ISSN 1364-0380 (on line) 1465-3060 (printed)

Geometry & Topology Volume 6 (2002) 403–408 Published: 5 September 2002

Seifert forms and concordance

CHARLES LIVINGSTON

Department of Mathematics, Indiana University Bloomington, IN 47405, USA

Email: livingst@indiana.edu

Abstract

If a knot K has Seifert matrix V_K and has a prime power cyclic branched cover that is not a homology sphere, then there is an infinite family of non–concordant knots having Seifert matrix V_K .

AMS Classification numbers Primary: 57M25

Secondary: 57N70

Keywords: Concordance, Seifert matrix, Alexander polynomial

Proposed: Cameron Gordon Seconded: Ronald Stern, Walter Neumann Received: 21 August 2001 Revised: 21 April 2002

© Geometry & Topology Publications

1 Introduction

Levine's homomorphism $\psi: \mathcal{C} \to \mathcal{G}$ from the concordance group of knots in S^3 to the algebraic concordance group of Seifert matrices (defined in [12]) has an infinitely generated kernel, as proved by Jiang [8]. It follows that every algebraic concordance class can be represented by an infinite family of non-concordant knots. However, it is also the case that every class in \mathcal{G} can be represented by an infinite number of distinct Seifert matrices, so Jiang's result alone tells us nothing about whether a given Seifert matrix can arise from non-concordant knots. In fact, all the knots in the kernel of ϕ identified by Jiang have distinct Seifert forms.

Examples of non-slice, algebraically slice, knots quickly yield pairs of nonconcordant knots with the same Seifert matrix. Beyond this nothing has been known regarding the extent to which the Seifert matrix of a knot might determine its concordance class. We prove the following.

Theorem 1.1 If a knot K has Seifert matrix V_K and its Alexander polynomial $\Delta_K(t)$ has an irreducible factor that is not a cyclotomic polynomial ϕ_n with n divisible by three distinct primes, then there is an infinite family $\{K_i\}$ of non-concordant knots such that each K_i has Seifert matrix V_K .

The condition on the Alexander polynomial seems somewhat technical; we note three relevant facts. First, if the Alexander polynomial of the knot is trivial, $\Delta_K(t) = 1$, then K is topologically slice [4, 5]. Second we have:

Theorem 1.2 All prime power cyclic branched covers of a knot K are homology spheres if and only if all nontrivial irreducible factors of $\Delta_K(t)$ are cyclotomic polynomials $\phi_n(t)$ with n divisible by three distinct primes. All branched covers of K are homology spheres if and only if $\Delta_K(t) = 1$.

Finally, we note that Taehee Kim [9] has applied the recent advances in concordance theory of [2] to prove that for each n divisible by three distinct primes there is a knot with $\Delta_K(t) = (\phi_n(t))^2$ for which there is an infinite family of non-concordant knots having the same Seifert matrix.

A good reference for the basic knot theory in this paper is [17], for the algebraic concordance group [12, 13] are the main references, and for Casson–Gordon invariants references are [1, 7].

Remark We have chosen to use Seifert matrices instead of Seifert forms to be consistent with references [12, 13]. A basis free approach using Seifert forms could be carried out identically.

Geometry & Topology, Volume 6 (2002)

2 Proof of Theorem 1.1

Unless indicated, all homology groups are taken with integer coefficients.

Let F be a Seifert surface for K with associated Seifert matrix V_K . View F as a disk with 2g bands added and let $\{S_m\}_{m=1,\dots,2g}$, be a collection of unknotted circles, one linking each of the bands. Let K_i be the knot formed by replacing a tubular neighborhood of each S_m with a copy of the complement of a knot J_i , identifying the meridian and longitude of J_i with the longitude and meridian of the S_m , respectively. The correct choice of the J_i will be identified in the proof. Replacing the S_m with the knot complements has the effect of adding a local knot to each band of F. The Seifert form of K_i is independent of the choice of J_i . Applying Theorem 1.2, proved in the next section, we assume the p^k -fold cyclic branched cover of S^3 branched over K has nontrivial homology. Denote this cover by M(K) and let q be a maximal prime power divisor of $|H_1(M(K))|$.

