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We present a new high-order front-tracking method for hyperbolic systems of
conservation laws for two gases separated by a tracked contact discontinuity,
using a combination of a high-order Godunov algorithm and level set methods.
Our approach discretizes the moving front and gas domains on a Cartesian grid,
with control volumes determined by the intersection of the grid with the front.
In cut cells, a combination of conservative and nonconservative finite volume
quadratures provide small-cell stability. Global conservation is maintained using
redistribution. We demonstrate second-order convergence in smooth flow and
first-order convergence in the presence of shocks.

1. Introduction

The predictive simulation of two-fluid flows with sharp material interfaces is nec-
essary to understand processes such as shock-induced mixing that are important
in ballistic impact and inertial confinement processes. Numerical methods that
address sharp interfaces using discrete step functions are zero-order accurate in
capturing interface jumps and cannot detect jump-sensitive features such as the
onset of instability [42]. To address such problems while properly resolving jumps
we present a new 2-D front-tracking method for hyperbolic systems of conservation
laws specialized to gas dynamics.

Any such method may be distinguished by its front representation and the way it
handles gas volume geometric calculations (see [24] for an early review of front
tracking approaches). One class of front-tracking methods is surface tracking
[13; 17; 19]. While highly successful, complex schemes are involved for front
entanglement and difficulties could arise for generalization to higher dimensions.
For instance, the topology of the solution to Riemann problem is not known for the
general case [32]. Volume-tracking methods introduce a simpler front representation,
but lack subgrid scale resolution [22]. Interface reconstruction methods have been
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used to extract geometrical information from volume-tracking methods [22; 41].
With the introduction of level set methods, new front-tracking schemes have been
developed for high-order implicit front evolution [15; 44]. Our approach is based on
a new interface reconstruction method that extracts accurate geometry information
from a time sequence of discrete level set data [30; 36].

Depending on the representation of the front, finite volume and finite difference
methods have developed different approaches to calculate state variables and fluxes
near and on the front. Since the material interface moves, there may be small
fractional cells near the interface. The small volume of those cells force severe
limitations on unmodified finite volume and finite difference methods. Several
approaches have been developed to resolve or circumvent this problem, such as
cell merging [18], the h-box method [4], the ghost fluid method [15], and the single
phase approximation [8; 38]. Another approach is the hybrid conservative method
of Chern and Colella [7] and Bell et al. [2], which combines the conservative finite
volume method with a nonconservative but stable update, and maintains global
conservation using a redistribution algorithm. This idea has been successfully
used for embedded boundary methods for static [11] and time-dependent [35; 36;
37] domains, and for a second-order conservative front-tracking method in one
dimension [16].

We base our approach on the hybrid conservative finite volume method of Chern
and Colella [7] and Pember et al. [45], which solves single phase dynamics using
an unsplit Godunov method in irregular domains. The time-dependence of the
domain uses space-time finite volume quadratures, generalizing the 1-D algorithm
of Gatti-Bono et al. [16]. The geometric quantities that support these quadratures are
derived from level sets using algorithms presented by Ligocki et al. [30] and Miller
and Trebotich [36]. The material interface is indicated by the zero of a level set,
which is advanced in time using well-established algorithms [14; 25]. Likewise, the
extended velocity field that governs the level set evolution uses a well-established
method [1] to extend a velocity computed from two-gas Riemann problems across
the front. In the following technical description of the algorithm, we assume that the
reader is familiar with the high-order Godunov algorithm [7; 45] and the PDE-based
level set algorithms [1; 14; 25; 46] that we employ essentially as they appear in
the literature. Here the emphasis will be placed on the interconnectivity of these
algorithmic components, and new specific details of implementation. We have
implemented our algorithm in two spatial dimensions. The algorithm description is
presented in a more general form, and we believe its implementation in 3-D will be
straight-forward.

Our approach results in a robust high-order front-tracking method. Using conver-
gence tests, we demonstrate that our method is second-order accurate for smooth
flow, and first-order accurate in the presence of shocks.
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2. Governing equations

2.1. Gas dynamics. We are developing a hybrid numerical method for a hyperbolic
system of conservation laws:

∂U
∂t
+∇ · EF = 0, (1)

U = U(x, t), x ∈�⊂ RD, (2)

EF = (F1 . . . FD)= EF(U), (3)

U, Fd ∈ Rm, (4)

where U is a vector of conserved variables, and EF is the corresponding flux vector
defined in the problem domain �. A front F(t) separates the problem domain into
two subdomains �1(t) and �2(t). Each gas is governed by the equation system
stated above while fulfilling the Rankine–Hugoniot jump condition on the front,

( EF1− EF2) · Ens − s f (U1−U2)= 0, (5)

where Ens is the spatial normal vector on the front from �1 to �2, and s f is the front
velocity in the direction of Ens (Figure 1).

We restrict the presentation here to the 2-D Euler equations:

U = (ρ, ρu, ρv, E)T, (6)

F1 = (ρu, ρu2+ p, ρuv, (E + p)u
)T
, (7)

F2 = (ρv, ρuv, ρv2+ p, (E + p)v
)T
, (8)

where ρ is the gas density, u and v are the velocities in the x and y direction
respectively, p is the pressure, and E is the total energy defined by the equation of

�1(t) �2(t)

F(t)

Ens

Figure 1. Two-gas flow domain and the moving interface.
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state for an ideal polytropic gas,

E ≡ p
γ − 1

+ 1
2
ρ(u2+ v2), (9)

where γ is the ratio of specific heats, and may be different for each gas. We use
primitive variables W = (ρ, u, v, p)T for flux calculations. The equation system
in primitive variables is

∂W
∂t
+

D∑
d=1

Ad ∂W
∂xd
= 0, (10)

with

A1 =


u ρ 0 0
0 u 0 ρ−1

0 0 u 0
0 γ p 0 u

, A2 =


v 0 ρ 0
0 v 0 0
0 0 v ρ−1

0 0 γ p v

, (11)

for D = 2.

2.2. Front dynamics. The level set method was introduced by Osher and Sethian
to implicitly evolve an interface [44] (see the books by Sethian [52], and Osher and
Fedkiw [43] for a complete introduction). We use a level set function to implicitly
represent the front. The level set φ(Ex, t) is a continuous function with

φ(Ex, t) < 0 in �1(t),
φ(Ex, t)= 0 on F(t),
φ(Ex, t) > 0 in �2(t).

