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Abstract

Let O be a three-dimensional Nil–orbifold, with branching locus a knot Σ
transverse to the Seifert fibration. We prove that O is the limit of hyperbolic
cone manifolds with cone angle in (π − ε, π). We also study the space of
Dehn filling parameters of O − Σ. Surprisingly it is not diffeomorphic to the
deformation space constructed from the variety of representations of O−Σ. As
a corollary of this, we find examples of spherical cone manifolds with singular
set a knot that are not locally rigid. Those examples have large cone angles.
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816 Joan Porti

1 Introduction

This paper is motivated by a phenomenon occurring in the proof of the orbifold
theorem. This proof suggests that some orbifolds with geometry Nil appear as
limit of rescaled hyperbolic cone manifolds. In the current proofs of the orbifold
theorem [4, 5, 6, 3, 8], it is only shown that those families of cone manifolds
collapse, and this is used to construct a Seifert fibration of the orbifold, without
knowing which kind of geometric structure is involved.

Every closed three-dimensional Nil orbifold admits an orbifold Seifert fibra-
tion. We assume that the ramification locus is a circle transverse to its Seifert
fibration. This implies that the ramification index is 2. Hence we view the
orbifold as a cone manifold with cone angle π .

Theorem A Let O be a closed three-dimensional Nil orbifold whose ramifi-
cation locus Σ is a circle transverse to its Seifert fibration. Then there exist a
family of hyperbolic cone structures on the underlying space of O with singular
set Σ parametrized by the cone angle α ∈ (π − ε, π), for some ε > 0.

In addition, when α → π− these hyperbolic cone manifolds converge to a
point. If they are re-scaled by (π − α)−1/3 , then they converge to a Euclidean
2–orbifold, which is the basis of the Seifert fibration of O . Finally, if they are
re-scaled by (π − α)−1/3 in the horizontal direction and (π − α)−2/3 in the
vertical one, then they converge to O .

If the ramification locus Σ was a circle but not transverse to the Seifert fibration
of O , then Σ would be a fibre. In this case the conclusion of Theorem A could
not hold, because O − Σ must be hyperbolic, and therefore O − Σ can not be
Seifert fibred.

The following corollary follows from Theorem A and Kojima’s global rigidity
theorem [14].

Corollary 1.1 Let O be an orbifold as in Theorem A. There exist a family
of hyperbolic cone structures on the underlying space of O with singular set Σ
parametrized by the cone angle α ∈ (0, π).

The first part of Theorem A is a particular case of Theorem B below, which
gives a larger space of deformations parametrized by Dehn-filling coefficients.
A cone manifold structure on |O| with singular set Σ induces a non-complete
metric on O − Σ, whose completion is precisely the cone manifold. This is a
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Regenerating hyperbolic cone structures from Nil 817

particular case of structures on the end of O − Σ called of Dehn type. Those
structures are defined by Thurston in [20] and they are described by a pair
(p, q) ∈ R2 ∪ {∞}.

Theorem B Let O be a Nil 3–orbifold as in Theorem A. There exists a
neighborhood U of (2, 0) in R2 and two C1–functions f : (−ε, ε) → (−∞, 2]
concave and g : (−ε, ε)→ [2,+∞) convex, with f |[0,ε) ≡ g|[0,ε) ≡ 2 and

lim
q→0−

2− f(q)
|q|3/2

= lim
q→0−

g(q) − 2
|q|3/2

> 0,

such that the following hold. Every point in {(p, q) ∈ U | p ≥ f(q)} is the
Dehn-filling coefficient of a geometric structure on O−Σ of the following kind:

- hyperbolic for p > g(q);

- Euclidean for p = g(q), q < 0;

- spherical for p < g(q), q > 0.

In addition, every point in the line p = 2 corresponds to a transversely Rieman-
nian foliation of codimension two (transversely hyperbolic for q > 0, Euclidean
for q = 0 and spherical for q > 0).

Figure 1: The open set of Theorem B

When q = 0, Dehn filling coefficients (p, 0) correspond to cone structures with
cone angle 2π/p. Hence Theorem B implies the existence of hyperbolic cone
manifolds with cone angles in (π − ε, π) of Theorem A.

To prove Theorem B, we construct a deformation space homeomorphic to a
half-disc. However, Dehn filling coefficients do not define a homeomorphism
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818 Joan Porti

between the deformation space and the region of Theorem B, because there is
a Whitney pleat at the point (p, q) = (2, 0) corresponding to the Nil structure
(see Figure 2).

Figure 2: The picture on the right hand side represents a Whitney pleat (a map
conjugate to (x, y) 7→ (x, y3 − xy)). The picture on the left hand side shows the
situation in Theorem B: half of it.

The image of the folding region is precisely the the curve p = f(q), q < 0.
Thus we have the following addendum to Theorem B:

Addendum to Theorem B Local rigidity fails to hold on the curve p = f(q),
q < 0. In addition, every Dehn filling coefficient in

{(p, q) ∈ U | f(q) < p < 2}
corresponds to two different spherical structures, and every Dehn filling coeffi-
cient (2, q) with q < 0 corresponds to a spherical structure and a transversely
spherical foliation.

By considering straight lines with rational slopes that intersect the curve p =
f(q), q < 0 we obtain the following corollary.

Corollary 1.2 Local rigidity fails to hold for some spherical cone manifolds
with singular set a knot and large cone angles.

In 1998 Casson showed that local rigidity fails for some hyperbolic cone man-
ifolds with singular set a graph. Local rigidity for compact hyperbolic cone
manifolds with singular set a link and cone angles ≤ 2π has been proved by
Hodgson and Kerckhoff in [13]. Likely, their methods can be adapted to the
situation in the spherical case, but our corollary shows that an upper bound of
the cone angle is essential in the spherical case.

Geometry & Topology, Volume 6 (2002)



Regenerating hyperbolic cone structures from Nil 819

The proof of Theorems A and B allows to prove the the following metric prop-
erties of the family of collapsing cone manifolds.

Proposition 1.3 Let Cα denote the hyperbolic cone manifolds provided by
Theorem A, with α ∈ (π − ε, π), and let Σα denote its singular set. Then:

lim
α→π−

vol(Cα)
(π − α) length(Σα)

=
3
8

and lim
α→π−

length(Σα)
(π − α)1/3

= l0 > 0.

Proposition 1.4 Let f and g be the functions of Theorem B and let l0 > 0
be as in previous proposition. Then:

lim
q→0−

2− f(q)
|q|3/2

= lim
q→0−

g(q)− 2
|q|3/2

=
4

9 4
√

3π
l
3/2
0 .

In the proof of Theorem B, we first construct spaces of geometric structures
on M parametred by (s, t) ∈ U ⊂ R2 , where U a neighborhood of the origin
(Theorem 3.1). We consider spaces of both, hyperbolic and spherical structures,
and work with unified notation: X3 denotes either H3 or S3 . Those structures
are non degenerate except when s = 0 or t = 0. The degenerated structures
are the following ones: the origin corresponds to the original Nil structure, the
line t = 0 to Euclidean structures, and the line s = 0 to transversely hyperbolic
or spherical foliations. This space of structures U has symmetry: (±s,±t) is
the parameter of the same structure as (s, t) up to changing the orientation or
the spin structure.

Next we construct a deformation space Def, which is a half disc centered at the
origin with parameters (s, τ), with s ≥ 0, and τ = t2 in the hyperbolic case,
τ = −t2 in the spherical case, and τ = 0 in the Euclidean one. In the proof of
Theorem B, we show that the Dehn filling coefficients (p, q) define an analytic
map on (s, τ) that has “half Whitney pleat” at the origin, as illustrated in
Figure 2.

To construct the structures of Theorem 3.1 with parameters (s, t) ∈ U , we need
to construct a family of representations ρ(s,t) of π1M in Isom+(X3), which are
going to be the holonomy representations of the structures. In fact we work in
the universal covering of Isom+(X3), that we denote by G. When X3 = H3

then G = SL2(C), and when X3 = S3 then G = SU(2) × SU(2).

The starting point in the construction of ρ(s,t) is the holonomy representation

hol : π1M → Isom(Nil)

and the exact sequences:

0→ R→ Isom(Nil) π−→ Isom(R2)→ 1,
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0→ R2 → Isom(R2) ROT−→O(2)→ 1.

The first one comes from the Riemannian fibration R → Nil → R2 and the
second one is well known. We consider the representation

φ0 = ROT ◦π ◦ hol : π1M → O(2) ⊂ SO(3)

and we lift it to ρ0 : π1M → SU(2) ∼= S̃O(3). We fix x0 ∈ X3 and we view
SU(2) as the stabilizer of x0 in G. We construct ρ(s,t) as a perturbation of ρ0 .
The infinitesimal properties of this perturbation are related to the holonomy
representation hol and to sections to the above exact sequences, because by
composing hol with those sections we obtain cocycles and cochains.

Organization of the paper We start with a review of Nil geometry and the
holonomy representation in Section 2, pointing out its cohomological aspects
for relating it later to infinitesimal deformations. In Section 3 we construct the
deformation spaces for spherical and hyperbolic structures, assuming the exis-
tence of suitable representations ρ(s,t) . Those representations are constructed in
Section 4, and their infinitesimal properties are studied in Section 5. Section 6
is devoted to Euclidean structures, obtained as degeneration of hyperbolic and
spherical ones. In Section 7 we analyze the Dehn filling parameters, achieving
the proof of Theorem B. The part of Theorem A not contained in Theorem B
is proved in Section 8, together with Propositions 1.3 and 1.4. Section 9 is
devoted to an example, where the limit l0 of Propositions 1.3 and 1.4 is ex-
plicitly computed. Finally Section 10 is devoted to the proof of some technical
computations in cohomology.

