and (8) can be combined to obtain the usual continuity
equation for the total density,

∂tρ =−∇ · (ρv), (11)

and the primitive (nonconservation law) form of the concentration equation,

ρ(∂t c+ v ·∇c)=∇ · F. (12)

Our conservative numerical scheme is based on Equations (6), (7), (9), and (11).
In Ref. [28] we discussed the effect of the low Mach constraint on the thermal

fluctuations, suitable boundary conditions for the low Mach equations, and presented
a gauge formulation of the equations that formally eliminates pressure in a manner
similar to the projection operator formulation for incompressible flows. Importantly,
the gauge formulation demonstrates that although the low Mach equations have the
appearance of a constrained system, one can write them in an unconstrained form
by introducing a gauge degree of freedom for the pressure. For the purposes of
time integration, one can therefore treat these equations as standard initial-value
problems [28] and use the temporal integrators developed in Ref. [24].

A. Linearized low Mach fluctuating hydrodynamics. It is important to note that
the equations of fluctuating hydrodynamics should be interpreted as a mesoscopic
coarse-grained representation of the mass, momentum and energy transport in fluids
[45]. As such, these equations implicitly contain a mesoscopic coarse-graining
length and time scale that is larger than molecular scales [33] and can only formally
be written as stochastic partial differential equations (SPDEs). A coarse-graining
scale can explicitly be included in the SPDEs [27; 29]; such a coarse-graining scale
explicitly enters in our finite-volume spatiotemporal discretization through the grid
spacing (equivalently, the volume of a grid cell, or more precisely, the number of
molecules per grid cell). Additional difficulties are posed by the fact that in general
the noise in the nonlinear equations is multiplicative, requiring a careful stochastic
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interpretation; the Mori–Zwanzig projection formalism [34] suggests the correct
stochastic interpretation is the kinetic one [36].

For compressible and incompressible flows, the SPDEs of linearized fluctuating
hydrodynamics (LFHD) [22] can be given a precise continuum meaning [20; 30;
23; 24]. In these linearized equations one splits each variable into a deterministic
component and small fluctuations around the deterministic solution, e.g., c(r, t)=
c̄(r, t)+ δc(r, t), where c̄ is a solution of the deterministic equations (6), (7), (9)
and (11), with 9 = 0 and 6 = 0. Here δc is the solution of a linear additive-noise
equation obtained by linearizing (12) to first order in the fluctuations and evaluating
the noise amplitude at the deterministic solution; more precisely, LFHD is an
expression of the central limit theorem in the limit of weak noise. In this work, in
the stochastic setting we restrict our attention to LFHD equations. As discussed in
Ref. [24], we do not need to write down the (rather tedious) complete form of the
linearized low Mach number equations (for an illustration, see the next subsection)
since the numerical method will perform this linearization automatically. Namely,
the complete nonlinear equations are essentially equivalent to the LFHD equations
when the noise is sufficiently weak, i.e., when the hydrodynamic cells contain many
molecules.

The low Mach number equations pose additional difficulties because they rep-
resent a coarse-graining of the dynamics not just in space but also in time. As
such, even the linearized equations cannot directly be interpreted as describing a
standard diffusion process. This is because the stochastic mass flux 9 in the EOS
constraint (9) makes the velocity formally white-in-time [28]. We note, however,
that the analysis in Ref. [27] shows that there is a close connection between mass
diffusion and advection by the thermally fluctuating velocity field, and thus between
9 and velocity fluctuations. This suggests that a precise interpretation of the low
Mach constraint in the presence of stochastic mass fluxes requires a very delicate
mathematical analysis. In this work we rely on the implicit coarse-graining in
time provided by the finite time step size in the temporal integration schemes to
regularize the low Mach equations [28]. Furthermore, for the applications we study
here, we can neglect stochastic mass fluxes and assume 9 ≈ 0, in which case the
difficulties related to a white-in-time velocity disappear.

B. Overdamped limit. At small scales, flows in liquids are viscous-dominated and
the inertial momentum flux ρvvT can often be neglected in a zero Reynolds number
approximation. In addition, in liquids, there is a large separation of time scales
between the fast momentum diffusion and slow mass diffusion, i.e., the Schmidt
number Sc= η/(ρχ) is large. This makes the relaxation times of velocity modes
at sufficiently large wavenumbers much smaller than those of the concentration
modes. Formally treating the stochastic force terms as smooth for the moment,



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS 171

the separation of time scales implies that we can replace the inertial momentum
equation (6) with the overdamped steady-Stokes equation

−∇ · (η∇v)+∇π =∇ ·6+ ρg,

∇ · v =−(ρ̄−1
2 − ρ̄

−1
1 )∇ · (χρ∇c+9). (13)

The above equations can be used to eliminate velocity as a variable, leaving only
the concentration equation (12). Note that the density equation (11) simply defines
density as a function of concentration and thus is not considered an independent
equation.

The solution of the Stokes system

−∇ · (η∇v)+∇π = f ,

∇ · v =−h, (14)

where f (r, t) and h(r, t) are applied forcing terms, can be expressed in terms of a
generalized inverse Stokes linear operator1 L−1

[η( · , t)] that is a functional of the
viscosity (and thus the concentration),

v =L−1
[η]( f , h).

In the linearized fluctuating equations, one must linearize around the (time
dependent) solution of the deterministic nonlinear equation

ρ̄(∂t c̄+ v̄ ·∇c̄)=∇ · (ρ̄χ̄∇c̄), (15)

where we have used the shorthand notation ρ̄ = ρ(c̄), η̄ = η(c̄), χ̄ = χ(c̄). Here
the velocity is an implicit function of concentration defined via

−∇ · (η̄∇v)+∇π̄ = ρ̄g

∇ · v̄ =−(ρ̄−1
2 − ρ̄

−1
1 )∇ · (χ̄ ρ̄∇c̄),

which we can write in shorthand notation as

v̄ =L−1
[η̄]
(
ρ̄g, (ρ̄−1

2 − ρ̄
−1
1 )∇ · (χ̄ ρ̄∇c̄)

)
. (16)

Here we develop second-order integrators for the deterministic overdamped low
Mach equation (15)+(16).

In the stochastic setting, the solution of (13) is white in time because the stochastic
mass and momentum fluxes are white in time. This means that the advective term v ·

∇c requires a specific stochastic interpretation, in addition to the usual regularization
(smoothing) in space required to interpret all nonlinear terms appearing in formal
fluctuating hydrodynamics SPDEs. By performing a precise (albeit formal) adiabatic

1More generally, in the presence of inhomogeneous boundary conditions, the solution operator for
(14) is an affine rather than a linear operator.
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mode elimination of the fast velocity variable under the assumption of infinite
separation of time scales, Donev et al. arrive at a Stratonovich interpretation of the
random advection term v ·∇c (see Appendix A of Ref. [27]). This analysis does
not, however, directly extend to the low Mach number equations since it relies in
key ways on the incompressibility of the fluid. Generalizing this sort of analysis
to the case of variable fluid density is nontrivial, likely requiring the use of the
gauge formulation of the low Mach equations, and appears to be beyond the scope
of existing techniques. Variable (i.e., concentration-dependent) viscosity and mass
diffusion coefficients can be handled using existing techniques although there are
subtle nonlinear stochastic effects arising from the fact that the noise in the velocity
equation is multiplicative and the invariant measure (equilibrium distribution) of
the fast velocity depends on the slow concentration.

In the linearized setting, however, the difficulties associated with the interpretation
of stochastic integrals and multiplicative noise disappear. The complete form of the
linearized equations contains many terms and is rather tedious. Since we will never
need to explicitly write this form let us illustrate the procedure by assuming χ and
η to be constant. For the concentration, we obtain the linearized equation

ρ̄(∂t(δc)+ (δv) ·∇c̄)=∇ ·
(
ρ̄χ∇(δc)+ ρ̄ ′χ(∇c̄)δc

)
− ρ̄−1ρ̄ ′∇ · (ρ̄χ∇c̄)δc, (17)

where ρ̄ ′ = dρ(c̄)/dc = ρ̄β(ρ̄) relates concentration fluctuations to density fluc-
tuations via the EOS. Here we split δv = δvc + δv f into a component δvc that is
continuous in time and a component δv f that is white in time,

δvc =L−1
[η̄]
(
ρ̄ ′gδc, (ρ̄−1

2 − ρ̄
−1
1 )∇ · (ρ̄χ∇(δc))

)
,

δv f =L−1
[η̄](∇ ·6, ∇ ·9).

The term ρ̄(δv f ) ·∇c̄ in (17) is interpreted as an additive noise term with a rather
complicated and potentially time-dependent (via η̄(c̄(r, t))) spatial correlation
structure. In this work we develop numerical methods that solve the overdamped
linearized Equation (17) to second-order weakly [24].

III. Spatiotemporal discretization

Our baseline spatiotemporal discretization of the low Mach equations is based on the
method of lines approach where we first discretize the (S)PDEs in space to obtain a
system of (S)ODEs, which we then solve using a single-step multistage temporal
integrator. The conservative finite-volume spatial discretization that we employ here
is essentially identical to that developed in our previous works, Refs. [28; 13]. In
summary, scalar fields such as concentration and densities are cell-centered, while
velocity is face-centered. In order to ensure conservation, the conserved momentum
ρv and mass densities ρ1 and ρ are evolved rather than the primitive variables v
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and c. Diffusion of mass and momentum is discretized using standard centered
differences, leading to compact stencils similar to the standard Laplacian. Stochastic
mass fluxes are associated with the faces of the regular grid, while for stochastic
momentum fluxes we associate the diagonal elements with the cell centers and the
off-diagonal elements with the nodes (in 2D) or edges (in 3D) of a regular grid with
grid spacing 1x .

Here we focus our discussion on three new aspects of our spatiotemporal
discretization. After summarizing the dimensionless numbers that control the
appropriate choice of advection method and temporal integrator, in Section B we
describe our implementation of two advection schemes and a discussion of the
advantages of each. In Section C we describe our implicit treatment of viscous
dissipation using a GMRES solver for the coupled velocity-pressure Stokes system.
In Section D we describe our overall temporal discretization strategies for the
inertial and overdamped regimes.

A. Dimensionless numbers. The suitability of a particular temporal integrator or
advection scheme depends on the following dimensionless numbers:

cell Reynolds number Rec =
U1x
ν

,

cell Péclet number Pec =
U1x
χ

,

Schmidt number Sc= ν

χ
=

Pe
Re
,

where ν = η/ρ is the kinematic viscosity. Observe that the first two depend on the
spatial resolution and the typical flow speed U , while the Schmidt number is an
intrinsic material property of the mixture. Also note that the physically relevant
Reynolds Re and Péclet Pe numbers would be defined with a length scale much
larger than 1x , such as the system size, and thus would be much larger than the
discretization-scale numbers above. In this work, we are primarily interested in
small-scale flows with Rec . 1 and large Sc (liquid mixtures).

The choice of advection scheme for concentration (partial densities) is dictated by
Pec. If Pec & 2, centered advection schemes will generate nonphysical oscillations,
and one must use the Godunov advection scheme described below. However, it is
important to note that in this case the spectrum of fluctuations will not be correctly
preserved by the advection scheme; if fluctuations need to be resolved it is advisable
to instead reduce the grid spacing and thus reduce the cell Péclet number to Pec . 2
and use centered advection.

The choice of the temporal integrator, on the other hand, is determined by the
importance of inertia and the time scale of interest. If Rec is not sufficiently small,
then there is no alternative to resolving the inertial dynamics of the velocity. Now



174 ANDY NONAKA, YIFEI SUN, JOHN B. BELL AND ALEKSANDAR DONEV

let us assume that Re� 1, i.e., viscosity is dominant. If the time scale of interest is
the advective timescale L/U , where L is the system size, then one should use the
inertial equations. However, the inertial temporal integrator described in Section
III D will be rather inefficient if the time scale of interest is the diffusive time scale
L2/χ , as is the case in the study of diffusive mixing presented in Section V. This
is because the Crank–Nicolson (implicit midpoint) scheme used to treat viscosity
in our methods is only A-stable, and, therefore, if the viscous Courant number
ν1t/1x2 is too large, unphysical oscillations in the solution will appear (note
that this problem is much more serious for fluctuating hydrodynamics due to the
presence of fluctuations at all scales). In order to be able to use a time step size on
the diffusive time scale, one must construct a stiffly accurate temporal integrator.
This requires using an L-stable scheme to treat viscosity, such as the backward
Euler scheme, which is however only first-order accurate.

Constructing a second-order stiffly accurate implicit-explicit integrator in the
context of variable density low Mach flows is rather nontrivial. Furthermore,
using an L-stable scheme leads to a damping of the velocity fluctuations at large
wavenumbers and is inferior to the implicit midpoint scheme in the context of
fluctuating hydrodynamics [23]. Therefore, in this work we choose to consider
separately the overdamped limit Re→ 0 and Sc→∞ (note that the value of Pe
is arbitrary). In this limit we analytically eliminate the velocity as an independent
variable, leaving only the concentration equation, which evolves on the diffusive
time scale. We must emphasize, however, that the overdamped equations should be
used with caution, especially in the presence of fluctuations. Notably, the validity of
the overdamped approximation requires that the separation of time scales between
the fast velocity and slow concentration be uniformly large over all wavenumbers,
since fluctuations are present at all length scales. In the study of giant fluctuations
we present in Section V, buoyancy effects speed up the dynamics of large-scale
concentration fluctuations and using the overdamped limit would produce physically
incorrect results at small wavenumbers. In microgravity, however, the overdamped
limit is valid and we have used it to study giant fluctuations over very long time
scales in a number of separate works [14; 27].

