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442 Clifford Henry Taubes

1 Introduction

This article presents a proof of a cited but previously unpublished Mayer–
Vietoris theorem for the Seiberg–Witten invariants of four dimensional mani-
folds which contain certain embedded 3–dimensional tori. This Mayer–Vietoris
result is stated in a simple, but less than general form in Theorem 1.1, below.
The more general statement is given in Theorem 2.7. Morgan, Mrowka and
Szabó have a different (as yet unpublished) proof of this theorem. The various
versions of the statement of Theorem 2.7 have been invoked by certain authors
over the past few years (for example [16], [5, 6], [12]) and so it is past time for
the appearance of its proof.

Note that when the 4–manifold in question is the product of the circle with
a 3–manifold, then Theorem 2.7 implies a Mayer–Vietoris theorem for the 3–
dimensional Seiberg–Witten invariants. A proof of the latter along different
lines has been given by Lim [10].

The formulation given here of Theorems 1.1 and 2.7 is directly a consequence of
conversations with Guowu Meng whose conceptual contributions deserve this
special acknowledgment here at the very outset.

By way of background for the statement of Theorem 1.1, consider a compact,
connected, oriented 4–manifold with b2+ ≥ 1. Here, b2+ denotes the dimension
of any maximal subspace of H2(X;R) on which the cup product pairing is
positive definite. (Such a subspace will be denoted here by H2+(X;R).)

When b2+ > 1, then X has an unambiguous Seiberg–Witten invariant. In its
simplest incarnation, the latter is a map from the set of SpinC structures on X
to Z which is defined up to ±1. Moreover, the sign is pinned with the choice
of an orientation for the real line LX which is the product of the top exterior
power of H1(X;R) with that of H2+(X;R). The Seiberg–Witten invariants in
the case where b2+ = 1 can also be defined, but with the extra choice of an
orientation for H2+(X;R). In either case, the Seiberg–Witten invariants are
defined via an algebraic count of solutions to a certain geometrically natural
differential equation on X . (See [22], [11], [8].)

Now, imagine that M ⊂ X is a compact, oriented 3–dimensional submanifold.
Supposing that M splits X into two manifolds with boundary, X+ and X− ,
the problem at hand is to compute the Seiberg–Witten invariants for X in a
Mayer–Vietoris like way in terms of certain invariants for X+ , X− and M .
Such a formula exists in many cases (see, eg, [9], [15], [13], [17].) Theorem 1.1
addresses this problem in the case where:
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The Seiberg–Witten invariants and 4–manifolds with essential tori 443

• M ⊂ X is a 3–dimensional torus.

• There is a class in H2(X;Z) with non-trivial restriction to H2(M ;Z).

To consider the solution to this problem, invest a moment to discuss the struc-
ture of the set, S(X), of SpinC structures on X . In particular, remark that
for any oriented 4–manifold X , this set S(X) is defined as the set of equiva-
lence classes of pairs (Fr, F ), where Fr → X is a principal SO(4) reduction
of the oriented, general linear frame bundle for TX , while F is a lift of Fr
to a principal SpinC(4) bundle. In this regard, remember that SO(4) can
be identified with (SU(2) × SU(2))/{±1} in which case SpinC(4) appears as
(SU(2) × SU(2) × U(1))/{±1}. Here, SU(2) is the group of 2 × 2, unitary
matrices with determinant 1 and U(1) is the circle, the group of unit length
complex numbers. In any event, since SpinC(4) is an extension of SO(4) by the
circle, any lift, F , of Fr , projects back to Fr as a particularly homogeneous
principal U(1) bundle over Fr .

One can deduce from the preceding description of S(X) that the latter can be
viewed in a canonical way as a principal H2(X;Z) bundle over a point. In
particular, S(X) can be put in 1-1 correspondence with H2(X;Z), but no such
correspondence is natural without choosing first a fiducial element in S(X).
However, there is the canonical ‘first Chern class’ map

c : S(X)→ H2(X;Z), (1)

which is induced by the homomorphism from SpinC(4) to U(1) which forgets
the SU(2) factors. With respect to the H2(X;Z) action on S(X), the map c
obeys

c(es) = e2c(s), (2)

for any e ∈ H2(X;Z) and s ∈ S(X). Here, and below, the cohomology is
viewed as a multiplicative group. Note that (2) implies that c is never onto,
and not injective when there is 2–torsion in the second cohomology. By the
way, c’s image in the mod 2 cohomology is the second Stiefel–Whitney class
of TX .

In any event, if X is a compact, oriented 4–manifold with b2+ > 1, then the
Seiberg–Witten invariants define, via the map c in (1), a map

sw: H2(X;Z)→ Z,

which is defined up to ±1 without any additional choices. That is, sw(z) ≡∑
s:c(s)=z sw(s), where sw(s) denotes the value of the Seiberg–Witten invariant

on the class s ∈ S(X). Note that sw = 0 but for finitely many classes in
H2(X;Z) if b2+ > 1.
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Now, for a variety of reasons, it proves useful to package the map sw in a
manner which will now be described. To start, introduce ZH2(X;Z), the free
Z module generated by the elements in the second cohomology. The notation in
this regard is such that the abelian group structure on H2(X;Z) (as a vector
space) is represented in a multiplicative fashion. For example, the identity
element, 1, corresponds to the trivial class, and more generally, the vector
space sum of two classes is represented as their product. With the preceding
notation understood, a typical element in ZH2(X;Z) consists of a formal sum∑
a(z)z , where the sum is over the classes z ∈ H2(X;Z) with a(z) ∈ Z being

zero but for finitely many classes. Thus, a choice of basis over Z for H2(X;Z),
makes elements of ZH2(X;Z) into finite Laurent series.

With ZH2(X;Z) understood, the invariant sw in the b2+ > 1 case can be
packaged neatly as an element in ZH2(X;Z), namely

SWX ≡
∑
z

sw(z)z. (3)

In the case where b2+ = 1, a choice of orientation for H2+(X;R) is needed
to define sw, and in this case the analog of (3) is a ‘semi-infinite’ power se-
ries rather than a finite Laurent series. In this regard, a power series such as∑

z a(z)z is termed semi-infinite with respect to a given generator of H2+(X;Z)
when the following is true: For any real number m, only a finite set of classes
z ∈ H2(X;Z) have both a(z) 6= 0 and cup product pairing less than m with
the generator. In the case of SWX , the choice of a Riemannian metric and
an orientation for H2+(X;Z) determines the generator in question. However,
SWX does not depend on the metric, it depends only on the chosen orientation
of H2+(X;R). The associated, extended version of ZH2(X;Z) which admits
such power series will not be notationally distinguished from the original. In
any event, when b2+ = 1, the extra choice of an orientation for H2(X;R) yields
a natural definition of sw so that (3) makes good sense as an element in the
extended ZH2(X;Z).

Now, suppose that X is a compact, connected 4–manifold with boundary, ∂X ,
with each component of the latter being a 3–torus. Assume, in addition, that
there is a fiducial class, $ , in H2(X;Z) whose pull-back is non-zero in the
cohomology of each component of ∂X . Theorem 2.5 to come implies that
such a manifold also has a Seiberg–Witten invariant, SWX , which lies either
in ZH2(X,∂X;Z) or, in certain cases, a particular extension of this group ring
which allows semi-infinite series. In this case, the extension in question consists
of formal power series such as

∑
z a(z)z where, for any given real number

m, only a finite set of z ’s have both a(z) 6= 0 and cup product pairing less

Geometry & Topology, Volume 5 (2001)



The Seiberg–Witten invariants and 4–manifolds with essential tori 445

than m with $ . (This extension will not be notationally distinguished from
ZH2(X,∂X;Z).) In any event, SW is defined, as in the no boundary case, via
an algebraic count of the solutions to a version of the Seiberg–Witten equations.
This invariant is defined up to a sign with the choice of $ and the sign is fixed
with the choice of an orientation for the line LX which is the product of the
top exterior power or H1(X,∂X;R) with that of H2+(X,∂X;R). Even in the
non-empty boundary case, SW is a diffeomorphism invariant.

By way of an example, the invariant SW for the product, D2 × T 2 , of the
closed, 2–dimensional disk with the torus is t(1 − t2)−1 = t + t3 + · · · , where
t is Poincaré dual to the class of the torus. For another example, take n to be
a positive integer and let E(n) denote the simply connected, minimal elliptic
surface with no multiple fibers and holomorphic Euler characteristic n. The
invariant SW for the complement in E(n) of an open, tubular neighborhood
of a generic fiber is (t− t−1)n−1 , where t is the Poincaré dual of a fiber.

With the description of SW in hand, a simple version of the promised Mayer–
Vietoris formula can be stated. In this regard, mind that certain pairs of ele-
ments in ZH2(X,∂X;Z) can be multiplied together as formal power series. The
multiplication rule used here is the evident one where (

∑
z a(z)z)·(

∑
z a
′(z)z) ≡∑

z[
∑

(w,x):wx=z a(x)a′(w)]z .

Theorem 1.1 Let X be a compact, connected, oriented, 4–manifold with
b2+ = 1 and with boundary consisting of a disjoint union of 3–dimensional tori.
Let M ⊂ X be an embedded, 3–dimensional torus and suppose that there is a
fiducial class $ ∈ H2(X;R) whose pull-back is non-zero in the cohomology of
M and in that of each component of the boundary of X .

• If M splits X as a pair, X+ ∪ X− , of 4–manifolds with boundary, let
j± denote the natural, Z–linear extensions of the canonical homomor-
phisms from H2(X±, ∂X±;Z) to H2(X,∂X;Z) which arise by coupling
the excision isomorphism with those from the long exact cohomology se-
quences of the pairs X−,X+ ⊂ X . Then j−(SWX−) and j+(SWX+

) can

be multiplied together in ZH2(X,∂X;Z) and

SWX = j−(SWX−)j+(SWX+
).

Here, the orientation for the line LX is induced by chosen orientations for
the analogous lines for X+ and X− . Also, if X is compact and b2+ = 1,
then $ naturally defines the required orientation of H2+(X;R).

• If M does not split X , introduce X1 to denote the complement of a
tubular neighborhood of M in X . In this case,

SWX = j(SWX1
),
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where j is the Z–linear extension of the map from H2(X1, ∂X1;Z) to
H2(X,∂X;Z) which arises by coupling the excision isomorphism with
the natural homomorphism from the long exact cohomology sequence of
the pair M ⊂ X . In addition the orientation for the line LX is induced
by a chosen orientation of the analogous line for X1 . Finally, if X is
compact and b2+ = 1, then $ naturally defines the needed orientation
for H2+(X;R).

As remarked at the outset, this theorem has a somewhat more general version
which is given as Theorem 2.7. The latter differs from Theorem 1.1 in that it
discusses the Seiberg–Witten invariants proper rather than their averages over
2–torsion classes. In any event, Theorem 1.1 follows directly as a corollary to
Theorem 2.7.

When X in Theorem 1.1 has the form S1 × Y , where Y is a 3–manifold, then
the Seiberg–Witten invariants of X are the same as those that are defined for Y
by counting solutions of a 3–dimensional version of the Seiberg–Witten equa-
tions. In this case, Theorems 1.1 and 2.7 imply Mayer–Vietoris theorems for
the 3–dimensional Seiberg–Witten invariants. In particular, the 3–dimensional
version of Theorem 1.1 is stated as Theorem 5.2 in [16]. As noted above, Lim
[10] has a proof of the 3–dimensional version of Theorem 2.7.

Before ending this introduction, a two part elipsis is in order which may or
may not (depending on the reader) put some perspective on the subsequent
arguments which lead back to Theorem 1.1.

Part one of this elipsis addresses, in a sense, a raison d’etre for Theorem 1.1. To
start, remark that the Seiberg–Witten invariants, like the Donaldson invariants
[1], [23], follow the ‘topological field theory’ paradigm where Mayer–Vietoris
like results are concerned. To elaborate: According to the topological field the-
ory paradigm, the solutions to the 3–dimensional version of the Seiberg–Witten
equations associate a vector space with inner product to each 3–manifold; and
then the Seiberg–Witten equations on a 4–manifold with boundary are ex-
pected to supply a vector in the boundary vector space. Moreover, when two
4–manifolds with boundary are glued together across identical boundaries to
make a compact, boundary free 4–manifold, the field theory paradigm has the
Seiberg–Witten invariants of the latter equal to the inner product of the corre-
sponding vectors in the boundary vector space.

Now, the fact is that the topological field theory paradigm is stretched some-
what when boundary 3–tori are present. However, in the situation at hand,
which is to say when there is a 2–dimensional cohomology class with non-
zero restriction in the cohomology of each boundary component, the paradigm
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is not unreasonable. In particular, the relevant boundary vector space is 1–
dimensional and so the topological field theory paradigm predicts that the
Seiberg–Witten invariants of the 4–manifolds with boundary under consider-
ation here are simply numbers. And, when two such 4–manifolds are glued
across identical boundaries, then the Seiberg–Witten invariants of the result
should be the product of the invariants for the pair. This last conclusion is,
more or less, exactly what Theorem 1.1 states.

By the way, the essentially multiplicative form of the Mayer–Vietoris gluing
theorems in [15] have an identical topological field theoretic ‘explanation.’

Part two of this elipsis concerns the just mentioned [15] paper. The latter pro-
duced a Mayer–Vietoris gluing theorem for certain Seiberg–Witten invariants
of a 4–manifold cut along the product of a genus two or more surface and a
circle. In particular, [15] considers only SpinC structures s whose class c(s)
evaluates on the surface to give two less than twice the genus; and [15] states a
gluing theorem which is the genus greater than one analog of those given here.
The case of genus one was not treated in [15] because the genus one case re-
quires some special arguments. This paper gives a part of the genus one story.
Meanwhile, other aspects of the genus one cases, Dehn surgery like gluings in
particular, can be handled using the results in [13].

By the way, a version of the gluing theorem in the surface genus greater than
one context of [15] is used in [14].

The introduction ends with the list that follows of the section headings.

(1) Introduction

(2) The Seiberg–Witten invariants

(a) The differential equation
(b) A topology on the set of solutions
(c) The structure of M
(d) Compactness properties
(e) The definition of the Seiberg–Witten invariants
(f) Invariance of the Seiberg–Witten invariants
(g) The Mayer–Vietoris gluing theorems

(3) Preliminary analysis

(a) Moduli spaces for T 3

(b) Fundamental lemmas
(c) Immediate applications to the structure of M
(d) The family version of Proposition 2.4
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(e) Gluing moduli spaces
(f) Implications from gluing moduli spaces

(4) Energy and compactness

(a) The first energy bound
(b) Uniform asymptotics of (A,ψ)
(c) Refinements for the cylinder
(d) Vortices on the cylinder
(e) The moduli space for R× T 3

(f) Compactness in some special cases

(5) Refinements for the cylinder

(a) The operator Dc when X = R× T 3

(b) Decay bounds for kernel(Dc) when c ∈MP

(c) More asymptotics for solutions on a cylinder
(d) The distance to a non-trivial vortex

(6) Compactness

(a) Proof of Proposition 2.4
(b) Proof of Proposition 3.7
(c) Proof of Proposition 3.9

(7) 3–dimensional implications

This work was supported in part by the National Science Foundation.

2 The Seiberg–Witten invariants

This section provides a review of the definition of the Seiberg–Witten invari-
ants for compact 4–manifolds, and then extends the definition in Theorem 2.5
to cover the cases which are described in the introduction. It ends with the
statement of Theorem 2.7, which is the principle result of this article.

a) The differential equation

In what follows, X is an oriented, Riemannian 4–manifold which can be non-
compact. But, if the latter is the case, assume that there is a compact 4–
manifold with boundary X0 ⊂ X whose boundary, ∂X0 , is a disjoint union of
3–tori and whose complement is isometric to the half infinite cylinder [0,∞)×
∂X0 . To be precise, the metric on the [0,∞) factor should be the standard
metric and the metric on ∂X0 should be a flat metric. (Unless stated to the
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contrary, all metrics under consideration on T 3 will be flat.) The letter ‘s’ is
used below to denote a fixed function on X which restricts to [0,∞)× ∂X0 as
the standard Euclidean coordinate on the factor [0,∞).

With the metric given, a SpinC structure is simply a lift (up to obvious equiv-
alences) to a SpinC(4) principal bundle of the bundle Fr → X of oriented,
orthonormal frames in the tangent bundle to X . Let S0(X0) ⊂ S(X) denote
the subset of SpinC structures s with c(s) = 0 on ∂X0 . Choose a SpinC

structure s ∈ S0(X0).

Associated to s’s principal SpinC(4) bundle F → X are a pair of the C2

vector bundles S± → X as well as the complex line bundle K → X . Here,
S+ arises from the group homomorphism which sends SpinC(4) = (SU(2) ×
SU(2) × U(1))/{±1} to U(2) = (SU(2) × U(1))/{±1} by forgetting the first
SU(2) factor. Meanwhile, S− arises from the homomorphism to U(2) which
forgets the second factor; and K arises by forgetting both factors. Note that
K = det(S+) = det(S−) and the first Chern class of K is the class c(s).

Fix a self-dual 2–form ω on X which is non-zero and covariantly constant on
each component of [0,∞)×∂X0 . This is to say that the restriction of ω to such
a component has the form ω = ds∧ θ+ω0 , where ω0 is a non-zero, covariantly
constant 2–form on T 3 and θ is the metric dual to ω0 .

Consider now the set of smooth configurations (A,ψ) consisting of a connection,
A, on det(S+) and a section ψ of S+ which solve the equations

• P+FA = τ(ψ ⊗ ψ†)− i · ω;
• DAψ = 0;

•
∫
X
|FA|2 <∞.

(4)

The notation in (4) is as follows:

• FA denotes the curvature 2–form of the connection A.
• P+ denotes the metric’s orthogonal projection from the bundle of 2–

forms to the bundle, Λ+ , of self dual 2–forms. (The latter is associated
to the bundle Fr → X via the representation from SO(4) = (SU(2) ×
SU(2))/{±1} to SO(3) = SU(2)/{±1} which forgets the first SU(2)
factor. There is, of course, the bundle, Λ− , of anti-self dual 2–forms that
is obtained via the representation to SO(3) which forgets the second
SU(2) factor.)

• τ denotes the homomorphism from End(S+) = S+ ⊗ S∗+ which is the
hermitian adjoint to the Clifford multiplication homomorphism from Λ+

into End(S+).
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• DA denotes a version of the Dirac operator. In particular, DA is the
first order, elliptic operator which sends a section of S+ to one of S− by
composing a certain A–dependent covariant derivative on S+ with the
Clifford multiplication endomorphism from S+ ⊗ T ∗X to S− . Here, the
covariant derivative is defined from the connection on F which is obtained
by coupling the connection A with the pull-back from Fr of the metric’s
Levi–Civita connection.

• In the last point of (4), the norm and the implicit volume form are defined
by the given Riemannian metric.

A certain algebraic count of the solutions to (4) gives the Seiberg–Witten in-
variants.

b) A topology on the set of solutions

The set of solutions to (4) is topologized as follows: Fix a base connection Ab on
det(S+) which is flat on [0,∞)×∂X0 . With Ab fixed, the set of connections on
det(S+) can be identified with the space of smooth, imaginary valued 1–forms,
i·Ω1 . With the preceding understood, the space of solutions to (4) is topologized
by its embedding in the Fréchet space i ·Ω1⊕C∞(S+)⊕R which sends (A,ψ)
to (A−Ab, ψ,

∫
X |FA|2). In this regard, the vector spaces Ω1 and C∞(S+) are

topologized by the weak C∞ topology in which a typical neighborhood of 0 is
the space of sections which are small in the Ck topology for some finite k on
some compact subset of X .

Note that the group C∞(X;S1) acts continuously on the space of solutions to
(4) if this group is given the weak C∞ Fréchet structure in which a pair of maps
are close if they are Ck close for some finite k on some compact subset of X .
Here, ϕ ∈ C∞(X;S1) sends a pair (A,ψ) to (A−2ϕ−1dϕ,ϕψ). The quotient of
the space of solutions by this action (with the quotient topology) will be called
the moduli space of solutions to (4). An orbit of C∞(X;S1) will be called a
‘gauge orbit’ and two solutions on the same gauge orbit will be deemed ‘gauge
equivalent.’ Except where confusion appears likely, a pair (A,ψ) and its gauge
orbit will not be notationally distinguished.

Before embarking on a detailed discussion of the structure of the moduli space
of solutions to (4), some remarks are in order which concern an important
consequence of the constraint given by the third point in (4). In particular, if
A is any connection on K , then up to factors of 2π and i =

√
−1, the curvature,

FA , is a closed 2–form on X whose cohomology class gives c(s), the first Chern
class of K . Now, by assumption, c(s) restricts to zero on the ends of X and
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thus lies in the image of the natural homomorphism from H2(X0, ∂X0;Z) in
H2(X;Z). And, if FA is square integrable on X , arguments to follow prove
that FA canonically defines a preimage, cA , of c(s) in H2(X0, ∂X0 ; Z).

The construction of cA employs an application of the abelian version of Uh-
lenbeck’s compactness theorem [21] as follows: Use s to denote the Euclidean
coordinate on the half line factor of [0,∞)× ∂X0 . Then, for large s0 ∈ [0,∞),
Uhlenbeck’s theorem insures that for any s > s0 , the connection A restricts to
the cylinder [s, s+ 1]× ∂X0 as Asf + as , where Asf is a flat connection on ∂X0

and where as is an imaginary 1–form on [s, s + 1] × ∂X0 . Moreover, accord-
ing to Uhlenbeck’s theorem the sequence, indexed by s ∈ [s0,∞), of the L2

1

norms of as over the defining domains, [s, s + 1] × ∂X0 , converges to zero as
s tends to infinity. Now, with the preceding understood, fix a sequence, {βs}
of ‘cut-off’ functions on [0,∞) , indexed by s ∈ [s0,∞), with βs = 1 on [0, s],
βs = 0 on [s+ 1,∞) and |β′s| < 2 everywhere. Then, for s > s0 , introduce the
connection As on K that equals Asf +βsas on [s,∞)×∂X0 and A everywhere
else. By construction, the curvature 2–form of As is zero on [s+ 1,∞)× ∂X0 .
Thus, this 2–form gives a bona fide class in the relative cohomology group
H2(X, [s+ 1,∞)× ∂X0;Z). And, as the latter group is canonically isomorphic
to H2(X0, ∂X0;Z), the curvature 2–form of As defines a class in this last group
as well. When s is sufficiently large, the latter class is the desired cA .