(12)

The interface is represented by the zero level set F(t) = {Ex | φ(Ex, t) = 0}. The
level set is updated using the level set equation [44],

φt + Eνext · ∇φ = 0, (13)

where Eνext is the extended velocity defined in RD . The extended velocity represents
the movement of the whole level set function and is defined to match the velocity
of the front,

Eνext = Eν f on F(t). (14)

The level set function φ is used for calculating accurate geometric features of
the front. Therefore, it is helpful to define and maintain it as a smooth function. It
is initialized as a signed distance function that satisfies (12),

φ(Ex, 0)=±l(Ex), (15)

where l is the distance of point Ex to the front F(0). The level set equation (13)
moves the zero level set correctly, but with time it will cease to be a distance
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function, i.e., with |∇φ| = 1. We maintain φ as a distance function by carefully
generating the extended velocity [1], and by using a redistancing procedure [14].
The details are described in Section 4.3 and Section 4.4.

3. Discretization

3.1. Control volumes, quadrature points, and special notation. The physical prob-
lem domain is discretized with a Cartesian grid with size h in space and 1t in time.
That is, a Cartesian (or regular) cell i is defined as ϒi = [ih, (i +1)h], i ∈ ZD,
where 1 is a vector of ones. Let T = [tn, tn+1] be the time interval. The spatial
and space-time control volumes are then defined as

Vi,α(t)= ϒi ∩�α(t), (16)

Ci,α = {Ex ∈ RD, t ∈ T | Ex ∈ Vi,α(t)}. (17)

A regular space-time control volume is a rectangular cube in RD × T with 2D
faces in RD−1× T . The center of the cell ϒi at time tn is (Exi , tn). The faces are
shown by Ai± 1

2 ed where ed is the unit vector in direction d and sign ± indicates
that the face located on lower or higher side in direction d . Face centers are located
at (Exi± 1

2 ed , tn+ 1
2 ) , and are at time n+ 1

2 (Figure 2b).

Figure 2. Geometry discretization and definitions.
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A cell, face, or volume is called irregular or cut if it intersects the front. In
Figure 2a, V n

i,1 and V n
i,2 denote the irregular cells corresponding to gases 1 and 2,

respectively. Since such cells are fractional, the position of the center and centroid
are different. The centroid of V n

i,α is located at (Exi,α, tn). For faces of an irregular
control volume, if a face is coincident only with the Cartesian grid, it is denoted
as Ai± 1

2 ed,α, and its centroid as (Exi± 1
2 ed,α, ti± 1

2 ed,α). If a face is coincident with the
front, it is written as A f

i with the centroid at (Ex f
i , t f

i ) (Figure 2c). Based on the
above definitions, the cell and face fractions are specified as follows:

3n
i,α =

|V n
i,α|

hD , ai± 1
2 ed,α =

|Ai± 1
2 ed,α|

1t hD−1 , and a f
i =

|A f
i |

1t hD−1 . (18)

The cell-centroid (Exi,α, tn) is defined as the center of V n
i,α,

Exi,α = 1
|V n

i,α|
∫

V n
i,α

Ex dV, (19)

and face-centroids are given by

(Exi+ 1
2 ed,α, ti+ 1

2 ed,α)=
1

|Ai+ 1
2 ed,α|

∫
Ai+ 1

2 ed,α

(Ex, t) dA dt, (20)

(Ex f
i , t f

i )=
1

|A f
i |

∫
A f

i

(Ex, t) dA dt, (21)

where dV = dx D and dA = dx D−1 for D > 1. The average space-time normal
vector on the front for cell i is defined as

En i,α = 1

|A f
i |

∫
A f

i

Enα dA dt, (22)

where Enα is the outward normal vector for gas α.
We will distinguish fluxes F defined on the interface, on face centers, and on

face centroids, by F f , Fcr, and Fcd, respectively.
Note that the quantities related to irregular geometries, having subscript α or

superscript f , are inherently time dependent variables and defined in the interval
[tn, tn+1]. The notation is summarized in Table 12.

3.2. Gas dynamics. The conservation equation may be written beginning with the
integral form ∫

Ci,α

(
∇, ∂
∂t

)
· ( EF,U) dV dt = 0. (23)

To derive the finite volume method, the divergence theorem is applied to (23) giving∮
∂Ci,α

Enα · ( EF,U) dA = 0, (24)
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x
y

t

∂Ccell

i,α

∂C face

i,α

∂C front

i,α

Figure 3. Separation of the integral over ∂Ci,α based on the type of surfaces.

where Enα and dA are the outward space-time normal vector and surface area
differential on region ∂Ci,α, respectively. Separating this integral into three parts
according to surface type gives

∫
∂Ccell

i,α

Enα · ( EF,U) dA+
∫
∂C face

i,α

Enα · ( EF,U) dA+
∫
∂C front

i,α

Enα · ( EF,U) dA = 0. (25)

The first integral is over the cells at time tn and tn+1, the second integral is over
the intersection of ∂Ci,α with the regular faces, and the third integral is over the
intersection of ∂Ci,α with the front (Figure 3).

Discretizing in space and time gives

|V n+1
i,α |Un+1

i,α − |V n
i,α|Un

i,α

+
D∑

±,d=1

(±|Ai± 1
2 ed,α|Fcd

i± 1
2 ed,α

)+ |A f
i | En i,α · ( EF f

i,α,U f
i,α)=O(hD+11t). (26)

Here, Un
i,α represents the average value of U(Ex, t) in V n

i,α, and is centered at
(Exi,α, tn), the centroid of V n

i,α. Flux Fcd
i± 1

2 ed,α
is the average flux at the space-

time centroid of the corresponding faces in direction d, and EF f
i,α and U f

i,α are the
average front flux and conservative state variable respectively, at the centroid of
the front. Following the free-stream-preserving discretization of Pember et al. [45]
the calculation on the front may be written in terms of fractional face areas on the
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Cartesian grid instead of relying on an estimation of the front area itself:

|V n+1
i,α |Un+1

i,α − |V n
i,α|Un

i,α

+
D∑

±,d=1

(±|Ai± 1
2 ed,α|Fcd

i± 1
2 ed,α

)− D∑
d=1

(|Ai+ 1
2 ed,α| − |Ai− 1

2 ed,α|)F f
i,d,α

−(|V n+1
i,α | − |V n

i,α|)U f
i,α =O(hD+11t). (27)

Dividing by hD and substituting cell and face areas with unitless cell and face
fractions gives

3n+1
i,α Un+1

i,α −3n
i,αUn

i,α +
1t
h

D∑
±,d=1

(±ai± 1
2 ed,α(F

cd
i± 1

2 ed,α
− F f

i,d,α)
)

− (3n+1
i,α −3n

i,α)U
f

i,α =O(h1t). (28)

An interim conserved variable Un,n+1 is defined as the conserved variable evaluated
at time tn and centered at the cell-centroid position at time tn+1

