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Abstract

Yasutaka Nakanishi asked in 1981 whether a 3–move is an unknotting operation.
In Kirby’s problem list, this question is called The Montesinos–Nakanishi 3–
move conjecture. We define the nth Burnside group of a link and use the 3rd
Burnside group to answer Nakanishi’s question; ie, we show that some links
cannot be reduced to trivial links by 3–moves.
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One of the oldest elementary formulated problems in classical Knot Theory is
the 3–move conjecture of Nakanishi. A 3–move on a link is a local change that
involves replacing parallel lines by 3 half-twists (Figure 1).

Figure 1

Conjecture 1 (Montesinos–Nakanishi, Kirby’s problem list; Problem 1.59(1),
[4]) Any link can be reduced to a trivial link by a sequence of 3–moves.

The conjecture has been proved to be valid for several classes of links by Chen,
Nakanishi, Przytycki and Tsukamoto (eg, closed 4–braids and 4–bridge links).

Nakanishi, in 1994, and Chen, in 1999, have presented examples of links which
they were not able to reduce: L2BR , the 2–parallel of the Borromean rings,
and γ̂ , the closure of the square of the center of the fifth braid group, ie,
γ = (σ1σ2σ3σ4)10 .

Remark 2 In [6] it was noted that 3–moves preserve the first homology of the
double branched cover of a link L with Z3 coefficients (H1(M (2)

L ;Z3)). Suppose
that γ̂ (respectively L2BR ) can be reduced by 3–moves to the trivial link Tn .
Since H1(M (2)

γ̂ ;Z3) = Z4
3 , H1(M (2)

L2BR
;Z3) = Z5

3 and H1(M (2)
Tn

;Z3) = Zn−1
3

where Tn is a trivial link of n components, it follows that n = 5 (respectively
n=6).

We show below that neither γ̂ nor L2BR can be reduced by 3–moves to trivial
links.

The tool we use is a non-abelian version of Fox n–colorings, which we shall call
the nth Burnside group of a link, BL(n).

Definition 3 The nth Burnside group of a link is the quotient of the funda-
mental group of the double branched cover of S3 with the link as the branch set
divided by all relations of the form an = 1. Succinctly: BL(n) = π1(M (2)

L )/(an).

Proposition 4 BL(3) is preserved by 3–moves.
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Proof In the proof we use the core group interpretation of π1(M (2)
L ). Let D

be a diagram of a link L. We define (after [3, 2]) the associated core group Π(2)
D

of D as follows: generators of Π(2)
D correspond to arcs of the diagram. Any

crossing vs yields the relation rs = yiy
−1
j yiy

−1
k where yi corresponds to the

overcrossing and yj, yk correspond to the undercrossings at vs (see Figure 2).
In this presentation of Π(2)

L one relation can be dropped since it is a consequence
of others. Wada proved that Π(2)

D = π1(M (2)
L )∗Z , [10] (see [7] for an elementary

proof using only Wirtinger presentation). Furthermore, if we put yi = 1 for
any fixed generator, then Π(2)

D reduces to π1(M (2)
L ). The last part of our proof

is illustrated in Figure 2.
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Figure 2

Lemma 5 Bγ̂(3) = {x1, x2, x3, x4 | a3 for any word a, P1, P2, P3, P4}, where

Pi = x1x
−1
2 x3x

−1
4 x−1

1 x2x
−1
3 x4xix4x

−1
3 x2x

−1
1 x−1

4 x3x
−1
2 x1x

−1
i .

Proof Consider the 5–braid γ = (σ1σ2σ3σ4)10 (Figure 3). If we label initial
arcs of the braid by x1, x2, x3, x4 and x5 , and use core relations (progressing
from left to right) we obtain labels Q1, Q2, Q3, Q4 and Q5 on the final arcs of
the braid where

Qi = x1x
−1
2 x3x

−1
4 x5x

−1
1 x2x

−1
3 x4x

−1
5 xix

−1
5 x4x

−1
3 x2x

−1
1 x5x

−1
4 x3x

−1
2 x1.

For a group Π(2)
γ̂ , of the closed braid γ̂ , we have relations Qi = xi . To obtain

π1(M (2)
γ̂ ) we can put x5 = 1, and delete one relation, say Q5x

−1
5 . These lead

to the presentation of Bγ̂(3) described in the lemma.

