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A REAL-SPACE GREEN’S FUNCTION METHOD FOR
THE NUMERICAL SOLUTION OF MAXWELL’S EQUATIONS

BORIS LO, VICTOR MINDEN AND PHILLIP COLELLA

A new method for solving the transverse part of the free-space Maxwell equations
in three dimensions is presented. By taking the Helmholtz decomposition of
the electric field and current sources and considering only the divergence-free
parts, we obtain an explicit real-space representation for the transverse propagator
that explicitly respects finite speed of propagation. Because the propagator
involves convolution against a singular distribution, we regularize via convolution
with smoothing kernels (B-splines) prior to sampling based on a method due to
Beyer and LeVeque (1992). We show that the ultimate discrete convolutional
propagator can be constructed to attain an arbitrarily high order of accuracy by
using higher-order regularizing kernels and finite difference stencils and that
it satisfies von Neumann’s stability condition. Furthermore, the propagator is
compactly supported and can be applied using Hockney’s method (1970) and
parallelized using the same observation as made by Vay, Haber, and Godfrey
(2013), leading to a method that is computationally efficient.

1. Introduction

In this paper, we present a method for solving Maxwell’s equations. Our approach
will be based on the expression of the evolution of the magnetic and transverse
electric fields in terms of a first-order, constant-coefficient hyperbolic system

∂u(x, t)
∂t

= Lu(x, t)+ f (x, t), (x, t) ∈ RD
×R+,

u(x, 0)= u0(x), x ∈ RD,

(1)

where L is a constant-coefficient first-order linear differential operator in space and
f is some known source term. Formally, the solution to (1) can be written explicitly
using Duhamel’s formula:

u(x, t +1t)= eL1t u(x, t)+
∫ 1t

0
eL(1t−s) f (x, t + s) ds. (2)
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This is the starting point for a broad class of time-integration schemes, known as
exponential integrators [10], that use (2) to eliminate stiff terms contained in L ,
which, if treated explicitly, would impose unnecessary and undesirable time-step
constraints. This constraint is removed by applying (2) to the spatially discretized
equations and evaluating the action of the matrix corresponding to eηL on a vector
using fast matrix-free methods. Such methods eliminate the stability constraint
corresponding to the fast time scales in L .

In the present work, we use (2) as a starting point for eliminating the speed-of-light
CFL stability condition in solving Maxwell’s equations by explicitly discretizing
an integral form of the propagator eηL for the original system of PDEs. This type
of approach has been proposed previously in [2] and further examined in [13; 9]. In
our approach, we use a Helmholtz decomposition to treat the divergence-free and
curl-free parts of the solution separately, which allows us to express the propagator
in terms of convolutions with weighted delta distributions over the sphere |x| = cη,
where c is the speed of light. We then discretize (2) in space by replacing the
delta distributions with regularized approximate delta distributions defined on a
rectangular grid, using the ideas in [19]. This leads to approximations of any order of
spatial accuracy of the continuous propagator by discrete convolution operators on a
rectangular grid. The discrete kernel satisfies a form of finite propagation speed; i.e.,
its support is contained in a bounded set of grid points of radius O(σ + P), where
σ is the CFL number for the speed of light and P is the order of accuracy of the
spatial approximation. This naturally leads to a domain-decomposition formulation
of the problem, in which the convolution over the entire domain is replaced with
a collection of convolutions over small patches that cover the domain. Due to
boundedness of the support of the discrete propagator kernel, the resulting parallel
application of the propagator is independent of the decomposition into patches.
Finally, the evaluation of the time integral in (2) is approximated by quadratures,
and the discrete convolutions are evaluated using FFTs with Hockney’s method
[11, pp. 180–181]. This method is closely related to the domain decomposition
in [20] but differs from that method in that the starting point for our method is
a discretization of a real-space propagator while the approach in [20] discretizes
a propagator in Fourier space. We will discuss the relative merits of the two
approaches in Section 6.

The remainder of this paper is organized as follows. In Section 2, we formalize
our problem statement and present a high-level outline of our algorithm and its
various components. In Section 3, we describe the discretization process in detail for
a comprehensive presentation of each component of the algorithm. In Section 4, we
perform a stability analysis of our procedure showing that under certain assumptions
the von Neumann stability condition is satisfied. In Section 5, we present a number
of numerical tests that show an implementation of our algorithm in action as
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applied to the free-space Maxwell equations. Finally, in Section 6, we make some
concluding remarks.

2. Problem statement and derivation of propagators

Here, and in what follows, functions of space and/or time will frequently be written
omitting their explicit spatial and temporal dependencies, e.g., ψ = ψ(x, t). We
will also use the operator notation P t(u)≡ eLt(u). In this notation, (2) is written as

u(t +1t)= P1t(u0)+

∫ 1t

0
P1t−s( fs) ds, (3)

where fs(t)≡ f (t + s).

2.1. The scalar wave equation propagator. To illustrate our approach, we will
first derive a real-space propagator for the 3-D wave equation,

∂2φ

∂t2 =1φ,

φ(x, 0)= φ0(x),
∂φ(x, 0)
∂t

= ψ0(x).
(4)

We introduce unknowns v ≡ ∇φ and p ≡ ∂φ
∂t , permitting us to recast (4) as a

first-order hyperbolic system for v and p with initial-value constraints, i.e.,

∂v

∂t
=∇ p,

∂p
∂t
=∇ · v,

v(x, 0)= v0(x)≡∇φ0(x), p(x, 0)= p0(x)≡ ψ0(x).
(5)

Because v0 = ∇φ is the gradient of some function, we see that ∇ × v0 ≡ 0. This
implies that ∇ × vt = 0 for all time t > 0. The curl-free constraint on v0 is a
necessary and sufficient condition for the first-order system (5) to be equivalent
to (4) as it is necessary for v0 to be curl-free so that the second-order equation can
be recovered from the first-order system.

Taking the Fourier transform in x, we obtain

∂

∂t

[
ṽ(k, t)
p̃(k, t)

]
=

[
0 i k

i kT 0

] [
ṽ(k, t)
p̃(k, t)

]
, (6)

where we interpret the Fourier variable k as a column vector. The operator expo-
nential of this system matrix scaled by 1t is P̃1t

W , the Fourier transform of our
desired propagator. Since we need consider only curl-free v, we see that P̃1t

W can
be written

P̃1t
W =

[
cos|k|1t i k(sin|k|1t)/|k|

i kT (sin|k|1t)/|k| cos|k|1t

]
. (7)
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Note that, in full generality, the top-left block of P̃1t
W has terms involving k̂k̂T and

I − k̂k̂T , but the block reduces to cos|k|1t when restricted to curl-free input.
Taking an inverse Fourier transform and defining the kernels G1t and H1t via

G1t(z)≡
δ(|z| −1t)

4π1t
, (8)

H1t(z)≡
∂

∂s

(
δ(|z| − s)

4πs

)∣∣∣∣
s=1t

, (9)

we see that the action of the propagator on an arbitrary state vector h(x) ≡[
f (x) g(x)

]T
with f curl-free is given by

P1t
W (h)=

[
H1t
∗ f +G1t

∗∇g
G1t
∗ (∇ · f )+ H1t

∗ g

]
, (10)

where convolutions are defined spatially as

(K ∗ f )(x)≡
∫

R3
K ( y) f (x− y) d y (11)

and convolution of a scalar quantity with a vector quantity is taken componentwise.
Considering again (3) and noting the lack of sources, we see that we can obtain the
solution to (5) for any final time tfinal =1t by evaluating[

v(1t)
p(1t)

]
=

[
H1t
∗ v0+G1t

∗∇ p0

G1t
∗ (∇ · v0)+ H1t

∗ p0

]
. (12)

Here, the absence of sources obviates the need to treat the time integral in (3)
and therefore reduces the problem entirely to discretely applying (10). We note
that (10) can be derived from the classical solution starting with the second-order
formulation as seen in [22]. However, we outline the approach starting with the
first-order system as an analog to Maxwell’s equations.

