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Abstract

A p–local finite group is an algebraic structure with a classifying space which
has many of the properties of p–completed classifying spaces of finite groups.
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2–subgroup of Spin7(q) (q an odd prime power) shown by Solomon not to occur
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918 Ran Levi and Bob Oliver

As one step in the classification of finite simple groups, Ron Solomon [22] consid-
ered the problem of classifying all finite simple groups whose Sylow 2–subgroups
are isomorphic to those of the Conway group Co3 . The end result of his paper
was that Co3 is the only such group. In the process of proving this, he needed
to consider groups G in which all involutions are conjugate, and such that for
any involution x ∈ G, there are subgroups K C H C CG(x) such that K and
CG(x)/H have odd order and H/K ∼= Spin7(q) for some odd prime power q .
Solomon showed that such a group G does not exist. The proof of this state-
ment was also interesting, in the sense that the 2–local structure of the group
in question appeared to be internally consistent, and it was only by analyzing
its interaction with the p–local structure (where p is the prime of which q is a
power) that he found a contradiction.

In a later paper [3], Dave Benson, inspired by Solomon’s work, constructed cer-
tain spaces which can be thought of as the 2–completed classifying spaces which
the groups studied by Solomon would have if they existed. He started with the
spaces BDI(4) constructed by Dwyer and Wilkerson having the property that

H∗(BDI(4);F2) ∼= F2[x1, x2, x3, x4]GL4(2)

(the rank four Dickson algebra at the prime 2). Benson then considered, for
each odd prime power q , the homotopy fixed point set of the Z–action on
BDI(4) generated by an “Adams operation” ψq constructed by Dwyer and
Wilkerson. This homotopy fixed point set is denoted here BDI4(q).

In this paper, we construct a family of 2–local finite groups, in the sense of [6],
which have the 2–local structure considered by Solomon, and whose classifying
spaces are homotopy equivalent to Benson’s spaces BDI4(q). The results of [6]
combined with those here allow us to make much more precise the statement
that these spaces have many of the properties which the 2–completed classifying
spaces of the groups studied by Solomon would have had if they existed. To
explain what this means, we first recall some definitions.

A fusion system over a finite p–group S is a category whose objects are the
subgroups of S , and whose morphisms are monomorphisms of groups which
include all those induced by conjugation by elements of S . A fusion system is
saturated if it satisfies certain axioms formulated by Puig [19], and also listed in
[6, Definition 1.2] as well as at the beginning of Section 1 in this paper. In par-
ticular, for any finite group G and any S ∈ Sylp(G), the category FS(G) whose
objects are the subgroups of S and whose morphisms are those monomorphisms
between subgroups induced by conjugation in G is a saturated fusion system
over S .
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Construction of 2–local finite groups 919

If F is a saturated fusion system over S , then a subgroup P ≤ S is called
F –centric if CS(P ′) = Z(P ′) for all P ′ isomorphic to P in the category F . A
centric linking system associated to F consists of a category L whose objects
are the F –centric subgroups of S , together with a functor L −−→ F which is
the inclusion on objects, is surjective on all morphism sets and which satisfies
certain additional axioms (see [6, Definition 1.7]). These axioms suffice to ensure
that the p–completed nerve |L|∧p has all of the properties needed to regard it as
a “classifying space” of the fusion system F . A p–local finite group consists of
a triple (S,F ,L), where S is a finite p–group, F is a saturated fusion system
over S , and L is a linking system associated to F . The classifying space of
a p–local finite group (S,F ,L) is the p–completed nerve |L|∧p (which is p–
complete since |L| is always p–good [6, Proposition 1.12]). For example, if G
is a finite group and S ∈ Sylp(G), then there is an explicitly defined centric
linking system LcS(G) associated to FS(G), and the classifying space of the
triple (S,FS(G),LcS(G)) is the space |LcS(G)|∧p ' BG∧p .

Exotic examples of p–local finite groups for odd primes p — ie, examples which
do not represent actual groups — have already been constructed in [6], but using
ad hoc methods which seemed to work only at odd primes.

In this paper, we first construct a fusion system FSol(q) (for any odd prime
power q) over a 2–Sylow subgroup S of Spin7(q), with the properties that
all elements of order 2 in S are conjugate (ie, the subgroups they gener-
ated are all isomorphic in the category), and the “centralizer fusion system”
(see the beginning of Section 1) of each such element is isomorphic to the fu-
sion system of Spin7(q). We then show that FSol(q) is saturated, and has a
unique associated linking system LcSol(q). We thus obtain a 2–local finite group
(S,FSol(q),LcSol(q)) where by Solomon’s theorem [22] (as explained in more de-
tail in Proposition 3.4), FSol(q) is not the fusion system of any finite group.
Let BSol(q) def= |LcSol(q)|∧2 denote the classifying space of (S,FSol(q),LcSol(q)).
Thus, BSol(q) does not have the homotopy type of BG∧2 for any finite group
G, but does have many of the nice properties of the 2–completed classifying
space of a finite group (as described in [6]).

Relating BSol(q) to BDI4(q) requires taking the “union” of the categories
LcSol(q

n) for all n ≥ 1. This however is complicated by the fact that an inclusion
of fields Fpm ⊆ Fpn (ie, m|n) does not induce an inclusion of cenric linking
systems. Hence we have to replace the centric linking systems LcSol(q

n) by
the full subcategories LccSol(q

n) whose objects are those 2–subgroups which are
centric in FcSol(q

∞) =
⋃
n≥1FcSol(q

n), and show that the inclusion induces a

homotopy equivalence BSol′(qn) def= |LccSol(q
n)|∧2 ' BSol(qn). Inclusions of fields
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do induce inclusions of these categories, so we can then define LcSol(q
∞) def=⋃

n≥1LccSol(q
n), and spaces

BSol(q∞) = |LcSol(q
∞)|∧2 '

(⋃
n≥1

BSol′(qn)
)
∧
2 .

The category LcSol(q
∞) has an “Adams map” ψq induced by the Frobenius au-

tomorphism x 7→ xq of Fq . We then show that BSol(q∞) ' BDI(4), the space
of Dwyer and Wilkerson mentioned above; and also that BSol(q) is equivalent
to the homotopy fixed point set of the Z–action on BSol(q∞) generated by
Bψq . The space BSol(q) is thus equivalent to Benson’s spaces BDI4(q) for
any odd prime power q .

The paper is organized as follows. Two propositions used for constructing sat-
urated fusion systems, one very general and one more specialized, are proven
in Section 1. These are then applied in Section 2 to construct the fusion sys-
tems FSol(q), and to prove that they are saturated. In Section 3 we prove the
existence and uniqueness of a centric linking systems associated to FSol(q) and
study their automorphisms. Also in Section 3 is the proof that FSol(q) is not
the fusion system of any finite group. The connections with the space BDI(4)
of Dwyer and Wilkerson is shown in Section 4. Some background material on
the spinor groups Spin(V, b) over fields of characteristic 6= 2 is collected in an
appendix.

We would like to thank Dave Benson, Ron Solomon, and Carles Broto for their
help while working on this paper.

1 Constructing saturated fusion systems

In this section, we first prove a general result which is useful for constructing
saturated fusion systems. This is then followed by a more technical result,
which is designed to handle the specific construction in Section 2.

We first recall some definitions from [6]. A fusion system over a p–group S is
a category F whose objects are the subgroups of F , such that

HomS(P,Q) ⊆ MorF (P,Q) ⊆ Inj(P,Q)

for all P,Q ≤ S , and such that each morphism in F factors as the compos-
ite of an F –isomorphism followed by an inclusion. We write HomF (P,Q) =
MorF (P,Q) to emphasize that the morphisms are all homomorphisms of groups.
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We say that two subgroups P,Q ≤ S are F –conjugate if they are isomor-
phic in F . A subgroup P ≤ S is fully centralized (fully normalized) in F if
|CS(P )| ≥ |CS(P ′)| (|NS(P )| ≥ |NS(P ′)|) for all P ′ ≤ S which is F –conjugate
to P . A saturated fusion system is a fusion system F over S which satisfies
the following two additional conditions:

(I) For each fully normalized subgroup P ≤ S , P is fully centralized and
AutS(P ) ∈ Sylp(AutF (P )).

(II) For each P ≤ S and each ϕ ∈ HomF (P, S) such that ϕ(P ) is fully cen-
tralized in F , if we set

Nϕ =
{
g ∈ NS(P )

∣∣ϕcgϕ−1 ∈ AutS(ϕ(P ))
}
,

then ϕ extends to a homomorphism ϕ ∈ HomF (Nϕ, S).

For example, if G is a finite group and S ∈ Sylp(G), then the category FS(G)
whose objects are the subgroups of S and whose morphisms are the homomor-
phisms induced by conjugation in G is a saturated fusion system over S . A sub-
group P ≤ S is fully centralized in FS(G) if and only if CS(P ) ∈ Sylp(CG(P )),
and P is fully normalized in FS(G) if and only if NS(P ) ∈ Sylp(NG(P )).

For any fusion system F over a p–group S , and any subgroup P ≤ S , the
“centralizer fusion system” CF (P ) over CS(P ) is defined by setting

HomCF (P )(Q,Q
′) =

{
(ϕ|Q)

∣∣ϕ ∈ HomF (PQ,PQ′), ϕ(Q) ≤ Q′, ϕ|P = IdP
}

for all Q,Q′ ≤ CS(P ) (see [6, Definition A.3] or [19] for more detail). We also
write CF (g) = CF (〈g〉) for g ∈ S . If F is a saturated fusion system and P
is fully centralized in F , then CF (P ) is saturated by [6, Proposition A.6] (or
[19]).

Proposition 1.1 Let F be any fusion system over a p–group S . Then F is
saturated if and only if there is a set X of elements of order p in S such that
the following conditions hold:

(a) Each x ∈ S of order p is F –conjugate to some element of X.

(b) If x and y are F –conjugate and y ∈ X, then there is some morphism
ψ ∈ HomF (CS(x), CS(y)) such that ψ(x) = y .

(c) For each x ∈ X, CF (x) is a saturated fusion system over CS(x).

Proof Throughout the proof, conditions (I) and (II) always refer to the con-
ditions in the definition of a saturated fusion system, as stated above or in [6,
Definition 1.2].
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Assume first that F is saturated, and let X be the set of all x ∈ S of order p
such that 〈x〉 is fully centralized. Then condition (a) holds by definition, (b)
follows from condition (II), and (c) holds by [6, Proposition A.6] or [19].

Assume conversely that X is chosen such that conditions (a–c) hold for F .
Define

U =
{

(P, x)
∣∣P ≤ S, |x| = p, x ∈ Z(P )T , some T ∈ Sylp(AutF (P )), T ≥ AutS(P )

}
,

where Z(P )T is the subgroup of elements of Z(P ) fixed by the action of T .
Let U0 ⊆ U be the set of pairs (P, x) such that x ∈ X. For each 1 6= P ≤ S ,
there is some x such that (P, x) ∈ U (since every action of a p–group on Z(P )
has nontrivial fixed set); but x need not be unique.

We first check that

(P, x) ∈ U0, P fully centralized in CF (x) =⇒ P fully centralized in F . (1)

Assume otherwise: that (P, x) ∈ U0 and P is fully centralized in CF (x), but
P is not fully centralized in F . Let P ′ ≤ S and ϕ ∈ IsoF (P,P ′) be such
that |CS(P )| < |CS(P ′)|. Set x′ = ϕ(x) ≤ Z(P ′). By (b), there exists ψ ∈
HomF (CS(x′), CS(x)) such that ψ(x′) = x. Set P ′′ = ψ(P ′). Then ψ ◦ ϕ ∈
IsoCF (x)(P,P ′′), and in particular P ′′ is CF (x)–conjugate to P . Also, since
CS(P ′) ≤ CS(x′), ψ sends CS(P ′) injectively into CS(P ′′), and |CS(P )| <
|CS(P ′)| ≤ |CS(P ′′)|. Since CS(P ) = CCS(x)(P ) and CS(P ′′) = CCS(x)(P ′′),
this contradicts the original assumption that P is fully centralized in CF (x).

By definition, for each (P, x) ∈ U , NS(P ) ≤ CS(x) and hence AutCS(x)(P ) =
AutS(P ). By assumption, there is T ∈ Sylp(AutF (P )) such that τ(x) = x for
all τ ∈ T ; ie, such that T ≤ AutCF (x)(P ). In particular, it follows that

∀(P, x) ∈ U : AutS(P ) ∈ Sylp(AutF (P ))⇐⇒ AutCS(x)(P ) ∈ Sylp(AutCF (x)(P )).
(2)

We are now ready to prove condition (I) for F ; namely, to show for each
P ≤ S fully normalized in F that P is fully centralized and AutS(P ) ∈
Sylp(AutF (P )). By definition, |NS(P )| ≥ |NS(P ′)| for all P ′ F –conjugate
to P . Choose x ∈ Z(P ) such that (P, x) ∈ U ; and let T ∈ Sylp(AutF (P )) be
such that T ≥ AutS(P ) and x ∈ Z(P )T . By (a) and (b), there is an element
y ∈ X and a homomorphism ψ ∈ HomF (CS(x), CS(y)) such that ψ(x) = y .
Set P ′ = ψP , and set T ′ = ψTψ−1 ∈ Sylp(AutF (T ′)). Since T ≥ AutS(P ) by
definition of U , and ψ(NS(P )) = NS(P ′) by the maximality assumption, we
see that T ′ ≥ AutS(P ′). Also, y ∈ Z(P ′)T

′
(T ′y = y since Tx = x), and this

shows that (P ′, y) ∈ U0 . The maximality of |NS(P ′)| = |NCS(y)(P ′)| implies
that P ′ is fully normalized in CF (y). Hence by condition (I) for the saturated
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fusion system CF (y), together with (1) and (2), P fully centralized in F and
AutS(P ) ∈ Sylp(AutF (P )).

It remains to prove condition (II) for F . Fix 1 6= P ≤ S and ϕ ∈ HomF (P, S)
such that P ′ def= ϕP is fully centralized in F , and set

Nϕ =
{
g ∈ NS(P )

∣∣ϕcgϕ−1 ∈ AutS(P ′)
}
.

We must show that ϕ extends to some ϕ ∈ HomF (Nϕ, S). Choose some x′ ∈
Z(P ′) of order p which is fixed under the action of AutS(P ′), and set x =
ϕ−1(x′) ∈ Z(P ). For all g ∈ Nϕ , ϕcgϕ−1 ∈ AutS(P ′) fixes x′ , and hence
cg(x) = x. Thus

x ∈ Z(Nϕ) and hence Nϕ ≤ CS(x); and NS(P ′) ≤ CS(x′). (3)

Fix y ∈ X which is F –conjugate to x and x′ , and choose

ψ ∈ HomF (CS(x), CS(y)) and ψ′ ∈ HomF (CS(x′), CS(y))

such that ψ(x) = ψ′(x′) = y . Set Q = ψ(P ) and Q′ = ψ′(P ′). Since P ′ is fully
centralized in F , ψ′(P ′) = Q′ , and CS(P ′) ≤ CS(x′), we have

ψ′(CCS(x′)(P
′)) = ψ′(CS(P ′)) = CS(Q′) = CCS(y)(Q

′). (4)

Set τ = ψ′ϕψ−1 ∈ IsoF (Q,Q′). By construction, τ(y) = y , and thus τ ∈
IsoCF (y)(Q,Q′). Since P ′ is fully centralized in F , (4) implies that Q′ is
fully centralized in CF (y). Hence condition (II), when applied to the satu-
rated fusion system CF (y), shows that τ extends to a homomorphism τ ∈
HomCF (y)(Nτ , CS(y)), where

Nτ =
{
g ∈ NCS(y)(Q)

∣∣ τcgτ−1 ∈ AutCS(y)(Q
′)
}
.

