
Geometry & Topology GGGG
G
GGG G GG

G
G
G
G

T TT
T
T
TT

TTTTT
T
T
T

Volume 4 (2000) 407–430
Published: 10 November 2000

Subexponential groups in 4–manifold topology

Vyacheslav S Krushkal

Frank Quinn

Department of Mathematics,Yale University
New Haven, CT 06520-8283, USA

and
Department of Mathematics,Virginia Tech

Blacksburg, VA 24061-0123, USA

Email: krushkal@math.yale.edu, quinn@math.vt.edu

Abstract

We present a new, more elementary proof of the Freedman–Teichner result that
the geometric classification techniques (surgery, s–cobordism, and pseudoiso-
topy) hold for topological 4–manifolds with groups of subexponential growth.
In an appendix Freedman and Teichner give a correction to their original proof,
and reformulate the growth estimates in terms of coarse geometry.

AMS Classification numbers Primary: 57N13

Secondary: 57N37, 57N70, 57R65

Keywords: 4–manifolds, groups of subexponential growth, gropes

Proposed: Robion Kirby Received: 22 May 2000
Seconded: Wolfgang Metzler, Cameron Gordon Accepted: 3 November 2000

ISSN 1364-0380

Copyright Geometry and Topology

407



The disk embedding theorem for 4–manifolds with “good” fundamental group
is the key ingredient of the classification theory: it is used in the proof of the
4–dimensional surgery theorem, and the 5–dimensional s–cobordism theorem
and pseudoisotopy theorems. The homotopy hypotheses of the theorem always
allow one to find a 2–stage immersed capped grope. If one can find such a
grope so that loops in the image are nullhomotopic in the ambient manifold,
then Freedman’s theorem [1, 3] shows there is a topologically flat embedded
disk. The current focus, therefore, is on obtaining this π1–nullity condition.
Freedman [2] showed this is possible if the fundamental group of the manifold
is poly-(finite or cyclic). This was extended to groups of polynomial growth in
[7]. The current best result is for groups of subexponential growth.

The disk theorem for subexponential groups was stated by Freedman and Te-
ichner [4]. However the “key point” of [4] page 521, line 17, is incorrect. In
the Appendix Freedman and Teichner show how to modify their construction to
correct this. The present paper sidesteps the issue by using a different and more
elementary construction developed by the first author (see [5]). It displays par-
ticularly clearly how the proof fails in the general (exponential growth) case,
and suggests that an infinite construction may be necessary to make further
progress.

The following result is the input needed for the disk embedding theorem for
manifolds with subexponential fundamental groups. For a full statement of the
disk embedding theorem and applications to surgery and s–cobordism, see [4].
For the application to pseudoisotopy see [6].

Theorem Suppose G→M4 is a properly immersed (capped) grope of height
≥ 2, and ρ: π1M → π is a homomorphism with π of subexponential growth.
Then the total contraction of G is regularly homotopic rel boundary to an
immersion whose double point loops have trivial image in π .

This slightly extends the usual immersion-improvement formulation in that we
do not require the total contraction to be a disk, and the output immersion is
regularly homotopic to the input. Neither extension has new consequences, but
they come for free in the proof and they simplify applications. Capped gropes,
contractions, and subexponential growth are all reviewed in the text.

In rough outline the proof goes as follows: The images of the double point loops
of G give a finite subset of π . Subexponential growth implies that in a large
collection of words of fixed length in the finite subset, somewhere there is a
subword whose product is trivial. We organize the data so this subword can be
realized geometrically as double point loops, by pushing intersections around in
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the grope. This eliminates a branch in the grope in exchange for π–trivial self-
intersections of the base surface. Iterating this eliminates all branches (ie, gives
a contraction) with π–trivial self-intersections. The key technique is splitting
to dyadic branches.

Acknowledgements VK was supported at the Institute for Advanced Study
by NSF grant DMS 97-29992. FQ is partially supported by NSF grant DMS
97-05168 and Harvard University.

1 Definitions

We briefly review the definition of gropes in order to fix terminology for caps,
duals, immersions, contractions, etc.

1.1 Gropes Begin with a surface S . A model grope built from S , or an S–
like grope is a 2–complex in S × I obtained by repeatedly replacing embedded
disks by punctured tori with disks attached, see [3, Section 2.1]. The attached
disks are the “caps” for the torus; there are two of them, they intersect in a
point, and each is referred to as the dual of the other.

(1) The caps of the final grope are caps introduced at some stage, and which
have not been modified later.

(2) A subgrope is a cap that has been modified, together with these modifica-
tions. More generally a subgrope is a disjoint union of these. Subgropes
are disk-like gropes, or more generally (union of disk)-like gropes.

(3) Dual subgropes are subgropes obtained from caps that were dual at some
stage of the construction. They are attached to the same lower surface,
and the attaching circles intersect in a single point.

(4) The base of the grope is the surface obtained by modifying S .

(5) A branch is a dual pair of subgropes attached to the base.

(6) The grope has height ≥ k if any path from a cap to the base passes
through at least k boundary curves of subgropes. In other words there
are at least k levels of surfaces (counting the base) below each cap. Note
each branch has height ≥ k − 1.
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1.2 Contractions Suppose H+,H− are dual subgropes in a grope. The
contraction away from H− , or equivalently the contraction across H+ is defined
as follows: discard the subgrope H− , cut open the surface to which H+ is
attached along the attaching circle, and glue in two parallel copies of H+ . See
Figure 1. This process is sometimes referred to as surgery. The result is an S–
like grope in a canonical way, ie, there is a canonical way to see this as obtained
from S in S × I .

subgrope

dual subgrope

cut, glue parallels

delete

Figure 1: Contraction

There is also a “symmetric contraction” which cuts the surface along the at-
taching curves of both subgropes and glues in parallel copies of both, together
with a small square near the intersection point of the curves. See [3, Section
2.3]. This operation won’t be used here.