We see that for application of (10) it is necessary to approximate convolution
against the singular kernels G1t and H1t . To make H1t more amenable to approx-
imation, we use some calculus to reduce convolutions against H1t to convolutions
against G1t combined with weights and spatial derivatives. We begin with the
Fourier relationship

∂

∂s

(
δ(|x| − s)

4πs

)
= F−1

[cos|k|s]. (13)

It is not difficult to verify that if we write x and k in terms of their components
then we have

cos|k|s =
sin|k|s
|k|s

− i
3∑

d=1

∂

∂kd

(
sin|k|s
|k|s

)
ikd . (14)
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Defining the new convolutional kernels G1t
d for d = 1, 2, 3 via

G1t
d (z)≡

zdδ(|z| −1t)
4π1t

, (15)

i.e., convolution in space against the weighted distribution xdδ(|x|−1t)/(4π), we
see from standard rules of Fourier analysis that (14) is the Fourier transform of the
operator that acts on a function f : R3

7→ R via

(H1t
∗ f )=

1
1t

G1t
∗ f −

3∑
d=1

G1t
d ∗

∂ f
∂zd

. (16)

2.2. The Maxwell propagator. Similarly to Section 2.1, we can derive an expres-
sion for the propagator for the solution of Maxwell’s equations written in terms
of spatial derivatives and convolutions. We begin by writing the set of Maxwell’s
equations for (x, t) ∈ R3

×R+ as

∂E
∂t
= c∇ × B− J,

∂B
∂t
=−c∇ × E, (17)

∇ · E = ρ, ∇ · B = 0, (18)

with appropriate initial conditions. Here, E and B are the electric and magnetic
fields, respectively, J is a known current source term, ρ is the bound current density,
and c is the speed of light in vacuum.

To find a solution for Maxwell’s equations, we first use a Helmholtz decomposi-
tion to break the electric field and current source into their longitudinal (curl-free)
and transverse (divergence-free) parts

E = EL + ET , J = JL + JT , (19)

where ∇×EL ≡ 0 and ∇ ·ET ≡ 0 and similarly for JL and JT . This decomposition
leads to a first-order system of hyperbolic PDEs describing the coupling between ET

and B (see (17))

∂ET

∂t
= c∇ × B− JT ,

∂B
∂t
=−c∇ × ET , (20)

∇ · ET = 0, ∇ · B = 0. (21)

The divergence-free conditions (21) are initial-value constraints, similar to the
curl-free constraint on v0 for the wave equation, and if satisfied at time t = 0, then
they are satisfied at all later times according to (20). The longitudinal component
of the electric field EL can be specified either in terms of Coulomb’s law,

EL =−∇φ, ∇ · EL = ρ, (22)
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or directly from applying the Helmholtz decomposition to the evolution equation
for E,

∂EL

∂t
=−JL . (23)

These two specifications of EL are equivalent, provided that, at time t = 0, (22)
is satisfied. In practice, the choice of which of these two formulations to use in
discretizing EL depends on the details of how the evolution of ρ is specified. The
risk is that, by using (23), accumulation of numerical error will cause (22) not to be
satisfied. We will not address this issue here other than to note that the formulation
given here will require the solution of Poisson’s equation at least to compute the
Helmholtz decomposition of J and possibly to solve (22). For those problems, we
can use fast Poisson solvers, the cost of which will be made up for by the ability to
take larger time steps. Therefore, for the purposes of demonstrating the properties
of the method described here, we will consider only examples in which EL ≡ 0 and
JL ≡ 0. Given this and using reasoning similar to that in Section 2.1, we obtain the
action of the Maxwell propagator on a state vector h(x)=

[
ET (x) B(x)

]T
,

P1t
M (h)=

[
H c1t

∗ ET +Gc1t
∗ (∇ × B)

−Gc1t
∗ (∇ × ET )+ H c1t

∗ B

]
, (24)

from which the action on a divergence-free current source can be inferred. Contrary
to the source-free case we saw before, the appearance of JT in (20) will require the
treatment of the integral in (3) to obtain the full solution.

3. Discretization

As seen in Section 2, the wave equation and Maxwell propagators involve convo-
lution against kernels taking the form of (possibly weighted) delta distributions
supported on spheres. For example, convolution against the kernel G1t

d in (15) is
given by

(G1t
d ∗w)(x)≡

∫
zd

4π1t
δ(|z|−1t)w(x− z) d z=

∫
∂B1t

zd

4π1t
w(x− z) d z, (25)

where ∂B1t is the 3-D sphere of radius1t . Rewriting these convolutions as integrals
over singular surfaces as we have done above, we see that accurately computing
these convolutions reduces to accurately evaluating integrals of the form

I ≡
∫
0

g(z) f (z) d z, (26)

where 0 is a continuous and bounded surface and g ∈C(Rd) is a weighting function.
Accurate discretization on a Cartesian grid of the integral I is treated succinctly

by Tornberg and Engquist [19], who summarize a framework for replacing such
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integrals with sums of samples of a regularized integrand based on work concerning
singular source terms by Beyer and LeVeque [4]. We describe this in more detail
below.

3.1. Regularized delta distributions. As a precursor to integration over multi-
dimensional surfaces, consider integrating a function f :R→R against a 1-D delta
distribution with arbitrary center x ∈R, i.e., evaluating f (x) via the sifting formula

f (x)=
∫

R

f (x)δ(x − x) dx . (27)

The above integral can be thought of as integrating f (x) over a singular surface of
dimension 0, supported at the single point x . Because of its singular nature, simply
sampling f (x)δ(x − x) on a grid and approximating integration with summation
is not a numerically well defined operation. Instead, given a grid spacing h, we
consider sampling a regularized approximant δh(x − x). Beyer and LeVeque [4] in-
troduce the set of discrete moment conditions for such an approximant, summarized
succinctly in [19].

Definition 1 (discrete moment conditions [4; 19]). Given a grid spacing h > 0, we
say a function δh : R→ R is in the function class Qq if δh has compact support
[−mh,mh] for some m > 0 and

h
∑
j∈Z

( jh− x)rδh( jh− x)=
{

1, r = 0,
0, 1≤ r < q,

(28)

for any x ∈ R.