Also, for all g ∈ Nϕ ≤ CS(x) (see (3)),

cτ (ψ(g)) = τcψ(g)τ
−1 = (τψ)cg(τψ)−1 = (ψ′ϕ)cg(ψ′ϕ)−1 = cψ′(h) ∈ AutCS(y)(Q

′)

for some h ∈ NS(P ′) such that ϕcgϕ−1 = ch . This shows that ψ(Nϕ) ≤ Nτ ;
and also (since CS(Q′) = ψ′(CS(P ′)) by (4)) that

τ(ψ(Nϕ)) ≤ ψ′(NCS(x′)(P
′)).

We can now define

ϕ
def= (ψ′)−1 ◦ (τ ◦ ψ)|Nϕ ∈ HomF (Nϕ, S),

and ϕ|P = ϕ.
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Proposition 1.1 will also be applied in a separate paper of Carles Broto and
Jesper Møller [7] to give a construction of some “exotic” p–local finite groups
at certain odd primes.

Our goal now is to construct certain saturated fusion systems, by starting with
the fusion system of Spin7(q) for some odd prime power q , and then adding to
that the automorphisms of some subgroup of Spin7(q). This is a special case of
the general problem of studying fusion systems generated by fusion subsystems,
and then showing that they are saturated. We first fix some notation. If F1 and
F2 are two fusion systems over the same p–group S , then 〈F1,F2〉 denotes the
fusion system over S generated by F1 and F2 : the smallest fusion system over
S which contains both F1 and F2 . More generally, if F is a fusion system over
S , and F0 is a fusion system over a subgroup S0 ≤ S , then 〈F ;F0〉 denotes
the fusion system over S generated by the morphisms in F between subgroups
of S , together with morphisms in F0 between subgroups of S0 only. In other
words, a morphism in 〈F ;F0〉 is a composite

P0
ϕ1−−−→ P1

ϕ2−−−→ P2 −−−→ · · · −−−→ Pk−1
ϕk−−−→ Pk,

where for each i, either ϕi ∈ HomF (Pi−1, Pi), or ϕi ∈ HomF0(Pi−1, Pi) (and
Pi−1, Pi ≤ S0 ).

As usual, when G is a finite group and S ∈ Sylp(G), then FS(G) denotes
the fusion system of G over S . If Γ ≤ Aut(G) is a group of automorphisms
which contains Inn(G), then FS(Γ) will denote the fusion system over S whose
morphisms consist of all restrictions of automorphisms in Γ to monomorphisms
between subgroups of S .

The next proposition provides some fairly specialized conditions which imply
that the fusion system generated by the fusion system of a group G together
with certain automorphisms of a subgroup of G is saturated.

Proposition 1.2 Fix a finite group G, a prime p dividing |G|, and a Sylow
p–subgroup S ∈ Sylp(G). Fix a normal subgroup Z C G of order p, an ele-
mentary abelian subgroup U C S of rank two containing Z such that CS(U) ∈
Sylp(CG(U)), and a subgroup Γ ≤ Aut(CG(U)) containing Inn(CG(U)) such
that γ(U) = U for all γ ∈ Γ. Set

S0 = CS(U) and F def= 〈FS(G);FS0(Γ)〉,

and assume the following hold.

(a) All subgroups of order p in S different from Z are G–conjugate.
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(b) Γ permutes transitively the subgroups of order p in U .

(c) {ϕ ∈ Γ |ϕ(Z) = Z} = AutNG(U)(CG(U)).

(d) For each E ≤ S which is elementary abelian of rank three, contains U ,
and is fully centralized in FS(G),

{α ∈ AutF (CS(E)) |α(Z) = Z} = AutG(CS(E)).

(e) For all E,E′ ≤ S which are elementary abelian of rank three and contain
U , if E and E′ are Γ–conjugate, then they are G–conjugate.

Then F is a saturated fusion system over S . Also, for any P ≤ S such that
Z ≤ P ,

{ϕ ∈ HomF (P, S) |ϕ(Z) = Z} = HomG(P, S). (1)

Proposition 1.2 follows from the following three lemmas. Throughout the proofs
of these lemmas, references to points (a–e) mean to those points in the hypothe-
ses of the proposition, unless otherwise stated.

Lemma 1.3 Under the hypotheses of Proposition 1.2, for any P ≤ S and any
central subgroup Z ′ ≤ Z(P ) of order p,

Z 6= Z ′ ≤ U =⇒ ∃ϕ ∈ HomΓ(P, S0) such that ϕ(Z ′) = Z (1)

and
Z ′ � U =⇒ ∃ψ ∈ HomG(P, S0) such that ψ(Z ′) ≤ U . (2)

Proof Note first that Z ≤ Z(S), since it is a normal subgroup of order p in a
p–group.

Assume Z 6= Z ′ ≤ U . Then U = ZZ ′ , and

P ≤ CS(Z ′) = CS(ZZ ′) = CS(U) = S0

since Z ′ ≤ Z(P ) by assumption. By (b), there is α ∈ Γ such that α(Z ′) = Z .
Since S0 ∈ Sylp(CG(U)), there is h ∈ CG(U) such that h·α(P )·h−1 ≤ S0 ; and
since

ch ∈ AutNG(U)(CG(U)) ≤ Γ

by (c), ϕ def= ch ◦ α ∈ HomΓ(P, S0) and sends Z ′ to Z .

If Z ′ � U , then by (a), there is g ∈ G such that gZ ′g−1 ≤ UrZ . Since Z is
central in S , gZ ′g−1 is central in gPg−1 , and U is generated by Z and gZ ′g−1 ,
it follows that gPg−1 ≤ CG(U). Since S0 ∈ Sylp(CG(U)), there is h ∈ CG(U)
such that h(gPg−1)h−1 ≤ S0 ; and we can take ψ = chg ∈ HomG(P, S0).
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We are now ready to prove point (1) in Proposition 1.2.

Lemma 1.4 Assume the hypotheses of Proposition 1.2, and let

F = 〈FS(G);FS0(Γ)〉
be the fusion system generated by G and Γ. Then for all P,P ′ ≤ S which
contain Z ,

{ϕ ∈ HomF (P,P ′) |ϕ(Z) = Z} = HomG(P,P ′).

Proof Upon replacing P ′ by ϕ(P ) ≤ P ′ , we can assume that ϕ is an isomor-
phism, and thus that it factors as a composite of isomorphisms

P = P0
ϕ1−−−→∼= P1

ϕ2−−−→∼= P2
ϕ3−−−→∼= · · · ϕk−1−−−→∼= Pk−1

ϕk−−−→∼= Pk = P ′,

where for each i, ϕi ∈ HomG(Pi−1, Pi) or ϕi ∈ HomΓ(Pi−1, Pi). Let Zi ≤ Z(Pi)
be the subgroups of order p such that Z0 = Zk = Z and Zi = ϕi(Zi−1).

To simplify the discussion, we say that a morphism in F is of type (G) if it is
given by conjugation by an element of G, and of type (Γ) if it is the restriction
of an automorphism in Γ. More generally, we say that a morphism is of type
(G,Γ) if it is the composite of a morphism of type (G) followed by one of type
(Γ), etc. We regard IdP , for all P ≤ S , to be of both types, even if P � S0 .
By definition, if any nonidentity isomorphism is of type (Γ), then its source
and image are both contained in S0 = CS(U).

For each i, using Lemma 1.3, choose some ψi ∈ HomF (PiU,S) such that
ψi(Zi) = Z . More precisely, using points (1) and (2) in Lemma 1.3, we can
choose ψi to be of type (Γ) if Zi ≤ U (the inclusion if Zi = Z ), and to be
of type (G,Γ) if Z � U . Set P ′i = ψi(Pi). To keep track of the effect of
morphisms on the subgroups Zi , we write them as morphisms between pairs,
as shown below. Thus, ϕ factors as a composite of isomorphisms

(P ′i−1, Z)
ψ−1
i−1−−−−−→ (Pi−1, Zi−1)

ϕi−−−−−→ (Pi, Zi)
ψi−−−−−→ (P ′i , Z).

If ϕi is of type (G), then this composite (after replacing adjacent morphisms
of the same type by their composite) is of type (Γ, G,Γ). If ϕi is of type (Γ),
then the composite is again of type (Γ, G,Γ) if either Zi−1 ≤ U or Zi ≤ U ,
and is of type (Γ, G,Γ, G,Γ) if neither Zi−1 nor Zi is contained in U . So we
are reduced to assuming that ϕ is of one of these two forms.

Case 1 Assume first that ϕ is of type (Γ, G,Γ); ie, a composite of isomor-
phisms of the form

(P0, Z)
ϕ1−−−−→
(Γ)

(P1, Z1)
ϕ2−−−−→
(G)

(P2, Z2)
ϕ3−−−−→
(Γ)

(P3, Z).
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Then Z1 = Z if and only if Z2 = Z because ϕ2 is of type (G). If Z1 = Z2 = Z ,
then ϕ1 and ϕ3 are of type (G) by (c), and the result follows.

If Z1 6= Z 6= Z2 , then U = ZZ1 = ZZ2 , and thus ϕ2(U) = U . Neither
ϕ1 nor ϕ3 can be the identity, so Pi ≤ S0 = CS(U) for all i by definition of
HomΓ(−,−), and hence ϕ2 is of type (Γ) by (c). It follows that ϕ ∈ IsoΓ(P0, P3)
sends Z to itself, and is of type (G) by (c) again.

Case 2 Assume now that ϕ is of type (Γ, G,Γ, G,Γ); more precisely, that it
is a composite of the form

(P0, Z)
ϕ1−−−→
(Γ)

(P1, Z1)
ϕ2−−−→
(G)

(P2, Z2)
ϕ3−−−→
(Γ)

(P3, Z3)
ϕ4−−−→
(G)

(P4, Z4)
ϕ5−−−→
(Γ)

(P5, Z),

where Z2, Z3 � U . Then Z1, Z4 ≤ U and are distinct from Z , and the groups
P0, P1, P4, P5 all contain U since ϕ1 and ϕ5 (being of type (Γ)) leave U invari-
ant. In particular, P2 and P3 contain Z , since P1 and P4 do and ϕ2, ϕ4 are
of type (G). We can also assume that U ≤ P2, P3 , since otherwise P2 ∩U = Z
or P3 ∩U = Z , ϕ3(Z) = Z , and hence ϕ3 is of type (G) by (c) again. Finally,
we assume that P2, P3 ≤ S0 = CS(U), since otherwise ϕ3 = Id.

Let Ei ≤ Pi be the rank three elementary abelian subgroups defined by the
requirements that E2 = UZ2 , E3 = UZ3 , and ϕi(Ei−1) = Ei . In particular,
Ei ≤ Z(Pi) for i = 2, 3 (since Zi ≤ Z(Pi), and U ≤ Z(Pi) by the above
remarks); and hence Ei ≤ Z(Pi) for all i. Also, U = ZZ4 ≤ ϕ4(E3) = E4 since
ϕ4(Z) = Z , and thus U = ϕ5(U) ≤ E5 . Via similar considerations for E0 and
E1 , we see that U ≤ Ei for all i.

Set H = CG(U) for short. Let E3 be the set of all elementary abelian subgroups
E ≤ S of rank three which contain U , and with the property that CS(E) ∈
Sylp(CH(E)). Since CS(E) ≤ CS(U) = S0 ∈ Sylp(H), the last condition
implies that E is fully centralized in the fusion system FS0(H). If E ≤ S
is any rank three elementary abelian subgroup which contains U , then there
is some a ∈ H such that E′ = aEa−1 ∈ E3 , since FS0(H) is saturated and
U C H . Then ca ∈ IsoG(E,E′) ∩ IsoΓ(E,E′) by (c). So upon composing
with such isomorphisms, we can assume that Ei ∈ E3 for all i, and also that
ϕi(CS(Ei−1)) = CS(Ei) for each i.

In this way, ϕ can be assumed to extend to an F –isomorphism ϕ from CS(E0)
to CS(E5) which sends Z to itself. By (e), the rank three subgroups Ei are
all G–conjugate to each other. Choose g ∈ G such that gE5g

−1 = E0 . Then
g·CS(E5)·g−1 and CS(E0) are both Sylow p–subgroups of CG(E0), so there
is h ∈ CG(E0) such that (hg)CS(E5)(hg)−1 = CS(E0). By (d), chg ◦ ϕ ∈
AutF (CS(E0)) is of type (G); and thus ϕ ∈ IsoG(P0, P5).
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To finish the proof of Proposition 1.2, it remains only to show:

Lemma 1.5 Under the hypotheses of Proposition 1.2, the fusion system F
generated by FS(G) and FS0(Γ) is saturated.

Proof We apply Proposition 1.1, by letting X be the set of generators of Z .
Condition (a) of the proposition (every x ∈ S of order p is F –conjugate to an
element of X) holds by Lemma 1.3. Condition (c) holds since CF (Z) is the
fusion system of the group CG(Z) by Lemma 1.4, and hence is saturated by [6,
Proposition 1.3].

It remains to prove condition (b) of Proposition 1.1. We must show that if y, z ∈
S are F –conjugate and 〈z〉 = Z , then there is ψ ∈ HomF (CS(y), CS(z)) such
that ψ(y) = z . If y /∈ U , then by Lemma 1.3(2), there is ϕ ∈ HomF (CS(y), S0)
such that ϕ(y) ∈ U . If y ∈ UrZ , then by Lemma 1.3(1), there is ϕ ∈
HomF (CS(y), S0) such that ϕ(y) ∈ Z . We are thus reduced to the case where
y, z ∈ Z (and are F –conjugate).

In this case, then by Lemma 1.4, there is g ∈ G such that z = gyg−1 . Since
Z C G, [G:CG(Z)] is prime to p, so S and gSg−1 are both Sylow p–subgroups
of CG(Z), and hence are CG(Z)–conjugate. We can thus choose g such that
z = gyg−1 and gSg−1 = S . Since CS(y) = CS(z) = S (Z ≤ Z(S) since it is
a normal subgroup of order p), this shows that cg ∈ IsoG(CS(y), CS(z)), and
finishes the proof of (b) in Proposition 1.1.

2 A fusion system of a type considered by Solomon

The main result of this section and the next is the following theorem:

Theorem 2.1 Let q be an odd prime power, and fix S ∈ Syl2(Spin7(q)). Let
z ∈ Z(Spin7(q)) be the central element of order 2. Then there is a saturated
fusion system F = FSol(q) which satisfies the following conditions:

(a) CF (z) = FS(Spin7(q)) as fusion systems over S .

(b) All involutions of S are F –conjugate.