Theorem 6 The links γ̂ and L2BR are not 3–move reducible to trivial links.
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Figure 3

Proof Let B(n, 3) denote the classical free n generator Burnside group of
exponent 3. As shown by Burnside [1], B(n, 3) is a finite group. Its order,
|B(n, 3)|, is equal to 3n+(n2)+(n3) . For a trivial link: BTk(3) = B(k − 1, 3). In
order to prove that γ̂ and L2BR are not 3–move reducible to trivial links, it
suffices to show that Bγ̂(3) 6= B(4, 3) and BL2BR

(3) 6= B(5, 3) (see Remark 2).
We have demonstrated these to be true both by manual computation, and by
using the programs GAP, Magnus and Magma. More details in the case of γ̂
are provided below.

For the manual calculations, one first observes that for any i, Pi is in the third
term of the lower central series of B(4, 3). In particular, for u = x1x

−1
2 x3x

−1
4

and ū = x−1
1 x2x

−1
3 x4 , one has uū ∈ [B(4, 3), B(4, 3)] and Pi = [uū, xiū]. It

is known ([9]), that B(4, 3) is of class 3 (the lower central series has 3 terms),
and that the third term is isomorphic to Z4

3 with basis: e1 = [[x2, x3], x4],
e2 = [[x1, x3], x4], e3 = [[x1, x2], x4] and e4 = [[x1, x2], x3]. It now takes
an elementary linear algebra calculation (see Lemma 7 below) to show that
P1, P2, P3, P4 form another basis of the third term of the lower central series of
B(4, 3). Thus |Bγ̂(3)| = 310 .

Lemma 7 P1, P2, P3 , and P4 form a basis of the third term of the lower central
series of B(4, 3).

Proof In the associated graded Lie ring L(4, 3) of B(4, 3) ([9]), the third term
(denoted L3 ) is isomorphic to Z4

3 with basis e1, e2, e3, e4 . In L(4, 3), which is
a linear space over Z3 , one uses an additive notation and the bracket in the
group becomes a (non-associative) product ([9]). In this notation e1 = x2x3x4 ,
e2 = x1x3x4 , e3 = x1x2x4 and e4 = x1x2x3 . In the calculation expressing Pi
in the basis we use the following identities in L3 ([9]; page 89).

xyzt = 0, xyz = yzx = zxy = −xzy = −zyx = −yxz, xyy = 0.

Now we have: Pi = (uū)(xiū)(uū)−1(xiū)−1 = [(uū)−1, (xiū)−1] = [uū, xiū] as
the last term of the lower central series is in the center of B(4, 3). Furthermore,
we have uū = x1x

−1
2 x3x

−1
4 x−1

1 x2x
−1
3 x4 = [x−1

2 x3x
−1
4 , x−1

1 ][x3x
−1
4 , x2][x−1

4 , x−1
3 ].
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Writing Pi additively in L3 one obtains:

Pi = ((−x2 + x3 − x4)(−x1) + (x3 − x4)x2 + x4x3)(xi − x1 + x2 − x3 + x4).

After simplifications one gets:

P1 = −e1, P2 = e1 + e2, P3 = e1 − e2 − e3, and P4 = e1 − e2 + e3 + e4.

The matrix expressing Pi ’s in terms of ei ’s is the upper triangular matrix with
the determinant equal to 1. Therefore the lemma follows.

A similar calculation establishes that |BL2BR
(3)| < |B(5, 3)|. B(5, 3) is of class

3 and has 325 elements. Considering L2BR as a closed 6–braid we note that
BL2BR

(3) is obtained from B(5, 3) by adding 5 relations R1, ..., R5 . Relations
{Ri} are in the last term of the lower central series of B(5, 3) (and of the
associated graded algebra L(5, 3)). Relations form a 4–dimensional subspace
in L3 = Z10

3 . Thus |BL2BR
(3)| = 321 .

For a computer verification showing that Bγ̂(3) 6= B(4, 3) consider any pre-
sentation of B(4, 3) (eg, Magma solution by Mike Newman [5]) and add the
relations Pi to obtain a presentation of Bγ̂(3). Using any of the algebra pro-
grams mentioned above, one verifies that |Bγ̂(3)| = 310 while |B(4, 3)| = 314 .

The solution of the Nakanishi–Montesinos 3–move conjecture, presented above,
is the first instance of application of Burnside groups of links. It was motivated
by the analysis of cubic skein modules of 3–manifolds. The next step is the
application of Burnside groups to rational moves on links. This, in turn, should
have deep implications to the theory of skein modules [7].
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