2 The holonomy representation

The usual model for Nil is the Heisenberg group of matrices of the form

Nil =


 1 x z

0 1 y
0 0 1

∣∣∣∣∣∣ x, y, z ∈ R


which is canonically identified to R3 by taking coordinates (x, y, z). For our
purposes it will be convenient to work with another model. Following [18], we
consider R3 with the product:

(x1, x2, x3)(y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + x1y2 − x2y1)

This is another model for Nil . The isomorphism between both models is given
by x =

√
2x1 , y =

√
2x2 and z = x3 + x1x2 .

Geometry & Topology, Volume 6 (2002)



Regenerating hyperbolic cone structures from Nil 821

2.1 The isometry group of Nil

We consider a 2–parameter family of left-invariant metrics

ds2 = λ2(dx2
1 + dx2

2) + µ2(dx3 + x2 dx1 − x1 dx2)2

for λ, µ ∈ R − {0}. All these metrics have the same 4–dimensional isometry
group Isom(Nil). This group Isom(Nil) preserves the orientation, it has two
components, and it is a semi-direct product

Isom(Nil) ∼= Nil oO(2).

The group O(2) acts on Nil linearly as the projection of the standard action
of O(2) ⊂ SO(3) on R3 ∼= Nil preserving the plane x3 = 0. To see that
this action is an isometry, it may be useful to write the metric in cylindrical
coordinates x1 = r cos θ and x2 = r sin θ :

ds2 = λ2(dr2 + r2dθ2) + µ2(dx3 − r2dθ)2.

The projection Nil → R2 that maps (x1, x2, x3) ∈ Nil to (x1, x2) ∈ R2 is a
Riemannian fibration with fibre a line R. This fibration is preserved by the
isometry group and induces an exact sequence

0→ R→ Isom(Nil) π−→ Isom(R2)→ 1. (1)

A section
VERTp : Isom(Nil)→ R

may be constructed by fixing a base point p ∈ Nil as follows: for any g ∈
Isom(Nil), VERTp(g) is the third coordinate of g(p)p−1 .

On the other hand, we have the well known split exact sequence

0→ R2 → Isom(R2) ROT−→O(2)→ 1. (2)

A section
TRANSq : Isom(R2)→ R2

may also be constructed fixing a base point q ∈ R2 . For any q ∈ Isom(R2),
TRANSq(g) = g(q)− q ∈ R2 .

2.2 The holonomy representation

Our starting point is the holonomy representation of the orbifold O :

hol : πo1(O)→ Isom(Nil)

and the representation induced on the open manifold M = |O| − Σ.

Geometry & Topology, Volume 6 (2002)
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Definition 2.1 Given the induced representation hol : π1M → Isom(Nil),
p ∈ Nil and q = π(p) ∈ R2 , we define the following maps:

φ0 = ROT ◦π ◦ hol : π1M → O(2) ⊂ SO(3),
zq = TRANSq ◦π ◦ hol : π1M → R2,

cp = VERTp ◦hol : π1M → R.

Those three maps determine uniquely the representation hol. It is clear that
φ0 is also a representation, but zq and cp are not. However they satisfy some
cohomological conditions that we describe next. To do it, we view both R2 =
R2 × 0 and R = 0 × R as subspaces of R3 , therefore they are π1M –modules
via φ0 : π1M → O(2) ⊂ SO(3).

The map zq is a cocycle twisted by φ0 . This is,

zq(g1g2) = zq(g1) + φ0(g1)zq(g2), ∀g1, g2 ∈ π1M (3)

The map cp satisfies the following relation:

cp(g1g2)− cp(g1)− φ0(g1)cp(g2) = zq(g1)× φ0(g1)zq(g2), ∀g1, g2 ∈ π1M,

where × denotes the usual cross product in R3 . In cohomology terms, the
previous inequality is:

δ(cp) = zq ∪ zq,
where δ denotes the cobundary, and ∪, the cup product associated to ×.

The set of all cochains (ie, maps π1M → R2 × 0) is a vector space denoted
by C1(π1M,R2 × 0). The subspace of all cocycles (ie, maps π1M → R2 × 0
satisfying (3)) is denoted by Z1(π1M,R2 × 0). Hence zq ∈ Z1(π1M,R2 × 0).

Let B1(π1M,R2 × 0) denote the subspace of all coboundaries, ie, cocycles br
with the property that there exists r ∈ R2 × 0 with br(g) = r − φ0(g)(r),
∀g ∈ π1M . The cocycle zq 6∈ B1(π1M,R2 × 0) because zq does not have a
global fixed point in R2 × 0. Thus the cohomology class of zq in

H1(π1M,R2 × 0) = Z1(π1M,R2 × 0)/B1(π1M,R2 × 0)

is not zero, and it may be easily checked that it is independent of the choice of
q ∈ R2 × 0.

We will prove at the end of the paper that

H1(π1M,R2 × 0) ∼= R and H1(π1M, 0× R) ∼= 0.

This has two consequences. Firstly zq is unique up to the choice of q and up
to homoteties. Secondly, once zq and p ∈ π−1(q) have been fixed, then cp is
unique.

Geometry & Topology, Volume 6 (2002)
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Different choices of the cohomology class [zp] correspond to the composition of
the holonomy with an automorphism:

Nil → Nil
(x1, x2, x3) 7→ (λx1, λx2, λ

2x3)

for some λ ∈ R− {0}.

2.3 Lifting the holonomy

We recall that M = |O|−Σ and that φ0 = ROT ◦π◦hol : π1O → O(2) ⊂ SO(3).
The representation of π1M in SO(3) induced by φ0 lifts to a representation

to SU(2) ∼= Spin(3) = S̃O(3), because we can view it as the holonomy of a
non-complete structure on M and apply the following result of Culler [9].

Lemma 2.2 [9] A spin structure on M determines a lift of ROT ◦π ◦ hol to
Spin(3) ∼= SU(2). In particular, since dim(M) = 3 there exists a lift.

Remark Two spin structures determine a morphism θ : π1M → Z/2Z. It
follows from the construction of [9], that if ρ1 and ρ2 are the lifts associated to
these structures, then

ρ1(g) = (−1)θ(g)ρ2(g) for every g ∈ π1M.

From now on we fix a spin structure on M , hence we also fix a lift of φ0 =
ROT ◦π ◦ hol:

ρ0 : π1M → SU(2).

2.4 Changing the spin structure

We consider the natural surjection

θ : π1M � Z/2Z

which is the composition of φ0 : π1M → O(2) with the projection O(2) �
π0(O(2)) ∼= Z/2Z.

We consider the change of spin structure associate to θ .

If ρ is the lift of a representations of π1M in Isom+(X3) as in Lemma 2.2, this
change of spin structure corresponds to to replace the lift ρ by (−1)θρ.

Lemma 2.3 The representation (−1)θρ0 is conjugate to ρ0 .

Geometry & Topology, Volume 6 (2002)
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Proof It suffices to check that trace((−1)θρ0(g)) = trace(ρ0(g)), for every
g ∈ π1M , because ρ0 is a representation in SU(2). If g ∈ ker θ , then the
equality of traces holds true because (−1)θ(g)ρ0(g) = ρ0(g). If θ(g) = 1 then
ROT ◦π ◦ hol(g) is a rotation of angle π , as every element in O(2) − SO(2)
viewed in SO(3). Hence trace(ρ0(g)) = 0 and therefore trace((−1)θρ0(g)) =
− trace(ρ0(g)) = 0.

3 Deformation spaces

From now on X3 will denote H3 and S3 . Every statement about X3 will be
understood to be a statement about both, the hyperbolic space and the 3–
sphere. The hyperbolic plane and the 2–sphere will be denoted by X2 .

3.1 Spaces of geometric structures

Theorem 3.1 There exists a space of geometric structures on M = O − Σ
with Dehn filling end parametrized by a neighborhood of the origin U ⊂ R2 .
According to the parameters (s, t) ∈ U , the structure is of the following kind:

(i) the original Nil structure, when (s, t) = 0;

(ii) modeled on X3 , when s t 6= 0;

(iii) a foliation transversely modelled on X2 , when s = 0, t 6= 0; and

(iv) a Euclidean structure, when s 6= 0, t = 0.

In addition, those structures are oriented and equipped with a spin structure,
so that (s,−t) and (s, t) correspond to structures with opposite orientation,
and −(s, t) and (s, t) correspond to the spin structures differing by θ .

A Dehn filling end for the structure on T 2 × (0, 1] means the following. There
is a geodesic γ ⊂ X3 such that the developing map D : T̃ 2 × (0, 1]→ X3 maps
{x}× (0, 1] to a minimizing segment between D(x, 1) and γ , for every x ∈ T̃ 2 .
In addition, the parameter in (0, 1] is proportional to arc-length.

The parameter (s, t) has the following interpretation. We choose l,m ∈ π1M
so that they generate a peripheral group and m is a meridian for Σ. We may
choose l so that φ0(l) is trivial. The rotation angle and the translation length
of the holonomy of l are respectively s and t.

Geometry & Topology, Volume 6 (2002)
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Convention We fix x0 ∈ X3 and we view φ0 as a representation in Isom+(X3)
that fixes x0 , because SO(3) is the stabilizer of a point in Isom+(X3). We also
fix {e1, e2, e3} a positive orthonormal basis for R3 so that 〈e1, e2〉 = R2×0 and
〈e3〉 = 0 × R are the subspaces invariant by O(2). The totally geodesic plane
tangent to R2 × 0 ⊂ Tx0X3 is denoted by X2 = expx0

(R2 × 0).