Furthermore, there is a unique centric linking system L = LcSol(q) associated
to F .
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Theorem 2.1 will be proven in Propositions 2.11 and 3.3. Later, at the end
of Section 3, we explain why Solomon’s theorem [22] implies that these fusion
systems are not the fusion systems of any finite groups, and hence that the
spaces BSol(q) are not homotopy equivalent to the 2–completed classifying
spaces of any finite groups.

Background results needed for computations in Spin(V, b) have been collected
in Appendix A. We focus attention here on SO7(q) and Spin7(q). In fact,
since we want to compare the constructions over Fq with those over its field
extensions, most of the constructions will first be made in the groups SO7(Fq)
and Spin7(Fq).

We now fix, for the rest of the section, an odd prime power q . It will be
convenient to write Spin7(q∞) def= Spin7(Fq), etc. In order to make certain
computations more explicit, we set

V∞ = M2(Fq)⊕M0
2 (Fq) ∼= (Fq)7 and b(A,B) = det(A) + det(B)

(where M0
2 (−) is the group of (2×2) matrices of trace zero), and for each n ≥ 1

set Vn = M2(Fqn) ⊕M0
2 (Fqn) ⊆ V∞ . Then b is a nonsingular quadratic form

on V∞ and on Vn . Identify SO7(q∞) = SO(V∞, b) and SO7(qn) = SO(Vn, b),
and similarly for Spin7(qn) ≤ Spin7(q∞). For all α ∈ Spin(M2(Fq),det) and
β ∈ Spin(M0

2 (Fq),det), we write α⊕ β for their image in Spin7(q∞) under the
natural homomorphism

ι4,3 : Spin4(q∞)× Spin3(q∞) −−−−−→ Spin7(q∞).

There are isomorphisms

ρ̃4 : SL2(q∞)× SL2(q∞)
∼=−−→ Spin4(q∞) and ρ̃3 : SL2(q∞)

∼=−−→ Spin3(q∞)

which are defined explicitly in Proposition A.5, and which restrict to isomor-
phisms

SL2(qn)× SL2(qn) ∼= Spin4(qn) and SL2(qn) ∼= Spin3(qn)

for each n. Let

z = ρ̃4(−I,−I)⊕ 1 = 1⊕ ρ̃3(−I) ∈ Z(Spin7(q))

denote the central element of order two, and set

z1 = ρ̃4(−I, I)⊕ 1 ∈ Spin7(q).

Here, 1 ∈ Spink(q) (k = 3, 4) denotes the identity element. Define U = 〈z, z1〉.
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Definition 2.2 Define

ω : SL2(q∞)3 −−−−−→ Spin7(q∞)

by setting
ω(A1, A2, A3) = ρ̃4(A1, A2)⊕ ρ̃3(A3)

for A1, A2, A3 ∈ SL2(q∞). Set

H(q∞) = ω(SL2(q∞)3) and [[A1, A2, A3]] = ω(A1, A2, A3) .

Since ρ̃3 and ρ̃4 are isomorphisms, Ker(ω) = Ker(ι4,3), and thus

Ker(ω) = 〈(−I,−I,−I)〉.
In particular, H(q∞) ∼= (SL2(q∞)3)/{±(I, I, I)}. Also,

z = [[I, I,−I]] and z1 = [[−I, I, I]],

and thus
U =

{
[[±I,±I,±I]]

}
(with all combinations of signs).

For each 1 ≤ n <∞, the natural homomorphism

Spin7(qn) −−−−−−→ SO7(qn)

has kernel and cokernel both of order 2. The image of this homomorphism
is the commutator subgroup Ω7(qn) C SO7(qn), which is partly described by
Lemma A.4(a). In contrast, since all elements of Fq are squares, the natural
homomorphism from Spin7(q∞) to SO7(q∞) is surjective.

Lemma 2.3 There is an element τ ∈ NSpin7(q)(U) of order 2 such that

τ ·[[A1, A2, A3]]·τ−1 = [[A2, A1, A3]] (1)

for all A1, A2, A3 ∈ SL2(q∞).

Proof Let τ ∈ SO7(q) be the involution defined by setting

τ(X,Y ) = (−θ(X),−Y )

for (X,Y ) ∈ V∞ = M2(Fq)⊕M0
2 (Fq), where

θ
(
a b
c d

)
=
(
d −b
−c a

)
.

Let τ ∈ Spin7(q∞) be a lifting of τ . The (−1)–eigenspace of τ on V∞ has
orthogonal basis {

(I, 0) ,
(
0,
(

1 0
0 −1

))
,
(
0,
(

0 1
1 0

))
,
(
0,
(

0 1
−1 0

))}
,
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and in particular has discriminant 1 with respect to this basis. Hence by Lemma
A.4(a), τ ∈ Ω7(q), and so τ ∈ Spin7(q). Since in addition, the (−1)–eigenspace
of τ is 4–dimensional, Lemma A.4(b) applies to show that τ2 = 1.

By definition of the isomorphisms ρ̃3 and ρ̃4 , for all Ai ∈ SL2(q∞) (i = 1, 2, 3)
and all (X,Y ) ∈ V∞ ,

[[A1, A2, A3]](X,Y ) = (A1XA
−1
2 , A3Y A

−1
3 ).

Here, Spin7(q∞) acts on V∞ via its projection to SO7(q∞). Also, for all X,Y ∈
M2(Fq),

θ(X) =
(

0 1
−1 0

)
·Xt·

(
0 1
−1 0

)−1 and in particular θ(XY ) = θ(Y )·θ(X);

and θ(X) = X−1 if det(X) = 1. Hence for all A1, A2, A3 ∈ SL2(q∞) and all
(X,Y ) ∈ V∞ ,(

τ ·[[A1, A2, A3]]·τ−1
)
(X,Y ) = τ(−A1·θ(X)·A−1

2 ,−A3Y A
−1
3 )

= (A2XA
−1
1 , A3Y A

−1
3 ) = [[A2, A1, A3]](X,Y ).

This shows that (1) holds modulo 〈z〉 = Z(Spin7(q∞)). We thus have two
automorphisms of H(q∞) ∼= (SL2(q∞)3)/{±(I, I, I)} — conjugation by τ and
the permutation automorphism — which are liftings of the same automorphism
of H(q∞)/〈z〉. Since H(q∞) is perfect, each automorphism of H(q∞)/〈z〉 has
at most one lifting to an automorphism of H(q∞), and thus (1) holds. Also,
since U is the subgroup of all elements [[±I,±I,±I]] with all combinations of
signs, formula (1) shows that τ ∈ NSpin7(q)(U).

Definition 2.4 For each n ≥ 1, set

H(qn) = H(q∞) ∩ Spin7(qn) and H0(qn) = ω(SL2(qn)3) ≤ H(qn).

Define
Γn = Inn(H(qn))o Σ̂3 ≤ Aut(H(qn)),

where Σ̂3 denotes the group of permutation automorphisms

Σ̂3 =
{

[[A1, A2, A3]] 7→ [[Aσ1, Aσ2, Aσ3]]
∣∣ σ ∈ Σ3

}
≤ Aut(H(qn)) .

For each n, let ψq
n

be the automorphism of Spin7(q∞) induced by the field
isomorphism (q 7→ qp

n
). By Lemma A.3, Spin7(qn) is the fixed subgroup of

ψq
n

. Hence each element of H(qn) is of the form [[A1, A2, A3]], where either
Ai ∈ SL2(qn) for each i (and the element lies in H0(qn)), or ψq

n
(Ai) = −Ai

for each i. This shows that H0(qn) has index 2 in H(qn).

The goal is now to choose compatible Sylow subgroups S(qn) ∈ Syl2(Spin7(qn))
(all n ≥ 1) contained in N(H(qn)), and let FSol(qn) be the fusion system over
S(qn) generated by conjugation in Spin7(qn) and by restrictions of Γn .
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Proposition 2.5 The following hold for each n ≥ 1.

(a) H(qn) = CSpin7(qn)(U).

(b) NSpin7(qn)(U) = NSpin7(qn)(H(qn)) = H(qn)·〈τ〉, and contains a Sylow
2–subgroup of Spin7(qn).

Proof Let z1 ∈ SO7(q) be the image of z1 ∈ Spin7(q). Set V− = M2(Fq) and
V+ = M0

2 (Fq): the eigenspaces of z1 acting on V . By Lemma A.4(c),

CSpin7(q∞)(U) = CSpin7(q∞)(z1)

is the group of all elements α ∈ Spin7(q∞) whose image α ∈ SO7(q∞) has the
form

α = α− ⊕ α+ where α± ∈ SO(V±).

In other words,

CSpin7(q∞)(U) = ι4,3
(
Spin4(q∞)× Spin3(q∞)

)
= ω(SL2(q∞)3) = H(q∞).

Furthermore, since

τz1τ
−1 = τ [[−I, I, I]]τ−1 = [[I,−I, I]] = zz1

by Lemma 2.3, and since any element of NSpin7(q∞)(U) centralizes z , conjuga-
tion by τ generates OutSpin7(q∞)(U). Hence

NSpin7(q∞)(U) = H(q∞)·〈τ〉.

Point (a), and the first part of point (b), now follow upon taking intersections
with Spin7(qn).

If NSpin7(qn)(U) did not contain a Sylow 2–subgroup of Spin7(qn), then since
every noncentral involution of Spin7(qn) is conjugate to z1 (Proposition A.8),
the Sylow 2–subgroups of Spin7(q) would have no normal subgroup isomorphic
to C2

2 . By a theorem of Hall (cf [15, Theorem 5.4.10]), this would imply that
they are cyclic, dihedral, quaternion, or semidihedral. This is clearly not the
case, so NSpin7(qn)(U) must contain a Sylow 2–subgroup of Spin7(q), and this
finishes the proof of point (b).

Alternatively, point (b) follows from the standard formulas for the orders of
these groups (cf [24, pages 19,140]), which show that

|Spin7(qn)|
|H(qn)·〈τ〉| =

q9n(q6n − 1)(q4n − 1)(q2n − 1)
2·[qn(q2n − 1)]3

= q6n(q4n + q2n + 1)
(q2n + 1

2

)
is odd.
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We next fix, for each n, a Sylow 2–subgroup of Spin7(qn) which is contained
in H(qn)·〈τ〉 = NSpin7(qn)(U).

Definition 2.6 Fix elements A,B ∈ SL2(q) such that 〈A,B〉 ∼= Q8 (a quater-
nion group of order 8), and set Â = [[A,A,A]] and B̂ = [[B,B,B]]. Let
C(q∞) ≤ CSL2(q∞)(A) be the subgroup of elements of 2–power order in the
centralizer (which is abelian), and set Q(q∞) = 〈C(q∞), B〉. Define

S0(q∞) = ω(Q(q∞)3) ≤ H0(q∞)

and
S(q∞) = S0(q∞)·〈τ〉 ≤ H(q∞) ≤ Spin7(q∞).

Here, τ ∈ Spin7(q) is the element of Lemma 2.3. Finally, for each n ≥ 1, define

C(qn) = C(q∞) ∩ SL2(qn), Q(qn) = Q(q∞) ∩ SL2(qn),
S0(qn) = S0(q∞) ∩ Spin7(qn), and S(qn) = S(q∞) ∩ Spin7(qn).

Since the two eigenvalues of A are distinct, its centralizer in SL2(q∞) is con-
jugate to the subgroup of diagonal matrices, which is abelian. Thus C(q∞) is
conjugate to the subgroup of diagonal matrices of 2–power order. This shows
that each finite subgroup of C(q∞) is cyclic, and that each finite subgroup of
Q(q∞) is cyclic or quaternion.

Lemma 2.7 For all n, S(qn) ∈ Syl2(Spin7(qn)).

Proof By [23, 6.23], A is contained in a cyclic subgroup of order qn − 1 or
qn + 1 (depending on which of them is divisible by 4). Also, the normalizer of
this cyclic subgroup is a quaternion group of order 2(qn ± 1), and the formula
|SL2(qn)| = qn(q2n− 1) shows that this quaternion group has odd index. Thus
by construction, Q(qn) is a Sylow 2–subgroup of SL2(qn). Hence ω(Q(qn)3) is
a Sylow 2–subgroup of H0(qn), so ω(Q(q∞)3)∩Spin7(qn) is a Sylow 2–subgroup
of H(qn). It follows that S(qn) is a Sylow 2–subgroup of H(qn)·〈τ〉, and hence
also of Spin7(qn) by Proposition 2.5(b).

Following the notation of Definition A.7, we say that an elementary abelian
2–subgroup E ≤ Spin7(qn) has type I if its eigenspaces all have square dis-
criminant, and has type II otherwise. Let Er be the set of elementary abelian
subgroups of rank r in Spin7(qn) which contain z , and let EIr and EIIr be the
sets of those of type I or II, respectively. In Proposition A.8, we show that
there are two conjugacy classes of subgroups in EI4 and one conjugacy class of
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subgroups in EII4 . In Proposition A.9, an invariant xC(E) ∈ E is defined, for
all E ∈ E4 (and where C is one of the conjugacy classes in EI4 ) as a tool for
determining the conjugacy class of a subgroup. More precisely, E has type I if
and only if xC(E) ∈ 〈z〉, and E ∈ C if and only if xC(E) = 1. The next lemma
provides some more detailed information about the rank four subgroups and
these invariants.

Recall that we define Â = [[A,A,A]] and B̂ = [[B,B,B]].

Lemma 2.8 Fix n ≥ 1, set E∗ = 〈z, z1, Â, B̂〉 ≤ S(qn), and let C be the
Spin7(qn)–conjugacy class of E∗ . Let EU4 be the set of all elementary abelian
subgroups E ≤ S(qn) of rank 4 which contain U = 〈z, z1〉. Fix a generator
X ∈ C(qn) (the 2–power torsion in CSL2(qn)(A)), and choose Y ∈ C(q2n) such
that Y 2 = X . Then the following hold.

(a) E∗ has type I.

(b) EU4 =
{
Eijk, E

′
ijk | i, j, k ∈ Z

}
(a finite set), where

Eijk = 〈z, z1, Â, [[XiB,XjB,XkB]]〉

and

E′ijk = 〈z, z1, Â, [[XiY B,XjY B,XkY B]]〉.

(c) xC(Eijk) = [[(−I)i, (−I)j , (−I)k]] and xC(E′ijk) = [[(−I)i, (−I)j , (−I)k]]·Â.

(d) All of the subgroups E′ijk have type II. The subgroup Eijk has type I if
and only if i ≡ j (mod 2), and lies in C (is conjugate to E∗ ) if and only if
i ≡ j ≡ k (mod 2). The subgroups E000 , E001 , and E100 thus represent
the three conjugacy classes of rank four elementary abelian subgroups of
Spin7(qn) (and E∗ = E000 ).

(e) For any ϕ ∈ Γn ≤ Aut(H(qn)) (see Definition 2.4), if E′, E′′ ∈ EU4 are
such that ϕ(E′) = E′′ , then ϕ(xC(E′)) = xC(E′′).