Lemma Suppose H+,H− are dual caps in an S–like grope. Then the con-
tractions across H+ , across H− , and the symmetric contraction, give isotopic
gropes.

Proof Here “isotopic” means ambient isotopic in S × I . Since H+,H− are
both caps, all these contractions undo one disk-punctured torus replacement.
The isotopy is clear in pictures; see [3, Section 2.3].

A total contraction of a grope is obtained by repeatedly contracting (in any
order) until no caps are left. Iterating the lemma shows this always returns the
original surface:
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Corollary All total contractions of S–like gropes are surfaces isotopic (rel
boundary, in S × I ) to S .

When a grope is immersed the different contractions give regularly homotopic
immersions of S . Their usefulness is that they may differ greatly in their
intersection patterns.

1.3 Immersions A proper immersion of a grope G→ M4 is an immersion
of a regular neighborhood of the spine in S × I satisfying

(1) boundary goes to boundary, so the image intersects ∂M in ∂S × I ;

(2) all intersections come from transverse intersections among caps; and

(3) (if the base surface is noncompact) the immersion is proper in the topo-
logical sense.

Caps have I –bundle neighborhoods in S× I . Condition (2) means these neigh-
borhoods intersect in squares determined by transversality and the bundle struc-
tures, and that there are no other intersections.

In fact a regular neighborhood of the grope spine is isotopic to S × I itself.
The definition is given in terms of regular neighborhoods so the standard D2

bundle neighborhoods of caps will be easier to see. A consequence of this
neighborhood uniqueness is that the original core copy of S is isotopic into
any regular neighborhood of the grope spine. Composing this with a grope
immersion gives an immersion of S , well-defined up to regular homotopy. As
remarked above, total contractions give explicit descriptions of such immersions.

1.4 Transverse spheres and gropes A transverse sphere for a surface in
a 4–manifold is a framed immersed sphere that intersects the surface in a single
point, see [3, Section 1.9]. Similarly a transverse grope is an immersed sphere-
like grope that intersects the surface in one point, and this point is in the base
of the grope. Note that totally contracting a transverse grope gives a transverse
sphere.

In a grope, every surface component not part of the base has a standard trans-
verse grope. This is constructed in S × D2 (S is the original surface, or the
total contraction), so there is a copy inside any neighborhood of the spine. This
was a key part of Freedman’s original constructions of convergent gropes. The
tight transverse grope for a surface component A is obtained as follows. Let B
be the next surface down, so A is attached to B along a circle. Let H be the
subgrope dual to A. The base of the transverse grope is the torus obtained as
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the normal S1 bundle to B , restricted to a parallel of the attaching curve of
H . To this we add a parallel copy of H itself, and a D2 fiber of the normal
disk bundle of B . The result is a sphere-like grope, see Figure 2. Connected
sum with this grope gives the “lollipop” move of [4].

H , subgrope dual to A

A B

torus around
∂H

normal
disk

intersection of torus with A

parallel of H , attached
to torus

Figure 2: Tight transverse grope

The tight transverse grope has two points of intersection with the grope: one
is the (desirable) intersection between the base torus and A. The other is
the intersection of the normal-disk cap with B . Usually we avoid this one by
contracting away from this cap. (See 1.2. Recall that this discards the normal-
disk cap, cuts the torus along the boundary of the parallel of H , and fills in
with two copies of H .) This contraction is the “loose” or standard transverse
grope. It is described in [3, Section 2.6], and sums with it give the “double
lollipop” move of [4].

Finally, transverse spheres for A are obtained by totally contracting the loose
transverse grope.

We repeat here the warning of [3, Section 2.6]. If H+ , H− are dual subgropes
then the construction gives transverse gropes for the bottom-level surfaces in
both. However these two gropes intersect each other, which in practice means
they cannot be used simultaneously. (This is a mistake in [4].) This problem
can be partially avoided by using them sequentially, see [3, Section 2.7].

Lemma The spheres obtained by totally contracting loose transverse gropes
bound embedded 3–disks in S ×D2 . Thus connected sum with these spheres
changes a surface by regular homotopy.
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Proof To see this begin with the tight grope and totally contract the copy of
H . This gives a torus with two caps. The torus bounds a solid torus (the D2

bundle over the attaching circle of H ) disjoint from the H cap. Attach to this
solid torus a D2 × I thickening of the H cap. The result is a 3–disk whose
boundary is the transverse sphere.

2 Dyadic branches and splitting

A disk-like grope is dyadic if all component surfaces are either disks or punc-
tured tori. This means each non-cap surface has exactly one pair of dual sub-
gropes attached to it. A grope has dyadic branches if all of the subgropes above
the base level are dyadic. The benefits of dyadic branches are especially simple
contractions and simpler tracking of their interactions. In 2.3 we describe the
splitting construction, which converts any grope into one with dyadic branches.
Later in the section it is used further to set up a (dyadic) situation in which
product information in π can be exploited.

2.1 Contraction of dyadic gropes When a grope is contracted caps are
discarded. In a total contraction most get discarded. Dyadic gropes are special
in that there are total contractions in which all but one of the caps are discarded.
Since intersections occur among caps, discarding them simplifies intersection
data. Discarding all but one gives the greatest possible simplification of the
data.

To be explicit, suppose C is a cap in a dyadic branch. The total contraction
across C is defined as follows: C lies in one of the dual subgropes in the branch;
form the contraction across this subgrope. The result has two dyadic branches
parallel to the subgrope, so each contains a parallel copy of C . Repeat this
construction, contracting each new branch across the subgrope containing the
copy of C . Each iteration doubles the number of copies of C , and reduces
their height above the base by 1. If the original height of C is k , then total
contraction eliminates the branch and subsitutes 2k parallel copies of C in the
base surface.