The following maps from Nil to X3 will be used in the proof of Theorem 3.1.

Definition 3.2 For (s, t) ∈ R2 we define:

∆(s,t) : Nil ∼= R3 → X3

(x1, x2, x3) 7→ expx0
(t(x1e1 + x2e2 + s x3e3))

where expx0
denotes the Riemannian exponential at the point x0 ∈ X3 . Here

we have identified Nil with R3 .

Notice that, when s t 6= 0, ∆(s,t) is a local diffeomorphism, and when s = 0
but t 6= 0, it is a local a submersion of rank 2 onto X2 .

3.2 Deformations of representations

Proposition 3.3 There exists a perturbation ρ(s,t) : π1M → G of ρ0 , with
parameter (s, t) ∈ U ⊂ R2 , such that:

(i) ρ(s,0) stabilizes x0 .

(ii) ρ(0,t) stabilizes X2 = expx0
(R2 × 0)

(iii) For every g ∈ π1M

lim
(s,t)→0
s t6=0

∆−1
(s,t) ◦ ρ(s,t)(g) ◦∆(s,t) = hol(g)

uniformly on compact subsets of Nil for the C1–topology.

(iv) Let ∆t = ∆(0,t)|R2×0 . For every g ∈ π1M

lim
t→0

∆−1
t ◦ ρ(0,t)(g) ◦∆(0,t) = π ◦ hol(g)

uniformly on compact subsets of R2 × 0 for the C1–topology.

(v) The representations ρ(−s,−t) and (−1)θρ(s,t) are conjugate in Ĩsom+(X3).

(vi) ρ(−s,t) and ρ(s,t) are conjugate by an orientation reversing element in

Ĩsom(X3).
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We shall prove Theorem 3.1 assuming this proposition. The perturbation we
will construct satisfy some more properties related to the Euclidean structures,
when t = 0. These properties will be explained later, hence for the moment we
will not prove the part of Theorem 3.1 concerning Euclidean structures.

Properties (iii) and (iv) of the proposition are related to the infinitesimal prop-
erties of ρ(s,t) and to the cocycle zq and the cochain cq .

3.3 Proof of Theorem 3.1

We construct a covering {Ui}i=0,...,n of M such that Ui is 1–connected for i ≥ 1
and U0 is a neighborhood of the end of M .

Since U1 is simply connected, the lift of U1 in the universal covering of M is

Ũ1 =
⋃

g∈π1M

gW1

for some open set W1 ⊂ M̃ that projects homeomorphically to U1 . We define
on W1

D(s,t)|W1 = ∆(s,t) ◦ D0|W1 : W1 → X3

Where D0 : M̃ → Nil is the holonomy for the Nil structure. Next we define
D(s,t) on Ũ1 by taking the equivariant extension. By Proposition 3.3 (iii),

lim
(s,t)→0
s t6=0

∆−1
(s,t) ◦D(s,t)|Ũ1

= D0|Ũ1

for the C1–topology uniformly on compact subsets.

We make the same construction for all sets Ui with i ≥ 2 and for U0 we make
a cylindrical construction taking care of the holonomy at the end. We glue
the final construction by using standard techniques about bump functions and
refinements, as explained in [7] (and also in [17, 11]), so we obtain a family
D(s,t) of maps that are ρ(s,t)–equivariant and such that:

lim
(s,t)→0
s t6=0

∆−1
(s,t)
◦D(s,t) = D0

for the C1–topology uniformly on compact subsets. In particular D(s,t) is a
local diffeo for small values of (s, t) with s t 6= 0.

For the neighborhood U0 we need to be more careful. Let γ = expx0
〈e1〉

be the geodesic preserved by ρ0(m). We will construct ρ(s,t) so that γ is

Geometry & Topology, Volume 6 (2002)



Regenerating hyperbolic cone structures from Nil 827

preserved by ρ(s,t)(m) (and also by ρ(s,t)(l), by commutativity). It will also
follow from the construction that ρ(s,t)(l) is the composition of a translation of
length t with a rotation of angle s around γ . We consider the family of maps
Θ(s,t) : Ũ0 → R3 − 〈e1〉 such that Θ0 is the developing map D0 restricted to
Ũ0 , the distance from Θ(s,t)(x) to 〈e1〉 is independent of (s, t) and Θ is π1U0–
equivariant by the action of ρ(s,t) . Then we define D(s,t)|Ũ0

= ∆(s,t) ◦Θ(s,t) and
we glue it in the same way.

This proves assertion (ii) of Theorem 3.1. The proof of assertion (iii) is quite
similar by using Proposition 3.3. The properties about symmetries are also
clear from Proposition 3.3.

We recall that the part of the theorem concerning Euclidean structures will be
proved later.

4 Construction of the representations

In this section we construct the representations of Proposition 3.3.

4.1 Smoothness of the varieties of characters

We work with the varieties of representations of π1M in SU(2) and SL2(C):

R(M,SU(2)) = Hom(π1M,SU(2)),
R(M,SL2(C)) = Hom(π1M,SL2(C)).

The varieties of characters are defined as:

X(M,SU(2)) = R(M,SU(2))/SU(2),
X(M,SL2(C)) = R(M,SL2(C))//SL2(C).

The symbol // in the definition of X(M,SL2(C)) means the algebraic quotient
(in invariant theory). In particular X(M,SL2(C)) is algebraic affine (also de-
fined over Q). However since SU(2) is compact but not complex, X(M,SU(2))
is just the topological quotient, and it is only real semi-algebraic, contained in
the set of real points of X(M,SL2(C)).

Every point in X(M,SL2(C)) is the character of a representation in SL2(C),
ie, a map

χρ : π1M → C
γ 7→ trace(ρ(γ))

Geometry & Topology, Volume 6 (2002)
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for some ρ ∈ R(M,SL2(C)). Every conjugacy class of representation into
SU(2) is determined by its character, therefore the notation makes sense and
X(M,SU(2)) ⊂ X(M,SL2(C)).

Definition 4.1 For every γ ∈ π1M , Iγ : X(M,SL2(C)) → C denotes the
evaluation map. In other words, it is the map induced by the trace function:

Iγ(χρ) = χρ(γ) = trace(ρ(γ)).

Proposition 4.2 The character χ0 of ρ0 is a smooth one dimensional point
of both X(M,SU(2)) and X(M,SL2(C)).

Proof We first prove the proposition for X(M,SL2(C)). By a Theorem 5.6 of
Thurston’s notes [20], the local dimension of X(M,SL2(C)) at the character of
ρ0 is at least one. It suffices to prove that H1(π1M,sl2(C)) ∼= C, (where π1M
acts on sl2(C) via Adρ0 ) because this cohomology group contains the Zariski
tangent space of X(M,SL2(C)) at χ0 . We have said before that H1(π1M,R2×
0) ∼= R and H1(π1M, 0× R) ∼= 0. Therefore

H1(π1M,su(2)) ∼= H1(π1M,R3) ∼= R,

because su(2) and R3 are isomorphic as π1M –modules. In particular

H1(π1M,sl2(C)) ∼= H1(π1M,su(2)) ⊗R C ∼= C.

The proposition for X(M,SU(2)) follows easily, using the fact that the variety
X(M,SL2(C)) is defined over R and a neighborhood of χ0 in X(M,SL2(C))∩
RN coincides with X(M,SU(2)).

4.2 Local parametrization

We construct a local parameter of a neighborhood of χ0 in X(M,SL2(C)).
We choose l,m ∈ π1M so that they generate a peripheral subgroup π1T

2 . We
assume that m is a meridian of Σ. We also assume that θ(l) = 0, by replacing
l by l m if necessary.

Remark We have that ρ0(l) = ±Id, because l and m commute, and l ∈ ker θ
but θ(m) = 1 (ie, φ0(l) ∈ SO(2) but φ0(m) ∈ O(2)− SO(2) ).

The idea is to choose w = αl the angle rotation of ρ(l) as a local parameter of
X(M,SU(2)) (so that its extension to X(M,SL2(C)) corresponds to ±2i times
the logarithm of an eigenvalue). The sign of this angle is determined by the
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sense of rotation around the invariant geodesic, which corresponds to a choice
of the spin structure and determines the choice of the lift ρ0 . We would like to
define w as 2 arccos(Il/2), but arccos is not well defined in a neighborhood of
±1. Formally, we can define it as follows.

Definition 4.3 In a neighborhood of χ0 we define w as

w = 2 arccos(Ilm/2)− 2 arccos(Im/2).

so that Il = ±2 cos w2 .

Lemma 4.4 The function w defines a local parametrization of both varieties
of characters X(M,SU(2)) and X(M,SL2(C)).

Proof It follows from the proof of Proposition 4.2 that H1(π1M,su(2)) is
isomorphic to the tangent space Tχ0X(M,SU(2)). Thus we view H1(π1M,
su(2)) as the cotangent space T 1

χ0
X(M,SU(2)) ∼= R, and it is sufficient to check

that the differential form dw 6= 0. In particular, we just need to prove that the
Kronecker pairing 〈dw, zq〉 does not vanish, where zq is the cocycle defined in
Subsection 2.2. Since, for a representation ρ, w(χρ) is precisely the angle of
ρ(l), Proposition 9.6 in [16] implies that 〈dw, zq〉 is precisely the translation
length of π ◦ hol(l). This length is non-zero because Σ is horizontal.