Proof (a) The set{
(I, 0) , (A, 0) , (B, 0) , (AB, 0) , (0, A) , (0, B) , (0, AB)

}
is a basis of eigenvectors for the action of E∗ on Vn = M2(Fqn) ⊕M0

2 (Fqn).
(Since the matrices A, B , and AB all have order 4 and determinant one, each
has as eigenvalues the two distinct fourth roots of unity, and hence they all
have trace zero.) Since all of these have determinant one, E∗ has type I by
definition.
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(b) Consider the subgroups

R0 = ω(C(q∞)3) ∩ S(qn) =
{

[[Xi,Xj ,Xk]], [[XiY,XjY,XkY ]]
∣∣ i, j, k ∈ Z}

and
R1 = CS(qn)(〈U, Â〉) = R0·〈B̂〉.

Clearly, each subgroup E ∈ EU4 is contained in

CS(qn)(U) = S0(qn) = R0·〈[[Bi, Bj, Bk]]〉.

All involutions in this subgroup are contained in R1 = R0·〈[[B,B,B]]〉, and thus
E ≤ R1 . Hence E ∩ R0 has rank 3, which implies that E ≥ 〈z, z1, Â〉 (the
2–torsion in R0 ). Since all elements of order two in the coset R0·B̂ have the
form

[[XiB,XjB,XkB]] or [[XiY B,XjY B,XkY B]]

for some i, j, k , this shows that E must be one of the groups Eijk or E′ijk .
(Note in particular that E∗ = E000 .)

(c) By Proposition A.9(a), the element xC(E) ∈ E is characterized uniquely
by the property that xC(E) = g−1ψq

n
(g) for some g ∈ Spin7(q∞) such that

gEg−1 ∈ C . We now apply this explicitly to the subgroups Eijk and E′ijk .

For each i, Y −i(XiB)Y i = Y −2iXiB = B . Hence for each i, j, k ,

[[Y i, Y j, Y k]]−1·Eijk·[[Y i, Y j , Y k]] = E∗

and
ψq

n
([[Y i, Y j, Y k]]) = [[Y i, Y j, Y k]]·[[(−I)i, (−I)j , (−I)k]].

Hence
xC(Eijk) = [[(−I)i, (−I)j , (−I)k]].

Similarly, if we choose Z ∈ CSL2(q∞)(A) such that Z2 = Y , then for each i,

(Y iZ)−1(XiY B)(Y iZ) = B.

Hence for each i, j, k ,

[[Y iZ, Y jZ, Y kZ]]−1·E′ijk·[[Y iZ, Y jZ, Y kZ]] = E∗.

Since ψq
n
(Z) = ±ZA,

ψq
n
([[Y iZ, Y jZ, Y kZ]]) = [[Y iZ, Y jZ, Y kZ]]·[[(−I)iA, (−I)jA, (−I)kA]],

and hence
xC(E′ijk) = [[(−I)iA, (−I)jA, (−I)kA]].
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(d) This now follows immediately from point (c) and Proposition A.9(b,c).

(e) By Definition 2.4, Γn is generated by Inn(H(qn)) and the permutations
of the three factors in H(q∞) ∼= (SL2(q∞)3)/{±(I, I, I)}. If ϕ ∈ Γn is a
permutation automorphism, then it permutes the elements of EU4 , and preserves
the elements xC(−) by the formulas in (c). If ϕ ∈ Inn(H(qn)) and ϕ(E′) = E′′

for E′, E′′ ∈ EU4 , then ϕ(xC(E′)) = xC(E′′) by definition of xC(−); and so the
same property holds for all elements of Γn .

Following the notation introduced in Section 1, HomSpin7(qn)(P,Q) (for P,Q ≤
S(qn)) denotes the set of homomorphisms from P to Q induced by conjugation
by some element of Spin7(qn). Also, if P,Q ≤ S(qn) ∩ H(qn), HomΓn(P,Q)
denotes the set of homomorphisms induced by restriction of an element of Γn .
Let Fn = FSol(qn) be the fusion system over S(qn) generated by Spin7(qn)
and Γn . In other words, for each P,Q ≤ S(qn), HomFn(P,Q) is the set of all
composites

P = P0
ϕ1−−−→ P1

ϕ2−−−→ P2 −−−→ · · · −−−→ Pk−1
ϕk−−−→ Pk = Q,

where Pi ≤ S(qn) for all i, and each ϕi lies in HomSpin7(qn)(Pi−1, Pi) or (if
Pi−1, Pi ≤ H(qn)) HomΓn(Pi−1, Pi). This clearly defines a fusion system over
S(qn).

Proposition 2.9 Fix n ≥ 1. Let E ≤ S(qn) be an elementary abelian sub-
group of rank 3 which contains U , and such that

CS(qn)(E) ∈ Syl2(CSpin7(qn)(E)).

Then

{ϕ ∈ AutFn(CS(qn)(E)) |ϕ(z) = z} = AutSpin7(qn)(CS(qn)(E)). (1)

Proof Set

Spin = Spin7(qn), S = S(qn), Γ = Γn, and F = Fn
for short. Consider the subgroups

R0 = R0(qn) def= ω(C(q∞)3) ∩ S and R1 = R1(qn) def= CS(〈U, Â〉) = 〈R0, B̂〉.
Here, R0 is generated by elements of the form [[X1,X2,X3]], where either Xi ∈
C(qn), or X1 = X2 = X3 = X ∈ C(q2n) and ψq

n
(X) = −X . Also, C(qn) ∈

Syl2(CSL2(qn)(A)) is cyclic of order 2k ≥ 4, where 2k is the largest power which
divides qn ± 1; and C(q2n) is cyclic of order 2k+1 . So

R0
∼= (C2k)3 and R1 = R0 o 〈B̂〉,
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where B̂ = [[B,B,B]] has order 2 and acts on R0 via (g 7→ g−1). Note that

〈U, Â〉 = 〈[[±I,±I,±I]], [[A,A,A]]〉 ∼= C3
2

is the 2–torsion subgroup of R0 .

We claim that

R0 is the only subgroup of S isomorphic to (C2k)3 . (2)

To see this, let R′ ≤ S be any subgroup isomorphic to (C2k)3 , and let E′ ∼= C3
2

be its 2–torsion subgroup. Recall that for any 2–group P , the Frattini subgroup
Fr(P ) is the subgroup generated by commutators and squares in P . Thus

E′ ≤ Fr(R′) ≤ Fr(S) ≤ 〈R0, [[B,B, I]]〉
(note that [[B,B, I]] = (τ ·[[B, I, I]])2 ). Any elementary abelian subgroup of
rank 4 in Fr(S) would have to contain 〈U, Â〉 (the 2–torsion in R0

∼= C3
2k

), and
this is impossible since no element of the coset R0·[[B,B, I]] commutes with
Â. Thus, rk(Fr(S)) = 3. Hence U ≤ E′ , since otherwise 〈U,E′〉 would be an
elementary abelian subgroup of Fr(S) of rank ≥ 4. This in turn implies that
R′ ≤ CS(U), and hence that E′ ≤ Fr(CS(U)) ≤ R0 . Thus E′ = 〈U, Â〉 (the
2–torsion in R0 again). Hence R′ ≤ CS(〈U, Â〉) = 〈R0, B̂〉, and it follows that
R′ = R0 . This finishes the proof of (2).

Choose generators x1, x2, x3 ∈ R0 as follows. Fix X ∈ CSL2(q∞)(A) of order
2k , and Y ∈ CSL2(q2n)(A) of order 2k+1 such that Y 2 = X . Set x1 = [[I, I,X]],
x2 = [[X, I, I]], and x3 = [[Y, Y, Y ]]. Thus, x2k−1

1 = z , x2k−1

2 = z1 , and
(x3)2k−1

= Â.

Now let E ≤ S(qn) be an elementary abelian subgroup of rank 3 which con-
tains U , and such that CS(qn)(E) ∈ Syl2(CSpin(E)). In particular, E ≤ R1 =
CS(qn)(U). There are two cases to consider: that where E ≤ R0 and that where
E � R0 .

Case 1: Assume E ≤ R0 . Since R0 is abelian of rank 3, we must have
E = 〈U, Â〉, the 2–torsion subgroup of R0 , and CS(E) = R1 . Also, by (2),
neither R0 nor R1 is isomorphic to any other subgroup of S ; and hence

AutF (Ri) =
〈
AutSpin(Ri),AutΓ(Ri)

〉
for i = 0, 1. (4)

By Proposition A.8, AutSpin(E) is the group of all automorphisms of E which
send z to itself. In particular, since H(qn) = CSpin(U), AutH(qn)(E) is the
group of all automorphisms of E which are the identity on U . Also, Γ =
Inn(H(qn))·Σ̂3 , where Σ̂3 sends Â = [[A,A,A]] to itself and permutes the non-
trivial elements of U = {[[±I,±I,±I]]}. Hence AutΓ(E) is the group of all
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automorphisms which send U to itself. So if we identify Aut(E) ∼= GL3(Z/2)
via the basis {z, z1, Â}, then

AutSpin(E) = T1
def= GL1

2(Z/2) =
{

(aij) ∈ GL3(Z/2) | a21 = a31 = 0
}

and

AutΓ(E) = T2
def= GL2

1(Z/2) =
{

(aij) ∈ GL3(Z/2) | a31 = a32 = 0
}
.

By (2) (and since E is the 2–torsion in R0 ),

NSpin(E) = NSpin(R0) and {γ ∈ Γ | γ(E) = E} = {γ ∈ Γ | γ(R0) = R0}.

Since CSpin(E) = CSpin(R0)·〈B̂〉, the only nonidentity element of AutSpin(R0)
or of AutΓ(R0) which is the identity on E is conjugation by B̂ , which is −I .
Hence restriction from R0 to E induces isomorphisms

AutSpin(R0)/{±I} ∼= AutSpin(E) and AutΓ(R0)/{±I} ∼= AutΓ(E).

Upon identifying Aut(R0) ∼= GL3(Z/2k) via the basis {x1, x2, x3}, these can
be regarded as sections

µi : Ti −−−−−→ GL3(Z/2k)/{±I} = SL3(Z/2k)× {λI |λ ∈ (Z/2k)∗}/{±I}
of the natural projection from GL3(Z/2k)/{±I} to GL3(Z/2), which agree on
the group T0 = T1 ∩ T2 of upper triangular matrices.

We claim that µ1 and µ2 both map trivially to the second factor. Since this
factor is abelian, it suffices to show that T0 is generated by [T1, T1] ∩ T0 and
[T2, T2] ∩ T0 , and that each Ti is generated by [Ti, Ti] and T0 — and this is
easily checked. (Note that T1

∼= T2
∼= Σ4 .)

By carrying out the above procedure over the field Fq2n , we see that both of
these sections µi can be lifted further to SL3(Z/2k+1) (still agreeing on T0 ).
So by Lemma A.10, there is a section

µ : GL3(Z/2) −−−−−→ SL3(Z/2k)

which extends both µ1 and µ2 . By (4), AutF (R0) = Im(µ)·〈 − I〉.

We next identify AutF (R1). By Lemma 2.8(a), E∗
def= 〈z, z1, Â, B̂〉 ≤ Spin7(qn)

is a subgroup of rank 4 and type I. So by Proposition A.8, AutSpin(E∗) contains
all automorphisms of E∗ ∼= C4

2 which send z ∈ Z(Spin) to itself. Hence for any
x ∈ NSpin(R1), since cx(z) = z , there is x1 ∈ NSpin(E∗) such that cx1 |E = cx|E
(ie, xx−1

1 ∈ CSpin(E)) and cx1(B̂) = B̂ (ie, [x1, B̂] = 1). Set x2 = xx−1
1 .

Since CSpin(U) = H(qn) ≤ Im(ω), we see that CSpin(E) = K0·〈B̂〉, where

K0 = ω(CSL2(q∞)(A)3) ∩ Spin
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is abelian, R0 ∈ Syl2(K0), and B̂ acts on K0 by inversion. Upon replacing x1

by B̂x1 and x2 by x2B̂
−1 if necessary, we can assume that x2 ∈ K0 . Then

[x2, B̂] = x2·(B̂x2B̂
−1)−1 = x2

2,

while by the original choice of x, x1 we have

[x2, B̂] = [xx−1
1 , B̂] = [x, B̂] ∈ R0.

Thus x2
2 ∈ R0 ∈ Syl2(K0), and hence x2 ∈ R0 ≤ R1 . Since x = x2x1 was an

arbitrary element of NSpin(R1), this shows that NSpin(R1) ≤ R1·CSpin(B̂), and
hence that

AutSpin(R1) = Inn(R1)·{ϕ ∈ AutSpin(R1) |ϕ(B̂) = B̂}. (5)

Since AutΓ(R1) is generated by its intersection with AutSpin(R1) and the group
Σ̂3 which permutes the three factors in H(q∞) (and since the elements of Σ̂3

all fix B̂ ), we also have

AutΓ(R1) = Inn(R1)·{ϕ ∈ AutΓ(R1) |ϕ(B̂) = B̂}.
Together with (4) and (5), this shows that AutF (R1) is generated by Inn(R1)
together with certain automorphisms of R1 = R0·〈B̂〉 which send B̂ to itself.
In other words,

AutF (R1) = Inn(R1)·
{
ϕ ∈ Aut(R1)

∣∣ϕ(B̂) = B̂, ϕ|R0 ∈ AutF (R0)
}

= Inn(R1)·
{
ϕ ∈ Aut(R1)

∣∣ϕ(B̂) = B̂, ϕ|R0 ∈ µ(GL3(Z/2))
}
.

Thus{
ϕ ∈ AutF (R1)

∣∣ϕ(z) = z
}

= Inn(R1)·
{
ϕ ∈ Aut(R1)

∣∣ϕ(B̂) = B̂, ϕ|R0 ∈ µ(T1) = AutSpin(R0)
}

= AutSpin(R1),

the last equality by (5); and (1) now follows.

Case 2: Now assume that E � R0 . By assumption, U ≤ E (hence E ≤
CS(E) ≤ CS(U)), and CS(E) is a Sylow subgroup of CSpin(E). Since CS(E)
is not isomorphic to R1 = CS(〈z, z1, Â〉) (by (2)), this shows that E is not
Spin–conjugate to 〈z, z1, Â〉. By Proposition A.8, Spin contains exactly two
conjugacy classes of rank 3 subgroups containing z , and thus E must have type
II. Hence by Proposition A.8(d), CS(E) is elementary abelian of rank 4, and
also has type II.

Let C be the Spin7(qn)–conjugacy class of the subgroup E∗ = 〈U, Â, B̂〉 ∼= C4
2 ,

which by Lemma 2.8(a) has type I. Let E ′ be the set of all subgroups of S which
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are elementary abelian of rank 4, contain U , and are not in C . By Lemma
2.8(e), for any ϕ ∈ IsoΓ(E′, E′′) and any E′ ∈ E ′ , E′′ def= ϕ(E′) ∈ E ′ , and ϕ
sends xC(E′) to xC(E′′). The same holds for ϕ ∈ IsoSpin(E′, E′′) by definition
of the elements xC(−) (Proposition A.9). Since CS(E) ∈ E ′ , this shows that all
elements of AutF (CS(E)) send the element xC(CS(E)) to itself. By Proposition
A.9(c), AutSpin(CS(E)) is the group of automorphisms which are the identity
on the rank two subgroup 〈xC(CS(E)), z〉 ; and (1) now follows.