Of course, this definition of cA makes sense provided that the s ∈ [s0,∞)
indexed set of curvature 2–forms {FAs} give identical classes in H2(X0, ∂X0 ;Z)
when s is large. To prove that such is the case, consider the classes indexed
by some pair s and s + δ with δ ∈ (0, 1). The corresponding curvatures both
define integral classes in the relative group H2(X, [s + δ + 1)× ∂X0;Z) and it
is sufficient to prove that these two classes agree. In particular, since As and
As+δ agree on X − ([s,∞) × ∂X0) and since H∗(T 3;Z) has no torsion, such
will be the case if the composition of exterior product and then integration over
X pairs both curvature 2–forms identically with a given set of closed 2–forms
on X that generate H2(X;Z). And, for this purpose, it is enough to take a
generating set of forms which are covariantly constant on [0,∞) × ∂X0 .

With these last points understood, it then follows that the relevant cohomology
classes agree if the curvature forms in question are close in the L2 sense on
[s, s+2]×∂X0 since these curvature forms agree on the complement of [s,∞)×
∂X0 . Of course, these forms are L2 close (when s is large) since each separately
has small L2 norm on [s, s + 2] × ∂X0 by virtue of the fact that the 1–forms
as and as+δ have small L2

1 norms on this same cylinder.

With only minor modifications, the preceding argument that cA is well defined
yields the following:
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Lemma 2.1 Let A denote the space of smooth connections on K whose cur-
vature 2–form is square integrable, here endowed with the smallest topology
for which the assignment of A to

∫
X |FA|2 is continuous and which allows C∞

convergence on compact sets. Then, the assignment of cA to A ∈ A defines a
locally constant function on A. In particular, the connected components of the
moduli space M(s) are labeled, in part, by the set of elements in H2(X0, ∂X0;Z)
which map to c(s) under the natural homomorphism to H2(X;Z).

With Lemma 2.1 in mind and supposing that s ∈ S0(X) and a preimage, z , of
c(s) in H2(X0, ∂X0;Z) have been given, introduce M ≡M(s, z) to denote the
subspace of pairs (A,ψ) in the moduli space of solutions to the s version of (4)
for which cA = z .

c) The structure of M

The local structure of M is described in the next proposition. However, the
statement of this proposition requires a preliminary digression to point out
certain topological features of X . To start the digression, note that there is
an integer valued, bilinear pairing on H2(X0, ∂X0;Z) which is obtained by
composing the cup-product map to H4(X0, ∂X0;Z) with evaluation on the
fundamental class. In contrast to the case where ∂X0 = ∅, this form has a
null space in the non-empty boundary case, that being the image of H1(∂X0)
via the natural connecting homomorphism of the long exact sequence for the
pair (X0, ∂X0). Thus, the cup product pairing is both well defined and non-
degenerate on the image in H2(X0) of H2(X0, ∂X0). Use z•z′ to denote the cup
product pairing between classes z and z′ . Meanwhile, use H2+(X0, ∂X0;R) ⊂
H2(X0, ∂X0;R) to denote a maximal dimensional vector subspace on which
this cup product pairing is positive definite and use b2+(X0) to denote the
dimension of H2+(X0, ∂X0;R). Also, use τ to denote the signature of the
cup product pairing. Thus, τ = b2+ − b2− , where b2− is the dimension of
the maximal vector subspace in H2(X0, ∂X0) where the cup product pairing is
negative definite. Finally, the digression ends by introducing b10 to denote the
dimension of H1(X0, ∂X0;R).

Here is the promised local structure result:

Proposition 2.2 Let c ≡ (A,ψ) ∈M. Then, there exists a Fredholm operator
Dc of index d ≡ b10− 1− b2+ + 4−1(c(s) • c(s)− τ); a real analytic map f , from
a ball in the kernel of Dc to the cokernel of Dc mapping the origin in the ball
to the origin in the cokernel of Dc ; and, provided that ψ is not identically zero,
a homeomorphism, ϕ, from f−1(0) onto an open neighborhood of c in M.
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Note that when ∂X0 6= ∅, there are no solutions to (4) where ψ is identically
zero.

For c = (A,ψ), the operator Dc is a differential operator which is initially
defined to send (b, η) ∈ iC∞(T ∗X) ⊕ C∞(S+) to the element in iC∞(R) ⊕
iC∞(Λ+)⊕ C∞(S−) whose components in the three summands are as follows:

d∗b− 2(ψ†η − η†ψ);

P+db− τ ′(η ⊕ ψ† + ψ ⊕ η†);
DAη + cl(b)ψ.

(5)

Here, τ ′ denotes the polarization of the bilinear form τ which appears in
(4) and cl(·) denotes the Clifford multiplication endomorphism from T ∗X to
Hom(S+, S−). To make Dc Fredholm, a preliminary domain and range are
defined to allow only sections with compact support. This preliminary domain
is then completed using the Sobolev L2

1 norm, while the preliminary range is
completed using the Sobolev L2 norm.

Under favorable conditions, the local neighborhoods described in Proposition
2.2 fit nicely together to give M the structure of a smooth d–dimensional man-
ifold. The following proposition elaborates:

Proposition 2.3 With reference to the previous proposition, the set of points
in M where the cokernel of the operator Dc is {0} has the structure of a smooth,
d–dimensional manifold whereby the homeomorphism ϕ is a smooth coordinate
chart. In addition, this last portion of M is orientable and canonically so with
a choice of orientation for the line ΛtopH1(X0, ∂X0;R)⊗ΛtopH2+(X0, ∂X0;R).
Finally, if ∂X0 6= ∅ or if b2+ > 0, then there exists a Baire subset of choices
for the 2–form ω in (4) for which the corresponding M is everywhere a smooth
manifold. In fact, given an open set U in X0 whose closure is disjoint from
∂X0 , and a self-dual form ω′ on X0 that has the required structure near ∂X0 ,
there is a Baire set of smooth, self-dual extensions, ω , of ω′ from X0−U to the
whole of X0 for which this same conclusion holds. For such ω , M = ∅ when
d < 0; and when d ≥ 0, then the cokernel of Dc is trivial for every c ∈M.

The proofs of these last two propositions are given in Section 3 of this paper.

In what follows, a point c ∈M will be called a ‘smooth point’ when the cokernel
of the operator Dc is trivial.
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d) Compactness properties

In the case where X0 has no boundary, the moduli space M is compact; this
compactness is one of the remarkable features of the Seiberg–Witten equations.
However, even the simplest example with non-empty boundary, T 2 ×D2 , can
yield non-compact moduli spaces. Even so, certain zero and 1–dimensional
subspaces of M are compact if the form ω is suitably chosen.

A two part digression follows as a preliminary to the specification of the con-
straints on ω .

Part 1 Remember that X0 is assumed to have a class $ ∈ H2(X0;R) which
is non-zero in the cohomology of each component of ∂X0 . Meanwhile, as the
chosen 2–form ω is constant on each component of ∂X0 , it defines a cohomology
class, [ω] ∈ H2(∂X0;R). With this understood, say that ω is tamed by $ when
[ω] = $ in H2(∂X0;R).

Part 2 Introduce ς(s) ⊂ H2(X0, ∂X0;Z) to denote the set of elements which
map to c(s) in H2(X0;Z). Next, introduce the sets

Ms ≡
⋃

z∈ς(s)
M(s, z) and

Ms,m ≡
⋃

z∈ς(s):z•$≤m
M(s, z) ⊂Ms.

(6)

Endow Ms with the topology of C∞ convergence on compact subsets of X
and give Ms,m the subspace topology. This is the topology which arises by
embedding the space of solutions to (4) in the Fréchet space i · Ω1 ⊕ C∞(S+)
with the latter given the C∞ weak topology. Any M(s, z) ⊂Ms will be called
a stratum of Ms .

With Ms and each Ms,m understood, here is the most that can be said at this
point about compactness:

Proposition 2.4 Let $ ∈ H2(X0;R) be a class with non-zero pull-back to
the cohomology of each component of ∂X0 . With $ given, use a form ω in
(4) that is tamed by $ . Then each Ms,m ⊂ Ms is compact and contains only
a finite number of strata. Moreover, fix a self-dual form ω′ that is non-zero
and covariantly constant on each component of [0,∞)×∂X0 and that is tamed
by $ ; and fix a non-empty, open set U ⊂ X0 . Then, there is a Baire set of
smooth, self-dual forms ω that agree with ω′ on X −U and have the following
properties:
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• As in Proposition 2.3, each stratum of Ms is a smooth manifold of dimen-
sion d given in Proposition 2.2. Moreover, the cokernel of the operator
Dc vanishes for each c ∈Ms .

• The boundary of the closure in Ms of any stratum intersects the remain-
ing strata as a codimension 2 submanifold.

Roughly said, Proposition 2.4 guarantees the compactness of the zero set in
M(s, z) of a reasonably chosen section of a d or (d − 1)–dimensional vector
bundle over Ms,m .

By the way, it turns out that an extra cohomology condition on the class $
guarantees the compactness of the whole of each M(s, z). Indeed, this pleasant
situation arises when the restriction of ω to each component of ∂X0 defines a
cohomology class which is not a linear multiple of an integral class. Proposition
4.6 gives the formal statement.

Proposition 2.4 is proved in Section 6a.

e) The definition of the Seiberg–Witten invariants

The simplest version of the Seiberg–Witten invariant for X0 associates an inte-
ger to a pair s ∈ S0(X) and z ∈ H2(X0, ∂X0;Z) mapping to c(s). This integer
will be denoted by sw(s, z). As in the empty boundary case, it is obtained via
an algebraic count of the elements in M. However, there are some additional
subtleties when ∂X0 6= ∅ because M need not be compact.

In what follows, X0 is as described above except that positivity of b2+ will be
implicitly assumed when ∂X0 = ∅. Fix a SpinC structure s ∈ S0(X0) and
a class z ∈ ς(s) ⊂ H2(X0, ∂X0;Z). Note that s provides the integer d in
Proposition 2.2. Also, fix a class $ ∈ H2(X0;R) which is non-zero in the coho-
mology of each component of ∂X0 . Finally, orient L ≡ ΛtopH1(X0, ∂X0;R)⊗
ΛtopH2+(X0, ∂X0;R) and, when ∂X0 = ∅ and b2+ = 1, orient H2+(X0;R).

What follows is the definition of sw.

Case 1 This case has either d < 0 or d odd. Set sw(s, z) = 0 in this case.

Case 2 This case has d = 0. Choose a form ω in (4) which is tamed by
$ and which is such that each stratum of Ms has the structure described in
Propositions 2.3 and 2.4. The latter insure that M = M(s, z) is a finite set of
points. In addition, each point c ∈ M comes with a sign, ε(c) ∈ {±1}, from
the orientation. With these points understood, set

sw(s, z) ≡
∑
c

ε(c), (7)
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where the sum is taken over all c ∈M.

Case 3 This case has d > 0 and even. Once again, choose a form ω in (4)
which is tamed by $ and which is such that Ms has the structure described
in Propositions 2.3 and 2.4. Thus, each stratum of Ms is an oriented, d–
dimensional manifold.

Next, choose a set, Λ ⊂ X , of d/2 distinct points, and for each x ∈ Λ, specify
a C–linear surjection Φx : S+

∣∣
x
→ C. Use Λ to denote the resulting set of d/2

pairs (x,Φx). With Λ understood, set

MΛ ≡ {c = (A,ψ) ∈M : Φz(ψ(x)) = 0 for each x ∈ Λ}. (8)

Note that MΛ can be viewed as the zero set of a smooth section of a d/2–
dimensional complex vector bundle over M. This understood, Sard’s theorem
guarantees that MΛ is discrete for a Baire set of data Λ, and each c ∈ MΛ

comes with a sign, ε(c) ∈ {±1}. Moreover, Proposition 2.4 guarantees that
this Baire set can be found so that the corresponding MΛ is a finite set.

With Λ now chosen from the afore mentioned Baire set of possibilities, define
sw(s, z) by (7) but with the sum restricted to those c in the set MΛ .

When X is compact, there also exists an extension of sw whose image is in
Λ∗H1(X0;Z) ≡ Z ⊕H1 ⊕ Λ2H1 ⊕ · · · . The latter is described in [20] and the
definition there can be readily adapted to the non-compact setting described
here. Theorems 2.5 and 2.7 below have reasonably self-evident analogs which
apply to this extended sw. However, to prevent an already long paper from
getting longer, the extended version of sw will not be discussed further here.
Thus, the statements of the versions of Theorems 2.5 and 2.7 that apply to the
extended sw are left to the reader to supply.

f) Invariance of the Seiberg–Witten invariants

With sw(·) so defined, there is an obvious question to address: To what extent
does sw(·) depend on the various choices that enter its definition?

In the case where X0 is compact, the following answer is well known (the
arguments are given in [22], but see also [11], [8]):

• If b2+ > 1, then sw is independent of the choice of Riemannian met-
ric and form ω ; its absolute value depends only on the SpinC struc-
ture, and the sign is determined by the orientation of the line L ≡
ΛtopH1(X0;R) ⊗ ΛtopH2+(X0;R). Moreover, sw(ϕ∗s) = sw(s) when ϕ
is a diffeomorphism of X0 which preserves the orientation of the line L.
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• If b2+ = 1, first specify an orientation of H2+(X0;R). Then, sw is
independent of the choice of Riemannian metric and form ω provided
that the integral over X0 of the wedge of ω with an oriented harmonic
representative of H2+(X0;R) is sufficiently large and positive. So defined,
the absolute value of sw only depends on the SpinC structure and the
orientation of H2+(X0,R), and its sign is determined by the orientation
of the line L. Furthermore, sw(ϕ∗s) = sw(s) when ϕ is a diffeomorphism
of X0 which preserves the orientations of the line L and H2+(X0;R).

The next result provides an answer to the opening question in the case where
∂X0 is not empty.

Theorem 2.5 Suppose that ∂X0 6= ∅. First, choose a class $ ∈ H2(X0;R)
which is non-zero in the cohomology of each component of ∂X0 . Next, define
sw on a pair (s, z) using $ as described in the preceding subsection. Then,
the result is independent of the chosen metric and the form ω provided that
the latter is tamed by $ . Here, the absolute value of sw is determined solely
by the triple (s, z,$) and the sign is determined by the chosen orientation for
the line L ≡ ΛtopH1(X0, ∂X0;R) ⊗ ΛtopH2+(X0, ∂X0;R). Moreover, if ϕ is a
diffeomorphism of X0 which fixes the orientation of the line L, then the value of
sw on ϕ∗(s, z,$) is the same as its value on (s, z,$). Finally, sw is insensitive
to continuous deformation of $ in H2(X0;R) through classes with non-zero
restriction in the cohomology of each component of ∂X0 .

The proof of Theorem 2.5 is provided in Section 3d.

g) The Mayer–Vietoris gluing theorems

The purpose of this subsection is to state the advertised generalization of the
Mayer–Vietoris gluing result given by Theorem 1.1. This generalization is sum-
marized in Theorem 2.7, below, but a four-part digression comes first to set the
stage.

Part 1 In what follows, X0 is a compact, oriented 4–manifold with boundary
such that each component of ∂X0 is a 3–torus. Suppose next that there is an
embedded 3–torus M ⊂ X0 which separates X0 so that X0 = X+∪X− , where
X± are 4–manifolds with boundary embedded in X which intersect in M .

With the preceding set up understood, introduce the lines L0 , L+ and L− via

L♦ ≡ ΛtopH1(X♦, ∂X♦;R)⊗ ΛtopH2+(X♦, ∂X♦;R), (9)
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where ♦ is a stand in for 0, + or −. An argument from [15] can be adapted
almost verbatim to establish the existence of a canonical isomorphism

L0 ≈ L+ ⊗ L−. (10)

Thus, orientations of L+ and L− canonically induce an orientation of L0 .

If M ⊂ X0 is non-separating, introduce X1 to denote the complement in X0 of
a tubular neighborhood of M . Then, the afore-mentioned argument from [15]
adapts readily to establish the existence of a canonical isomorphism between
L0 from (9) and L1 ≡ ΛtopH1(X1, ∂X1;R)⊗ ΛtopH2+(X1, ∂X1;R).

Part 2 By assumption, there is a class $ ∈ H2(X0;R) whose pull-back is not
zero in the cohomology of each component of ∂X0 . Theorem 2.7, below, will
assume that the pull-back of $ to the cohomology of M is also non-zero. With
this understood, then the pull-back of $ will be non-zero in the cohomology of
each component of ∂X+ and each component of ∂X− in the case when M ⊂ X
is separating. Likewise, when M is not separating, then the pull-back of $ in
the cohomology of each component of ∂X1 will be non-zero.

By the way, in the case when X0 is compact and has b2+ = 1, the choice of
a class $ ∈ H2(X0;R) whose pull-back to the cohomology of M is non-zero
supplies an orientation for H2+(X0;Z). Indeed, because $ 6= 0 ∈ H2(M ;Z),
there is a class in H2(M ;Z) whose push-forward in H2(X0;Z) is non-zero and
which pairs positively with $ . This homology class has self-intersection number
zero, so its image in H2(X0;Z) lies on the ‘light cone.’ Thus, the latter’s
direction specifies an orientation to any line in H2(X0;R) on which the cup-
product pairing is positive definite.

Part 3 This part of the digression contains the instructions for the construc-
tion of a SpinC structure on X from what is given on X± or X1 . To start, con-
sider a somewhat abstract situation where Y is a smooth, oriented 4–manifold
and U ⊂ Y is any set. Having defined S(Y ) as in the introduction, define
S(U) to denote the equivalence class of pairs (Fr

∣∣
U
, FU ), where Fr

∣∣
U

is a prin-
cipal SO(4) reduction of the restriction of the oriented, general linear frame
bundle of Y to U , and where FU is a lift of Fr

∣∣
U

to a principal SpinC(4)
bundle. This definition provides a tautological pull-back map S(Y ) → S(U)
which intertwines the action of H2(Y ;Z) with that of its image in H2(U ;Z).

With the preceding understood, let S0M (X0) ⊂ S0(X0) denote the set of SpinC

structures whose image under c in (1) is zero under pull-back to the cohomology
of M . When M separates X0 , then the pull-back map from the preceding
paragraph defines a map ℘0 : S0M (X0)→ S0(X−)×S0(X+). Meanwhile, in the
case where M is non-separating, there is the analogous ℘0 : S0M (X0)→ S0(X1).
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In this regard, note that S0M (X0) is a principal homogeneous space for the
image in H2(X0;Z) of H2(X0,M ;Z) and the map ℘ intertwines the action of
the latter group with its image in either H2(X−;Z)×H2(X+;Z) or H2(X1;Z)
as the case may be.

With ℘0 understood, the question arises as to the sense in which it can be
inverted. The answer requires the introduction of some additional terminology.
For this purpose, let Y be a compact, oriented 4–manifold with boundary which
is a disjoint union of tori. Introduce S0(Y, ∂Y ) to denote the set of pairs (s, z)
where s ∈ S0(Y ) and where z ∈ H2(Y, ∂Y ;Z) maps to c(s) ∈ H2(Y ;Z) under
the long exact sequence homomorphism. Note that S0(Y, ∂Y ) is a principal
homogeneous space for the group H2(Y, ∂Y ;Z). Perhaps it is needless to say
that there is a tautological ‘forgetful’ map from S0(Y, ∂Y ) to S0(Y ) which
intertwines the action of H2(Y, ∂Y ;Z) with that of its image in H2(Y ;Z).

With the new terminology in hand, consider:

Lemma 2.6 Depending on whether M does or does not separate X0 , there
is a canonical map, ℘, from S0(X−, ∂X−)× S0(X+, ∂X+) or S0(X1, ∂X1) into
S0(X0, ∂X0) respectively, which has the following properties:

• The image of ℘ lies in S0M (X0, ∂X0)

• ℘ either intertwines the action of H2(X−, ∂X−;Z) × H2(X+, ∂X+;Z)
or that of H2(X1, ∂X1;Z), as the case may be, with their images in
H2(X0, ∂X0;Z).

• The composition of ℘ and then ℘0 gives the canonical forgetful map.

Proof of Lemma 2.6 What follows is the argument for the case when M
separates X . The argument for the other case is analogous and is left to the
reader.

To start, remark that the given SpinC structures s± can be patched together
over M with the specification of an isomorphism over M between the corre-
sponding lifts, F± → Fr . In this regard, note that the choice of a Rieman-
nian metric on X which is a product flat metric on a tubular neighborhood,
U ≈ I ×M , of M ⊂ X determines principal SO(4) reductions of the general
linear frame bundles of X± which are consistent with the inclusions of X± in
X .

Having digested the preceding, note next that the space of isomorphisms be-
tween F+

∣∣
M

and itself which cover the identity on Fr
∣∣
M

has a canonical
identification with the space of maps from M to the circle; thus the space
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of isomorphisms ϕ : F+

∣∣
M
→ F−

∣∣
M

which cover the identity on Fr
∣∣
M

has a
non-canonical identification with C∞(M ;S1). This implies that the set of ho-
motopy classes of such maps is a principal bundle over a point for the the group
H1(M ;Z). In this regard, note that a pair of isomorphisms between F+

∣∣
M

and
F−
∣∣
M

yield the same SpinC structures over X if and only if they differ by a
map to S1 which extends over either X+ or X− .

In any event, a choice of isomorphism from F+

∣∣
M

to F−
∣∣
M

covering Fr
∣∣
M

is canonically equivalent to a choice of isomorphism between the restrictions
to M of the associated U(1) line bundles K± . Meanwhile, as c(s±) = 0,
the data z+ ∈ H2(X+, ∂X+;Z) mapping to c(s+) canonically determines a
homotopy class of isomorphisms from K+

∣∣
M

to M×C. Likewise, z− determines
a homotopy class of isomorphisms from K−

∣∣
M

to M ×C. With the preceding
understood, use the composition of an isomorphism K+

∣∣
M
≈M ×C in the z+

determined class with the inverse of one between K−
∣∣
M

to M × C from the
z− determined class to construct the required isomorphism between F+

∣∣
M

and
F−
∣∣
M

.

Part 4 Lemma 2.6 makes the point that the image of ℘ contains only those
SpinC structures on X whose image under the map c pulls back as zero to
H2(M ;Z). There may well be other SpinC structures on X . Even so, a case
of the main theorem in [9] asserts that sw(s) = 0 if c(s) does not pull back as
zero in H2(M ;Z).

The digression is now over, and so the stage is set for the main theorem:

Theorem 2.7 Let X0 be a compact, connected, oriented 4–manifold with
(possibly empty) boundary consisting of a disjoint union of 3–dimensional tori
such that restriction to each boundary component induces a non-zero pull-
back map on the second cohomology. If the boundary is empty, require that
b2+ ≥ 1. Let M ⊂ X0 be an embedded 3–dimensional torus for which the
restriction induced pull-back homomorphism from H2(X0;R) to H2(M ;R) is
non-zero. Choose a class $ ∈ H2(X0;R) whose pull-back in the cohomology
of M and in that of every component of ∂X0 is non-zero. If M splits X0

as a pair, X− ∪ X+ , of 4–manifolds with boundary, then orient the lines L±
and then orient the corresponding line L0 via (10). Otherwise, orient the line
L1 and use the isomorphism L1 ≈ L0 to orient the latter. If X0 has empty
boundary and b2+ > 1, use the orientation for L0 to define the map sw on
S(X0). If X0 has empty boundary and b2+ = 1, use the orientation for L0 and
that for H2+(X0;R) as defined by $ to define sw on S(X0). Finally, if X0
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has non-trivial boundary, use the orientation for L0 and the class $ to define
sw on S(X0, ∂X0).

