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Spectral deferred corrections (SDC) is an iterative approach for constructing
higher-order-accurate numerical approximations of ordinary differential equations.
SDC starts with an initial approximation of the solution defined at a set of
Gaussian or spectral collocation nodes over a time interval and uses an iterative
application of lower-order time discretizations applied to a correction equation to
improve the solution at these nodes. Each deferred correction sweep increases the
formal order of accuracy of the method up to the limit inherent in the accuracy
defined by the collocation points. In this paper, we demonstrate that SDC is well
suited to recovering from soft (transient) hardware faults in the data. A strategy
where extra correction iterations are used to recover from soft errors and provide
algorithmic resilience is proposed. Specifically, in this approach the iteration
is continued until the residual (a measure of the error in the approximation) is
small relative to the residual of the first correction iteration and changes slowly
between successive iterations. We demonstrate the effectiveness of this strategy
for both canonical test problems and a comprehensive situation involving a mature
scientific application code that solves the reacting Navier–Stokes equations for
combustion research.

1. Introduction

Since its introduction by Dutt et al. [12], the iterative nature of spectral deferred
corrections (SDC) has been leveraged extensively to create efficient, high-accuracy
methods for temporal integration tailored to specific types of problems. For example,
in multi-implicit spectral deferred correction methods [3; 27], the terms in an
advection-diffusion-reaction system are integrated separately with different time
steps but coupled together using the SDC approach to achieve higher-order temporal
accuracy than is achievable with traditional operator-splitting schemes. A similar
approach is used to reduce splitting errors in a low-Mach combustion code by
Nonaka et al. [32], where the SDC iterates are used to couple together interacting
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physical processes. In this case, a significant advantage is realized in that the
reduction in splitting error reduces nonphysical excursions into a chemical state
space that artificially excites the intrinsic stiffness in the system. SDC has also been
used to construct efficient time-parallel methods for partial differential equations
(PDEs) [15]. Such desirable features that are not readily available in classical
methods such as linear multistep or Runge–Kutta (RK) methods can make SDC
an attractive choice for time integration despite the fact that SDC often requires
relatively more function evaluations per time step.

There is growing concern about the impact of hardware errors — especially
those that can lead to successful completion with erroneous results known as silent
data corruption. This concern is driven by trends towards increasing concurrency
as well as operation near design limits. Reducing voltage to improve energy
efficiency has long been known to increase susceptibility to soft errors (e.g., [2;
10]). Further, modern designs tend to have elevated operating temperatures, which
also increases the soft error rate [38; 9]. Wei et al. [41] define error resilience
eloquently as the ability of a program to prevent an error from becoming a silent
data corruption. We will look to leverage the iterative nature of SDC to provide
algorithmic error resilience for temporal integration in the face of soft errors in
the arithmetic operations and scratch variables used to update the solution. We
expect that the iterative nature will be well suited to recover from transient errors.
Chen et al. [7] note that an adaptive RK scheme, where the solution update is
computed for two different time steps, should be able to detect soft faults as the two
evaluations will be dramatically different if a soft fault has occurred. Benson et al. [1]
constructed an error detector by evaluating an alternative time integration scheme
(tailored for speed rather than stability, such as an embedded RK scheme of lower
order, an explicit counterpart to a linear multistep method, or simple extrapolation)
and examining the norm of the difference between the base and alternative schemes
for anomalies in the context of a window of time steps. Benson et al. used the
window of time steps because they noted that a hard threshold on the difference
norm is meaningless because the expected norm of the difference changes with
the solution. We use similar logic when inspecting the convergence rate between
successive correction iterations to determine if the solution is acceptable.

The primary contributions of this paper are, firstly, to show that monitoring the
residual in SDC correction sweeps can be used to detect soft (transient) errors
resulting from hardware faults that could lead to silent data corruption using a
reference integration algorithm and, secondly, to demonstrate the feasibility of
recovering from soft errors by continuing SDC correction iterations. The intent of
this paper is not to look at the details of low-level fault injection but rather at how a
time integration algorithm can recover from those faults that migrate up the call
tree through the return values of kernels. Here we use the term kernel to refer to
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routines at the application level that compute terms in the governing differential
equations being integrated. For example, the kernels from the application discussed
in Section 2.4 are operations that compute advective or diffusive terms for the
method-of-lines formulation or evaluate transport coefficients.

The remainder of this paper is organized as follows. In the next section, we
present a brief outline of the SDC algorithm, relevant aspects of the state of research
on fault injection and algorithmic resilience, and an overview of the combustion
code used as an application benchmark later in the paper. We then turn in Section 3
to the behavior of the application in the context of single-occurrence synthetic errors,
using the explicit Runge–Kutta integrator traditionally employed in the application
code as a baseline to assess susceptibility to silent data corruption. We also examine
the ability of the SDC algorithm to recover from such errors in an application
test case and in a linear problem to demonstrate how the damping proceeds in
a controlled setting. Finally, in Section 3.4, we look at a comprehensive error
injection test case where we inject errors at an elevated rate into many runs of the
application test case to see how our SDC iteration strategy narrows the distribution
of the simulation output in a challenging scenario.