We recall that θ : π1M � Z/2Z is the composition of φ0 : π1M → O(2) with
the projection O(2) � π0(O(2)) ∼= Z/2Z. We consider the change of spin
structure associate to θ . For a representation ρ ∈ R(M,SL2(C)), to change
the spin structure corresponds to replace ρ by (−1)θρ.

Lemma 4.5 w(χ(−1)θρ) = −w(χρ).

Proof Since χ0 is invariant by θ (Lemma 2.3), the neighborhood of χ0 may be
chosen invariant by the change of the spin structure. Since θ(m) = θ(lm) = 1,
we have that Im(χ(−1)θρ) = −Im(χρ) and Ilm(χ(−1)θρ) = −Ilm(χρ). Therefore,
for the branch of arccos with arccos(0) = π/2, we have:

2 arccos(−Im(χ)/2) = π − 2 arccos(Im(χ)/2)
2 arccos(−Ilm(χ)/2) = π − 2 arccos(Ilm(χ)/2)

and the lemma follows.
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4.3 Deformations of characters

We choose different varieties of characters for the hyperbolic and the spherical
case, but we will unify the notation for the neighborhood U .

In the hyperbolic case, since Isom+(H3) ∼= PSL2(C) we work in X(M,SL2(C))
(we recall that we have fixed a spin structure, hence all holonomy representa-
tions have a natural lift). We fix U ⊂ R2 a neighborhood of the origin, with
coordinates (s, t) ∈ U and set

w = s− t i,
so that, for any representation %w with character w , the complex length of
%w(l) is i w = t+ s i (ie, a translation of length t plus a rotation of angle s).

In the spherical case, since Spin(4) ∼= SU(2)×SU(2) we work in X(M,SU(2))×
X(M,SU(2)). We denote by w1 and w2 the ordered (real) parameteters of each
factor X(M,SU(2)) given by Definition 4.3. We fix U ⊂ R2 a neighborhood
of the origin, with coordinates (s, t) ∈ U and we set

(w1, w2) = (s + t, s − t)
Again, any representation with character (w1, w2) evaluated at l is a translation
of length t composed with a rotation of angle s around the same edge.

In both cases, χ0 the character of ρ0 has coordinates (s, t) = (0, 0). To con-
struct the representations ρ(s,t) we need a section to the projection

R(M,SL2(C))→ X(M,SL2(C)).

This will be done after the description of ρ0 .

4.4 Description of ρ0

We recall that we have fixed {e1, e2, e3} an orthonormal basis for R3 , so that
〈e1, e2〉 = R2 × 0 and 〈e3〉 = 0× R are the subspaces invariant by ρ0 .

By using the natural identification su(2) ∼= R3 as SU(2)–modules, we view
e1, e2, e3 as three matrices of su(2) such that the following formula and its
cyclic permutations hold:

[e1, e2] = e3,

because the Lie bracket in su(2) corresponds to the cross product in R3 .

Remark Let v ∈ su(2) ∼= R3 be a unitary vector and α ∈ R. Then exp(αv) ∈
SU(2) projects in SO(3) to a rotation of angle α around 〈v〉.
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Thus, if θ(g) = 0 then ρ0(g) = exp(αge3), for some αg ∈ R. Notice that

exp((αg + 2π)e3) = − exp(αge3).

We may also assume that e1 is the vector invariant for the meridian m and that
the spin structure has been chosen so that ρ0(m) = exp(πe1). The elements
which are not in the kernel of θ are of the form gm for some g ∈ ker(θ), and
we have ρ0(gm) = exp(π(cos(αg/2)e1 + sin(αg/2)e2)).

Remark The conjugation matrix between ρ0 and (−1)θρ0 is ± exp(πe3).

This remark follows from the description of ρ0 and the fact the adjoint action
(equivalent to the orthogonal action on R3) of exp(πe3) changes the sign of e1

and e2 and preserves e3 .

4.5 The section for R(M,SL2(C))

Lemma 4.6 There exists a neigborhood V ⊂ X(M,SL2(C)) and a section
σ : V → R(M,SL2(C)) such that, if %w = σ(w), then ∀g ∈ π1M ,

%w(g) = exp(fg(w) + hg(w))ρ0(g)

where fg and hg are analytic maps with real coefficients valued on the Lie
algebra sl2(C), such that fg(w) ∈ 〈e1, e2〉C , hg(w) ∈ 〈e3〉C , fg is odd and hg
is even.

When we say that the coefficients of fg and hg are real, we mean that for
w ∈ R, fg(w), hg(w) ∈ su(2).

Proof The proof is based in a construction analogue to Luna’s slice theorem.
We consider the involution ν on R(M,SL2(C)) and R(M,SU(2)) defined as
follows:

ν(ρ) = (−1)θAdexp(πe3) ◦ ρ

where θ : π1M � Z/2Z is described above.

By the remark in Subsection 4.4, ν(ρ0) = ρ0 . In addition, by Lemma 4.5, if
t : R(M,SL2(C))→ X(M,SL2(C)) denotes the projection, then

w ◦ t ◦ ν = −w ◦ t.

Lemma 4.7 There exists an algebraic complex curve S ⊂ R(M,SL2(C)) with
the following properties:
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(i) ρ0 is a smooth point of S .

(ii) The projection t : R(M,SL2(C)) → X(M,SL2(C)) restricts to a map
t|S : S → X(M,SL2(C)) locally bianalytic at ρ0 .

(iii) S ′ = S ∩ R(M,SU(2)) is a real curve smooth at ρ0 and the restriction
t|S′ : S ′ → X(M,SU(2)) is also locally bianalytic at ρ0 .

(iv) S is invariant by the involution ν .

(v) For every ρ ∈ S , ρ(m) = exp(αρ e1), for some αρ ∈ R.

We postpone its proof. Assuming it holds, we conclude the proof of Lemma 4.6.
It suffices to take σ = t|−1

S . We write %w = σ(w) and %w(g) = exp(fg(w) +
hg(w))ρ0(g) for some analytic maps such that the image of fg is contained in
〈e1, e2〉C and the image of hg is contained in 〈e3〉C . These maps have real
coefficients by assertion (iii) of Lemma 4.7. We use the involution to prove that
fg is odd and hg is even. The representations %−w and ν(%w) have the same
character. By the properties of S , it follows that %−w = ν(%w). In addition

ν(%w)(g) = (−1)θ(g)Adexp(πe3)(%w(g))

= (−1)θ(g)Adexp(πe3)(exp(fg(w) + hg(w))) Adexp(πe3)(ρ0(g))
= exp(−fg(w) + hg(w))ρ0(g) (4)

because (−1)θ(g)Adexp(πe3)(ρ0(g)) = ρ0(g) and Adexp(πe3) changes the sign of
e1 and e2 but preserves e3 . Comparing equality (4) with

ν(%w)(g) = %−w(g) = exp(fg(−w) + hg(−w))ρ0(g)

it follows that fg is odd and hg even, as claimed.

Proof of Lemma 4.7 We choose an element g0 ∈ ker(θ) such that ρ0(g0) =
exp(α0e3), for some α0 ∈ R− 2πZ. We define:

S =
{
ρ ∈ R(M,SL2(C))

∣∣∣∣ ρ(m) = exp(αe1), ρ(g0) = exp(β1e1 + β3e3),
with α, β1, β3 ∈ C

}
The projection t : R(M,SL2(C))→ X(M,SL2(C)) restricts to a map t|S : S →
X(M,SL2(C)).

Let e0 denote the identity matrix of size 2× 2, so that {e0, e1, e2, e3} is a basis
for M2(C) as C–vector space. For every ρ ∈ R(M,SL2(C)) and every g ∈ π1M
we write:

ρ(g) =
3∑
i=0

πi,g(ρ)ei.
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If we define F : R(M,SL2(C)) → C3 as F = (π2,m, π3,m, π2,g0), then S =
F−1(0). An easy computation shows that the differential of F at ρ0 maps
B1(M,sl2(C)) isomorphically onto C3 . It follows that ρ0 is a smooth point of
S and that t|S is locally bianalytic. This proves assertions (i) and (ii) of the
proposition.

If in the construction of S we replace SL2(C) by SU(2), then we obtain S ′ and
the same construction as above applies to prove assertion (iii) of the proposition.
Finally assertions (iv) and (v) follow from construction.

4.6 Sections for the deformation spaces

Definition 4.8 For (s, t) ∈ U , we define ρ(s,t) ∈ R(M,G)) as follows:

ρ(s,t) =
{

σ(s− t i) ∈ R(M,SL2(C)) when X3 = H3

(σ(s+ t), σ(s − t)) ∈ R(M,SU(2) × SU(2)) when X3 = S3

Proposition 4.9 For every (s, 0) ∈ U , ρ(s,0) stabilizes x0 ∈ X3 , the point
stabilized by ρ0 .

Proof Let fg and hg be the functions of Lemma 4.6. In the hyperbolic case,
the proposition follows from the fact that the functions fg and hg have real
coefficients: when t = 0, fg(s), hg(s) ∈ su(2), hence ρ(s,0) ∈ R(M,SU(2)), and
SU(2) is precisely the stabilizer of x0 . In the spherical case, ρ(s,0) is diagonal
by construction, and the diagonal is precisely the stabilizer of x0 .

5 Infinitesimal deformations

5.1 Infinitesimal isometries

Recall that in the convention after Theorem 3.1, we have fixed a point x0 so
that φ0 = ROT ◦π ◦ hol is a representation into

SO(3) ∼= Isom+(X3)x0 ↪→ Isom+(X3).