• Suppose that M splits X0 as a pair, X− ∪ X+ , of 4–manifolds with
boundary. Use the chosen orientations for the lines L± and the restriction
of $ to X± to define the corresponding maps sw: S0(X±, ∂X±) → Z.
Then, for all (s, z) ∈ S0(X0, ∂X0), there are just finitely many pairs
((s−, z−), (s+, z+)) ∈ ℘−1((s, z)) with either sw((s−, z−)) or sw((s+, z+))
non-zero; and with this last fact understood,

sw((s, z)) =
∑

((s−,z−),(s+,z+))∈℘−1((s,z))

sw((s−, z−)) sw((s+, z+)).

• If M does not split X , use the chosen orientations for the line L1

and the restriction of $ to X1 to define the corresponding map
sw: S0(X1, ∂X1) → Z. Then, for each (s, z) ∈ S0(X0, ∂X0), there are
just a finite number of (s1, z1) ∈ ℘−1((s, z)) with sw((s1, z1)) 6= 0; and
with this last point understood,

sw((s, z)) =
∑

((s1,z1))∈℘−1((s,z))

sw((s1, z1)).

The proof of Theorem 2.7 is given in Section 3f.

3 Preliminary analysis

The proofs of Theorems 2.5 and 2.7 use many of the ideas from [15], but new
techniques are also involved. The new techniques enter into the proof of Propo-
sition 2.4 and into the proofs of related compactness assertions which concern
the moduli spaces for manifolds with long cylinders that are products of 3–tori
with intervals. These related compactness assertions are summarized below in
Propositions 3.7 and 3.9.

This section sees to the separation of these compactness aspects of the proofs
of Theorems 2.5 and 2.7 from the more well known techniques. In so doing,
it explains how these theorems follow from Propositions 2.4, 3.7 and 3.9 while
leaving the proofs of the latter to the subsequent sections of this paper. The
details start in Subsection 3a below. A guide to the analytical points that arise
in this and the subsequent sections immediately follows.

Any attempt to define an ‘invariant’ via an integer weighted count of solu-
tions to an equation must deal with the following two absolutely central issues:
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First, there must be some guarantee of a finite count. Second, to insure the
invariance of the count, solution appearance and disappearance with change of
movable parameters must occur in groups with zero aggregate count. Given a
suitable topology on the solution set, both of these issues are issues of compact-
ness. Indeed the former concerns the compactness of the solution set for some
fixed parameter value while the latter concerns the compactness of a family of
solutions spaces as determined by a corresponding family of parameter values.

The investigation of this compactness issue starts with the next two points.
The first is a standard application of elliptic regularity theory and the second
follows from a Bochner–Weitzenböck formula for the Seiberg–Witten equations.

• A bound on the L2 norms of FA and ψ on a ball implies uniform C∞

estimates for some pair on the gauge orbit of (A,ψ) on the concentric,
half-radius ball. Hence, the space of gauge orbits of solutions that satisfy
an a priori L2 norm on a ball is precompact in the concentric, half-radius
ball.

• For the toroidal end manifolds under consideration, the SpinC structure
determines a uniform L2 bound for both FA and ψ on any ball when the
perturbing form ω in (4) has the properties stated in Proposition 2.4.

Although quite powerful, the preceding points are not powerful enough to imply
compactness for M since they do not foreclose leakage down the ends of X .
The characterization of this leakage requires an investigation of solutions to (4)
on finite and infinite cylinders. This investigation begins with the derivation of
the following key result:

• If (A,ψ) solves (4) on a given cylindrical portion of R × T 3 where ω is
non-zero and constant, and if FA has small L2 norm on each subcylinder
of length 4 in the given cylinder, then |FA| decays exponentially from
both ends of the given cylinder.

This last fact, as confirmed in the initial subsections below, is ultimately a con-
sequence of the structure of a moduli space of a certain version of the Seiberg–
Witten equations on T 3 .

As argued in Section 4, the preceding point with the first two implies:

• All limits of non-convergent sequences in M are described by data sets
that consist of a second solution to (4) on X and also a finite set (with
topological bound on its size) of solutions on R× T 3 .
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Given an assertion that precludes the extra solutions on R×T 3 , this last point
implies that M is compact. Moreover, certain geometric assumptions about the
tubular end 4–manifold and the form ω actually do imply the absence of the
relevant R× T 3 solutions.

When these just mentioned geometric assumptions are not met, then the argu-
ment for compactness employs the following additional observations:

• The relevant moduli space of solutions to (4) on R × T 3 is a smooth
manifold with a vector bundle whose fiber at each point is the cokernel of
a Fredholm operator associated to the solution in question. This vector
bundle has positive dimension and comes with a canonical, nowhere zero
section.

• This canonical section defines a canonical, R2–valued function on every
moduli space of solutions to (4) over X . There is one such function for
each end of X .

• One or more of these canonical functions vanishes at any solution on X
that appears in the data set for a non-convergent sequence in M.

• If ω is suitably generic on the interior of X0 , then the zero set in each
moduli space of each of these canonical functions is a codimension 2
submanifold.

These last points are used in Section 6 to establish the assertions of Proposition
2.4 and those of the forthcoming Propositions 3.7 and 3.9. These points are
established in Section 5 using a detailed analysis of the first order operator that
is obtained by linearizing the Seiberg–Witten equations about a solution on the
cylinder R× T 3 .

As illustrated by the preceding discussion, the moduli spaces on T 3 and R×T 3

are central to a significant chunk of the compactness story and so they are the
focus of much of the subsequent discussion.

a) Moduli spaces for T 3

The story behind Theorems 2.5 and 2.7 starts here with a description of the
moduli spaces of a version of the Seiberg–Witten equations on a flat, oriented
3–torus. These moduli spaces enter into the story because they are naturally
identified with the moduli spaces of translationally invariant solutions to a
version of (4) on R×T 3 . In any event, the equations considered here require the
choice of a flat metric on T 3 plus a lift of the resulting SO(3) frame bundle to
a principal SpinC(3) = U(2) bundle. Such lifts are classified up to isomorphism

Geometry & Topology, Volume 5 (2001)



464 Clifford Henry Taubes

by the first Chern class of the complex line bundle, K , which is associated to
the determinant representation of U(2) on C. Note that this class, c, is an even
class in H2(T 3;Z). The equations will also require the choice of a covariantly
constant 2–form, ω0 , on T 3 .

It is worth digressing here momentarily to comment some on the relationship
between the 3 and 4–dimensional stories. To start the digression, keep in
mind that the tori that arise in this article come as constant ‘time’ slices of an
oriented R× T 3 . In addition, the R factor will come oriented and thus induce
an orientation on T 3 ; this will be the implicit orientation of choice.

With compatible orientations for R, T 3 and R × T 3 understood, the set of
SpinC structures on R × T 3 has a canonical, 1-1 correspondence with the set
of lifts of the SO(3) principal frame bundle to a U(2) bundle. Indeed, this
correspondence comes about via a natural map from the set of isomorphism
classes of U(2) lifts of the SO(3) frame bundle of T 3 to S(R × T 3). What
follows is the definition of this map.

To describe the aforementioned map, note first that a U(2) lift, P , of the
SO(3) frame bundle comes with an associated, principal SpinC(4) bundle, FP ,
which will be viewed both as a bundle over T 3 and, via pull-back, as one over
R×T 3 . In this regard, FP is defined using the representation which sends a pair
(h, λ) ∈ U(2) = (SU(2) × S1)/{±1} to (h, h, λ) ∈ SpinC(4). This associated
SpinC(4) bundle is a lift of the pull-back to R× T 3 of the analogously defined,
associated principal SO(4) bundle to the frame bundle of T 3 . Meanwhile this
last SO(4) bundle is canonically isomorphic to the frame bundle of R × T 3 .
Indeed, a choice of oriented, unit length tangent vector field to the R factor
induces just this isomorphism.

Thus, in the manner just described, an isomorphism class of principal U(2)
lifts of the SO(3) frame bundle of T 3 canonically determines an element sP ∈
S(R × T 3). The inverse of this map starts with s ∈ S(R × T 3) and the corre-
sponding SpinC(4) bundle F . The oriented, unit length tangent vector to R
defines the reduction of F to a principal U(2) bundle, P , as follows: First,
define Fr3 ⊂ Fr as the subset of frames whose first basis element is metrically
dual to the chosen vector on the R factor. Then, view F as a bundle over Fr
(with fiber S1 ) and use P ⊂ F to denote restriction of this bundle to Fr3 .
This P is a principal U(2) bundle which covers the SO(3) frame bundle of T 3 .

In any event, let P → T 3 denote a principal U(2) lift of the SO(3) frame
bundle. Introduce S to denote the complex 2–plane bundle P ×U(2) C2 . The
Seiberg–Witten equations on T 3 are equations for a pair (A,ψ), where A is
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a connection on the complex line bundle Λ2S = P ×U(2) C and where ψ is a
section of S . These equations read:

• FA = τ(ψ ⊗ ψ†)− i · ω0;
• DAψ = 0.

(11)

In this last equation, τ denotes the homomorphism from End(S) = S ⊗ S∗

which is the hermitian adjoint to the Clifford multiplication homomorphism
from Λ2(T 3) into End(S) while DA denotes a version of the Dirac operator. In
particular, DA is the first order, elliptic operator which sends a section of S to
another section of S by composing a certain A–dependent covariant derivative
on S with the Clifford multiplication endomorphism from S⊗T ∗X to S . Here,
(and below) the covariant derivative is defined from the connection on F which
is obtained by coupling the connection A with the pull-back from Fr of the
metric’s Levi–Civita connection.

A second digression is in order here concerning the relationship between the
3 and 4 dimensional versions of Clifford multiplication. To start, introduce
the SpinC(4) principal bundle FP → R × T 3 which corresponds to P , and
then introduce the associated C2 bundles S± → R × T 3 . Both are canoni-
cally isomorphic to S = P ×U(2) C2 . In this way, the 4–dimensional Clifford
multiplication endomorphism from T ∗(R × T 3) × S+ → S− induces a Clifford
multiplication map T ∗(T 3) × S → S . Here, T ∗(T 3) is viewed as a summand
in T ∗(R × T 3) via the pull-back monomorphism from the projection map to
T 3 . By the way, with S+ and S− identified as S , Clifford multiplication by
the 1–form dt is just multiplication by i.

With the digression now over, introduce MP to denote the moduli space of
solutions to (11) for a given flat metric, covariantly constant form ω0 and lift P
of the SO(3) frame bundle. Thus, MP is the quotient of the space of smooth
pairs (A,ψ) which solve (11) by the action of the group C∞(T 3;S1). Here, the
action is the same as in the 4–dimensional case. Note that MP is given the
quotient topology.

The lemma that follows describes the salient features of MP :

Lemma 3.1 Given the flat metric, there exists δ > 0 such that if |ω0| < δ ,
then the space MP is empty unless c1(S) = 0. In addition, given that c1(S) = 0
and ω0 6= 0, then MP is a single point, the orbit of a pair (A0, ψ0), where A0

is a trivial connection, ψ0 is covariantly constant and τ(ψ0⊗ψ†0) = iω0 . When
ω0 = 0, then MP consists of the orbits of those pairs (A, 0), where A is a flat
connection; thus MP = H1(T 3;R3)/H1(T 3;Z3).
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Proof of Lemma 3.1 The proof sticks closely to a well worn trail initially
blazed by Witten in [22] and translated to the 3–manifold context at the start
of Section 5 of [15]. In fact, the argument follows almost verbatim the discussion
in the proof of [15]’s Lemma 5.1. Here is a brief synopsis of the argument:
First of all, in the case where ω0 = 0, use the Bochner–Weitzenböck formula
D2
A = ∇∗A∇Aψ+2−1 cl(FA) ·ψ on T 3 , and the two Seiberg–Witten equations to

conclude that ∇Aψ = 0. Here, ∇A denotes the covariant derivative on sections
of S which is defined by A and the Levi–Civita connection on the SO(3) frame
bundle. As ψ is covariantly constant, either FA = 0 or ψ = 0, or both. In
particular, the first point in (11) is only consistent with both vanishing.

In the case where ω0 6= 0, Clifford multiplication on S by ω0 defines a skew
Hermitian, covariantly constant endomorphism of S . Decompose S into the
eigenbundles for this endomorphism and write ψ with respect to this decomposi-
tion as (α, β). In so doing, follow the steps in [22] or at the beginning of Section
5 in [15]. Here, it may be useful to consider lifting the story to S1×T 3 with S1

viewed as R/Z to make the connection with the 4–dimensional framework in
these references. In any event, with ψ written as (α, β), the second equation in
(11) becomes a coupled system of equations for the pair (α, β). Continuing the
analysis in either [22] or [15] then leads directly to the conclusion that β = 0
and that when |ω| is small, then α is constant and FA = 0.

An orbit in MP is termed either a smooth point or not. These are technical
terms which correspond to whether or not there are non-trivial deformations
of pairs on the given orbit which solve (11) to first order. A precise definition
is given in [15] subsequent to Lemma 5.2 and continued in [15]’s section 5.1.
As is standard in gauge theory problems, the notion of being smooth or not is
based on whether or not a certain Fredholm operator has vanishing cokernel.
Here, the operator in question is obtained by first linearizing the equations in
(11) about a given solution, then restricting the domain to the L2–orthogonal
complement of the tangents to the orbit of the C∞(T 3;S1) action, and finally
projecting the resulting expression onto an isomorphic image of this same or-
thogonal complement. In this regard, the tangents to the orbit here appear as
the image of the operator denoted by Dx in Section 5 of [15]. Alternately, one
can view the equations in (11) as an S1 invariant version of (4) on S1 × T 3 in
which case the operator under scrutiny here is the S1 invariant version of the
operator in (5). In any event, consider:

Lemma 3.2 Suppose that P is a principal U(2) lift of the frame bundle of
T 3 for which c1(S) = 0. If ω0 6= 0, then the point in MP is a smooth point.
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Proof of Lemma 3.2 This is a straightforward computation since the oper-
ators involved have constant coefficients. The details are left to the reader.

Remark that MP has no smooth points when ω0 = 0. Moreover, in this case,
the solution which corresponds to the trivial connection has a larger space of
first order deformations than do the others.

The remainder of this paper considers only the case where P → T 3 is the ‘trivial
lift,’ that is, the lift of the SO(3) frame bundle for which the associated C2

bundle S is topologically trivial. This assumption about P is made implicitly
from here to the end of the paper.

b) Fundamental lemmas

The preceding lemmas on the structure of MP can be used to deduce certain
key facts about solutions to the Seiberg–Witten equations on the product of T 3

with an interval. The latter are summarized by the lemmas in this subsection.
Here is the first:

Lemma 3.3 Fix a flat metric on T 3 and then fix a non-zero, constant 2–form
ω on R × T 3 . The metric on T 3 , the form ω , a non-negative integer k and a
choice of ε > 0 determine δ > 0 which has the following significance: Suppose
that (A,ψ) is a solution to (4) on Y ≡ (2,−2)× T 3 as defined by the product
flat metric and ω . If

∫
Y |FA|2 < δ , then (A,ψ) has Ck distance ε or less on the

subinterval [−1, 1]×T 3 from a point in the gauge orbit on Y of (A0, ψ0) ∈MP .

By way of explaining terminology, the statement that some (A1, ψ1) is in the
‘gauge orbit on Y of (A0, ψ0) ∈MP ’ means only that (A,ψ) is gauge equivalent
via some element in C∞(Y ;S1) to a pair of connection and section of S+ which
are the pull-backs from T 3 of a pair which solves (11).

The second fundamental lemma can be viewed as a corollary to Lemmas 3.2
and 3.3. Here is this second lemma:

Lemma 3.4 Fix a flat metric on T 3 and then fix a non-zero, self-dual, constant
2–form ω on R×T 3 . The metric and form ω determine a constant δ > 0 and a
set of constants {ζk}k=0,1,... with the following significance: Suppose that R ≥ 0
and that (A,ψ) is a solution to (4) on Y ≡ (−R− 2, R+ 2)× T 3 as defined by
the product metric and ω . Suppose as well that

∫
U |FA|2 < δ for every length

2 cylinder U = (t − 1, t + 1) × T 3 ⊂ Y . Then, there is a pair (A1, ψ1) in the
gauge orbit on Y of (A0, ψ0) ∈MP such that

|∇k(A−A1)|+ |(∇A1)k(ψ − ψ1)| ≤ ζk(e−δ(R−t) + e−δ(R+t)) (12)

at any point (t, x) ∈ [−R,R]× T 3 .
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These two lemmas are proved shortly so accept them for now to consider one
of their more immediate consequences, that elements in the moduli space M of
Sections 2a–c decay exponentially fast along the cylindrical ends of X .

Lemma 3.5 Let X0 be the usual 4–manifold with toroidal boundary compo-
nents, and let X = X0∪ ([0,∞)×∂X0) denote the corresponding non-compact
manifold with a metric which restricts to [0,∞)× ∂X0 as a flat, product met-
ric. Let ω denote a self-dual form on X which is constant and non-zero on
each component of [0,∞) × ∂X0 . This data determines δ > 0, a sequence of
constants {ζk}k=0,1,2,... and, with the choice of r ≥ 1, a constant R; and these
constants have the following significance: Let (s, z) ∈ S0(X0, ∂X0), let M de-
note the resulting moduli space of solutions to (4), and let (A,ψ) ∈ M obey∫

[r,∞)×∂X0
|FA|2 < δ . Then, on each component, Y ⊂ [R,∞) × ∂X0 there is a

point (A1, ψ1) on the gauge orbit on Y of (A0, ψ0) ∈MP for which

|∇k(A−A1)|+ |(∇A1)k(ψ − ψ1)| ≤ ζke−δ(t−R) (13)

at any point (t, x) ∈ Y .

Proof of Lemma 3.5 Write t in (12) as t′+R and then take R to infinity in
the resulting equation to obtain bounds on (A−A1, ψ−ψ1) at points (t′, x) ∈
[0,∞)× T 3 . The latter are identical to those in (13) after shifting t in (13) to
t′ −R.

This subsection ends with the proofs of Lemmas 3.3 and 3.4.

Proof of Lemma 3.3 The L2 bound on P+FA by any δ ≥ 0 immediately
yields an L2 bound on |ψ| since

|τ(ψ ⊗ ψ†)| = z|ψ|2 (14)

with z a universal constant. Thus, since |ω| is a constant, the first point in (4)
implies that there is a constant zω and a bound of the form∫

Y
||ψ| − zω|4 ≤ z1δ, (15)

with z1 depending only on |ω|.
The next step obtains bounds on the L2 norm of ∇Aψ , and the Bochner–
Weitzenböck formula for the Dirac operator is the principle tool for doing so.
Without assumptions on the Riemannian metric, the connection A and the
section ψ , this formula reads

D∗ADAψ = ∇∗A∇Aψ + 4−1sψ + 2−1 cl+(P+FA) · ψ. (16)

Geometry & Topology, Volume 5 (2001)



The Seiberg–Witten invariants and 4–manifolds with essential tori 469

Here, s denotes the metric’s scalar curvature while D∗A and ∇∗A denote the
formal, L2 adjoints of the Dirac operator DA and the covariant derivative ∇A .
Also, cl+(·) denotes the Clifford multiplication induced homomorphism from
Λ+ into End(S+).

As indicated first by Witten in [22], this formula in conjunction with the
Seiberg–Witten equations can be used with great effect to analyze the behavior
of solutions to (4). In particular, the left hand side of (16) is zero when the
second line in (4) holds, while the first line can be used to control the term with
P+FA .

In any event, for the purposes at hand, take the inner product of both sides of
(16) with ψ and use the equations in (4) to rewrite the result as

2−1d∗d|ψ|2 + |∇Aψ|2 + 2−1|P+FA|2 + 2−1〈P+FA, iω〉 = 0. (17)

Here, d∗ denotes the formal L2 adjoint of the exterior derivative d.

Equation 3.7 implies that the square of the L2 norm of |∇Aψ| over [−3/2, 3/2]×
T 3 is bounded by z2δ

1/2 , with z2 only dependent on |ω|. Indeed, to obtain
such a bound, first replace |ψ|2 by (|ψ2| − zω) in the first term on the left side.
Then, multiply both sides of the resulting equation by a smooth, non-negative
function which equals 1 on [−3/2, 3/2] × T 3 and vanishes near the boundary
of Y . Next, integrate the result over Y and then integrate by parts to remove
the derivatives in d∗d from |ψ|2 − zω . Finally, an appeal to (15) and a suitable
application of the inequality 2|ab| ≤ δ−1/2|a|2 + δ1/2|b|2 produces the asserted
bound.

With the L2 norms of ψ , ∇Aψ and FA bounded in terms of δ over the interior
cylinder [−3/2, 3/2]×T 3 , the next step proves that there is, given ε > 0, a value
for δ which implies that the (A,ψ) has L2

1 distance ε or less from a pair (A1, ψ1)
in the gauge orbit on Y of (A0, ψ0) ∈ MP . This step is a straightforward
argument by contradiction which invokes fairly standard elliptic techniques. In
this regard, the only novelty is that the action of C∞(Y ;S1) must be used
to make (4) an elliptic system. Indeed, ellipticity can be achieved by using
the C∞(Y ;S1) action to write (A = A0 + b, ψ = ψ0 + η), where (a, η) are
constrained so that the expression in the top line of (5) holds. The details of
all of this are left to the reader.

Finally, given that (A,ψ) is L2
1 close to a point in the gauge orbit on Y of

(A0, ψ0), the final step proves that (A,ψ) is Ck close to (A0, ψ0). This last
part of the proof is also left to the reader as it constitutes a direct application
of standard procedures in elliptic regularity theory.
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Proof of Lemma 3.4 The lemma can be proved by invoking, with only minor
changes, the argument which [15] uses to prove its Corollary 6.17. However, a
slightly more direct argument can made by filling out the sketch that follows.
The sketch starts with the remark that ε > 0 provides a positive upper bound
for the L2 norm over U of FA that has the following significance: When the
L2 norm of FA is less than this bound, then (A,ψ) is gauge equivalent to
(A0 + b, ψ0 + η), where the C1 norms of (b, η) are bounded by ε on the sub-
cylinder Y ′ ≡ [−R − 1, R + 1] × T 3 ; and where the Seiberg–Witten equations
in terms of λ ≡ (a, η) have the form

∂tλ+ L0λ+ r(λ) = 0. (18)

Here, ∂t is the tangent vector field to the line segment factor in Y , and L0 is a
linear, symmetric, first order differential operator. Meanwhile, r(λ) in (18) is
a ‘remainder’ term which is formally second order in λ. To be precise here, the
L2 norm of r(λ) on each constant t ∈ [−R− 1, R+ 1] slice of Y is bounded by
the product of ε and the L2 norm of λ on the same constant t slice.