B. Advection. We have implemented two advection schemes for cell-centered
scalar fields, and describe under what conditions each is more suitable. The first is
a simpler nondissipative centered advection discretization described in our previous
work [28]. This scheme preserves the skew-adjoint nature of advection and thus
maintains fluctuation-dissipation balance in the stochastic context. However, when
sharp gradients are present, centered advection schemes require a sufficient amount
of dissipation (diffusion) in order to avoid the appearance of Gibbs-phenomenon
instabilities. Higher-order Godunov schemes have been used successfully with
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cell-centered finite volume schemes for some time [8; 9; 41; 44]. In these semi-
Lagrangian advection schemes, a construction based on characteristics is used to
estimate the average value of the advected quantity passing through each cell face
during a time step. These averages are then used to evaluate the advective fluxes.
Our second scheme for advection is the higher-order Godunov approach of Bell,
Dawson, and Shubin (BDS) [9]. Additional details of this approach are provided in
the next subsection.

The BDS scheme can only be used to advect cell-centered scalar fields such
as densities. This is because the scheme operates on control volumes, and there-
fore applying it to staggered fields requires the use of disjoint control volumes,
thereby greatly complicating the advection procedure for non-cell-centered data.
We therefore limit ourselves to using the skew-adjoint centered advection scheme
described in Refs. [6; 23] to advect momentum. Although some Godunov schemes
for advecting a staggered momentum field have been developed [53; 35], they are
not at the same level of sophistication as those for cell-centered scalar fields. For
example, in Ref. [53] a piecewise constant reconstruction is used, and in Ref. [35]
extrapolation is performed in space only, and not in time. In our target applications,
there is sufficient viscous dissipation to stabilize centered advection of momentum
(note that the mass diffusion coefficient is several orders of magnitude smaller than
the kinematic viscosity in typical liquids).

The BDS advection scheme is not skew-adjoint and thus adds some dissipation in
regions of sharp gradients that are not resolved by the underlying grid. Thus, unlike
the case of using centered advection, the spatially discrete (but still continuous
in time) fluctuating equations do not obey a strict discrete fluctuation-dissipation
principle [30; 23]. Nevertheless, in high-resolution schemes such as BDS artificial
dissipation is added locally in regions where centered advection would have failed
completely due to insufficient spatial resolution. Furthermore, the BDS scheme
offers many advantages in the deterministic context and allows us to simulate high
Péclet number flows with little to no mass diffusion. For well-resolved flows with
sufficient dissipation there is little difference between BDS and centered advection.
Note that both advection schemes are spatially second-order accurate for smooth
flows.

1. BDS advection. Simple advection schemes, such as the centered scheme de-
scribed in our previous work [28], directly computes the divergence of the advective
flux f = φv evaluated at a specific point in time, where φ is a cell-centered quantity
such as density, and v is a specified face-centered velocity. By contrast, the BDS
scheme uses the multidimensional characteristic geometry of the advection equation

∂φ

∂t
+∇ · (φv)= q, (18)
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to estimate time-averaged fluxes through cell faces over a time interval 1t , given
φn , as well as a face-centered velocity field v and a cell-centered source q that
are assumed constant over the time interval. In actual temporal discretizations
v ≈ v(tn+1/2) ≈ v(tn

+1t/2) is a midpoint (second-order) approximation of the
velocity over the time step. Similarly, q≈q(tn+1/2) will be a centered approximation
of the divergence of the diffusive and stochastic fluxes over the time step. In the
description of our temporal integrators, we will use the shorthand notation BDS
to denote the approximation to the advective fluxes used in the BDS scheme for
solving (18),

φn+1
= φn

−1t ∇ · (BDS(φn, v, q, 1t))+1t q.

BDS is a conservative scheme based on computing time-averaged advective fluxes
through every face of the computational grid, for example, in two dimensions,

BDSi+1/2, j = fi+1/2, j = φi+1/2, jvi+1/2, j ,

where vi+1/2, j is the given normal velocity at the face, and φi+1/2, j represents the
space-time average of φ passing through face-(i + 1/2, j) in the time interval 1t .
The extrapolated face-centered states φi+1/2, j are computed by first reconstructing
a piecewise continuous profile of φ(r, t) in every cell that can, optionally, be
limited based on monotonicity considerations. The multidimensional characteristic
geometry of the flow in space-time is then used to estimate the time-averaged flux;
see the original papers [9; 41; 44] for a detailed description. In the original advection
BDS schemes in two dimensions [9] and three dimensions [44], a piecewise-bilinear
(in two dimensions) or trilinear (in three dimensions) reconstruction of φ was
used. Subsequently, the schemes were extended to a quadratic reconstruction in
two dimensions [41]. Note that handling boundary conditions in BDS properly
requires additional investigations, and the construction of specialized one-sided
reconstruction stencils near boundaries. In our implementation we rely on cubic
extrapolation based on interior cells and the specified boundary condition (Dirichlet
or Neumann) to fill ghost cell values behind physical boundaries, and then apply
the BDS procedure to the interior cells using the extrapolated ghost cell values.

BDS advection, as described in [9; 41; 44], does not strictly preserve the EOS
constraint, unlike centered advection. The characteristic extrapolation of densities
to space-time midpoint values on the faces of the grid, (ρ1)i+1/2, j and ρi+1/2, j , are
not necessarily consistent with the EOS, unlike centered advection where they are
simple averages of values from neighboring cells, and thus guaranteed to obey the
EOS by linearity. A simple fix that makes BDS preserve the EOS, without affecting
its formal order of accuracy, is to enforce the EOS on each face by projecting the
extrapolated values (ρ1)i+1/2, j and ρi+1/2, j onto the EOS. In the L2 sense, such a
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projection consists of the update

(ρ1)i+1/2, j ←
ρ̄2

1

ρ̄2
1 + ρ̄

2
2
(ρ1)i+1/2, j −

ρ̄1ρ̄2

ρ̄2
1 + ρ̄

2
2
(ρ2)i+1/2, j ,

and similarly for ρ2, or equivalently, ρ = ρ1+ ρ2. Note that this projection is done
on each face only for the purposes of computing advective fluxes and is distinct
from any projection onto the EOS performed globally.

C. GMRES solver. The temporal discretization described in our previous work
[28] was fully explicit, whereas the discretization we employ here is implicit in the
viscous dissipation. The implicit treatment of viscosity is traditionally handled by
time-splitting approaches, in which a velocity system is solved first, without strictly
enforcing the constraint. The solution is then projected onto the space of vector
fields satisfying the constraint [16]. This type of time-splitting introduces several
artifacts, especially for viscous-dominated flows; here we avoid time-splitting by
solving a combined velocity-pressure Stokes linear system, as discussed in detail in
Ref. [13].

The implicit treatment of viscosity in the temporal integrators described in Section
III D requires solving discretized unsteady Stokes equations for a velocity v and a
pressure π ,

θρv−∇ · (η∇v)+∇π = f,

∇ · v = h,

for given spatially varying density ρ and viscosity η, right-hand sides f and h,
and a coefficient θ ≥ 0. We solve these linear systems using a GMRES Krylov
solver preconditioned by the multigrid-based preconditioners described in detail in
Ref. [13]. This approach requires only standard velocity (Helmholtz) and pressure
(Poisson) multigrid solvers, and requires about two to three times more multigrid
iterations than solving an uncoupled pair of velocity and pressure subproblems (as
required in projection-based splitting methods).

There are two issues that arise with the Stokes solver in the context of temporal in-
tegration that need special care. In fluctuating hydrodynamics, typically the average
flow v̄ changes slowly and is much larger in magnitude than the fluctuations around
the flow δv. In the predictor stages of our temporal integrators the convergence
criterion in the GMRES solver is based on relative tolerance. Because the right-hand
side of the linear system and the residual are dominated by the deterministic flow,
it is hard to determine when the fluctuating component of the flow has converged
to the desired relative accuracy. In the corrector stage of our predictor-corrector
schemes, we use the predicted state as a reference, and switch to using absolute error
as the convergence criterion in GMRES, using the same residual error tolerance
as was used in the predictor stage. This ensures that the corrector stage GMRES
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converges quickly if the predicted state is already a sufficiently accurate solution of
the Stokes system. Another issue that has to be handled carefully is the imposition
of inhomogeneous boundary conditions, which leads to a linear system of the form

Axnew
+ bBC = b,

where bBC comes from nonhomogeneous boundary conditions. Both of these
problems are solved by using a residual correction technique to convert the Stokes
linear system into one for the change in the velocity and pressure 1x = xnew

− x̄old

relative to an initial guess or reference state x̄old, which is typically the last known
velocity and pressure, except that the desired inhomogeneous boundary conditions
are imposed; this ensures that boundary terms vanish and the Stokes problem for1x
is in homogeneous form. Note that any Dirichlet boundary conditions for the normal
component of velocity should be consistent with h, and any Dirichlet boundary
conditions for the tangential component of the velocity should be evaluated at the
same point in time (e.g., beginning, midpoint, or endpoint of the time step) as h.

D. Temporal discretization. In this section we construct temporal integrators for
the spatially discretized low Mach number equations, in which we treat viscosity
semi-implicitly. For our target applications, the Reynolds number is sufficiently
small and the Schmidt number is sufficiently large that an explicit viscosity treatment
would lead to an overall viscous time step restriction,

η1t
1x2 <

1
2d
,

We present temporal integrators in which we avoid fractional time stepping and
ensure strict (to within solver and roundoff tolerances) conservation and preservation
of the EOS constraint. The key feature of the algorithms developed here is the
implicit treatment of viscous dissipation, without, however, using splitting between
the velocity and pressure updates, as discussed at more length in the introduction.
The feasibility of this approach relies an efficient solver for Stokes systems on a
staggered grid [13]; see also Section III C for additional details.

In the temporal integrators developed here, we treat advection explicitly, which
limits the advective Courant number to

vmax1t
1x

< C ∼ 1.

Mass diffusion is also treated explicitly since it is typically much slower than
momentum diffusion and in many examples also slower than advection. Explicit
treatment of mass diffusion leads to an additional stability limit on the time step
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since the diffusive Courant number must be sufficiently small,

χ1t
1x2 <

1
2d
,

where d is the number of spatial dimensions and 1x is the grid spacing. Implicit
treatment of mass diffusion is straightforward for incompressible flows, see Algo-
rithm 2 in Ref. [24], but is much harder for the low Mach number equations due
to the need to maintain the EOS constraint (3) via the constraint (9). Even with
explicit mass diffusion, provided that the Reynolds is sufficiently small and the
Schmidt number is sufficiently large, a semi-implicit viscosity treatment results in
a much larger allowable time step.

1. Predictor-corrector time stepping schemes. In Algorithm 1 we give the steps
involved in advancing the solution from time level n by a time interval 1t to time
level n+1, using a semi-implicit trapezoidal temporal integrator [24] for the inertial
fluctuating low Mach number equations (6), (7), (9) and (11). In Algorithm 2 we
give an explicit midpoint temporal integrator [24] for the overdamped low Mach
number equations (7), (11) and (13).

In order to ensure strict conservation of mass and momentum, we evolve the
momentum density m=ρv and the mass densities ρ1 and ρ (an equally valid choice
is to evolve ρ1 and ρ2). Whenever required, the primitive variables v = m/ρ and
c = ρ1/ρ are computed from the conserved quantities. Unlike the incompressible
equations, the low Mach number equations require the enforcement of the EOS
constraint (3) at every update of the mass densities ρ1 and ρ, notably, both in the
predictor and the corrector stages. This requires that the right-hand side of the
velocity constraint (9) be consistent with the corresponding diffusive fluxes used
to update ρ1. In order to preserve the EOS and also maintain strict conservation,
Algorithms 1 and 2 use a splitting approach, in which we first update the mass
densities and then we update the velocity using the updated values for the density
ρ and the diffusive fluxes that will be used to update ρ1. Note, however, that after
many time steps the small errors in enforcing the EOS due to roundoff and solver
tolerances can accumulate and lead to a systematic drift from the EOS. This can be
corrected by periodically projecting the solution back onto the EOS using an L2

projection, see Section III.C in Ref. [28].
In our presentation of the temporal integrators, we use superscripts to denote

where a given quantity is evaluated, for example, ηp,n+1
≡ η(cp,n+1). Even though

we use continuum notation for the divergence, gradient and Laplacian operators,
it is implicitly understood that the equations have been discretized in space. The
white-noise random tensor fields W(r, t) and W̃(r, t) are represented via one or
two collections of i.i.d. uncorrelated normal random variables W and W̃ , generated
independently at each time step, as indicated by superscripts and subscripts [23;
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24]. Spatial discretization adds an additional factor of 1V−1/2 due to the delta
function correlation of white-noise, where 1V is the volume of a grid cell [23].
For simplicity of notation we set W =W +W T .

Several variants of the inertial Algorithm 1 preserve deterministic second-order
accuracy. For example, in the corrector stage for ρ1, for centered advection we use
a trapezoidal approximation to the advective flux,

1
2(ρ1v)

n
+

1
2(ρ1v)

?,n+1, (19)

but we could have also used a midpoint approximation(
ρn

1 + ρ
?,n+1
1

2

)(
vn
+ v?,n+1

2

)
. (20)

without affecting the second-order weak accuracy [24]. Note that BDS advection
by construction requires a midpoint approximation to the advective velocity; no
analysis of the order of stochastic accuracy is available for BDS advection at present.
In the corrector step for velocity, in Algorithm 1 we use corrected values for the
viscosity, but one can also use the values from the predictor η∗,n+1.