Its lift to SU(2) ∼= Gx0 is ρ0 . Let g denote the lie algebra of Isom+(X3) and
gx0 the Lie subalgebra corresponding to Isom+(X3)x0 . We have a natural exact
sequence

0→ gx0 → g→ Tx0X3 → 0
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The Killing form on g is non-degenerate, and Tx0X3 is naturally identified to
the orthogonal space to gx0 . We have an orthogonal sum:

g = gx0⊥Tx0X
3 (5)

Definition 5.1 Elements of g are called infinitesimal isometries; elements
of gx0 , infinitesimal rotations (with respect to x0 ); and elements of Tx0X3 ,
infinitesimal translations (with respect to x0 ).

Lemma 5.2 There is a natural identification of SO(3)–modules:

Tx0X3 ∼= R3 ∼= gx0 ,

where the action of SO(3) on gx0 and Tx0X3 is the adjoint action and the
action on R3 is standard. In addition, it preserves the products (cross product
on R3 ∼= Tx0X3 and Lie bracket on gx0 ) and the natural bilinear forms (Killing
form on gx0 and the metric on R3 ∼= Tx0X3) up to a constant.

The isomorphism from Tx0X3 to gx0 maps the infinitesimal translation of tan-
gent vector v ∈ Tx0X3 to the infinitesimal rotation around the line Rv of
infinitesimal angle |v|.

It is convenient to specify Lemma 5.2 and isomorphism (5) in the hyperbolic
and the spherical case:

(a) In the hyperbolic case g ∼= sl2(C) and gx0 is a subalgebra conjugate to
su(2). In this case, isomorphism (5) is written as:

sl2(C) = gx0⊥igx0 .

In addition the isomorphism of Lemma 5.2 maps v ∈ gx0 to −iv ∈ Tx0X3 .

(b) In the spherical case g ∼= su(2) × su(2). Up to conjugation, gx0
∼=

su(2) is the subalgebra of diagonal matrices and Tx0X3 is the set of anti-
diagonal elements (ie, matrices of the form (a,−a) with a ∈ su(2)).
Hence isomorphism (5) is the decomposition of matrices of su(2)× su(2)
as the sum of diagonal plus anti-diagonal elements. The isomorphism of
Lemma 5.2 maps (a, a) ∈ gx0 to (a,−a) ∈ Tx0X3 .

As an application we obtain:

Proposition 5.3 Let X2 ⊂ X3 denote the geodesic hyperplane preserved by
ρ0 (tangent to R2 × 0). Then for every (0, t) ∈ U , ρ(0,t) preserves X2 .
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Proof In the hyperbolic case we use the fact that fg is odd and hg is even.
Hence fg(i t) is purely imaginary and hg(i t) is real. Thus fg(i t) is an in-
finitesimal translation tangent to X2 and hg(i t) is an infinitesimal rotation
around a geodesic perpendicular to X2 . This means that fg(i t) + hg(i t) be-
longs to the Lie algebra of the isometry group of X2 . In the spherical case,
(fg(s), fg(−s)) = (fg(s),−fg(s)) and (hg(s), hg(−s)) = (hg(s), hg(s)), which
also means that these elements belong to the Lie algebra tangent to the isom-
etry group of X2 .

5.2 Infinitesimal properties of the section

Let ∂sρ : π1M → g denote the cocycle defined by

g 7→ ∂s(ρ(s,t)(g)ρ0(g−1))
∣∣
(s,t)=0

for every g ∈ π1M.

We use the equivalent notation for ∂t .

Lemma 5.4 (i) The cocycle ∂sρ is valued on infinitesimal rotations.

(ii) The cocycle ∂tρ is valued on infinitesimal translations.

(iii) Under the identification of Lemma 5.2, ∂sρ = ∂tρ. In addition, they are
valued on the invariant plane R2 × {0}.

Proof Assertion (i) follows from Proposition 4.9. The remaining assertions
follow easily from construction. For instance, in the hyperbolic case, ∂sρ =
f ′g(0) and ∂tρ = −i f ′g(0), because h′g(0) = 0 (hg is even). In the spherical
case, ∂sρ = (f ′g(0), f ′g(0)) and ∂tρ = (f ′g(0),−f ′g(0)). (See the explanation after
Lemma 5.2).

Definition 5.5 We define ∂s∂s log ρ to be the chain in C1(M,g) such that
∀g ∈ π1M ,

(∂s∂s log ρ)(g) =
∂2

∂s2
log(ρ(s,t)(g)ρ0(g−1))|(s,t)=0.

We use the same definition for all other partial derivatives.

Proposition 5.6 There exists a choice of p ∈ Nil and of the holonomy rep-
resentation hol : π1O → Nil such that, if q = π(p), then:

(i) ∂sρ = zq ,

(ii) The cochain ∂s∂t log ρ is valued on infinitesimal translations along the
invariant line 0× R and equals to cp .

Geometry & Topology, Volume 6 (2002)



836 Joan Porti

(iii) The translational part of ∂s∂s log ρ and of ∂t∂t log ρ vanish.

Proof The cocycle zq ∈ Z1(M,R2× 0) represents a non-zero element in coho-
mology. In addition, ∂sρ is also non-zero in cohomology, because w is locally
a parametrization. Since H1(M,R2 × 0) ∼= R, by composing the holonomy hol
with an automorphism of Nil of the form

(x1, x2, x3) 7→ (λx1, λx2, λ
2x3), for all (x1, x2, x3) ∈ Nil,

we have equality (i) up to coboundary. The choice of q eliminates the indeter-
minacy of the coboundary.

To prove (ii), since f ′′g (0) = 0, in the hyperbolic case we have (∂s∂t log ρ)(g) =
−ih′′g(0) and in the spherical case (∂s∂t log ρ)(g) = (h′′g(0),−h′′g(0)). In both
cases (∂s∂t log ρ)(g) is an infinitesimal translation with value h′′g(0) ∈ 0× R.

From the second order terms in the expression %w(g1g2) = %w(g1)%w(g2) we
obtain:

h′′g1
(0) +Adρ0(g1)(h

′′
g2

(0)) + [f ′g1
(0), Adρ0(g1)(f

′
g2

(0))] = h′′g1g2
(0)

(use for instance the Campbell-Hausdorff formula). Hence

∂sρ ∪ ∂sρ = δ(∂s∂t log ρ).

Since H1(M, 0×R) = 0, we have that cp equals ∂s∂t log ρ up to a coboundary.
Again the indeterminacy of the coboundary is eliminated by choosing conve-
niently p ∈ π−1(q).

Finally to prove (iii), in the hyperbolic case (∂2
s log ρ)(g) = −(∂2

t log ρ)(g) =
h′′g(0) and in the spherical case (∂2

s log ρ)(g) = (∂2
t log ρ0)(g) = (h′′g(0), h′′g(0)).

In both cases, these are infinitesimal rotations.

5.3 Compatibility with the holonomy

In this subsection we prove property (iii) of Proposition 3.3; property (iv) being
similar is not proved. We want to prove that for every g ∈ π1M :

lim
(s,t)→0
s t6=0

∆−1
(s,t) ◦ ρ(s,t)(g) ◦∆(s,t) = hol(g)

uniformly on compact subsets of Nil for the C1 –topology.

Proof We fix g ∈ π1M . We know that

exp−1
x0

(ρ(s,t)(g)(∆(s,t)(x1, x2, x3))) (6)

is analytic on (s, t) and on (x1, x2, x3). In addition:
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– the expression (6) is a multiple of t, because when t = 0, ρ(s,0)(g) fixes
x0 (Proposition 4.9), and

– the coefficient in e3 of (6) is a multiple of s t, because when s = 0,
ρ(0,t)(g) preserves X2 = expx0

(R2 × 0) = expx0
〈e1, e2〉 (Proposition 5.3).

Thus it suffices to compute the first order terms of (6). More precisely, we write
the expression (6) as follows:

f1(x, (s, t))e1 + f2(x, (s, t))e2 + f3(x, (s, t))e3

for some analytic functions fi such that f1 and f2 are multiples of t and f3 is
a multiple of s t. We want to prove that

(∂tf1(x, 0), ∂tf2(x, 0), ∂t∂sf3(x, 0)) = hol(g)(x).

We notice that analyticity implies that the convergence is uniform on compact
subsets for the C1–topology.

Corresponding to the basis {e1, e2, e3} for the sub-algebra su(2) = gx (ie,
infinitesimal rotations), there is a basis for the space of infinitesimal translations
{w1, w2, w3} via the isomorphism of Proposition 5.6. We have the following
relations up to cyclic permutation of coefficients:

[e1, e2] = e3, [w1, w2] = ke3, [e1, w2] = w3, [e1, w1] = 0,

where k = ±1 is the curvature of X3 . In addition we have

∆(s,t)(x1, x2, x3) = exp(tx1w1 + tx2w2 + stx3w3)(x0).

If hol(g) is the multiplication by (a1, a2, a3) ∈ Nil composed with ρ0(γ), then
by Proposition 5.6

ρs,t(g) = exp(a1(se1 + tw1) + a2(se2 + tw2) + a3stw3 +A)ρ0(g)

where A are higher order terms (of order two multiplying e1, e2, e3, w1, w2 and
of order three multiplying w3 ).