2.2 Pushing down and back up Suppose C1 , C2 are distinct caps in a
dyadic branch in a grope. We construct a transverse sphere for C1 that contains
parallel copies of C2 , and otherwise lies in a small neighborhood of the body
of the grope. Suppose a surface W intersects C1 . Then adding copies of this
transverse sphere to remove the intersection points will be called pushing W
down off C1 and back up across C2 . Reasons for the terminology are:
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(1) “pushing” because the new surface is regularly homotopic to W ;

(2) “off C1” because intersections with C1 have been removed; and

(3) “across C2” because the modified surface contains parallel copies of C2 ,
and will therefore intersect anything C2 intersects.

We now construct the transverse sphere. Let H1 and H2 be dual subgropes
in the branch, so that H1 contains C1 and H2 contains C2 . Let T̂ be the
tight transverse grope for the bottom surface of H1 . This is a dyadic sphere-
like grope with a cap parallel to C2 ; let T be the sphere obtained by totally
contracting T̂ across this cap. T contains 2j parallels of C2 , where j is the
height of C2 in H2 . If H1 = C1 then this is the desired sphere. Otherwise
take a 2–sphere fiber of the normal sphere bundle of the attaching circle of C1 .
This 2–sphere intersects C1 in one point and intersects the surface to which
it is attached in two points. Push these latter points down in the grope to
the bottom surface of H1 . If C1 has height k in H1 then there will be 2k

intersection points there. Remove all these by connected sum with parallels of
the sphere T . This gives the desired transverse sphere for C1 . Note that all
together this sphere has 2j+k copies of C2 .

This transverse sphere bounds a 3–disk in the model. To see this, first note
that T does by Lemma 1.4. The fiber of a 2–sphere bundle bounds the fiber
of the associated 3–disk bundle, and the isotopy pushing the boundary down
in H1 pushes the 3–disk too. Finally the boundary sum of a bunch of 3–disks
gives a 3–disk whose boundary is the connected sum of spheres. It is easy to
see that the 3–disk obtained this way is embedded.

Since the sphere bounds an embedded 3–disk, connected sum with the sphere
changes surfaces by regular homotopy.

2.3 Splitting gropes The splitting operation splits a surface into two pieces,
at the cost of doubling the dual subgrope. It can be used to decompose branches
into dyadic branches, and can separate intersection points distinguished by
properties unaffected by the dual doubling.

Suppose A is a component surface of a grope, not part of the base. Let B
be the surface it is attached to, and H the dual subgrope. Now suppose α
is an embedded arc on A, with endpoints on the boundary, and disjoint from
attaching circles of higher stages. In the 3–dimensional model, sum B with
itself by a tube about α (the normal S1 bundle), and discard the part of A
that lies inside the tube. This splits A into two components. H is a dual for
one component; obtain a dual for the other by taking a parallel copy of H . See
Figure 3.
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H , dual to A

arc on A

parallel copies of H

A, split

Figure 3: Splitting

Lemma Any grope can be transformed by iterated splitting to one with dyadic
branches. If no caps are split, and all caps in the result are parallel copies of
the original caps, then the result is well-defined up to isotopy.

Proof The splitting is done by induction downward from the caps. Suppose
all subgropes of height ≤ k that do not include a component of the base are
dyadic. To start the induction note that this is true for k = 0. For the induction
step choose splitting arcs on base surfaces of subgropes of height k+1, provided
this surface is not part of the global grope base. Choose the arcs so that each
component of the complement has genus 1. Splitting one surface may double
another, so we choose an order to ensure the process terminates. First split all
surfaces whose dual subgrope has height ≤ k . These duals are already dyadic,
so doubling does not introduce nondyadic subgropes. Second, split one in each
dual pair where both subgropes have height k + 1. Nondyadic subgropes are
introduced by doubling the dual. However these all now have dyadic duals.
Thus splitting them does no further harm. After that we proceed by induction
in m, splitting surfaces whose duals have height k +m. Previous steps ensure
the height–(k + 1) subgropes of the duals are already dyadic, so the doubling
of the dual does not introduce new nondyadic subgropes of that height. This
proves the existence of dyadic splittings.

This process can be seen as an expansion of a product of sums. Suppose H1

and H2 are dual subgropes, and each has a base surface of genus 2. This means

Subexponential groups in 4-manifold topology

Geometry and Topology, Volume 4 (2000)

415



each has two branches, say Hi,1 and Hi,2 . Think of a grope as a sum of its
branches, so H1 = H1,1 +H1,2 . Think of a branch as a product of the two dual
subgropes, so the branch formed by the Hi becomes

H1 ∗H2 = (H1,1 +H1,2) ∗ (H2,1 +H2,2).

Splitting converts this into four branches:

H1,1 ∗H2,1 +H1,2 ∗H2,1 +H1,1 ∗H2,2 +H1,2 ∗H2,2.

This formulation extends to represent an entire grope as an iterated composition
of polynomials in its caps. Splitting corresponds to rewriting this composition
as a sum of monomials. We caution, however, that the “algebra” of caps is not
associative or commutative.

The uniqueness for minimal dyadic splittings can easily be proved by formally
following the proof of uniqueness of monomial expansions of iterated polyno-
mials. We omit this since we have no application for it.

2.4 Splitting and labeling caps Suppose there are several different “types”
of intersection points on a cap. We can separate the types by arcs, then split
along the arcs to get caps containing only one type of point. Other caps get
doubled during this process, so for it to succeed “type” must be defined so that
new intersections with parallel copies of a cap have the same “type.” We apply
this principle to get uniform local patterns of intersection invariants.