We note that the conditions in Definition 1 are simply discrete analogues of the
continuous moment conditions∫

∞

−∞

(x − x)rδ(x − x) dx =
{

1, r = 0,
0, 1≤ r < q,

(29)

which are satisfied by the delta distribution for arbitrarily large q.
For sufficiently regular functions f , the discrete moment conditions are sufficient

for consistency of δh; i.e., for δh ∈ Qq and f ∈ Cq , we have the asymptotic error
bound

f (x)− h
∑
j∈Z

f ( jh)δh( jh− x)=O(hq) (30)

for any x ∈ R [4]. In the Appendix, we give a review of how to find such 1-D
approximants satisfying the discrete moment conditions to order q while attaining
the minimum necessary support, which is essentially accomplished by piecewise
Lagrange interpolation.
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Figure 1. Left: a 2-D slice of the spherically supported delta distribution, where the
distribution takes the value +∞ on the dashed circle and is identically zero elsewhere.
Right: with regularization, the support of the distribution is smoothed such that the
distribution takes finite values and can be sampled on the underlying discrete grid.

To extend these 1-D ideas to multiple dimensions, we use the tensor product
formulation of Peskin [16], which obeys the following consistency result.

Theorem 2 (consistency of multidimensional discrete deltas [19]). Let 0 be a
continuous and bounded surface, g ∈C(Rd), and δhk ∈ Qq for k = 1, . . . , d. Define
the multidimensional function

δh(0, g, x)≡
∫
0

d∏
k=1

δhk (xk − zk)g(z) d z, (31)

where x = (x1, . . . , xd) ∈Rd and z= (z1, . . . , zd) ∈0. Suppose f ∈Cr (Rd). Then( d∏
k=1

hk

)∑
j∈Zd

δh(0, g, x j ) f (x j )−

∫
0

g(z) f (z) d z =O(hq), (32)

where x j = ( j1h1, . . . , jdhd) is a Cartesian grid point and h =maxk=1,...,d hk .

Intuitively, Theorem 2 gives a method to evaluate integrals of the form (26)
by regularizing the singular surface via convolution with the multidimensional
smoothing kernel δh . For example, with 0 = ∂B1t and g(z)≡ 1, we see that

δh(∂B1t , 1, x)= δ(|x| −1t) ∗
( d∏

k=1

δhk (xk − zk)

)
, (33)

so Theorem 2 essentially permits accurate discrete convolution against δ(|x| −1t)
by presmoothing the sphere with the kernel φ(x)=

∏d
k=1 δhk (xk) prior to sampling;

see Figure 1. This is the key step permitting accurate discretization of the singular
convolutional operators comprising our propagators.

3.2. Spherical quadrature. Discretization of the convolutional operators G1t and
G1t

d necessitates the generation of samples of the function δh(0, g, x) in (31), where
0 = ∂B1t and the weighting function g is defined by either g(z)≡ 1 or g(z)= zi ,
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depending on the kernel. In practice, we find that the integral in (31) has no simple
analytical solution and therefore must be replaced with some form of quadrature
scheme. We use the product Gaussian quadrature described in [3],

δh(∂B1t , g, x)=
∫
∂B1t

( d∏
k=1

δhk (xk − zk)g(z)
)

d z,

≈
π(1t)2

m

2m∑
j=1

m∑
i=1

wi

( d∏
k=1

δhk (xk − zi j,k)g(zi j )

)
, (34)

where zi j has polar coordinates (1t, θi , φ j ) with cos θi and wi the Gauss–Legendre
nodes and weights on [−1, 1] and φ j evenly spaced on [0, 2π ].

We note that, typically, such numerical quadratures use assumptions on the
smoothness of the integrand to prove convergence whereas the smoothness of the
integrand in (31) is dependent on the smoothness of δhk . However, we are not
interested in the intermediate error in evaluating δh(0, g, x) on a grid but rather the
operator error of δh(0, g, x) as a discrete convolutional operator when applied to
a smooth function f . Up to machine precision, the numerical quadrature and the
discrete convolution commute, and we thus achieve accuracy from our assumptions
on the smoothness of f rather than that of δh .

3.3. Final construction of operators. Given a spline approximation to the 1-D
delta distribution obeying moment conditions up to order q, we use the results
from the previous section to construct discretizations G1t,h and H1t,h of the
convolutional kernels G1t and H1t for a specified time step1t as follows. Defining
G1t,h via

G1t,h(xi )≡
1

4π1t

( d∏
k=1

hk

)
δh(∂B1t , 1, xi ), (35)

we see from Theorem 2 that the approximation G1t
∗ f ≈G1t,h

∗ fh is pointwise ac-
curate to order q , where the second convolution is understood as discrete convolution
of G1t,h with f sampled on a Cartesian grid. As discussed in Section 3.2, we use
product Gaussian quadrature to evaluate the spherical integral necessary to construct
the discrete delta distribution. The accuracy of this scheme thus necessarily depends
on the number of quadrature nodes used, but this can be taken to be sufficiently
high since G1t,h need be constructed only once as a precomputation. In practice,
we find that the number of quadrature nodes is not a limiting factor; see Section 5.1.

To construct the discrete kernel H1t,h , we note from (16) that we require a
discrete approximation of the weighted kernels G1t

d = zdδ(|z|−1t) for d = 1, 2, 3,
which we construct similarly to the kernel in (35) by taking g(z) = zd . Then,
approximating the spatial derivatives by precomposing the discrete kernels G1t,h

d
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Initialize p(0)h and v
(0)
h

Compute G1t,h , and H1t,h based on step size in time and space
/* Begin time-stepping loop */
for n = 1, 2, . . .
/* Update velocities */
v
(n)
x,h← H1t,h

∗ v
(n−1)
x,h + (G1t,h

∗1x ) ∗ p(n−1)
h

v
(n)
y,h← H1t,h

∗ v
(n−1)
y,h + (G1t,h

∗1y) ∗ p(n−1)
h

v
(n)
z,h← H1t,h

∗ v
(n−1)
z,h + (G1t,h

∗1z) ∗ p(n−1)
h

/* Update pressure */
p(n)h ← H1t,h

∗ p(n−1)
h +(G1t,h

∗1x )∗v
(n−1)
x,h +(G

1t,h
∗1y)∗v

(n−1)
y,h +(G

1t,h
∗1z)∗v

(n−1)
z,h

end for

Algorithm 1. Applying the wave equation propagator.

with corresponding finite difference stencils 1xd , we obtain H1t,h as

H1t,h
≡

1
1t

G1t,h
−

3∑
d=1

G1t,h
d ∗1xd (36)

using the equivalent expression (16). We choose central difference stencils accurate
to order q for consistency. For example, if q=4, then we use the typical fourth-order
central difference [7]

(1xd∗ fh)(xi )=

1
12 fh(xi−2ed)−

2
3 fh(xi−ed)+

2
3 fh(xi+ed)−

1
12 fh(xi+2ed)

h
, (37)

where ed is the d-th unit coordinate vector.
We note that, just as the continuous kernels G1t and H1t are compactly sup-

ported, so too are the discrete kernels with only slightly larger support size dependent
on the exact smoothing splines and finite difference stencils used.