Since ρ0(g)(∆(s,t)(x)) = ∆(s,t)(ρ0(g)(x)), we may assume that ρ0(g) is trivial.
We use the following notation

R = s a1e1 + s a2e2

T = t(a1w1 + a2w2 + s a3w3)
X = t(x1w1 + x2w2 + s x3w3)

so that ρ(s,t)(g) = exp(R + T + A) (we are assuming that ρ0(g) = Id) and
∆(s,t)(x1, x2, x3) = exp(X)(x0). Hence:

ρ(s,t)(g)(∆(s,t)(x1, x2, x3)) = exp(R + T +A) exp(X)(x0).
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By the Campbell-Hausdorff formula:

exp(R+ T +A) exp(X) = exp(R+ T +X +
1
2

[R + T,X] +A)

= exp(T +X +
1
2

[R+ T,X]− 1
2

[T +X,R] +A) exp(R)

= exp(T +X + [R,X] +A) exp(R),

where A is as above, because [T,X] is an infinitesimal rotation of order two
and [R,T ] is a translation but of order three. Since exp(R)(x0) = x0 , it follows
that

ρ(s,t)(g)(∆(s,t)(x1, x2, x3)) = exp(T +X + [R,X] +A)(x0).

In addition [R,X] = (a1x2 − a2x1)s tw3 +O(s2t), and property (iii) of Propo-
sition 3.3 follows.

6 Euclidean structures

In this section we prove the part of Theorem 3.1 concerning Euclidean struc-
tures. We use the semi-direct product structure of the isometry group and its
universal covering:

Isom+(R3) ∼= R3 o SO(3), Ĩsom+(R3) ∼= R3 o SU(2).

Definition 6.1 For s in a neighborhood of the origin, we define the represen-
tation ρ′s : π1M → R3 o SU(2) as:

ρ′s =
(
∂tρ(s,0), ρ(s,0)

)
Notice that ρ′s is a representation because ∂tρ(s,0) is a cocycle twisted by ρ(s,0) .
In particular ROT ◦ρ′s = ρ(s,0) . The action of ρ′s(g) on R3 is the following:

v 7→ ρ(s,0)(g)(v) + ∂tρ(s,0)(g) ∀v ∈ R3 ∼= Tx0X3.

Definition 6.2 We define the map D′s : M̃ → Tx0X3 ∼= R3 as

D′s(x) = ∂tD(s,t)(x)|t=0

Since D(s,0) is the constant map x0 , the image of D′s is contained in Tx0X3 .

The following proposition shows that D′s is a developing map

Proposition 6.3 The map D′s is ρ′s–equivariant and it is a local diffeomor-
phism for s 6= 0.
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The proof requires the following lemma.

Lemma 6.4 Let γ : (−ε, ε)→ X3 be a path such that γ(0) = x0 and γ′(0) =
v ∈ Tx0X3 . Then

ρ′s(g)(v) = ∂t(ρ(s,t)(g)(γ(t)))|t=0 .

Proof By the chain rule:

∂tρ(s,t)(g)(γ(t))|t=0 = ∂tρ(s,t)(g)(x0)|t=0 + ρ0(g)(γ′(0)) =

∂tρ(s,0)(g) + ρ0(g)(v) = ρ′s(g)(v).

Proof of Proposition 6.3 Equivariance of D′s follows from deriving the fol-
lowing equality

ρ(s,t)(g)(D(s,t)(x)) = D(s,t)(g · x)

and applying Lemma 6.4.

Next we write ∆′s(x) = ∂t∆(s,t)(x)|t=0 . We have

∆′s(x1, x2, x3) = x1e1 + x2e2 + s x3e3

Hence ∆′s is a diffeomorphsim for s 6= 0. We claim that

lim
s→0

(∆′s)
−1 ◦ ρ′s(g) ◦∆′s = hol(g).

The proof of this claim follows a scheme similar to the proof of Proposition 3.3
(iii) and deriving with respect to t some of its equalities.

The construction of D(s,t) implies that D′s can also be constructed by using
bump functions. Hence (∆′s)−1 ◦ D′s converges to D0 uniformly on compact
subsets, and the proposition follows.

7 Deformation space and Dehn filling coefficients

In this section we construct the deformation space Def, we define the Dehn
filling coefficients and we study its behaviour. At the end of the section we
prove Theorem B.

Definition 7.1 We define the deformation space Def as the open set

Def = {(s, τ) ∈ R2 | s ≥ 0, (s, τ) in a neighborhood of 0}
such that (s, τ) corresponds to the structure with parameters (s, t) as follows:

– when τ > 0, it corresponds to the hyperbolic structure with τ = t2 ,
– when τ < 0, to the spherical structure with τ = −t2 ,
– when τ = 0, to the Euclidean structure with t = 0.
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7.1 Dehn filling coefficients

We shall define the Dehn filling coefficients and prove that they induce an
analytic map on (s, τ) ∈ Def :

(p, q) : Def → R2.

We recall that in Subsection 4.2 we have chosen l,m ∈ π1M that generate a
peripheral subgroup π1T

2 , so that m is a meridian of Σ. We notice that since
l and m commute, their holonomies have a common invariant geodesic.

Definition 7.2 For a geometric structure with holonomy ρ(s,t) , we define u ∈
C to be the complex length of ρ(s,t)(m) (ie, ρ(s,t)(m) is translation of length
Re(u) composed with a rotation of angle Im(u) along the invariant geodesic).
We also define v ∈ C as the complex length of ρ(s,t)(l).

The parameters (u, v) are not uniquely defined. Besides (u, v) we could choose
any pair in the following set:

±(u+ 2πiZ, v + 2πiZ).

The choice of the sign depends on the orientation of the geodesic invariant by
ρ(s,t)(l) and ρ(s,t)(m). We view u(s, t) and v(s, t) as analytic functions on (s, t),
hence they are unique if we fix the branch with u(0, 0) = πi and v(0, 0) = 0.

Definition 7.3 Given (s, t) ∈ U , (p, q) ∈ R2 are defined by the rule

pu+ qv = 2πi.

This definition is equivalent to:

pReu+ qRe v = 0
p Imu+ q Im v = 2π

}
(7)

Proposition 7.4 If we fix the branch p(0, 0) = 2 and q(0, 0) = 0, then (p, q)
is an analytic map on (s, τ) ∈ Def .

Proof We start by describing (u, v) as analytic maps on (s, t) in the hyper-
bolic, spherical and Euclidean cases.

Let w be the local parameter of Definition 4.3, and let %w = σ(w), where σ
is the section in Lemma 4.6. By Lemmas 4.6 and 4.7 (v), there exists an odd
analytic function F with real coefficients such that

%w(m) = ± exp((π + F (w))e1) = ± exp(F (w)e1) exp(πe1).
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Since m and l commute, by definition of w we have:

%w(l) = ± exp(w e1).

In the hyperbolic case, w = s− i t (see Subsection 4.3), hence:{
uH = i(π + F (s− i t)) = Im(F (s + i t)) + i (π + Re(F (s + i t)))
vH = i(s − i t) = t+ i s

In the spherical case, we work in X(M,SU(2)) × X(M,SU(2)) and we take
(w1, w2) = (s+ t, s− t) (see also Subsection 4.3). Hence:{

uS = (F (s + t)− F (s− t))/2 + i (π + (F (s+ t) + F (s− t))/2)
vS = t+ i s

In the Euclidean case the translational part is obtained by deriving with respect
to t when t = 0 (see Section 6). Thus:{

uE = F ′(s) + i (π + F (s))
vE = 1 + i s

Before showing that (p, q) are well defined, we must notice that Re(uH) and
Re(uS) are both multiples of t = Re(vH) = Re(vS). Hence we redefine:

ũH = Im(F (s+ i t))/t + i (π + Re(F (s + i t)))
ṽH = 1 + i s
ũS = (F (s+ t)− F (s− t))/(2t) + i (π + (F (s + t) + F (s− t))/2)
ṽS = 1 + i s.

We keep ũE = uE and ṽE = vE . The system of equations (7) becomes

pRe ũ+ qRe ṽ = 0
p Im ũ+ q Im ṽ = 2π

}
(8)

Since Re ṽ = 1, Im ũ = π + O(s, t), Re ũ = O(s, t) and Im ṽ = s, it is clear
from this system of equations that (p, q) is a well-defined analytic map on (s, t)
in every case (hyperbolic, Euclidean and spherical).

To show that (p, q) is an analytic map on (s, τ) ∈ Def , we must check the
following properties:

(i) ũH(s, t) = ũS(s, i t).

(ii) ũH(s, 0) = ũS(s, 0) = ũE(s)

(iii) ũH(s, t) and ũS(s, t) are even on t.

These properties are obvious from construction.
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7.2 The power expansion of (p, q)

In this section we compute the power expansion of (p, q). First we need the
following proposition.

Proposition 7.5 F (w) = a3w
3 +O(w5), with a3 > 0.

Lemma 7.6 F ′(0) = 0.

Proof Using the notation of Lemma 4.4, αm = π+F (w). In the same lemma
it is proved that dαm = 0, thus F ′(0) = 0.

Proof of Proposition 7.5 We know that F is an odd function with F ′(0) =
0. In the proof we use Theorem 3.1: there is a neigbhorhood U ⊂ R2 of the
origin such that for every (s, t) ∈ U with s t 6= 0, ρ(s,t) is the holonomy of a
hyperbolic structure on M with end of Dehn filling type. The structure at the
end is described by u and v .

We first show that F is not constant by contradiction. If F is constant, then
F ≡ 0 because F is odd, and u ≡ πi. This implies that all the structures
on U induce hyperbolic cone structures with cone angle π . This is impossible,
because it implies that O is hyperbolic.

Let 2n + 1 ≥ 3 be the order of the first derivative such that F (2n+1)(0) 6= 0.
We claim that 2n + 1 = 3. Identifying C ∼= R2 via w = s − t i, the map F |U
is a branched covering of the open set F (U) ⊂ C. It is branched at the origin
with branching order 2n + 1. We look at the inverse image of the real line
(F |U )−1(R). It consists of 2n + 1 curves passing through the origin. One of
them is real, hence it corresponds to t = 0 in U . The other 2n curves, are
contained in {(s, t) ∈ U | s t 6= 0}, hence they give geometric structures, except
for the origin. Since the image of these curves is real, they correspond to cone
structures.