DATA To facilitate the definition of invariants we now require every grope
branch to have dyadic labels, and a path to the basepoint. (This last is not
necessary if the grope is modeled on a simply-connected surface, ie, D2–like, or
S2–like).

Dyadic labels are obtained as follows: for each dual pair of surfaces, label one
by 0 and the other by 1. A cap gets a label by reading off the sequence of 0 or
1s encountered in a path going from the base to the cap. In a dyadic branch
the labels uniquely specify the caps, since at each level there are only two ways
to go up and these are distinguished by the labels. When branches are split the
fragments inherit labelings and paths to the basepoint in the evident ways, so
this data is preserved.

The following is the first application of splitting to simplify cap types. It will
be iterated in later constructions.

Lemma A grope whose branches have dyadic labels and paths to the basepoint
can be split so that it has dyadic branches and each cap satisfies:
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(1) there are no self-intersections;

(2) all caps intersecting the given one have the same label; and

(3) the fundamental group classes of the loops through the intersection points
are the same.

Further, the subset of π1M occuring as double point loops is the same as that
of the original grope.

We clarify that condition (2) requires all the intersecting caps to have the same
label, but this may be different from the label of the cap being intersected. The
loops in (3) go from the fixed cap to the others. In detail they go along the path
from the basepoint and up through the branch to the fixed cap, through the
intersection point to the other cap, then back down and back to the basepoint.
Note that viewing an intersection point from the other cap reverses this path,
so gives the inverse element in π1M .

Proof In each cap choose arcs to separate intersection points into sets, so
that self-intersection points are separated, and all points in a set have the same
group element and intersect caps with the same label. Initially these sets may
each contain only one point. Now split to separate all these sets, and continue
splitting to obtain dyadic branches. If parallel copies of a cap are used before
it is split then use parallels of the chosen splitting arcs in these copies. An
argument similar to the proof of Lemma 2.3 shows that this process terminates.

The doubling involved in splitting means that each original intersection point
bifurcates to many intersections with parallels of pieces of the other cap. How-
ever by the way labels are chosen in splittings all these pieces will have the same
label as the original. Similarly they have the same group element. Therefore
the end result has the properties specified in the lemma.

2.5 Intersection types We iterate the construction of 2.4 to arrange all
intersections with a given cap to have the same “type” in more elaborate
senses. The first definition formalizes the situation of 2.4, the next inductively
extends it.

Definition 1–types

(1) A 1–type is a function from a set of dyadic labels to pairs (α, x) with
α ∈ π1M and x a dyadic label;

(2) a dyadic branch has 1–type ρ if
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(a) the domain of ρ is the set of labels on caps in the branch; and
(b) if y is a cap label and ρ(y) = (α, x), then all caps intersecting y

have label x, and all intersection points have π1 element α.

The output of Lemma 2.4 is a grope each of whose branches has a 1–type.

Definition n–types If n > 1 then

(1) An n–type is a function from a set of dyadic labels to pairs (α, x) with
α an (n− 1)–type and x a dyadic label;

(2) a dyadic branch has n–type ρ if

(a) the domain of ρ is the set of labels on caps in the branch; and
(b) if y is a cap label and ρ(y) = (α, x), then all caps intersecting y have

label x, and the branches containing these caps have (n − 1)–type
α.

Branches with 1–types have uniform intersections with adjacent branches. Bran-
ches with n–types have uniform patterns of intersection going out through
chains of n branches, see Figure 4.

B

x

y

y

x

z

z

w

v
v

y

y

z

z

Figure 4: Example: the branch B of a capped surface has a 2–type if (1) all “x− y”
intersections determine the same element in π1M , (2) the dyadic cap labels v and w
coincide, and (3) all “z− v” and “z−w” intersections determine the same element in
π1M . The second figure shows a collision at distance 2.
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Lemma

(1) If a branch with an n–type is split into dyadic branches, then each of
these has the same n–type.

(2) Any grope can be split to one in which every branch has an n–type.

Proof The first statement is straightforward. Statement (2) proceeds by in-
duction, with Lemma 2.4 starting the induction with n = 1.

Suppose that each branch has an (n − 1)–type. Associate to each intersection
point on a cap the (n − 1)–type of the branch intersected. Choose arcs in the
cap to separate these points into sets, so that all the points in each set have
the same type. Do this for every cap, then split along these arcs and continue
splitting to get dyadic branches. Note that each intersection point in the original
may bifurcate into a large number of intersections with fragments of splittings.
However since (by (1)) all these fragments have the same (n− 1)–type, we end
up with all branches intersecting a cap having the same (n − 1)–type.In other
words the branch has an n–type, and the conclusion of the lemma holds.

2.6 Collisions The construction of 2.4 separates self-intersections and makes
π1 classes of intersections uniform. The construction of 2.5 extends the uni-
formity out to distance n from each branch. Here we similarly extend the
self-intersection condition out distance n, see Figure 4.

Definition A collision at distance n from a branch B is a sequence of dyadic
labels (xi, yi) and two sequences of branches B1,i , B2,i for 1 ≤ i ≤ n so that

(1) B = B1,1 = B2,1

(2) for each i < n and j = 1 or 2, there is an intersection between the xi
cap of Bj,i and the yi cap of Bj,i+1 ; and

(3) the xn cap of B1,n transversally intersects the xn cap of B2,n .

We will see that if the branches have n–types then the only “unexpected”
intersections that can occur must satisfy these conditions.

Lemma Given n and a grope, there is a splitting so that there are no collisions
at distance≤ n.