2. Preliminaries and related work

2.1. SDC formulation. Spectral deferred correction schemes were proposed by
Dutt et al. [12] and subsequently developed significantly by Minion and colleagues
(e.g., [31; 3; 28]). The basic approach is briefly recapped in this subsection
before we consider additional aspects of its performance relevant to use in practical
applications.

SDC schemes are based on recasting the ordinary differential equation (ODE)

ψ ′ = F(ψ, t), ψ(tn)= ψn (1)

over the time interval tn
≤ t ≤ tn+1 in integral form as

ψ(t)= ψn +

∫ t

tn
F(ψ, τ) dτ. (2)

Subdividing the interval [tn, tn+1] by choosing M + 1 Gauss–Lobatto quadrature
nodes tm (tn

= t0 and tn+1
= tM ), for each node we can write the approximation

φm = ψn +1t
M∑

j=0

qm, j F(φ j , t j ). (3)

This integral provides an approximation to the solution ψn+1≈φM at tn+1; however,
it effectively couples the solution at all of the quadrature nodes in the interval.
Equation (3) is referred to as the collocation formulation (see, e.g., [20]) and
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is equivalent to a fully implicit Runge–Kutta method with stages given by the
quadrature nodes and coefficients in the Butcher tableau corresponding to the qm, j .
SDC can be thought of as providing an efficient iterative approach for computing
the solution to this coupled system by iterative substepping over the nodes.

The basic idea is, given an approximate continuous solution φk(t), one can define
a residual that measures the error in the approximation φk as

R(φk, t)= φn +

∫ t

tn
F(φk(τ ), τ ) dτ −φk(t). (4)

If we define ck(t)= φ(t)−φk(t), then by substituting the definition of the residual
into the integral form of the original equation, we obtain

ck(t)=
∫ t

tn
[F(φk(τ )+ ck(τ ), τ )− F(φk(τ ), τ )] dτ + R(φk(t), t). (5)

We then discretize this equation using the approximate residual

Rm(φ
k)= φn +1t

M∑
j=0

qm, j F(φk
j , t j )−φ

k
m . (6)

An explicit Euler-type method to discretize (5) gives the resulting update formula
for the k-th iterate

ck
m+1 = ck

m +1tm[F(φk+1
m , tm)− F(φk

m, tm)] + Rm+1(φ
k)− Rm(φ

k) (7)

or, in a direct update form for φk+1
m = φk

m + ck
m ,

φk+1
m+1 = φ

k+1
m +1tm[F(φk+1

m , tm)− F(φk
m, tm)] + I m+1

m (φk), (8)

where

I m+1
m (φk)=1t

M∑
j=1

(qm+1, j − qm, j )F(φk(tl), tl)≈
∫ tm+1

tm
F(φk(τ ), τ ) dτ. (9)

I m+1
m is the equivalent to the integral of the polynomial interpolant of φk over the

interval [tm, tm+1]. Each such iteration can improve by one the formal order of
accuracy of the approximate solution up to the order of the underlying quadrature.
In the case of M + 1 Lobatto nodes, the method achieves order 2M of convergence.

In the numerical results, we focus on SDC methods using three Lobatto nodes.
If the initial value at all three nodes is taken to be the value at tn and four correction
iterations as described by (8) are performed, then the resulting method is formally
fourth-order accurate. This is the same order of accuracy as the collocation or fully
implicit Runge–Kutta method using the same three nodes, but the two schemes are
not identical. In fact, the fourth-order method with four iterations can be considered
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an explicit Runge–Kutta method with eight stages (see, e.g., [8]). Additional SDC
iterations will not raise the formal order of accuracy but will drive the numerical
solution to that from the collocation formulation with linear convergence with a
rate proportional to the time step.

2.2. Soft error fault injection. For the purpose of this study, we follow the tax-
onomy of Bridges et al. [4], wherein hard faults are those that cause program
interruptions and clearly denote an incomplete program execution while soft faults
are typically observed as random bit flips, where one or more bits of memory are
reversed. These faults are transient and do not indicate hardware damage, as opposed
to persistent faults such as bits that are immutable due to a physical defect (“stuck bit”
errors). Depending on where in the memory hierarchy they occur and the robustness
of the algorithm, soft faults may not always lead to a solution failure but might
result in an erroneous solution despite completely evading detection [14]. It might
be acceptably inexpensive to provide soft fault detection and correction mechanisms
for some, but not all, memory levels. For instance, error correction codes have been
shown to correct a majority of soft faults in main memory [38] while processor
registers are difficult to protect from soft faults [24]. Many factors such as altitude,
age, temperature, and utilization are thought to affect error rates in real machines
with a significant variability observed across various DRAM vendors. Recent studies
have attempted to characterize and quantify error rates by surveying hardware logs
from real machines, although a consensus is far from apparent. Schroeder et al. [35]
study error rates from commodity clusters in Google’s server fleet and observe that a
majority of the errors are hard errors and soft errors are far less probable (a soft error
probability of ∼ 2% for every hard error). On the other hand, Sridharan et al. [39]
find the opposite to be the case from a survey of data from two high-performance
computing systems: Cielo at Los Alamos National Laboratory and Jaguar at Oak
Ridge National Laboratory. Nonetheless, the most dominant mode seems to be
single-bit errors (60%) with hard and soft errors being approximately equiprobable.

