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JON WILKENING AND ALEXANDRE J. CHORIN

Implicit sampling is a weighted sampling method that is used in data assim-
ilation to sequentially update state estimates of a stochastic model based on
noisy and incomplete data. Here we apply implicit sampling to sample the
posterior probability density of parameter estimation problems. The posterior
probability combines prior information about the parameter with information
from a numerical model, e.g., a partial differential equation (PDE), and noisy
data. The result of our computations are parameters that lead to simulations that
are compatible with the data. We demonstrate the usefulness of our implicit
sampling algorithm with an example from subsurface flow. For an efficient
implementation, we make use of multiple grids, BFGS optimization coupled to
adjoint equations, and Karhunen–Loève expansions for dimensional reduction.
Several difficulties of Markov chain Monte Carlo methods, e.g., estimation of
burn-in times or correlations among the samples, are avoided because the implicit
samples are independent.

1. Introduction

We wish to compute a set of parameters θ , an m-dimensional vector, so that
simulations with a numerical model that require these parameters are compatible
with data z (a k-dimensional vector) we have collected. We assume that some
information about the parameter is available before we collect the data and this
information is summarized in a prior probability density function (pdf) p(θ). For
example, one may know a priori that some of the parameters are positive. The
numerical model, e.g., a partial differential equation (PDE), defines the likelihood
p(z|θ), which describes how the parameters are connected with the data. Bayes’
rule combines the prior and likelihood to find the posterior density

p(θ |z)∝ p(θ)p(z|θ);

see, e.g., [40]. This posterior pdf defines which parameters of the numerical model
are compatible with the data z. The goal in parameter estimation is to compute the
posterior pdf.
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If the prior and likelihood are Gaussian, then the posterior is also Gaussian,
and it is sufficient to compute the mean and covariance of θ |z (because the mean
and covariance define the Gaussian). The posterior mean and covariance are the
minimizer and the inverse of the Hessian of the negative logarithm of a Gaussian
posterior pdf. In nonlinear and non-Gaussian problems, one can compute the
posterior mode, often called the maximum a posteriori (MAP) point, by minimizing
the negative logarithm of the posterior, and use the MAP point (instead of the
mean) as an approximation of the parameter θ . The inverse of the Hessian of the
negative logarithm of the posterior can be used to measure the uncertainty of this
approximation. This method is sometimes called linearization about the MAP point
(LMAP) or the Laplace approximation [7; 24; 34; 35].

One can also use Markov chain Monte Carlo (MCMC) to solve a parameter
estimation problem. In MCMC, one generates a collection of samples from the
posterior pdf; see, e.g., [13; 16; 29; 36]. The samples form an empirical estimate
of the posterior, and statistics, e.g., the mean or mode, can be computed from this
empirical estimate by averaging over the samples. Under mild assumptions, the
averages one computes from the samples converge to the expected values with
respect to the posterior pdf as the number of samples goes to infinity. In practice, a
finite number of samples is used and successful MCMC sampling requires that one
can test if the chain has converged to the posterior pdf. The convergence can be
slow due to correlations among the samples.

An alternative to MCMC is to use importance sampling. The idea is to draw
samples from an importance function and to attach a weight to each sample such
that the weighted samples form an empirical estimate of the posterior (see, e.g., [8]).
The efficiency of importance sampling depends on the importance function which
in turn defines the weights. Specifically, if the variance of the weights is large, then
the weighted samples are a poor empirical estimate of the posterior and the number
of samples required can increase quickly with the dimension of the problem [4;
5; 9; 39]. For this reason, importance sampling has not been used for parameter
estimation problems in which the dimension is usually large. We investigate if
implicit sampling which has been used before in online-filtering/data assimilation
[2; 10; 11; 12; 30; 31; 42] can overcome this issue.

We will describe how to apply implicit sampling to parameter estimation prob-
lems, and it will become clear that an important step in implicit sampling is to
minimize the negative logarithm of the posterior pdf, i.e., to find the MAP point.
This optimization step identifies the region where the posterior probability is large,
i.e., the region where the high-probability samples are. Starting from the MAP
point, implicit sampling generates samples in its vicinity to explore the regions
of high posterior probability. The optimization in implicit sampling represents
the link between implicit sampling and LMAP. In fact, the optimization methods
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used in LMAP codes can be used for implicit sampling; however, implicit sam-
pling captures non-Gaussian characteristics of the posterior, which are usually
missed by LMAP.