According to Casson and Gordon [1], if $K_i \# - K_j$ is slice (that is, if K_i and K_j are concordant) then for some nontrivial \mathbf{Z}_q -valued character χ on $H_1(M(K_i \# - K_j))$ the Casson–Gordon invariant $\sigma_1(\tau(K_i \# - K_j, \chi)) = 0$. Using the additivity of Casson–Gordon invariants (proved by Gilmer [6]), this equality can be rewritten as $\sigma_1(\tau(K_i, \chi_i)) = \sigma_1(\tau(K_j, \chi_j))$ where χ_i and χ_j are the restrictions of χ to $H_1(M(K_i))$ and $H_1(M(K_j))$, respectively. Notice that at least one of χ_i and χ_j is nontrivial. Furthermore, since according to [1] (see also [6]) the set of characters for which the Casson–Gordon invariants must vanish is a metabolizer for the linking form on $H^1(M(K_i \# - K_j), \mathbf{Q/Z})$, there are such characters for which χ_j must be nontrivial. (If the metabolizer was contained in $H^1(M(K_i), \mathbf{Q/Z})$ then order considerations would show that it equalled this summand, contradicting nonsingularity.)

Litherland's analysis [14] of companionship and Casson–Gordon invariants applies directly to the case of knotting the bands in the Seifert surface (see also [7])). Roughly stated, there is a correspondence between characters on $H_1(M(K))$ and on $H_1(M(K_i))$; it then follows that the difference of the corresponding Casson–Gordon invariants is determined by q–signatures of J_i : $\sigma_{a/q}(J_i) = \text{sign}\left((1-\omega)V_{J_i} + (1-\overline{\omega})V_{J_i}^t\right)$ where $\omega = e^{2\pi a i/q}$. More precisely, it follows readily from the results of [14] and iteration that the equality of Casson–Gordon invariants for K_i and K_j is given by

(*)
$$\sigma_1(\tau(K,\chi_i)) + \sum_l \sigma_{a_l/q}(J_i) = \sigma_1(\tau(K,\chi_j)) + \sum_l \sigma_{b_l/q}(J_j).$$

Geometry & Topology, Volume 6 (2002)

The two summations that appear have $2gp^k$ terms in them. The values of the a_l are given by the values of χ_i on the $2gp^k$ lifts of the circles S_m to M(K). Similar statements hold for the b_l and χ_j . Observe also that since the lifts of the S_m generate $H_1(M(K))$ (see for instance [17]) and at least one of χ_i or χ_j is nontrivial, at least one of the a_l or b_l is nontrivial.

A prime power branched cover of a knot is a rational homology sphere and hence $H_1(M(K))$ is finite. A short proof of this is given in the next section. Hence, there is only a finite set of characters to consider and $\sigma_1(\tau(K,\chi_1))$ lies in a bounded range, say $[-N_0, N_0]$. If we can choose J_1 so that $\sum_l \sigma_{a_l/q}(J_1)$ lies in a range $[2N_0 + 1, N_1]$ (for some N_1 and for all possible sums with some $a_l \neq 0 \in \mathbb{Z}_q$) then it would follow that K and K_1 are not concordant. Similarly, by selecting each J_{i+1} so that the sum lies in the range $[2N_0 + N_i + 1, N_{i+1}]$ we will have that the equality (*) cannot hold for any pair i and j and the theorem is proved.

The desired J_i are constructed by taking ever larger multiples of a knot T for which $\sigma_{a/q}(T) \geq 2$ for all $a \neq 0 \in \mathbb{Z}_q$. Such a knot is given in the following lemma, which completes the proof of Theorem 1.1.

Lemma 2.1 The (2,q)-torus knot $T_{2,q}$ has $\sigma_{a/q}(T) \geq 2$ for all $a \neq 0 \in \mathbb{Z}_q$.

Proof The signature function of a knot K, sign $((1 - \omega)V_K + (1 - \overline{\omega})V_K)$, has jumps only at roots of the Alexander polynomial, and if these roots are simple the jump is either ± 2 [15]. The (2,q)-torus knot has cyclotomic Alexander polynomial ϕ_{2q} with (q - 1)/2 simple roots on the upper unit circle in the complex plane. Hence the signature $\sigma_{-1}(T_{2,q}) \leq q - 1$. On the other hand, this -1 signature is easily computed from the standard rank q - 1 Seifert form for $T_{2,q}$ to be exactly q - 1, and so all the jumps must be positive 2. The first of these jumps occurs at a primitive 2q-root of unity, so all q-signatures must be positive as desired.

3 Proof of Theorem 1.2

We have the following result of Fox [3] and include as a corollary a result used above.

Theorem 3.1 If M(K) is the r-fold cyclic branched cover of S^3 branched over K, then

$$|H_1(M(K))| = \prod_{i=0}^{r-1} \Delta_K(\zeta_r^i)$$

Geometry & Topology, Volume 6 (2002)

406

where ζ_r is a primitive *r*-root of unity. If the product is 0 then $H_1(M(K))$ is infinite.