3.4. A typical time step. For source-free applications, the Maxwell and wave equa-
tion propagators can in theory be constructed for1t = tfinal and applied as a one-step
method. However, for many applications of interest, such as particle-in-cell (PIC)
methods, it is necessary to evolve the solution only by a small time increment so
that sources can be computed and incorporated. Here we describe the computation
loop for time-stepping using the discrete kernels G1t,h and H1t,h described in
Section 3.3. Consider first the wave equation propagator of (10). Then, the solution
of the source-free problem (5) is obtained using the time-stepping process in
Algorithm 1. We use vx,h , vy,h , and vz,h to refer to the discrete representations
of components of v and 1x , 1y , and 1z to refer to finite difference operators in
each coordinate direction as defined in Section 3.3. As mentioned, the discrete
kernels G1t,h and H1t,h are compactly supported. This admits the use of Hockney’s
domain-doubling method [11] to evaluate all discrete convolutions efficiently.
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/* Electric field and source are transverse throughout */
Initialize E(0)

h and B(0)
h

Initialize Newton–Cotes quadrature weights {wm}
M
m=0

Compute Gc1s,h and H c1s,h based on step size in time and space
/* Begin time-stepping loop */
for n = 1, 2, . . .
/* Initialize for Newton–Cotes */
E(n)

h ← E(n−1)
h

B(n)
h ← B(n−1)

h
for m = 0, 1 . . . ,M − 1
/* Add source term for node tn,m = (n− 1)1t +m1s */
E(n)

h ← E(n)
h −wm Jh(tn,m)

/* Update electric field */
E (n)

x,h← H c1s,h
∗ E (n)

x,h + (G
c1s,h
∗1y) ∗ B(n)z − (G

c1s,h
∗1z) ∗ B(n)y

E (n)
y,h← H c1s,h

∗ E (n)
y,h + (G

c1s,h
∗1z) ∗ B(n)x − (G

c1s,h
∗1x ) ∗ B(n)z

E (n)
z,h ← H c1s,h

∗ E (n)
z,h + (G

c1s,h
∗1x ) ∗ B(n)y − (G

c1s,h
∗1y) ∗ B(n)x

/* Update magnetic field */
B(n)x,h← H c1s,h

∗ B(n)x,h − (G
c1s,h
∗1y) ∗ E (n)

z,h + (G
c1s,h
∗1z) ∗ E (n)

y,h

B(n)y,h← H c1s,h
∗ B(n)y,h − (G

c1s,h
∗1z) ∗ E (n)

x,h + (G
c1s,h
∗1x ) ∗ E (n)

z,h

B(n)z,h ← H c1s,h
∗ B(n)z,h − (G

c1s,h
∗1x ) ∗ E (n)

y,h + (G
c1s,h
∗1y) ∗ E (n)

x,h
end for
/* Final Newton–Cotes node */
E(n)

h ← E(n)
h −wM Jh(tn,M)

end for

Algorithm 2. Applying the Maxwell propagator.

Application of the transverse Maxwell propagator for (20) is analogous to
Algorithm 1 in the source-free case. In the presence of sources, however, we must
combine the basic flavor of the previous algorithm with a time-integration scheme
for treating the integral in (3). To accomplish this, we use a closed Newton–Cotes
method in time of the appropriate order with equispaced nodes {sm = m1s}Mm=0
(1s =1t/M):∫ 1t

0
P1t−s( fs) ds ≈

M∑
m=0

wmP1t−sm ( fsm )=

M∑
m=0

wmP(M−m)1s( fsm ) (38)

=

M∑
m=0

wm

M −m times︷ ︸︸ ︷
P1s(P1s(· · ·P1s( fsm ) · · · )), (39)

where, because the quadrature nodes are equispaced in time, we may make use of
the fact that, analytically, application of the propagator P(M−m)1s corresponding to
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Figure 2. Suppose that the domain is decomposed across a 3× 3 grid of processors such
that the central processor owns the central block of unknowns as well as the halo region.
Assuming the halo region is valid and sufficiently large, the local field values for time
n + 1 can be calculated by convolving the current local-plus-halo field values with the
propagator. In this figure, cells are shaded to show that the values of the corresponding
unknowns are correct for the current time on the central processor.

advancing the solution in time by (M −m)1s is equivalent to M −m successive
applications of the single-step propagator P1s , necessitating construction of only a
single discrete propagator. This leads to Algorithm 2 for the transverse Maxwell
propagator with transverse current source J .

Because we are considering using the short-time propagators in a time-stepping
loop, we have to consider the stability properties of the repeated application of these
propagators. We discuss this in Section 4. While we do not discuss it in detail here,
the number of nodes in the composite Newton–Cotes scheme described in (38) can
also affect stability.

3.5. Parallelization. The use of a compactly supported convolutional kernel to
regularize the 3-D delta distributions inherent in the propagators of (10) and (24)
has the computational benefit of numerically preserving the locality inherent in
the wave equation. In particular, in the same vein as Vay et al. [20], we can use
standard domain decomposition to parallelize the time-stepping procedure as in
Figure 2. This is in contrast to methods that use spectral expansions or global
Fourier transforms to obtain high accuracy.

Parallelization of our scheme follows the traditional communication-computation
loop of standard finite difference schemes:

(1) copy field values in halo region from neighboring processors, and then

(2) apply propagator to update local field values, invalidating values in halo region.
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Note that the width of the halo region here has a minimum bound dictated by the size
of the time step 1t since the size of the support of the spherical delta distributions
is dependent on how far in time the fields are to be advanced. For example, in
the presence of sources as in Algorithm 2, the size of the halo region should be
such that communication is only necessary after M applications of the discrete
propagator constructed with step size 1s =1t/M . Thus, 1t is chosen based on
the desired size of the halo region and 1s, which determines the CFL number, is
chosen based on the necessary resolution to resolve variation in the source.

4. Stability analysis

Letting P1s,h
M denote the discrete Maxwell propagator described by Algorithm 2,

we see that the evolution of the discretized electromagnetic fields is given by[
E(n)

h
B(n)

h

]
= P1s,h

M

([
E(n−1)

h
B(n−1)

h

])
.

Taking a Fourier transform, we obtain the Fourier-space relation[
Ẽ(n)

h
B̃(n)

h

]
= P̃1s,h

M

[
Ẽ(n−1)

h
B̃(n−1)

h

]
,

where now P̃1s,h
M is a matrix in k space (as opposed to a sum of convolutional

operators in physical space). For a typical von Neumann analysis of `2 stability, we
define ρ(k) to be the spectral radius of P̃1s,h

M and show that the necessary condition
(see, e.g., [17])

ρ(k)≤ 1+O(1s)

holds for all k. For analysis purposes, we assume that the integrals used to construct
the necessary regularized, spherically supported delta distributions are computed
exactly, i.e., without the use of the quadrature described in Section 3.2. Then, direct
computation shows that P̃1s,h

M (k) is given by

P̃1s,h
M =



H̃ c1s,h 0 0 0 −G̃c1s,h1̃z G̃c1s,h1̃y

0 H̃ c1s,h 0 G̃c1s,h1̃z 0 −G̃c1s,h1̃x

0 0 H̃ c1s,h
−G̃c1s,h1̃y G̃c1s,h1̃x 0

0 G̃c1s,h1̃z −G̃c1s,h1̃y H̃ c1s,h 0 0
−G̃c1s,h1̃z 0 G̃c1s,h1̃x 0 H̃ c1s,h 0

G̃c1s,h1̃y −G̃c1s,h1̃x 0 0 0 H̃ c1s,h


,

where the ordering of the blocks corresponds to the vector
[
Ẽx Ẽy Ẽz B̃x B̃y B̃z

]T

and the blocks of P̃1s,h
M are functions of the Fourier variable k corresponding to

the transforms of the discrete operators from Section 3.3.
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Lemma 3. The eigenvalues of P̃1s,h
M as a function of k are given by

λ1,2(k)= H̃ c1s,h(k)± G̃c1s,h(k)
√
1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k),

λ3(k)= H̃ c1s,h(k),

each of which appears with multiplicity 2.