The intersection of these 2n curves with {(s, t) ∈ U | s t 6= 0} has 4n com-
ponents, (each curve is divided into two when we remove the origin). Thus
there are n curves on the quadrant {(s, t) ∈ U | s > 0, t > 0}. If n ≥ 2, then
there would be at least two curves in the same quadrant. These two curves
correspond to two families of structures with the same orientation and spin
structure. In addition, when we parameter the curves from the origin, one of
them has decreasing cone angle αm = π+F (w), but the other one has increas-
ing cone angle. This is not possible, because Schläfli’s formula implies that the
cone angles must decrease. Hence n = 1 and 2n+ 1 = 3.
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Finally, the argument above gives a3 > 0, because the branch of the first
quadrant corresponds to decreasing volume.

We will determine the power expansion of (p, q) by analyzing its behavior on
the curves s = 0, τ = −s2 and τ = 0.

Lemma 7.7 The Dehn filling coefficients (p, q) induce a bijection between the
segments s = 0 and p = 2;

Proof Since F is odd, F (i t) has zero real part. Hence, when s = 0, ũH(0, t) =
F (i t)/(i t) + i π and ṽH(0, t) = 1. Therefore in the hyperbolic case

p = 2, q = −2F (i t)/(i t) = 2a3t
2 +O(t4) = 2a3τ +O(τ2). (9)

In addition, ũS(0, t) = F (t)/t+ iπ and ṽS(0, t) = 1. Thus in the spherical case

p = 2, q = −2F (t)/t = −2a3t
2 +O(t4) = 2a3τ +O(τ2),

which is the same as equation (9) but for τ < 0.

Lemma 7.8 The Dehn filling coefficients (p, q) induce a bijection between the
curve τ = −s2 and the segment p = 2, q ≤ 0.

Proof Since the equation τ = −s2 is equivalent to t = s in the spherical case,
we have ũS(s, s) = F (2s)/(2s) + i(π + F (2s)/2) and vS(s, s) = 1 + i s. This
gives the curve:

p = 2, q = −F (2s)/s = −8a3s
2 +O(s4) = 8a3τ +O(τ2) (10)

Hence the lemma is clear.

Remark The structures of Lemma 7.7 are transversely riemannian foliations.
The structures of Lemma 7.8 are spherical and they are equipped with an iso-
metric foliation of codimension 2 (in particular it is also transversely spherical).
This comes from the fact that the equation s = t implies that the parameter in
Subsection 4.3 is (w1, w2) = (2s, 0). Hence the image of the holonomy repre-
sentation is contained in SU(2)×Õ(2), where Õ(2) is the lift of O(2) < SO(3).
Hence it is compatible with the isometric action of {1}×S1 < SU(2)×SU(2).

Lemma 7.9 The Dehn filling coefficients map the half line τ = 0 bijectively
to a half curve with power expansion:{

p = 2 + 4a3
π s

3 +O(s5)
q = −6a3s

2 +O(s4)
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Proof When τ = 0, uE = F ′(s) + i(π + F (s)) and vE = 1 + i s. Hence

p = 2π/(π + F (s)− s F ′(s)) and q = −pF ′(s).
Since F (s) = a3s

3 +O(s5), the lemma is straightforward.

Definition 7.10 We define g : (−ε, ε) → R to be a real function such that,
for q ≥ 0, g(q) = 2, and for q ≤ 0, p = g(q) is the half curve of Lemma 7.9.

Corollary 7.11 We have the following power expansion:{
p = 2 + s(s2 + τ)(4a3

π +O(s, τ))
q = 2a3(τ − 3s2) +O(τs2) +O(τ2) +O(s3)

Proof By Lemmas 7.7 and 7.8, p−2 is a multiple of s(τ +s2). The coefficient
4a3
π comes from Lemma 7.9. The power expansion of q is straightforward from

equation (9) and Lemma 7.9. We notice that q has no coefficient in τs, by
equation (10).

7.3 The Whitney pleat

In the next proposition we view (p, q) as a function on (s, τ) defined not only
on Def but in a neighborhood of the origin in R2 .

Proposition 7.12 The map (p(s, τ), q(s, τ)) has a Whitney pleat at the origin,
with folding curve τ = −9s2 +O(s3).

Proof Using the power expansion of Corollary 7.11, the Jacobian is:

J(s, τ) =
∣∣∣∣ ps pτ
qs qτ

∣∣∣∣ =
8a2

3

π
(9s2 + τ) +O(τs2) +O(τ2) +O(s3)

Hence J = 0 is a curve with power expansion τ = −9s2 + O(s3). To show
that there is a Whitney pleat with folding curve J = 0, we compute the power
expansion of q restricted to this curve:

φ(s) = q(s,−9s2 +O(s3)) = −24a3s
2 +O(s3).

Since φ′′(0) = −48a3 6= 0, the proposition follows [22].

The image of the folding curve J = 0 is a curve with power expansion:{
p = 2− 32a3

π s3 +O(s4)
q = −24a3

π s2 +O(s3)
(11)
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Definition 7.13 We define f : (−ε, ε) → R to be a real function such that,
for q ≥ 0, f(q) = 2, and for q ≤ 0, p = f(q) is the image of the folding curve
J = 0, with s ≥ 0.

Proof of Theorem B It is clear from Proposition 7.12 and Lemmas 7.7, 7.8
and 7.9. Notice that the restriction of (p, q) to Def gives only half of the Whit-
ney pleat, as in Figure 2. The curves that relevant in the proof of Theorem B
are recalled in Figure 3.

Figure 3: The curves in the proof of Theorem B. The folding curve is J = 0, and it
is mapped to p = f(q). The curves s = 0 and τ = −s2 are mapped to p = 2. The
segment τ = 0 is the Euclidean region, and it is mapped to p = g(q)

8 The path of cone structures

In this section we prove Propositions 1.3 and 1.4 by using the path of cone
manifolds. We also prove the last statement of Theorem A concerning the limit
when rescaling those cone manifolds.

Cone structures are determined by the equality q = 0. From the power expan-
sion of Corollary 7.11, it is clear that q = 0 defines a curve in Def. This curve
can be parametrized as:

τ = 3s2 +O(s3).

Since τ > 0 those structures are hyperbolic. The other coefficient is p =
2 + 16

π a3s
3 +O(s4). Thus the cone angle is:

α = 2π/p = π − 8a3s
3 +O(s4)
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and therefore the path of cone structures is: s(α) = 1
2

3

√
π−α
a3

+O(|π − α|2/3)

t(α) =
√

3
2

3

√
π−α
a3

+O(|π − α|2/3).

Next we compute some magnitudes of those cone manifolds using the parameter
s. The length of the singular set is

length(Σα) = Re(v) = t =
√
τ =
√

3s+O(s2).

Thus, by Schläfli’s formula the variation of volume is

d vol(Cα) = −1
2

length(Σα)dα = (12
√

3a3s
3 +O(4))ds.

Therefore
vol(Cα) = 3

√
3a3s

4 +O(5).

Proof of Proposition 1.3 Straightforward from the computations above.

Below we use that

l0 = lim
π→α

length(Σα)
(π − α)1/3

=
√

3

2a1/3
3

.

Proof of Proposition 1.4 We use the descriptions of the curves p = f(q)
and p = g(q) when q < 0 given in previous section. First at all, the parametriza-
tion of p = f(q) when q < 0 has a power expansion described in equation (11)
(Subsection 7.3). Therefore:

lim
q→0−

2− f(q)
|q|3/2

=
√

2
3
√

3π
√
a3

=
4

9 4
√

3π
l
3/2
0

The curve p = g(q) has a power expansion described in Lemma 7.9, when q < 0.
Thus:

lim
q→0−

g(q) − 2
|q|3/2

=
√

2
3
√

3π
√
a3

=
4

9 4
√

3π
l
3/2
0 ,

which proves Proposition 1.4.

The following proposition finishes the proof of Theorem A.

Proposition 8.1 When α → π− , the cone manifolds Cα re-scaled by (π −
α)−1/3 converge to the orbifold basis of the Seifert fibration of O . In addition,
when they are re-scaled by (π − α)−1/3 in the horizontal direction and by
(π − α)−2/3 in the vertical one, they converge to O .

Geometry & Topology, Volume 6 (2002)



Regenerating hyperbolic cone structures from Nil 847

Proof Let π : Nil→ R2 denote the projection of the Riemannian fibration of
Nil , ie, π(x1, x2, x3) = (x1, x2). The developing map of the transverse structure
of the Seifert fibration of O is

π ◦ D0 : Õ → R2

where D0 : Õ → Nil is the developing map of the Nil–structure.

Let (s(α), t(α)) denote the path of cone structures. Since t(α) has order (π −
α)−1/3 , to prove the first part of the proposition is sufficient to show that

lim
α→π−

1
t(α)

exp−1
x0
◦D(s(α),t(α)) = π ◦D0

uniformly on compact subsets of M̃ . To prove this limit, we write
1
t(α)

exp−1
x0
◦D(s(α),t(α)) =

1
t(α)

exp−1
x0
◦∆(s(α),t(α)) ◦∆−1

(s(α),t(α)) ◦D(s(α),t(α)).