We illustrate the efficiency of our implicit sampling algorithm with numerical
experiments using a problem from subsurface flow [3; 35]. This problem is a
common test problem for MCMC algorithms, and the conditions for the existence
of a posterior measure and its continuity are well understood [13]. Earlier work
on this problem includes [16], where Metropolis–Hastings MC sampling is used,
and [17], which uses optimal maps and is further discussed below.

The remainder of this paper is organized as follows. In Section 2, we explain
how to use implicit sampling for parameter estimation and discuss an efficient
implementation. Numerical examples are provided in Section 3. Conclusions are
offered in Section 4.

2. Implicit sampling for parameter estimation

We wish to estimate an m-dimensional parameter vector θ from data which are
obtained as follows. One measures a function of the parameters h(θ), where h is a
given k-dimensional function; the measurements are noisy so that the data z satisfy
the relation

z = h(θ)+ r, (1)

where r is a random variable with a known distribution and the function h maps the
parameters onto the data. Often, the function h involves solving a PDE. In a Bayesian
approach, one obtains the pdf p(θ |z) of the conditional random variable θ |z by
Bayes’ rule:

p(θ |z)∝ p(θ)p(z|θ), (2)

where the likelihood p(z|θ) is given by (1) and the prior p(θ) is assumed to be
known.

The goal is to sample the posterior and use the samples to calculate useful
statistics. This can be done with importance sampling as follows [8; 25]. One can
represent the posterior by M weighted samples. The samples θ j , j = 1, . . . ,M , are
obtained from an importance function π(θ) (which is chosen such that it is easy to
sample from), and the j-th sample is assigned the weight

w j ∝
p(θ j )p(z|θ j )

π(θ j )
.

A sample corresponds to a set of possible parameter values, and the weight describes
how likely this set is in view of the posterior. The weighted samples {θ j , w j } form
an empirical estimate of p(θ |z) so that, for a smooth function u, the sum
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EM(u)=
M∑

j=0

u(θ j )ŵ j ,

where ŵ j =w j/
∑M

j=0w j , converges almost surely to the expected value of u with
respect to p(θ |z) as M→∞, provided that the support of π includes the support
of p(θ |z) [8; 25].

The importance function must be chosen carefully or else sampling can become
inefficient. For example, suppose you choose the prior as the importance function.
In this case, the weights are proportional to the likelihood. Thus, one first draws
samples from the prior and then determines their posterior probability by comparing
them with the data. However, the samples one draws from the prior lie in the region
where the prior probability is high and this region may not overlap with the region
where the posterior probability is high. Two important scenarios in which this
happens are:

(i) The prior and likelihood have (almost) disjoint support; i.e., the prior assigns
probability mass in a small region of the (parameter) space in which the
likelihood is small and vice versa. See Figure 1a.

(ii) The prior is broad; however, the likelihood is sharply peaked. See Figure 1b.

In either scenario, the samples we draw from the prior typically receive a low
posterior probability so that the resulting empirical estimate of the posterior is
inaccurate. An accurate empirical estimate requires samples with a high posterior
probability, and a large number of prior samples may be required to obtain a few
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Figure 1. (a) The prior and likelihood are nearly mutually singular so that prior samples
receive a small posterior probability. (b) The prior is broad and the likelihood is sharply
peaked so that the majority of prior samples receives a small posterior probability. (c) The
importance function of implicit sampling assigns probability mass to the neighborhood
of the MAP point so that its overlap with the posterior pdf is significant, which leads to
implicit samples that receive a large posterior probability.
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samples with high posterior probability. In fact, the number of samples required can
increase catastrophically with the dimension of the problem so that this importance
sampling algorithm cannot be applied to high-dimensional problems [4; 5; 9; 39].

2.1. Basic ideas of implicit sampling. The idea in implicit sampling is to construct
a data-informed importance function, which has a significant overlap with the
posterior pdf (see Figure 1c). This requires in particular that the importance function
be large where the posterior pdf is large. We can find one point where the posterior
pdf is large by minimizing its negative logarithm; i.e., we find the MAP point as in
LMAP methods. To set up the notation, let

F(θ)=− log
(

p(θ)p(z|θ)
)

(3)

so that the MAP point is the minimizer of F ,

µ= arg min
θ

F(θ).