Considering the various enmeshed layers of software and hardware, the propaga-
tion of soft faults from one layer to another can be complicated to model. Strictly
speaking, a bit flip at the level of hardware instructions is unlikely to migrate up to
the application level as a single bit flip after several operations have been performed
on the data. Even near the hardware level, a single bit flip in an instruction input
might result in multiple bit flips in the destination register [14]. Despite this, there is
some evidence that injecting single bit flips at higher levels produces similar effects
from an application perspective as injecting errors near the hardware level. We
choose this approach because it allows us to reason about the algorithmic sensitivity
to the errors while eliminating the potentially confounding effects of interaction of
the errors before reaching the application level.
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Wei et al. compare the behavior of high-level fault injection (implemented at the
LLVM intermediate representation (IR) level) to low-level fault injection (using Intel
Pin tools) and find that, while there were significant differences in the number of
program crashes between the two techniques, the IR-level fault injection is effective
for assessing the impact of soft faults that result in silent data corruption. Wei et
al. [41] also note that it is an established de facto standard that single bit flips [16]
are an appropriate approach. In a related issue, Fang et al. [16] look at the effect of
fault injection on multithreaded programs implemented using OpenMP and consider
the sensitivity of the thread where the faults are injected due to the emphasis of the
master thread on problem setup/teardown (phases of their chosen benchmarks that
are particularly prone to resulting in ultimate silent data corruption in the output
from fault injection). In our present application of interest, the setup/teardown
phases are a very small portion of the overall run time, and otherwise the application
follows a bulk-synchronous model.

Since our focus here is on the algorithmic robustness of SDC, we adopt a simple
fault injection model. Considering that processor registers and arithmetic lookup
units (ALUs) and floating point units (FPUs) are the most vulnerable to soft faults
[41], we model soft faults as single bit flips in processor registers. However, we
inject errors at the level of the application rather than at or very near the hardware
level. We adopt an approach similar to, but even closer to the application level than,
that of Wei et al. [41] and inject faults as if they manifest as single bit flips in register
work arrays of the application level kernels that evaluate the terms contributing to
the time derivative (F) of our system of ODEs.

2.3. Algorithmic approaches to resilience. Since a large number of scientific ap-
plications employ linear system solvers, methods to incorporate resilience in iterative
linear solver algorithms have received wide attention. For example, Heroux and
Bridges et al. [23; 4] propose a fault-tolerant version of the generalized minimal
residual method (FT-GMRES) whereby the inner iteration that corresponds to
the preconditioning step for the outer iteration is allowed to be unreliable. Rank
deficiency of the subsequent upper-Hessenberg matrix could signal a potentially
faulty execution of the inner iteration that would require some recovery strategy. The
decision about whether a fault has occurred, and the subsequent recovery, is a global
operation and involves agreement and hence global communication. Sloan et al. [36]
suggest that error detection and recovery should instead be localized near the fault
occurrence. The most expensive computational kernel in linear solver algorithms
such as GMRES, the quasiminimal residual method (QMR), and conjugate gradient
(CG) is usually a matrix-vector multiplication. Sloan et al. [36] contend that a soft
error is most probable in this kernel and suggest an identity check that involves
projecting the result of the matrix-vector multiplication onto a test vector. The
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projection can be computed two different ways, so the results should agree if there
were no faults in the original matrix-vector multiplication. By choosing the test
vector to initially have all elements set to unity, they suggest a recursive hierarchical
algorithm to hone in on the exact locations of faulty execution. Stoyanov and
Webster [40] consider Jacobi and Gauss–Seidel fixed point iteration algorithms and
leverage the identity that the norm of the difference between successive iterates
should reduce at the same rate as the convergence of the algorithm. They suggest
that checking this identity can be used as a method to identify errors due to soft
faults and propose rejecting iterations that fail this test as a means to incorporate
resilience.