One more technical result is needed.

Lemma 2.10 Fix n ≥ 1, and let E,E′ ≤ S(qn) be two elementary abelian
subgroups of rank three which contain U , and which are Γn–conjugate. Then
E and E′ are Spin7(qn)–conjugate.

Proof By [23, 3.6.3(ii)], −I is the only element of order 2 in SL2(q∞). Con-
sider the sets

J1 =
{
X ∈ SL2(qn)

∣∣X2 = −I
}

and
J2 =

{
X ∈ SL2(q2n)

∣∣ψqn(X) = −X, X2 = −I
}
.

Here, as usual, ψq
n

is induced by the field automorphism (x 7→ xq
n
). All ele-

ments in J1 are SL2(q)–conjugate (this follows, for example, from [23, 3.6.23]),
and we claim the same is true for elements of J2 .

Let SL∗2(qn) be the group of all elements X ∈ SL2(q2n) such that ψq
n
(X) =

±X . This is a group which contains SL2(qn) with index 2. Let k be such that
the Sylow 2–subgroups of SL2(qn) have order 2k ; then k ≥ 3 since |SL2(qn)| =
qn(q2n − 1). Any S ∈ Syl2(SL∗2(qn)) is quaternion of order 2k+1 ≥ 16 (see [15,
Theorem 2.8.3]) and its intersection with SL2(qn) is quaternion of order 2k ,
so all elements in S ∩ J2 are S–conjugate. It follows that all elements of J2

are SL∗2(qn)–conjugate. If X,X ′ ∈ J2 and X ′ = gXg−1 for g ∈ SL∗2(qn),
then either g ∈ SL2(qn) or gX ∈ SL2(qn), and in either case X and X ′ are
conjugate by an element of SL2(qn).

By Proposition 2.5(a),

E,E′ ≤ CSpin7(qn)(U) = H(qn) def= ω(SL2(q∞)3) ∩ Spin7(qn).

Thus E = 〈z, z1, [[X1,X2,X3]]〉 and E′ = 〈z, z1, [[X ′1,X
′
2,X

′
3]]〉, where the Xi

are all in J1 or all in J2 , and similarly for the X ′i . Also, since E and E′ are
Γn–conjugate (and each element of Γn leaves U = 〈z, z1〉 invariant), the Xi and
X ′i must all be in the same set J1 or J2 . Hence they are all SL2(qn)–conjugate,
and so E and E′ are Spin7(qn)–conjugate.
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We are now ready to show that the fusion systems Fn are saturated, and satisfy
the conditions listed in Theorem 2.1.

Proposition 2.11 For a fixed odd prime power q , let S(qn) ≤ S(q∞) ≤
Spin7(q∞) be as defined above. Let z ∈ Z(Spin7(q∞)) be the central element
of order 2. Then for each n, Fn = FSol(qn) is saturated as a fusion system over
S(qn), and satisfies the following conditions:

(a) For all P,Q ≤ S(qn) which contain z , if α ∈ Hom(P,Q) is such that
α(z) = z , then α ∈ HomFn(P,Q) if and only if α ∈ HomSpin7(qn)(P,Q).

(b) CFn(z) = FS(qn)(Spin7(qn)) as fusion systems over S(qn).

(c) All involutions of S(qn) are Fn–conjugate.

Furthermore, Fm ⊆ Fn for m|n. The union of the Fn is thus a category
FSol(q∞) whose objects are the finite subgroups of S(q∞).

Proof We apply Proposition 1.2, where p = 2, G = Spin7(qn), S = S(qn),
Z = 〈z〉 = Z(G); and U and CG(U) = H(qn) are as defined above. Also, Γ =
Γn ≤ Aut(H(qn)). Condition (a) in Proposition 1.2 (all noncentral involutions
in G are conjugate) holds since all subgroups in E2 are conjugate (Proposition
A.8), and condition (b) holds by definition of Γ. Condition (c) holds since

{γ ∈ Γ | γ(z) = z} = Inn(H(qn))·〈cτ 〉 = AutNG(U)(H(qn))

by definition, since H(qn) = CG(U), and by Proposition 2.5(b). Condition (d)
was shown in Proposition 2.9, and condition (e) in Lemma 2.10. So by Propo-
sition 1.2, Fn is a saturated fusion system, and CFn(Z) = FS(qn)(Spin7(qn)).

The last statement is clear.

3 Linking systems and their automorphisms

We next show the existence and uniqueness of centric linking systems associated
to the FSol(q), and also construct certain automorphisms of these categories
analogous to the automorphisms ψq of the group Spin7(qn). One more technical
lemma about elementary abelian subgroups, this time about their F –conjugacy
classes, is first needed.
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Lemma 3.1 Set F = FSol(q). For each r ≤ 3, there is a unique F –conjugacy
class of elementary abelian subgroups E ≤ S(q) of rank r . There are two
F –conjugacy classes of rank four elementary abelian subgroups E ≤ S(q): one
is the set C of subgroups Spin7(q)–conjugate to E∗ = 〈z, z1, Â, B̂〉, while the
other contains the other conjugacy class of type I subgroups as well as all type
II subgroups. Furthermore, AutF (E) = Aut(E) for all elementary abelian
subgroups E ≤ S(q) except when E has rank four and is not F –conjugate to
E∗ , in which case

AutF (E) = {α ∈ Aut(E) |α(xC(E)) = xC(E)}.

Proof By Lemma 2.8(d), the three subgroups

E∗ = 〈z, z1, Â, [[B,B,B]]〉, E001 = 〈z, z1, Â, [[B,B,XB]]〉, E100 = 〈z, z1, Â, [[XB,B,B]]〉

(where X is a generator of C(q)) represent the three Spin7(q)–conjugacy classes
of rank four subgroups. Clearly, E100 and E001 are Γ1–conjugate, hence F –
conjugate; and by Lemma 2.8(e), neither is Γ1–conjugate to E∗ . This proves
that there are exactly two F –conjugacy classes of such subgroups.

Since E∗ and E001 both are of type I in Spin7(q), their Spin7(q)–automorphism
groups contain all automorphisms which fix z (see Proposition A.8). By Lemma
2.8(e), z is fixed by all Γ–automorphisms of E001 , and so AutF (E001) is the
group of all automorphisms of E001 which send z = xC(E001) to itself. On the
other hand, E∗ contains automorphisms (induced by permuting the three coor-
dinates of H ) which permute the three elements z, z1, zz1 ; and these together
with AutSpin(E∗) generate Aut(E∗).

It remains to deal with the subgroups of smaller rank. By Proposition A.8 again,
there is just one Spin7(q)–conjugacy class of elementary abelian subgroups of
rank one or two. There are two conjugacy classes of rank three subgroups,
those of type I and those of type II. Since E100 is of type II and E001 of type
I, all rank three subgroups of E001 have type I, while some of the rank three
subgroups of E100 have type II. Since E001 is F –conjugate to E100 , this shows
that some subgroup of rank three and type II is F –conjugate to a subgroup of
type I, and hence all rank three subgroups are conjugate to each other. Finally,
AutF (E) = Aut(E) whenver rk(E) ≤ 3 since any such group is F –conjugate
to a subgroup of E∗ (and we have just seen that AutF (E∗) = Aut(E∗)).

To simplify the notation, we now define

FSpin(qn) def= FS(qn)(Spin7(qn))
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for all 1 ≤ n ≤ ∞: the fusion system of the group Spin7(qn) at the Sylow
subgroup S(qn). By construction, this is a subcategory of FSol(qn). We write

OSol(qn) = O(FSol(qn)) and OSpin(qn) = O(FSpin(qn))

for the corresponding orbit categories: both of these have as objects the sub-
groups of S(qn), and have as morphism sets

MorOSol(qn)(P,Q) = HomFSol(qn)(P,Q)/ Inn(Q) ⊆ Rep(P,Q)

and
MorOSpin(qn)(P,Q) = HomFSpin(qn)(P,Q)/ Inn(Q) .

Let OcSol(q
n) ⊆ OSol(qn) and OcSpin(qn) ⊆ OSpin(qn) be the centric orbit cate-

gories; ie, the full subcategories whose objects are the FSol(qn)– or FSpin(qn)–
centric subgroups of S(qn). (We will see shortly that these in fact have the
same objects.)

The obstructions to the existence and uniqueness of linking systems associated
to the fusion systems FSol(qn), and to the existence and uniqueness of certain
automorphisms of those linking systems, lie in certain groups which were iden-
tified in [6] and [5]. It is these groups which are shown to vanish in the next
lemma.

Lemma 3.2 Fix a prime power q , and let

ZSol(q) : OcSol(q) −−−−→ Ab and ZSpin(q) : OcSpin(q) −−−−→ Ab

be the functors Z(P ) = Z(P ). Then for all i ≥ 0,

lim←−
i

OcSol(q)

(ZSol(q)) = 0 = lim←−
i

OcSpin(q)

(ZSpin(q)).

Proof Set F = FSol(q) for short. Let P1, . . . , Pk be F –conjugacy class repre-
sentatives for all F –centric subgroups Pi ≤ S(q), arranged such that |Pi| ≤ |Pj |
for i ≤ j . For each i, let Zi ⊆ ZSol(q) be the subfunctor defined by setting
Zi(P ) = ZSol(q)(P ) if P is conjugate to Pj for some j ≤ i and Zi(P ) = 0
otherwise. We thus have a filtration

0 = Z0 ⊆ Z1 ⊆ · · · ⊆ Zk = ZSol(q)

of ZSol(q) by subfunctors, with the property that for each i, the quotient
functor Zi/Zi−1 vanishes except on the conjugacy class of Pi (and such that
(Zi/Zi−1)(Pi) = ZSol(q)(Pi)). By [6, Proposition 3.2],

lim←−
∗(Zi/Zi−1) ∼= Λ∗(OutF (Pi);Z(Pi))
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for each i. Here, Λ∗(Γ;M) are certain graded groups, defined in [16, section 5]
for all finite groups Γ and all finite Z(p)[Γ]–modules M . We will show that
Λ∗(OutF (Pi);Z(Pi)) = 0 except when Pi = S(q) or S0(q) (see Definition 2.6).

Fix an F –centric subgroup P ≤ S(q). For each j ≥ 1, let Ωj(Z(P )) = {g ∈
Z(P ) | g2j = 1}, and set E = Ω1(Z(P )) — the 2–torsion in the center of P .
For each j ≥ 1, let Ωj(Z(P )) = {g ∈ Z(P ) | g2j = 1}, and set E = Ω1(Z(P ))
— the 2–torsion in the center of P . We can assume E is fully centralized in F
(otherwise replace P and E by appropriate subgroups in the same F –conjugacy
classes).

Assume first that Q
def= CS(q)(E) 	 P , and hence that NQ(P ) 	 P . Then

any x ∈ NQ(P )rP centralizes E = Ω1(Z(P )). Hence for each j , x acts triv-
ially on Ωj(Z(P ))/Ωj−1(Z(P )), since multiplication by pj−1 sends this group
NQ(P )/P –linearly and monomorphically to E . Since cx is a nontrivial element
of OutF (P ) of p–power order,

Λ∗(OutF (P ); Ωj(Z(P ))/Ωj−1(Z(P ))) = 0

for all j ≥ 1 by [16, Proposition 5.5], and thus Λ∗(OutF (P );Z(P )) = 0.

Now assume that P = CS(q)(E) = P , the centralizer in S(q) of a fully F –
centralized elementary abelian subgroup. Since there is a unique conjugacy
class of elementary abelian subgroup of any rank ≤ 3, CS(q)(E) always contains
a subgroup C4

2 , and hence P contains a subgroup C4
2 which is self centralizing

by Proposition A.8(a). This shows that Z(P ) is elementary abelian, and hence
that Z(P ) = E .

We can assume P is fully normalized in F , so

AutS(q)(P ) ∈ Syl2(AutF (P ))

by condition (I) in the definition of a saturated fusion system. Since P =
CS(q)(E) (and E = Z(P )), this shows that

Ker
[
OutF (P ) −−−→ AutF (E)

]
has odd order. Also, since E is fully centralized, any F –automorphism of E
extends to an F –automorphism of P = CS(q)(E), and thus this restriction map
between automorphism groups is onto. By [16, Proposition 6.1(i,iii)], it now
follows that

Λi(OutF (P );Z(P )) ∼= Λi(AutF (E);E). (1)

By Lemma 3.1, AutF (E) = Aut(E), except when E lies in one certain F –
conjugacy class of subgroups E ∼= C4

2 ; and in this case P = E and AutF (E) is
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the group of automorphisms fixing the element xC(E). In this last (exceptional)
case, O2(AutF (E)) 6= 1 (the subgroup of elements which are the identity on
E/〈xC(E)〉), so

Λ∗(OutF (P );Z(P )) = Λ∗(AutF (E);E) = 0 (2)

by [16, Proposition 6.1(ii)]. Otherwise, when AutF (E) = Aut(E), by [16,
Proposition 6.3] we have

Λi(AutF (E);E) ∼=


Z/2 if rk(E) = 2, i = 1
Z/2 if rk(E) = 1, i = 0
0 otherwise.

(3)

By points (1), (2), and (3), the groups Λ∗(OutF (P );Z(P )) vanish except in
the two cases E = 〈z〉 or E = U , and these correspond to P = S(q) or
P = NS(q)(U) = S0(q).

We can assume that Pk = S(q) and Pk−1 = S0(q). We have now shown that
lim←−
∗(Zk−2) = 0, and thus that ZSol(q) has the same higher limits as Zk/Zk−2 .

Hence lim←−
j(ZSol(q)) = 0 for all j ≥ 2, and there is an exact sequence

0 −−−→ lim←−
0(ZSol(q)) −−−−→ lim←−

0(Zk/Zk−1)
∼=Z/2

−−−−→ lim←−
1(Zk−1/Zk−2)
∼=Z/2

−−−−→ lim←−
1(ZSol(q)) −−−→ 0.

One easily checks that lim←−
0(ZSol(q)) = 0, and hence we also get lim←−

1(ZSol(q)) =
0.

The proof that lim←−
i(ZSpin(q)) = 0 for all i ≥ 1 is similar, but simpler. If

F = FSpin(q), then for any F –centric subgroup P � S(q), there is an ele-
ment x ∈ NS(P )rP such that [x, P ] = 〈z〉, and cx is a nontrivial element of
O2(OutF (P )). Thus

Λ∗(OutF (P );Z(P )) = 0

for all such P by [16, Proposition 6.1(ii)] again.

We are now ready to construct classifying spaces BSol(q) for these fusion sys-
tems FSol(q). The following proposition finishes the proof of Theorem 2.1, and
also contains additional information about the spaces BSol(q).

To simplify notation, we write LcSpin(qn) = LcS(qn)(Spin7(qn)) (n ≥ 1) to de-
note the centric linking system for the group Spin7(qn). The field automor-
phism (x 7→ xq) induces an automorphism of Spin7(qn) which sends S(qn) to
itself; and this in turn induces automorphisms ψqF = ψqF (Sol), ψqF (Spin), and
ψqL(Spin) of the fusion systems FSol(qn) ⊇ FSpin(qn) and of the linking system
LcSpin(qn).
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Proposition 3.3 Fix an odd prime q , and n ≥ 1. Let S = S(qn) ∈
Syl2(Spin7(qn)) be as defined above. Let z ∈ Z(Spin7(qn)) be the central
element of order 2. Then there is a centric linking system

L = LcSol(q
n) π−−−−−→ FSol(qn)

associated to the saturated fusion system F def= FSol(qn) over S , which has the
following additional properties.