Our goal is to construct an importance function that assigns high probability to the
neighborhood of the MAP point. For the construction, we first use a random vari-
able ξ with pdf p(ξ)∝ exp(G(ξ)), which is easy to sample (e.g., a Gaussian). The
variable ξ assigns high probability to the neighborhood of its mode, the minimizer
of G. Next we define a new random variable, x , implicitly by the solutions of the
algebraic equations

F(x)−φ = G(ξ)− γ, (4)

where φ =min F and γ =min G. The pdf of x can be calculated by a change of
variables

π(x)= p(ξ(x))
∣∣∣∣det

(
∂ξ

∂x

)∣∣∣∣,
provided the map ξ → x is one-to-one and onto. Many one-to-one and onto
mappings ξ → x exist because (4) is underdetermined: it is a scalar equation in
m variables. The pdf π(x) is the importance function of implicit sampling, and
samples are drawn by solving (4). The weights of the samples are

w j ∝
p(θ |z)
π(x)

∝ exp(G(ξ(x))− F(θ))︸ ︷︷ ︸
= exp(γ −φ)= const.

∣∣∣∣det
(
∂ξ

∂x

)∣∣∣∣∝ ∣∣∣∣det
(
∂ξ

∂x

)∣∣∣∣, (5)

proportional to the Jacobian of the map from x to ξ .
Note that a typical draw from the variable ξ is close to the mode of ξ so that G

evaluated at a typical sample of ξ is close to its minimum γ . Thus, the left-hand
side of (4) is likely to be small. A small left-hand side implies a small right-hand
side so that the function F evaluated at the solution of (4) is close to its minimum φ.
This forces the solutions of (4) to lie near the MAP point µ. Thus, by repeatedly
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solving (4) for several draws of the variable ξ , we explore the neighborhood of the
MAP point.

2.2. Solving the implicit equation. We describe and implement two strategies for
solving (4) for a Gaussian ξ with mean 0 and covariance matrix H−1, where H is
the Hessian of the function F at the minimum. With this ξ , (4) becomes

F(θ)−φ = 1
2ξ

T Hξ. (6)

Both algorithms are affine invariant and, therefore, capable of sampling within
flat and narrow valleys of F ; see [20] for a discussion of the importance of affine
invariance in Monte Carlo sampling.

2.2.1. Random maps. One can look for solutions of (6) in a random direction, ξ :

θ = µ+ λ(ξ)ξ. (7)

The stretch factor λ can be computed by substituting (7) into (6) and solving the
resulting equation for the scalar λ(ξ) with Newton’s method. A formula for the
Jacobian of the random map defined by (6) and (7) was derived in [22; 31]:

w ∝ |J (ξ)| =
∣∣∣∣λm−1 ξ

T Hξ
∇θ F · ξ

∣∣∣∣, (8)

where m is the number of nonzero eigenvalues of H . The Jacobian is easy to
evaluate if the gradient of F is easy to compute, e.g., using the adjoint method
(see below).

2.2.2. Linear maps. An alternative strategy is to approximate F by its Taylor
expansion to second order:

F0(θ)= φ+
1
2(θ −µ)

T H(θ −µ),

where µ= arg min F is the minimizer of F (the MAP point) and H is the Hessian
at the minimum. This strategy is called “implicit sampling with linear maps” and
requires that one solves the quadratic equation

F0(θ)−φ =
1
2ξ

T Hξ (9)

instead of (6). This can be done by simply shifting ξ by the mode: θ = µ+ ξ . The
bias created by solving the quadratic equation (9) instead of (6) can be removed by
the weights [2; 10]

w ∝ exp(F0(θ)− F(θ)). (10)

A comparison of the linear and random map methods is given in [22], where it is
found that the random map loses its advantages as the dimension of the problem
increases if the posterior is a small perturbation of a Gaussian. We will confirm
this theory with our numerical examples below.
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2.2.3. Connections with optimal maps. An interesting construction, related to im-
plicit sampling, has been proposed in [17; 38]. Suppose one wants to generate sam-
ples with the pdf p(θ |z) and have θ be a function of a variable ξ with pdf g, as above.
If the samples are all to have equal weights, one must have, in the notation above,

p(θ |z)= g(ξ)/J (ξ),

where, as above, J is the Jacobian of a map θ→ ξ . Taking logs, one finds

F(θ)+ logβ = G(ξ)− log(J (ξ)), (11)

where β=
∫

p(z|θ)p(θ) dθ is the proportionality constant that has been elided in (2)
and G(ξ)=− log ξ . If one can find a one-to-one mapping from ξ to θ that satisfies
this equation, one obtains an optimal sampling strategy, where the pdf of the samples
matches exactly the posterior pdf. In [17], this map is found globally by choosing
g= p(θ) (the prior), rather than sample-by-sample as in implicit sampling. The main
differences between the implicit sampling equation (4) and (11) are the presence of
the Jacobian J and of the normalizing constant β in the latter; J has shifted from
being a weight to being a term in the equation that picks the samples, and the opti-
mization that finds the probability mass has shifted to the computation of the map.