Alternative approaches have also been proposed for explicit PDE schemes that
are not iterative in nature. Mayo et al. [30] suggest combining two extremes in
the tradeoff space for resilient explicit PDE algorithms: artificial viscosity, the
physical mechanism that damps perturbations, and triple modular redundancy,
the strategy of performing computations three times and accepting a result that
was reproducible at least twice. They propose using multiple finite difference
schemes over stencils of different widths at each grid point of the same formal
order of accuracy to identify and discard outliers that might have been corrupted
due to soft faults. Donzis and Aditya [11] propose asynchronous explicit finite
difference schemes for PDEs that could be viewed as a potential resilience strategy.
Typically, the explicit scheme for spatial derivatives requires the solution from
neighboring grid points, which involves communication of ghost regions across
processing elements (PEs). In the conventional implementation of such schemes,
the communication and the calculation of spatial derivatives are completed by all
PEs before the next time step is begun; i.e., all portions of the domain advance
the solution in a time-step-synchronized fashion. However, one might envision
that soft faults cause some portions of the domain to take longer to execute an
iteration, introducing an asynchrony between PEs. Donzis and Aditya [11] propose
asynchronous schemes whereby neighboring PEs could be at different time steps
but still perform spatial derivatives to an intended order of accuracy. They model
the asynchrony between neighboring PEs as a random process and show that while
such schemes can be stable the accuracy in both time and space might be degraded.
However, the desired order of accuracy severely limits the maximum asynchrony
allowable between any pair of PEs.

2.4. S3D reacting flow solver and ignition benchmark problem. S3D is a solver
for compressible reacting flows developed by Chen et al. [6]. S3D uses eighth-
order finite-difference approximations of spatial derivatives with a method-of-
lines discretization integrated temporally using a six-stage, fourth-order compact
Runge–Kutta integrator from the family developed by Kennedy et al. [26]. Second



32 RAY W. GROUT, HEMANTH KOLLA, MICHAEL L. MINION AND JOHN B. BELL

derivatives are obtained by repeated application of the discrete first-derivative
operator. The code has been used to produce direct numerical simulations (e.g.,
sufficiently resolved to capture all relevant continuum scales for turbulence, chemical
reaction, and turbulence-chemistry interaction) of a variety of turbulent combustion
problems. Past problems include premixed flames [21; 33; 19], nonpremixed
flames [22; 42; 18; 17], and autoignition problems [13; 34]. The code solves the
compressible Navier–Stokes equations along with transport of the mass fractions
of K chemically reacting species using a mixture-averaged transport model. The
species density, momentum, and energy equations of hydrodynamics are given by

∂

∂t
(ρk)+∇ · (ρkv)+∇ ·Fk = Ṡk, (10)

∂

∂t
(ρv)+∇ · [ρvvT

+ p I] +∇ · τ = 0, (11)

∂

∂t
(ρE)+∇ · [(ρE + p)v] +∇ · [Q+ τ · v] = 0, (12)

where ρk , v, p, E , and Ṡk denote, respectively, the mass density for species k, fluid
velocity, pressure, total specific energy, and chemical source term for species k for
a mixture with K species (k = 1, . . . , K ). We note that

∑
k Fk = 0 and

∑
k Ṡk = 0

so that summing the species equations gives conservation of mass with
∑

k ρk = ρ,
the total fluid density. Note that vvT is a (tensor) outer product with T indicating
transpose and I is the identity tensor (i.e., ∇ · p I =∇ p). Transport properties are
given in terms of the species diffusion flux F , viscous stress tensor τ , and heat
flux Q. The viscous stress tensor is

τ =−η(∇v+ (∇v)T )+ 2
3η(∇ · v)I, (13)

where η is the shear viscosity. The heat flux is

Q=
∑

k

hkFk − λ∇T, (14)

where hk is the enthalpy of the k-th species and λ is the thermal conductivity.
The diffusion velocity of the k-th species is modeled with a mixture-average

formulation for k− 1 species:

Fk =−Dk

[
∇Yk + Yk W∇Wk + (1−Mk W )

1
p
∇ p

]
, (15)

where Yk = ρk/ρ is the mass fraction of species k, Dk is the mixture-averaged
diffusion of species k, Wk is molecular weight of species k, and W is the mean
molecular weight. The final species diffusion velocity is computed so as to enforce
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conservation of mass:

FK =

K−1∑
k=1

−Fk, (16)

where K is the dominant species, typically N2. Thermodynamic properties are
temperature-dependent; the temperature is related to the energy by

E = es +
1
2 ukuk, es =

∫ T

T0

Cv dT −
RT0

W
, (17)

where Cv is the mixture constant volume specific heat and R is the ideal gas constant.
The chemical source terms appearing in the species equations are computed by

evaluating a chemical reaction network

Ṡk =Wk

Nr∑
j=1

νk j R j , (18)

where νk j are the stoichiometric coefficients for reaction j and the rates of the Nr

reactions are given by expressions of the Arrhenius form used by [25]. For example,
for a reaction where reactants A and B are converted into products C and D,

A+ B⇔ C + D, (19)

the forward rate is given by

R f = [A][B]k f , k f = A f j T β j exp
(
−Taj

T

)
, (20)

where A f j , β j , and Taj are coefficients describing the j -th reaction with the reverse
rate given by

Rb = [C][D]kb, kb =
k f

keq
, keq =

(
p

RT

)∑N
n=1 νnj

exp
(
1S0

j

R
−
1H 0

j

RT

)
, (21)

where 1S0
j and 1H 0

j are the entropy and enthalpy of formation differences across
the reaction, respectively.