Un,n+1
i,α = U(Exi,α(t n+1), tn), (29)

which is calculated by interpolating cell-centroid conservative variables, Un
i,α , using

the local grid interpolation method explained in Section 4.1. The purpose of this
unusually centered variable, introduced in [16], is to make the following explicit
update equation (compare (28)) uniformly centered in space:

Un+1
i,α = Un,n+1

i,α −1t DFC
i,α, (30)

where DFC
i,α is the conservative flux difference defined as

DFC
i,α =

3n+1
i,α Un,n+1

i,α −3n
i,αUn

i,α

3n+1
i,α 1t

+ 1

3n+1
i,α h

( D∑
±,d=1

±(ai± 1
2 ed,α(F

cd
i± 1

2 ed,α
− F f

i,d,α)
)

− h
1t
(3n+1

i,α −3n
i,α)U

f
i,α

)
. (31)

Note that DFC
i,α may become unstable for small cell fraction 3n+1

i,α . Therefore, a
nonconservative but stable flux difference is introduced,

DFNC,cr
i,α = 1

h

D∑
±,d=1

±Fcr
i± 1

2 ed,α
, (32)
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where Fcr
i± 1

2 ed,α
is the flux evaluated at (Exi± 1

2 ed , tn+ 1
2 ), the center of the regular

face Ai± 1
2 ed , for gas α. This calculation results in a cell-centered estimate of the

nonconservative flux. Then, it is extrapolated to the cell-centroid position at time
tn+1, which gives DFNC

i,α . A linear combination of DFC
i,α and DFNC

i,α is used for
the update equation to avoid the small cell problem of the finite volume methods
[10]. By picking 3n+1

i,α as the linear coefficient of DFC
i,α a stable update method is

achieved:

Un+1
i,α = Un,n+1

i,α −1t
[
3n+1

i,α DFC
i,α + (1−3n+1

i,α )DFNC
i,α
]
. (33)

To maintain global conservation, the mass difference between the conservative
update (30) and the hybrid update (33) is calculated

δMi,α =3n+1
i,α
([Un+1

i,α −Un,n+1
i,α ]Conservative− [Un+1

i,α −Un,n+1
i,α ]Hybrid

)
,

δMi,α =1t3n+1
i,α (1−3n+1

i,α )(DFNC
i,α − DFC

i,α), (34)

and this excess mass is redistributed to the appropriate neighbor cells of cell i .

3.3. Front dynamics. The level set equation (13) is discretized in space on the
same Cartesian grid using the WENO method for Hamilton–Jacobi equations by
Jiang and Peng [25]. The level set function at any time step is only needed in a
band around the zero level set [31]. The local level set method of Peng et al. [46] is
applied to reduce the computational work for updating the level set function. This
means the update method applies to the cells in a band around the zero level set.
The update band should be wide enough to provide enough information to support
the geometry calculation. With our choice of parameters, a 5×5 stencil of level set
values is needed centered on each irregular cell.

For time discretization a two-step Adams–Bashforth method is used [34]. For
the ODE system

φt = L(φ), φ(Ex, 0)= F(0), (35)

the update algorithm at time step n is
φ̃n+1 = φn +1t L(φn)

(Dφ)n = φ̃n+1−φn

φn+1 = φn + 3
2(Dφ)

n − 1
2(Dφ)

n−1.

(36)

The above method is second-order accurate in time with the initial starting value
(Dφ)−1 = (Dφ)0. For the level set update equation the L operator is defined as
L(φ)=−Eνext · ∇φ. With this choice of time stepping, L is evaluated only once per
time step, which means that the two-gas front Riemann problem need be solved
only once per time step to compute Eν f , which is extended to make Eνext.
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3.4. Geometry. To calculate the update equation (33) we need the geometrical
quantities defined in Section 3.1. Using k+2 discrete time samples of level set data
φn+1, φn , . . . , φn−k , and applying the algorithm developed by Miller and Trebotich
[36], we may evaluate the required geometry information with accuracy as high
as O(hk+2). We use k = 2 to compute geometry information with fourth-order
accuracy in our test cases. To obtain fourth-order accuracy by this approach requires
a 5× 5 stencil of discrete level set values at each time level.

4. Numerical algorithms

At the start of time step n we assume that the following data are available: a
centroid-centered average of the conservative variables for each gas Un

i,α(Ex n
i,α, tn);

a time sequence of k+ 1 discrete level sets φn , . . . , φn−k ; the difference (Dφ)n−1

(36); and spatial geometry information constructed from φn . The goal is to find
Un+1

i,α (Ex n+1
i,α , tn+1) and φn+1. A brief overview of the strategy follows. Additional

details are given in [57].
First, we extrapolate the conservative data from cell centroids to cell centers

to support a standard high-order Godunov method. Primitive cell-centered data
is extrapolated to the front centroids at time tn to pose Riemann problems that
determine the front velocity Eν f.

The front centroid velocity is extended in a band of cells around the zero level
set to make Eνext, which is used in (36) to compute φn+1 to second-order. The time
sequence φn+1, φn , . . . , φn−k then supports the computation of space-time geometry
information in all irregular control volumes.

Following a standard high-order unsplit Godunov method, modified on irregular
boundaries [9; 11], we calculate the slopes and fluxes on the face and front centroids
and apply the update equation (33). Excess mass is calculated and redistributed.

4.1. Local grid interpolation. The interpolation steps used in the algorithm are
linear estimates based on the local grid data. If we want to interpolate the value of
function G at target point Ext based on the support data at Exs we write the Taylor
expansion of G(Exs) centered at Ext ,

G(Exs)≈ G(Ext)+∇G(Ext)(Exs − Ext). (37)

By gathering enough support point data around the target we create a least-squares
problem to solve for G(Ext),1 (Ex1− Ext)

...
...

1 (Exm − Ext)

( G(Ext)

∇G(Ext)

)
=

G(Ex1)
...

G(Exm)

, (38)
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Figure 4. (a) Cell stencil showing sets of nearest neighbors. Neighbor cells with the
same approximate distance to the center cell are indicated by a common number. (b)
Interpolation from cell centroid data to cell center: Target point (the cell center) is shown
with × and support points are shown with •. In this example only sets 1 and 2 of nearest
neighbor cells are used.

where Ex1, . . . , Exm are support points. The support points are chosen based on the
nearest cell criteria to the target cell position. We start from the most compact
stencil possible and try solve the above least-square system with QR decomposition
(Figure 4). More support points are added if values on the diagonal of R are too
small, which signals large numerical errors. The heuristic cut-off values that we
used are 10−10 for Ri i (no sum), and 10−15 for det(R).