Proof This proceeds by induction in n. A collision at distance 1 is just a self-
intersection in a cap, so Lemma 2.4 starts the induction with n = 1. Suppose
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there are no collisions at distance n − 1. If there is a collision at distance n
then there are sequences of branches and labels as specified in the definition. If
B2,1 = B2,2 then there would be a collision at distance n− 1, so the induction
hypothesis implies these are distinct. Their intersection points with the cap in
B must also be distinct. If we split the cap to separate these points we avoid the
collision, or more precisely, we postpone it to distance n+1. Moreover splitting
does not introduce new collisions at shorter distances. The induction step thus
proceeds by choosing arcs to separate any points that lead to a collision at
distance n, and splitting along these.

3 Groups with subexponential growth

A group π is said to have subexponential growth if given any finite subset S ⊂ π
there is n so that the set of all products of length n of elements of S determine
fewer than 2n elements of the group. The formulation we actually use is a
variation on this.

Lemma Suppose π has subexponential growth and S is a finite subset of π .
Then the n specified in the definition also has the property:

(1) suppose T is a rooted tree so that all leaves have distance n from the
root,

(2) each vertex of T , other than the leaves and the root, has valence ≥ 3,
and

(3) each edge of T is labeled with an element of S .

Then there is a path in T with distinct endpoints, so that the product of
elements along the path gives 1 ∈ π .

Proof First a few clarifications. The distance of a leaf from the root is the
number of vertices with valence at least 3 (so branching actually occurs) between
the leaf and root. Orient each edge to go toward the leaves. Then the “product
of elements along a path” is the product either of the label or its inverse,
depending on whether the path has the same or opposite direction as the edge.

For each leaf we get an element of π by taking the product of elements along
the path from the root to the leaf. By the distance condition there are at
least 2n leaves. The choice of n implies that there are two leaves with the
same associated product. Since reversing the direction of the path inverts the
product, the path from one of these leaves to the root, then back out to the
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other leaf, has total product 1. The geodesic (unique embedded path) between
these leaves also has product 1. Note that the maximum length of this path
is 2n.

4 Proof of the theorem

The initial data is a properly immersed grope G→M4 of height at least 2, and
ρ: π1M → π with π of subexponential growth. We also allow self-intersections
of the base of the grope, provided their loops have trivial image in π .

Choose dyadic labelings for the branches of G, and paths from branches to
the basepoint of M . Let S be the set of images in π of π1 classes of double
point loops in G, as in 2.4. Let n be the integer associated to S by the
subexponentiality of π .

Use Lemmas 2.5 and 2.6 to split G so that it has dyadic branches, each branch
has a 2n–type, and there are no collisions at distance 2n or less. Note that
having 2n–types and having no collisions ≤ 2n are both preserved under further
dyadic splitting, so doing one construction and then the other gives a grope with
both properties.

Note that if a branch has a cap with no intersections, then we can totally
contract across that cap. This eliminates the branch without introducing any
new intersections. Repeating this reduces to the case where all caps have an
intersection point.

4.1 Branches with trivial product We now claim that if there are any
branches at all then there is a path going from branch to branch through at
most 2n intersection points, so that the image in π of the corresponding loop
is trivial.

Pick some branch, and define a tree as follows: At the first stage attach an edge
to the root corresponding to each cap of the chosen branch. Label the edge by
the image in π of the π1 class of the intersection points on the cap. Associate
to the vertex at the outer end of the edge the (2n − 1)–type of the branches
intersecting the cap. Recall that according to the definition of 2n–type, all of
these branches have the same (2n− 1)–type.

We now do the induction step. Suppose we have gone out distance k , with edges
associated to intersecting caps and labeled by corresponding elements of π , and
with vertices at this distance labeled by (2n− k)–types. Since the edge coming
in to such a vertex comes from intersecting caps, it corresponds to one of the
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dyadic cap labels in the vertex type. Attach outgoing edges corresponding to
the other cap labels, label them with images in π of the π1M elements provided
by the 1–type, and associate to the new vertices the (2n−k−1)–type provided
by the (2n− k)–type and the cap label. The number of edges at a vertex is the
number of caps in the branch. If the grope has height ≥ 2 then there are at
least 4 caps in each branch. Since the Lemma of section 3 only requires 3 edges
we see that the proof works for gropes with height “3/2”. By this we mean
each branch consists of a cap on one side and a grope of height 1 on the other.

This inductive construction continues until we reach k = 2n, but in fact we
only use the tree out to distance n.

For each branch we now have a tree of radius n, with root corresponding to
this branch, and with edges labeled by elements of π . According to the Lemma
of Section 3 there is a path in this tree with trivial product. The geodesic with
the same endpoints has length ≤ 2n and still has trivial product.

This verifies the claim of 4.1 in general. There is a minor sublety in that this
path was constructed from abstract patterns in the type, so we must check that
it is realized by a sequence of actual intersections. (Recall that a type requires
that if there are any intersections then they satisfy certain conditions, but
does not require that there be any). The types were originally constructed to
correspond to actual intersections, so the only way this can fail is that previous
steps have contracted away all the branches that used to lie at some point along
the path. However in this case there must be branches with free caps somewhere
along the path between this point and the root. This contradicts the standing
assumption that all branches with free caps have already been contracted. The
conclusion is that if there are any branches at all remaining then paths in these
trees are realized by actual intersections.

4.2 Eliminating branches The next step is to eliminate the branch at the
beginning of a path of the type found in 4.1, without changing any of the global
data (2n–types, etc.) The path gives us a sequence of branchesBi and dyadic
labels (xi, yi) so the xi cap in Bi intersects the yi cap in Bi+1 . Further, if αi
is the image in π of the loop through this intersection then the product Πiαi is
trivial. This is true for one path of intersections starting at B1 . However since
B1 has a 2n–type it will also be true for all paths starting at B1 and following
the same pattern of dyadic labels.