(a) A subgroup P ≤ S is F –centric if and only if it is FSpin(qn)–centric.

(b) LcSol(q
n) contains LcSpin(qn) as a subcategory, in such a way that π|LcSpin(qn)

is the usual projection to FcSpin(qn), and that the distinguished monomor-
phisms

P
δP−−−→ AutL(P )

for L = LcSol(q
n) are the same as those for LcSpin(qn).

(c) Each automorphism of LcSpin(qn) which covers the identity on FcSpin(qn)
extends to an automorphism of LcSol(q

n) which covers the identity on
FcSol(q

n). Furthermore, such an extension is unique up to composition
with the functor

Cz : LcSol(q
n) −−−−−→ LcSol(q

n)

which is the identity on objects and sends α ∈ MorLcSol(q
n)(P,Q) to ẑ ◦α ◦

ẑ−1 (“conjugation by z”).

(d) There is a unique automorphism ψqL ∈ Aut(LcSol(q
n)) which covers the

automorphism of FSol(qn) induced by the field automorphism (x 7→ xq),
which extends the automorphism of LcSpin(qn) induced by the field auto-

morphism, and which is the identity on π−1(FSol(q)).

Proof By Proposition 2.11, F = FSol(qn) is a saturated fusion system over
S = S(qn) ∈ Syl2(Spin7(qn)), with the property that CF (z) = FSpin(qn). Point
(a) follows as a special case of [6, Proposition 2.5(a)].

Since lim←−
i

OcSol(q
n)

(ZSol(qn)) = 0 for i = 2, 3 by Lemma 3.2, there is by [6, Propo-

sition 3.1] a centric linking system L = LcSol(q
n) associated to F , which is

unique up to isomorphism (an isomorphism which commutes with the projec-
tion to FSol(qn) and with the distinguished monomorphisms). Furthermore,
π−1(FSpin(qn)) is a linking system associated to FSpin(qn), such a linking sys-
tem is unique up to isomorphism since lim←−

2(ZSpin(qn)) = 0 (Lemma 3.2 again),
and this proves (b).
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(c) By [5, Theorem 6.2] (more precisely, by the same proof as that used in
[5]), the vanishing of lim←−

i(ZSol(qn)) for i = 1, 2 (Lemma 3.2) shows that each
automorphism of F = FSol(qn) lifts to an automorphism of L, which is unique
up to a natural isomorphism of functors; and any such natural isomorphism
sends each object P ≤ S to a isomorphism ĝ for some g ∈ Z(P ). Similarly,
the vanishing of lim←−

i(ZSpin(qn)) for i = 1, 2 shows that each automorphism of
FSpin(qn) lifts to an automorphism of LcSpin(qn), also unique up to a natural
isomorphism of functors. Since LcSol(q

n) and LcSpin(qn) have the same objects by
(a), this shows that each automorphism of LcSpin(qn) which covers the identity
on FcSpin(qn) extends to a unique automorphism of LcSol(q

n) which covers the
identity on FSol(qn).

It remains to show, for any Φ ∈ Aut(LcSol(q
n)) which covers the identity on

FcSol(q
n) and such that Φ|LcSpin(qn) = Id, that Φ is the identity or conjugation

by z . We have already noted that Φ must be naturally isomorphic to the
identity; ie, that there are elements γ(P ) ∈ Z(P ), for all P in LcSol(q

n), such
that

Φ(α) = γ(Q) ◦ α ◦ γ(P )−1 for all α ∈ MorLcSol(q
n)(P,Q), all P,Q.

Since Φ is the identity on LcSpin(qn), the only possibilities are γ(P ) = 1 for all
P (hence Φ = Id), or γ(P ) = z for all P (hence Φ is conjugation by z ).

(d) Now consider the automorphism ψqF ∈ Aut(FSol(qn)) induced by the field
automorphism (x 7→ xq) of Fqn . We have just seen that this lifts to an au-
tomorphism ψqL of LcSol(q

n), which is unique up to natural isomorphism of
functors. The restriction of ψqL to LcSpin(qn), and the automorphism ψqL(Spin)
of LcSpin(qn) induced directly by the field automorphism, are two liftings of
ψqF |FSpin(qn) , and hence differ by a natural isomorphism of functors which ex-
tends to a natural isomorphism of functors on LcSol(q

n). Upon composing with
this natural isomorphism, we can thus assume that ψqL does restrict to the
automorphism of LcSpin(qn) induced by the field automorphism.

Now consider the action of ψqL on AutL(S0(q)), which by assumption is the
identity on AutLcSpin(q)(S0(q)), and in particular on δ(S0(q)) itself. Thus, with
respect to the extension

1 −−−→ S0(q) −−−−→ AutL(S0(q)) −−−−→ Σ3 −−−→ 1,

ψqL is the identity on the kernel and on the quotient, and hence is described by
a cocycle

η ∈ Z1(Σ3;Z(S0(q))) ∼= Z1(Σ3; (Z/2)2).

Since H1(Σ3; (Z/2)2) = 0, η must be a coboundary, and thus the action of ψqL
on AutL(S0(q)) is conjugation by an element of Z(S0(q)). Since it is the identity
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on AutLcSpin(q)(S0(q)), it must be conjugation by 1 or z . If it is conjugation by
z , then we can replace ψqL (on the whole category L) by its composite with z ;
ie, by its composite with the functor which is the identity on objects and sends
α ∈MorL(P,Q) to ẑ ◦ α ◦ ẑ .

In this way, we can assume that ψqL is the identity on AutL(S0(q)). By con-
struction, every morphism in FSol(q) is a composite of morphisms in FSpin(q)
and restrictions of automorphisms in FSol(q) of S0(q). Since ψqL is the identity
on π−1(FSpin(q)), this shows that it is the identity on π−1(FSol(q)).

It remains to check the uniqueness of ψqL . If ψ′ is another functor with the
same properties, then by (e), (ψ′)−1 ◦ ψqL is either the identity or conjugation
by z ; and the latter is not possible since conjugation by z is not the identity
on π−1(FSol(q)).

This finishes the construction of the classifying spaces BSol(q) = |LSol(q)|∧2
for the fusion systems constructed in Section 2. We end the section with an
explanation of why these are not the fusion systems of finite groups.

Proposition 3.4 For any odd prime power q , there is no finite group G whose
fusion system is isomorphic to that of FSol(q).

Proof Let G be a finite group, fix S ∈ Syl2(G), and assume that S ∼= S(q) ∈
Syl2(Spin7(q)), and that the fusion system FS(G) satisfies conditions (a) and
(b) in Theorem 2.1. In particular, all involutions in G are conjugate, and the
centralizer of any involution z ∈ G has the fusion system of Spin7(q). When
q ≡ ±3 (mod 8), Solomon showed [22, Theorem 3.2] that there is no finite group
whose fusion system has these properties. When q ≡ ±1 (mod 8), he showed (in
the same theorem) that there is no such G such that Ĥ def= CG(z)/O2′ (CG(z))
is isomorphic to a subgroup of Aut(Spin7(q)) which contains Spin7(q) with odd
index. (Here, O2′(−) means largest odd order normal subgroup.)

Let G be a finite group whose fusion system is isomorphic to FSol(q), and again
set Ĥ def= CG(z)/O2′(CG(z)) for some involution z ∈ G. Set H = O2′(Ĥ/〈z〉):
the smallest normal subgroup of Ĥ/〈z〉 of odd index. Then H has the fu-
sion system of Ω7(q) ∼= Spin7(q)/Z(Spin7(q)). We will show that H ∼= Ω7(q′)
for some odd prime power q′ . It then follows that O2′(Ĥ) ∼= Spin7(q′), thus
contradicting Solomon’s theorem and proving our claim.

The following “classification free” argument for proving that H ∼= Ω7(q′) for
some q′ was explained to us by Solomon. We refer to the appendix for general
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results about the groups Spin±n (q) and Ω±n (q). Fix S ∈ Syl2(H). Thus S is
isomorphic to a Sylow 2–subgroup of Ω7(q), and has the same fusion.

We first claim that H must be simple. By definition (H = O2′(Ĥ/〈z〉)), H
has no proper normal subgroup of odd index, and H has no proper normal
subgroup of odd order since any such subgroup would lift to an odd order
normal subgroup of Ĥ = CG(z)/O2′ (CG(z)). Hence for any proper normal
subgroup N C H , Q def= N ∩ S is a proper normal subgroup of S , which is
strongly closed in S with respect to H in the sense that no element of Q can be
H –conjugate to an element of SrQ. Using Lemma A.4(a), one checks that the
group Ω7(q) contains three conjugacy classes of involutions, classified by the
dimension of their (−1)–eigenspace. It is not hard to see (by taking products)
that any subgroup of S which contains all involutions in one of these conjugacy
classes contains all involutions in the other two classes as well. Furthermore, S
is generated by the set of all of its involutions, and this shows that there are no
proper subgroups which are strongly closed in S with respect to H . Since we
have already seen that the intersection with S of any proper normal subgroup
of H would have to be such a subgroup, this shows that H is simple.

Fix an isomorphism

S
ϕ−−−−−−−→∼=

S′ ∈ Syl2(Ω7(q))

which preserves fusion. Choose x′ ∈ S′ whose (−1)–eigenspace is 4–dimension-
al, and such that 〈x′〉 is fully centralized in FS′(Ω7(q)). Then

CO7(q)(x
′) ∼= O+

4 (q)×O3(q)

by Lemma A.4(c). Since Ω+
4 (q) ≤ O+

4 (q) and Ω3(q) ≤ O3(q) both have index 4,
CΩ7(q)(x′) is isomorphic to a subgroup of O+

4 (q)×O3(q) of index 4, and contains
a normal subgroup K ′ ∼= Ω+

4 (q)×Ω3(q) of index 4. Since 〈x′〉 is fully centralized,

CS′(x′) is a Sylow 2–subgroup of CΩ7(q)(x′), and hence S′0
def= S′∩K ′ is a Sylow

2–subgroup of K ′ .

Set x = ϕ−1(x′) ∈ S . Since S ∼= S′ have the same fusion in H and Ω7(q),
CS(x) ∼= CS′(x′) have the same fusion in CH(x) and CΩ7(q)(x′). Hence

H1(CH(x);Z(2)) ∼= H1(CΩ7(q)(x
′);Z(2))

(homology is determined by fusion), both have order 4, and thus CH(x) also has
a unique normal subgroup K C H of index 4. Set S0 = K ∩ S . Thus ϕ(S0) =
S′0 , and using Alperin’s fusion theorem one can show that this isomorphism is
fusion preserving with respect to the inclusions of Sylow subgroups S0 ≤ K
and S′0 ≤ K ′ .

Geometry & Topology, Volume 6 (2002)



950 Ran Levi and Bob Oliver

Using the isomorphisms of Proposition A.5:

Ω+
4 (q) ∼= SL2(q)×〈x〉 SL2(q) and Ω3(q) ∼= PSL2(q),

we can write K ′ = K ′1 ×〈x′〉 K ′2 , where K ′1
∼= SL2(q) and K ′2

∼= SL2(q) ×
PSL2(q). Set S′i = S′∩K ′i ∈ Syl2(K ′i); thus S′0 = S′1×〈x′〉S′2 . Set Si = ϕ−1(S′i),
so that S0 = S1×〈x〉 S2 is normal of index 4 in CS(x). The fusion system of K
thus splits as a central product of fusion systems, one of which is isomorphic to
the fusion system of SL2(q).

We now apply a theorem of Goldschmidt, which says very roughly that under
these conditions, the group K also splits as a central product. To make this
more precise, let Ki be the normal closure of Si in K C CH(x). By [14,
Corollary A2], since S1 and S2 are strongly closed in S0 with respect to K ,

[K1,K2] ≤ 〈x〉·O2′(K).

Using this, it is not hard to check that Si ∈ Syl2(Ki). Thus K1 has same
fusion as SL2(q) and is subnormal in CH(x) (K1 C K C CH(x)), and an
argument similar to that used above to prove the simplicity of H shows that
K1/(〈x〉·O2′(K1)) is simple. Hence K1 is a 2–component of CH(x) in the sense
described by Aschbacher in [1]. By [1, Corollary III], this implies that H must
be isomorphic to a Chevalley group of odd characteristic, or to M11 . It is now
straightforward to check that among these groups, the only possibility is that
H ∼= Ω7(q′) for some odd prime power q′ .

4 Relation with the Dwyer-Wilkerson space

We now want to examine the relation between the spaces BSol(q) which we have
just constructed, and the space BDI(4) constructed by Dwyer and Wilkerson
in [9]. Recall that this is a 2–complete space characterized by the property
that its cohomology is the Dickson algebra in four variables over F2 ; ie, the
ring of invariants F2[x1, x2, x3, x4]GL4(2) . We show, for any odd prime power q ,
that BDI(4) is homotopy equivalent to the 2–completion of the union of the
spaces BSol(qn), and that BSol(q) is homotopy equivalent to the homotopy
fixed point set of an Adams map from BDI(4) to itself.

We would like to define an infinite “linking system” LcSol(q
∞) as the union of the

finite categories LcSol(q
n), and then set BSol(q∞) = |LcSol(q

∞)|∧2 . The difficulty
with this approach is that a subgroup which is centric in the fusion system
FSol(qm) need not be centric in a larger fusion system FSol(qn) (for m|n). To get
around this problem, we define LccSol(q

n) ⊆ LcSol(q
n) to be the full subcategory
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whose objects are those subgroups of S(qn) which are FSol(q∞)–centric; or
equivalently FSol(qk)–centric for all k ∈ nZ. Similarly, we define LccSpin(qn) to
be the full subcategory of LcSpin(qn) whose objects are those subgroups of S(qn)
which are FSpin(q∞)–centric. We can then define LcSol(q

∞) and LcSpin(q∞) to
be the unions of these categories.

For these definitions to be useful, we must first show that |LccSol(q
n)|∧2 has the

same homotopy type as |LcSol(q
n)|∧2 . This is done in the following lemma.

Lemma 4.1 For any odd prime power q and any n ≥ 1, the inclusions

|LccSol(q
n)|∧2 ⊆ |LcSol(q

n)|∧2 and |LccSpin(qn)|∧2 ⊆ |LcSpin(qn)|∧2
are homotopy equivalences.

Proof It clearly suffices to show this when n = 1.
Recall, for a fusion system F over a p–group S , that a subgroup P ≤ S is
F –radical if OutF (P ) is p–reduced; ie, if Op(OutF (P )) = 1. We will show
that

all FSol(q)–centric FSol(q)–radical subgroups of S(q) are FSol(q∞)–centric (1)

and similarly

all FSpin(q)–centric FSpin(q)–radical subgroups of S(q) are FSpin(q∞)–centric. (2)

In other words, (1) says that for each P ≤ S(q) which is an object of LcSol(q)
but not of LccSol(q), O2

(
OutFSol(q)(P )

)
6= 1. By [16, Proposition 6.1(ii)], this

implies that
Λ∗(OutFSol(q)(P );H∗(BP ;F2)) = 0.