4.2. Solution on the front and velocity matching. We need the state variables on
the front to calculate the front speed at time tn , and the flux on the front centroid. In
both cases, the state variables from each gas are extrapolated to the front centroids.
We solve the Riemann problem in front normal direction for a contact discontinuity
to determine the states on the front, using a primitive variable Riemann solver [56].

The Riemann solver provides a unique normal velocity u∗, from which we
determine Eν f = u∗n. The tangential component of the front velocity is double
valued, and not needed for level set advection.

When computing DFC (31) we require the flux at the space-time front centroid.
This flux is computed by first setting up and solving a Riemann problem as described
above with left-hand and right-hand values interpolated as described below in (48).
This computation also yields a unique normal velocity u∗, however this velocity is
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not consistent with the space-time slope of the front, which gives velocity

s f = −nt√
n2

x + n2
y

, En n
i = (nx , ny, nt)

T . (39)

We substitute s f for u∗ in this Riemann problem calculation to give front values
that are internally consistent and make the method fully conservative. Additional
details are given in [57].

4.3. Velocity extension. We need the velocity defined on cell centers in a band
around the zero level set to update the level set equation. The solution on the front
at time tn gives the velocity on front centroids.

To keep φ a signed distance function after updating the level set equation one
needs to impose the following condition on the velocity [1]:

∇(Eνext,d) · ∇φ = 0, d = 1, . . . , D, (40)

which means that velocity is constant along the level set gradient. We use the
extension method developed by Peng et al. [46] and Zhao et al. [60]. To extend the
quantity q with the condition ∇q · ∇φ = 0 we solve

qt + S(φ)
∇φ
|∇φ| · ∇q = 0, (41)

as an internal boundary value problem, where S(φ) is a regularized sign function
[54]. Since the characteristics of (41) are normal to the front and point outward
from the front, we only need to initialize q on a initialization band around F , with
a width of 2 or 3 cells, and then solve (41) while the velocity is anchored on the
initialization band.

To set up the initialization band around the zero level set we pick cells that have
amongst their 3D − 1 neighbors at least one cell with the opposite level set sign.
Applying the extension condition (40) means the extended velocity field does not
change in the direction of the level set gradient. Therefore, if we project from a
point outside the front, such as the center of a cell in the initialization band Exc, in
the direction of the level set gradient toward the front and reach a point on the front
such as Ex f ,

Ex f ≈ Exc−φ(Exc)
∇φ(Exc)

|∇φ(Exc)| (42)

(see Figure 5), then the extension condition (40) recovers

Eν(Exc)= Eν(Ex f ). (43)

To find the velocity at the projected point Ex f , we apply linear interpolation using
the velocity values on the front centroids in the 3D cells near Ex f . If m front centroid
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Figure 5. Initialization of velocity field in a narrow band around zero level set.

points reside in the vicinity of Ex f , we solve the least-squares equation system
(38) with G = νd(Ex f ). In this case, we solve system (38) using singular value
decomposition because the matrix may be singular, e.g., if the support points are
collinear.

Extension equation (41) is solved iteratively as described by Peng et al. [46] to
extend the velocity from the initialization band to a narrow band around the zero
level set while applying the high-order WENO discretization of Jiang and Peng
[25] to increase the accuracy of the algorithm and decrease the number of iterations
that are needed.

4.4. Redistancing. A level set function initialized as a distance function and driven
with a nonconstant velocity field may deviate from being a distance function [46;
50], causing poor evaluation of geometric quantities. Sussman et al. [54] introduced
the redistancing equation in artificial time τ

φτ + S(φ̃)(|∇φ| − 1)= 0, (44)

where φ̃= φ(Ex, τ = 0). We solve the redistancing equation (44) using the improved
Hamilton–Jacobi WENO algorithm with Godunov approximation in space and the
third-order TVD Runge–Kutta scheme in time by du Chéné et al. [14].

4.5. Flux calculation. There are four different types of fluxes needed to apply the
hybrid update method, varying in centering location.

4.5.1. Flux on a regular face. A regular face is not intersected by the front in
[tn, tn+1]. The most common flux calculated is Fcr

i± 1
2 ed,α

for a regular face, which is
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the flux on the face center (Exi± 1
2 ed , tn+ 1

2 ). This is done using a high-order Godunov
method with transverse flux correction in primitive variables [9; 11].

4.5.2. Flux on a covered face. If cell i is irregular, but the face at i ± 1
2 ed does

not intersect the front, then that face is said to be covered with respect to the gas α
that is not present at i ± 1

2 ed . Fluxes on covered faces may be used in (32). The
upwinding extrapolation algorithm that is used for flux calculation on a regular face
only provides the state variable on one side of the covered face. A method similar to
the procedure described in [11, §5.2] is applied to extrapolate the state variables on
the other side using the interior face-centered values. We use the spatial projection
of En i,α in 2-D as the normal vector needed in the method.

4.5.3. Flux on an irregular face. A face is irregular if it intersects the front in
[tn, tn+1]. We evaluate the average flux on the irregular face using the primitive
states on the face centroid,

Fcd
i± 1

2 ed,α
= Fd(W cd

i± 1
2 ed,α

). (45)

We extrapolate the primitive variable on the face center W cr
i± 1

2 ed,α
, calculated in

Section 4.5.1, to the face centroid using the average slopes of two surrounding cells
in time and space,

W cd
i± 1

2 ed,α
=Wα

(Exi± 1
2 ed,α, ti± 1

2 ed,α

)
=W cr

i± 1
2 ed,α
+ (Exi± 1

2 ed,α(t
n)− Exi± 1

2 ed

) · ed
(
1d ′

x Wn
i,α +1d ′

x Wn
i±ed,α

2h

)
+(ti± 1

2 ed,α − (n+ 1
2)1t

)(1t Wn
i,α +1t Wn

i±ed,α

21t

)
, d 6= d ′, (46)

where 1t Wn
i,α is an estimate of time difference calculated as

1t Wn
i,α = 2

(
1

2D

∑
±

D∑
d=1

W cr
i± 1

2 ed,α
−Wn

i,α

)
. (47)

4.5.4. Flux on the front. The flux on the front is calculated using the solution of
the Riemann problem on the contact discontinuity described in Section 4.2. The
left-hand and right-hand states of that Riemann problem are derived by extrapolation
from cell-centered primitive states using the local slopes in space and time for each
gas,

W̃ f
i,α = W̃α(Ex f

i , t f
i )

=Wn
i,α +

1
h

D∑
d=1

(Ex f
i − Exi,α(tn)

) · ed1d
x Wn

i,α +
1
1t
(t f

i − n1t)1t Wn
i,α. (48)
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The solution to the Riemann problem in the front normal direction with initial states
W̃ f

i,1 and W̃ f
i,2 gives the primitive state on both sides of the front. These values,

modified as described in Section 4.2, determine W f
i,1 and W f

i,2, which are used for
the calculation of F f

i,α and U f
i,α.