2. Order of accuracy. For explicit temporal integrators, we relied on a gauge
formulation to write the low Mach equations in the form of a standard unconstrained
initial-value problem, thus allowing us to use standard integrators for ODEs [28].
In the semi-implicit case, however, we do not use a gauge formulation because the
Stokes solver we use works directly with the pressure and velocity. This makes
proving second-order temporal accuracy nontrivial even in the deterministic context;
we therefore rely on empirical convergence testing to confirm the second-order
deterministic accuracy.

In the stochastic context, there is presently no available theoretical analysis when
BDS advection is employed; existing analysis [30; 23; 24] assumes a method of lines
(MOL) discretization in which space is discretized first to obtain a system of SODEs.
For centered advection, which does lead to an MOL discretization, the algorithms
used here are based on the second-order weak temporal integrators developed in
Ref. [24]. In particular, for the case of the inertial equations (6), (7), (9) and (11),
we base our temporal integrator on an implicit trapezoidal method. It should be
emphasized however that the analysis in Ref. [24] applies to unconstrained Langevin
systems, while the low Mach equations are constrained by the EOS. Nevertheless,
the deterministic accuracy of the method is crucial even when fluctuations are of
primary interest, because in linearized fluctuating hydrodynamics the fluctuations
are linearized around the solution of the deterministic equations, which must itself
be computed numerically accurately [24] in order to have any chance of computing
the fluctuations accurately. For the case of the overdamped equations (7), (11)
and (13), we base our temporal integrator on an implicit midpoint method. In
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1. Compute the diffusive / stochastic fluxes for the predictor. Note that these can be obtained
from step 5. of the previous time step,

Fn
= (ρχ∇c)n +

√
2(χρµ−1

c )nkB T
1t 1V

W̃ n.

2. Take a predictor forward Euler step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρ
?,n+1
1 = ρn

1 +1t ∇ · Fn
−1t ∇ ·

{
BDS(ρn

1 , vn, ∇ · Fn, 1t) for BDS,
ρn

1 vn for centered.

3. Compute c?,n+1
= ρ

?,n+1
1 /ρ?,n+1 and calculate corrector diffusive fluxes and stochastic

fluxes,

F?,n+1
= (ρχ∇c)?,n+1

+

√
2(χρµ−1

c )?,n+1kB T
1t 1V

W̃ n.

4. Take a predictor Crank–Nicolson step for the velocity, using vn as a reference state for
the residual correction form of the Stokes system,

ρ?,n+1v?,n+1
− ρnvn

1t
+∇π ?,n+1

=∇· (−ρvv)n + ρn g+ 1
2∇· (ηn

∇vn
+ η?,n+1

∇v?,n+1)+∇·

(√
ηnkB T
1t 1V

W n
)
,

∇· v?,n+1
=−∇ · (βρ−1 F?,n+1).

Take a corrector step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρn+1
1 = ρn

1 +
1t
2

∇ ·F?,n+1/2−1t ∇ ·

{
BDS(ρn

1 , v?,n+
1/2, ∇ · F?,n+1/2, 1t) for BDS,

1
2 (ρ1v)

n
+

1
2 (ρ1v)

?,n+1 for centered,

where F?,n+1/2 = (Fn
+ F?,n+1)/2 and v?,n+

1/2 = (vn
+ v?,n+1)/2.

5. Compute cn+1
= ρn+1

1 /ρn+1 and compute

Fn+1
= (ρχ∇c)n+1

+

√
2(χρµ−1

c )n+1kB T
1t 1V

W̃ n+1.

6. Take a corrector step for velocity by solving the Stokes system, using v?,n+1 as a reference
state,

ρn+1vn+1
− ρnvn

1t
+∇πn+1/2

=
1
2∇ · ((−ρvv)n + (−ρvv)?,n+1)+ 1

2 (ρ
n
+ ρn+1)g+ 1

2∇ · (ηn
∇vn
+ ηn+1

∇vn+1)

+
1
2
∇ ·

[(√
ηnkB T
1t 1V

+

√
ηn+1kB T
1t 1V

)
W n

]
,

∇ · vn+1
=−∇ · (βρ−1 Fn+1).

Algorithm 1. Semi-implicit trapezoidal temporal integrator for the inertial fluctuating low
Mach number equations (6), (7), (9) and (11).
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1. Calculate predictor diffusive fluxes and generate stochastic fluxes for a half step to the
midpoint,

Fn
= (ρχ∇c)n +

√
2(χρµ−1

c )nkB T
(1t/2)1V

W̃ n
A.

2. Generate a random advection velocity by solving the steady Stokes equation with random
forcing,

∇πn
=∇ · (ηn

∇vn)+∇ ·

(√
ηnkB T

(1t/2)1V
W n

A

)
+ ρn g

∇ · vn
=−∇ · (βρ−1 Fn).

3. Take a predictor midpoint Euler step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρ
?,n+1/2
1 = ρn

1 +
1t
2

∇ · Fn
−
1t
2

∇ ·

{
BDS(ρn

1 , vn, ∇ · Fn, 1t
2 ) for BDS,

ρn
1 vn for centered,

and compute c?,n+1/2 = ρ
?,n+1/2
1 /ρ?,n+

1/2.

4. Calculate corrector diffusive fluxes and generate stochastic fluxes,

F?,n+1/2 = (ρχ∇c)?,n+
1/2+

√
2(χρµ−1

c )?,n+
1/2kB T

1t 1V

(
W̃ n

A+ W̃ n
B

√
2

)
,

where W̃ n
B is a collection of random numbers generated independently of W̃ n

A.

5. Solve the corrected steady Stokes equation

∇π ?,n+
1/2 =∇ · (η?,n+

1/2∇v?,n+
1/2)+∇ ·

[√
η?,n+

1/2kB T
1t 1V

(
W n

A+W n
B

√
2

)]
+ ρ?,n+

1/2 g

∇ · v?,n+
1/2 =−∇ · (βρ−1 F?,n+1/2).

6. Correct ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρn+1
1 = ρn

1 +1t ∇ · F?,n+1/2−1t ∇ ·

{
BDS(ρn

1 , v?,n+
1/2, ∇ · F?,n+1/2, 1t) for BDS,

(ρv)?,n+
1/2 for centered,

and set cn+1
= ρn+1

1 /ρn+1.

Algorithm 2. A time step of our implicit midpoint temporal integrator for the overdamped
equations (7), (11) and (13).

this case the analysis presented in Ref. [24] does apply since the velocity is not a
variable in the overdamped equations and the limiting equation for concentration is
unconstrained. This analysis indicates that the overdamped temporal integrator in
Algorithm 2 is second-order weakly accurate for the linearized overdamped low
Mach number equations.
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IV. Validation and testing

In this section we apply the inertial and overdamped low Mach algorithms described
in Section III in a stochastic and several deterministic contexts. First, we demonstrate
our ability to accurately model equilibrium fluctuations by analyzing the static
spectrum of the fluctuations. Next, we confirm the second-order deterministic order
of accuracy of our methods on a low Mach number lid-driven cavity test. Next,
we confirm that the BDS advection scheme enables robust simulation in cases
when there is little or no mass diffusion (i.e., nearly infinite Péclet number). Lastly,
we use the inertial algorithm to simulate the development of a Kelvin–Helmholtz
instability when a lighter less viscous fluid is impulsively set in motion on top of a
heavier more viscous fluid.

A. Equilibrium fluctuations. One of the key quantities used to characterize the
intensity of equilibrium thermal fluctuations is the static structure factor or static
spectrum of the fluctuations at thermodynamic equilibrium. We examine the static
structure factors in both the inertial and overdamped regimes. We use arbitrary
units with T = 1, kB = 1, molecular masses m1 = 1, m2 = 2, and pure component
densities ρ̄1 = 2/3, ρ̄2 = 2. We initialize the domain with c = 0.5, which gives
ρ = 1. The diffusion coefficient was constantχ = 1, whereas the viscosity varies
linearly from η = 1 to η = 10 (for the inertial tests), and from η = 1 to η = 100
(for the overdamped tests) as c varies from 0 to 1, but note that at equilibrium the
concentration fluctuations are small so the viscosity varies little over the domain.
We assume an ideal mixture, giving chemical potential µ−1

c kB T = c(1 − c)×
[cm2+ (1−c)m1] (see Refs. [28; 10]). At these conditions, the equilibrium density
variance is 1V 〈(δρ)2〉 = Sρ = 0.375, where 1V is the volume of a grid cell
(see Appendix A1 in Ref. [28]). We use a periodic system with 32 × 32 grid
cells with 1x = 1y = 1, with the thickness in the third direction set to give a
large 1V = 106 and thus small fluctuations, ensuring consistency with linearized
fluctuating hydrodynamics. A total of 105 time steps are skipped in the beginning to
allow equilibration of the system, and statistics are then collected for an additional
106 steps. We run both the inertial and overdamped algorithms using three different
time steps, 1t = 0.1, 0.05, and 0.025, the largest of which corresponds to 40% of
the maximum allowable time step by the explicit mass diffusion CFL condition.

In Table 1 we observe that as we reduce the time step by a factor of two, we see
a reduction in error in the average value of Sρ over all wavenumbers by a factor
of ∼4 (second-order convergence) for the inertial algorithm, and a factor of ∼8
(third-order convergence) for the overdamped algorithm (the latter being consistent
with the fact that the explicit midpoint method is third-order accurate for static
covariances [23]). In Figure 1 we show the spectrum of density fluctuations at
equilibrium for three different time step sizes. At thermodynamic equilibrium, the
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1t Sρ |Error| Order

Inertial 0.1 0.3201 0.0549
0.05 0.3624 0.0126 2.12
0.025 0.3722 0.0029 2.14

Overdamped 0.1 0.4192 0.0442
0.05 0.3786 0.0036 3.63
0.025 0.3755 0.0005 2.92

Table 1. Equilibrium static structure factor Sρ averaged over all wavevectors for the iner-
tial and overdamped algorithms using three different time steps. The exact solution from
theory is Sρ = 0.375, allowing us to estimate an order of accuracy from the average error
over all wavenumbers. Note that there are significant statistical errors present, especially
at small wavenumbers, and these make it difficult to reliably estimate the asymptotic order
of accuracy empirically when the error is very small (as for the overdamped integrator).

Figure 1. Equilibrium static structure factor Sρ as a function of wavevector (zero being at
the center of the figures) for the overdamped simulations with 1t = 0.1 (left), 1t = 0.05
(middle), and 1t = 0.025 (right). The correct result, which is recovered in the limit
1t→ 0, is Sρ = 0.375. The artifacts decrease by roughly a factor of 8 as the time step is
reduced in half.

static structure factors are independent of the wavenumber due to the local nature
of the correlations. Since we include mass diffusion using an explicit temporal
integrator, for larger time steps we expect to see additional deviation from a flat
spectrum at the largest wavenumbers (i.e., for k ∼1x−1) [30; 23]. In the limit of
sufficiently small time steps, we recover the correct flat spectrum, demonstrating
that our model and numerical scheme obey a fluctuation-dissipation principle.

B. Deterministic lid-driven cavity convergence test. In this section, we simulate
a smooth test problem and empirically confirm deterministic second-order accuracy
of Algorithms 1 and 2 even in the presence of boundary conditions, inertial effects,
and gravity, as well as nonconstant density, mass diffusion coefficient, and viscosity.
The problem is a deterministic lid-driven cavity flow, following previous work by
Boyce Griffith for incompressible constant-density and constant-viscosity flow [35].

We use CGS units (centimeters for length, seconds for time, grams for mass).
We consider a square (two dimensions) or cubic (three dimensions) domain with
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side of length L = 1 bounded on all sides by no-slip walls moving with a specified
velocity. The bottom and top walls (y-direction) are no-slip walls moving in equal
and opposite directions, setting up a circular flow pattern, while the remaining walls
are stationary. The top wall has a specified velocity given in two dimensions by

u(x, t)=

{
1
4

[
1+ sin

(
2πx − π

2

)][
1+ sin

(
2π t − π

2

)]
, t < 1

2 ,

1
2

[
1+ sin

(
2πx − π

2

)]
, t ≥ 1

2 ,
(21)

and in three dimensions by

u(x, z, t)= w(x, z, t)

=

{
1
8

[
1+ sin

(
2πx − π

2

)][
1+ sin

(
2π z− π

2

)][
1+ sin

(
2π t − π

2

)]
, t < 1

2 ,

1
4

[
1+ sin

(
2πx − π

2

)][
1+ sin

(
2π z− π

2

)]
, t ≥ 1

2 .
(22)

Note that the wall velocity tapers to zero at the corners in order to regularize the
corner singularities [35]; similarly, the velocity smoothly increases with time to its
final value in order to avoid potential loss of accuracy due to an impulsive start of
the flow. The two liquids have pure-component densities ρ̄1 = 2 and ρ̄2 = 1. The
initial conditions are v = 0 for velocity, and a Gaussian bump of higher density for
the concentration, c(r, t) = exp(−75r2), where r is the distance to the center of
the domain. The viscosity varies linearly as a function of concentration, such that
η= 0.1 when c= 0 and η= 1 when c= 1. Similarly, the mass diffusion coefficient
varies linearly as a function of concentration, such that χ = 10−4 when c = 0 and
χ = 10−3 when c = 1. In order to confirm that second-order accuracy is preserved
even in the limit of infinite Péclet number if BDS advection is employed, we also
perform simulations with χ = 0. Figure 2 illustrates the initial and final (at time
t = 2) configurations of concentration and velocity in two dimensions.