Totally contract B1 through the cap x1 . This eliminates B1 , but introduces
intersections between the base and the y1 caps of adjacent branches, and these
have π images α1 . Push these intersections down and back up through the
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x2 caps (see 2.2 for the definition of this operation). This eliminates these
intersections, but introduces intersections between the base and the y2 caps
of branches of distance 2 from B1 . These new intersections all have the same
associated π elements because B1 had a 2n–type, and by construction this
element is α1α2 . Note that the branch B2 (and all other branches that used to
intersect the cap x1 ) now has a free cap y1 , which does not intersect anything
else. Totally contract these branches along y2 , thus reducing the genus of the
base without introducing any new intersections.

Continue in this fashion,pushing yi intersections down and back up across xi+1 ,
thereby introducing intersections with yi+1 caps at distance i+ 1. As soon as
the cap yi frees up, totally contract the branch Bi+1 along it. At the end of
the path all the base–cap intersections will have the same image in π , which by
choice of the path is 1. Push these intersections down off branches to the base.
They now are base–base intersections with loop image 1.

We must check that this construction does not introduce any new base–base
intersections until the base–cap intersections are pushed down at the end. The
first step, total contraction of B1 across a cap, gives an embedded disk because
caps have no self-intersections. Inductively suppose no new base–base intersec-
tions have occurred in step k . In each individual branch pushing down and back
up does not introduce intersections. This is because the transverse sphere used
for the operation is embedded. This in turn follows from the requirement that
the path be a geodesic in the tree, so it enters and exits each branch through
different caps, and there are no self-intersections in the cap it exits through.
Thus the only way intersections can arise is if exit caps on different branches
intersect. This, however, gives a collision in the sense of 2.6. All collisions of
distance up to the length of the path were eliminated by splitting, so they stay
disjoint.

Eliminating a branch in this way eliminates all intersections with its caps. After
doing this we check to see if this leaves branches with caps without intersections.
If so contract these repeatedly until none are left. If there are any branches
left after this then repeat the main step (4.1, 4.2). Eventually all branches are
eliminated, leaving a surface satisfying the conclusions of the theorem.
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Appendix: Clarification of linear grope height raising

M Freedman

P Teichner

Slava Krushkal and Frank Quinn recently brought to our attention misstate-
ments in the proof of our linear grope height raising procedure which we pub-
lished in 1995 [4]. This appendix replaces pages 518–522 of that paper with
a proof along the same lines but with correct details. The main difference is
that we are more careful in which order we add surface stages. This resolves in
particular the problem of how to deal with intersections that involve a dual pair
of circles on a surface stage: Even though the “key point” in the middle of page
521 is not true as stated (the Borromean rings are not slice after all), the inter-
sections that arise can be dealt with by picking an order and correspondingly
decreasing the scale of the relevant lollipops.

We also reformulate the final word length count in terms of coarse geometry,
mainly for clarity but also for possible future use.

Since the “warm up” and “warm down” parts of the proof of Theorem 2.1 in
[4] are correct, it suffices to explain the core construction and show that the
word length grows linearly. More precisely, we prove the asserted estimate for
the word length

(∗) `(g•k+r) ≤ 2r + 1

in terms of the double point loops of Gk . In the last paragraph on page 522 this
assertion is correctly used to finish the proof of Theorem 2.1. We now begin
the revision on the top of page 518:

As we start the core construction we have a Capped Grope Gc := Gck of height
k ≥ 3. The inductive set up is a Grope Gh−1 of height h − 1 ≥ k and an
embedding (Gh−1, γ) ↪→ (Gc, γ). One works with the spines, proceeding from
gh−1 to gh by adding a finite number of connected surfaces Σ(t) to gh−1 . To
underline the importance of the order in which the surfaces Σ(t) are attached,
we write

gh−1 =: g(0) ⊂ g(1) ⊂ g(2) ⊂ . . . ⊂ g(n) = gh

where g(t) := g(t− 1) ∪Σ(t). Even though technically the g(t) are not gropes
(since they have heights in between h − 1 and h), we will still consider them
as such. In particular, each g(t) will be thickened to a “Grope” G(t). The
surfaces Σ(t) are obtained in two steps:
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• Step 1 finds surfaces Σ′(t) which have (illegal) self-intersections and in-
tersections with grope stages at various heights, but only above

Y := base stage ∪ second stage surfaces Σ1 ∪ {Σ2} of G.

The subspace Y is protected in the construction so that the dual spheres
{S} will remain geometrically dual to {Σ2}, the second stages of G, and
disjoint from everything else.

• Step 2 only changes the surface Σ′(t) to Σ(t), removing double points
with itself and with earlier stages (and in the process increases the genus
of the surface).

Every application of Step 1 involves choosing some obvious surface (often a disk)
so, formally, the presence of these obvious surfaces is an inductive hypothesis
which must be propagated in passing from gh−1 to gh . The surfaces Σ′(t) for
Step 1 are of three types:

(1) “parallel” copies of the initial caps gc r g ,

(2) meridional disks to some surface stages of g(t− 1), and

(3) “parallel” copies of stages of the original Grope G.

Every application of Step 2 is accomplished by a finite number of moves called
a lollipop move or a double lollipop move. The Step 2 algorithm removes all
self-intersections and intersections of Σ′(t) (in a particular order) to produce
the surface Σ(t). The caps gch r gh , necessary to define `(gh), are constructed
last and in two steps. The preliminary caps cross all grope stages above Y
(stages ≥ 3); these are refined to caps disjoint from the grope using the dual
spheres {S}.