4.6. Excess generalized mass and redistribution. To maintain global conservation
the generalized mass (i.e.,

∑
i |Vi,α|Ui,α) difference between the hybrid method

and the conservative method (34) should be redistributed. First we balance the
excess generalized mass on the front cells based on the characteristics in the front
normal coordinate systems using the approach of Chern and Colella [7]. The excess
generalized mass on each side is projected on the characteristics of the cell centered
values in the front normal coordinate system,

δMi,α =
m−1∑
k=0

bk,α rk,α, (49)

where rk,α are the right eigenvectors of ∂ EF
∂U (Un

i,α). Then, the contribution of excess
generalized mass to each side is calculated by considering the characteristic speed
of each projected term. Assuming that ũ1 and c̃1 are the normal velocity and sound
speed of Un

i,1 in the front normal coordinate system, the projected components
corresponding to ũ1 − c̃1 and ũ1 remain in gas 1, and the projected component
corresponding to ũ1+ c̃1 moves to gas 2. With a similar argument for gas 2, the
excess generalized mass values are:

δMi,1 := (b0,1r0,1+ b1,1r1,1+ b2,1r2,1)+ b0,2r0,2, (50)

δMi,2 := b3,1r3,1+ (b1,2r1,2+ b2,2r2,2+ b3,2r3,2). (51)

Note that physical mass (i.e.,
∑

i |Vi,α|ρi,α) is not redistributed across a front since
the characteristic carrying mass has velocity ũα.

In general, the redistribution method is

Un+1
j ,α := Un+1

j ,α +wi, j δMi,α, j ∈ N (i), (52)

where N (i) indicates a set of cells in the neighborhood of cell i and the weight
coefficients satisfy [11],

wi, j ≥ 0, and
∑

j∈N (i)

wi, j 3
n+1
j = 1. (53)

We use

wi, j = 1∑
l∈N (i)3

n+1
l

. (54)
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With these weight coefficients we get

3n+1
j ,α Un+1

j ,α :=3n+1
j ,α Un+1

j ,α +
3n+1

j ,α∑
k∈N (i)3

n+1
k,α

δMi,α, j ∈ N (i), (55)

which means the excess mass of cell i is redistributed into neighbor cells in propor-
tion to their volume at time n+ 1.

5. Results

In this section we present numerical tests of the method for gas dynamics problems.
The first two tests are for smooth and steady flows, where no discontinuity other than
the material interface is present. The third and fourth test include the interaction
of the front with a shock wave. In the fifth and sixth test cases, front dynamics
are unstable by nature, and the geometry of the front is changing more than in the
previous cases.

To make quantitative comparisons we define the error for conservative state
variables

E2h
i,α = U2h

i,α(t)−Ue
i,α(t), (56)

where U2h
i,α(t) is calculated with spatial grid size 2h and Ue

i,α is the exact solution.
If we do not have the exact solution in hand, we replace it with the solution from the
simulation with a finer grid. If we choose grid size h for our finer grid calculation

Ue
i,α(t)≈

∑
j∈M(i)3

h
j ,αUh

j ,α(t)∑
j∈M(i)3

h
j ,α

, (57)

where M(i)= [2i, 2i +1] are the fine cells underlying coarse cell i .
The total error in the L1, L2 and L∞ norms is

εh
L1
=

∑
α, i∈�α

hd3h
i,α|Eh

i,α|, (58)

εh
L2
=
( ∑
α, i∈�α

hd3h
i,α |Eh

i,α|2
) 1

2

, (59)

εh
L∞ = max

α, i∈�α

|Eh
i,α|, (60)

and the convergence rate is calculated by

p = log(ε2h/εh)

log(2)
. (61)
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5.1. Convergence test — advection. With this simple test, we examine the conver-
gence and conservation of the method for smooth gas and front dynamics. The
problem domain is a 1 by 1 square. The initial material interface is a circle with
radius 0.2 centered at (0.25, 0.25). With the initial condition shown in Table 1
and appropriate inflow and outflow boundary conditions, simulations are done
up to t = 0.5 with CFL number 0.5, which results in diagonal advection of the
circular front without any deformation across the domain. Table 2 shows the error
and convergence rates. The results show second order convergence for all norms.
Fedkiw et al. [15] did a similar test and showed second order convergence in L1.
Here we also measure the convergence in L∞ which shows the method is second
order convergent away from and near the interface.

The final front position is displayed in Figure 6 for different resolutions. Since
the final solution is trivial, we measured the least squares error of the front centroid
positions using the exact solution. Numerical convergence analysis shows the front
position is converging with O(h1.74) (see Figure 7).

At the request of a reviewer we measured the total amount of each conserved
variable for each gas. Taking into consideration the boundary fluxes, the mass,
momentum, and energy of each gas is conserved to within machine precision in
each time step, and the cumulative loss of conservation is less than 10−16 for all
conserved variables in all resolutions tested.

5.2. Convergence test — smooth perturbation. We test our method for a 2-D per-
turbation problem to observe the interaction of the front with smooth flows. The
problem domain is a 1 by 1 square. The initial front is a circle with radius 0.27
centered at (0.5, 0.5). The gas inside the front has a smooth bell-shaped perturbation
in the pressure component of the form

pin(r)= pbase

(
1+ 256α

(
r + rp

2rp
−
(

r + rp

2rp

)2)4)
, r ≤ rp, (62)

where pbase = 1 is the background value of pressure, α = 0.15 determines the
peak-to-base value of the perturbation, rp = 0.25 is the radius of the perturbation
and r is the distance from the center of the problem domain. The initial density is

Gas 1: inside Gas 2: outside

ρ 0.138 1
u 1 1
v 1 1
p 1 1
γ 1.67 1.4

Table 1. Initial values for the advection problem.
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ρ

h L1 rate L2 rate L∞ rate

1/32 5.24×10−5 1.84×10−4 4.41×10−3

1/64 4.95×10−6 3.40 2.05×10−5 3.16 6.47×10−4 2.77
1/128 1.19×10−6 2.06 3.22×10−6 2.67 1.47×10−4 2.36
1/256 2.73×10−7 2.12 7.93×10−7 2.27 3.48×10−5 2.48

ρu & ρv

h L1 rate L2 rate L∞ rate

1/32 1.12×10−4 2.73×10−4 4.12×10−3

1/64 1.00×10−5 3.49 3.43×10−5 2.99 6.42×10−4 2.68
1/128 2.18×10−6 2.20 8.05×10−6 2.09 1.36×10−4 2.24
1/256 5.38×10−7 2.02 1.91×10−6 2.08 3.30×10−4 2.04