Figure 2. Initial (t = 0) and final (t = 2) concentration (scalar color field) and velocities
(vector field) for the low Mach number lid-driven cavity test problem.
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Recall that advection of the concentration can be treated using centered advection
or the BDS advection scheme (see Section III B 1). BDS advection can use either a
bilinear (trilinear in 3D) or a quadratic reconstruction (2D only), and can further
be limited to avoid the appearance of spurious local extrema. Here we present
convergence results for the following test problems:

• Test 1: Centered advection, nonzero χ

• Test 2: Unlimited bilinear BDS advection, nonzero χ

• Test 3: Unlimited quadratic BDS advection, nonzero χ

• Test 4: Unlimited bilinear BDS advection, χ = 0.

We perform Tests 1–4 using both the inertial Algorithm 1 and the overdamped
Algorithm 2. The Reynolds number in this test is of order unity and there is only a
small difference in the results for the inertial and overdamped equations. Recall
that concentration is the only independent variable in the overdamped equations.

In two dimensions, we discretize the problem on a grid of 642, 1282, 2562 or
5122 cells. The time step size for the coarsest simulation is 1t = 5× 10−3 and
it is halved as the resolution doubles. This corresponds to an advective Courant
number of vmax1t/1x ∼ 0.3 for each simulation. The diffusive Courant number is
χ1t/1x2

∼ 0.16 (recall that the stability limit is 1/4= 0.25 in two dimensions) for
the finest simulation, reducing by a factor of 2 with each successive grid coarsening.
We simulate the flow and compute error norms at time t = 2. In Table 2 we

refinement 64–128 order 128–256 order 256–512

Test 1: u 1.93× 10−3 1.91 5.12× 10−4 1.96 1.32× 10−4

v 8.69× 10−4 1.99 2.19× 10−4 2.00 5.49× 10−5

c 3.02× 10−4 1.99 7.60× 10−4 2.00 1.90× 10−4

Test 2: u 1.92× 10−3 1.91 5.11× 10−4 1.95 1.32× 10−4

v 9.08× 10−4 1.96 2.34× 10−4 1.99 5.91× 10−5

c 2.63× 10−3 1.72 7.99× 10−4 1.92 2.11× 10−4

Test 3: u 1.92× 10−3 1.91 5.11× 10−4 1.95 1.32× 10−4

v 8.62× 10−4 1.95 2.23× 10−4 1.98 5.64× 10−5

c 1.95× 10−3 1.99 4.91× 10−4 2.00 1.23× 10−4

Test 4: u 1.91× 10−3 1.92 5.06× 10−4 1.96 1.30× 10−4

v 9.78× 10−4 2.01 2.43× 10−4 2.02 6.00× 10−5

c 4.29× 10−3 1.90 1.15× 10−3 1.97 2.93× 10−4

Table 2. Convergence of errors in the L∞ norm for a two-dimensional inertial low Mach
lid-driven cavity problem as the grid is refined in space and time, for the components of
the velocity v = (u, v) and concentration c. The order of convergence is estimated from
the error ratio between two successive refinements.
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refinement 64–128 order 128–256 order 256–512

Test 1: 3.57× 10−3 2.01 8.89× 10−4 2.00 2.22× 10−4

Test 2: 2.70× 10−3 1.78 7.87× 10−4 1.92 2.08× 10−4

Test 3: 1.95× 10−3 1.98 4.95× 10−4 1.89 1.34× 10−4

Test 4: 4.23× 10−3 1.93 1.11× 10−3 1.96 2.86× 10−4

Table 3. Convergence of errors in the L∞ norm for a two-dimensional overdamped low
Mach lid-driven cavity problem as the grid is refined in space and time, for concentration c.
The order of convergence is estimated from the error ratio between successive refinements.

present estimates of the order of convergence in the L∞ (max) norm for the velocity
components and concentration for the inertial equations. We see clear second-order
pointwise convergence, without any artifacts near the boundaries. Similar results
are obtained for the concentration in the overdamped limit, as shown in Table 3.

In three dimensions, we discretize the problem on a grid of 323, 643, 1283 or
2563 cells. The time step size for the coarsest simulation is 1t = 1.25× 10−2,
which corresponds to an advective Courant number of ∼ 0.4, and diffusive Courant
number of ∼ 0.10 (stability limit is 1/6≈ 0.17) for the finest resolution simulation.
We simulate the flow and compute error norms at time t = 1. We limit our study
here to inertial flow and only perform Tests 1 and 2 (note that there is presently
no available unlimited quadratic BDS advection scheme in three dimensions, so
test 3 cannot be performed). We also try a higher-order one-sided difference for the
tangential velocity at the no-slip boundaries, which does not affect the asymptotic
rate of convergence, but it can significantly reduce the magnitude of the errors, and
enables us to reach the asymptotic regime for smaller grid sizes [35]. The numerical
convergence results shown in Table 4 demonstrate the second-order deterministic
accuracy of our method in three dimensions.

C. Deterministic sharp interface limit. In this section we verify the ability of
the BDS advection scheme to advect concentration and density without creating
spurious oscillations or instabilities, even in the absence of mass diffusion, χ = 0,
and in the presence of sharp interfaces. The problem setup is similar to the inertial
lid-driven cavity test presented above, with the following differences. First, the
gravity is larger, g = (0,−5), so that the higher density region falls downward a
significant distance. Secondly, the initial conditions are a constant background of
c = 0 with a square region covering the central 25% of the domain initialized to
c = 1 (see the left panel of Figure 3). The correct solution of the equations must
remain a binary field, c = 1 inside the advected square curve, and c = 0 elsewhere.
In this test we employ limited quadratic BDS, and use a grid of 2562 cells and a
fixed time step size 1t = 2.5×10−3, corresponding to an advective CFL number of
∼ 0.6. In Figure 3, we show the concentration at several points in time, observing
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32–64 Rate 64–128 Rate 128–256

Test 1: u 7.66× 10−3 1.75 2.27× 10−3 1.88 6.16× 10−4

v 3.12× 10−3 1.96 8.02× 10−4 1.99 2.02× 10−4

w 7.66× 10−3 1.75 2.27× 10−3 1.88 6.16× 10−4

c 1.22× 10−2 2.00 3.06× 10−3 2.00 7.64× 10−4

Test 1: u 2.30× 10−3 1.97 5.88× 10−4 2.02 1.45× 10−4

with higher-order v 9.01× 10−4 2.23 1.92× 10−4 1.99 4.82× 10−5

boundary stencil w 2.30× 10−3 1.97 5.88× 10−4 2.02 1.45× 10−4

c 1.21× 10−2 1.99 3.05× 10−3 2.00 7.62× 10−4

Test 2: u 7.67× 10−3 1.75 2.28× 10−3 1.89 6.16× 10−4

v 3.11× 10−3 1.96 8.01× 10−4 1.99 2.02× 10−4

w 7.67× 10−3 1.75 2.28× 10−3 1.89 6.16× 10−4

c 9.79× 10−3 1.91 2.61× 10−3 1.97 6.68× 10−4

Test 2: u 2.30× 10−3 1.96 5.89× 10−4 2.01 1.46× 10−4

with higher-order v 8.90× 10−4 2.21 1.92× 10−4 1.99 4.82× 10−5

boundary stencil w 2.30× 10−3 1.96 5.89× 10−4 2.01 1.46× 10−4

c 9.70× 10−3 1.91 2.59× 10−3 1.96 6.67× 10−4

Table 4. Convergence of errors in the L∞ norm for a three-dimensional inertial low Mach
lid-driven cavity problem as the grid is refined in space and time, for the components of the
velocity v = (u, v, w) and concentration c. The order of convergence is estimated from the
error ratio between successive refinements.

Figure 3. Advection of a square bubble in a lid-driven cavity flow, using the limited
quadratic BDS scheme. Concentration is shown as a color plot at times t = 0, 2, 4.

very little smearing of the interface, even as the deformed bubble passes near the
bottom boundary.

D. Deterministic Kelvin–Helmholtz instability. We simulate the development of
a Kelvin–Helmholtz instability in three dimensions in order to demonstrate the
robustness of our inertial time-advancement scheme in a deterministic setting. Our
simulation uses 256× 128× 256 computational cells with grid spacing 1x = 1/256.
We use periodic boundary conditions in the x and z directions, a no-slip condition on
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the y boundaries, with prescribed velocity v(x, y=0, z)=0 on the bottom boundary
and v(x, y = 0.5, z)= (1, 0, 0) on the top boundary. We use an adaptive time step
size 1t adjusted to maintain a maximum advective CFL number vmax1t/1x ≤ 0.9.
The binary fluid mixture has a 10:1 density contrast with ρ̄1 = 10 and ρ̄2 = 1.
Viscosity varies linearly with concentration, such that η = 10−4 for c = 0 and
η = 10−3 for c = 1. The mass diffusion coefficient is fixed at χ = 10−6, which
makes the diffusive CFL number χ1t/1x2

∼ 10−4, making it necessary to use
BDS advection in order to avoid instabilities due to sharp gradients at the interface.
We employ the bilinear BDS advection scheme [9] with limiting in order to preserve
strict monotonicity and maintain concentration within the bounds 0≤ c ≤ 1.

The initial condition is c = 1 in the lower-half of the domain, and c = 0 in the
upper-half of the domain, so that light fluid sits on top of heavy fluid with a discon-
tinuity in the concentration and velocity at the interface. The initial momentum is
set to ρv = (1, 0, 0) in the upper-half of the domain and ρv = 0 in the lower-half of
the domain. Gravity has a magnitude of g= 0.1 acting in the downward y-direction.
In order to set off the instability, in a row of cells at the centerline, c is initialized
to a random value between 0 and 1. The subsequent temporal evolution of the
density (which is related to concentration via the EOS) is displayed in Figure 4,
showing the development of the instability with no visible numerical artifacts. We
also observe uniformly robust convergence of the GMRES Stokes solver throughout
the simulation.

Figure 4. The development of a Kelvin–Helmholtz instability as a lighter less-viscous
fluid streams over a ten times denser and more viscous fluid. Contour surfaces of the
density, ranging from ρ = 1 (red) to ρ = 10 (blue), are shown at times t = 1.72, 3.16, 4.53,
and 5.85 s.
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V. Giant concentration fluctuations

Advection of concentration by thermal velocity fluctuations in the presence of large
concentration gradients leads to the appearance of giant fluctuations of concentration,
as has been studied theoretically and experimentally for more than a decade [57;
58; 19; 56; 55]. In this section, we use our algorithms to simulate experiments
measuring the temporal evolution of giant concentration fluctuations during free
diffusive mixing in a binary liquid mixture. Croccolo et al. [19] report experimen-
tal measurements of the temporal evolution of the time-correlation functions of
concentration fluctuations during the diffusive mixing of water and glycerol. In
the experiments, a solution of glycerol in water with mass fraction of c = 0.39 is
carefully injected in the bottom half of the experimental domain, under the c = 0
pure water in the top half. The two fluids slowly mix over the course of many hours
while a series of measurements of the concentration fluctuations are performed.

In the experiments, quantitative shadowgraphy is used to observe and measure
the strength of the fluctuations in the concentration via the change in the index
of refraction. The observed light intensity, once corrected for the optical transfer
function of the equipment, is proportional to the intensity of the fluctuations in the
concentration averaged along the vertical (gradient) direction,

c⊥(x, z; t)= H−1
∫ H

y=0
c(x, y, z; t) dy,

where H is the thickness of the sample in the vertical direction. The quantity
of interest is the correlation function of the Fourier coefficients δ̂c⊥(kx , kz; t) of
c⊥(x, z; t),

C(τ ; t, k)=
〈
(δ̂c⊥(kx , kz; t + τ))(δ̂c⊥(kx , kz; t))?

〉
,

where k=
√

k2
x + k2

z is the wavenumber (in our two dimensional simulations kz = 0),
τ is a delay time, and t is the elapsed time since the beginning of the experiment.
In principle, the averaging above is an ensemble average but in the experimental
analysis, and also in our processing of the simulation results, a time averaging
over a specified time window T is performed in lieu of ensemble averaging. This
approximation is justified because the system is ergodic and the evolution of the
deterministic (background) state occurs via slow diffusive mixing of the water and
glycerol solutions, and thus happens on a much longer time scale (hours) than the
time delays of interest (a few seconds).

The Fourier transform (in time) of C(τ ) is called the dynamic structure factor.
The equal-time correlation function

S(k; t)= C(τ = 0; t, k)
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is the static structure factor, and is more difficult to measure in experiments [19].
For this reason, the experimental results are presented in the form of normalized
time-correlation functions,

C̃(τ ; t, k)=
C(τ ; t, k)

S(k; t)
.

The wavenumbers observed in the experiment and simulation are k = κ · 2π/L ,
where κ is an integer and L is the horizontal extent of the observation window
or the simulation box size. When evaluating the theory, we account for errors
in the discrete approximation to the continuum Laplacian by using the effective
wavenumber

k⊥ = kx
sin(kx1x/2)
(kx1x/2)

(23)

instead of the actual discrete wavenumber kx [6].
The confinement in the vertical direction is expected to play a small role because

of the large thickness (2cm) of the sample, and a simple quasiperiodic (bulk)
approximation can be used. Approximate theoretical analysis [22] suggests that at
steady state the dominant nonequilibrium contribution to the static structure factor,

S(k; t)=
kB T

(ηχk4− ρβgh)
h2, (24)

exhibits a k−4 power-law decay at large wavenumbers, and a plateau to kB T h/(ρβg)
for wavenumbers smaller than a rollover k4

c = ρβgh/(ηχ) due to the influence
of gravity (buoyancy). Here h(t)= dc̄(y; t)/dy is the deterministic (background)
concentration gradient, which decays slowly with time due to the continued mixing
of the water and glycerol solutions.