If ξ is Gaussian and the problem is linear, (11) can be solved by a linear map
with a constant Jacobian and this map also solves (4) so that one recovers implicit
sampling. In particular, in a linear Gaussian problem, the local (sample-by-sample)
map (4) of implicit sampling also solves the global equation (11), which, for the
linear problem, is a change of variables from one Gaussian to another. If the
problem is not linear, the task of finding a global map that satisfies (11) is difficult
(see also [15; 27; 38; 43]). The determination of optimal maps in [17], based
on nonlinear transport theory, is elegant but can be computationally intensive and
requires approximations that reintroduce nonuniform weights. Using (simplified)
optimal maps and reweighting the samples from approximate maps is discussed
in [38]. In [33], further optimal transport maps from prior to posterior are discussed.
These maps are exact in linear Gaussian problems; however, in general, they are
approximate, due to neglecting the Jacobian, when the problem is nonlinear.

2.3. Adjoint-based optimization with multiple grids. The first step in implicit
sampling is to find the MAP point by minimizing F in (3). This can be done
numerically by Newton, quasi-Newton, or Gauss–Newton methods (see, e.g., [32]).
The minimization requires derivatives of the function F .

We consider parameter estimation problems in which the function h in (1)
typically involves solving a PDE. In this case, adjoints are efficient for computing
the gradient of F . The reason is that the complexity of solving the adjoint equation
is similar to that of solving the original “forward” model. Thus, the gradient can
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be computed at the cost of (roughly) two forward solutions. Adjoint methods are
used widely in LMAP methods and can be used in connection with a quasi-Newton
method, e.g., BFGS, or with Gauss–Newton methods. We illustrate how to use the
adjoint method for BFGS optimization in the example below.

During the optimization, one can make use of multiple grids. This idea first
appeared in the context of online state estimation in [2] and is similar to a multigrid
finite difference method [18] and multigrid Monte Carlo [21]. However, the idea is
different from the usual “multigrid” method (which is why we call it optimization
with multiple grids). The idea is as follows. First, initialize the parameters and
pick a coarse grid. Then perform the minimization on the coarse grid and use the
minimizer to initialize a minimization on a finer grid. The minimization on the
finer grid should require only a few steps, since the initial guess is informed by
the computations on the coarser grid, so that the number of fine-grid forward and
adjoint solves is small. This procedure can be generalized to use more than two
grids (see the example below).

3. Application to subsurface flow

We illustrate the applicability of our implicit sampling method by a numerical
example from subsurface flow, where we estimate subsurface structures from
pressure measurements of flow through a porous medium. This is a common
test problem for MCMC and has applications in reservoir simulation/management
(see, e.g., [35]) and groundwater pollution modeling (see, e.g., [3]).

We consider Darcy’s law

u =−
κ

µ
∇ p,

where ∇ p is the pressure gradient across the porous medium, µ is the viscosity, and
u is the average flow velocity; κ is the permeability and describes the subsurface
structures we are interested in. Assuming, for simplicity, that the viscosity is
constant, we obtain, from conservation of mass, the elliptic problem

−∇ · (κ∇ p)= g, (12)

on a domain �, with Dirichlet boundary conditions and where the source term g
represents externally prescribed inward or outward flow rates. For example, if a
well were drilled and a constant inflow were applied through this well, g would be
a delta function with support at the well.

The uncertain quantity in this problem is the permeability; i.e., κ is a random
variable, whose realizations we assume to be smooth enough so that, for each
realization of κ , a unique solution of (12) exists. We would like to update our
knowledge about κ on the basis of noisy measurements of the pressure at k locations
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Figure 2. Mesh of the square domain (gray lines), pressure measurements (red dots), and
forcing locations (delta distributions, blue squares)

within the domain � so that (1) becomes

z = h(p(κ), x, y)+ r, (13)

where r is a random variable.
In the numerical experiments below, we consider a 2D problem on a square

domain �= [0, 1] × [0, 1] and discretize (12) with a (standard) piecewise linear
finite element method on a uniform (N+1)×(N+1)mesh of triangular elements [6].
We use the balancing domain decomposition by constraints method [14] to solve
the resulting symmetric linear systems; i.e., we first decompose the computational
domain into smaller subdomains and then solve a subdomain interface problem.
The right-hand side g is a superposition of four delta distributions in the center of
the domain (see Figure 2).