E

h L1 rate L2 rate L∞ rate

1/32 2.70×10−4 7.09×10−4 1.34×10−2

1/64 2.80×10−5 3.27 1.09×10−4 2.70 2.45×10−3 2.45
1/128 6.14×10−6 2.19 1.91×10−5 2.51 4.77×10−4 2.40
1/256 1.40×10−6 2.13 4.30×10−6 2.15 1.11×10−4 2.10

Table 2. Error and convergence rate for the advection problem.

constant and equals 1 for both gases, and the initial velocities are zero. The initial
pressure for the gas outside the front is pbase. We simulate the state variables to a
fixed time t = 0.6 to allow the perturbation to pass the front with a CFL number
of 0.5. We simulated the expansion of the perturbation in seven grid sizes varying
from 1

32 to 1
2048 , and calculated the solution errors and convergence rates based on

the Richardson method explained above.
Two cases for gas materials are considered. First, gases have different ratios

of specific heats, γin = 1.67 and γout = 1.4 (see Table 3). Second, both gases are
the same material, γin = γout = 1.4 (see Table 4). Our method shows second-order
convergence in L1, L2 and L∞ for all conserved variables in either case.

In the second case, since we chose the same material for both gases, we expect
to have continuous states on the front. It is also verified by comparing with a single
gas simulation, where no front tracking is performed and the same initial condition
is used. Figure 8 shows the final results, which also exhibit the expected rotational
symmetry.
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Figure 6. Final front position in the front advection problem. Inset: blowup of the front
position. From right to left for h equal to 1

32 , 1
64 , 1

128 , 1
256 and 1

512 .

Using finer resolution simulations as the reference (Richardson error), we cal-
culated the least squares error of the front centroid positions, which shows a
convergence rate of O(h1.60) (see Figure 7).

5.3. Shock test — 2-D Sod problem. Sod [53] introduced this benchmark 1-D
problem to compare different numerical methods. Variations of this problem are
also in common use [15; 16; 21; 28; 56]. Here we use this test in 2-D for two
different materials. The problem domain is a 1 by 1 square. The initial front
is a circle with radius 0.25 centered at (0.5, 0.5). The gas inside the circle has
higher pressure and density (Table 5), causing an outward shock wave and inward
rarefaction wave. The material discontinuity is tracked by our front tracking method.
With CFL number 0.5 and solid wall boundary condition, simulations are done for
five resolutions up to t = 15, before the shock wave reaches the domain boundary
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Figure 7. Convergence rate for front position.

(Figure 9), and error and convergence rates are calculated (Table 6). First-order
convergence is observed, as expected for a problem containing captured shocks.

5.4. Shock test — shock/front interaction. We chose this problem to observe the
nontrivial 2-D interaction of a shock wave with a tracked contact discontinuity. The
domain is a [2, 0.5] channel. We use the Sod shock tube problem [53] to initialize
the shock wave in gas 1 at x = 1. The initial material interface F(0) is a sine
wave η0 sin(ωy + θ)+ x0 at x0 = 1.5. The wavelength is the same as the width
of the channel λ = 0.5, which gives ω = 2π/λ = 4π . The interface amplitude
is set to η0 = 0.16 and θ = π/2 (see Figure 10). The initial values for each gas
are shown in Table 7. Solid wall and periodic boundary conditions are used for
vertical and horizontal boundaries, respectively. The simulation is done up to time
t = 0.6, allowing the shock wave to pass through the interface. Using five grid
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ρ

h L1 rate L2 rate L∞ rate

1/32 1.51×10−3 2.40×10−3 8.07×10−3

1/64 2.18×10−4 2.79 2.65×10−4 3.18 8.94×10−4 3.17
1/128 3.45×10−5 2.66 4.24×10−5 2.64 1.64×10−4 2.45
1/256 7.93×10−6 2.12 1.05×10−5 2.01 6.52×10−5 1.33
1/512 2.03×10−6 1.97 2.93×10−6 1.84 1.74×10−5 1.90
1/1024 5.26×10−7 1.95 7.79×10−7 1.91 3.76×10−6 2.21

ρu & ρv

h L1 rate L2 rate L∞ rate

1/32 9.89×10−4 1.48×10−3 7.48×10−3

1/64 1.69×10−4 2.55 2.47×10−4 2.58 1.26×10−3 2.57
1/128 2.53×10−5 2.74 3.83×10−5 2.69 3.37×10−4 1.90
1/256 5.36×10−6 2.24 7.64×10−6 2.33 1.52×10−4 1.15
1/512 1.39×10−6 1.95 1.95×10−6 1.97 5.89×10−5 1.37
1/1024 3.66×10−7 1.92 5.05×10−7 1.95 1.36×10−5 2.11

E

h L1 rate L2 rate L∞ rate

1/32 5.10×10−3 8.38×10−3 2.85×10−2

1/64 6.96×10−4 2.87 8.55×10−4 3.29 2.65×10−3 3.43
1/128 1.08×10−4 2.69 1.33×10−4 2.68 4.60×10−4 2.53
1/256 2.52×10−5 2.10 3.47×10−5 1.94 2.30×10−4 1.00
1/512 6.55×10−6 1.94 9.91×10−6 1.81 6.10×10−5 1.91
1/1024 1.72×10−6 1.93 2.68×10−6 1.89 1.32×10−5 2.21

Table 3. Error and convergence rate for perturbation test with γin = 1.67 and γout = 1.4.

sizes varying from 1/32 to 1/512, error and convergence rates are calculated (see
Table 8). The final result for the finest resolution is shown in Figure 10. Again,
first-order convergence is observed as expected for a problem containing captured
shocks.