What follows are some important points about L0 . First, L0 is determined
solely by the metric on T 3 , ω and (A0, ψ0), and thus only by the metric and ω .
Second, the L2 spectrum of L0 is discrete, real, and lacks accumulation points.
Third, 0 is not in the spectrum of L0 . This last conclusion is essentially the
statement of Lemma 3.2 and plays the starring role in the subsequent part of
the argument.

With L0 introduced, let λ± denote the projections of λ onto the respective
eigenspaces of L0 with positive (+) and negative (−) eigenvalues. Next, in-
troduce functions f± on the interval [−R− 1, R+ 1] whose values at a point t
are the respective L2 norms of λ± on the corresponding constant t slice of Y .
Then (18) yields the differential inequalities

∂tf+ + (E − ε)f+ − εf− ≤ 0;
∂tf− − (E − ε)f− + εf+ ≥ 0.

(19)

Here, E > 0 is the distance between 0 and the spectrum of L0 .

With (19) understood, a simple comparison argument establishes the following:
When ε � E , then the inequalities in (19) require both f± to decay expo-
nentially from the ends of [−R − 1, R + 1]. This exponential decay for the L2

norms of (a, η) on the constant t slices of Y ′ can then be bootstrapped to give
(12) using standard elliptic regularity techniques.
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c) Immediate applications to the structure of M

Lemmas 3.1–3.5 have certain automatic consequences with regard to the moduli
spaces which are considered in Section 2c. In particular, Propositions 2.2 and
2.3 follow from these lemmas.

Proof of Proposition 2.2 The argument here for the structure of M is com-
pletely analogous to that derived in [18] for the SU(2) self-dual moduli spaces
on manifolds with cylindrical ends. In this regard, observe that the lower two
components of the image of Dc in (5) are nothing more than the linearization
of the equations in the first two points of (4). Meanwhile, the vanishing of the
first component of the image of Dc in (5) only asserts that the given section of
i ·T ∗X⊕S+ is L2–orthogonal to the space of tangents to the orbit of the gauge
group. The fact that Dc is Fredholm with the L2

1 domain and L2 range follows
from Lemma 3.2 by standard arguments; for example, by invoking Lemma 3.5
to control the behavior of (A,ψ) on [0,∞)×∂X0 , the fact that Dc is Fredholm
follows almost directly from results in [2].

The formula in Proposition 2.2 for the index of Dc can be derived with the
help of the excision properties of the index from the following input: First, the
formula in Proposition 2.2 holds when X is compact, see eg [22]. Second, take
X = R×T 3 and ω to be a constant, non-zero self-dual 2–form. Then, take the
solution c to be the pull-back via the projection to T 3 of a solution in Lemma
3.1’s space MP . Here, the form ω0 in (11) is the pull-back to {0} × T 3 of ω .
In this case, the kernel and the cokernel of Dc are both trivial. (The operator
has constant coefficients, so is straightforward to analyze.)

Proof of Proposition 2.3 The argument here is, modulo some notational
changes, almost identical to that which proves the analogous assertion in the
case where X is compact; see, for example the books [11] or [8]. The largest
modifications to the compact case argument are needed to address the orienta-
tion assertion, and in this regard, the reader can refer to the proof of Corollary
9.2 in [15].

Lemmas 3.1–3.5 also have immediate applications to the subject of M’s com-
pactness. The particular applications here are summarized below in Proposition
3.6. Here is the background for this proposition: The proposition introduces the
manifold with boundary X0 as described in the beginning of Section 2, except
that here, X0 is assumed to have non-empty boundary. Put a Riemannian met-
ric on X0 which is a flat, product metric on some neighborhood of ∂X0 and ex-
tend this metric in the usual way to obtain a metric on X = X0∪([0,∞)×∂X0).
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Also, fix a self-dual 2–form ω on X which is non-zero and covariantly constant
on [0,∞) × ∂X0 . Having made these selections, choose an element s ∈ S0(X)
and then introduce, as in Section 2d, the set ς(s) ⊂ H2(X0, ∂X0;Z) which
consists of those elements z which map to c(s) in H2(X0;Z).

What follows might be called a partial compactness assertion.

Proposition 3.6 The restrictions of the chosen metric and form ω to ∂X0

determine a constant δ > 0 with the following significance: For each z ∈ ς(s),
construct the moduli space M and then for each r ≥ 1, introduce the subspace
M(r) ⊂M of orbits of (A,ψ) for which∫

[r,∞)×∂X0

|FA|2 ≤ δ.

Then, M(r) is compact in all cases, and actually empty for all but a finite set
of z ∈ ς(s).

Proof of Proposition 3.6 As Witten pointed out [22], the key to com-
pactness theorems for the Seiberg–Witten moduli spaces is the Bochner–
Weitzenböck formula in (16). Of course, if DAψ = 0, then the left hand side
of (16) is zero; thus contracting both sides with ψ using the hermitian metric
on S+ yields a differential inequality for the function |ψ|2 . Moreover, when
the first point in (4) also holds, then, as noted in [9], the maximum principle
applies to this differential inequality and provides a uniform upper bound for
|ψ|2 in terms of |s|, |ω| and an asymptotic bound for |ψ|2 on the ends of X .
Lemma 3.5 provides such an asymptotic bound for |ψ|, so

|ψ|2 ≤ ζ sup
X

(|s|+ |ω|) (20)

on the whole of X . Here, ζ depends only on the Riemannian metric. Note, by
the way, that this constant ζ is independent of both the SpinC structure s and
z ∈ ς(s).

This bound on |ψ| together with Lemma 3.5 provide a uniform upper bound
on the L2 norm of P+FA . This upper bound is also independent of both s and
z ∈ ς(s). This last bound on P+FA provides an L2 bound on the anti-self dual
part, P−FA , of A’s curvature 2–form via the string of identities

c(s) • c(s) = −(4π2)−1

∫
X
FA ∧ FA = (4π2)−1

∫
X

(|P+FA|2 − |P−FA|2). (21)

In particular, notice that the resulting upper bound for the L2 norm of FA is
independent of the class z ∈ ς(s).
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Standard elliptic regularity techniques can be invoked to bootstrap these upper
bounds on FA and |ψ| into uniform and z ∈ ς(s) independent upper bounds
for all Ck norms for a suitable point on the gauge orbit of (A,ψ). (See [11] or
[8] to see how this is done.) In particular the latter imply that any sequence of
gauge orbits in ∪z∈ς(s)M(r) is defined by a corresponding sequence {(Ak, ψk)}
of solutions to (11) which converges in the C∞ topology on compact subsets
of X . Meanwhile, the uniform bounds that are provided by Lemma 3.5 imply
that a sequence of gauge orbits in ∪z∈ς(s)M(r) is actually defined by a sequence
{(Ak, ψk)} of solutions to (4) which converges in the strong C∞ topology on
the whole of X . This last fact implies convergence in each M(r) and it implies
that there can be only finitely many z ∈ ς(s) for which the corresponding M(r)
is not empty.

d) The family version of Proposition 2.4

Though Proposition 3.6 asserts that each M(r) is compact, there is no reason
for the whole of M to be compact. In fact, most probably, the statement in
Proposition 2.4 is about as strong as can generally be made. As remarked in
Section 2d, the compactness asserted in Proposition 2.4 is strong enough to
provide a definition of sw(s, z) given a reasonable choice of ω and, in the d > 0
cases, a suitably generic choice of the set Λ.

However, the compactness asserted by Proposition 2.4 is not strong enough for
use in the proof of Theorem 2.5. Indeed, a comparison between the values of
sw(·) as defined by different, but still allowable choices for the triple of metric,
ω and Λ involves an interpolating path in the space of such triples, and thus
a corresponding 1–parameter family of moduli spaces. Meanwhile, Proposition
2.4 says nothing about compactness for families of moduli spaces. This weakness
in Proposition 2.4 is addressed below with the statement of Proposition 2.4’s
family version for use in the proof of Theorem 2.5.

To set the stage for the family version of Proposition 2.4, fix s ∈ S0(X0) and
consider two sets of triples, Γ0 ≡ (g0, ω0,Λ0) and Γ1 ≡ (g1, ω1,Λ1), for use
in defining sw(s, z) for z ∈ ς(s). Thus, g0 and g1 are metrics on X which
restrict to flat, product metrics on [0,∞) × ∂X0 ⊂ X . Meanwhile, ω0 and ω1

are self-dual forms on X for the respective metrics g0 and g1 which restrict
to each component of [0,∞)× ∂X0 as non-zero, covariantly constant 2–forms.
Finally, Λ0 and Λ1 are two sets of points and the associated data needed to
define sw when the number d in Proposition 2.2 is positive.

The triple Γ0 has its associated moduli space M(s, z). There is, of course,
an analogous moduli space that is defined by Γ1 and these two spaces will
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be distinguished as M0 and M1 , respectively. With this notation understood,
require now of ω0 and ω1 that their moduli spaces M0 and M1 consist only
of smooth points. Meanwhile, require of Λ0 and Λ1 that the conditions which
define their respective versions of the set MΛ in (8) cut the latter out of the
corresponding M in a transversal fashion. These will be denoted respectively
by M0Λ and M1Λ .

Here is the final key assumption on Γ0 and Γ1 . Assume that there exists a
continuous, 1–parameter path {$t ∈ H2(X0;R) : t ∈ [0, 1]} with each $t

having non-zero pull-back in the cohomology of each component of ∂X0 , and
with $0 and $1 taming ω0 and ω1 , respectively.

With these assumptions in hand, consider now the following:

Proposition 3.7 Under the assumptions just made, there exists a continuous,
interpolating family, {Γt : t ∈ [0, 1]}, of data triples for which the corresponding
family of moduli spaces W ≡ ∪t∈[0,1]M

t has the following structure:

• W is a smooth, oriented, d + 1 dimensional manifold with boundary
for which the tautological map to [0, 1] is smooth and a product over a
neighborhood of {0, 1}. Moreover, the induced boundary orientation on
M1 agrees with its orientation from Proposition 2.3, while that on M0

disagrees.

• Let WΛ ≡ ∪t∈[0,1]M
tΛ ⊂ W. Then WΛ has the structure of a finite,

disjoint set of embedded, oriented intervals each mapping to [0, 1] as a
product over a neighborhood of {0, 1}. Moreover, the induced bound-
ary orientation on M1Λ agrees with its orientation from the definition of
sw(s, z), while that on M0Λ disagrees with its sw(s, z) orientation.

The proof of this proposition is discussed in Section 6b so accept its assertions
for the time being.

With Proposition 3.7 in hand, consider the following:

Proof of Theorem 2.5 The invariance assertions in the theorem are a stan-
dard consequence of the third point in Proposition 3.7. Indeed, the intervals
in WΛ pair each point in M0Λ either with another point in this space, but one
with the opposite sign for the sw count, or else with a point in M1Λ which has
the same sign for the sw count. Meanwhile, each point in the latter space which
is not paired by a component of WΛ to one in M0Λ is paired by a component
of WΛ with another such point, but one with the opposite sw count sign.
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e) Gluing moduli spaces

In this subsection, X0 denotes a compact, connected, oriented 4–manifold with
boundary consisting of a disjoint union of 3–dimensional tori. Here, the bound-
ary can be empty, but if so, require that b2+ ≥ 1. Let M ⊂ X0 be an em-
bedded, 3–dimensional torus, and if M is separating, write X0 = X− ∪ X+ ,
where X+ ∩ X− = M . Otherwise, let X1 ⊂ X denote the complement of an
open, tubular neighborhood of M . In the separating case, introduce the non-
compact manifolds X± ≡ X±∪([0,∞)×∂X±), and in the non-separating case,
X1 ≡ X1 ∪ ([0,∞) × ∂X1).

With the introduction of X± and X1 , the remainder of this subsection describes
how moduli spaces on X± , in the separating case, or on X1 otherwise, can be
glued together over the ends that contain M to produce portions of the moduli
space for X .

To begin the presentation, choose a flat metric on M , and then choose a metric
on X0 which restricts as a flat product metric on an interval neighborhood of
M . This is to say that the metric should allow for an isometric embedding of
(−ε, ε) ×M into X which sends {0} ×M to M . The chosen metric for X0

should also restrict as a product, flat metric on a neighborhood of ∂X0 .

With this metric fixed, select a self-dual 2–form ω which is non-zero and con-
stant on a neighborhood of M and likewise on a neighborhood of each com-
ponent of ∂X0 . The metric on X0 and the form ω induce, in a presumably
obvious way, a pair of metric and self-dual 2–form on X and also on X± or
X1 , as the case may be. Here, the metric on these spaces is flat and a product
on the ends, and the self-dual 2–form, still called ω , is non-zero and constant
on each end component. Moreover, in the separating case, X± have one spe-
cial end, that which contains M ⊂ ∂X± . In X− , this end has an orientation
preserving isometry with [0,∞) ×M , while in X+ , the orientation preserving
isometry sends the end to (−∞, 0] ×M . In the non-separating case, X1 has
two special ends, one with an orientation preserving isometry to [0,∞) ×M
and the other to (−∞, 0]×M . In all of these cases, the metric and the form ω
restrict to these special ends as the constant extension of the given metric and
form on (−ε, ε)×M ⊂ X .

With regard to the choice of ω , Proposition 2.3 asserts the following: Fix
neighborhoods of M and ∂X whose closure is not the whole of X and there
is a Baire subset of choices for ω which have the given restriction near M and
∂X and are such that all moduli spaces of solutions to (4) on X , X+ and X− ,
or on X1 , are smooth manifolds for which the operator Dc has trivial cokernel
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at all points. In particular, when choosing the form ω , be sure to take one for
which this last conclusion holds.

The chosen metric on X , call it g , will now be used to construct a 1–parameter
family, {gR}R≥0 , of metrics on X . Here, g0 = g , while X with the metric gR
admits an isometric embedding of the cylinder [−R,R]×M whose complement
with the metric gR is isometric to X −M with the metric g . Alternately, the
metric gR makes X isometric to

(X −M) ∪ ([−R,R]×M), (22)

where X −M has the metric g and [−R,R]×M has the product, flat metric.
With gR understood, introduce XR to denote X as a Riemannian manifold
with the metric gR .

With regard to (22), note that in the respective cases where M does and does
not separate X , the Riemannian manifold XR −M admits a canonical, orien-
tation preserving isometry

Θ: XR −M →
(
X− − ([R,∞)×M)

)
∪
(
X+ − ((−∞,−R]×M)

)
⊂ X− ∪X+ or

Θ: XR −M →X1 − (([R,∞)×M) ∪ ((−∞,−R]×M)) ⊂ X1,

(23)

respectively.

There is one last remark to make here about the metric gR , which is that
the form ω can be viewed as living on XR in as much as its restriction to
X −M ⊂ X defines it on the isometric X −M ⊂ XR and then there is an
evident extension as a self-dual 2–form on the whole of XR which is non-zero
and constant on the cylinder [−R,R]×M .

With the geometric preliminaries complete, now choose (s, z) ∈ S0M (X0, ∂X0).
In the case where M is separating, each pair ((s−, z−), (s+, z+)) ∈ ℘−1(s, z) ⊂
S0(X−, ∂X−) × S0(X+, ∂X+) determines moduli spaces M− and M+ on X−
and X+ , respectively. In the non-separating case, each (s1, z1) ∈ ℘−1(s, z)
determines the moduli space M1 on X1 . With regard to these spaces, remem-
ber that the form ω has been chosen so that these moduli spaces are smooth
manifolds with cokernel(Dc) = {0} at all points. Note for use below that the
specification of r ≥ 1 defines the subsets M±(r) ⊂ M± and M1(r) ⊂ M1 of
pairs (A,ψ) which obey the curvature bound in Proposition 3.6.

Meanwhile, the choice of R ≥ 0 determines the Riemannian manifold XR , and
then, with the help of ω , the pair (s, z) determine a corresponding moduli
space, MR .
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With all of this understood, what follows in Proposition 3.8 is a description of
the fundamental fact that parts of MR can be constructed from M−(r)×M+(r)
or from M1(r) as the case may be. Here, a lower bound for R is determined
by r .

Proposition 3.8 Each pair r′ ≥ 0 and δ > 0 determines a lower bound for a
choice of r and then a choice of r � r′ which is greater than this lower bound
determines a lower bound for a choice of R � r . Choose r′ ≥ 0, then r � r′

consistent with the lower bound, and finally R � r consistent with its lower
bound. Then the following are true:

• In the case where M separates, there exists an embedding

Φr :
⋃

((s−,z−),(s+,z+))∈℘−1((s,z))

M−(r)×M+(r)→MR,

which maps the interior of its domain onto an open set of smooth points
that contains the subspace of (A,ψ) with∫

[−R+r′,R−r′)×M
|FA|2 ≤ δ/2. (24)

In addition, if the lines L− , L+ , and L0 are oriented as in Theorem 2.7
and if the induced orientations on the respective moduli spaces are used,
then Φr is orientation preserving. Moreover, if (c−, c+) is in the domain
of Φr , there are points (A±, ψ±) ∈ c± and (A,ψ) ∈ Φr(c−, c+) such that∑

0≤k≤2

(
|∇k(A−Θ∗(A−, A+)|+ |∇kA(ψ −Θ∗(ψ−, ψ+)|

)
≤ e−R/ζ ,

where Θ is the map in the first line of (23) and ζ ≥ 1 depends only on
the restriction to M of the form ω and the metric g .

• In the case where M does not separate, there exists an embedding

Φr :
⋃

((sl,zl))∈℘−1((s,z))

M1(r)→MR,

which maps the interior of its domain onto an open set of smooth points
that contains the subspace of (A,ψ) which obey (24). In addition, if
the lines L1 and L0 are oriented as in Theorem 2.7 and if the induced
orientations on the respective moduli spaces are used, then Φr is orienta-
tion preserving. Moreover, if c1 is in the domain of Φr , there are points
(A1, ψ1) ∈ c1 and (A,ψ) ∈ Φr(c1) such that∑

0≤k≤2

(
|∇k(A−Θ∗A1)|+ |∇kA(ψ −Θ∗ψ1)|

)
≤ e−R/ζ ,
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where Θ is the map in the second line of (23) and ζ ≥ 1 depends only
on the restrictions to M of ω and g .

As the gluing result in Proposition 3.8 is now standard fair in gauge theories,
the proof will be omitted. However, note that a proof can be produced via a
straightforward application of the techniques introduced in [4] for gluing self-
dual moduli spaces in SU(2) gauge theory. In this regard, the choice of ω to
make either each pair M± or each M1 smooth insures the absence of obstruction
bundles. As a last remark on this subject, note that reference to Section 9.1 of
[15] can also be made to deal with the assertions in the proposition that concern
orientations.

f) Implications from gluing moduli spaces

This subsection discusses the application of Proposition 3.8 to the proof of
Theorem 2.7. For this purpose, suppose that X0 , M , X± and X1 are as
described at the outset of the preceding subsection.

Coupled with Proposition 2.4, the gluing result in Proposition 3.8 is almost
enough to prove Theorem 2.7. Indeed, missing still is a guarantee that each
point in (MR)Λ satisfies (24) for some fixed r′ and all R sufficiently large. The
next proposition provides such a guarantee:

Proposition 3.9 Continuing the discussion and notation from Proposition
3.8 and the preceding subsection, introduce d as defined in Proposition 2.2. If
d > 0, choose the data set Λ so that the set of base points Λ is disjoint from
M and use (22) to define the analogous data sets for each XR . Choose a class
$ ∈ H2(X0;R) whose pull-back in the cohomology of M and in that of every
component of ∂X0 is non-zero. Next, choose a self-dual 2–form ω′ on X0 which
is tamed by $ and whose restriction to the fiducial tubular neighborhood of M
and to that of each component of ∂X0 is constant and non-zero. Then there is
a Baire set of choices for the self-dual forms ω which are tamed by $ , which
agree with ω′ on the complement of a fixed, tubular neighborhood of M ∪∂X0 ,
and which have the following additional property: If r is sufficiently large, and
R also, subject to its lower bound constraints, then the set Λ can be chosen to
insure that (MR)Λ lies in the image of Proposition 3.8’s map Φr . In particular,
there exists r′ ≥ 1 such that when R is sufficiently large, then each point in
(MR)Λ obeys (24).

This proposition is proved in Section 6c.

The preceding two propositions play the key roles in the following:

Geometry & Topology, Volume 5 (2001)



The Seiberg–Witten invariants and 4–manifolds with essential tori 479

Proof of Theorem 2.7 Except for two assertions, the theorem follows di-
rectly from Propositions 3.7 and 3.9 via arguments which are standard fair in
gauge theories. (Arguments of this sort were first given by Donaldson in the
context of SU(2) gauge theories, see eg [4].) The assertions which do not fol-
low immediately from Propositions 3.7 and 3.8 concern the vanishing of all but
finitely many of the numbers sw(s−, z−) and sw(s+, z+) or sw(s1, z1) as the
case may be. However, these last assertions follow from Proposition 2.4.

4 Energy and compactness

The estimates provided here make the first steps towards the proof of Proposi-
tion 2.4. Although they are not strong enough to give Proposition 2.4 and its
brethren in their entirety, they do yield the previously mentioned result that M
is compact if the pull-back to each boundary component of $ is not a multiple
of an integral cohomology class.

In the subsequent discussions of this section, X0 is as described at the begin-
ning of Section 2, a compact, connected, oriented 4–manifold with boundary
such that each boundary component is a 3–torus. As before, X0 is endowed
with a metric which is a product flat metric on a tubular neighborhood of the
boundary. Also, X0 is endowed with a class $ ∈ H2(X0;R) whose pull-back
to the cohomology of each component of ∂X0 is non-zero. As previously, let
X denote X0 ∪ ([0,∞)× ∂X0) with the induced Riemannian metric, and let ω
be a self-dual 2–form on X which is non-zero and covariantly constant on each
component of [0,∞)× ∂X0 , and which is tamed by $ .

a) The first energy bound

The first of the important energy bounds is presented below as Proposition 4.1.
Its proof then occupies the remainder of this subsection.