Our finest grid is 64× 64, and the pressure measurements and forcing g are
arranged such that they align with grid points of our fine and coarse grids (which
we use in the multiple-grid approach). The 49 pressure measurements are collected
in the center of the domain (see Figure 2).

The pressure measurements are perturbed with a Gaussian random variable
r ∼N(0, R), with a diagonal covariance matrix R (i.e., we assume that measurement
errors are uncorrelated). The variance at each measurement location is set to 30%
of the reference solution. This relatively large variance brings about significant
non-Gaussian features in the posterior pdf.

3.1. The log-normal prior, its discretization, and dimensional reduction. The
prior for permeability fields is often assumed to be log-normal, and we follow
suit. Specifically, the continuous permeability field is assumed log-normal with a
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squared exponential covariance function [37],

K (x1, x2, y1, y2)= exp
(
−
(x1− x2)

2

l2
x

−
(y1− y2)

2

l2
y

)
, (14)

where (x1, y1) and (x2, y2) are two points in the domain� and where the correlation
lengths are equal: lx = ly=0.5. This prior models the (log-)permeability as a smooth
function of x and y so that solutions of the PDE (12) uniquely exist. Moreover, the
theory presented in [13; 40] applies and a well defined posterior also exists for the
continuous problem.

The random permeability field is discretized on our uniform grid by a finite-
dimensional random variable with a log-normal distribution. The elements of the
covariance matrix 6 are obtained from the continuous correlation function (14)

6(i, j)= K (xi , x j , yi , y j ), i, j = 1, . . . , N ,

where N is the number of grid points in each direction. We perform a dimension
reduction via Karhunen–Loève (KL) expansions [19; 26] and use the resulting low-
rank approximation of the covariance matrix 6 for all subsequent computations.
Specifically, the factorization of the covariance function K (x1, x2, y1, y2) into the x
and y directions allows us to compute the covariance matrices in each direction
separately; i.e., we compute the matrices 6x and 6y with elements

6x(i, j)= σ 2
x exp

(
−
(xi − x j )

2

l2
x

)
, 6y(i, j)= σ 2

y exp
(
−
(yi − y j )

2

l2
y

)
.

We then compute singular value decompositions (SVD) in each direction to form low-
rank approximations 6̂x ≈6x and 6̂y ≈6y by neglecting small eigenvalues. These
low-rank approximations define a low-rank approximation of the covariance matrix

6 ≈ 6̂x ⊗ 6̂y,

where ⊗ is the Kronecker product. Thus, the eigenvalues and eigenvectors of 6̂
are the products of the eigenvalues and eigenvectors of 6̂x and 6̂y . We obtain the
low-rank approximation for the covariance matrix on the grid from the SVD of the
covariance in each direction:

6̂ = V T3V,

where3 is a diagonal matrix whose diagonal elements are the m largest eigenvalues
of 6 and V is an m× N matrix whose columns are the corresponding eigenvectors.
Our approximate covariance 6̂ is optimal in the sense that the difference of the
Frobenius norms of 6 and 6̂ is minimized. With m = 30 eigenvalues, we capture
99.9% of the variance (in the sense that the sum of the first 30 eigenvalues is 99%
of the sum of all eigenvalues).
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Thus, in reduced coordinates on the grid, the prior is

K̂ ∼ log N(µ̂, 6̂).

Exponentiating followed by the linear change of variables

θ = V T3−0.5 K̂

gives a prior for the “effective parameters” θ :

p(θ)= N(µ, Im), (15)

where µ= V T3−0.5µ̂. We will carry out the computations in the reduced coordi-
nates θ . This reduces the effective dimension of the problem from N 2 (4096 for
our finest grid) to m = 30. The model reduction follows naturally from assuming
that the permeability is smooth, so that the prior is correlated, and the probability
mass localizes in parameter space. A similar observation, in connection with data
assimilation, was made in [9].

3.2. Multiple grids and adjoint-based BFGS optimization. Implicit sampling re-
quires minimization of F in (3) which in reduced coordinates of this problem takes
the form

F(θ)= 1
2θ

T θ + 1
2(z−M P(θ))T R−1(z−M P(θ)),

where M is a k× N 2 matrix that defines at which locations on the (fine) grid we
collect the pressure. We solve the optimization problem using BFGS coupled to an
adjoint code to compute the gradient of F with respect to θ (see also, e.g., [23; 34]).