Hence by [6, Propositions 3.2 and 2.2] (and the spectral sequence for a homotopy
colimit), the inclusion LccSol(q) ⊆ LcSol(q) induces an isomorphism

H∗
(
|LcSol(q)|;F2

) ∼=−−−−−−→ H∗
(
|LccSol(q)|;F2

)
,

and thus |LccSol(q)|∧2 ' |LcSol(q)|∧2 . The proof that |LccSpin(q)|∧2 ' |LcSpin(q)|∧2 is
similar, using (2).

Point (2) is shown in Proposition A.12, so it remains only to prove (1). Set
F = FSol(q), and set Fk = FSol(qk) for all 1 ≤ k ≤ ∞. Let E ≤ Z(P ) be the
2–torsion in the center of P , so that P ≤ CS(q)(E). Set

E′ =


〈z〉 if rk(E) = 1
〈z, z1〉 if rk(E) = 2
〈z, z1, Â〉 if rk(E) = 3
E if rk(E) = 4
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in the notation of Definition 2.6. In all cases, E is F –conjugate to E′ by
Lemma 3.1. We claim that E′ is fully centralized in Fk for all k < ∞. This
is clear when rk(E′) = 1 (E′ = Z(S(qk))), follows from Proposition 2.5(a)
when rk(E′) = 2, and from Proposition A.8(a) (all rank 4 subgroups are self
centralizing) when rk(E′) = 4. If rk(E′) = 3, then by Proposition A.8(d), the
centralizer in Spin7(qk) (hence in S(qk)) of any rank 3 subgroup has an abelian
subgroup of index 2; and using this (together with the construction of S(qk)
in Definition 2.6), one sees that E′ is fully centralized in Fk .

If E′ 6= E , choose ϕ ∈ HomF (E,S(q)) such that ϕ(E) = E′ ; then ϕ extends
to ϕ ∈ HomF (CS(q)(E), S(q)) by condition (II) in the definition of a saturated
fusion system, and we can replace P by ϕ(P ) and E by ϕ(E). We can thus
assume that E is fully centralized in Fk for each k <∞. So by [6, Proposition
2.5(a)], P is Fk–centric if and only if it is CFk(E)–centric; and this also holds
when k =∞. Furthermore, since OutCF (E)(P ) C OutF (P ), O2(OutCF (E)(P ))
is a normal 2–subgroup of OutF (P ), and thus

O2

(
OutCF (E)(P )

)
≤ O2(OutF (P )).

Hence P is CF (E)–radical if it is F –radical. So it remains to show that

all CF (E)–centric CF (E)–radical subgroups of S(q) are also CF∞(E)–centric.
(3)

If rk(E) = 1, then CF (E) = FSpin(q) and CF∞(E) = FSpin(q∞), and (3)
follows from (2). If rk(E) = 4, then P = E = CS(q∞)(E) by Proposition
A.8(a), so P is F∞–centric, and the result is clear.

If rk(E) = 3, then by Proposition A.8(d), CF (E) ⊆ CF∞(E) are the fusion
systems of a pair of semidirect products AoC2 ≤ A∞oC2 , where A ≤ A∞ are
abelian and C2 acts on A∞ by inversion. Also, E is the full 2–torsion sub-
group of A∞ , since otherwise rk(A∞) > 3 would imply A∞oC2 ≤ Spin7(q∞)
contains a subgroup C5

2 (contradicting Proposition A.8). If P ≤ A, then either
OutCF (E)(P ) has order 2, which contradicts the assumption that P is radical;
or P is elementary abelian and OutCF (E)(P ) = 1, in which case P ≤ Z(AoC2)
is not centric. Thus P � A; P ∩ A ≥ E contains all 2–torsion in A∞ , and
hence P is centric in A∞oC2 .

If rk(E) = 2, then by Proposition 2.5(a), CF∞(E) and CF (E) are the fusion
systems of the groups

H(q∞) ∼= SL2(q∞)3/{±(I, I, I)} (4)

and
H(q) = H(q∞) ∩ Spin7(q) ≥ H0(q) def= SL2(q)3/{±(I, I, I)}.

Geometry & Topology, Volume 6 (2002)



Construction of 2–local finite groups 953

If P ≤ S(q) is centric and radical in the fusion system of H(q), then by Lemma
A.11(c), its intersection with H0(q) ∼= SL2(q)3/{±(I, I, I)} is centric and rad-
ical in the fusion system of that group. So by Lemma A.11(a,f),

P ∩H0(q) ∼= (P1 × P2 × P3)/{±(I, I, I)} (5)

for some Pi which are centric and radical in the fusion system of SL2(q). Since
the Sylow 2–subgroups of SL2(q) are quaternion [15, Theorem 2.8.3], the Pi
must be nonabelian and quaternion, so each Pi/{±I} is centric in PSL2(q∞).
Hence P ∩H0(q) is centric in SL2(q)3/{±(I, I, I)} by (5), and so P is centric
in H(q∞) by (4).

We would like to be able to regard BSpin7(q) as a subcomplex of BSol(q), but
there is no simple natural way to do so. Instead, we set

BSpin′7(q) = |LccSpin(q)|∧2 ⊆ |LccSol(q)|∧2 ⊆ BSol(q);

then BSpin′7(q) ' BSpin7(q)∧2 by [5, Proposition 1.1] and Lemma 4.1. Also,
we write

BSol′(q) = |LccSol(q)|∧2 ⊆ BSol(q) def= |LcSol(q)|∧2
to denote the subcomplex shown in Lemma 4.1 to be equivalent to BSol(q);
and set

BSpin′7(q∞) = |LcSpin(q∞)|∧2 .

From now on, when we talk about the inclusion of BSpin7(q) into BSol(q), as
long as it need only be well defined up to homotopy, we mean the composite

BSpin7(q) ' BSpin′7(q) ⊆ BSol′(q)

(for some choice of homotopy equivalence). Similarly, if we talk about the inclu-
sion of BSol(qm) into BSol(qn) (for m|n) where it need only be defined up to
homotopy, we mean these spaces identified with their equivalent subcomplexes
BSol′(qm) ⊆ BSol′(qn).

Lemma 4.2 Let q be any odd prime. Then for all n ≥ 1,

H∗(BSol(qn);F2) → H∗(BH(qn);F2)C3

H∗(BSpin7(qn);F2)
↓

→ H∗(BH(qn);F2)
↓ (1)

(with all maps induced by inclusions of groups or spaces) is a pullback square.

Geometry & Topology, Volume 6 (2002)



954 Ran Levi and Bob Oliver

Proof By [6, Theorem B], H∗(BSol(qn);F2) is the ring of elements in the
cohomology of S(qn) which are stable relative to the fusion. By the construction
in Section 2, the fusion in Sol(qn) is generated by that in Spin7(qn), together
with the permutation action of C3 on the subgroup H(qn) ≤ Spin7(qn), and
hence (1) is a pullback square.

Proposition 4.3 For each odd prime q , there is a category LcSol(q
∞), together

with a functor

π : LcSol(q
∞) −−−−−−→ FSol(q∞),

such that the following hold:

(a) For each n ≥ 1, π−1(FSol(qn)) ∼= LccSol(q
n).

(b) There is a homotopy equivalence

BSol(q∞) def= |LcSol(q
∞)|∧2

η−−−−−−−→
'

BDI(4)

such that the following square commutes up to homotopy

BSpin′7(q∞)∧2
δ(q∞)→ BSol(q∞)

BSpin(7)∧2

η0 '↓
δ̂ → BDI(4) .

η '↓ (1)

Here, η0 is the homotopy equivalence of [13], induced by some fixed choice

of embedding of the Witt vectors for Fq into C, while δ(q∞) is the union

of the inclusions |LccSpin(qn)|∧2 ⊆ |LccSol(q
n)|∧2 , and δ̂ is the inclusion arising

from the construction of BDI(4) in [9].

Furthermore, there is an automorphism ψqL ∈ Aut(LcSol(q
∞)) of categories

which satisfies the conditions:

(c) the restriction of ψqL to each subcategory LccSol(q
n) is equal to the restric-

tion of ψqL ∈ Aut(LcSol(q
n)) as defined in Proposition 3.3(d);

(d) ψqL covers the automorphism ψqF of FSol(q∞) induced by the field auto-
morphism (x 7→ xq); and

(e) for each n, (ψqL)n fixes LccSol(q
n).

Proof By Proposition 2.11, the inclusions Spin7(qm) ≤ Spin7(qn) for all m|n
induce inclusions of fusion systems FSol(qm) ⊆ FSol(qn). Since the restriction of
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a linking system over FccSol(q
n) is a linking system over FccSol(q

m), the uniqueness
of linking systems (Proposition 3.3) implies that we get inclusions LccSol(q

m) ⊆
LccSol(q

n). We define LcSol(q
∞) to be the union of the finite categories LccSol(q

n).
(More precisely, fix a sequence of positive integers n1|n2|n3| · · · such that every
positive integer divides some ni , and set

LcSol(q
∞) =

∞⋃
i=1

LccSol(q
ni).

Then by uniqueness again, we can identify LccSol(q
n) for each n with the appro-

priate subcategory.)

Let π : LcSol(q
∞) −−→ FSol(q∞) be the union of the projections from LccSol(q

ni) to
FSol(qni) ⊆ FSol(q∞). Condition (a) is clearly satisfied. Also, using Proposition
3.3(d) and Lemma 4.1, we see that there is an automorphism ψqL of LcSol(q

∞)
which satisfies conditions (c,d,e) above. (Note that by the fusion theorem as
shown in [6, Theorem A.10], morphisms in LcSol(q

n) are generated by those
between radical subgroups, and hence by those in LccSol(q

n).)

It remains only to show that |LcSol(q
∞)|∧2 ' BDI(4), and to show that square

(1) commutes. The space BDI(4) is 2–complete by its construction in [9]. By
Lemma 4.1,

H∗(BSol(q∞);F2) ∼= lim←−
n

H∗
(
|LcSol(q

n)|;F2

)
= lim←−

n

H∗
(
BSol(qn);F2

)
.

Hence by Lemma 4.2 (and since the inclusions BSpin7(qn) −−→ BSol(qn) com-
mute with the maps induced by inclusions of fields Fqm ⊆ Fqn ), there is a
pullback square

H∗(BSol(q∞);F2) → H∗(BH(q∞);F2)C3

H∗(BSpin7(q∞);F2)
↓

→ H∗(BH(q∞);F2) .
↓ (2)

Also, by [13, Theorem 1.4], there are maps

BSpin7(q∞) −−−→ BSpin(7) and BH(q∞) −−−→ B
(
SU(2)3/{±(I, I, I)}

)
which induce isomorphisms of F2–cohomology, and hence homotopy equiva-
lences after 2–completion. So by Propositions 4.7 and 4.9 (or more directly
by the computations in [9, section 3]), the pullback of the above square is the
ring of Dickson invariants in the polynomial algebra H∗(BC4

2 ;F2), and thus
isomorphic to H∗(BDI(4);F2).

Point (b), including the commutativity of (1), now follows from the following
lemma.
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Lemma 4.4 Let X be a 2–complete space such that H∗(X;F2) is the Dickson

algebra in 4 variables. Assume further that there is a map BSpin(7)
f−−→ X

such that H∗(f |BC4
2
;F2) is the inclusion of the Dickson invariants in the poly-

nomial algebra H∗(BC4
2 ;F2). Then X ' BDI(4). More precisely, there is a

homotopy equivalence between these spaces such that the composite

BSpin(7)
f−−−−−−→ X ' BDI(4)

is the inclusion arising from the construction in [9].

Proof In fact, Notbohm [18, Theorem 1.2] has proven that the lemma holds
even without the assumption about BSpin(7) (but with the more precise as-
sumption that H∗(X;F2) is isomorphic as an algebra over the Steenrod algebra
to the Dickson algebra). The result as stated above is much more elementary
(and also implicit in [9]), so we sketch the proof here.

Since H∗(X;F2) is a polynomial algebra, H∗(ΩX;F2) is isomorphic as a graded
vector space to an exterior algebra on the same number of variables, and in
particular is finite. Hence X is a 2–compact group. By [11, Theorem 8.1] (the
centralizer decomposition for a p–compact group), there is an F2–homology
equivalence

hocolim−−−−−→
A

(α) '−−−−−−→ X.

Here, A is the category of pairs (V,ϕ), where V is a nontrivial elementary
abelian 2–group, and ϕ : BV −−→ X makes H∗(BV ;F2) into a finitely gen-
erated module over H∗(X;F2) (see [10, Proposition 9.11]). Morphisms in
A are defined by letting MorA((V,ϕ), (V ′, ϕ′)) be the set of monomorphisms
V −−→ V ′ of groups which make the obvious triangle commute up to homotopy.
Also,

α : Aop −−→ Top is the functor α(V,ϕ) = Map(BV,X)ϕ.

By [9, Lemma 1.6(1)] and [17, Théorème 0.4], A is equivalent to the category of
elementary abelian 2–groups E with 1 ≤ rk(E) ≤ 4, whose morphisms consist
of all group monomorphisms. Also, if BC2

ϕ−−→ X is the restriction of f to any
subgroup C2 ≤ Spin(7), then in the notation of Lannes,

TC2(H∗(X;F2);ϕ∗) ∼= H∗(BSpin(7);F2)

by [9, Lemmas 16.(3), 3.10 and 3.11], and hence

H∗(Map(BC2,X)ϕ;F2) ∼= H∗(BSpin(7);F2)
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by Lannes [17, Théorème 3.2.1]. This shows that(
Map(BC2,X)ϕ

)
∧
2 ' BSpin(7)∧2 ,

and thus that the centralizers of other elementary abelian 2–groups are the
same as their centralizers in BSpin(7)∧2 . In other words, α is equivalent in
the homotopy category to the diagram used in [9] to define BDI(4). By [9,
Proposition 7.7] (and the remarks in its proof), this homotopy functor has a
unique homotopy lifting to spaces. So by definition of BDI(4),

X '
(
hocolim−−−−−→

A

(α)
)∧

2 ' BDI(4).

Set Bψq
def= |ψqL|, a self homotopy equivalence of BSol(q∞) ' BDI(4). By

construction, the restriction of Bψq to the maximal torus of BSol(q∞) is the
map induced by x 7→ xq , and hence this is an “Adams map” as defined by
Notbohm [18]. In fact, by [18, Theorem 3.5], there is an Adams map from
BDI(4) to itself, unique up to homotopy, of degree any 2–adic unit.

Following Benson [3], we define BDI4(q) for any odd prime power q to be the
homotopy fixed point set of the Z–action on BSol(q∞) ' BDI(4) induced by
the Adams map Bψq . By “homotopy fixed point set” in this situation, we
mean that the following square is a homotopy pullback:

BDI4(q) → BSol(q∞)

BSol(q∞)
↓

(Id,Bψq)→ BSol(q∞)×BSol(q∞).

∆↓

The actual pullback of this square is the subspace BSol(q) of elements fixed by

Bψq , and we thus have a natural map BSol(q) δ0−−→ BDI4(q).