The ideal gas equation of state (p = ρRT/W ) completes the description of
the system. To solve (10)–(12), a method-of-lines approach is used where spatial
derivatives are replaced by a finite difference operator of the form[

∂φ

∂x

]
i
≈

4∑
m=1

(αmφi−m +αmφi+m). (22)

In the course of evaluating the time derivatives, S3D computes the various terms
much as written here where various kernels (e.g., compute operand, apply derivative
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Figure 1. Spatial profiles of temperature and species mass fractions at t = 5.5µs (top)
and t = 30µs (bottom) from reference solution obtained with 6,4-RK integrator.
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Figure 2. Temporal evolution of maximum temperature and species mass fractions at
grid point coinciding with maximum temperature from reference solution obtained with
6,4-RK integrator.

operator, and compute diffusion velocity) operate on the entire solution grid until
all of the time derivatives are completely assembled.

In the tests that follow, we will use a fixed time step and tolerate the extra
computational cost as a necessary expense to remove one aspect that would make
the results more difficult to interpret; in future work we plan to study the combination
of SDC and adaptive time step control. The canonical problem is a one-dimensional
simulation of a homogeneous mixture composed of hydrogen and air mixed in a
stoichiometric ratio with a Gaussian temperature hot spot placed in the center of
the domain according to

T (x)= T0+ (T ∗− T0)
1

σ
√

2π
e−(x−x∗)2/(2σ 2). (23)

Solutions for this problem obtained using S3D and the native integrator used
historically in S3D (the 6,4-RK algorithm) are shown in Figures 1 and 2. The
problem is one-dimensional; 120 grid points are used to spatially resolve the ignition
process, and a fixed time step of 5 ns is used in all cases. Figure 1 shows that the
initial spatial temperature profile drives formation of a broad pool of hot radicals,
led by HO2 that is eventually consumed as the mixture proceeds towards ignition
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and takes the first steps towards the formation of a front. In the time histories
shown in Figure 2, the peak temperature decreases due to diffusive processes along
with the slow buildup in HO2 followed by an increase in H2O2, OH, and O and
finally a rapid rise in temperature. The chemical mechanism is that of Li et al. [29];
CHEMKIN’s [25] tranlib is used to evaluate transport coefficients for a mixture-
averaged diffusion formulation. This test case has a relatively long “soaking” period,
requiring approximately 5000 time steps before the onset of thermal runaway at
20µs. This provides ample opportunity for small errors to compound into a large
effect on the solution yet is relatively manageable for experimentation. A similar
test case, a zero-dimensional ethylene-air ignition problem, is used by Spafford et
al. [37] to study the effects of single precision on chemical reaction rate evaluation
in the context of porting S3D kernels to a graphics coprocessor, where the test case
proved sufficiently sensitive to the accuracy of the function evaluation that evaluating
the reaction rates in single precision is insufficient to achieve an acceptable solution.

3. Soft error injection response

In this section we look at injecting two types of soft errors into major work arrays
(those of the dimension of the solution grid) during the computation of the solution:

(A) scaling a single value within a work array by a large factor (i.e., multiplying
by 104) and

(B) reversing the value of a bit at any position within the array (i.e., the value at
any grid point could have any bit within it flipped, including the sign bit, the
mantissa, and the exponent positions).

We use the type-A errors to explore the sensitivity of the solution to various inter-
mediate values and to study how continued SDC sweeps can correct for such errors.
Type-A errors produce a moderate response in that they typically produce a perturbed
state that is incorrect but still physically plausible — the circumstance where silent
data corruption is intuitively likely. Type-B errors are more realistic but can result
in perturbed states that are physically inconsistent (e.g., negative temperatures). We
use the bit flip approach, described in Section 2.2, for a comprehensive assessment
of the technique integrated into the application code at the end of this section. In
all cases, we limit our study to the work arrays that form return values of basic
“simulation kernels” (which will be described in the following subsection). In other
words, we leave persistent variables (e.g., stencil coefficients), control flow and
instruction logic, and the solution vector at the start of the time step unperturbed.