The adjoint calculations are as follows. The gradient of F with respect to θ is

∇θ F(θ)= θ + (∇θ P(θ))T W,

where W =−MT R−1(z−M P(θ)) and P is an N 2 vector that contains the pressure
on the grid. We use the chain rule to derive (∇θ P(θ))T W as follows:

(∇θ P(θ))T W =
(
∇K P(θ)

∂K

∂ K̂

∂ K̂
∂θ

)T

W

= (∇K P(θ)eK̂ V30.5)T W = (V30.5)T (∇K P(θ)eK̂ )T W,

where eK̂ is an N 2
× N 2 diagonal matrix whose elements are the exponentials of

the components of K̂ . The gradient ∇K P(θ) can be obtained directly from our
finite element discretization. Let P = P(θ), let Kl be the l-th component of K , and
take the derivative with respect to Kl of our finite element discretization to obtain

∂P
∂Kl
=−A−1 ∂A

∂Kl
P,
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where A is the N 2
× N 2 matrix that defines the linear system we solve and where

∂A/∂Kl are componentwise derivatives. We use this result to obtain

(∇K P(θ)eK̂ )T W =−(eK̂ )T


PT ∂A
∂K1

(A−T W )

...

PT ∂A
∂KN 2

(A−T W )

 . (16)

When P is available, the most expensive part in (16) is to evaluate A−T W , which
is equivalent to solving the adjoint problem (which is equal to itself for this self-
adjoint problem). The rest can be computed elementwise by the definition of A.
Note that there are only a fixed number of nonzeros in each ∂A/∂Kl so that the
additional work for solving the adjoint problem in (16) is about O(N 2), which is
small compared to the work required for the adjoint solve.

Collecting terms we finally obtain the gradient

∇θ F(θ)= θ + (V30.5)T (∇K P(θ)eK̂ )T W

= θ − (V30.5)T (eK̂ )T


PT ∂A
∂K1

(A−T W )

...

PT ∂A
∂KN 2

(A−T W )

 .
Multiplying by (V30.5)T to go back to physical coordinates will require additional
work of O(m N 2). Note that the adjoint calculations for the gradient require only
one adjoint solve because the forward solve (required for P) has already been done
before the gradient calculation in the BFGS algorithm. In summary, our adjoint
solves are only slightly more expensive than the forward solves. This concludes
our derivation of an adjoint method for gradient computations.

We use this adjoint-based gradient computations in a BFGS method with a cubic
interpolation line search [32, Chapter 3]. We use the multiple-grids approach to
reduce the number of fine-grid solves. We use three grids, 16× 16, 32× 32, and
64×64. The required number of iterations on each grid and the number of forward
solves are summarized in Table 1. After converting the cost of coarse/medium-grid
solves to the cost of fine-grid solves, we estimate the cost of the multiple-grid

Grid Iterations Forward solves
16× 16 9 32
32× 32 6 14
64× 64 5 12

Table 1. Required iterations and function evaluations for multiple-grid optimization.
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optimization with 17 fine-grid solves. Without multiple grids, 36 fine-grid solves
are needed to find the same minimum.

3.3. Implementation of the random and linear maps. We generate samples using
the linear map and random map methods described above. Both require the Hessian
of F at the minimum. A direct finite difference method for the Hessian would
require m(m + 1) = 930 forward solves, which is too expensive (infeasible if m
becomes larger). For that reason, we approximate the Hessian by

H ≈ Ĥ = I − QT (Q QT
+ R)−1 Q, (17)

where Q = M∇θ P , as is standard in LMAP methods [24]. Here the gradient of the
pressure (or the Jacobian) is computed with finite differences, which requires m+1
forward solves.

With this approximate Hessian, generating samples with the random map method
requires solving (6) with the ansatz (7). We use a Newton method for solving these
equations and observe that it usually converges quickly (within 1–4 iterations). Each
iteration requires a derivative of F with respect to λ, which we implement using the
adjoint method, so that each iteration requires two forward solutions. In summary,
the random map method requires between 2–8 forward solutions per sample. The
linear map method requires generating a Gaussian sample and weighting it by (10)
so that only one forward solve is required per sample.

The quality of the weighted ensembles of the random and linear map methods
can be assessed by the variance of the weights. A well distributed ensemble has a
small variance of the weights. The variance of the weights is equal to R− 1, where

R =
E(w2)

E(w)2
.