An overdamped approximation suggests that the time correlations decay expo-
nentially, C̃(τ ; t, k)= exp(−τ/τk), with a relaxation time or decay time

τ−1
k = χk2

[
1+

ρβgh
ηχk4

]
, (25)

that has a minimum at k = kc with value τ−1
min = 2χk2

c ∼
√

hg. For wavenumbers
k < kc the relaxation time becomes smaller and can in fact become very small
at the smallest wavenumbers, requiring small time step sizes in the simulations
to resolve the dynamics and ensure stability of the temporal integrators. In the
presence of gravity, at small wavenumbers the separation of time scales used to
justify the overdamped limit fails and the fluid inertia has to be taken into account
[24]. This changes the prediction for the time correlation function to be a sum of
two exponentials with relaxation times,

τ−1
1/2
=

1
2(ν+χ)k

2
±

1
2

√
k4(ν−χ)2− 4βgh, (26)
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where ν = η/ρ. This expression becomes complex-valued for

k . kp =

(
4βgh
ν2

)1/4

=

(
4χ
ν

)1/4

kc,

indicating the appearance of propagative rather than diffusive modes for small
wavenumbers, closely related to the more familiar gravity waves. While experimen-
tal measurements over wavenumbers k . kp are not reported by Croccolo et al. [19],
their experimental data does contain several wavenumbers in that range. We report
here simulation results for propagative concentration modes at small wavenumbers.
To our knowledge, experimental observation of propagative modes has only been
reported for temperature fluctuations [52].

Because it is essentially impossible to analytically solve the linearized fluctu-
ating equations in the presence of spatially inhomogeneous density and transport
coefficients and nontrivial boundary conditions, the existing theoretical analysis of
the diffusive mixing process [58] makes a quasiperiodic constant-coefficient and
constant-gradient incompressible approximation [22]. This approximation, while
sufficient for qualitative studies, is not appropriate for quantitative studies because
the viscosity η and mass diffusion coefficient χ vary by about a factor of three
from the bottom to the top of the sample. In our simulations we account for the full
dependence of density, viscosity and diffusion coefficient on concentration.

A. Simulation parameters. For LFHD there is no difference between the two and
three dimensional problems due to the symmetries of the problem [22]. Because
very long simulations with a small time step size are required for this study, we
perform two-dimensional simulations. Furthermore, in these simulations we do
not include a stochastic flux in the concentration equation, i.e., we set 9 = 0,
so that all fluctuations in concentration arise from the coupling to the fluctuating
velocity. With this approximation we do not need to model the chemical potential
of the mixture and obtain µc. This approximation is justified by the fact that it is
known experimentally that the nonequilibrium fluctuations are much larger than the
equilibrium ones for the conditions we consider [19]; in fact, the fluctuations due
to nonzero 9 are smaller than solver or even roundoff tolerances in the simulations
reported here.

We base our parameters on the experimental studies of diffusive mixing in a
water-glycerol mixture, as reported by Croccolo et al. [19]. In the actual experiments
the fluid sample is confined in a cylinder 2 cm in diameter and 2 cm thick in the
vertical direction. In our simulations, the two-dimensional physical domain is
1.132 cm× 1.132 cm discretized on a uniform 256× 256 two dimensional grid,
with a thickness of 1 cm along the z direction. This large thickness makes the
magnitude of the fluctuations very small since the cell volume 1V contains a
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very large number of molecules, and puts us in the linearized regime [24]. The
width of the domain L = 1.132 cm is chosen to match the observation window in
the experiments, and thus also match the discrete set of wavenumbers between
the simulations and experiments. Earth gravity g =−9.81 m2/s is applied in the
negative y (vertical) direction; for comparison we also perform a set of simulations
without gravity. Periodic boundary conditions are applied in the x-direction and
impenetrable no-slip walls are placed at the y boundaries. The initial condition is
c = 0.39 in the bottom half of the domain and c = 0 in the top half, with velocity
initialized to zero. The temperature is kept constant at 300 K throughout the domain.
Centered advection is used to ensure fluctuation-dissipation balance over the whole
range of wavenumbers represented on the grid.

A very good fit to the experimental equation of state (dependence of density
on concentration at standard temperature and pressure) over the whole range of
concentrations of interest is provided by the EOS (3) with the density of water set
to ρ̄2= 1 g/cm3 and the density of glycerol set to ρ̄1= 1.29 g/cm3. Experimentally,
the dependence of viscosity on glycerol mass fraction has been fit to an exponential
function [19], which we approximate with a rational function over the range of
concentrations of interest [51],

η(c)≈
1.009+ 1.1262 c

1− 1.5326 c
· 10−2 g

cm s
. (27)

The diffusion coefficient dependence on the concentration has been studied experi-
mentally, and we employ the fit proposed in Ref. [25],

χ(c)=
1.024− 1.002 c

1+ 0.663 c
· 10−5 cm2

s
, (28)

which is in reasonable but not perfect agreement with a Stokes–Einstein relation
η(c)χ(c) = const. Note that the Schmidt number Sc = ν/χ ∼ 103. In Ref. [19],
based on the experimental measurements and the approximate theoretical model,
it is suggested that χ ≈ 10−5 cm2/s is constant over the range of concentrations
present. For comparison, we also perform simulations in which we keep the
diffusion coefficient independent of concentration, while still taking into account
the concentration dependence of viscosity. It is worth noting that there is a no-
table disagreement between experimental measurements of χ(c) using different
experimental techniques [25] and the true dependence is not known with the same
accuracy as that of η(c).

When gravity is present, we use the inertial Algorithm 1, with a rather small
time step size 1t = 0.01375 s due to the fact that the smallest relaxation time
measured is on the order of 0.1 s. For this time step size, the viscous CFL number
is ν1t/1x2

∼ 10–30, indicating that the viscous dynamics is resolved except at
the wavenumbers comparable to the grid spacing. In the absence of gravity we use
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Starting Time (s) Total Time Steps End Time (s)

600.6 3328 600+ 33281t = 646.36
3003 10784 3151.28

8108.1 4992 8176.74
15015 4768 15080.6

Table 5. Time intervals over which we average the dynamic correlation functions used to
compute the relaxation times shown in Figure 5.

the overdamped Algorithm 2, which allows us to use a much larger time step size
(on the diffusive time scale), 1t = 0.22 s, giving a diffusive CFL number on the
order of χ1t/1x2 . 0.1. Using larger time step sizes than this would require an
implicit treatment of mass diffusion.

B. Results. Our simulations closely mimic the experiments of Croccolo et al. [19].
We perform a long (stochastic) run of the diffusive mixing up to physical time t =
21,021 s, saving a snapshot and statistics every 21,840 time steps, which corresponds
to 300 seconds of physical time. We then perform 8 short runs with different random
seeds starting from the saved snapshots, and compute time correlation functions
averaged over a short time interval. Note that in the experiments a similar procedure
is used in which data is collected over short time intervals during a single long
mixing process. Croccolo et al. report measurements at t = 600 s, 3060 s, 8160 s,
and 14,880 s. Table 5 lists the time intervals over which we collect statistics in
the simulations, which match those in the experiments as well as possible. The
time interval between successive snapshots used in the computation of the time
correlation function is four time steps or 0.055 s, which is four times smaller
than the interval used in the experimental analysis. In the experiments averaging is
performed over a range of wavenumbers in the (kx , kz) plane with similar magnitude.
Since we perform two dimensional simulations we average over the 8 independent
simulations; in the end the statistical errors are lower in the simulation results since
experiments are subject to large experimental noise not present in the simulations.

1. Dynamic structure factors. In order to extract a relaxation time, we fit the
numerical results for the normalized time-correlation function to an analytical
formula. For the first four wavenumbers k = (1, 2, 3, 4) · 2π/L , clear oscillations
(propagative modes) were observed, as illustrated in the top panel of Figure 5. For
these wavenumbers we used the fit

C̃(t)= exp(−t/τ)
(

A sin(2π t/T )+ cos(2π t/T )
)
, (29)

where the relaxation time τ , the coefficient A and the period of oscillation T are the
fitting parameters. For the remaining wavenumbers, we used a double-exponential
decay for the fitting,
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C̃(t)= α exp(−t/τ1)+ (1−α) exp(−t/τ2), (30)

where α, τ1 and τ2 are the fitting parameters. This leads to good fits for k > kp ∼

32 cm−1; for a few transitional wavenumbers such as k ∼ 28 cm−1 the fit is not as
good, as illustrated in the top panel of Figure 5. From the fit (30) we obtain the
relaxation time τ as the point at which the amplitude decays by C̃(τ )= 1/e.
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Figure 5. Dynamics of concentration fluctuations during free-diffusive mixing of water
and glycerol. (Top) Numerical results for the time correlation functions for several selected
wavenumbers about 8160 s from the beginning of the experiment. Symbols indicate
results from the simulations and lines of the same color indicate the fit to (29) for the first
(k ≈ 5.6 cm−1) and fourth (k ≈ 22.2 cm−1) wavenumbers, or to (30) for the remaining
wavenumbers. Note that the statistical errors due to the finite averaging increase with time
and the tails of the correlation functions are not reliably estimated. (Bottom) Relaxation or
decay times as a function of wavenumber at several points in time. Empty symbols show
results from computer simulations, and filled from experimental measurements [19].
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A similar procedure was also used to obtain the relaxation time from the experi-
mental data of Croccolo et al. [19] for all wavenumbers2. The experimental data
shows monotonically decaying correlation functions C̃(τ ; t, k) for all measured
wavenumbers, not consistent with the oscillatory correlation function observed
for the four smallest wavenumbers in our simulations [24]; see the top panel
of Figure 5. We believe that this mismatch is due to the way measurements
for different wavenumbers of similar modulus are averaged in the experimental
calculations. In our two-dimensional simulations, we do not perform any averaging
over wavenumbers. We believe that the experimentally measured time correlation
functions capture the real part of the decay times only and thus have the form of a
sum of exponentials. Due to the lower time resolution and the fact that the static
structure factor is not known, for the experimental data we used a single exponential
fit and added an offset to account for the background noise,

C(t)= A exp(−t/τ)+ B.

In the bottom panel of Figure 5 we compare simulation and experimental results
for the real part of the decay or relaxation time τk , at several points in time measured
from the beginning of the experiment. Good agreement is observed between the two
with the same qualitative trends: a diffusive relaxation time τ−1

k ≈ χk2 for large
wavenumbers, with a maximum at k ≈ kc, and then another minimum at k ≈ kp.
Note that decay times are not reported by Croccolo et al. [19] for wavenumbers
k . kp since that work focuses on the effect of gravity for k . kc. In our analysis
of the experimental data we included all measured wavenumbers, including those
for which propagative modes are observed. Here, the diffusion coefficient varies
with concentration according to (28); very similar results for the relaxation times
were obtained by keeping χ ≈ 10−5 cm2/s constant, as suggested by Croccolo et al.
[19]. This indicates that the dynamic correlations are not very sensitive to the
concentration dependence χ(c). In future work we will perform a more careful
comparison to experiments.

2. Static structure factors. Extracting the static structure factor from experimental
measurements is complicated by several factors, including the presence of optical
prefactors such as the transfer function of the instrument, and the appearance of
additional contributions to the scattered light intensity such as shot noise, contri-
butions due to giant temperature fluctuations [52], and capillary waves [17; 18].
We therefore study the evolution of the static structure factor using simulations
only. In the top panel of Figure 6 we show numerical results for the static structure
factor S(k; t) of the discrete concentration field averaged along the y-axes, at a

2The experimental data for the time correlation functions were graciously given to us by Fabrizio
Croccolo.
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series of times t chosen to match those of the experimental measurements. Instead
of ensemble averaging, here we performed a temporal average of the spectrum of
the vertically averaged concentration over a period of 300 s, ending at the time
indicated in the legend of the figure. The characteristic k−4 power law decay at
large wavenumbers and the plateau at small wavenumbers predicted by (24) are
clearly observed in Figure 6, consistent with a value of h decreasing with time. A
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Figure 6. Evolution of the static structure factor during free-diffusive mixing of water
and glycerol. (Top) With Earth gravity. Solid lines show results for simulations in which
χ(c) depends on concentration according to (28), while dashed lines of the same color
correspond to simulations in which χ ≈ 10−5 cm2/s is constant. Fluctuations at large
wavenumbers follow a k−4 power law but are damped by gravity at small wavenumbers.
(Bottom) Without gravity. Observe the large difference in the vertical axes showing “giant”
fluctuations in the microgravity case. Note that these are results from a single simulation,
mimicking a single experiment, and therefore there are large statistical uncertainties at
small wavenumbers (large decorrelation times).



198 ANDY NONAKA, YIFEI SUN, JOHN B. BELL AND ALEKSANDAR DONEV

quantitative difference is seen between the results for variable and constant diffusion
coefficients, consistent with a different value of the imposed concentration gradient
h due to the somewhat different evolution of c̄(y, t).