Proposition 4.1 There exist universal, positive constants {κj}j=1,... ,4 , and
a positive constant, ζ , which depends on the Riemannian metric, $ and ω ;
and these constants have the following significance: As usual, let M denote the
moduli space for a given (s, z) ∈ S0(X0, ∂X0), and let (A,ψ) ∈M. Then,∫

X
(|∇Aψ|2 + |P+FA|2) ≤ ζ + κ1z •$ − κ2c(s) • c(s) and∫

X
|FA|2 ≤ ζ + 2κ1z •$ − κ3c(s) • c(s).
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Moreover, if ω is a closed form, then∫
X

(|∇Aψ|2 + |P+FA|2) ≤ ζ + κ4z •$.

Finally, in the case where X = R× T 3 , these results hold with ζ = 0.

Proof of Proposition 4.1 To obtain the proposition’s first assertion, start
with the Bochner–Weitzenböck formula in (16), take the inner product of both
sides of the latter with ψ , and then integrate the result over X . Integration by
parts (which (13) justifies) and input from the Seiberg–Witten equations can
then be used to derive the equality

0 =
∫
X

(
|∇Aψ|2 +

s

4
|ψ|2 +

1
2
|P+FA|2 −

i

2
FA ∧ ω

)
.

Next, fix a closed 2–form µ which represents the class $ and equals ω on
[0,∞) × ∂X0 . Because both s and ω − µ are supported on ∂X0 , this last
equation with (20) implies the inequality∫

X
(|∇Aψ|2 + |P+FA|2) ≤ ζ ′ + κ0

∫
X
iFA ∧ µ+

1
16

∫
X0

|FA|2. (25)

Here, ζ ′ depends only on the metric, ω and µ, while κ0 is a positive, universal
constant. With regard to (25), note that when µ is self-dual, the integrand of
the last term in (25) can be replaced by |P+FA|2 .

The first integral on the right side of (25) is equal to 2π ·z •$ . Meanwhile, (21)
relates the integral in (25) of |FA|2 to that of |P+FA|2 . With these relations
understood, the inequality in the first point of the proposition follows directly
from (25). The second point’s inequality follows from the first and (21). Mean-
while, the proposition’s third point follows directly from (25) given that the
integrand in the last term on the right is replaced by |P+FA|2 .

b) Uniform asymptotics of (A,ψ)

The bounds on P+FA and ∇Aψ that Proposition 4.1 provides are crucial inputs
to a key generalization of Lemma 3.5. The latter is stated next as Proposition
4.2. The proof of this proposition then occupies the remainder of this subsec-
tion.

Proposition 4.2 There exist positive constants, ζ0 and ζ1 , which depend on
the Riemannian metric, $ and ω ; and which have the following significance:
Given (s, z) ∈ S0(X0, ∂X0), set

f ≡ κ1z •$ − κ2c(s) • c(s), (26)
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where κ1 and κ2 are the constants that are introduced in Proposition 4.1. Let
M denote the moduli space for (s, z) and let (A,ψ) ∈M. Then:

• |FA| < ζ0 + ζ1f everywhere on X .

• Let [0,∞)×T 3 be an end of X . There exists some number N ≤ ζ0 + ζ1f
of points {ti} ∈ [0,∞) (not necessarily distinct) such that

|FA|(t, ·) ≤ ζ0

(
e−t/ζ0 +

∑
i

e−(t−ti)/ζ0

)
(27)

at all points (t, ·) ∈ [0,∞) × T 3 .

Proof of Proposition 4.2 The first bound on |FA| follows from the L2

bounds in Proposition 4.1 using standard elliptic regularity techniques. To
obtain the bound in (27), let {tj} ⊂ [2,∞) denote the distinct integer points
where the bound in Lemma 3.3 is violated for the cylinder Y = [tj−2, tj+2]×T 3 .
Proposition 4.1 guarantees that there are no more than N = (ζ + f)/δ such
points where ζ is given in Proposition 4.1. The estimate in (27) then follows
from Lemma 3.4.

c) Refinements for the cylinder

The following proposition describes a useful refinement of the inequality in (27)
which holds when X is the cylinder R× T 3 .

Proposition 4.3 Let R ≥ 2 and let X = [−R,R]×T 3 . Let ω be a non-zero,
covariantly constant, self-dual 2–form on X . There exist constants δ > 0 and
ζ0 ≥ 1 which are independent of R and which have the following significance:
Let (A,ψ) be a solution to (4) on X which obeys

∫
Y |FA|2 < δ when Y =

[−R,−R+ 4]× T 3 and Y = [R− 4, R]× T 3 . Then:

• |FA| < ζ0 everywhere.

• There exists some number N of distinct, integer valued points {ti} ∈
[−R,R] such that

|FA| ≤ ζ0

(
δe−(R−|t|)/ζ0 +

∑
i

e−(t−ti)/ζ0

)
(28)

at all points (t, ·) where t ∈ [−R+ 2, R − 2].
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Proof of Proposition 4.3 First, note that |ψ| is bounded by some number
B on X ′ = [−R+ 1, R− 1]× T 3 which depends only on the metric and ω . To
find the bound B , first use the Seiberg–Witten equations to rewrite P+FA in
(17) in terms of ψ and so derive the following differential inequality for |ψ|2 :

2−1d∗d|ψ|2 +m|ψ|2(|ψ|2 − |ω|) ≤ 0. (29)

Here, m > 0 is a universal constant. The maximum principle applies to (29)
and bounds |ψ|2 in terms of |ω| and its size near the ends of X ′ . Meanwhile,
Lemma 3.3 bounds the size of |ψ|2 near the ends of X ′ in terms of |ω|.
For the next step in the proof, take t ∈ [−R + 2, R − 2] × T 3 , set T =
[t− 1, t + 1] × R and then multiply both sides of (17) by a standard, smooth
function on [−R,R] which is 1 on T and 0 on [−R, t − 2] and on [t + 2, R].
Integrate the result over X ′ , and then integrate by parts to remove the operator
d∗d from |ψ|2 . With the bound on |ψ| by B , a simple manipulation gives the
inequality ∫

T
(|∇Aψ|2 + |P+FA|2) ≤ ζ ′(1 +B2); (30)

here, ζ ′ is another constant which depends only on |ω|.
The next task is to control the L2 norm of |P−FA|. Here, the vanishing of
dFA is employed to conclude that d(P−FA) = −d(P+FA). Now, note that by
differentiating (4), the form d(P+FA) can be expressed in terms of ψ and ∇Aψ
and as a result, its norm is bounded by a uniform multiple of ζ ′B|∇Aψ|, where
ζ ′ is a universal constant. Thus, (30) provides an L2 bound on d(P−FA). With
this bound in hand, it now proves useful to rewrite the equation d(P−FA) =
−d(P+FA) ≡ σ by separating out t–derivatives from derivatives along the tori
T 3 . There result two equations,

∂tf − ∗∂f = σ⊥ and
∂∗f = σ0.

(31)

Here, ∂ is the exterior derivative along the torus, and ∗ denotes the Hodge star
along the torus. Also, f is the t–dependent 1–form on T 3 which is obtained
from P−FA by contracting with the unit vector in the t–direction.

To analyze the preceding equations, write f = g + ∂u, where ∂∗g = 0 and
where u is a time dependent function on T 3 obeying ∂∗∂u = σ0 . Letting ‖ · ‖t
denote the L2 norm over {t}×T 3 , it follows by standard arguments that there
is a solution u which obeys

‖∂u‖t ≤ ζ · ‖σ0‖t
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for all t ∈ [−R+ 2, R− 2].

Next, consider the projection of the top line in (31) onto the kernel of ∂∗. The
result is an equation for g which reads

∂tg − ∗∂g = σ′, (32)

where σ′ is the L2–orthogonal projection of σ⊥ onto the kernel of ∂∗. (Thus,
‖σ′‖t ≤ ‖σ‖t .) To analyze (32), consider the projections g+ , g− and g0 onto the
respective positive, negative, and zero eigenspaces of ∗∂ acting on the kernel of
∂∗. Likewise, introduce the analogous projections of σ′ , namely σ′+,−,0 . Then
(32) implies

(∂t − λ) · ‖g+‖t ≥ −‖σ′+‖t;
(∂t + λ) · ‖g−‖t ≤ ‖σ′−‖t;
∂tg0 = σ′0.

(33)

Here, λ is the smallest non-zero absolute value of an eigenvalue of ∗∂ on
kernel(∂∗).

The first and second lines in (33) can be integrated to yield

‖g+‖t ≤ e−λ·(R−1−t)‖g+‖R−1 + sup
s∈[−R+1,R−1]

∫
[s−1,s+1]

‖σ′+‖2sds and

‖g−‖t ≤ eλ·(t+1−R)‖g−‖−R+1 + sup
s∈[−R+1,R−1]

∫
[s−1,s+1]

‖σ′−‖2sds.

The final line can be integrated to find that

‖g0‖t ≤ sup
s∈[−R+1,R−1]

‖P+FA‖s. (34)

The explicit formula for σ′0 must be used to derive (34). For this purpose,
introduce the t–dependent 1–form h on T 3 by writing P+FA = dt ∧ h + ∗h.
Then, up to a sign, σ′0 is the time derivative of the projection of h onto the
space of harmonic 1–forms on T 3 .

These last two equations with (30), the equation in the first point of (4), the
bound |ψ| ≤ B and Lemma 3.3 have the following consequence: The L2 norm
of |P−FA| is uniformly bounded on each t = constant slice of the cylinder
[−R + 1, R − 1] × T 3 in terms of |ω| and the assumed L2 bound of FA on
[−R,−R+4]×T 3 and on [R−4, R]×T 3 . With the latter understood, standard
elliptic regularity techniques find a uniform pointwise bound for |FA| at points
where t ∈ [−R+2, R−2]. Of course, the bound on the L2 norm on t = constant
slices provides one on all length 4 cylinders in X ′ , and with this understood,
the bound in (28) follows from Lemma 3.4.
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d) Vortices on the cylinder

This section serves as a digression of sorts to describe the space of solutions to
the vortex equation on R × S1 . These solutions will be used to describe the
Seiberg–Witten moduli space on R× T 3 .

To describe the vortices, endow R × S1 with its standard product metric and
with the complex structure from the identification via the exponential map
with C∗ = C− {0}. Fix a constant r > 0. A vortex solution is a pair (v, τ) of
imaginary valued 1–form and complex function which obey the conditions

• ∗dv = −ir(1− |τ |2);
• ∂̄τ + v0,1τ = 0;

• (1− |τ |2) is integrable.

(35)

Here, v0,1 is the (0, 1) component of v in T (R× S1)C .

Let C denote the set of solutions to (35) modulo the equivalence relation that
identifies (v, τ) with (v′, τ ′) when v′ = v + ϕdϕ−1 and τ ′ = ϕτ whenever ϕ is
a smooth map from R×S1 to the unit circle S1 ⊂ C. Topologize C as with M.
That is, first topologize the solution set to (35) with the subspace topology by
embedding the latter in i ·Ω1×Ω0

C× [0,∞), where the first two coordinates are
v and τ , respectively, and the last is r

∫
(1−|τ |2)∗1. Then, give C the quotient

topology.

Here are some facts (without proofs) about C (see, eg Section 2 of [19] or [7]
for the proofs of similar assertions about vortices on C):

• C is the disjoint union of components, {Cn}n=0,1,... . The component
Cn is a manifold of complex dimension n and is diffeomorphic to Zn =
{(y1, . . . , yn) ∈ Cn : yn 6= 0} by the map Υ: Zn → C which sends y ∈ Zn
to a solution of the form

(v, τ) = (∂̄u− ∂u, e−up[y]), (36)

where p[y] sends η ∈ C∗ = R×S1 to the polynomial ηn+y1η
n−1+· · ·+yn .

Meanwhile, u is the unique, real valued function on R× S1 which obeys

2i∗∂∂̄u = −r(1− e−2u|p[y]|2);

u = n ln t+ o(1) at points (t, ·) ∈ R× S1 with t� 1;

u = ln |yn|+ o(1) at points (t, ·) ∈ R× S1 with t� −1.

• If (v, τ) ∈ Cn , then

r

∫
(1− |τ |2) = 2πn. (37)
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• |τ | ≤ 1 with equality if and only if |τ | = 1 everywhere and n = 0.

• There is a constant ξ which depends only on the vortex number and is
such that

(1− |τ |2) + r−1/2|∇vτ | ≤ ζ exp[−(2r)1/2 dist(·, τ−1(0))]. (38)

• Zn is diffeomorphic to Cn−1 × C∗ .
• There is a gluing map, G, that sends any finite product Zn1 × · · · × Znk

to the corresponding Zn1+···+nk ; it is defined by the requirement that
p[G(yn1 , . . . , ynk)] = p[yn1] · · · p[ynk ], where p[·] is as described in the first
point above.

• The group C∗ = R × S1 acts on each Cn as pull-back via its natural
action on itself. In terms of the parameterization of a vortex solution
as a point y = (y1, . . . , yn) ∈ Zn , this action has λ ∈ C∗ send y to
(λ−1y1, . . . , λ

−nyn). The action of an element in C∗ on a vortex will be
called a translation.

• A vortex parametrized by y ∈ Zn with |yn| = 1 will be called centered.
In this regard, note that ln |yn| equals the average of the t coordinates
of the zeros in R × S1 of the corresponding τ . The value of ln |yn| will
be called the center of the vortex.

Vortex solutions on R×S1 give Seiberg–Witten solutions on X = R×S1× T 2

as follows: Take ω on X to equal r · P+ω1 , where ω1 is the standard volume
form on R × S1 . Now let (v, τ) be a vortex solution and set A = A0 + 2v ,
ψ = (

√
rτ, 0), where A0 is the product connection. Here, the bundle S+ has

been split into eigenspaces for Clifford multiplication by ω .

e) The moduli space for R× T 3

This section constitutes a second digression to consider the moduli space of
solutions to (4) for the case X = R × T 3 . For this purpose, take ω in (4)
to be a non-zero, covariantly constant form on the whole of X . When con-
sidering the possibilities for M in this case, note that as X0 = [−1, 1] × T 3 ,
there is just one element in S0(X0), the trivial SpinC structure. Meanwhile,
S0(X0, ∂X0) = H2

comp(R × T 3). Moreover, cup product with a generator of
H1

comp(R;Z) = Z provides an isomorphism, Ξ: H1(T 3;Z) ≈ H2
comp(R × T 3;Z)

and so S0(X0, ∂X0) = H1(T 3;Z).

With the preceding understood, consider:
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Proposition 4.4 Fix z ∈ H1(T 3;Z) and then the corresponding Seiberg–
Witten moduli space M on R × T 3 consists of a single point (the orbit of a
solution with FA ≡ 0) unless

ω = P+(dt ∧ θ),

where θ is a constant 1–form on T 3 whose cohomology class is a positive
multiple of z in H1(T 3;Z). When the latter is true, then M is diffeomorphic
to the vortex moduli space Cn , where n is the divisibility of z in H1(T 3;Z).
In particular, this diffeomorphism arises from the fact that each point in M is
gauge equivalent to (A = A0 + 2a, ψ =

√
r(α, 0)), where the pair (a, α) is the

pull-back from R×S1 of a vortex in Cn via the map that identifies the R factors
while it fibers T 3 over S1 so that the constant 1–form that gives S1 length 1
pulls back as the constant 1–form which represents n−1z in H1(T 3;Z).

The remainder of this subsection is occupied with the following:

Proof of Proposition 4.4 Use ω to decompose the bundle S+ on R × T 3

as E ⊕ E−1 , where E → R × T 3 is a complex line bundle. Note that E must
be topologically trivial since the restriction of its first Chern class to T 3 must
vanish.

Now consider (A,ψ). Write ψ = (α, β) to correspond with the splitting of
S+ . Then, Witten’s arguments from [22] for compact Kähler manifolds (using
Lemma 3.5 to justify integration by parts) can be employed here to prove that
β = 0 and that α is holomorphic with respect to that complex structure on
X that is defined by the flat metric and the self-dual form ω . In addition,
iP+FA = (1− |α|2)ω .

Note that the maximum principle insures that |α| < 1 everywhere unless α ≡ 1.
In this case, the solution is gauge equivalent to the constant solution on T 3 .
With this understood, assume below that |α| < 1.

To proceed, note that dFA = 0 so dP−FA = −dP+FA . Differentiate this
last identity to find an equation of the form ∇∗∇(iP−FA) + ζ1|α|2iP−FA =
iζ2P−(dAα∗ ∧ dAα), where ζ1,2 > 0 are universal constants. A similar equa-
tion holds for P+FA and comparing these two equations with the help of the
maximum principle gives the pointwise bound |P−FA| ≤ |P+FA|. This last
inequality, with the condition z • z = 0, implies that |P−FA| = |P+FA| which
is equivalent to FA ∧FA = 0. In fact, it follows now that iP−FA = (1− |α|2)σ ,
where σ is a constant, anti-self dual 2–form with norm equal to that of ω .
Furthermore, dAα∗ ∧ dAα is proportional to FA everywhere. (See (4.28–30) in
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[19].) It also follows that α is holomorphic with respect to the complex struc-
ture on R × T 3 that is defined by the given flat metric and the self-dual form
ω .

Let ω1 = ω + σ . This form has square zero, and its kernel defines a 2–
dimensional distribution on R × T 3 on which FA and dAα both vanish. This
distribution is also invariant under the complex structure on R × T 3 because
dAα has zero projection onto the corresponding T 0,1X . Furthermore, since ω1

is constant, the resulting foliation is the image in R×T 3 of a linear foliation of
the universal covering space R×R3 = C2 by complex lines. Moreover, as |FA|2
has finite integral over R × T 3 , the time coordinate (the R factor in R × T 3)
is constant on each leaf of the foliation. Furthermore, as α is holomorphic, its
zero set, a union of leaves of the foliation, is a smooth, compact, codimension
2, complex submanifold of X . This implies that each leaf of the foliation is a
closed, linear torus in T 3 .

The proposition follows directly from the preceding remarks.

f) Compactness in some special cases

This subsection returns now to consider the compactification of the Seiberg–
Witten moduli spaces for those X0 from Proposition 2.4. In this case, Propo-
sitions 4.2–4.4 can be employed to compactify the space Ms,m from (6) as a
stratified space. The basic tool for this is Proposition 4.5, below. The statement
of Proposition 4.5 reintroduces the function f on H2

comp(X;Z) from (26).

Proposition 4.5 Fix (s, z) ∈ S0(X0, ∂X0), let M denote the corresponding
moduli space and let {cj}j=1,2,... ∈M be a sequence with no convergent subse-
quences. Then, the following exist:

(1) z′ ∈ ς(s) with z′ •$ < z •$ .

(2) A point c∞ in the corresponding M′ .

(3) For each component T = [0,∞) × T 3 ⊂ [0,∞) × ∂X0 an element zE ∈
H1(T 3;Z) and a sequence {oj}j=1,2,... in the corresponding moduli space
ME on R× T 3 .

This data has the following significance: There is a subsequence of {cj}, hence
relabled consecutively, such that:

• {cj} converges to c∞ on compact subsets of X in the C∞ topology. This
is to say that there exists a pair (A∞, ψ∞) ∈ c∞ , and, for each index j ,
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a pair (Aj , ψj) on cj such that if K ⊂ X is a compact set and k is a
positive integer, then∑

0≤p≤k

(
|∇p(Aj −A′)|+ |(∇A′)p(ψj − ψ′j)|

)
< ε (39)

at all points in K .

• Let T = [0,∞) × T 3 be a component of [0,∞)× ∂X0 . Given ε > 0 and
a positive integer k , there exists R ≥ 2 and, for each index j , there is a
pair (A′j , ψ

′
j) on oj such that∑

0≤p≤k

(
|∇p(Aj −A′)|+ |(∇A′)p(ψj − ψ′j)|

)
< ε (40)

at all points (t, ·) with t ≥ R.

• The vortex number which corresponds to oj is no greater than ζ ·f , where
ζ is independent of both z and the sequence {cj}.

Here are two immediate corollaries of Propositions 4.4 and 4.5:

Proposition 4.6 Let X0 and X be as in Proposition 2.4. Now, suppose
that the restriction of ω to each component of [0,∞) × ∂X0 has the form
P+(dt ∧ θ), where θ is a non-zero, covariantly constant 1–form whose coho-
mology class is not proportional to an integral class in H1(T 3;R). For each
(s, z) ∈ S0(X0, ∂X0), let M denote the resulting Seiberg–Witten moduli space.
Then M is compact.

Proposition 4.7 Suppose that X is isometric to the product metric on S1×
M , where M is an oriented, Riemannian 3–manifold whose ends are isometric
to [0,∞) × T 2 . In addition, suppose that ω is invariant under the evident S1

action and that on each end, ω = P+(dt∧ θ), where θ is a covariantly constant
1–form on S1 × T 2 which is not pulled back via projection to the T 2 factor.
For each (s, z) ∈ S0(X0, ∂X0), let M denote the corresponding Seiberg–Witten
moduli space and let MS ⊂M denote the subset of S1–invariant orbits. Then
MS is compact.

The remainder of this subsection contains the proofs of these propositions.

Proof of Proposition 4.6 If the assertion were false, then Proposition 4.5
would find a solution on R×T 3 with FA 6= 0 identically. The latter is outlawed
by Proposition 4.4.
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Proof of Proposition 4.7 If this assertion were false, Proposition 4.5 would
find a non-trivial, S1 –invariant solution on R × S1 × T 2 which is not ob-
tained from a vortex solution via a map which factors through the projection
to R×T 2 . This is impossible, for if (A, (α, 0)) has an S1–invariant orbit under
C∞(R× T 3;S1), then α−1(0) must be a union of S1 orbits in T 3 .

Proof of Proposition 4.5 Proposition 4.2 describes each c = (A,ψ) ∈ {cj}
on the ends of X . In particular, for each component T ⊂ [0,∞) × ∂X0 and
each such c, there is the corresponding set {ti ≡ t[T, c]i} ⊂ [0,∞) that appears
in (28). If there is no convergent subsequence, then Proposition 3.6 requires
at least one end T for which the sequence of sets {{ti[T, c]} : c ∈ {cj}j=1,2,...}
is not uniformly bounded. Even so, a subsequence of {cj} can be found for
which the sets {ti[T, c]} for each fixed end T all have the same number of
elements as c ranges over the subsequence. (Henceforth, all subsequences will
be implicitly relabled by consecutive integers starting from 1.) By passing again
to a subsequence, these sets can be assumed to converge on compact domains in
each end T . With this last point understood, then a limit, c∞ , of a subsequence
of {cj} is obtained using relatively standard compactness arguments.