In fact, R itself can be used to measure the quality of the samples [1; 41]. If
the variance of the weights is small, then R ≈ 1. Moreover, the effective sample
size, i.e., the number of unweighted samples that would be equivalent in terms of
statistical accuracy to the set of weighted samples, is about M/R [41], where M
is the number of samples we draw. In summary, an R close to 1 indicates a well
distributed ensemble.

We compute a value of R of about 1.6 for both methods. In fact, we generate
10 synthetic data sets, run implicit sampling with random and linear maps on each
set, and estimate R based on 104 samples for each numerical experiment. We
compute an R = 1.68± 0.10 for the linear map method and R = 1.63± 0.066 for
the random map method. The random map method thus performs slightly better;
however, the cost per sample is also slightly larger (because generating a sample
requires solving (6), which in turn requires solving the forward problem). Since the
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linear map method is less expensive and easier to program, it is a more appropriate
technique for this problem.

We have also experimented with symmetrization of implicit sampling [22],
which is similar in spirit to the classic trick of antithetic variates [25]. The sym-
metrization of the linear map method is as follows. Sample ξ , and compute a
sample x+ = µ + ξ . Use the same ξ to compute x− = µ − ξ . Then pick x+

with probability p+ = w(x+)/(w(x+) + w(x−)) and pick x− with probability
p− = w(x−)/(w(x+)+w(x−)), and assign the weight ws

= (w(x+)+w(x−))/2.
This symmetrization can lead to a smaller R, i.e., a better distributed ensemble, in
the small noise limit. In our example, we compute the quality measure R = 1.4.
While this R is smaller than for the nonsymmetrized methods, the symmetrization
does not pay off in this example since each sample of the symmetrized method
requires two forward solves (to evaluate the weights).

3.4. Comparisons with other methods. The MAP and LMAP methods estimate
parameters by computing the MAP point, i.e., the most likely parameters in view
of the data, and estimate the uncertainty by a Gaussian whose covariance is the
inverse of the Hessian of F at the minimum [7; 24; 34; 35]. In our example, LMAP
overestimates the uncertainty since the Gaussian approximation has a standard
deviation of 0.93 for the first parameter θ1, whereas we compute 0.64 with the
linear map and random map methods. The reason for the over-estimation of the
uncertainty with LMAP is that the posterior is not Gaussian. This effect is illustrated
in Figure 3, where we show histograms of the marginals of the posterior for the
first four parameters θ1, θ2, θ3, and θ4 along with their Gaussian approximation as
in LMAP. We also compute the skewness and excess kurtosis for these marginal
densities. While the marginals for the parameters may become “more Gaussian”
for the higher-order coefficients of the KL expansion, the joint posterior exhibits
significant non-Gaussian behavior. Since implicit sampling (with random or linear
maps) does not require linearizations or Gaussian assumptions, it can correctly
capture these non-Gaussian features. In the present example, accounting for the
non-Gaussian effects brings about a significant reduction of the uncertainty.

Note that code for LMAP can be converted into an implicit sampling code. In
particular, implicit sampling with linear maps requires the MAP point and an approx-
imation of the Hessian at the minimum. Both can be computed with LMAP codes.
Non-Gaussian features of the posterior can then be captured by weighted sampling
with linear maps, where each sample comes at a cost of a single forward simulation.

Another important class of methods for solving Bayesian parameter estimation
problems is MCMC. We compare implicit sampling with Metropolis MCMC [28],
where we use an isotropic Gaussian proposal density, for which we tuned the
variance to achieve an acceptance rate of about 30%. This method requires one
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Figure 3. Marginals of the posterior computed with implicit sampling with random maps
and their Gaussian approximation obtained via LMAP. Top left: p(θ1|z). Top right: p(θ2|z).
Bottom left: p(θ3|z). Bottom right: p(θ4|z).

forward solution per step (to compute the acceptance probability). We start the
chain at the MAP (to reduce burn-in time). In Figure 4, we show the approximation
of the conditional mean of the variables θ1, θ2, and θ3 as a function of the number
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)Figure 4. Expected value as a function of the number of samples. Red: MCMC. Turquoise:

implicit sampling with random maps and approximate Hessian (dashed) and finite differ-
ence Hessian (solid). Blue: implicit sampling with linear maps and approximate Hessian
(dashed) and finite difference Hessian (solid).
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Turquoise: implicit sampling with random maps and approximate Hessian (dashed) and
finite difference Hessian (solid). Blue: implicit sampling with linear maps and approximate
Hessian (dashed) and finite difference Hessian (solid).

of steps in the chain. We observe that, even after 104 steps, the chain has not settled,
in particular for the parameter θ3 (see bottom pane).