In the bottom panel of Figure 6 we show numerical results for the static structure
factor that would be obtained had the experiment been performed in microgravity
(g = 0). In this case, we use the overdamped Algorithm 2 since there is a persistent
large separation of time scales between the slow concentration and fast velocity.
We see clear development of a k−4 power law as predicted by (24) for g = 0.
Note that here the concentration gradient is established instantaneously, in fact,
it is the largest in the initial configuration and then decays on the diffusive time
scale; this is different from simulations of the development of giant fluctuations
in microgravity during the GRADFLEX experiment reported in [24], in which
the concentration gradient is slowly established on a diffusive scale. The results
in Figure 6 show that it takes some time for the giant fluctuations at smallest
wavenumbers to develop; the diffusive relaxation time corresponding to the smallest
wavenumber studied, kmin ≈ 5 cm−1, is τmax = (χk2

min)
−1
∼ 4, 000 s. After a

time ∼ (χk2)−1, the amplitude of the fluctuations S(k)∼ k−4h2(t) decays slowly
due to the diffusive mixing, and eventually the system will fully mix and reach
thermodynamic equilibrium.

VI. Conclusions

We have developed a low Mach number algorithm for diffusively mixing mixtures
of two liquids with potentially different density and transport coefficients. In the low
Mach number setting, the incompressible constraint is replaced by a quasicompress-
ible constraint that dictates that stochastic and diffusive mass fluxes must create
local expansion and contraction of the fluid to maintain a constant thermodynamic
(base) pressure.

We employed a uniform-grid staggered-grid spatial discretization [6]. Following
prior work in the incompressible simple-liquid case [35], we treated viscosity
implicitly without splitting the pressure update, relying on a recently developed
variable-coefficient Stokes solver [13] for efficiency. This approach works well
for any Reynolds number, including the viscous-dominated overdamped (zero
Reynolds number) limit, even in the presence of nontrivial boundary conditions.
Furthermore, by using a high-resolution BDS scheme [9] to advect the concentration
we robustly handled the case of no mass diffusion (no dissipation in the concentration
equation). In our spatial discretization we strictly preserved mass and momentum
conservation, as well as the equation of state (EOS) constraint, by using a finite-
volume (flux-based) discretization of advective fluxes in which fluxes are computed
using extrapolated values of concentration and density that obey the EOS. Our
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temporal discretization used a predictor-corrector integrator that treats all terms
except momentum diffusion (viscosity) explicitly [24].

We empirically verified second-order spatiotemporal accuracy in the deterministic
method. In the stochastic context, establishing the weak order of accuracy is
nontrivial in the general low Mach number setting. For centered advection our
temporal integration schemes can be shown to be second-order accurate for the
special case of a Boussinesq constant-density (incompressible) approximation, or in
the overdamped (inertia-free) limit. Existing stochastic analysis does not apply to
the case of BDS advection because Godunov schemes do not fit a method-of-lines
approach, but rather, employ a space-time construction of the fluxes. The presence
of nontrivial density differences between the pure fluid components and nonzero
mass diffusion coefficient, complicates the analysis even for centered advection,
due to the presence of a nontrivial EOS constraint on the fluid dynamics. It is a
challenge for future work to develop improved numerical analysis of our schemes
in both the deterministic and the stochastic setting.

In future work, we will demonstrate how to extend the algorithms proposed
here to multispecies mixtures of liquids using a generalization of the low Mach
number constraint. The nontrivial multispecies formulation of the diffusive and
stochastic mass fluxes has already been developed by some of us in the compressible
setting [5].

It is also possible to include thermal effects in our formulation, by treating the
temperature in a manner similar to the way we treated concentration here. Two
key difficulties are constructing a spatial discretization that ensures preservation
of an appropriately generalized EOS, as well as developing temporal integrators
that can handle the moderate separation of time scales between the (typically)
slower heat diffusion and (typically) faster momentum diffusion. In particular, it
seems desirable to also treat temperature implicitly. Such implicit treatment of mass
or heat diffusion is nontrivial because it would require solving coupled (via the
EOS constraint) velocity-temperature or velocity-concentration linear systems, and
requires further investigation.

In the staggered-grid based discretization developed here, we can only employ
existing higher-order Godunov advection schemes for the cell-centered scalar fields
such as concentration and density. It is a challenge for future work to develop
comparable methods to handle advection of the staggered momentum field. This
would enable simulations of large Reynolds number flows. It should be noted,
however, that our unsplit approach is most advantageous at small Reynolds numbers.

A challenge for future work on low Mach number fluctuating hydrodynamics is
to account for the effects of surface tension in mixtures of immiscible or partially
miscible liquids. This can be most straightforwardly accomplished by using a
diffuse-interface model, as some of us recently did in the compressible setting for
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a single-fluid multiphase system [15]. One of the key challenges is handling the
fourth-order derivative term in the concentration equation in a way that ensures
stability of the temporal integrator, as well as developing a consistent discretization
of the Korteweg stresses on a staggered grid [50].

The semi-implicit temporal integrators we described here can deal well with
a broad range of Reynolds or Schmidt numbers in the deterministic (smooth)
setting. In the context of fluctuating hydrodynamics, however, all modes are
thermally excited and treatment of viscosity based on a Crank–Nicolson method
(implicit midpoint rule) are bound to fail for sufficiently large Schmidt numbers
(or sufficiently low Reynolds numbers). In this work we solved this problem for
the case of infinite Schmidt, zero Reynolds number flows by taking an overdamped
limit of the original inertial equations before temporal discretization. It is a notable
challenge for the future to develop uniformly accurate temporal integrators that
work over a broad range of Reynolds or Schmidt numbers, including the asymptotic
overdamped limit, in the presence of thermal fluctuations.
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PARAMETER ESTIMATION BY IMPLICIT SAMPLING

MATTHIAS MORZFELD, XUEMIN TU,
JON WILKENING AND ALEXANDRE J. CHORIN

Implicit sampling is a weighted sampling method that is used in data assim-
ilation to sequentially update state estimates of a stochastic model based on
noisy and incomplete data. Here we apply implicit sampling to sample the
posterior probability density of parameter estimation problems. The posterior
probability combines prior information about the parameter with information
from a numerical model, e.g., a partial differential equation (PDE), and noisy
data. The result of our computations are parameters that lead to simulations that
are compatible with the data. We demonstrate the usefulness of our implicit
sampling algorithm with an example from subsurface flow. For an efficient
implementation, we make use of multiple grids, BFGS optimization coupled to
adjoint equations, and Karhunen–Loève expansions for dimensional reduction.
Several difficulties of Markov chain Monte Carlo methods, e.g., estimation of
burn-in times or correlations among the samples, are avoided because the implicit
samples are independent.

1. Introduction

We wish to compute a set of parameters θ , an m-dimensional vector, so that
simulations with a numerical model that require these parameters are compatible
with data z (a k-dimensional vector) we have collected. We assume that some
information about the parameter is available before we collect the data and this
information is summarized in a prior probability density function (pdf) p(θ). For
example, one may know a priori that some of the parameters are positive. The
numerical model, e.g., a partial differential equation (PDE), defines the likelihood
p(z|θ), which describes how the parameters are connected with the data. Bayes’
rule combines the prior and likelihood to find the posterior density

p(θ |z)∝ p(θ)p(z|θ);

see, e.g., [40]. This posterior pdf defines which parameters of the numerical model
are compatible with the data z. The goal in parameter estimation is to compute the
posterior pdf.
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If the prior and likelihood are Gaussian, then the posterior is also Gaussian,
and it is sufficient to compute the mean and covariance of θ |z (because the mean
and covariance define the Gaussian). The posterior mean and covariance are the
minimizer and the inverse of the Hessian of the negative logarithm of a Gaussian
posterior pdf. In nonlinear and non-Gaussian problems, one can compute the
posterior mode, often called the maximum a posteriori (MAP) point, by minimizing
the negative logarithm of the posterior, and use the MAP point (instead of the
mean) as an approximation of the parameter θ . The inverse of the Hessian of the
negative logarithm of the posterior can be used to measure the uncertainty of this
approximation. This method is sometimes called linearization about the MAP point
(LMAP) or the Laplace approximation [7; 24; 34; 35].

One can also use Markov chain Monte Carlo (MCMC) to solve a parameter
estimation problem. In MCMC, one generates a collection of samples from the
posterior pdf; see, e.g., [13; 16; 29; 36]. The samples form an empirical estimate
of the posterior, and statistics, e.g., the mean or mode, can be computed from this
empirical estimate by averaging over the samples. Under mild assumptions, the
averages one computes from the samples converge to the expected values with
respect to the posterior pdf as the number of samples goes to infinity. In practice, a
finite number of samples is used and successful MCMC sampling requires that one
can test if the chain has converged to the posterior pdf. The convergence can be
slow due to correlations among the samples.

An alternative to MCMC is to use importance sampling. The idea is to draw
samples from an importance function and to attach a weight to each sample such
that the weighted samples form an empirical estimate of the posterior (see, e.g., [8]).
The efficiency of importance sampling depends on the importance function which
in turn defines the weights. Specifically, if the variance of the weights is large, then
the weighted samples are a poor empirical estimate of the posterior and the number
of samples required can increase quickly with the dimension of the problem [4;
5; 9; 39]. For this reason, importance sampling has not been used for parameter
estimation problems in which the dimension is usually large. We investigate if
implicit sampling which has been used before in online-filtering/data assimilation
[2; 10; 11; 12; 30; 31; 42] can overcome this issue.

We will describe how to apply implicit sampling to parameter estimation prob-
lems, and it will become clear that an important step in implicit sampling is to
minimize the negative logarithm of the posterior pdf, i.e., to find the MAP point.
This optimization step identifies the region where the posterior probability is large,
i.e., the region where the high-probability samples are. Starting from the MAP
point, implicit sampling generates samples in its vicinity to explore the regions
of high posterior probability. The optimization in implicit sampling represents
the link between implicit sampling and LMAP. In fact, the optimization methods
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used in LMAP codes can be used for implicit sampling; however, implicit sam-
pling captures non-Gaussian characteristics of the posterior, which are usually
missed by LMAP.

We illustrate the efficiency of our implicit sampling algorithm with numerical
experiments using a problem from subsurface flow [3; 35]. This problem is a
common test problem for MCMC algorithms, and the conditions for the existence
of a posterior measure and its continuity are well understood [13]. Earlier work
on this problem includes [16], where Metropolis–Hastings MC sampling is used,
and [17], which uses optimal maps and is further discussed below.

The remainder of this paper is organized as follows. In Section 2, we explain
how to use implicit sampling for parameter estimation and discuss an efficient
implementation. Numerical examples are provided in Section 3. Conclusions are
offered in Section 4.

2. Implicit sampling for parameter estimation

We wish to estimate an m-dimensional parameter vector θ from data which are
obtained as follows. One measures a function of the parameters h(θ), where h is a
given k-dimensional function; the measurements are noisy so that the data z satisfy
the relation

z = h(θ)+ r, (1)

where r is a random variable with a known distribution and the function h maps the
parameters onto the data. Often, the function h involves solving a PDE. In a Bayesian
approach, one obtains the pdf p(θ |z) of the conditional random variable θ |z by
Bayes’ rule:

p(θ |z)∝ p(θ)p(z|θ), (2)

where the likelihood p(z|θ) is given by (1) and the prior p(θ) is assumed to be
known.

The goal is to sample the posterior and use the samples to calculate useful
statistics. This can be done with importance sampling as follows [8; 25]. One can
represent the posterior by M weighted samples. The samples θ j , j = 1, . . . ,M , are
obtained from an importance function π(θ) (which is chosen such that it is easy to
sample from), and the j-th sample is assigned the weight

w j ∝
p(θ j )p(z|θ j )

π(θ j )
.

A sample corresponds to a set of possible parameter values, and the weight describes
how likely this set is in view of the posterior. The weighted samples {θ j , w j } form
an empirical estimate of p(θ |z) so that, for a smooth function u, the sum
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EM(u)=
M∑

j=0

u(θ j )ŵ j ,

where ŵ j =w j/
∑M

j=0w j , converges almost surely to the expected value of u with
respect to p(θ |z) as M→∞, provided that the support of π includes the support
of p(θ |z) [8; 25].

The importance function must be chosen carefully or else sampling can become
inefficient. For example, suppose you choose the prior as the importance function.
In this case, the weights are proportional to the likelihood. Thus, one first draws
samples from the prior and then determines their posterior probability by comparing
them with the data. However, the samples one draws from the prior lie in the region
where the prior probability is high and this region may not overlap with the region
where the posterior probability is high. Two important scenarios in which this
happens are:

(i) The prior and likelihood have (almost) disjoint support; i.e., the prior assigns
probability mass in a small region of the (parameter) space in which the
likelihood is small and vice versa. See Figure 1a.

(ii) The prior is broad; however, the likelihood is sharply peaked. See Figure 1b.

In either scenario, the samples we draw from the prior typically receive a low
posterior probability so that the resulting empirical estimate of the posterior is
inaccurate. An accurate empirical estimate requires samples with a high posterior
probability, and a large number of prior samples may be required to obtain a few

θ

Prior

Prior samples

Posterior

Likelihood

(a)

Prior

Prior samples

Posterior
Likelihood

(b)

Parameters

Importance function 
of implicit sampling

Implicit samples

Posterior

(c)

θ

MAP

Figure 1. (a) The prior and likelihood are nearly mutually singular so that prior samples
receive a small posterior probability. (b) The prior is broad and the likelihood is sharply
peaked so that the majority of prior samples receives a small posterior probability. (c) The
importance function of implicit sampling assigns probability mass to the neighborhood
of the MAP point so that its overlap with the posterior pdf is significant, which leads to
implicit samples that receive a large posterior probability.
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samples with high posterior probability. In fact, the number of samples required can
increase catastrophically with the dimension of the problem so that this importance
sampling algorithm cannot be applied to high-dimensional problems [4; 5; 9; 39].