By the proof of Theorem 3.1, ∆−1
(s(α),t(α)) ◦D(s(α),t(α)) → D0 . In addition

1
t(α)

exp−1
x0
◦∆(s(α),t(α))(x1, x2, x3) = (x1, x2, s(α)x3).

Since s(α) → 0, the limit is clear. Notice that since s(α) has also order
(π − α)−1/3 , the second part of the proposition follows easily.

9 An example

We consider the orbifold O described as follows. Its underlying space is the lens
space L(4, 1), which we view as the result of Dehn surgery on the trivial knot in
S3 with surgery coefficient 4. We view this trivial knot as one component of the
Whitehead link, and the branching locus Σ is precisely the other component of
the link (see Figure 4).

Figure 4: The surgery description of the orbifold O .

It is well known that the Whitehead link has a Montesinos fibration. This
induces an orbifold Seifert fibration of O . By looking at the basis of this
fibration and its Euler number, one can check that O has Nil geometry.
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We want to compute the limit l0 of Propositions 1.3 and 1.4. To do it, we
consider the variety of characters of M = O − Σ. The manifold M is a punc-
tured torus bundle over the circle, with homological monodromy ( 1 4

1 5 ). Thus
its fundamental group admits a presentation

π1(O − Σ) = 〈a, b,m | mam−1 = ab,m bm−1 = b(ab)4〉
where m is the meridian of the branching locus. We also choose l = aba−1b−1 ,
so that l,m generate a peripheral group. The variety of characters can be easily
computed by using the methods of [16]. To compute l0 , we do not need the
whole variety of characters, but only its projection to the plane generated by
the variables x = Im and y = Il . This projection can be computed by means
of resultants and it gives the planar curve:

(y − 2)3 + x2
(
64− 16x2 + x4 + (y − 2)(32 − 5x2) + (y − 2)2(7− 5y2)

)
= 0

The projection of χ0 to this curve has coordinates (x, y) = (0, 2).

Using the results of Section 7, we write

y = 2 cosh(iw/2) and x = 2 cosh
(
i(π + F (w))/2

)
.

Since F (w) = a3w
3 +O(w5), we have that

y = 2− w2/2 +O(w4) and x = −a3w
3 +O(w5).

By replacing those values in the the equation of the curve above we obtain:

−(w/2)6 + (a3w
3)264 +O(w8) = 0.

Hence a3 = 2−6 . Since l0 =
√

3/(2a1/3
3 ), this implies that

lim
α→π−

length(Σα)
(π − α)1/3

= l0 = 2
√

3 and lim
q→0−

2− f(q)
|q|3/2

=
8
√

2
3
√

3π
.

10 Cohomology computations

The aim of this section is to prove:

H1(M,R2 × 0) ∼= R and H1(M, 0× R) = 0.

First we need to compute the homology of the orbifold O , that can be defined
as follows. Let K be a triangulation of the underlying space of O compatible
with Σ. It induces a triangulation K̃ of Õ ∼= Nil . Let V be a π1O–module.
We consider the following chain and cochain complexes:

C∗(K;V ) = V ⊗π1O C∗(K̃;Z)
C∗(K;V ) = Homπ1O(C∗(K̃;Z), V )
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The homology of C∗(K;V ) is denoted by H∗(O;V ) and the cohomology of
C∗(K;V ) by H∗(O;V ). From the differential point of view, H∗(O;V ) is the
cohomology of the V –valued differential forms on Õ ∼= Nil which are π1O–
equivariant. The same construction holds for Σ and for a tubular neighborhood
N (Σ).

We shall apply the Mayer Vietoris exact sequence to the pair (M,N (Σ)), so
that M ∪ N (Σ) = O . We first compute the cohomology of O .

Lemma 10.1 Let V be either R2×0 or 0×R. There is a natural isomorphism
H∗(O, V ) ∼= H∗(π1O, V ).

Proof Let P → O be a finite regular covering such that P is a manifold.
Let Γ be the group of deck transformations of the covering. There is a natural
isomorphism

H∗(O, V ) ∼= H∗(P, V )Γ.

(See [2] for instance). We also have a natural isomorphism

H∗(π1O, V ) ∼= H∗(π1P, V )Γ.

Since P is an aspherical manifold, there is another natural isomorphism

H∗(π1P, V )Γ ∼= H∗(P, V )Γ.

Hence the lemma follows by composing the three isomorphisms. Notice that
since C∗(K̃;Z) is an acyclic π1O–module, there is a natural map H∗(π1O, V )→
H∗(O, V ), by homology theory, and that it is the composition of the three
isomorphisms.

Lemma 10.2 H0(O,R2 × 0) ∼= 0 and H1(O,R2 × 0) ∼= R.

Proof Since H0(O,R2 × 0) ∼= H0(π1O,R2 × 0) ∼= (R2 × 0)π1O , this group is
zero because the unique element of R2 × 0 invariant by π1O is zero.

To compute H1(O,R2× 0) we use the regular covering P → O of the previous
proof, with deck transformation group Γ, and the isomorphism H1(P,R2 ×
0)Γ ∼= H1(O,R2 × 0). Since the image of φ0 is finite, we may assume that
π1P < ker φ0 . Hence the action of π1P on R2 × 0 is trivial and

H∗(P,R2 × 0) ∼= Hom(H∗(P,R),R2 × 0).

The manifold P can be assumed to be a S1–bundle over T 2 with non-trivial
Euler number e 6= 0. In particular,

π1P ∼= 〈t, α, β | [t, α] = [t, β] = 1, [α, β] = te〉
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Thus the projection P → T 2 induces a isomorphism H1(P,R) ∼= H1(T 2,R)
and:

H1(P,R2 × 0) ∼= Hom(H1(T 2,R),R2 × 0) ∼= M2×2(R).

where M2×2(R) denotes the ring of 2 × 2 matrices with real coefficients. In
this isomorphism the action of Γ translates in M2×2(R) as the linear action by
conjugation of φ0(Γ) ⊂ O(2). Since φ0(Γ) is dihedral, H1(P,R2×0)Γ ∼= R.

With a similar argument one can prove:

Lemma 10.3 H∗(O; 0× R) ∼= 0.

Corollary 10.4 H∗(M ; 0 ×R) ∼= 0.

Proof We apply the Mayer-Vietoris exact sequence to the pair (N (Σ),M),
where N (Σ) is a tubular neighborhood of Σ, so that N (Σ) ∪ M = O and
N (Σ) ∩M ' T 2 . By Lemma 10.3, we have an isomorphism:

H∗(M ; 0 ×R)⊕H∗(N (Σ); 0 × R) ∼= H∗(T 2; 0× R).

Since the meridian m belongs to π1M and ρ0(m) acts non-trivially on 0× R,
it follows that H0(T 2; 0×R) ∼= H0(π1T

2; 0×R) ∼= (0×R)π1T 2 ∼= 0. By duality
H2(T 2; 0× R) ∼= 0, and by Euler characteristic, H1(T 2; 0 ×R) ∼= 0.

Lemma 10.5 H1(M ; su(2)) ∼= R. In particular H1(M ;R2 × 0) ∼= R.

Proof We apply a Mayer-Vietoris argument to the pair (M,N (Σ)). Since
M ∪ N (Σ) = O and M ∩ N (Σ) ' T 2 , we have an exact sequence:

H1(T 2, su(2)) i1⊕i2−→ H1(M,su(2)) ⊕H1(N (Σ), su(2))
j1−j2−→ H1(O, su(2))

where i1 , i2 , j1 and j2 are the natural maps induced by inclusion. Notice that
j1 ◦ i1 = j2 ◦ i2 by exactness. We have divided the proof in several steps.

(1) H1(T 2, su(2)) ∼= R2 and {dαl, dαm} is a basis for H1(T 2, su(2)).
This follows from the local properties of the variety of representations
R(T 2, SU(2)). See [16], for instance.

(2) j2i2(dαl) = j1i1(dαl) 6= 0. In particular it is a basis for H1(O, su(2)).
The proof that j1i1(dαl) 6= 0 uses the same argument as the proof of
Lemma 4.4. More precisely, since π ◦ hol(l) is a nontrivial translation,
the Kronecker pairing between the cocycle zq = TRANSq ◦π ◦ hol and
dαl does not vanish (Prop. 9.6 from [17]). Thus dαl 6= 0 when viewed
in H1(π1O, su(2)). Since H1(O, su(2)) ∼= H1(π1O, su(2)) ∼= R, by Lem-
mas 10.2 and 10.3, it is clear that this element is a basis.
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(3) i2(dαm) = 0.
This follows easily from the computation of H1(N (Σ), SU(2)), because
m has order two, and therefore it is rigid (see [16] for details).

(4) i1 : H1(T 2, su(2))→ H1(M,su(2)) has rank one.
Since this map is Poincaré dual to H1(M,∂M, su(2)) → H1(T 2, su(2)),
this follows from the long exact sequence of the pair (M,∂M) and Step 1.

(5) i1(dαm) = 0.
The proof is by contradiction. Assume that i1(dαm) 6= 0. Then by Step 4,
i1(dαl) = λi1(dαm) for some λ ∈ R. In addition, since i2(dαm) = 0:

j1i1(dαl) = λj1i1(dαm) = λj2i2(dαm) = 0

which contradicts Step 2.

(6) H1(M,su(2)) ∼= R.
By the previous steps i1⊕ i2 has rank one. The map j1− j2 has also rank
one, because H1(O, su(2)) ∼= R and j1 − j2 is surjective by Step 2. A
standard computation shows that dimR(H1(N (Σ), SU(2))) = 1. There-
fore H1(M,su(2)) ∼= R.

This finishes the proof of the lemma.
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