With implicit sampling, we observe a faster convergence, in the sense that the
approximated conditional mean does not change significantly with the number of
samples. In fact, about 102 samples are sufficient for accurate estimates of the
conditional mean. As a reference solution, we also show results we obtained with
implicit sampling (with both random and linear maps) for which we used a Hessian
computed with finite differences (rather than with the approximation in (17)).

The cost per sample of implicit sampling and the cost per step of Metropolis
MCMC are different, and a fair comparison of these methods should take these
costs into account. In particular, the offset cost of the minimization and computation
of the Hessian, required for implicit sampling, must be accounted for. We measure
the cost of the algorithms by the number of forward solves required. The results
are shown for the parameters θ1, θ2, and θ3 in Figure 5.

We find that the fast convergence of implicit sampling makes up for the relatively
large a priori cost (for minimization and Hessian computations). In fact, the figure
suggests that the random method requires only a few hundred samples, whereas
Metropolis MCMC requires thousands of samples. The convergence of Metropolis
MCMC can perhaps be increased by further tuning or by choosing a more advanced
transition density. Implicit sampling on the other hand requires little tuning other
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than deciding on standard tolerances for the optimization. Moreover, implicit
sampling generates independent samples with a known distribution so that issues
such as determining burn-in times, auto-correlation times, and acceptance ratios do
not arise. It should also be mentioned that implicit sampling is easy to parallelize.
Parallelizing Metropolis MCMC on the other hand is not trivial because it is a
sequential technique.

Finally, we discuss connections of our proposed implicit sampling methods to
stochastic Newton MCMC [29]. In stochastic Newton, one first finds the MAP
point (as in implicit sampling or LMAP) and then starts a number of MCMC
chains from the MAP point. The transition probabilities are based on local infor-
mation about F and make use of the Hessian of F , evaluated at the location of
the chain. Thus, at each step, a Hessian computation is required which, with our
finite difference scheme, requires 31 forward solves (see above) and, therefore, is
expensive (compared to generating samples with implicit sampling, which requires
computing the Hessian only once). Second-order adjoints (if they were available)
do not reduce that cost significantly. We have experimented with stochastic Newton
in our example and have used 10–50 chains and taken about 200 steps per chain.
Without significant tuning, we find acceptance rates of only a few percent, leading
to a slow convergence of the method. We also observe that the Hessian may not
be positive definite at all locations of the chain and, therefore, cannot be used
for a local Gaussian transition probability. In summary, we find that stochastic
Newton MCMC is impractical unless second-order adjoints are available to speed
up the Hessian computations. Variations of stochastic Newton were explained and
compared to each other in [36].

4. Conclusions

We explained how to use implicit sampling to estimate the parameters in PDE from
sparse and noisy data. The idea in implicit sampling is to find the most likely state,
often called the maximum a posteriori (MAP) point, and generate samples that
explore the neighborhood of the MAP point. This strategy can work well if the
posterior probability mass localizes around the MAP point, which is often the case
when the data constrain the parameters. We discussed how to implement these ideas
efficiently in the context of parameter estimation problems using multiple grids and
adjoints to speed up the required optimization.

Our implicit sampling approach has the advantage that it generates independent
samples so that issues connected with MCMC, e.g., estimation of burn-in times,
auto-correlations of the samples, or tuning of acceptance ratios, are avoided. Our
approach is also fully nonlinear and captures non-Gaussian features of the posterior
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(unlike linear methods such as the linearization about the MAP point) and is easy
to parallelize.

We illustrated the efficiency of our approach in numerical experiments with an
elliptic inverse problem that is of importance in applications to reservoir simula-
tion/management and pollution modeling. The elliptic forward model is discretized
using finite elements, and the linear equations are solved by balancing domain
decomposition by constraints. The optimization required by implicit sampling is
done with a BFGS method coupled to an adjoint code. We use the fact that the
solutions are expected to be smooth for model order reduction based on Karhunen–
Loève expansions and found that our implicit sampling approach can exploit this
low-dimensional structure. Moreover, implicit sampling is about an order of magni-
tude faster than Metropolis MCMC sampling (in the example we consider). We
also discussed connections and differences of our approach with linear/Gaussian
methods, such as linearization about the MAP, and with stochastic Newton MCMC
methods. In particular, one can build an implicit sampling code starting from a
MAP code by simply adding the Gaussian sampling and weighting step. At the
cost of one additional forward solve per sample, the implicit sampling approach
can reveal non-Gaussian features.
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