The sequence {oj} for a component T ⊂ [0,∞)×∂X0 is obtained by translating
along [0,∞) to follow elements in {t[T, c]i} which do not stay bounded as c
ranges through the sequence {cj}. In this regard, Propositions 4.2, 4.3 and 4.4
together with the translation invariance of the equations in (4) on R× T 3 play
the key role. Indeed, the construction of {oj} begins by obtaining a finite set
of centered, limit vortices for each end by translating each c ∈ {cj} on the end
and then, after passing to a subsequence, one follows each ‘clump’ of energy.
Here, the centers of these ‘clumps’ on the end T for the element c ∈ {cj} are,
by definition, obtained by first partitioning the set {t[T, c]i} which appears in
(27) into subsets whose elements are much closer to each other than to the other
subsets of the partition. Then, the center of the clump subset is declared to be
the average of the t coordinates of the elements in the subset.

After passing again to a subsequence, these ‘clump’ partitions of the sets
{t[T, c]i} can be assumed to produce the same number of subsets as c ranges
through {cj} and to be labeled for each such c so that the following is true:
First, the distance between subsets with different labels diverges as the index
j on cj tends to infinity. Second, the subsets with the same label have a fixed
number of elements as c ranges through {cj}, and these elements can be them-
selves labeled so that the resulting ordered sets converge as the index j tends
to infinity.
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One then translates the restriction of each c ∈ {cj} on an end T so that the
average t–coordinate of a given, labeled clump subset of {t[T, c]i} is 0. After
passing to a subsequence, the resulting translated sequence of Seiberg–Witten
solutions will then converge strongly in the C∞ topology on compact domains
in R × T 3 to a solution to (4) on R × T 3 . This limit is equivalent to a vortex
solution as described by Proposition 4.4. No generality is lost by translating
this vortex in R so it is centered.

By the way, the bound provided in Proposition 4.2 on the size of {t[T, c]i}
explains the bound in Proposition 4.5 on the number of vortex solutions that
arise.

In any event, a component, T ⊂ [0,∞) × ∂X0 provides a well defined, finite
set of centered vortex solutions, each corresponding to one of the labels of the
clump partition just described. This labeled set of limit vortex solutions can
be characterized by the corresponding data {y(α)}, with each y(α) ∈ Zm for
m = mα . This characterization of the vortices is then used to construct, for
each c ∈ {cj}, a vortex solution on R × S1 which is obtained by gluing with
the map G the translated (via the R factor in C∗ = R × S1 ) versions of the
vortices from the limit set. Here, the particular translation for a vortex depends
on the particular c ∈ {cj} and the particular clump label. To be precise, the
translation is chosen so that the center in R of the translated vortex agrees
with the average t–coordinate of the corresponding clump subset in {t[T, c]i}.

After the application of the gluing map G, the result is a vortex which gives
a Seiberg–Witten solution on R × T 3 that is close to c, where the latter dif-
fers substantially from the limit c∞ and which is close to the trivial solution
elsewhere.

With the preceding understood, the convergence assertion in (39) and (40) fol-
lows with standard elliptic regularity arguments for compact domains together
with (28), (38) and Lemma 3.4 to predict the form of each c ∈ {cj} on those
parts of [0,∞)×∂X0 where the connection component of c has small curvature.

The proof of Proposition 4.5 ends with an explanation for the fact that the
solution c∞ sits in a moduli space defined by the original SpinC structure s
but with a class z′ ∈ ς(s) with z′ •$ < z •$ . The explanation starts with the
observation that the convergence behavior described by (39) and (40) insures
that the original s is also the SpinC structure for c∞ . Keep in mind here that
each {oj} gives solutions to (4) on R × T 3 whose SpinC structure is sent to
zero by the map c(·) in (2). The explanation ends with the observation that
the difference between the cup products of z and z′ with $ is a consequence
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of the final line in Proposition 4.1 when the convergence behavior in (40) is
noted.

5 Refinements for the cylinder

The step from the compactness which is asserted in Proposition 4.6 to the
assertions in Proposition 2.4 requires a substantial refinement of the asymp-
totic estimates from the preceding section. This section derives the required
estimates for the behavior of solutions to (4) on subcylinders in R× T 3 .

a) The operator Dc when X = R× T 3

The compactness study requires a more in depth study of the operator Dc in
the case where X = R × T 3 and where ω in (4) is a non-zero, covariantly
constant form. The discussion here is broken into five steps.

Step 1 Fix z ∈ H1(T 3;Z) and use the identification of the latter with
S0(X0, ∂X0) to specify a Seiberg–Witten moduli space M. However, if M
is to contain more than the FA = 0 solutions, it is necessary to further assume
that ω = P+(dt∧ θ), where θ is a covariantly constant form whose cohomology
class in H1(T 3;Z) is proportional to z . Use the metric on X and ω to define
a complex structure, J . Note that J · dt = rθ , where r 6= 0, and note that ∗θ
(a 2–form on T 3 ) is invariant under the induced action of J on Λ2T ∗X . Write
T 0,1X = ε0⊕ε1 , where the first factor, ε0 , signifies the span of ν0 = dt−irθ , and
where the second factor is the orthogonal complement. Thus, the factor ε1 has
a covariantly constant, unit length frame ν1 with the property that the wedge
of ν1 with its conjugate is proportional to ∗θ . Meanwhile, the anti-canonical
bundle is spanned by ν0 ∧ ν1 and so is isomorphic to ε01 ≡ ε0ε1 .

Given the preceding, the bundle S+ can be written as S+ = εC ⊕ ε01 , where
εC → T 3 is a topologically trivial complex line bundle. Of course, ε01 is also
topologically trivial, but these lines in S+ are distinguished by being the eigen-
bundles for Clifford multiplication by ω . The point is that when c ∈ M, then
the domain of Dc consists of the L2

1 sections over R× T 3 of

(ε0 ⊕ εC)⊕ (ε1 ⊕ ε01). (41)

Meanwhile, Clifford multiplication on the εC summand of S+ identifies S−
with ε0 ⊕ ε1 and so identifies the range of Dc with the space of L2 sections
over R× T 3 of

(εC ⊕ ε0)⊕ (ε01 ⊕ ε1). (42)
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Here, the factor εC ⊕ ε01 corresponds to the iR⊕ Λ+ portion of Dc(·). In this
regard, the real part of εC corresponds to the iR summand and the imaginary
part to iRω ⊂ Λ+ .

Step 2 The ordering of the factors and the placing of the parentheses in (41)
and (42) have been chosen so as to decompose the domain and range of Dc
into direct sums, and this decomposition induces the following 2 × 2 block
decomposition of Dc :

Dc =
(

Θ δ†F
δF −Θ†

)
. (43)

Here, δF is a differential operator along the foliation of M given by the kernel of
θ which annihilates the defining constant sections of the first two summands in
(41) and whose adjoint annihilates those of the last two in (42). In this regard,
remember that c is defined from a vortex solution on R×S1 via a projection of
the form identity ×ϕ from R×T 3 to R×S1 . Here, ϕ pulls back the standard
1–form on S1 to a multiple of θ . The leaves of the foliation are the fibers of the
map ϕ. Meanwhile, the operator Θ corresponds to a version of the operator
which gives the linearized vortex equations. To be explicit here,

Θ(a, λ) = (∂a+ 2−1rτ̄λ, ∂̄vλ+ τa). (44)

Here, r ≡ |θ|, ∂v ≡ ∂ + v0,1 and ∂ = 2−1(∂/∂t − iθ∗), where ∂/∂t denotes
the tangent vector field to the lines R× point while θ∗ denotes the vector field
which is metrically dual to the 1–form θ . The adjoint, Θ† , of Θ is given by

Θ†(b, η) = (−∂̄b+ τ̄ η,−∂vη + 2−1rτb). (45)

Step 3 The following lemma describes key properties of the operator Θ.

Lemma 5.1 Given a non-negative integer n, let (v, τ) be a vortex solution
on R× S1 which has vortex number n. Then:

• The operator Θ is Fredholm from L2
1 to L2 .

• The L2 kernel of Θ is a 2n–dimensional vector space of smooth forms.

• The L2 kernel of Θ† is empty. In fact, there exists a constant E which
depends only on |θ| and m and is such that ‖Θ†w‖22 ≥ E‖w‖22 for all L2

1

sections w .

• By the same token, ‖Θw‖22 ≥ E‖w‖22 for all L2
1 sections w which are L2

orthogonal to the kernel of Θ.

• If w ∈ kernel(Θ), then |(∇v)pw| ≤ ζp‖w‖2 exp
(
−(2r)1/2 dist(·, τ−1(0))

)
.

Here, ζp is independent of w and (v, τ).
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Proof of Lemma 5.1 These assertions are all derived using the Weitzenböck
formula

ΘΘ†(b, λ) = (−∂∂̄b+ 2−1r|τ |2b,−∂̄v∂vη + 2−1r|τ |2η), (46)

or the corresponding formula for Θ†Θ. The latter switches ∂ with ∂̄ everywhere
and adds an extra term which is proportional to (1−|τ |2). As this term is small
at large distances from τ−1(0) (see (38)), the formula for Θ†Θ implies that Θ is
Fredholm on the L2

1 completion of its domain as a map into the L2 completion
of its range. With this understood, (46) implies that the cokernel of Θ (which
is the kernel of Θ† ) is empty. Furthermore, (46) plus the last point in (38)
implies the estimate in the third point of the lemma. The latter estimate plus
the Fredholm alternative implies the estimate in the fourth point. In this regard,
remark that when w is L2–orthogonal to the kernel of Θ, then w = Θ†g for
some element g . Thus,

‖Θw‖2 = ‖ΘΘ†g‖2 ≥ ‖Θtg‖22/‖g‖2 ≥ E‖Θtg‖2 = E‖w‖2.

The fact that the kernel dimension is 2n can be proved as follows: Differentiate
the map which associates to y ∈ Cm a vortex (v, τ). (See (36).) Each such
directional derivative gives an independent element in kernel(Θ). Conversely,
every element in kernel(Θ) can be integrated to give an element in the tangent
space to Zn . This follows from the vanishing of the kernel of Θ† .

For the exponential decay estimate, consider first the C0 case. If w ∈ kernel(Θ),
then (38) and the Weitzenböck formula for Θ†Θ imply the following: Where
the distance from τ−1(0) is greater than 1, the norm of w obeys

d∗d|w|+ 2r|w| ≤ υ · |w|, (47)

where υ is a function on R× S1 which obeys

υ ≤ ζ exp
(
−
√
r dist(·, τ−1(0))/ζ

)
, (48)

with ζ a universal constant. The control of |w| where the distance to τ−1(0)
is less than 1 comes via standard elliptic regularity which finds a constant ξ1

such that

|w| ≤ ξ1‖w‖2
at all points. Here, ξ1 depends only on r . With the preceding understood, let
{ti} denote the time coordinates of the n points in τ−1(0). An application of
the comparison principle to (47) now yields the following: Fix ρ < (2r)1/2 and
there exists ζρ which is independent of (v, τ) and such that

|w| ≤ ζx‖w‖2
∑
i

exp(−ρ|t− ti|). (49)
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To obtain the analog of (49) for the case where ρ = (2r)1/2 , introduce the
Green’s function G(·, z′) for the operator d∗d+ 2r with a pole at z′ ∈ R× S1 .
An application of the comparison principle to the operator d∗d + 2r finds a
constant κ0 which makes the following assertion true: If the R coordinate of
z′ is s, that of z is t, and also |t− s| ≥ ζ ≥ 1, then

0 < G(z, z′) ≤ κ0 exp(−(2r)1/2|t− s|). (50)

Furthermore, the absolute values of the derivatives of G(·, z′) at such z enjoy
similar upper bounds.

With the Green’s function in hand, multiply both sides of (47) by G(z, ·) and
integrate both sides of the result over the region, U , where the distance to the
set τ−1(0) is at least one. This operation produces an integral inequality which
can be further manipulated to yield the following bound:

|w(z)| ≤ ξ2‖w‖2
∑
i

exp(−(2r)1/2|t− ti|)

+ ξ2‖w‖2
∫
U
ds exp(−(2r)1/2|t− s|)

∑
i

exp(−(2r)1/2(1 + δ)|s − ti|). (51)

Here, δ > 0 is a universal constant, while ξ2 depends only on r . To explain,
the first term in (51) is due to the integration by parts boundary term that
arises when the operator d∗d in (47) is moved from w to G(·, z). Meanwhile,
the second term in (51) comes from the integral of G(z, ·)υ · |w|. In this regard,
(48) is used to bound υ , (49) with ρ very close to (2r)1/2 is used to bound |w|,
and (50) is used to bound G(z, ·).

The ρ = (2r)1/2 version of (49) follows directly from (51) since the second term
in this equation is not greater than ξ3‖w‖2

∑
i exp(−(2r)1/2|t − ti|), with ξ3

depending only on the parameter r .

The proof for the asserted bounds on the higher derivatives of w is obtained
by first differentiating the equation Θw = 0 say, p times, and then writing
the latter as an equation of the form Θ(∇pw) = lower order derivatives of w .
The preceding argument for the C0 bound can be copied to obtain the desired
estimates.

Step 4 It is important to note that there is one particularly canonical element
in the kernel of Θ, this being

πc = (2−1r(1− |τ |2), ∂vτ). (52)

Viewed as a section over Cn of the complex tangent space, the vector πc gen-
erates the translation induced C∗ action.
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Note that the pointwise bound in the last assertion of Lemma 5.1 is sharp for
πc . The following lemma makes a precise statement:

Lemma 5.2 Given the form r ≡ |θ| and a positive integer n, there exists a
constant ζ ≥ 1 such that when (v, τ) ∈ Cn then

(1− |τ |2) ≥ ζ−1
∑
j

exp(−(2r)1/2|t− tj|), (53)

where {tj} denote the t–coordinates of the zeros of τ .

Proof of Lemma 5.2 Let x = (1 − |τ |2). Then, by virtue of the vortex
equations in (35), this function obeys

d∗dx+ 2rx = 4|∂vτ |2 + 2r|x|2;

thus

d∗dx+ 2rx ≥ 0 (54)

everywhere. The first consequence of (54) comes via the maximum principle,
this being the previously mentioned fact that (1− |τ |2) > 0 as long as n ≥ 0.
This last point can be parlayed to give a universal lower bound for (1 − |τ |2)
at points at fixed distance from τ−1(0). In particular, the following is true:

Given r = |θ|, the vortex number n and also ρ > 0, there exists

ξ > 0 such that when (v, τ) ∈ Cn then (1− |τ |2) ≥ ξ at points

with distance ρ or less from τ−1(0).

(55)

Accept (55) for the moment to see its application first. In this regard, (55)
is applied here to supply a uniform, positive lower bound, ξ , for (1 − |τ |2)
on the constant t circles where |t − tj| ≤ 1 for at least one tj . With such a
bound in place, reapply the maximum principle to (54) but use x = (1−|τ |2)−
n−1ξ

∑
j exp(−(2r)1/2|t− tj |) and restrict to points in R×S1 where |t− tj | ≥ 1

for all tj . The resulting conclusion (that x ≥ 0) and (55) together give (53).

To justify (55), consider the ramifications were the claim false. In particular,
there would exist a sequence {(vi, τi)} ∈ Cn , and a corresponding sequence of
pairs of points {(zj , z′j)} ⊂ R × S1 , where τj(zj) = 0, dist(zj , z′j) ≤ ρ and
limj→∞ |τj(z′j)| = 1. After translating each (vj, τj) appropriately, all of the
points {zj} can be taken to be a fixed point z ∈ R × S1 . Meanwhile, the
sequence {z′j}, has a convergent subsequence with limit z′ whose distance is
ρ or less from z . Also, a subsequence {(vj , τj)} converges strongly in the C∞
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topology on compact domains in R × S1 to a vortex solution, (v, τ), although
the latter may lie in some Cn′ for n′ ≤ n. Indeed, the C1 convergence of τ and
C0 convergence of v follows directly from (37) and (38) by appeal to the Arzela–
Ascoli theorem; convergence in Ck can then be deduced by differentiating the
vortex equations. In particular, the C1 convergence here implies that τ(z) = 0
and |τ(z′)| = 1. However, these two conclusions are not compatible; as argued
previously, |τ | < 1 everywhere if |τ | is less than 1 at any point.

Step 5 This last step uses the results of Lemma 5.1 to draw conclusions about
Dc . The latter are summarized by:

Lemma 5.3 Suppose c = (A,ψ) ∈ M comes from a vortex solution, (v, τ) ∈
Cn on C∗ via a fibration map ϕ, from R× (S1 × S2). Then:

• The kernel of Dc is the 2n–dimensional vector space which consists of
configurations ((a, λ), (0, 0)) which are annihilated by both Θ and differ-
entiation along the fibers F of ϕ. In particular, (a, λ) comes from the
kernel of Θ on C∗ = R× S1 via pull-back by the map ϕ.

• The kernel of D†c is the 2n–dimensional vector space which consists of
configurations ((0, 0), (a, λ)) which are in the kernel of Θ and differen-
tiation along the fibers of ϕ. These also come from the kernel of Θ on
R× S1 via pull-back by the map ϕ.

• If w is an L2
1 section of (41) which is L2–orthogonal to the kernel of Dc ,

then

‖Dcw‖2 ≥ E‖w‖2, (56)

where E depends only on θ and n and is, in particular, independent of
(v, τ).

• Likewise, if w is an L2
1 section of (42) which is L2–orthogonal to the

kernel of D†c , then ‖D†cw‖2 ≥ E‖w‖2 .

Proof of Lemma 5.3 To consider the assertion about the kernel of Dc , write
w in 2–component form with respect to the splitting in (41) as (α, β), where
each of α and β also have two components. Then,

‖Dcw‖22 = ‖Θα‖22 + ‖∂̄Fα‖22 + ‖Θ†β‖22 + ‖∂̄†Fβ‖
2
2.

Integration by parts along the fibers of ϕ equates ‖∂̄Fα‖22 = 4−1‖dFα‖22 , and
‖∂̄†Fβ‖22 = 4−1‖dFβ‖22 . Now, write α = α0 + α1 , where α0 is constant along
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each fiber of ϕ, and where α1 is L2–orthogonal to the constants along each
fiber of ϕ. It then follows that

‖Dcw‖22 ≥ E′(‖α1‖22 + ‖β1‖22) + ‖Θα0‖22 + ‖Θ†β0‖22. (57)

The assertions that concern the kernel of Dc follow from (57) using Lemma 5.1.

An analogous argument proves the assertions in the lemma that concern the
kernel of D†c .

b) Decay bounds for kernel(Dc) when c ∈MP

The proof of Proposition 2.4 requires a refinement of Proposition 4.3’s decay
estimates along a finite cylinder [−R,R] × T 3 . In particular, (28) establishes
that a solution (A,ψ) to (4) on [−R,R] × T 3 with |FA| small at all points is
exponentially close in the middle of the cylinder to a T 3 solution, (A0, ψ0) ∈
MP . However, the bound in (28) was not concerned with the size of the decay
constant in the exponential. This subsection supplies a precise estimate for the
constant ζ0 which appears in (28).

For this purpose, consider the operator Dc from (43) when c = (A0, ψ0) is the
pull-back to [−R,R]× T 3 of a solution on T 3 which defines MP . In this case,
write the operator Dc as

Dc = 2−1 · (∂/∂t +O). (58)

Here, O is a t–independent, symmetric, first order operator which differenti-
ates along the T 3 directions. Moreover, there are natural trivializations of the
summands of S+ = εC ⊕ ε01 and T 0,1X which make O a constant coefficient
operator. In this regard, the trivialization of εC makes ψ0 the constant section
with vanishing imaginary part and positive real part, while that of T 0,1X is as
described prior to (41).

With the afore-mentioned trivialization understood, then Fourier transforms
can be employed to investigate the spectrum of O. In particular, this spec-
trum is a nowhere accumulating subset of (−∞,−(2r)1/2]∪ [(2r)1/2,∞) which
is unbounded in both directions, and invariant under multiplication by −1.
Furthermore, the minimal, positive eigenvalue E0 = (2r)−1/2 is degenerate,
with two eigenvectors over C, these being the sections

s+
+ = (

√
r,
√

2, 0, 0) and s+
− = (0, 0,

√
2,−
√
r) (59)

of (41). Meanwhile, the eigenvalue −E0 also has two eigenvectors over C, the
sections

s−+ = (
√
r,−
√

2, 0, 0) and s−− = (0, 0,
√

2,
√
r) (60)
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of (41).

Any section w of (41) over [−R,R] × T 3 which is annihilated by Dc has the
form

w =
∑
E>0

e−E·(t+R) · s+
E +

∑
E>0

e−E·(R−t) · s−E, (61)

where s+
E is an eigenvector of O with eigenvalue E , and where s−E is like-

wise an eigenvector, but with eigenvalue −E . Note that
∑

E>0 ‖s+
E‖22,T +∑

E>0 ‖s−E‖22,T ≤ ζ · ‖w‖22 . Here, ‖ · ‖2,T denotes the L2 norm on T 3 and
‖ · ‖2 denotes the L2 norm over [−R,R]× T 3 .

Equation (61) is a linear version of the following:

Lemma 5.4 Suppose that υ is a homomorphism over [−R,R]× T 3 from the
bundle in (41) to that in (42) which obeys the bound |υ| ≤ ζ ·e−(R−|t|)/ζ , where
ζ > 0 is a constant. Then, there are constants z > (2r)1/2 and ζ ′ which depend
only on ζ and which have the following significance: Let w be a section over
[−R,R]× T 3 of (41) which obeys

Dcw + υw = 0. (62)

Then w = w0 + w1 with

‖w1‖2,T
∣∣
t
≤ ζ ′Ke−z·(R−|t|), where K = sup

t∈[−R,−R+1]∪[R−1,R]
|w| and

w0 = exp(−(2r)1/2(R+ t))(u+
+s

+
+ + u+

−s
+
−) +

exp(−(2r)1/2(R− t))(u−+s−+ + u−−s
−
−), where u±± are constants.

(63)

Proof of Lemma 5.4 Let Π+ denote the L2–orthogonal projection (on T 3)
onto the span of the eigenvectors of O with eigenvalue E > (2r)1/2 . Mean-
while, let Π− denote the corresponding projection onto those eigenvectors with
eigenvalue E < −(2r)1/2 . Let f+(t) denote the L2 norm of the time t version
of Π+w , and likewise define f−(t). Then f± obey a pair of coupled differential
inequalities of the form

(∂/∂t + E2)f+ ≤ ζe−(R−|t|)/ζ
(
f+ + f− +K exp(−(2r)1/2(R− |t|))

)
;

(∂/∂t− E2)f− ≥ −ζe−(R−|t|)/ζ
(
f+ + f− +K exp(−(2r)1/2(R − |t|))

)
.

(64)

Here, E2 > (2r)1/2 is the second smallest positive eigenvalue of O. This last
equation can be integrated (after some algebraic manipulations) to obtain the
bound

(f+ + f−)
∣∣
t
≤ ζ ′(f+

∣∣
−R + f−

∣∣
R

+K)e−z
′·(R−|t|),
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where z′ > (2r)1/2 and ζ ′ > 0 depends only on ζ .