3.1. Work array sensitivity. The S3D algorithm computes several quantities that
are stored in work arrays during the evaluation of the right-hand-side function, and
the sensitivity of the solution to perturbations varies widely between quantities.
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To demonstrate this, we modified the code that evaluates the temporal derivatives
of given quantities so that the results of kernel functions are perturbed. That is,
evaluation of the time derivative involves application of several kernels called as
functions that manipulate a set of work arrays:

Rk( EW )← kernelk(Ik( EW ), Eq, . . . ), (24)

where EW is the vector of multidimensional work arrays, Rk( EW ) is the subset of the
work arrays altered by the k-th kernel, Ik( EW ) is the subset of the work arrays used
as input to the k-th kernel, Eq is the vector of conservative state variables at the start
of the time step, and the ( . . . ) represents the constants that complete the closure
for the kernel. In this nomenclature we apply a perturbation function P that applies
a single bit error (as discussed near the end of Section 2.2) to the return values of
each kernel immediately after each kernel completes:

R̂k( EW )← P[Rk( EW )]. (25)

The scratch/work arrays to which the error injection was applied have dimension
8 · (nx, ny, nz), (nx, ny, nz, 3, 3), (nx, ny, nz, ns, 3), and (nx, ny, nz, ns) whereas
the carryover arrays with dimension (nx, ny, nz, ns, 2) and the various setup arrays
of smaller dimension as well as executable code have not been made vulnerable.
Comparing perturbed runs to the baseline calculation described in Section 2.4 (again
with a fixed 5 ns time step and the 6,4-RK time integration method), we obtain a
sensitivity profile for the various work arrays. Figure 3 indicates the difference in the
maximum temperature in the simulation domain at a fixed time near the end of the
ignition delay when the various quantities are subjected individually to a one-time
perturbation. The perturbation is applied to the output work array at the grid point
where the temperature is maximum by multiplying the value by 104 immediately
after the value is calculated during the first substage function evaluation for the
time step beginning at t = 5.5µs. We observe, as many others have previously
(e.g., [16]), that such error injection can result in different categories of behavior:

(1) The simulation fails in a detectable manner before completion, frequently as
soon as the perturbation is injected. This is typically due to an unrealizable
condition (e.g., temperature outside physical bounds or the sum of the species
mass fractions becoming much larger than unity).

(2) There is no detectable effect on the calculated ignition delay.

(3) The calculation proceeds without apparent error to completion, and the calcu-
lated ignition delay is altered, with the size of the error depending on the size
of the perturbation earlier in the calculation.

While the first type may slow scientific progress due to frequent restarts, it is the
final type — the silent, undetectable errors that alter the result of the calculation —
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Figure 3. Difference in maximum temperature in domain from baseline at fixed time
near end of ignition delay resulting from one-time perturbation of work arrays during
calculation using traditional (6,4-RK) integration algorithm. Derivative of density is
highlighted in green crosshatch. Work arrays where perturbation resulted in simulation
crash are not shown. Variable groups are as follows: Group I, primaries (u, γ, cp, Yα);
Group II, enthalpies (hα); Group III, gradients (∇u,∇T,∇Yα); Group IV, diffusive
fluxes (τi j , Jα, JT ); Group V, second derivative operands and results (momentum, energy,
species); and Group VI, reactions (Sα).

that are the most serious. Of the 93 kernel return values perturbed individually, for
74 of those variables the calculation proceeds to completion. The remainder result
in simulation crashes (e.g., from out-of-bounds temperature extremes) and are not
shown in Figure 3. The error in the temperature at the end of the solution ranged
from 70 K below the correct temperature to 93 K above the correct temperature;
this corresponds to impacting the calculated ignition delay by more than 5%. While
it is difficult to make generalizations, perturbations that increased the reaction rate
involving known ignition promoters for this mechanism (O, OH, and H) resulted
in a significant temperature increase (hence, shorter ignition delay). Conversely,
perturbations that increased the transport rates and hence hindered the buildup
of radicals led to a decrease in temperature (hence, longer ignition delay). The
perturbation that increased the source term for the continuity equation led to a
decrease in temperature and is indicated in green in Figure 3 and will be considered
in detail in the following subsection as representative of the error injections that led
to silent data corruption.
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Figure 4. The effect of perturbation of the continuity equation source term on solution
temporal evolution using 6,4-RK and SDC integration schemes; temporal plots were
extracted at a fixed spatial location where error is injected. Notably, the SDC solution is
indistinguishable from the baseline solution while the Runge–Kutta solution is silently and
significantly corrupted.

3.2. Solution after injection of perturbation. Modifying the term that forms the
density time derivative in the RHS evaluation, that is,

∂ρ

∂t
=
∂(−ρu)
∂x

, (26)

results in a greater than 5% increase in the eventual predicted ignition delay and a
significant change in the temperature at the end of the baseline ignition delay as
highlighted in Figure 3 using the 6,4-RK integration method. Figure 4 shows the
temporal evolution of the solution for temperature and key species for the baseline,
unperturbed case, for the 6,4-RK integration and for SDC integration. The SDC
integration is performed using three Gauss–Lobatto quadrature nodes and four
correction sweeps. Figure 5 compares the spatial profiles at two different times:
the time step after the error is injected and the time step when the baseline case
reaches the ignition criterion. The perturbation grows over time after the injection
(at t = 5.5µs). In keeping with the silent nature of the corruption, by inspection
of the portion of the time history after the fault injection, it is difficult to tell that
an error has occurred. Similarly, while it is obvious from looking at the spatial
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Figure 5. Effect of perturbation of continuity equation source term on solution using
6,4-RK and SDC integration schemes at time of baseline case ignition. Solid lines are the
6,4-RK solution, and dashed lines are the SDC solution for temperature (red) and HO2
mass fraction (green). The upper plot shows the difference between the computed solution
and the baseline while the lower plot shows the computed solution alongside the baseline
(in solid black).