Proof. This follows from direct computation via block linear algebra. �

To obtain explicit expressions for the eigenvalues in Lemma 3, we represent the
sampling operator using:

Definition 4. Given the spatial step sizes h1, h2, and h3, the 3-D Dirac comb Xh

is defined on R3 as

Xh(x)≡
∑
l∈Z3

( 3∏
d=1

δ(xd − ldhd)

)
.

In other words, Xh is a regular 3-D lattice of delta distributions.

For the methods described in this paper, the regularized 1-D delta distribution
used to construct the regularized 3-D delta distributions in Gc1s,h and H c1s,h is
given by shifting and scaling of some fundamental kernel W , i.e.,

δhd (x)≡
1

hd
W (x/hd), (40)

which we combine with the sampling operator to explicitly write the Fourier trans-
forms G̃c1s,h and H̃ c1s,h as

H̃ c1s,h(k)=
∫

R3
X2π/h(k− k′)

[( 3∏
d=1

W̃ (k ′dhd)

)
P̃1(k′)

]
dk′, (41)

G̃c1s,h(k)=
∫

R3
X2π/h(k− k′)

[( 3∏
d=1

W̃ (k ′dhd)

)
P̃2(k′)

]
dk′, (42)

where the functions P̃1 and P̃2 are defined in Fourier space according to

P̃1(k)≡
sin c|k|1s

c|k|1s
− i

3∑
d=1

∂

∂kd

[
sin c|k|1s

c|k|1s

]
1̃xd (kd),

P̃2(k)≡
sin c|k|1s
|k|

.

We are now ready to state and prove the fundamental stability result for the discrete
Maxwell propagator.
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Theorem 5. In Algorithm 2, assume that the regularized, spherically supported
delta distributions are computed exactly, i.e., without the use of quadrature. Sup-
pose further that the 1-D delta distributions are constructed using a fundamental
kernel W as in (40) satisfying the following properties:

(1) W̃ (k) is real and nonnegative for k ∈ R.

(2) W ( j)= 0 for j ∈ Z except W (0)= 1; i.e., W behaves like the Kronecker delta
on the lattice points.

In addition, suppose that for each d the finite difference stencil 1xd has real coeffi-
cients and odd symmetry and has spectrum bounded for |kdhd | ∈ (0, π] as

0≤
1̃xd (kd)

ikd
≤ 1.

Furthermore, define the quantity

R̃(k)≡
3∑

d=1

−ikd1̃xd (kd)

|k|2
,

and assume that there exists a bound B < 1 such that |R̃(k)| ≤ B < 1 for all k
with any |kd | ≥ π/hd . Then the time-stepping scheme satisfies the von Neumann
condition for

σ ≡
c1s

h
≥

1+ B
π(1− B)

,

where h =maxd hd .

Proof. Based on the assumption that 1xd is a real and odd finite difference stencil,
it has a purely imaginary Fourier transform. Using Lemma 3, we deduce that
P1s,h

M (k) has a spectral radius ρ given by

ρ(k)=
∣∣∣H̃ c1s,h(k)+ G̃c1s,h(k)

√
1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k)
∣∣∣.

Using the triangle inequality and plugging in expressions (41) and (42) yields

ρ(k)≤
∫

R3
X2π/h(k− k′)

[( 3∏
d=1

W̃ (k ′dhd)

)
· |S̃(k′)|

]
dk′

with the quantity S̃(k) defined according to

S̃(k)≡ P̃1(k)+ P̃2(k)
√
1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k). (43)

We will show that S̃ has magnitude bounded by 1 for all k and use this to show
that ρ is bounded by 1 for all k.
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Using some calculus and our definition of the quantity R̃, we write the term P̃1 as

P̃1(k)=
sin c|k|1s

c|k|1s
(1− R̃(k))+ R̃(k) cos c|k|1s,

which we note is purely real. Furthermore, we see that the second term in (43) is
purely imaginary. We proceed by breaking the argument across two separate cases.

First, assume that k is such that |kdhd | ∈ [0, π] for all d. Then by assumption,
R̃(k) ∈ [0, 1]. We use convexity to see that the real part of S̃(k) squared is bounded
according to

Re[S̃(k)]2 =
(

sin c|k|1s
c|k|1s

(1− R̃(k))+ R̃(k) cos c|k|1s
)2

≤

(
sin c|k|1s

c|k|1s

)2

(1− R̃(k))+ R̃(k)(cos c|k|1s)2.

On the other hand, the squared imaginary part of S̃(k) is bounded according to

Im[S̃(k)]2 = sin2 c|k|1s
(
|1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k)|
|k|2

)
≤ R̃(k) sin2 c|k|1s.

Combining these two bounds and using the fact that cos2(x)+ sin2(x) = 1, it is
simple to show that |S̃(k)|2 ≤ 1 as desired.

Next, suppose that |kd |>π/hd for some d . By assumption, |R̃| ≤ B and further
it is evident that |k| ≥ π/hd . In this case, we compute that the real part of S̃(k)
is given by

Re[S̃(k)]2 =
(

sin c|k|1s
c|k|1s

)2

(1− R̃(k))2+ R̃2(k) cos2 c|k|1s

+ 2(1− R̃(k))R̃(k) cos c|k|1s
sin c|k|1s

c|k|1s
.

Using the identity 2 cos(x) sin(x)= sin(2x) and the bound B from our assumptions,
we see

Re[S̃(k)]2 ≤
(

sin c|k|1s
c|k|1s

)2

(1+ B)2+ B cos2 c|k|1s+ B(1+ B)
∣∣∣∣sin 2c|k|1s

c|k|1s

∣∣∣∣.
We bound the sines by 1 and the magnitudes of k by π/hd to obtain

Re[S̃(k)]2 ≤
(

1
cπ/hd1s

)2

(1+ B)2+ B cos2 c|k|1s+ B(1+ B)
∣∣∣∣ 1
cπ/hd1s

∣∣∣∣
≤

1
σ 2π2 (1+ B)2+ B cos2 c|k|1s+ B(1+ B)

1
σπ

.
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The imaginary part of S̃(k) is bounded trivially as before since

Im[S̃(k)]2 ≤ |R̃(k)| sin2 c|k|1s ≤ B sin2 c|k|1s.

Combining these two bounds and assuming σ ≥ (1+ B)/(π(1− B)) again gives
that |S̃(k)|2 ≤ 1.

Now we have shown that |S̃(k)| ≤ 1 for all k, from which it immediately follows
that ρ(k)≤ 1 since

ρ(k)≤
∫

R3
X2π/h(k− k′)

[( 3∏
d=1

W̃ (k ′dhd)

)
· |S̃(k′)|

]
dk′

≤

∫
R3

X2π/h(k− k′) ∗
( 3∏

d=1

W̃ (k ′dhd)

)
dk′

=

3∏
d=1

(∑
l∈Z

W̃ (kdhd + 2πl)
)
= 1,

where the last equality comes from the fact that by Poisson summation we have that∑
l∈Z W̃ (kh+ 2πl) is the discrete-space Fourier transform of W evaluated at kh,

which is unity everywhere by the fact that W behaves like the Kronecker delta on
the lattice points. This concludes the proof. �

The main result of Theorem 5 is somewhat odd in the sense that we have shown
the von Neumann condition holds for all σ above a certain minimum value whereas
in general we expect stability results to give an upper bound on σ . We believe this
to simply be an artifact of the proof technique employed.