Meanwhile, write w = b++s
+
+ + b+−s

+
−+ b−+s

−
+ + b−−s

−
−+ Π+w+ Π−w and consider

the equations for b+ = (b++, b
+
−) and for the corresponding b− . In particular,

these equations have the form

(∂/∂t + 2r)b+ = g+ · b+ + g− · b− + υ+ and
(∂/∂t − 2r)b− = h+ · b+ + h− · b− + υ−,

where |g±| + |h±| ≤ ζe−(R−|t|)/ζ and |υ±| ≤ ζe−z·(R−|t|) with z > (2r)1/2 .
Integrating these last two equations gives

b+
∣∣
t

= b+
∣∣
−R · exp(−(2r)1/2(t+R)) + c+ and

b−
∣∣
t

= b−|R · exp(−(2r)1/2(R− t)) + c−,

where |c±| ≤ ζ ′Ke−z′·(R−|t|) with z′ > (2r)1/2 and ζ ′ depending only on ζ .

By way of an application, choose a vortex (v, τ) on R × S1 and use the latter
to define the gauge orbit, c, of a solution to (4) on R × T 3 . The element πc
in (52) can be viewed as either an element, πc+ , in the kernel of Dc or as an
element, πc− , in cokernel(Dc). Here, πc+ is the section of (41) whose first two
components are those of πc and whose second two are zero. Meanwhile, πc−
is the section of (42) whose first two components are zero and whose second
two are the components of πc . (The applications below only use πc− .) As
there are points on the gauge orbit c which are asymptotic as t → ±∞ to a
solution (A0, ψ0) which defines MP , Lemma 5.4 can be applied to πc± with
the following effect:

Lemma 5.5 Let (v, τ) ∈ Cn and use the latter, as instructed in Proposition
4.4, to define the gauge orbit, c, of a solution to (4) on R× T 3 . Define πc± as
in the preceding paragraph.

• Let (A+, ψ+) denote a point on the orbit c such that |A+ − A0| +
|ψ+ − ψ0| ≤ ζe−t/ζ at all points (t, ·) with t > 0. Here, ζ > 0. Use ψ0

to define the constant real section of the first summand of S+ = εC ⊕ ε0 .
Then, as t→∞,

πc+ = exp(−(2r)1/2t)u+s+
+ + O(e−zt) and

πc− = exp(−(2r)1/2t)u+s−− + O(e−zt).
(65)

• Let (A−, ψ−) denote a point on the orbit c such that |A− − A0| +
|ψ−−ψ0| ≤ ζet/ζ at all points (t, ·) with t < 0. Here, ζ > 0 also. Use ψ0
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to define the constant real section of the first summand of S+ = εC ⊕ ε0 .
Then, as t→ −∞,

πc+ = exp((2r)1/2t)u−s−+ + O(ezt) and

πc− = exp((2r)1/2t)u−s+
− + O(ezt).

(66)

In these equations, s±± are given in (59) and (60), and z > (2r)1/2 is a constant
which depends only on r and the constant ζ , but otherwise is independent
of the chosen vortex. Meanwhile, u± > 0 are constants which depend on the
chosen vortex c = (v, τ) and which obey

u+ ≥ ξ−1 ·
∑
j

exp((2r)1/2tj) and

u− ≥ ξ−1 ·
∑
j

exp(−(2r)1/2tj),
(67)

where {tj} are the t–coordinates of the zeros of τ and where ξ depends only
on the vortex number.

Proof of Lemma 5.5 The assertions of (65) and (66) about πc+ follow di-
rectly from Lemma 5.4. Meanwhile, the assertions about πc− follow from
Lemma 5.4 after changing t to −t in (58). Then, given these assertions, the
bounds in (67) follow from Lemma 5.2.

c) More asymptotics for solutions on a cylinder

Proposition 5.6, below, constitutes a second application of Lemma 5.4, here to
the asymptotics of a solution to (4) on the cylinder X = [−R− 2, R + 2]× T 3

with the form ω = P+(dt ∧ dθ), where θ is non-zero and covariantly constant.
As in previous subsections, the lemma below takes (A0, ψ0) to be the pull-back
to X of a solution to (11) which defines MP and it takes r ≡ |θ|.

Proposition 5.6 The metric on T 3 and the form ω determine a constant
ζ ≥ 1 that has the following significance: Let R ≥ 4 and suppose that (A,ψ)
obeys (4) and the assumptions of Lemma 3.4 on [−R − 2, R + 2] × T 3 . Then,
there is a gauge equivalent pair (A0 + b, ψ0 + η), where (b, η) defines a section
of (41) that obeys

(b, η) = (u+
+s

+
+ + u+

−s
+
−) exp(−(2r)1/2(t+R))

+ (u−+s
−
+ + u−−s

−
−) exp(−(2r)1/2(R− t)) + w1

(68)
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at all (t, ·) ∈ [−R+ ζ,R− ζ]× T 3 . Here,

|w1| ≤ ζ · exp
(
−((2r)1/2 + ζ−1) · (R− |t|)

)
,

{u±±} are constant, and∑
0≤k≤3

|∇k(b, η)| ≤ ζ · exp(−(2r)1/2(R − |t|)) (69)

at all points (t, ·) ∈ [−R,R]× T 3 .

Proof of Proposition 5.6 According to Lemma 3.4, there exists a pair
(A0 + b, ψ0 + η) on the gauge orbit of (A,ψ) which obeys∑

0≤k≤3

|∇k(b, η)| ≤ ζ · e−(R−|t|)/ζ (70)

at all points (t, ·) where t ∈ [−R,R]. Thus, on some smaller length cylinder,
this pair differs very little from (A0, ψ0) and so can be analyzed by treating (4)
as a perturbation of a linear equation. Moreover, as explained below, there is
a fiducial choice of such a gauge equivalent pair (A0 + b, ψ0 + η), where (b, η)
obeys (69) and also

d∗b− 2i Im(ψ†0η) = 0 (71)

on a subcylinder of the form [−R+ ζ1, R− ζ1]× T 3 , where ζ1 depends only on
the metric and ω .

With the preceding understood, view w = (b, η) as a section of (41). By virtue
of (4) and (64), this section obeys an equation of the form in (62), where υ is a
linear function of the components of w . In particular, Lemma 5.4 is applicable
here with R replaced by R′ ≡ R− ζ1 because the condition in (70) insures that
υ obeys the requisite bounds on [−R+ ζ1, R− ζ1]×T 3 . Thus, (68) can be seen
to follow from (63).

The refined derivative bounds for (b, η) in (69) are obtained from the C0 bounds
via standard elliptic techniques via (62). In particular, to obtain the C1 bounds,
simply differentiate (62) and, remembering that υ is a linear functional of the
components of w , observe that the result has the same schematic form as (62).
Thus, a second appeal to Lemma 5.4 provides the C1 bounds on (b, η). The
derivation of the C3 bound is only slightly more complicated.

It remains now to justify the asserted existence of the point (A0 + b, ψ0 + η) on
the gauge orbit of (A,ψ) for which both (70) and (71) hold. For this purpose,
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use Lemma 3.4 to conclude that (A,ψ) is gauge equivalent to (A0 + b′, ψ0 +η′),
where (b′, η′) obeys ∑

0≤k≤4

|∇k(b′, η′)| ≤ ζ ′e−(R−|t|)/ζ′ (72)

at all points (t, ·) where t ∈ [−R,R]. Here, ζ ′ > 0 is a constant which is
independent of R. The pair (A0 + b, ψ0 + η) is guaranteed to come from the
same gauge orbit as (A0 + b′, ψ0 + η′) if (b, η) and (b′, η′) are related via the
identity

(b, η) = (b′ − 2i · du, ei·u · η′ + (ei·u − 1) · ψ0), (73)

where u is a smooth function on [−R− 2, R+ 2]×T 3 . Thus, the goal is to find
u in (73) so that (71) holds on an appropriate subcylinder. In this regard, (71)
should be viewed as an equation for the function u. In particular, if u has a
suitably small C2 norm, then this equation has the schematic form

−2i(d∗du+ 2ru) + d∗b′ − 2i Im(ψ†0η
′) + <(u) = 0, (74)

where |<| ≤ ζ1(|u|2 + |u|(|b′| + |η′|)) with ζ1 a constant which is independent
of (b′, η′) and R.

The analysis of (74) is facilitated by the following observation: Because of (72),
the pair (b′, η′) is uniformly small on uniformly large subcylinders of [−R,R]×
T 3 . That is, given ε > 0, there exists ξ > 2 which is independent of (b′, η′)
and R such that at all points (t, ·) ∈ [−R+ ξ,R− ξ]× T 3 , all derivatives from
orders 0 through 4 of (b′, η′) are bounded in size by εe−(R−|t|)/ξ . Meanwhile, the
Green’s function, G, for d∗d+ 2r defines a bounded operator from L2(R× T 3)
to L2

2(R× T 3) and satisfies the pointwise bound in (50).

The preceding observations suggest a contraction mapping construction of a
solution u to (74) on a uniformly large subcylinder of [−R − 2, R + 2] × T 3 .
For this purpose, fix ξ > 2 and introduce a smooth, non-negative function β
on R which equals 1 on [−R + ξ,R − ξ], vanishes where |t| > R − ξ + 1 and
has first and second derivatives bounded by 10. Then, consider the map from
C0(R× T 3) to itself which sends u to

T (u) ≡ −i2−1G(β[d∗b′ − 2i Im(ψ†0η
′) + <(u)]).

Here, the fact that T defines a self map on C0(R× T 3) is insured by the right
hand inequality in (50). Moreover, (50) and (72) imply the following: There
exist constants ξ ≥ 2 and ξ′ > 0 which are independent of R and (b′, η′) and
such that T is a contraction mapping on the radius ξ′ ball in C0(R× T 3). For
such ξ , the map T has a unique fixed point, u, in this ball.
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Of course, (50) insures that this u decays to zero exponentially fast as |t| → ∞
on R × T 3 . Moreover, (50) in conjunction with (72) can be used to prove
that u and its derivatives obey the required norm bounds throughout in
[−R − 2, R + 2] × T 3 . These last derivations are straightforward and omit-
ted.

d) The distance to a non-trivial vortex

Now, consider a half infinite tube of the form Y = [−2R,∞)×T 3 , where R ≥ 4.
Fix B0 ≥ 0 and B1 ≥ 1 and suppose that (A,ψ) is a solution to (4) on Y with
the following properties:∫

Y
|FA|2 ≤ B0;

|FA| ≤ B1(exp(t/B1) + exp(−(2R + t)/B1)) at points with t ∈ [−2R, 0].
(75)

With Propositions 4.5 and 5.6 in mind, it can be expected that when R is large,
then (A,ψ) is close on [−R,∞)× T 3 to the restriction of a solution of (4) on
the whole of R × T 3 . Indeed, such is the case, as the subsequent proposition
attests.

Proposition 5.7 Given B0 ≥ 0 and B1 ≥ 1 as above, there exists R0 ≥ 4
and ζ ≥ 1 with the following significance: Suppose that R ≥ R0 and that
(A,ψ) obeys (4) and (75) on the half infinite tube Y = [−2R,∞)× T 3 . Then,
there is a solution (A1, ψ1) on R × T 3 to (4) and a gauge transform of (A,ψ)
on Y such that (A,ψ) = (A1, ψ1) + w on Y , where

|w| ≤ ζ exp(−(2r)1/2R) exp(−(2r)1/2(R+ t)) if t ∈ [−R,−R/2];∫
t≥−R/2

|w|2 ≤ ζ · exp(−3(2r)1/2R).
(76)

The remainder of this subsection contains the following:

Proof of Proposition 5.7 Use Lemma 5.6 to find ζ0 ≥ 1 and a gauge for
(A,ψ) on the cylinder [−2R+ζ0,−ζ0]×T 3 of the form (A,ψ) = (A0+b, ψ0+η),
where (b, η) come from Proposition 5.6 and obey (68), (69) and (71), while
(A0, ψ0) is the pull-back from T 3 of a pair that defines MP . Now, choose a
smooth, non-negative function β on R which equals 1 where t ≥ 1 and 0 where
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t ≤ 0. Use (b, η) and the function β to define a configuration (A′, ψ′) on R×T 3

as follows:
(A′, ψ′) = (A0, ψ0) where t < −R− 2;
(A′, ψ′) = (A0, ψ0) + β(t +R)(b, η) where t ∈ [−R− 2,−R + 2];
(A′, ψ′) = (A,ψ) where t ≥ −R+ 2.

Note that H = (P+FA′ − τ(ψ′⊗ (ψ′)†) + i ·ω,DA′ψ
′) vanishes except when the

coordinate t ∈ [−R + 1,−R + 2]. Moreover, when t ∈ [−R + 1,−R + 2], then
(69) guarantees that ∑

0≤k≤2

|∇kH| ≤ ζ1 exp(−(2r)1/2R), (77)

where ζ1 is independent of R; it depends only on the constants B0 and B1 .
Thus, for large R, the pair (A′, ψ′) is very close to solving (4) on R× T 3 . The
following lemma makes this notion precise:

Lemma 5.8 Under the assumptions of Proposition 5.7, there exists m ≥ 0,
ε0 > 0 and, given ε ∈ (0, ε0), there exists Rε and these have the following
properties: First, an upper bound for m, the numbers ε0 , and a lower bound
for Rε depend only on B0 and B1 . Second, when R ≥ Rε , then the pair
(A′, ψ′) has C2 distance less than ε from gauge orbits of solutions to (4) on
R × T 3 that come from vortex solutions with vortex number m. Third, such
an orbit contains a unique pair (A1, ψ1) for which (b1, η1) ≡ (A′ −A1, ψ

′ −ψ1)
obeys

• d∗b1 − 2 · i · Im(ψ†1η1) = 0;

•
∫

(|b1|2 + |η1|2) ≤ ξε2;

•
∑

0≤k≤2

|∇k(b1, η1)| ≤ ξε everywhere;

• |(b1, η1)| ≤ ξε
(

exp(−(2r)1/2(2R − ξ + t)) + exp((2r)1/2(t+ ξ))
)
,

where t ∈ [−2R+ ξ,−ξ].

(78)

Here, ξ depends only on the vortex number m; in particular, it is independent
of ε, R, and the original pair (A,ψ).

The proof of Lemma 5.8 is given below.

Lemma 5.8 enters the proof of Proposition 5.7 in the following way: Fix some
positive ε� ε0 and then Rε as in Lemma 5.8. An upper bound for ε is derived
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in the subsequent arguments. In any event, suppose that R > Rε . Let U ⊂ Cm
denote the open set of elements which provide gauge orbits of solutions to (4)
on R × T 3 that have C2 distance less than ε from the pair (A′, ψ′). Given a
vortex solution from U, let (A1, ψ1) denote the corresponding solution to (4)
that is provided by Lemma 5.8. Introduce the resulting (b1, η1) and observe
that w1 = (b1, η1) obeys an equation of the form

D1w1 + Q(w1) + H = 0. (79)

Here, D1 denotes the operator Dc from (43) as defined using c = (A1, ψ1),
Q(·) is a universal, quadratic, fiber preserving map from (41) to (42) and H is
interpreted as a section of (42).

With w1 and D1 understood, consider:

Lemma 5.9 Under the assumptions of Proposition 5.7, there exists ε1 > 0
which depends only on B0 and B1 and which has the following significance: If
ε < ε1 , then there exists (A1, ψ1) as described in the preceding paragraph for
which the corresponding w1 is L2–orthogonal to the kernel of the operator D1 .

The proof of this lemma is also given below.

Given the statement of Lemma 5.9, the proof of Proposition 5.7 continues with
the following observation: There exists ε2 > 0 and ζ2 which depend only on
B0 and B1 and are such that when ε < ε2 , then the L2 norm of Lemma 5.9’s
section w1 satisfies

‖w1‖2 ≤ ζ2 exp(−(2r)1/2R). (80)

Indeed, the existence of such a pair (ε2, ζ2) is guaranteed by (54), (77) and the
third point in (78). As is explained below, this upper bound on the L2 norm
of w1 implies the pointwise bounds:

• |w1| ≤ ζ3 exp(−(2r)1/2R) everywhere;

• |w1| ≤ ζ3 exp(−(2r)1/2R)
[
exp(−(2r)1/2(R+ t)) + exp((2r)1/2(t+ ζ3))

]
when t ∈ [−R,−ζ3].

(81)

Here, ζ3 depends only on B0 and B1 ; in particular, it is independent of R.
Indeed, the first line in (81) follows from (77), (79) and (80) using standard
elliptic estimates, while the second follows from the first after an appeal to
Lemma 5.4.
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Notice that the first point of (81) implies the first point in (76). The second
point in (76) is obtained as follows: Start with the second line of (81) and so
conclude that

|w1| ≤ ζ4 exp(−3(2r)1/2R/2) where t ∈
[
−R

2
− 2,−R

2
+ 2
]
. (82)

Here, ζ4 is independent of R and is determined solely by B0 and B1 . This last
bound is used to derive an upper bound for the L2 norm of the section w2 of
(41) that is defined by the rule

• w2 = 0 where t ≤ −R/2,
• w2 = β(−R

2 + t)w1 where t ≥ −R/2.

Note that a suitable upper bound for the L2 norm of w2 will yield, with (82),
the second point in (76).

To obtain such a bound, use (79) to conclude that w2 obeys an equation of the
form

D1w2 + Q(w2) + H2 = 0, (83)

where H2 = 0 except when t ∈ [−R
2 ,−

R
2 + 2]. Moreover, where H2 is not zero,

it obeys the bound |H2| ≤ ζ4 exp(−3(2r)1/2R/2) by virtue of (82); here ζ4 is
independent of R as it is determined solely by B0 and B1 .

With (83) understood, write w2 = w20 + w21 , where w20 is the L2–orthogonal
projection of w2 onto the kernel of D1 . In this regard, w20 enjoys the following
upper bound:

|w20|+ ‖w20‖2 ≤ ζ5 exp(−3(2r)1/2R/2), (84)

where ζ5 is independent of R, being determined solely by B0 and B1 . Indeed,
remember that w1 is orthogonal to the kernel of D1 and so the projection of w2

onto this kernel is the same as that of [1−β(−R
2 +(·))]w1 . In particular, the size

of the latter projection obeys (84) for the following reasons: First, w1 enjoys
the bound in (82). Second, Lemma 5.4 guarantees that any $ ∈ kernel(D1)
is bounded by ζ6‖$‖2 exp((2r)1/2t) at the points where t ≤ −ζ6 . Finally,
any $ ∈ kernel(D1) obeys |$| ≤ ζ6‖$‖2 at all points. Here, again, ζ6 is
independent of R; it depends only on the vortex number m and hence only on
B0 and B1 .

Given (84), the previously mentioned bound on H2 , and the fact that (83) can
be written as D1w21 +Q(w21)+Q′(w20, w21)+Q(w20)+H2 = 0, another appeal
to (54) finds ε3 > 0 and ζ7 which are independent of R, depend only on B0

and B1 and are such that when ε < ε3 , then ‖w21‖2 ≤ ζ7 exp(−3(2r)1/2R/2).
This last bound, (82) and (84) directly yield the final point in (76).
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Proof of Lemma 5.8 All of the arguments for Lemma 5.8 closely follow ar-
guments previously given, and so, except for the outline that follows, the details
are left to the reader. The outline starts with the observation that a slightly
modified version of the argument for Proposition 4.5 establishes the existence
of an upper bound for m and Rε such that when R > Rε , then (A′, ψ′) has
C2 distance ε or less from a solution to (4) on R × T 3 . The bound on the
vortex number comes from the L2 constraint in the statement of Proposition
5.7. Given that (A′, ψ′) is close to a solution to (4), then the points in (78)
are proved by arguments which are essentially the same as those used above
to prove Proposition 5.6. Note that these may require an increase of the lower
bound for R. The arguments for the lemma’s uniqueness assertion are basically
those used to prove the slice theorem for the action of the gauge group on the
space of solutions to (4).

Proof of Lemma 5.9 As explained previously, Lemma 5.8 provides the non-
empty, open set U ⊂ Cm of elements that determine solutions to (4) on R× T 3

whose C2 distance is less than ε from (A′, ψ′). The assignment to a point in
U of the corresponding w1 defines a map from U into the space of L2 sections
of (41). This map is smooth; the proof is straightforward so its details are left
to the reader. The assignment to a point in U of the square of the L2

1 norm of
the corresponding w1 then defines a smooth function, f , on U. As is explained
momentarily, the differential of f vanishes at precisely the points where w1 is
L2–orthogonal to the kernel of D1 . Indeed, let b denote a tangent vector to U
at the point that corresponds to (A1, ψ1). Then, the differential of w1 in the
direction defined by b has the form w1b + δb , where w1b ∈ kernel(D1) and δb is
tangent to the orbit through (A1, ψ1) of the gauge group C∞(R×T 3, S1). This
is a consequence of the fact that (A′, ψ′) is fixed and only (A1, ψ1) is moved
by b. Meanwhile, w1 is L2–orthogonal to δb by virtue of the first point in (78)
and so the differential of f vanishes in the direction of b if and only if w1 is
L2–orthogonal to w1b . As Proposition 4.4 guarantees that the kernel of D1 is
the span of the {w1b}, so w1 is orthogonal to kernel(D1) if and only if (A1, ψ1)
comes from a critical point of f .

With the preceding understood, it remains only to demonstrate that f has
critical points. For this purpose, a return to (79) is in order. In particular,
with (54), (69) and in conjunction with standard elliptic regularity arguments,
(79) leads to the following conclusion: There exist constants ξ ≥ 1 and δ > 0
which are independent of ε and R and such that if |w1| < δ , then the C1

norm of w1 is bounded by ξ(‖w1‖2 + exp(−R/ξ)). Since the C0 norm of w1 is
bounded by its C1 norm, this last point and the second point in (78) guarantee
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that f is proper when ε is small and R is large. Said precisely, ε1 > 0 and
R1 ≥ 1 must exist such that when ε < ε1 and R > R1 , then the map f is a
proper map on the set U. As a proper function has at least one critical point so
there exists at least one (A1, ψ1) where the corresponding w1 and kernel(D1)
are orthogonal.

6 Compactness

This last section contains the final arguments for Propositions 2.4, 3.7 and 3.9.

a) Proof of Proposition 2.4

The assertion that Ms,m is both compact and consists of a finite number of
strata follows from Proposition 4.5. Meanwhile, the assertion in the first point
of the proposition is a restatement of the conclusions of Proposition 2.3. Thus,
the only remaining issue is that of the second point. The latter’s assertion is
proved in the subsequent seven steps.