profiles at later times in Figure 5 that the solution is contaminated by ringing, it
is not clear how to distinguish this from under-resolved physics [5]. Conversely,
the solution traces obtained when using SDC with a fixed number of iterations
are indistinguishable from the baseline, unperturbed case. This is an empirical
demonstration of the tendency of the SDC iterations to recover from soft errors that
result in silently corrupted data when using the traditional integration algorithm.

In Figure 6, the residual as given in (4) is shown over time; the curves shown for
|Rk | are the magnitude of the residual for the k-th correction iteration. There is one
value per time step plotted obtained at the end of the time step; the lower portion
of the figure is an enlargement of the upper portion. We observe that the error
injection can be detected by monitoring the residual, which increases sharply when
the error is injected. In this experiment the number of SDC correction iterations is
held constant. While this is sufficient to damp the error injected to the point where
the solution is not qualitatively deteriorated, the residual at the final iteration has
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Figure 6. SDC residual response to soft perturbation for four correction sweeps given by
R1–R4. The lower plot is a zoom in on the region of the fault injection; note that the fault
is clearly evident by examining the residual.

not reached its final value prior to the error injection. It is several time steps later
that the residual after the final time step reaches approximately the same magnitude
as the final residual prior to the error injection. In the next subsection we will look
at the response of a linear problem to shed more light on how further SDC iterations
reduce the error in a contaminated solution.

3.3. Response of linear problem to perturbation. In Figures 7 and 8, a similar
experiment is performed on the linear test problem

y′(t)= y(t), y(0)= 1 (27)

over the interval [0, 1]. Three quadrature nodes are used, and four correction sweeps,
including the initial explicit Euler predictor, are performed, giving a formally fourth-
order method. The baseline behavior is shown in Figure 7 for comparison to the
perturbed solution in Figure 8. A perturbation to the solution is introduced by
using y′ = (1.5)y for the derivative evaluation during the third SDC sweep at the
second quadrature node. For the unperturbed case, the solution error decreases
monotonically with iteration count as seen in Figure 7. However, when the error is
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Figure 7. SDC iteration behavior for the linear problem (y′ = Ay).

injected during the third sweep, we see the error jump up again to near the error in
the initial predictor (Sweep 4 in Figure 8). After subsequent sweeps the error is
reduced until after Sweep 7 the error in the solution is less than before the error
is injected. Figure 9 demonstrates that the error damping is geometric for a wide
range of perturbation magnitudes. The horizontal axis in Figure 9 corresponds to
the size of the multiplicative perturbation to the derivative computation y′ = sy.
We find that across a wide range of s, both larger and smaller than unity, the error
is damped with a consistent ratio. Also of note in Figure 9, we look at continuing
the SDC iterations beyond the number of passes necessary for convergence of the
reference solution. Even for large perturbations that result in errors several orders
of magnitude larger than the reference solution converged error, the converged
solution remains the same. This feature of SDC — the ability to recover from such
large excursions from the true solution — leads to its natural resilience.

3.4. Response to multiple errors. In this subsection we conduct an experiment to
assess the potential of the SDC iterations to recover from soft errors in a more
realistic scenario. We use the baseline test case described above, running the
simulation until a fixed time tign. We then extract the maximum temperature in
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Figure 8. Effect of perturbation of the linear problem on SDC iteration convergence. Error
is injected during Sweep 3 which results in an error larger than the initial predictor but is
then damped by Sweeps 5 and 6.

the domain as a global measure of the simulation result. We set up our fault
injection framework to inject bit flips into random bits in the return values of
randomly selected kernels at random times, as discussed in Section 3. Specifically,
we injected one fault every 5580 calls to the error injection callback per rank; this
corresponds to approximately one fault every 10 time steps using the baseline RK
time-advancement algorithm without error injection. Within this window, each
process (MPI rank) chooses a random location where the fault will be injected.
At the start of the fault injection window, each rank initializes a counter zero and
chooses a random number in the range (0, 5580) to be the fault call. The counter is
incremented each time the error injection callback is executed, and when it equals
the fault call, a random bit within the valid range of the argument pointer is flipped.
The counter continues to increment with successive calls, but without error injection,
until it reaches the window size when it is reset and a new fault call count is chosen
for the next window. For this one-dimensional calculation five MPI ranks were
used.
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Figure 9. Effect of perturbation magnitude on SDC convergence rate. Reference solution
yref is the analytic solution with s = 1.