Corollary 3.2 If r is a prime power, then M(K) is a rational homology sphere: $H_1(M(K), \mathbf{Q}) = 0$.

Proof Suppose that $r = p^k$ and $\Delta_K(\zeta_r^i) = 0$. Then the *r*-cyclotomic polynomial, $\phi_r(t) = (t^{p^k} - 1)/(t^{p^{k-1}} - 1)$ would divide $\Delta_K(t)$. But $\phi_r(1) = p$ while $\Delta_K(1) = \pm 1$.

We now proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2 According to Riley [16] the order of the homology of the k-fold cyclic branched cover of a knot K grows exponentially as a function of k if the Alexander polynomial has a root that is not a root of unity. Hence, we only need to consider the case that all irreducible factors of the Alexander polynomial are cyclotomic polynomials, $\phi_n(t)$. Using Theorem 3.1, the result is reduced to the case that that $\Delta_K(t) = \phi_n(t)$. As in the proof of Corollary 3.2, n cannot be a prime power.

An elementary argument using the resultant of polynomials (see for instance [10]) gives

$$\prod_{i=0}^{p^{k}-1} \phi_{n}(\zeta_{p^{k}}^{i}) = \prod((\omega_{n})^{p^{k}} - 1)$$

where the second product is taken over all primitive n-roots of unity. Let $g = \gcd(n, p^k)$ and let m = n/g. One has that $\omega_n^{p^k} = \omega_m$ for some primitive m-root of unity and with a bit of care one sees that the product can be rewritten as

$$\prod (\omega_m - 1)^b$$

where now the product is over all primitive m-roots of unity and $b \ge 1$. (Though we don't need it, a close examination shows that if k is greater than or equal to the maximal power of p in n then $b = p^k - p^{k-1}$, otherwise $b = p^k$.)

If n has three distinct prime factors then m has at least two distinct prime factors and this product is 1 (see for instance [11, page 73]). On the other hand, if n has two distinct prime factors, then by letting p be one of those factors and letting k be large, it is arranged that m is a prime power and the product yields that prime and in particular is greater than 1. This concludes the proof of the first statement of Theorem 1.2.

Geometry & Topology, Volume 6 (2002)

Finally, suppose that all cyclic branched covers of K are homology spheres. By the above discussion we just need to show that no factor of the Alexander polynomial is $\phi_n(t)$ for any n. But from Theorem 3.1 we see that if $\phi_n(t)$ divides the Alexander polynomial then the n-fold cyclic branched cover would have infinite homology. This concludes the proof.

References

- A Casson, C Gordon, Cobordism of classical knots, from: "A la recherche de la Topologie perdue", (Guillou and Marin, editors) Progress in Mathematics, Volume 62 (1986) originally published as Orsay Preprint (1975)
- [2] T Cochran, K Orr, P Teichner, Knot concordance, Whitney towers and L² signatures, arXiv:math.GT/9908117
- [3] R Fox Free differential calculus. III. Subgroups, Ann. of Math. 64 (1956) 407–419
- [4] M Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357-453
- [5] M Freedman, F Quinn, Topology of 4-manifolds, Princeton Mathematical Series, 39, Princeton University Press, Princeton, NJ (1990)
- [6] **P Gilmer**, Slice knots in S³, Quart. J. Math. Oxford 34 (1983) 305–322
- [7] P Gilmer, C Livingston, The Casson–Gordon invariant and link concordance, Topology 31 (1992) 475–492
- [8] B Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981) 189–192
- [9] **T** Kim, Filtration of the classical knot concordance group and Casson-Gordon invariants, arXiv:math.GT/0207221
- [10] S Lang, Algebra, Addison–Wesley, Reading, Mass. (1984)
- [11] S Lang, Algebraic Number Theory, Addison–Wesley, Reading, Mass. (1970)
- J Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229–244
- [13] J Levine, Invariants of knot cobordism, Invent. Math. 8 (1969) 98–110
- [14] R Litherland, Cobordism of satellite knots, from: "Four-Manifold Theory", Contemporary Mathematics, (C Gordon and R Kirby, editors) American Mathematical Society, Providence RI (1984) 327–362
- [15] T Matumoto, On the signature invariants of a non-singular complex sesquilinear form, J. Math. Soc. Japan 29 (1977) 67–71
- [16] R Riley, Growth of order of homology of cyclic branched covers of knots, Bull. London Math. Soc. 22 (1990) 287–297
- [17] D Rolfsen, Knots and Links, Publish or Perish, Berkeley CA (1976)

Geometry & Topology, Volume 6 (2002)

408