Step 1 To begin, consider some z ∈ ς(s) and a sequence {cj} ⊂M(s, z) with
no convergent subsequences. After passage to a subsequence, as always renum-
bered consecutively from 1, the sequence {cj} can be assumed to determine
data c∞ and, for each component of ∂X0 , a sequence {oj} of solutions on
R × T 3 to (4), all as described in Proposition 4.5. In this regard, remember
that each oj is determined by a solution, (τj, vj), of the vortex equations in
(35).

Fix a component [0,∞)×T 3 of [0,∞)×∂X0 , let {oj} denote the corresponding
sequence of solutions on R × T 3 , and for each j , let tj denote the smallest of
the time coordinates of the zeros of the corresponding τj . These {tj} can be
assumed to define an increasing and unbounded sequence.

Propositions 5.6 and 5.7 determine certain data with certain special properties.
Here is the data: A constant ζ ≥ 1; a pair (A∞, ψ∞) on the gauge orbit c∞
over [0,∞) × T 3 ; for each sufficiently large index j , a pair (Aj , ψj) on the
gauge orbit cj over [0,∞) × T 3 ; and, for each such j , a pair (A1j , ψ1j) on oj
over R × T 3 . This data enjoys the special properties that are listed (85)–(87)
below. Note that in these equations, (A0, ψ0) denotes the solution to (4) on
R × T 3 which is given by the vortex equation solution with vortex number
zero. Moreover, the bundle S+ is implicitly written as in (41), S+ = εC ⊕ ε01

and ψ0 is used to trivialize the εC summand and thus defines the section with
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vanishing imaginary part and positive real part. Finally, the sections s+
± of (41)

are defined in (59).

Here is the promised list of properties:

• (A∞, ψ∞) = (A0, ψ0) + (u+
+s

+
+ + u+

−s
+
−) exp(−(2r)1/2(t− ζ)) + w∞,

where t ≥ ζ. Here, |w∞| ≤ ζ · exp(−zt) and z ≥ (2r)1/2 + ζ−1.
(85)

This is by virtue of Proposition 5.6.

• (Aj , ψj) = (A0, ψ0) + (u+
j+s

+
+ + u+

j−s
+
−) exp(−(2r)1/2(t− ζ)) + wj ,

where t ∈ [ζ, tj − ζ].

Here, |wj| ≤ ζ[exp(−zt) + exp(−z(tj − t))] and z ≥ (2r)1/2 + ζ−1.

• |u+
j+ − u

+
+|+ |u+

j− − u
+
−| → 0 as j →∞.

• tj →∞ as j →∞.

(86)

The points in (86) also follow from Proposition 5.6.

• (Aj , ψj) = (A1j , ψ1j) + w1j where t ≥ tj/2.
Here, |w1j | ≤ ζ exp(−(2r)1/2tj/2) exp(−(2r)1/2(t− tj/2)),
where t ∈ [tj/2, 3tj/4].

•
∫
t≥3tj/4

|wj |2 ≤ ζ exp(−3(2r)1/2tj/2).

• wj satisfies an equation of the form Djw1j + Q(w1j) = 0, where

t ≥ tj/2. Here, w1j is viewed as a section of (41), Dj ≡ Dc with

c = oj and Q(·) is a universal, quadratic, fiber preserving map

from (41) to (42).

(87)

The points in (87) follow from Proposition 5.7 after translating the origin so
that the new origin corresponds to tj and hence −tj corresponds to the old 0.
Then, take R = tj/2. Note that tj is the most negative of the t–coordinates
of the zeros of the oj version τ in (36).

Step 2 The solution (A1j , ψ1j) on R × T 3 to (4) is defined by a solution
(τj, vj) to the vortex equation in (35) on R × S1 . As long as the latter is not
the trivial vortex (gauge equivalent to the pair (0, 1)), then the operator Θ in
(44) has complex multiples of the element in (52) in its kernel. To underscore
the index dependence, use πj to denote this element. Then Dj has the element
πj− = (0, πj) in its cokernel. Here, πj− is defined as in Lemma 5.4 using c = oj .
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Note that (66) and Lemma 5.4 assert that at t ∈ [ tj2 − 2, tj2 + 2], this πj− has
the form

πj− = exp(−(2r)1/2tj/2)hjs+
− + σ′j . (88)

Here, hj is a positive constant, hj ≥ ξ−1 , while |σ′j| ≤ ξ · exp(−z · tj/2) with
z > (2r)1/2 + ξ−1 . In this regard, ξ ≥ 1 is a constant which is independent of
the index j . (The vector s+

− which appears in (88) is given in (59).)

Step 3 Take the inner product of both sides of the equality Djw1j+Q(w1j) = 0
with πj− and then integrate over the region where t ≥ tj/2. With (58) in mind,
apply integration by parts to the resulting expression and so find that∫

t≥tj/2
〈πj−, w1j〉 = 2

∫
t≥tj/2

〈πj−,Q(w1j)〉. (89)

It follows from (86) that the left hand side of (88) is equal to

hju
+
j− exp(−(2r)1/2tj) + ξ exp(−ztj), (90)

where z > (2r)1/2 and ξ are independent of j . Furthermore, for large j , the
number u+

j− is determined also by c∞ up to a small error because of the last
point in (86). Indeed, (90) can be rewritten as

hj(u+
− + εj) exp(−(2r)1/2tj), (91)

where |εj | → 0 as j →∞ and u+
− is given in (85).

Meanwhile, the second and third points of (87) and (61) imply that the absolute
value of the right hand side of (89) is no greater than

ξ exp(−3(2r)1/2tj/2), (92)

where ξ is, once again, independent of the index j .

Step 4 It follows from (91), (92) and the fact that hj > ζ−1 that the sequence
{cj} can exist as described only if the configuration c∞ is such that the number
u+
− , which arises in (85), is zero.

Associate to each element c ∈ Ms and each component of ∂X0 the complex
number u+

− using (85). The proof of Proposition 2.4 is completed with a demon-
stration of the fact that for a suitably generic choice of ω in (4), the set of those
c in Ms where any given u+

− is zero has codimension at least 2.

To see that such is the case, first fix a fiducial choice ω0 of self-dual 2–form
which is non-zero and covariantly constant on each end of X . Next, fix an open
set K ⊂ X0 with compact closure in the interior of X0 , and consider the space
Ms that is defined as follows: As a set, this space consists of pairs (c, ω) where
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ω is a self-dual 2–form on X0 that agrees with ω0 on the complement of K ,
and where c is the orbit under the action of C∞(X;S1) of a solution to the
version of (4) which is defined by the given form ω . The topology on Ms is
the minimal topology so that the assignment to a pair (c, ω) ∈Ms of the form
ω−ω0 provides a continuous map to the space of smooth, compactly supported
sections over K of Λ+ whose fibers are topologized as before. The strata of
Ms are labeled by the elements of ς(s) and are defined in the obvious way.
They are all smooth manifolds for which the assignment to (c, ω) of ω − ω0 is
a smooth map into the Fréchet space of compactly supported, smooth sections
over K of Λ+ . (Given Proposition 2.2, these last assertions about the strata of
Ms are proved with virtually the same arguments that establish the analogous
assertion for compact 4–manifolds.)

Fix attention on a stratum, M(s, z) ⊂Ms . Given a component of ∂X0 , define
a map, ϕ : M(s, z) → C, by associating the complex number u+

− from (85) to
each (c, ω). An argument is provided below for the following assertion:

Lemma 6.1 The map ϕ is a smooth map and it has no critical points.

Given Lemma 6.1, an appeal to the Sard–Smale theorem finds the Baire subset
which makes the second point of Proposition 2.4 true.

With regard to this Sard–Smale appeal, remember that the latter considers
maps between Banach manifolds and so an extra step is required for its use
here. This extra step requires the introduction of a sequence of Banach space
versions of Ms whose intersection is the smooth version given above. However,
the use of Banach spaces modeled on Cp for p ≥ 2 or L2

k for k � 1 makes no
essential difference in any of the previous or subsequent arguments.

Step 5 This step, and the subsequent steps contain the following:

Proof of Lemma 6.1 The proof that ϕ is smooth is straightforward and will
be omitted. The subsequent discussion addresses the question of whether ϕ has
critical points. For this purpose, it proves convenient to identify the tangent
space to a given stratum M of Ms at a point of interest, (c = (A,ψ), ω), with
a Fréchet space of smooth, square integrable pairs (w = (a, η), κ) that obey
the equation Dcw + κ = 0. Here, a is an imaginary valued section of T ∗X , η
is a section of S+ , and κ is an imaginary valued section of Λ+ with compact
support on K . It is a consequence of Lemma 5.4 and Proposition 5.6 that the
restriction of w to each component of [0,∞) × ∂X0 has the form

w = exp(−(2r)1/2t)(w+
+s

+
+ + w+

−s
+
−) + w′, (93)

Geometry & Topology, Volume 5 (2001)



512 Clifford Henry Taubes

where w+
± are complex numbers and |w′| ≤ ζe−zt with z a universal constant

which is greater than (2r)1/2 .

With this last equation understood, then the statement of Lemma 6.1 follows
with the verification that any value for the complex number w+

− can be obtained
by a suitable choice of pairs (w, κ) which obey Dcw + κ = 0. This verification
is the next order of business.

Step 6 The constant w+
− in (93) is given by

w+
− = (2r)1/2 lim

R→∞
exp(2(2r)1/2R)

∫
t>R

(s+
−)†w exp(−(2r)1/2t). (94)

With (94) understood, let α be a non-zero complex number and let xR denote
the section of i · T ∗X ⊕ S+ which is zero except where t ≥ R on the given
component of [0,∞)× ∂X0 in which case

xR ≡ (2r)1/2αs+
− exp((2r)1/2(2R− t)). (95)

Thus,

Re(ᾱw+
−) = lim

R→∞
〈xR, w〉, (96)

where 〈 , 〉 denotes the L2 inner product over X and Re denotes the real part.
This section xR is introduced for reasons which should be clear momentarily.

Now, as Dcw + κ = 0, the section w can also be written as

w = w0 −D−1
c κ,

where Dcw0 = 0 holds and D−1
c maps the L2–orthogonal complement in

L2(i · (R ⊕ Λ+) ⊕ S−) of cokernel(Dc) to the L2–orthogonal complement of
kernel(Dc) in L2

1(iT ∗X ⊕ S+). With the help of this decomposition, (96) be-
comes

Re(ᾱw+
−) = − lim

R→∞
(〈xR,D−1

c κ〉 − 〈xR, w0〉). (97)

To proceed, introduce x0
R to denote the L2–orthogonal projection of xR onto

the kernel of Dc and then introduce yR ≡ (D†c)−1(xR−x0
R). Equation (97) can

be rewritten with the help of yR as

Re(ᾱw+
−) = − lim

R→∞
(〈yR, κ〉 − 〈x0

R, w0〉). (98)

In the meantime, it follows from Lemma 5.4 (after changing t to −t) that
there exists ζ > 1 which is independent of R and such that |yR| < ζ on X0 .
Moreover, there exists L ≥ 0 which is independent of R and such that

|yR| ≥ ζ−1 exp((2r)1/2t),
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where t ∈ [L,R] on the given component of [0,∞)× ∂X0 . In this regard, note
that Lemma 5.4 insures that |x0

R| enjoys an R and α independent bound on
X when |α| ≤ 1.

Now, there are two possibilities to consider. The first is that there exists a
complex number α 6= 0 such that

lim
R→0

sup
X
|x0
R| = 0. (99)

The second possibility is that there is an unbounded subsequence of values for
R such that the corresponding sequence {sup |x0

R|} has a non-zero limit for
each unit length α ∈ C. Now, in this second case, it follows from (98) that all
complex numbers can be realized by w+

− in (93) by tangent vectors at (c, ω) of
the form (w, 0) with w ∈ kernel(Dc).

With the preceding understood, suppose that (99) holds for some unit length
complex number α. Then, as D†cyR = −x0

R except where t ≥ R on the given
component of [0,∞) × ∂X0 , the sequence {yR}R�1 converges as R→∞ to a
non-zero section, y , of the bundle i · (R⊕ Λ+)⊕ S− which obeys

D†cy = 0;
Re(ᾱw+

−) = −〈y, κ〉.
(100)

(As κ has compact support, the integral in (100) is well defined.)

Step 7 According to the preceding discussion, if (c, ω) is a critical point of ϕ,
then there exists such unit length α ∈ C such that

0 = 〈y, κ〉 (101)

for all sections κ of iΛ+ which have compact support on U .

To make use of (101), it is also important to realize that y is also L2–orthogonal
to all compactly supported sections of the iR summand in i · (R ⊕ Λ+) ⊕ S− .
To see that such is the case, let q denote a compactly supported section of
the summand in question. Given q , there exists a unique, L2 function u on
X which obeys d∗du + 2|ψ|2u = q . With u in hand, then Dcu = q where
u ≡ (du,−2−1uψ). Thus,

〈yR, q〉 = 〈xR, u〉. (102)

To see that the left hand side of (102) vanishes in the limit as R → ∞, note
that xR lies in the last two summands of (41). Meanwhile, Lemma 5.4 implies
that the projection of u into these summands is O(e−zs) where z > (2r)1/2 is
independent of s. Given this last bound, the vanishing as R tends to infinity
of the right hand side of (102) follows directly from (95).
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To summarize: If (c, ω) is a critical point of the map ϕ, then there exists a
non-zero section, y , over X of i · (R⊕Λ+)⊕ S− with the following properties:

• y is L2–orthogonal to sections with compact

support on U of the i · (R⊕ Λ+) summand.

• D†cy = 0.

(103)

Now, the first point here implies that y restricts to U as a section of S− only.
With this understood, then the projection of the equation in the second point
of (103) onto the iT ∗X summand of iT ∗X ⊕ S+ asserts that

Im(ψ† cl(e)y) = 0

for all sections e of T ∗X with compact support on U . This last condition can
hold only if y is identically zero on U .

Having established that y vanishes identically on U , it then follows that y ≡ 0
on the whole of X since there is a version of Aronszajn’s unique continua-
tion principle [3] which holds for elements in the kernel of D†c . The preceding
conclusion establishes that ϕ has no critical points as claimed.

b) Proof of Proposition 3.7

Given the details of the preceding proof of Proposition 2.4, the assertions here
follow via standard applications of the Sard–Smale theorem. The details for
the application to this particular case are left to the reader.

c) Proof of Proposition 3.9

The argument given below considers only the case where M separates X . As
the discussion in the case where X−M is connected is identical at all essential
points to that given below, the latter discussion is omitted.

To begin, suppose, for the sake of argument, that there exists an increasing and
unbounded sequence, {Rj}j=1,2,... and a corresponding sequence {cj} ⊂ MRj

with the property that for each fixed r′ , the inequality in (24) holds when
(A,ψ) = cj for only finitely many j . Arguing as in Step 1 of the proof of
Proposition 2.4 finds a subsequence of {cj} (hence renumbered consecutively),
and data c∞− , c∞+ and {oj}j=1,2,... , where now c∞± are orbits of solutions
to (4) on the respective X± . In this regard, each X± may have other ends
besides the end where M lived, and each such end has an associated map ϕ
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as described in the preceding subsection. In this regard, assume that for each
such end, ϕ(c) 6= 0 for c = c∞± .

To return to the data {cj}, c∞± , {oj}, remark that an evident analog of (85)–
(87) exists here. In particular, the orbit c∞− supplies the complex number
u+
− as defined in (85) for the end [0,∞) ×M of X− , while c∞+ supplies the

analogous u−− which comes from the ‘time reversed’ version of (85) on the end
(−∞, 0]×M of X+ . There is also an analog of (91) and (92) here:

hj−(u+
− + εj−) exp(−(2r)1/2(Rj − tj−))

+hj+(u−− + εj+) exp(−(2r)1/2(Rj − tj+)) = 0,
(104)

where
|εj±| → 0 as j →∞;
tj± →∞ and |tj±|/Rj → 0 as j →∞.

In (104), the data hj± and tj± are supplied by the vortex oj . In particular,
hj± are real numbers, both greater than a j–independent, positive ζ−1 , while
−tj− and tj+ are, respectively, the most negative and most positive of the
t–coordinates of the zeros of the oj version τ in (36). With the preceding
understood, it now proves useful to package (104) as

(u+
− + εj−)∆j + (u−− + εj+)(1−∆j) = 0,

where ∆j ∈ [0, 1] is supplied by the vortex oj .

As |εj±| → 0 as j →∞, the sequence {∆j} has a unique limit, ∆ ∈ [0, 1] with

u+
−∆ + u−−(1−∆) = 0. (105)

Now, the set of non-zero pairs (u+
−, u

−
−) which obey a relation as in (105) for

some ∆ determines a codimension 1 subvariety in C×C. In particular, coupled
with Lemma 6.1 and the Sard–Smale theorem, this last observation implies the
next lemma.

Lemma 6.2 Given a form ω′ as described in Proposition 3.9 and open sets U±
with respective compact closures in the ± components of X0−M , there exists
a Baire subset of choices for ω in (4) which agree with ω′ on X − (U− ∪ U+),
and which have the following additional property: Let (s, z) ∈ S0(X0, ∂X0),
let ((s−, z−), (s+, z+)) ∈ ℘−1((s, z)) and use M− and M+ to denote the corre-
sponding moduli space of solutions to (4) on X− and X+ , respectively. Then,
there is a codimension one subvariety in the product, M−×M+ , which contains
the only pairs (c−, c+) ∈M−×M+ for which the corresponding pair of complex
numbers (u+

−, u
−
−) satisfies (105) for some choice of ∆ ∈ [0, 1].
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Lemma 6.2 directly implies the assertions of Proposition 3.9 in the d = 0
case. Indeed, it is a consequence of Lemma 6.2 that the relevant subvariety in
M− ×M+ must be empty as each M± has dimension zero. Thus, no solution
to (105) will exist and so for R large, each point in MR is in the image of the
map Φ from Proposition 3.8.

To argue the d > 0 assertion of the proposition, choose all of the points in Λ to
lie on the X− side of X . According to Lemma 6.2, the conclusion that (MR)Λ

lies in Φ’s image for large R fails only if the following is true: There exist
M± with M− having dimension 2d, M+ having dimension 0, and MΛ

−×M+ ⊂
M−×M+ intersecting the subvariety from Lemma 6.2. However, as Lemma 6.2’s
subvariety has codimension 1 and MΛ

−×M+ is a finite set, such an intersection
is precluded by a suitably generic choice for the points in Λ.

7 3–dimensional implications

The purpose of this final section is to discuss the implications of the theorems
and propositions of the preceding sections in the special case where X0 = S1×Y0

and Y0 is either a compact 3–manifold with positive first Betti number or else
a compact 3–manifold with boundary whose boundary components are all tori.

Here are the key points to note with regard to such X0 : An argument from [9]
readily adapts to prove that the first Chern class, c(s), for any pair (s, z) ∈
S0(X0, ∂X0) with non-zero Seiberg–Witten invariant is pulled up from Y0 .
Moreover, as is explained below, the Seiberg–Witten invariants of X0 are
identical to invariants that are defined for Y0 by counting solutions on Y ≡
Y0 ∪ ([0,∞) × ∂Y0) of a version of (11).

To describe this version of (11), a Riemannian metric, a SpinC structure and
a closed 2–form ω0 must first be chosen. Having made these choices, the
two equations in (11) make perfectly good sense on any oriented 3–manifold.
However, for Y as described in the preceding paragraph, the metric should
be a product, flat metric on [0,∞) × ∂Y0 , and the form ω0 must be non-zero
and constant on each component of [0,∞) × ∂Y0 . With this understood, the
equations in (11) should be augmented with the extra ‘boundary condition’∫

Y
|FA|2 <∞. (106)

The invariants for Y0 that the preceding paragraph mentions are then obtained
via a count with appropriate algebraic weights of the orbits under the action of
C∞(Y ;S1) of the solutions to (11) which satisfy (106).
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These 3–manifold equations on Y can be viewed as versions of (4) on X =
S1×Y which is how the equivalence between the Seiberg–Witten invariants for
Y0 and X0 arise. For this purpose, consider the version of (4) on X = Y × S1

when X has its product metric and when ω = dτ ∧ θ + ω0 . Here, θ is the
metric dual on Y to ω0 and dτ is an oriented, unit length, constant 1–form
on S1 . In this case, note that solutions to (11) on Y which obey (106) provide
solutions to (4) on X . Moreover, in the case where c(s) is pulled up from Y0 ,
an integration by parts argument, much like that used to prove Proposition
4.1, proves that all solutions to (4) on X are pull-backs of solutions to (11)
and (106) on Y . Thus, Theorems 1.1 and 2.7 directly imply Mayer–Vietoris
like theorems for the 3–dimensional Seiberg–Witten equations. (In particular,
Theorem 1.1 implies Theorem 5.2 in [16].)

The question arises as to whether the implications of Theorems 1.1 and 2.7
for the 3–dimensional Seiberg–Witten equations can be proved with a strictly
3–dimensional version of the arguments of the previous sections. The short
answer is no as there are additional complications that arise and make for a
somewhat more involved story. And, as the story here is already long enough,
the additional discussion will not be provided, save for the brief comments of
the next paragraph.

Because the solutions to (11) on Y provide solutions to (4) on X , the analysis
in Sections 3–5 can be directly employed to characterize the behavior of the
solutions to (11). However, there is one caveat: Properties that hold for solu-
tions to (4) on X when the form ω is chosen from a Baire set may not hold
for the solutions on Y because a Baire set may be devoid of 2–forms given by
dτ ∧ θ+ω0 where ω0 is a closed form on Y . In particular, the following analog
of Proposition 2.4 holds in the purely 3–dimensional context:

Proposition 7.1 Let θ0 denote a closed 1–form on Y which is non-zero and
constant on each component of [0,∞)× ∂Y0 . With θ0 given, use a form ω0 in
(11) whose metric dual agrees with θ0 on [0,∞)× ∂Y0 . Then each Ms,m ⊂Ms

is compact and contains only a finite number of strata. Moreover, fix a closed
2–form ω′ whose metric dual agrees with θ0 on [0,∞) × ∂Y0 ; and fix a non-
empty, open set U ⊂ Y0 . Then, there is a Baire set of smooth, closed 2–forms
ω that agree with ω′ on X − U and have the following properties:

• Each stratum of Ms is a smooth manifold of dimension 0. Moreover, the
cokernel of the operator Dc vanishes for each c ∈Ms .

• The boundary of the closure in Ms of any stratum intersects the remain-
ing strata as a codimension 1 submanifold.
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Note that this last proposition implies the third assertion in Equation (4) of
[16].

The appearance in Proposition 7.1 of codimension 1 submanifolds as opposed
to codimension 2 causes the added complications in the proof of the purely
3–dimensional version of Theorem 2.7. In particular, the purely 3–dimensional
versions of Propositions 3.7 and 3.9 may not hold. Even so, somewhat more
complicated analogs of these propositions can be established that are sufficient
to provide the purely 3–dimensional proof of Theorem 2.7.
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