To extend Theorem 5 to the wave equation propagator, we note that for this new
propagator the eigenvalues in Fourier space are given by

λW
1,2(k)= H̃1s,h(k)± G̃1s,h(k)

√
1̃2

x(k)+ 1̃2
y(k)+ 1̃2

z (k),

λW
3 (k)= H̃1s,h(k)

with varying multiplicity. Analysis analogous to that in the proof of Theorem 5
proceeds in a similar fashion by taking c = 1. For the source-free case, it is not
necessary to use a quadrature scheme and thus one can take 1t =1s.

We must caution that, in proving Theorem 5, we have assumed that the spherical
integrals are performed exactly, which in practice is not possible. It is unclear
whether the use of a quadrature scheme such as described in Section 3.2 might
lead to unstable modes. Our numerical experiments, however, show no evidence of
instability.
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5. Numerical experiments

We have performed convergence studies using two tests: one where the exact
solution is known, where we can compute the true absolute error, and another
where the exact solution is unknown, where we estimate the convergence rate using
Richardson error estimation. We also present numerical test results investigating
any dependence the solution has on domain decomposition and number of points in
the spherical quadrature of (34). Lastly, we present timing results demonstrating
the weak scaling of our solver.

The following notation is used throughout the section:

N : number of grid points per spatial dimension,

h: grid spacing (1/N ),

σ : CFL number (c1t/h),

Nθ : number of points in the θ direction for the spherical quadrature,

Nt : number of time steps.

All tests are performed in a unit cube with N 3 points and Nθ = 16 unless otherwise
specified. All tests presented in this section were performed on the Edison machine
at the NERSC facility.

5.1. Results. We implemented our method in C++ using the Chombo library [1].
Our implementation uses a sixth-order central difference stencil for the spatial
derivatives, a sixth-order interpolation formula for the discrete delta distribution,
and the sixth-order Boole’s rule for the source integration. All convolutions are
performed via Hockney’s method with simple domain doubling using the FFTW
library [8]. We note that it is in fact not necessary to fully double the domain to
perform the convolutions for our solver — rather, we extend the domain with a
number of grid cells equal to the support of the discrete propagator, which is usually
much smaller than the local domain on each processor.

Plane wave. We begin by testing our code with no source ( J = 0 and ρ = 0) with
periodic boundary conditions and initial conditions of the form

Ex(x, y, z)= Bx(x, y, z)= 0,

Ey(x, y, z)= Bz(x, y, z)= Ey0 sin 2πx,

Ez(x, y, z)= Ez0 sin 2πx,

By(x, y, z)=−Ez(x, y, z)

in the domain �= [0, 1]3 m with tfinal =
25
8c s. Solving Maxwell’s equations with

these initial conditions yields a set of plane waves propagating in the x direction with
velocity c. Figure 3 shows the absolute error for σ = [1, 10, 100] for the sixth-order
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Figure 3. Max-norm error for the plane wave problem for σ = [1, 10, 100] with N =
[32, 64, 128, 256] with σNt = [100, 200, 400, 800], which corresponds to tfinal =

25
8c s.

The error scales as h4.99 for σ = 1, h5.22 for σ = 10, and h5.28 for σ = 100. The σ = 100
problem uses Nθ = 128, and the others use Nθ = 16.

solver with Ey0 = Ez0 = 1. As expected with constant-σ tests, the results yield
fifth-order convergence for the absolute error; i.e., we lose one order of accuracy
since the number of time steps is inversely proportional to the spatial step size.

Divergence-free current source. For the second test, we begin with zero initial condi-
tion and zero charge density but with a divergence-free current density [5] of the form

Jx(x, y, z)=−
(y− y0)

r
sin
(
πr
2a

)
cos10

(
πr
2a

)
cos11

(
π(z− z0)

d

)
sin(2πνt),

Jy(x, y, z)=
x − x0

r
sin
(
πr
2a

)
cos10

(
πr
2a

)
cos11

(
π(z− z0)

d

)
sin(2πνt),

Jz(x, y, z)= 0,

where r = r(x, y)≡
√
(x − x0)2+ (y− y0)2. With this source, we solve Maxwell’s

equations in a unit cube with open boundary conditions and parameters a = 0.25 m,
d = x0 = y0 = z0 = 0.5 m, and ν = 149 896 229 s−1 in the domain � = [0, 1]3 m
to tfinal =

5
32c s. This frequency was chosen to match the low-frequency test of

Chilton [5]. For this problem, the z component of the electric field is Ez = 0
for all time. Table 1 shows the Richardson error estimate for test problems with
σ =[ 12 , 1, 10] using the sixth-order solver. For σ = 1

2 and σ =1, the error estimate for
the nonzero components of the EM fields show fifth-order convergence as expected
and for Ez it shows sixth-order convergence. For σ = 10, we see unexpected
higher-order convergence for the error, which requires more investigation. However,
as we see in Figure 4, the solution differences between corresponding points as the
spatial resolution varies seem to indicate that our test cases sit within the asymptotic
regime (a necessary condition for the validity of Richardson error estimates).
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σ = 0.5 σ = 1 σ = 10
Component `∞ `1 `2 `∞ `1 `2 `∞ `1 `2

Ex 4.96 4.99 4.99 4.97 4.99 5.00 8.12 7.46 7.87
Ey 4.96 4.99 4.99 4.97 4.99 5.00 8.12 7.46 7.87
Ez 5.88 5.89 5.90 5.82 5.85 5.84 4.89 5.22 5.05
Bx 5.12 5.12 5.15 5.14 5.14 5.17 6.63 7.03 6.96
By 5.12 5.12 5.15 5.14 5.14 5.17 6.63 7.03 6.96
Bz 5.07 5.09 5.11 5.08 5.10 5.13 6.53 7.03 6.95

Table 1. Richardson error estimate of asymptotic rate using `∞, `1, and `2 norms for the
specified current test σ = [ 12 , 1, 10] with N = [129, 257, 513] and σNt = [20, 40, 80],
respectively, corresponding to tfinal =

5
32c s.