We next explain the central move in our grope height raising procedure. Ev-
ery surface stage Σ in the Grope G(t − 1) has a symplectic basis of circles
α1, β1, ..αg, βg where g is the genus of Σ, along which higher surface stages or
caps have been attached. We consider tori Tαi , i = 1, . . . , g which are ε normal
circle bundles to Σ in G(t − 1) restricted to αi where ε is a small positive
number depending on Σ. Notice that all these tori are disjoint. Suppose x is
a double point with local sheets S ⊂ Σ′(t) and Sβ ⊂ Σβ , and that the surface
stage or cap Σβ is attached to Σ along β . Symmetrically, if the surface Σ′(t)
intersects Σα then interchange α and β in the next paragraphs.

The lollipop move replaces a disk neighborhood S of x with a slightly displaced
copy of Tα , made by taking normal ε–bundles over a parallel displacement
(depending on x) of α in Σ, boundary connected summed to S along a tube
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which is the normal ε/10–bundle of Σβ in G(t− 1) restricted to an arc λ ⊂ Σβ

from (Tα(displaced))∩Σβ to x. Denote the lollipop by Lα . It is the punctured
torus made by attaching the tube (or stem) to Tα(displaced) , see Figure 2.1 in
[4].

We are now ready to describe the core construction in detail. Let h − 1 = k .
The very first application of Step 1 simply attaches one cap of gc to g . When
regarded as a grope stage the self-intersections in the cap are impermissible and
thus the cap only gives Σ′(1).

We specify that the initial application of Step 2 removes (in some order) all
intersections of Σ′(1) using lollipop moves. This gives Σ(1) and hence g(1).
To obtain Σ(2) one just repeats Step 1 and Step 2 by starting with the next cap.
Note that now the self-intersections of the second cap as well as the intersections
with the first cap have to be removed (in some order) by lollipop moves. In
the same manner, one constructs all surfaces Σ(t) and hence the grope gk+1 .
Here the scale ε of the lollipops is getting rapidly smaller so that they do not
intersect the previously constructed surface stages. This is where the order of
things is relevant.

In subsequent applications of Step 1 we must specify which surfaces we choose
and what the intersections are. Each Lα contains a meridional circle to which
we attach the meridional disk (type (2) above) and a longitude `α (picked
out by the standard framing used to thicken g to G) to which we attach a
surface of type (1)–(3) above. Type (2) arises if `α is the meridional circle
of a previously constructed lollipop. Types (1) or (3) arise if `α is parallel to
a circle on the original grope g . In this case, the new surface or cap is only
crudely parallel in the sense that we need to glue an annulus A to get from
the longitude `α to ∂Σα(displaced) , the attaching circle of a slightly displaced
copy of one of the surfaces or caps of Gc . The surface Σ′(t) is then defined to
be A ∪ Σα(displaced) . The framing assumption of G implies that for type (3)
the surface stage Σα(displaced) will be disjoint from everything constructed
previously, ie from g(t − 1). However, for both types (1) and (3), the annulus
A may intersect many Σ(s), s < t, so that Σ′(t) has many intersections with
g(t − 1). For type (2), Σ′(t) is a meridional disk and it will intersect g(t − 1)
in a single point.

The reader may expect that the next application of Step 2 will use lollipop
moves on Σ′(t) to remove these intersection points. This is part of the picture,
but there is a difficulty. The lollipop moves, if repeated, produce a branch
heading inexorably down G: namely resolving (meridian disk) ∩Σi with a
lollipop capped by a (meridian disk) meeting a Σi−1 lead toward the base
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of G which is Σ1 . There is no way of using a lollipop to remove a point of
(meridian disk) ∩Σ1 . The solution is to use the double lollipop move to resolve
any intersection of a current top stage meridional disk with a third stage surface
Σ3 . This move turns the branch of the growing grope back “upward” to avoid
the bottom part Y .

The double lollipop move removes an intersection x between a surface Σ′(t)
and a third story surface Σ3 . This move replaces a small disk neighborhood
S ⊂ Σ′(t) of x with Lα/Σα . The notation assumes Σ3 attaches to β (otherwise
reverse the labels α and β), Lα is the lollipop made from Tα as describe above,
Σα is the third story surface attached to α and finally Lα/Σα denotes the em-
bedded surface that results by surgering Lα along a parallel copy Σα(displaced)

of Σα , ie, Lα/Σα = (Lα r nbh. of α(displaced))∪ two copies of Σα(displaced) .
Because we have assumed Gc is an untwisted thickening the two copies of
Σα(displaced) are disjoint from each other and from the original Σα .

Now suppose that we have constructed the grope gh−1 . Then the top layer of
surfaces has a natural symplectic basis coming from the original grope g and
the (meridian, longitude) pair on each lollipop. These bound obvious surfaces
Σ′(t) of types (1)–(3) as explained above. Applying Step 2 to these surfaces in
some chosen order, we remove intersection points by a lollipop move except in
the case of intersection with a third stage surface Σ3 in which case a double
lollipop is used. This gives the embedded surfaces Σ(t) and hence an embedded
grope (gh, γ) ↪→ (Gc, γ).

We next check the normal framing. If we assume that each cap has algebraically
zero many self-intersections then all surfaces Σ′(t) are 0–framed. A lollipop
move on a ±–self-intersection changes the relative Euler class by ±2 (this is
best checked in the closed case, S2 × S2 , where adding the framed dual 0× S2

to S2 × 0 gives the diagonal). All other lollipop moves leave the 0–framing
unchanged. Thus the passage to Σ(t) leaves the relative Euler class trivial so
the neighborhood of g(t) agrees with the standard thickening G(t).