2.1. Basic ideas of implicit sampling. The idea in implicit sampling is to construct
a data-informed importance function, which has a significant overlap with the
posterior pdf (see Figure 1c). This requires in particular that the importance function
be large where the posterior pdf is large. We can find one point where the posterior
pdf is large by minimizing its negative logarithm; i.e., we find the MAP point as in
LMAP methods. To set up the notation, let

F(θ)=− log
(

p(θ)p(z|θ)
)

(3)

so that the MAP point is the minimizer of F ,

µ= arg min
θ

F(θ).

Our goal is to construct an importance function that assigns high probability to the
neighborhood of the MAP point. For the construction, we first use a random vari-
able ξ with pdf p(ξ)∝ exp(G(ξ)), which is easy to sample (e.g., a Gaussian). The
variable ξ assigns high probability to the neighborhood of its mode, the minimizer
of G. Next we define a new random variable, x , implicitly by the solutions of the
algebraic equations

F(x)−φ = G(ξ)− γ, (4)

where φ =min F and γ =min G. The pdf of x can be calculated by a change of
variables

π(x)= p(ξ(x))
∣∣∣∣det

(
∂ξ

∂x

)∣∣∣∣,
provided the map ξ → x is one-to-one and onto. Many one-to-one and onto
mappings ξ → x exist because (4) is underdetermined: it is a scalar equation in
m variables. The pdf π(x) is the importance function of implicit sampling, and
samples are drawn by solving (4). The weights of the samples are

w j ∝
p(θ |z)
π(x)

∝ exp(G(ξ(x))− F(θ))︸ ︷︷ ︸
= exp(γ −φ)= const.

∣∣∣∣det
(
∂ξ

∂x

)∣∣∣∣∝ ∣∣∣∣det
(
∂ξ

∂x

)∣∣∣∣, (5)

proportional to the Jacobian of the map from x to ξ .
Note that a typical draw from the variable ξ is close to the mode of ξ so that G

evaluated at a typical sample of ξ is close to its minimum γ . Thus, the left-hand
side of (4) is likely to be small. A small left-hand side implies a small right-hand
side so that the function F evaluated at the solution of (4) is close to its minimum φ.
This forces the solutions of (4) to lie near the MAP point µ. Thus, by repeatedly
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solving (4) for several draws of the variable ξ , we explore the neighborhood of the
MAP point.

2.2. Solving the implicit equation. We describe and implement two strategies for
solving (4) for a Gaussian ξ with mean 0 and covariance matrix H−1, where H is
the Hessian of the function F at the minimum. With this ξ , (4) becomes

F(θ)−φ = 1
2ξ

T Hξ. (6)

Both algorithms are affine invariant and, therefore, capable of sampling within
flat and narrow valleys of F ; see [20] for a discussion of the importance of affine
invariance in Monte Carlo sampling.

2.2.1. Random maps. One can look for solutions of (6) in a random direction, ξ :

θ = µ+ λ(ξ)ξ. (7)

The stretch factor λ can be computed by substituting (7) into (6) and solving the
resulting equation for the scalar λ(ξ) with Newton’s method. A formula for the
Jacobian of the random map defined by (6) and (7) was derived in [22; 31]:

w ∝ |J (ξ)| =
∣∣∣∣λm−1 ξ

T Hξ
∇θ F · ξ

∣∣∣∣, (8)

where m is the number of nonzero eigenvalues of H . The Jacobian is easy to
evaluate if the gradient of F is easy to compute, e.g., using the adjoint method
(see below).

2.2.2. Linear maps. An alternative strategy is to approximate F by its Taylor
expansion to second order:

F0(θ)= φ+
1
2(θ −µ)

T H(θ −µ),

where µ= arg min F is the minimizer of F (the MAP point) and H is the Hessian
at the minimum. This strategy is called “implicit sampling with linear maps” and
requires that one solves the quadratic equation

F0(θ)−φ =
1
2ξ

T Hξ (9)

instead of (6). This can be done by simply shifting ξ by the mode: θ = µ+ ξ . The
bias created by solving the quadratic equation (9) instead of (6) can be removed by
the weights [2; 10]

w ∝ exp(F0(θ)− F(θ)). (10)

A comparison of the linear and random map methods is given in [22], where it is
found that the random map loses its advantages as the dimension of the problem
increases if the posterior is a small perturbation of a Gaussian. We will confirm
this theory with our numerical examples below.
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2.2.3. Connections with optimal maps. An interesting construction, related to im-
plicit sampling, has been proposed in [17; 38]. Suppose one wants to generate sam-
ples with the pdf p(θ |z) and have θ be a function of a variable ξ with pdf g, as above.
If the samples are all to have equal weights, one must have, in the notation above,

p(θ |z)= g(ξ)/J (ξ),

where, as above, J is the Jacobian of a map θ→ ξ . Taking logs, one finds

F(θ)+ logβ = G(ξ)− log(J (ξ)), (11)

where β=
∫

p(z|θ)p(θ) dθ is the proportionality constant that has been elided in (2)
and G(ξ)=− log ξ . If one can find a one-to-one mapping from ξ to θ that satisfies
this equation, one obtains an optimal sampling strategy, where the pdf of the samples
matches exactly the posterior pdf. In [17], this map is found globally by choosing
g= p(θ) (the prior), rather than sample-by-sample as in implicit sampling. The main
differences between the implicit sampling equation (4) and (11) are the presence of
the Jacobian J and of the normalizing constant β in the latter; J has shifted from
being a weight to being a term in the equation that picks the samples, and the opti-
mization that finds the probability mass has shifted to the computation of the map.

If ξ is Gaussian and the problem is linear, (11) can be solved by a linear map
with a constant Jacobian and this map also solves (4) so that one recovers implicit
sampling. In particular, in a linear Gaussian problem, the local (sample-by-sample)
map (4) of implicit sampling also solves the global equation (11), which, for the
linear problem, is a change of variables from one Gaussian to another. If the
problem is not linear, the task of finding a global map that satisfies (11) is difficult
(see also [15; 27; 38; 43]). The determination of optimal maps in [17], based
on nonlinear transport theory, is elegant but can be computationally intensive and
requires approximations that reintroduce nonuniform weights. Using (simplified)
optimal maps and reweighting the samples from approximate maps is discussed
in [38]. In [33], further optimal transport maps from prior to posterior are discussed.
These maps are exact in linear Gaussian problems; however, in general, they are
approximate, due to neglecting the Jacobian, when the problem is nonlinear.

2.3. Adjoint-based optimization with multiple grids. The first step in implicit
sampling is to find the MAP point by minimizing F in (3). This can be done
numerically by Newton, quasi-Newton, or Gauss–Newton methods (see, e.g., [32]).
The minimization requires derivatives of the function F .

We consider parameter estimation problems in which the function h in (1)
typically involves solving a PDE. In this case, adjoints are efficient for computing
the gradient of F . The reason is that the complexity of solving the adjoint equation
is similar to that of solving the original “forward” model. Thus, the gradient can
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be computed at the cost of (roughly) two forward solutions. Adjoint methods are
used widely in LMAP methods and can be used in connection with a quasi-Newton
method, e.g., BFGS, or with Gauss–Newton methods. We illustrate how to use the
adjoint method for BFGS optimization in the example below.

During the optimization, one can make use of multiple grids. This idea first
appeared in the context of online state estimation in [2] and is similar to a multigrid
finite difference method [18] and multigrid Monte Carlo [21]. However, the idea is
different from the usual “multigrid” method (which is why we call it optimization
with multiple grids). The idea is as follows. First, initialize the parameters and
pick a coarse grid. Then perform the minimization on the coarse grid and use the
minimizer to initialize a minimization on a finer grid. The minimization on the
finer grid should require only a few steps, since the initial guess is informed by
the computations on the coarser grid, so that the number of fine-grid forward and
adjoint solves is small. This procedure can be generalized to use more than two
grids (see the example below).

3. Application to subsurface flow

We illustrate the applicability of our implicit sampling method by a numerical
example from subsurface flow, where we estimate subsurface structures from
pressure measurements of flow through a porous medium. This is a common
test problem for MCMC and has applications in reservoir simulation/management
(see, e.g., [35]) and groundwater pollution modeling (see, e.g., [3]).

We consider Darcy’s law

u =−
κ

µ
∇ p,

where ∇ p is the pressure gradient across the porous medium, µ is the viscosity, and
u is the average flow velocity; κ is the permeability and describes the subsurface
structures we are interested in. Assuming, for simplicity, that the viscosity is
constant, we obtain, from conservation of mass, the elliptic problem

−∇ · (κ∇ p)= g, (12)

on a domain �, with Dirichlet boundary conditions and where the source term g
represents externally prescribed inward or outward flow rates. For example, if a
well were drilled and a constant inflow were applied through this well, g would be
a delta function with support at the well.

The uncertain quantity in this problem is the permeability; i.e., κ is a random
variable, whose realizations we assume to be smooth enough so that, for each
realization of κ , a unique solution of (12) exists. We would like to update our
knowledge about κ on the basis of noisy measurements of the pressure at k locations
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Figure 2. Mesh of the square domain (gray lines), pressure measurements (red dots), and
forcing locations (delta distributions, blue squares)

within the domain � so that (1) becomes

z = h(p(κ), x, y)+ r, (13)

where r is a random variable.
In the numerical experiments below, we consider a 2D problem on a square

domain �= [0, 1] × [0, 1] and discretize (12) with a (standard) piecewise linear
finite element method on a uniform (N+1)×(N+1)mesh of triangular elements [6].
We use the balancing domain decomposition by constraints method [14] to solve
the resulting symmetric linear systems; i.e., we first decompose the computational
domain into smaller subdomains and then solve a subdomain interface problem.
The right-hand side g is a superposition of four delta distributions in the center of
the domain (see Figure 2).

Our finest grid is 64× 64, and the pressure measurements and forcing g are
arranged such that they align with grid points of our fine and coarse grids (which
we use in the multiple-grid approach). The 49 pressure measurements are collected
in the center of the domain (see Figure 2).

The pressure measurements are perturbed with a Gaussian random variable
r ∼N(0, R), with a diagonal covariance matrix R (i.e., we assume that measurement
errors are uncorrelated). The variance at each measurement location is set to 30%
of the reference solution. This relatively large variance brings about significant
non-Gaussian features in the posterior pdf.

3.1. The log-normal prior, its discretization, and dimensional reduction. The
prior for permeability fields is often assumed to be log-normal, and we follow
suit. Specifically, the continuous permeability field is assumed log-normal with a
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squared exponential covariance function [37],

K (x1, x2, y1, y2)= exp
(
−
(x1− x2)

2

l2
x

−
(y1− y2)

2

l2
y

)
, (14)

where (x1, y1) and (x2, y2) are two points in the domain� and where the correlation
lengths are equal: lx = ly=0.5. This prior models the (log-)permeability as a smooth
function of x and y so that solutions of the PDE (12) uniquely exist. Moreover, the
theory presented in [13; 40] applies and a well defined posterior also exists for the
continuous problem.

The random permeability field is discretized on our uniform grid by a finite-
dimensional random variable with a log-normal distribution. The elements of the
covariance matrix 6 are obtained from the continuous correlation function (14)

6(i, j)= K (xi , x j , yi , y j ), i, j = 1, . . . , N ,

where N is the number of grid points in each direction. We perform a dimension
reduction via Karhunen–Loève (KL) expansions [19; 26] and use the resulting low-
rank approximation of the covariance matrix 6 for all subsequent computations.
Specifically, the factorization of the covariance function K (x1, x2, y1, y2) into the x
and y directions allows us to compute the covariance matrices in each direction
separately; i.e., we compute the matrices 6x and 6y with elements

6x(i, j)= σ 2
x exp

(
−
(xi − x j )

2

l2
x

)
, 6y(i, j)= σ 2

y exp
(
−
(yi − y j )

2

l2
y

)
.

We then compute singular value decompositions (SVD) in each direction to form low-
rank approximations 6̂x ≈6x and 6̂y ≈6y by neglecting small eigenvalues. These
low-rank approximations define a low-rank approximation of the covariance matrix

6 ≈ 6̂x ⊗ 6̂y,

where ⊗ is the Kronecker product. Thus, the eigenvalues and eigenvectors of 6̂
are the products of the eigenvalues and eigenvectors of 6̂x and 6̂y . We obtain the
low-rank approximation for the covariance matrix on the grid from the SVD of the
covariance in each direction:

6̂ = V T3V,

where3 is a diagonal matrix whose diagonal elements are the m largest eigenvalues
of 6 and V is an m× N matrix whose columns are the corresponding eigenvectors.
Our approximate covariance 6̂ is optimal in the sense that the difference of the
Frobenius norms of 6 and 6̂ is minimized. With m = 30 eigenvalues, we capture
99.9% of the variance (in the sense that the sum of the first 30 eigenvalues is 99%
of the sum of all eigenvalues).
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Thus, in reduced coordinates on the grid, the prior is

K̂ ∼ log N(µ̂, 6̂).

Exponentiating followed by the linear change of variables

θ = V T3−0.5 K̂

gives a prior for the “effective parameters” θ :

p(θ)= N(µ, Im), (15)

where µ= V T3−0.5µ̂. We will carry out the computations in the reduced coordi-
nates θ . This reduces the effective dimension of the problem from N 2 (4096 for
our finest grid) to m = 30. The model reduction follows naturally from assuming
that the permeability is smooth, so that the prior is correlated, and the probability
mass localizes in parameter space. A similar observation, in connection with data
assimilation, was made in [9].