For the Richardson error estimation, we solve the problem to the same final time
with increasingly finer discretizations h, h/2, and h/4 and let ui denote the solution
corresponding to the grid with spacing i . We then sample the solution on the h/4
grid onto the h/2 grid and the solution on the h/2 grid onto the h grid. Letting Si

denote the sample operator that transfers a solution on a grid with spacing i/2 to a

Fine-medium difference Medium-coarse difference

σ
=
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Figure 4. Visualizations of the logarithm (base 10) of the absolute difference between
the solution on grids of different sizes, as used to obtain the antenna problem Richardson
error estimates in Table 1. Our Richardson estimates use three grids at sizes N = 513
(fine), N = 129 (medium), and N = 65 (coarse). For example, to obtain the fine-medium
difference, we subsample the values of Ex on the fine grid and measure the pointwise
difference between the values at the corresponding locations on the medium grid. The
figures here show a cross-sectional view of these quantities at the plane z = 0.5 m.
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Npatch Nθ `∞ error Npatch Nθ `∞ error

7 16 2.389× 10−11 9 32 6.343× 10−12

8 16 2.389× 10−11 9 64 3.543× 10−11

9 16 2.387× 10−11 9 128 4.175× 10−11

10 16 2.391× 10−11 9 256 1.031× 10−11

Table 2. Absolute `∞ error for the plane wave problem with σ = 1, N = 513, and
Nt = 160, corresponding to tfinal =

5
16c s. The domain is decomposed into N 3

patch number
of subdomains.

grid with spacing i , the `p norm error rate estimate is given by

q =
log

∣∣uh/2−Sh/2(uh/4)
∣∣

p − log
∣∣uh −Sh(uh/2)

∣∣
p

log 1
2

. (44)

For parallelization via domain decomposition, we break the domain into N 3
patch

subdomains and then solve the problem in parallel with a number of processors
Nproc = N 3

patch. The error in our algorithm should not depend on Npatch, which we
confirmed by solving the plane wave problem with fixed σ = 1, N = 513, and
Nt = 160 and varying Npatch. The absolute `∞ error results can be seen in the left
part of Table 2. As expected, the error shows no significant dependence on the
subdomain sizes. Further, for this same plane wave problem, we investigated the
dependance of the error on the number of discretization points used for the spherical
quadrature, Nθ , which shows a slight decreasing trend as expected; see the right
half of Table 2.

Table 3 shows weak scaling results of our algorithm in parallel applied to the
prescribed current-source problem with CFL parameter σ = 1

2 . As shown by the
normalized τ factor, our solver exhibits reasonable scaling once communication is
introduced in the problem while it is lower for the single-processor case where no
communication is necessary. Note that, while the number of processors scales with

N Nt Nproc tsolve (s) tquad(s) τ

65 20 1 613.65 0.02 1.11× 10−4

129 40 8 1471.29 0.03 1.37× 10−4

257 80 64 2791.86 0.03 1.32× 10−4

513 160 512 5830.04 0.03 1.38× 10−4

Table 3. Timing data for the prescribed current problem with σ = 1
2 with the domain sub-

divided into N 3
patch = Nproc total subdomains solved on Nproc processors. The time spent

in the solver, tsolve, and time spent doing the spherical quadrature, tquad, are taken from
the timing data of a single processor. The factor τ = tsolve Nproc/(N 3 Nt ) is a normalized
measure of time spent in the solver. In the perfect scaling case, τ would remain a constant.
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the total number of points in the spatial discretization, the number of time steps
increases by a factor of 2 between subsequent rows of the table, which is reflected
in the way tsolve roughly doubles between rows.

6. Conclusion

Our numerical results demonstrate that we attain the desired order of accuracy
through both a simple plane wave example (where the true solution is known)
and a more complicated example with a time-dependent source (where we employ
Richardson error estimates). The major advantage to this method is that it is easily
parallelizable. This method does not have a CFL condition based on the wave speed
so that the communication cost relative to an explicit method of same accuracy is
much lower. The lack of a time step constraint is also a significant cost reduction
when the field solver is used in PIC code. In addition, since the method is based on
convolutions with compactly supported kernels, the Hockney algorithm is used on
small patches of the domain; thus, it is well suited for multicore architectures with
deep memory hierarchies. Our implementation has shown good weak scaling via
parallelization in space. Our method is also computationally cheaper than explicit
methods of the same accuracy for large CFL or large number of grid points. Suppose
we would like to advance the solution by a time T using one time step of the present
method. If we define σ = dcT/he, then σ is the number of ghost points required in
each direction per patch. The amount of work it takes to solve the problem per patch
would then be the cost of the FFT and multiplication for Hockney, and therefore,
it is O((N + σ)3 log(N + σ)). On the other hand, for an explicit method, the CFL
stability condition on the time step implies that the number of time steps required to
advance the solution to time T is O(σ ), and the total work required per patch would
be O(N 3σ). Thus, we expect a decrease in the time to solution of the present method
relative to an explicit method to be O(log(N + σ)(1/N + 1/σ)). If the execution
time is dominated by the time to read and write the field data to and from cache,
then the present algorithm is performing O(1/σ) as many such communication
steps as an explicit method, and the time to solution is reduced by that factor.

In essence, the method presented in this paper solves the free-space Maxwell
equations by assuming that the fields have been separated into local and nonlocal
parts via Helmholtz decomposition and solving the local portion in parallel by
constructing a compactly supported discrete convolutional kernel via

(1) finding an explicit analytic form for the Maxwell propagator,

(2) regularizing the singularities with convolutional smoothing kernels,

(3) replacing spatial derivatives with finite difference stencils, and

(4) sampling the result on a Cartesian grid.
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Because the resulting discretized propagator takes the form of discrete convolution
against a compactly supported kernel, a regular decomposition of the domain
across processors with a halo region whose size is driven by the support of the
propagator (i.e., the size of 1t and the order of discretization accuracy) admits
exact application of the discrete propagator in parallel; i.e., the error is independent
of the domain decomposition. Furthermore, by appropriate choice of the smoothing
kernel and finite difference stencils, our method can attain an arbitrarily high order
of accuracy. We view the rigorous error analysis and demonstration of accuracy as
a strength of our paper and method. The method of [20] employs a similar idea
for parallelization, using linearity and finite propagation speed to justify domain
decomposition in the solution of Maxwell’s equations. In fact, the continuous
propagator for our method (24) is the same as the one used in [20]. However, the
method the authors present advances all fields in Fourier rather than physical space,
which they approximate in parallel by taking local FFTs on each subdomain. While
they assert spectral accuracy of their method, they do not provide any analysis
of he method, nor convergence results that would support such an assertion. The
authors do note that the finite number of modes used in this representation leads
qualitatively to small nonlocal errors, of which they defer analysis for later work.

It is important to keep in mind that the approach we show here assumes that the
electric field has been decomposed everywhere via the Helmholtz decomposition
and that the divergence-free component is to be treated by other methods. As such,
future work will focus on coupling of our method with a fast and accurate method
for Poisson’s equation in order to compute the solution to (22) and/or (23) in the
specific application to PIC methods for the Maxwell–Vlasov equations. While it
may appear that, by looking only at the case of JL ≡ 0, we are ignoring a large
computational cost, the trend in PIC methods for charged systems is towards a
large number of particles per cell, i.e., hundreds or thousands, for the purpose
of minimizing numerical noise. For electrostatic problems, the need for such
large numbers of particles per cell is indicated by the convergence theory for PIC
methods [21]. In this regime, the field solve constitutes a small fraction of the
cost, even with a Poisson solve included. However, for classical explicit time-
stepping methods, the time step for the overall calculation is constrained by the CFL
condition for the Maxwell solve so that the ability to use larger time steps provides
an additional tool to improve overall performance. Another area we will investigate
is the extension of this method to locally refined grids, using an approach analogous
to that in [14] for Poisson’s equation. Since our key motivation for this method is
to use it in a PIC method to simulate free plasmas where the EM waves radiate
out with open boundary conditions, we are not concerned with dealing with other
boundary conditions with this method. However, incorporating boundary conditions
in integral evolution methods for the wave equation has been examined [13].
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Finally, in the present method, we use the special structure of Maxwell’s equations
and the wave equation in 3-D to compute an analytic form for the propagator with
support on the surface of the sphere corresponding to the wave front. While the
propagator in 3-D involves integrating on the surface of a sphere, the propagator
does not take this form in general. For instance, the 2-D wave equation propagator
requires integration on a disc [22]. Therefore, it is not obvious if we could extend our
idea of regularization to other dimensions. Nonetheless, there are a number of ways
in which we could attempt to generalize this approach. One approach would be to
construct a discrete propagator directly, using iterates of an explicit method applied
to discrete-delta-function initial data. This would be done at most once per time step
on a small patch and then applied multiple times as a discrete convolution kernel, as
above. Another approach would be to use geometrical optics [12] as a starting point
for constructing a sufficiently accurate approximate propagator to represent the stiff
wave propagation. The first problem to which to apply either of these approaches
would be the wave equation in 2-D, followed by the linearized Euler equations in
the low-Mach number limit or linearized MHD in the low-Alfvén number limit.