When faults are injected randomly across the variable array, there is the potential
that some faults will result in immediate crashes of the program as identified as the
first type in Section 3.1, i.e., flipping the sign bit of major variables or changing
the most significant bit in the exponent. These types of faults will cause the
program to experience an unrecoverable error that is easily detectable. The test
code solves a transport equation for total energy and computes temperature by using
a Newton search to solve (17). Hence, a bounds check on the temperature is likely
to pick up out-of-bounds issues on any of the variables that participate in (17). The
code historically monitors the temperature range during the solution of (17) and
terminates if it goes out of bounds. In order to allow the simulation to continue
without a full restart, we cache the solution vector at the start of every outer time
step and allow the simulation to restart from that point rather than terminating and
restarting from a save file.

Furthermore, to deal with the final type of error (those leading to silent corruption),
we modified the SDC algorithm to monitor its convergence through the reduction in
the residual. We propose a strategy for mitigating soft errors — hardware-introduced
faults that are stochastic and transient in nature — based on monitoring the behavior
of the SDC correction through the residual to identify when a soft error has occurred
and continuing iteration until the residual drops to the prescribed tolerance. In the
case of nonrecoverable errors detected during the correction iterations, we restart
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Mean Minimum Maximum Span Variance
RK 1737.32 1728.92 1758.82 29.90 0.95
SDC 1737.30 1736.70 1743.69 7.00 0.04

Table 1. Variance in temperature at the end of calculation with error injection using
baseline Runge–Kutta integration and the SDC approach of the same order. The result
from both methods without error injection is 1737.25.

the time step. For each correction iteration (after the first) we compute

R1 =
max| ERn|

max| ER1|
, (28)

Rn−1 =
max| ERn|

max| ERn−1|
(29)

and continue the correction sweeps until R1 < 10−5 and Rn−1 > 0.9, that is, until
the residual is small compared to the residual from the first correction pass and is
also not changing significantly between successive correction passes. The tolerance
values for R1 and Rn−1 were chosen to be consistent with the ratios found in the
baseline case without fault injection at the end of the SDC iterations. The maximum
number of correction passes is limited to eight, after which the time step is accepted.
In practice, only a few time steps encountered this limit.

We conducted 1500 independent runs using both the baseline RK time integration
and the proposed SDC method; the distribution of the temperature at the end of the
calculation is shown in Figure 10 and Table 1. The data in the table demonstrates
that the temperature values using SDC are significantly more clustered near the
reference value than those computed using RK. There are some occurrences where
the error introduced is sufficiently large that maximum SDC iteration limit is reached
before without fully damping the error, which accounts for the nonzero variance in
the sample of the SDC solutions. Despite this, the width of the distribution is far
narrower than the corresponding baseline distribution. In a production environment,
two alternatives to narrow the distribution further are available: more SDC iterations
could be allowed, or the time step could be restarted if the iteration limit is reached.
For this test, the rate of error injection is significantly magnified from realistic error
rates, so either option is likely acceptable with minimal computational cost under
realistic error rates for a target platform. This is meant to be illustrative: given
the uncertainty in the error rates for future architectures, we demonstrate that the
simulation can make progress and the effect of those errors are mitigated, but it is
difficult to assess computational cost without knowing what the error rates are. This
is left for future work as more realistic predictions and measurements of soft error
rates on extreme-scale architectures become available. Satisfyingly, the resilient
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Figure 10. Distribution of temperature at end of calculation with error injection using
baseline Runge–Kutta integration and SDC approach of same the order.

form of SDC does not add extra cost beyond a general formulation when there are
no hardware faults. In the presence of extreme error rates, the algorithm still makes
progress, with the vast majority of runs resulting in no silent data corruption and a
clear path to including the remaining outliers available.

4. Conclusion

Natural extensions to a generic SDC algorithm have been proposed that are demon-
strated to provide improved algorithmic resilience. It is shown that, in the face of
a single transient error, continued SDC iterations beyond those normally required
provide a viable approach to error recovery. In the case of elevated rates of stochastic
errors, the algorithm can still make progress. In addition, although it is not explored
here, the method provides a mechanism for detecting stuck bit errors that could
potentially be used to trigger restarting the affected time step using different memory
for the work arrays. When no errors are introduced, the suggested formulation
reverts to a generic SDC algorithm, so there is no significant cost penalty for
the modifications. The formulation is predicated on the ability to protect the
integrity of the solution state between successive time steps as well as the program
control flow. However, the work arrays used by the application code during a time
step that typically comprise the majority of the memory usage can be exposed to
significant error rates. This provides an opportunity for savings, where the need
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for error correction is potentially reduced without resorting to measures such as
redundant calculation that increase computational cost irrespective of the actual
error rate realized. As such, the method is a way for application developers to
design for potential increased soft error rates on future hardware without the penalty
of degraded performance on less error-prone architectures.
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