3.2. Multiple grids and adjoint-based BFGS optimization. Implicit sampling re-
quires minimization of F in (3) which in reduced coordinates of this problem takes
the form

F(θ)= 1
2θ

T θ + 1
2(z−M P(θ))T R−1(z−M P(θ)),

where M is a k× N 2 matrix that defines at which locations on the (fine) grid we
collect the pressure. We solve the optimization problem using BFGS coupled to an
adjoint code to compute the gradient of F with respect to θ (see also, e.g., [23; 34]).

The adjoint calculations are as follows. The gradient of F with respect to θ is

∇θ F(θ)= θ + (∇θ P(θ))T W,

where W =−MT R−1(z−M P(θ)) and P is an N 2 vector that contains the pressure
on the grid. We use the chain rule to derive (∇θ P(θ))T W as follows:

(∇θ P(θ))T W =
(
∇K P(θ)

∂K

∂ K̂

∂ K̂
∂θ

)T

W

= (∇K P(θ)eK̂ V30.5)T W = (V30.5)T (∇K P(θ)eK̂ )T W,

where eK̂ is an N 2
× N 2 diagonal matrix whose elements are the exponentials of

the components of K̂ . The gradient ∇K P(θ) can be obtained directly from our
finite element discretization. Let P = P(θ), let Kl be the l-th component of K , and
take the derivative with respect to Kl of our finite element discretization to obtain

∂P
∂Kl
=−A−1 ∂A

∂Kl
P,
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where A is the N 2
× N 2 matrix that defines the linear system we solve and where

∂A/∂Kl are componentwise derivatives. We use this result to obtain

(∇K P(θ)eK̂ )T W =−(eK̂ )T


PT ∂A
∂K1

(A−T W )

...

PT ∂A
∂KN 2

(A−T W )

 . (16)

When P is available, the most expensive part in (16) is to evaluate A−T W , which
is equivalent to solving the adjoint problem (which is equal to itself for this self-
adjoint problem). The rest can be computed elementwise by the definition of A.
Note that there are only a fixed number of nonzeros in each ∂A/∂Kl so that the
additional work for solving the adjoint problem in (16) is about O(N 2), which is
small compared to the work required for the adjoint solve.

Collecting terms we finally obtain the gradient

∇θ F(θ)= θ + (V30.5)T (∇K P(θ)eK̂ )T W

= θ − (V30.5)T (eK̂ )T


PT ∂A
∂K1

(A−T W )

...

PT ∂A
∂KN 2

(A−T W )

 .
Multiplying by (V30.5)T to go back to physical coordinates will require additional
work of O(m N 2). Note that the adjoint calculations for the gradient require only
one adjoint solve because the forward solve (required for P) has already been done
before the gradient calculation in the BFGS algorithm. In summary, our adjoint
solves are only slightly more expensive than the forward solves. This concludes
our derivation of an adjoint method for gradient computations.

We use this adjoint-based gradient computations in a BFGS method with a cubic
interpolation line search [32, Chapter 3]. We use the multiple-grids approach to
reduce the number of fine-grid solves. We use three grids, 16× 16, 32× 32, and
64×64. The required number of iterations on each grid and the number of forward
solves are summarized in Table 1. After converting the cost of coarse/medium-grid
solves to the cost of fine-grid solves, we estimate the cost of the multiple-grid

Grid Iterations Forward solves
16× 16 9 32
32× 32 6 14
64× 64 5 12

Table 1. Required iterations and function evaluations for multiple-grid optimization.
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optimization with 17 fine-grid solves. Without multiple grids, 36 fine-grid solves
are needed to find the same minimum.

3.3. Implementation of the random and linear maps. We generate samples using
the linear map and random map methods described above. Both require the Hessian
of F at the minimum. A direct finite difference method for the Hessian would
require m(m + 1) = 930 forward solves, which is too expensive (infeasible if m
becomes larger). For that reason, we approximate the Hessian by

H ≈ Ĥ = I − QT (Q QT
+ R)−1 Q, (17)

where Q = M∇θ P , as is standard in LMAP methods [24]. Here the gradient of the
pressure (or the Jacobian) is computed with finite differences, which requires m+1
forward solves.

With this approximate Hessian, generating samples with the random map method
requires solving (6) with the ansatz (7). We use a Newton method for solving these
equations and observe that it usually converges quickly (within 1–4 iterations). Each
iteration requires a derivative of F with respect to λ, which we implement using the
adjoint method, so that each iteration requires two forward solutions. In summary,
the random map method requires between 2–8 forward solutions per sample. The
linear map method requires generating a Gaussian sample and weighting it by (10)
so that only one forward solve is required per sample.

The quality of the weighted ensembles of the random and linear map methods
can be assessed by the variance of the weights. A well distributed ensemble has a
small variance of the weights. The variance of the weights is equal to R− 1, where

R =
E(w2)

E(w)2
.

In fact, R itself can be used to measure the quality of the samples [1; 41]. If
the variance of the weights is small, then R ≈ 1. Moreover, the effective sample
size, i.e., the number of unweighted samples that would be equivalent in terms of
statistical accuracy to the set of weighted samples, is about M/R [41], where M
is the number of samples we draw. In summary, an R close to 1 indicates a well
distributed ensemble.

We compute a value of R of about 1.6 for both methods. In fact, we generate
10 synthetic data sets, run implicit sampling with random and linear maps on each
set, and estimate R based on 104 samples for each numerical experiment. We
compute an R = 1.68± 0.10 for the linear map method and R = 1.63± 0.066 for
the random map method. The random map method thus performs slightly better;
however, the cost per sample is also slightly larger (because generating a sample
requires solving (6), which in turn requires solving the forward problem). Since the
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linear map method is less expensive and easier to program, it is a more appropriate
technique for this problem.

We have also experimented with symmetrization of implicit sampling [22],
which is similar in spirit to the classic trick of antithetic variates [25]. The sym-
metrization of the linear map method is as follows. Sample ξ , and compute a
sample x+ = µ + ξ . Use the same ξ to compute x− = µ − ξ . Then pick x+

with probability p+ = w(x+)/(w(x+) + w(x−)) and pick x− with probability
p− = w(x−)/(w(x+)+w(x−)), and assign the weight ws

= (w(x+)+w(x−))/2.
This symmetrization can lead to a smaller R, i.e., a better distributed ensemble, in
the small noise limit. In our example, we compute the quality measure R = 1.4.
While this R is smaller than for the nonsymmetrized methods, the symmetrization
does not pay off in this example since each sample of the symmetrized method
requires two forward solves (to evaluate the weights).

3.4. Comparisons with other methods. The MAP and LMAP methods estimate
parameters by computing the MAP point, i.e., the most likely parameters in view
of the data, and estimate the uncertainty by a Gaussian whose covariance is the
inverse of the Hessian of F at the minimum [7; 24; 34; 35]. In our example, LMAP
overestimates the uncertainty since the Gaussian approximation has a standard
deviation of 0.93 for the first parameter θ1, whereas we compute 0.64 with the
linear map and random map methods. The reason for the over-estimation of the
uncertainty with LMAP is that the posterior is not Gaussian. This effect is illustrated
in Figure 3, where we show histograms of the marginals of the posterior for the
first four parameters θ1, θ2, θ3, and θ4 along with their Gaussian approximation as
in LMAP. We also compute the skewness and excess kurtosis for these marginal
densities. While the marginals for the parameters may become “more Gaussian”
for the higher-order coefficients of the KL expansion, the joint posterior exhibits
significant non-Gaussian behavior. Since implicit sampling (with random or linear
maps) does not require linearizations or Gaussian assumptions, it can correctly
capture these non-Gaussian features. In the present example, accounting for the
non-Gaussian effects brings about a significant reduction of the uncertainty.

Note that code for LMAP can be converted into an implicit sampling code. In
particular, implicit sampling with linear maps requires the MAP point and an approx-
imation of the Hessian at the minimum. Both can be computed with LMAP codes.
Non-Gaussian features of the posterior can then be captured by weighted sampling
with linear maps, where each sample comes at a cost of a single forward simulation.

Another important class of methods for solving Bayesian parameter estimation
problems is MCMC. We compare implicit sampling with Metropolis MCMC [28],
where we use an isotropic Gaussian proposal density, for which we tuned the
variance to achieve an acceptance rate of about 30%. This method requires one
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Figure 3. Marginals of the posterior computed with implicit sampling with random maps
and their Gaussian approximation obtained via LMAP. Top left: p(θ1|z). Top right: p(θ2|z).
Bottom left: p(θ3|z). Bottom right: p(θ4|z).

forward solution per step (to compute the acceptance probability). We start the
chain at the MAP (to reduce burn-in time). In Figure 4, we show the approximation
of the conditional mean of the variables θ1, θ2, and θ3 as a function of the number
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)Figure 4. Expected value as a function of the number of samples. Red: MCMC. Turquoise:

implicit sampling with random maps and approximate Hessian (dashed) and finite differ-
ence Hessian (solid). Blue: implicit sampling with linear maps and approximate Hessian
(dashed) and finite difference Hessian (solid).
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)Figure 5. Expected value as a function of required forward solves. Red: MCMC.

Turquoise: implicit sampling with random maps and approximate Hessian (dashed) and
finite difference Hessian (solid). Blue: implicit sampling with linear maps and approximate
Hessian (dashed) and finite difference Hessian (solid).

of steps in the chain. We observe that, even after 104 steps, the chain has not settled,
in particular for the parameter θ3 (see bottom pane).

With implicit sampling, we observe a faster convergence, in the sense that the
approximated conditional mean does not change significantly with the number of
samples. In fact, about 102 samples are sufficient for accurate estimates of the
conditional mean. As a reference solution, we also show results we obtained with
implicit sampling (with both random and linear maps) for which we used a Hessian
computed with finite differences (rather than with the approximation in (17)).

The cost per sample of implicit sampling and the cost per step of Metropolis
MCMC are different, and a fair comparison of these methods should take these
costs into account. In particular, the offset cost of the minimization and computation
of the Hessian, required for implicit sampling, must be accounted for. We measure
the cost of the algorithms by the number of forward solves required. The results
are shown for the parameters θ1, θ2, and θ3 in Figure 5.

We find that the fast convergence of implicit sampling makes up for the relatively
large a priori cost (for minimization and Hessian computations). In fact, the figure
suggests that the random method requires only a few hundred samples, whereas
Metropolis MCMC requires thousands of samples. The convergence of Metropolis
MCMC can perhaps be increased by further tuning or by choosing a more advanced
transition density. Implicit sampling on the other hand requires little tuning other
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than deciding on standard tolerances for the optimization. Moreover, implicit
sampling generates independent samples with a known distribution so that issues
such as determining burn-in times, auto-correlation times, and acceptance ratios do
not arise. It should also be mentioned that implicit sampling is easy to parallelize.
Parallelizing Metropolis MCMC on the other hand is not trivial because it is a
sequential technique.

Finally, we discuss connections of our proposed implicit sampling methods to
stochastic Newton MCMC [29]. In stochastic Newton, one first finds the MAP
point (as in implicit sampling or LMAP) and then starts a number of MCMC
chains from the MAP point. The transition probabilities are based on local infor-
mation about F and make use of the Hessian of F , evaluated at the location of
the chain. Thus, at each step, a Hessian computation is required which, with our
finite difference scheme, requires 31 forward solves (see above) and, therefore, is
expensive (compared to generating samples with implicit sampling, which requires
computing the Hessian only once). Second-order adjoints (if they were available)
do not reduce that cost significantly. We have experimented with stochastic Newton
in our example and have used 10–50 chains and taken about 200 steps per chain.
Without significant tuning, we find acceptance rates of only a few percent, leading
to a slow convergence of the method. We also observe that the Hessian may not
be positive definite at all locations of the chain and, therefore, cannot be used
for a local Gaussian transition probability. In summary, we find that stochastic
Newton MCMC is impractical unless second-order adjoints are available to speed
up the Hessian computations. Variations of stochastic Newton were explained and
compared to each other in [36].

4. Conclusions

We explained how to use implicit sampling to estimate the parameters in PDE from
sparse and noisy data. The idea in implicit sampling is to find the most likely state,
often called the maximum a posteriori (MAP) point, and generate samples that
explore the neighborhood of the MAP point. This strategy can work well if the
posterior probability mass localizes around the MAP point, which is often the case
when the data constrain the parameters. We discussed how to implement these ideas
efficiently in the context of parameter estimation problems using multiple grids and
adjoints to speed up the required optimization.

Our implicit sampling approach has the advantage that it generates independent
samples so that issues connected with MCMC, e.g., estimation of burn-in times,
auto-correlations of the samples, or tuning of acceptance ratios, are avoided. Our
approach is also fully nonlinear and captures non-Gaussian features of the posterior
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(unlike linear methods such as the linearization about the MAP point) and is easy
to parallelize.

We illustrated the efficiency of our approach in numerical experiments with an
elliptic inverse problem that is of importance in applications to reservoir simula-
tion/management and pollution modeling. The elliptic forward model is discretized
using finite elements, and the linear equations are solved by balancing domain
decomposition by constraints. The optimization required by implicit sampling is
done with a BFGS method coupled to an adjoint code. We use the fact that the
solutions are expected to be smooth for model order reduction based on Karhunen–
Loève expansions and found that our implicit sampling approach can exploit this
low-dimensional structure. Moreover, implicit sampling is about an order of magni-
tude faster than Metropolis MCMC sampling (in the example we consider). We
also discussed connections and differences of our approach with linear/Gaussian
methods, such as linearization about the MAP, and with stochastic Newton MCMC
methods. In particular, one can build an implicit sampling code starting from a
MAP code by simply adding the Gaussian sampling and weighting step. At the
cost of one additional forward solve per sample, the implicit sampling approach
can reveal non-Gaussian features.
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