5.5. Deforming interface — Richtmyer–Meshkov instability. To test our algorithm
in a case comparable to experiment we simulated the initial growth of Richtmyer–
Meshkov instability(RMI) that occurs when a sudden acceleration is forced on an
interface separating fluids with different densities. It is observed that an initial small
perturbation on the interface grows after passage of a shock wave in a wide range
of Mach numbers [5]. Such growth has been characterized as having a linear phase
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ρ

h L1 rate L2 rate L∞ rate

1/32 1.59×10−3 2.43×10−3 1.56×10−2

1/64 1.92×10−4 3.05 2.73×10−4 3.15 1.96×10−3 2.99
1/128 3.13×10−5 2.61 4.42×10−5 2.63 5.49×10−4 1.83
1/256 6.25×10−6 2.33 8.56×10−6 2.37 8.61×10−5 2.67
1/512 1.55×10−6 2.01 2.18×10−6 1.98 2.32×10−5 1.90
1/1024 3.98×10−7 1.96 5.68×10−7 1.94 5.73×10−6 2.02

ρu & ρv

h L1 rate L2 rate L∞ rate

1/32 7.74×10−4 1.12×10−3 5.61×10−3

1/64 1.76×10−4 2.14 2.50×10−4 2.17 2.33×10−3 1.27
1/128 2.57×10−5 2.78 4.19×10−5 2.58 9.44×10−4 1.30
1/256 5.46×10−6 2.23 8.01×10−6 2.39 2.54×10−4 1.89
1/512 1.44×10−6 1.92 2.03×10−6 1.98 4.89×10−5 2.38
1/1024 3.76×10−7 1.94 5.41×10−7 1.91 1.21×10−5 2.01

E

h L1 rate L2 rate L∞ rate

1/32 5.54×10−3 8.54×10−3 5.51×10−2

1/64 6.56×10−4 3.08 9.53×10−4 3.16 6.93×10−3 2.99
1/128 1.07×10−4 2.62 1.53×10−4 2.64 1.92×10−3 1.85
1/256 2.09×10−5 2.36 2.94×10−5 2.38 3.00×10−4 2.68
1/512 5.21×10−6 2.00 7.53×10−6 1.96 8.29×10−5 1.86
1/1024 1.35×10−6 1.95 1.98×10−6 1.93 2.17×10−5 1.94

Table 4. Error and convergence rate for perturbation test with γin = γout = 1.4.

Gas 1: inside Gas 2: outside

ρ 3 1
u 0 0
v 0 0
p 3 1
γ 1.4 1.276

Table 5. Initial values for the 2-D Sod problem.

at the beginning of the process [49], before the nonlinear evolution of spike and
bubble development, and of turbulent mixing.
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Figure 8. Density profile for smooth perturbation test at t = 0.6 on a 512 × 512 grid.
Left: dual gas simulation, front position shown with solid line. Right: result for single gas
simulation with no front-tracking. The color table limits are [0.9, 1.04].

h ρ rate ρu & ρv rate E rate

1/32 2.48×10−2 1.73×10−2 8.28×10−2

1/64 9.74×10−3 1.35 6.49×10−3 1.42 3.08×10−2 1.43
1/128 4.91×10−3 0.99 3.03×10−3 1.10 1.44×10−2 1.09
1/256 2.40×10−3 1.03 1.46×10−3 1.05 6.90×10−3 1.07

Table 6. Error in L1 and convergence rate for the 2-D Sod problem.

Gas 1: postshock Gas 1: preshock Gas 2

ρ 3 1 1
u 0 0 0
v 0 0 0
p 3 1 1
γ 1.4 1.4 1.276

Table 7. Initial values for the shock channel problem.

Numerous experimental [12; 26; 39; 58] and numerical studies [23; 27; 33;
55] have been conducted on RMI. Here, we set up the simulation to model an
experiment done by Collins and Jacobs [12]. The domain for this simulation
is a [23.73 cm, 5.93 cm] channel. The initial shock is located at x = 10 cm and
the interface is placed at x = 12 cm with a preshock sinusoidal perturbation of
amplitude a−0 = 0.18 cm and wavelength λ= 5.93 cm. The initial condition for gas
1 (preshock) and gas 2 are picked to be comparable to the cited experiment, and gas
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(a) (b)

(c) (d)

Figure 9. Results for 2-D Sod problem at finest resolution. (a) Density, (b) x-momentum,
(c) y-momentum and (d) pressure. The same color table as Figure 8 is used with limits
[1.0, 3.0] for density and pressure and [-0.614, 0.614] for momentum.

1 (postshock) initial conditions were chosen based on the Rankine–Hugoniot jump
condition to have a shock with Ma= 1.21 in gas 1 (Table 9). With CFL number
0.5 we simulated the growth of perturbation up to time 0.4 ms (see Figure 11) and
measured the convergence rate of the method (see Table 10).

Richtmyer [49] derived the impulsive growth rate relation for the amplitude of
the perturbation based on the linear theory which describes the development of the
instability after refraction of shock while the perturbation is small enough to be
considered in the linear regime of the process,

dη
dt
= k A+1V f η

+
0 , (63)

where k is the wavenumber of the perturbation, A+ is the postshock Atwood number,
1V f is the velocity jump on the front following the shock refraction and η+0 is the
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Phase 1 Phase 2

Figure 10. Shock channel initial configuration (top). Pressure profile at t = 0.6. The same
color table as Figure 8 is used with limits [1.67, 3.0] for gas 1 and [1.0, 1.72] for gas 2 (bottom).

h ρ rate ρu rate

1/32 8.91×10−3 8.24×10−3

1/64 4.02×10−3 1.15 3.63×10−3 1.18
1/128 2.17×10−3 0.88 1.89×10−3 0.94
1/256 1.16×10−3 0.91 9.82×10−4 0.95

h ρv rate E rate

1/32 1.87×10−3 2.50×10−2

1/64 9.09×10−4 1.04 1.08×10−2 1.22
1/128 5.21×10−4 0.80 5.56×10−3 0.95
1/256 2.77×10−4 0.91 2.77×10−3 1.00

Table 8. Error in L1 and convergence rate for the shock channel problem.

postshock initial perturbation amplitude. For our simulation we have k = 2π/λ,
ρ+1 = 2.07 × 10−3, ρ+2 = 9.05 × 10−3, A+ = (ρ+2 − ρ+1 )/(ρ+2 + ρ+1 ) = 0.63,
1V f = 6356.24, and η+0 = 0.15 in CGS units. The calculated amplitude growth
using Equation (63) is dη/dt = 624.82 cm/s.

From the simulation results we plotted the amplitude of the interface in its linear
regime (Figure 12). A linear fit shows a growth rate of dη/dt = 606.64 cm/s, while
the amplitude growth rate from [12] is 628.64 cm/s. The simulation results show a
good match (≈ 3% difference) with experimental and analytical results.

After the initial linear regime of the RMI test, where crests and troughs are
symmetric, the interface grows nonlinearly. It becomes visible by the appearance
of a bubble and spike, followed by the spike rolling up. The RMI simulation



26 MEHDI VAHAB AND GREGORY H. MILLER

Gas 1: postshock Gas 1: preshock Gas 2

ρ (g/cm3) 1.872×10−3 1.351×10−3 5.494×10−3

u (cm/s) 1.013×104 0 0
v (cm/s) 0 0 0
p (g/(cm.s2)) 1.453×106 9.650×104 9.650×104

γ 1.276 1.276 1.4

Table 9. Initial values for the RMI problem.