Appendix: Constructing compactly supported delta approximations

To derive a function δh satisfying the discrete moment conditions, we first define
the unscaled approximant W such that

δh(x)=
1
h

W (x/h). (45)

Theorem 7.2.1 from [6] gives sufficient conditions for the discrete moment condi-
tions in terms of the behavior of the Fourier transform of W , which we restate here
without proof.

Theorem 6 (continuous moment conditions [6]). Consider the approximation

fapp(x)=
∑
j∈Z

W ( j − x) f ( j). (46)

Suppose that W decays sufficiently quickly, i.e., |W (x)| ≤ A exp(−B|x |) for some
constants A and B. Then, the interpolation formula is of degree q if the following
two conditions hold:

(1) The function W̃ (k)− 1 has a zero of order q at k = 0.

(2) The function W̃ (k) has a zero of order q at k = 2π j for integer j 6= 0.

We note that the first condition in Theorem 6 is equivalent to the continuous
moment conditions in (29) and the second condition arises from the periodic
summation of the spectrum of W due to sampling.
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For computation purposes, it is desirable that the support of W be as small
as possible. Due to a theorem of Tornberg and Engquist, we have the following
minimum bound on this support.

Theorem 7 (minimum support for an approximate delta function [19]). There exists
a function W ∈ Qq if and only if the support of W contains the interval [−q/2, q/2].
Furthermore, for each choice of q , there is a unique W that achieves this minimum
support though it is not, in general, smooth (or even continuous).

In other words, Theorem 7 says that the support of W centered at 0 must cover
at least q + 1 points in the discrete grid such that the support of W with arbitrary
center covers at least q points in the discrete grid. This ensures an adequate number
of degrees of freedom to satisfy the discrete moment conditions.

Define the B-splines via the recursion

Mq = Mq−1 ∗M1, M1 = χ[−1/2,1/2], (47)

where χ[a,b] is the indicator function of the interval [a, b]. It is evident that
Mq ∈ Cq−2 is supported on the interval [−q/2, q/2], and it is well known that
its Fourier transform is given by

M̃q(k)=
(

sin(k/2)
k/2

)q

, (48)

which has zeros of order q at nonzero integer multiples of 2π . Unfortunately,
M̃q(k)− 1 has zeros of only order 2 at k = 0, restricting B-splines to only second-
order approximations of the discrete delta distribution [15].

Based on these facts, we suppose for simplicity that q is even1 and introduce the
ansatz

W̃q(k)=
q/2−1∑

p=0

a2pk2p M̃q(k). (49)

Because M̃q(k) decays as 1/kq , we see that W̃q(k) decays at least as fast as 1/k2,
ensuring that Wq(x) is continuous. Furthermore, it is evident that W̃q(k) still has
zeros of order q at j2π for integer j 6= 0 regardless of the choice of coefficients ap.
Finally, we see that W̃q(k) is real and even, therefore leading to a Wq(x) that is
real and symmetric. It remains to choose these coefficients such that W̃q(k)−1 has
zeros of order q at k = 0.

Let the Taylor expansion of M̃q(k) about 0 be given by

M̃q(k)=
q/2−1∑

p=0

b2pk2p
+O(kq), (50)

1A similar argument holds for odd q, but the resulting approximant is not continuous.



168 BORIS LO, VICTOR MINDEN AND PHILLIP COLELLA

where we note that M̃q(k) is an even function and thus all odd coefficients are
necessarily zero. Then, the Taylor expansion of W̃q(k) about 0 is given by

W̃q(k)=
q/2−1∑
m=0

( m∑
p=0

a2pb2m−2p

)
k2m
+O(kq), (51)

where we see that the coefficients are given by a convolutional formula. To ensure
zeros of the appropriate order, we would like to choose ap such a0b0 = 1 and the
rest of the coefficients are 0. This leads to q/2 equations in q/2 unknowns in a
triangular system of the form

a0 0 0 · · · 0
a2 a0 0 · · · 0
a4 a2 a0 · · · 0
...

...
...

. . .
...

aq−2 aq−4 aq−6 · · · a0




b0

b2

b4
...

bq−2

=


1
0
0
...

0

 . (52)

It is easy to verify that, for the B-splines, a0= 1 and thus this system is nonsingular,
yielding a unique set of coefficients that lead to a W̃q(k) satisfying the conditions
of Theorem 6.

Now that we see we can attain a Fourier representation of an appropriate kernel
of the form in (49), it remains to transform back to the spatial domain. However,
by simple properties of the Fourier transform, we have that

Wq(x)=
q/2−1∑

p=0

a2p(−1)p M (2p)
q (x); (53)

i.e., we are simply taking a linear combination of the B-spline and its derivatives,
leading once again to a piecewise polynomial spline supported on [−q/2, q/2].

For completeness, we give the approximants Wq for q = 4, 6 produced by this
method:

W4(x)=


1
2 |x |

3
− |x |2− 1

2 |x | + 1, |x | ∈ [0, 1],
−

1
6 |x |

3
+ |x |2− 11

6 |x | + 1, |x | ∈ [1, 2],
0, else.

(54)

W6(x)=


−

1
12 |x |

5
+

1
4 |x |

4
+

5
12 |x |

3
−

5
4 |x |

2
−

1
3 |x | + 1, |x | ∈ [0, 1],

1
24 |x |

5
−

3
8 |x |

4
+

25
24 |x |

3
−

5
8 |x |

2
−

13
12 |x | + 1, |x | ∈ [1, 2],

−
1

120 |x |
5
+

1
8 |x |

4
−

17
24 |x |

3
+

15
8 |x |

2
−

137
60 |x | + 1, |x | ∈ [2, 3],

0, else.

(55)

We note that the first coincides with the “k-point central interpolation formula”
for k = 4 described, e.g., by Schoenberg [18]. In fact, discrete delta distributions
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matching moment conditions to order q correspond directly with interpolation
kernels on uniform grids that exactly integrate polynomials of order less than q [19],
so the fact that both methods achieve the minimum support size of [−q/2, q/2]
means they are one and the same by Theorem 7. Finally, we remark that different
forms of the ansatz in (49) can lead to kernels with slightly larger support but higher
degrees of smoothness, if that is desired.
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