To obtain caps {δ} for gh , we examine the symplectic basis for the top stage of
gh . Some of the curves bound meridian disks to earlier stages of the construc-
tion. Some bound “parallel” copies of sub capped gropes of Gc . Contracting,
the latter also yield disks. We set h = k + r and

g•k+r := gk+r ∪ {δ}

The superscript • warns the reader that g•k+r does not satisfy the definition of
a capped grope owing to the cap–grope intersections. These will be removed in
the last step, see the last paragraph of page 522 in [4].
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Let us next bound the word length `(g•k+r) in terms of the original generators
(= double point loops) of the free group F := π1G

c . Recall that we need to
prove

(∗) `(g•k+r) ≤ 2r + 1.

For this purpose, we put a pseudo metric on the universal covering X of Gc .
This is a distance function which still satisfies the triangle inequality but distinct
points may have distance zero. Note that pseudo-metrics can be pulled back by
arbitrary maps which we will use in the construction as follows. First project X
onto the Cayley graph of F such that lifts of the Grope body G map bijectively
onto the vertices and lifts of the plumbed squares in the Caps map bijectively
onto the centers of the edges. Then take a coarse or pseudo version of the usual
path metric on the Cayley graph (in which all edges have length 1) by saying
that edge centers have distance 1/2 from all the vertices the edge meets and that
all path components of the Cayley graph minus the edge centers have diameter
zero. Finally, use the above map to pull this pseudo metric back to X .

For any map f : Y → Gc which is trivial on π1 , we may then measure the
diameter of a lift f̃(Y ) in X . For example, if Y is a model capped grope (ie
with unplumbed caps) such that f(Y ) = g•k+r then the diameter of f̃(Y ) is
just the word length `(g•k+r).

If Y happens to be a disk, surface or (capped) grope such that ∂Y maps to G,
it is very useful to consider the radius of f̃(Y ) around the “point” f̃(∂Y ). This
uses the fact that each lift of G projects onto a vertex in the Cayley graph of F
and thus has radius zero itself. For example, if Y is a disk mapping onto a cap
of Gc which has one self-intersection, then the radius of f̃(Y ) is 1/2 whereas
the diameter is 1.

Let Xr be a lift of gk+r to X and let Xc
r := f̃(Y ) where f(Y ) = g•k+r as above.

Then the triangle inequality shows that radius(Xc
r ) ≤ radius(Xr) + 1/2 and

hence

`(g•k+r) = diam(Xc
r ) ≤ 2 · radius(Xc

r) ≤ 2 · radius(Xr) + 1.

It thus suffices to check that radius(Xr) ≤ r . This in turn follows by the
triangle inequality (applied to the usual tree structure of the grope gk+r ) from
knowing that the radii of all S(t) are ≤ 1. Here S(t) are lifts to X of the
surfaces Σ(t) used in the construction of gk+r and the radii are again measured
w.r.t. ∂S(t).

We prove that radius S(t) ≤ 1 by induction on t: Recall that the first surface
Σ(1) was obtained by applying lollipop moves to the first cap of Gc . Before the
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lollipop moves, we can lift the (unplumbed) cap to X and as explained above
it has radius 1/2 (if the cap is embedded then the radius is zero but we won’t
consider this easy case). The lollipops then increase this radius to at most 1,
independently of how many are used. This follows from the triangle inequality
applied to the decomposition of each lollipop into its stem and body (or toral
piece). The body has diameter zero since it lies in G whose lift projects to a
vertex. The stem has by definition diameter 1/2 since it leads from a plumbed
square to the base of the cap.

Now assume by induction that radius S(s) ≤ 1 for all s < t. Let S′(t) be a
lift to X of Σ′(t). If Σ′(t) is of type (2) or (3) then the radius of S′(t) is zero
since it lies in a lift of G. For every intersection point of Σ′(t) with g(t − 1)
we add a lollipop or a double lollipop to obtain Σ(t). Only the stems of these
(double) lollipops will contribute to the radius of S(t) since the bodies lie in
G. The induction hypothesis implies that all these stems have diameter ≤ 1
and thus we are done in this case.

Finally, consider the case where Σ′(t) has type (1), ie is a “parallel” cap. Then
its radius is 1/2 as explained above. For every self-intersection of Σ′(t) and
every intersection point of Σ′(t) with g(t − 1) we add a lollipop to obtain
Σ(t) (note that double lollipops don’t occur for caps). Again, only the stems
of these lollipops will contribute to the radius of S(t). There are two types
of lollipops: One type removes self-intersections and intersections with surface
stages of g(t−1) that come from the caps of gc . As for Σ(1) the corresponding
lollipop stems have diameter 1/2 and thus can only increase the radius to 1.
The other type of lollipops remove intersections of the annulus A = (collar of
∂Σ′(t)). This means that, as far as our pseudo metric can measure, the stems
of the lollipops start essentially on ∂Σ′(t) which is the base point with respect
to which we measure the radius. By the induction hypothesis these stems can
only bring the radius up to 1.

Note added in proof Slava Krushkal has pointed out that in the above proof,
the “warm-up” and “warm-down” steps can be replaced by the following easier
and shorter argument:

Do the core construction on the originally given Capped Grope of height k ≥ 2,
preserving only the bottom surface Σ1 instead of the first two stages Y as done
above. (No dual spheres need to be constructed.) After the core construction,
we have a Capped Grope of height k+ r and word length ≤ 2r+ 1, with many
cap–body intersections but caps are disjoint from the bottom surface Σ1 . Now
do symmetric contraction of the bottom surface. This requires taking parallel
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copies of whatever is attached to it, and reduces the height of the entire Capped
Grope by 1. Then push all cap–body intersections down and off the contraction.
This at most doubles the estimate on the double point loop length and thus
leads to a clean Capped Grope of height k + (r − 1) and word length

≤ 2(2r + 1) = 4(r − 1) + 6.

Thus linear grope height raising is established.
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