Nx ρ rate ρu rate

128 8.81×10−6 1.49×10−1

256 3.91×10−6 1.17 6.62×10−2 1.17
512 3.05×10−6 0.36 5.19×10−2 0.35

1024 1.27×10−6 1.27 2.64×10−2 1.08

Nx ρv rate E rate

128 2.69×10−2 1.83×104

256 1.13×10−2 1.25 8.26×103 1.15
512 5.90×10−3 0.94 6.63×103 0.32

1024 3.65×10−3 0.70 2.87×103 1.21

Table 10. Error in L1 and convergence rate for RMI problem. Nx is the number of cells
in the x direction.

Phase 1 Phase 2

Figure 11. RMI problem initial configuration (top). Pressure profile at t = 0.4 ms. The
same color table as Figure 8 is used with limits [1.87, 2.11]× 10−3 (g/cm3) for gas 1 and
[5.49, 9.28]× 10−3 (g/cm3) for gas 2 (bottom).

is continued to time t = 2.8 ms to observe the nonlinear evolution of the front
(Figure 13).
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Figure 12. Amplitude of the perturbation on the front in the RMI simulation.

(a) (b) (c) (d) (e)

Figure 13. RMI problem front evolution. (a) t = 0, initial single mode perturbation;
(b) t = 0.7 ms, linear growth of perturbation; (c) t = 1.4 ms, asymmetric growth of crests
and troughs; (d) t = 2.1 ms, formation of bubble and spike; and (e) t = 2.8 ms, spike roll-up.

5.6. Deforming interface — shock-bubble interaction. The interaction of a shock
wave in air with a bubble of helium has become popular for testing multiphase
numerical methods. The experimental observations come from Haas and Sturtevant
[20], and theoretical and numerical studies include [47; 48]. Numerical studies
using this benchmark problem include [3; 15; 51; 55]. The initial conditions given
in Table 11 induce an incident Mach 1.22 shock (Figure 14).
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Figure 14. Initial configuration of the shock-bubble problem.

Air: postshock Air: preshock Helium

ρ 1.3764 1.0 0.1819
u 0.336 0 0
v 0 0 0
p 1.1213 0.7142 0.7142
γ 1.4 1.4 1.648

Table 11. Initial values for the shock-bubble problem.

Using a 512 by 128 grid for the physical domain and CFL number 0.3, the
simulation is done to t = 427µs. The results are shown in Figure 15. Comparing
the density profiles to the experimental work of Haas and Sturtevant [20], and the
adaptive mesh simulations of Quirk and Karni [48], our method accurately captures
the dynamics of material interface, and the reflected and transmitted waves.

At later times in the RMI and shock-bubble simulations interface roll-ups are
visible (spike roll-up in Figure 13e and jet roll-up in Figure 15j). When the roll-up
happens on the material interface, the gradient of the level set becomes discontinuous
within the 5 × 5 stencil of cells used to compute geometric information. The
assumptions underlying the geometry algorithms are violated when this occurs so
we terminate the simulation. With local grid refinement this loss of accuracy might
be postponed. However, in these experiments perturbations grow at all scales so
the loss of continuity will always occur.

6. Conclusion

We presented a new front-tracking method for contact discontinuities using the
finite volume approach on a Cartesian grid. An essential feature of our method
is the computation of geometry information to support space-time finite volume
quadratures, using a sequence of discrete level sets [30; 36]. The level sets were
advected using a velocity derived from interface-normal Riemann problems.
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(a) t = 32µs

(b) t = 52µs

(c) t = 62µs

(d) t = 72µs

(e) t = 82µs

Figure 15. Density profiles of the shock-bubble test. The same color table as Figure 8 is
used with limits (a)[0.997, 1.534], (b)[0.988, 1.607], (c)[0.999, 1.625], (d)[1.000, 1.623],
and (e)[1.000, 1.646] for air and (a)[0.181, 0.221], (b)[0.178, 0.219], (c)[0.206, 0.221],
(d)[0.215, 0.234], and (e)[0.218, 0.230] for helium.

A variety of convergence tests show that our method is second-order accurate in
the L1, L2 and L∞ norms, provided there are no shocks present. In the presence of
a captured shock the convergence rate reduces to first-order in L1.

It should be noted that many parts of the above algorithms may be implemented
differently. For example the interpolation and extrapolation algorithms may include
limiting operators [45] or different redistribution algorithms may be applied [11].
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(f) t = 102µs

(g) t = 160µs

(h) t = 245µs

(i) t = 278µs

(j) t = 427µs

Figure 15. (continued) Density profiles of the shock-bubble test. The same color table
as Figure 8 is used with limits (f)[1.000, 1.905], (g)[1.000, 1.664], (h)[1.000, 1.514],
(i)[1.000, 1.554], and (j)[1.000, 1.584] for air and (f)[0.223, 0.231], (g)[0.231, 0.244],
(h)[0.231, 0.238], (i)[0.230, 0.236], and (j)[0.229, 0.247] for helium.

Although such details may vary from case to case, we have shown that a second-order
method is achievable if we consider the geometrical information and incorporate
such data in the algorithm. While the level set methods we use are well established,
there have been many new developments in this field too. Notable developments
include the gradient-augmented level set method [40], distance regularized level set
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Notation Description

ϒi Cartesian (regular) cell

V n
i,α Spatial irregular control volume for gas α at time n in cell ϒi

Ci,α Space-time control volume for gas α in ϒi ×[tn, tn+1]
(Exi , tn) Position of a cell center in space and time at time step n

(Exi,α, tn) Position of a cell centroid in space and time at time step n for gas α

Ai± 1
2 ed Cartesian (regular) face of ϒi × [tn, tn+1] in lower/higher side in

direction d

Ai± 1
2 ed,α Face of Ci,α in lower/higher side in direction d for gas α that

coincide with Cartesian grid

A f
i Front face of Ci,α

(Exi± 1
2 ed , tn+ 1

2 ) Position of a face center in space and time for a regular face

(Exi± 1
2 ed ,α, ti± 1

2 ed ,α) Position of a face centroid in space and time for a irregular control
volume for gas α

(Ex f
i , t f

i ) Position of a front centroid position in space and time

Fcr
i± 1

2 ed,α
Flux at face center

Fcd
i± 1

2 ed,α
Flux at face centroid

F f
i,d,α Flux at front centroid

Table 12. Geometrical notation.

evolution [29], and the use of queuing algorithms [59] or hash table data structures
for fast marching methods [6].

We validated our method with the simulation of single mode Richtmyer–Meshkov
instability and shock-bubble interaction test. Simulation results are in good agree-
ment with theoretical predictions and with experimental results.
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