Theorem 4.5 For any odd prime power q , the natural map

BSol(q) δ0−−−−−−−→
'

BDI4(q)

is a homotopy equivalence.

Proof Since BDI(4) is simply connected, the square used to define BDI4(q)
remains a homotopy pullback square after 2–completion by [4, II.5.3]. Thus
BDI4(q) is 2–complete. Also, BSol(q)def= |LcSol(q)|∧2 is 2–complete since |LcSol(q)|
is 2–good [6, Proposition 1.12], and hence it suffices to prove that the map

Geometry & Topology, Volume 6 (2002)



958 Ran Levi and Bob Oliver

between these spaces is an F2–cohomology equivalence. By Lemma 4.2, this
means showing that the following commutative square is a pullback square:

H∗(BDI4(q);F2) → H∗(BH(q);F2)C3

H∗(BSpin7(q);F2)
↓

→ H∗(BH(q);F2) .
↓ (1)

Here, the maps are induced by the composite

BSpin7(q) ' BSpin′7(q)∧2 ⊆ BSol(q) −−−−−−→ BDI4(q)

and its restriction to BH(q). Also, by Proposition 4.3(b), the following diagram
commutes up to homotopy:

BSpin7(q)
incl→ BSpin7(q∞)

η0→ BSpin(7)

BSol(q)

δ(q)↓
incl → BSol(q∞)

δ(q∞)↓
η → BDI(4)

δ̂↓ (2)

By [12, Theorem 12.2], together with [13, section 1], for any connected reductive
Lie group G and any algebraic epimorphism ψ on G(Fq) with finite fixed
subgroup, there is a homotopy pullback square

B(G(Fq)ψ)∧2
incl → BG(Fq)∧2

BG(Fq)∧2

incl↓
(Id,Bψ)→ BG(Fq)∧2 ×BG(Fq)∧2 .

∆↓ (3)

We need to apply this when G = Spin7 or G = H = (SL2)3/{±(I, I, I)}. In
particular, if ψ = ψq is the automorphism induced by the field automorphism
(x 7→ xq), then Spin7(Fq)ψ = Spin7(q) by Lemma A.3, and H(Fq)ψ = H(q) def=
H(Fq) ∩ Spin7(q). We thus get a description of BSpin7(q) and BH(q) as
homotopy pullbacks.

By [13, Theorem 1.4], BG(Fq)∧2 ' BG(C)∧2 . Also, we can replace the complex
Lie groups Spin7(C) and H(C) by maximal compact subgroups Spin(7) and
H

def= SU(2)3/{±(I, I, I)}, since these have the same homotopy type.

If we set R = H∗(BG(Fq);F2) ∼= H∗(BG(C);F2), then there are Eilenberg-
Moore spectral sequences

E2 = Tor∗R⊗Rop(R,R) =⇒ H∗(B(G(Fq)ψ);F2);

Geometry & Topology, Volume 6 (2002)



Construction of 2–local finite groups 959

where the (R⊗Rop)–module structure on R is defined by setting (a⊗ b)·x =
a·x·Bψ(b). When G = Spin7 or H , then R is a polynomial algebra by Proposi-
tion 4.7 and the above remarks, and Bψ acts on R via the identity. The above
spectral sequence thus satisfies the hypotheses of [20, Theorem II.3.1], and hence
collapses. (Alternatively, note that in this case, E2 is generated multiplicatively
by E0,∗

2 and E−1,∗
2 by (5) below.) Similarly, when R = H∗(BDI(4);F2), there

is an analogous spectral sequence which converges to H∗(BDI4(q);F2), and
which collapses for the same reason. By the above remarks, these spectral se-
quences are natural with respect to the inclusions BH(−) ⊆ BSpin7(−), and
(using the naturality of ψq shown in Proposition 3.3(d)) of BSpin7(−) into
BSol(−) or BDI(4).

To simplify the notation, we now write

A
def= H∗(BDI(4);F2), B

def= H∗(BSpin(7);F2), and C
def= H∗(H;F2)

to denote these cohomology rings. The Frobenius automorphism ψq acts via
the identity on each of them. We claim that the square

Tor∗A⊗Aop(A,A) → Tor∗C⊗Cop(C,C)C3

Tor∗B⊗Bop(B,B)
↓

→ Tor∗C⊗Cop(C,C)
↓ (4)

is a pullback square. Once this has been shown, it then follows that in each
degree, square (1) has a finite filtration under which each quotient is a pullback
square. Hence (1) itself is a pullback.

For any commutative F2–algebra R, let ΩR/F2
denote the R–module generated

by elements dr for r ∈ R with the relations dr = 0 if r ∈ F2 ,

d(r + s) = dr + ds and d(rs) = r·ds+ s·dr.

Let Ω∗
R/F2

denote the ring of Kähler differentials: the exterior algebra (over
R) of ΩR/F2

= Ω1
R/F2

. When R is a polynomial algebra, there are natural
identifications

Tor∗R⊗Rop(R,R) ∼= HH∗(R;R) ∼= Ω∗R/F2
. (5)

The first isomorphism holds for arbitrary algebras, and is shown, e.g., in [25,
Lemma 9.1.3]. The second holds for smooth algebras over a field [25, Theorem
9.4.7] (and polynomial algebras are smooth as shown in [25, section 9.3.1]). In
particular, the isomorphisms (5) hold for R = A,B,C, which are shown to be
polynomial algebras in Proposition 4.7 below. Thus, square (4) is isomorphic
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to the square
Ω∗A/F2

→
(
Ω∗C/F2

)
C3

Ω∗B/F2

↓
→ Ω∗C/F2

,
↓ (6)

which is shown to be a pullback square in Propositions 4.7 and 4.9 below.

It remains to prove that square (6) in the above proof is a pullback square.
In what follows, we let Di(x1, . . . , xn) denote the i-th Dickson invariant in
variables x1, . . . , xn . This is the (2n−2n−i)-th symmetric polynomial in the el-
ements (equivalently in the nonzero elements) of the vector space 〈x1, . . . , xn〉F2

.
We refer to [26] for more detail. Note that what he denotes cn,i is what we call
Dn−i(x1, . . . , xn).

Lemma 4.6 For any n,

D1(x1, . . . , xn+1) =
∏

x∈〈x1,...,xn〉F2

(xn+1 + x) +D1(x1, . . . , xn)2

= x2n
n+1 +

n∑
i=1

x2n−i
n+1Di(x1, . . . , xn) +D1(x1, . . . , xn)2.

Proof The first equality is shown in [26, Proposition 1.3(b)]; here we prove
them both simultaneously. Set Vn = 〈x1, . . . , xn〉F2

. Since σi(Vn) = 0 whenever
2n − i is not a power of 2 (cf [26, Proposition 1.1]),

D1(x1, . . . , xn+1) =
2n∑
i=0

σi(Vn)·σ2n−i(xn+1 + Vn)

=
∏
x∈Vn

(xn+1 + x) +
n∑
i=1

Di(x1, . . . , xn)·σ2n−i(xn+1 + Vn).

Also, since σi(Vn) = 0 for 0 < i < 2n−1 as noted above,

σk(xn+1 + Vn) =
k∑
i=0

xk−in+1·
(

2n−i
k−i

)
σi(Vn) =

{
0 if 0 < k < 2n−1

D1(x1, . . . , xn) if k = 2n−1.

This proves the first equality, and the second follows since∏
x∈Vn

(xn+1+x) = x2n

n+1+
2n∑
i=1

x2n−i
n+1 σi(Vn) = x2n

n+1+
n∑
i=1

x2n−i
n+1Di(x1, . . . , xn).
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In the following proposition (and throughout the rest of the section), we work
with the polynomial ring F2[x, y, z, w], with the natural action of GL4(F2). Let

GL2
2(F2), GL3

1(F2) ≤ GL4(F2)

be the subgroups of automorphisms of V def= 〈x, y, z, w〉F2
which leave invariant

the subspaces 〈x, y〉 and 〈x, y, z〉 , respectively. Also, let GL2
2′(F2) ≤ GL2

2(F2)
be the subgroup of automorphisms which are the identity modulo 〈x, y〉. Thus,
when described in terms of block matrices (with respect to the given basis
{x, y, z, w}),
GL3

1(F2) =
{(

A X
0 1

)}
, GL2

2(F2) =
{(

B Y
0 C

)}
, and GL2

2′(F2) =
{(

B Y
0 I

)}
,

for A ∈ GL3(F2), X a column vector, B,C ∈ GL2(F2), and Y ∈M2(F2).

We need to make more precise the relation between V (or the polynomial ring
F2[x, y, z, w]) and the cohomology of Spin(7). To do this, let W ≤ Spin(7) be
the inverse image of the elementary abelian subgroup〈

diag(−1,−1,−1,−1, 1, 1, 1),diag(−1,−1, 1, 1,−1,−1, 1),
diag(−1, 1,−1, 1,−1, 1,−1)

〉
≤ SO(7).

Thus, W ∼= C4
2 . Fix a basis {η, η′, ξ, ζ} for W , where ζ ∈ Z(Spin(7)) is the

nontrivial element. Identify V = W ∗ in such a way that {x, y, z, w} ⊆ V is the
dual basis to {η, η′, ξ, ζ}. This gives an identification

H∗(BW ;F2) = F2[x, y, z, w],

arranged such that the action of NSpin(7)(W )/W on V = 〈x, y, z, w〉 consists
of all automorphisms which leave 〈x, y, z〉 invariant, and thus can be identified
with the action of GL3

1(F2). Finally, set

H = CSpin(7)(ξ) ∼= Spin(4)×C2 Spin(3) ∼= SU(2)3/{±(I, I, I)}
(the central product). Then in the same way, the action of N

H
(W )/W on

H∗(BW ;F2) can be identified with that of GL2
2′(F2).

Proposition 4.7 The inclusions

BW −−−−−→ BH −−−−−→ BSpin(7) −−−−−→ BDI(4)

as defined above, together with the identification H∗(BW ;F2) = F2[x, y, z, w],
induce isomorphisms

A
def= H∗(BDI(4);F2) = F2[x, y, z, w]GL4(F2) = F2[a8, a12, a14, a15]

B
def= H∗(BSpin(7);F2) = F2[x, y, z, w]GL

3
1(F2) = F2[b4, b6, b7, b8]

C
def= H∗(BH;F2) = F2[x, y, z, w]GL

2
2′ (F2) = F2[c2, c3, c′4, c

′′
4 ] ;

(∗)
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where

a8 = D1(x, y, z, w), a12 = D2(x, y, z, w),
a14 = D3(x, y, z, w), a15 = D4(x, y, z, w);

b4 = D1(x, y, z), b6 = D2(x, y, z), b7 = D3(x, y, z), b8 =
∏

α∈〈x,y,z〉
(w + α);

and

c2 = D1(x, y), c3 = D2(x, y), c′4 =
∏

α∈〈x,y〉
(z + α), c′′4 =

∏
α∈〈x,y〉

(w + α).

Furthermore,

(a) the natural action of Σ3 on H ∼= SU(2)3/{±(I, I, I)} induces the action
on C which fixes c2, c3 and permutes {c′4, c′′4 , c′4 + c′′4}; and

(b) the above variables satisfy the relations

a8 = b8 + b24 a12 = b8b4 + b26 a14 = b8b6 + b27 a15 = b8b7

b4 = c′4 + c22 b6 = c2c
′
4 + c23 b7 = c3c

′
4 b8 = c′′4(c′4 + c′′4) .

Proof The formulas for A = H∗(BDI(4);F2) are shown in [9]. From [9,
Lemmas 3.10 and 3.11], we see there are (some) identifications

H∗(BSpin(7);F2) ∼= F2[x, y, z, w]GL
3
1(F2) and H∗(BH ;F2) ∼= F2[x, y, z, w]GL

2
2′(F2).

From the explicit choices of subgroups W ≤ H ≤ Spin(7) as described above
(and by the descriptions in Proposition A.8 of the automorphism groups), the
images of H∗(BSpin(7);F2) and H∗(BH;F2) in F2[x, y, z, w] are seen to be
contained in the rings of invariants, and hence these isomorphisms actually are
equalities as claimed.

We next prove the equalities in (∗) between the given rings of invariants and
polynomial algebras. The following argument was shown to us by Larry Smith.
If k is a field and V is an n–dimensional vector space over k , then a sys-
tem of parameters in the polynomial algebra k[V ] is a set of n homogeneous
elements f1, . . . , fn such that k[V ]/(f1, . . . , fn) is finite dimensional over k .
By [21, Proposition 5.5.5], if V is an n–dimensional k[G]–representation, and
f1, . . . , fn ∈ k[V ]G is a system of parameters the product of whose degrees
is equal to |G|, then k[V ]G is a polynomial algebra with f1, . . . , fn as gen-
erators. By [21, Proposition 8.1.7], F2[x, y, z, w] is a free finitely generated
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module over the ring generated by its Dickson invariants (this holds for poly-
nomial algebras over any Fp), and thus F2[x, y, z, w]/(a8 , a12, a14, a15) is finite.
(This can also be shown directly using the relation in Lemma 4.6.) So as-
suming the relations in point (b), the quotients F2[x, y, z, w]/(b4 , b6, b7, b8) and
F2[x, y, z, w]/(c2 , c3, c′4, c

′′
4) are also finite. In each case, the product of the de-

grees of the generators is clearly equal to the order of the group in question,
and this finishes the proof of the last equality in the second and third lines of
(∗).

It remains to prove points (a) and (b). Using Lemma 4.6, the ci are expressed
as polynomials in x, y, z, w as follows:

c2 = D1(x, y) = x2 + xy + y2

c3 = D2(x, y) = xy(x+ y)

c′4 = D1(x, y, z) +D1(x, y)2 = z4 + z2D1(x, y) + zD2(x, y) = z4 + z2c2 + zc3

c′′4 = D1(x, y, w) +D1(x, y)2 = w4 + w2D1(x, y) + wD2(x, y) = w4 + w2c2 + wc3 .

(1)

In particular,

c′4 +c′′4 = (z+w)4 +(z+w)2D1(x, y)+(z+w)D2(x, y) =
∏

α∈〈x,y〉
(z+w+α). (2)

Furthermore, by (1), we get

Sq1(c2) = c3

Sq1(c3) = Sq1(c′4) = Sq1(c′′4) = 0

Sq2(c3) = x2y2(x+ y) + xy(x+ y)3 = c2c3

Sq2(c′4) = z4c2 + z2c22 + zc2c3 = c2c
′
4

Sq3(c′4) = Sq1(c2c′4) = c3c
′
4

Sq2(c′′4) = c2c
′′
4

Sq3(c′′4) = c3c
′′
4 .

(3)

The permutation action of Σ3 on H ∼= SU(2)3/{±(I, I, I)} permutes the
three elements ζ, ξ, ζ + ξ of Z(H) ⊆ W , and thus (via the identification
V = W ∗ described above) induces the identity on x, y ∈ V and permutes
the elements {z,w, z + w} modulo 〈x, y〉. Hence the induced action of Σ3 on
C = F2[V ]GL

2
2′ (F2) is the restriction of the action on F2[V ] = F2[x, y, z, w] which

fixes x, y and permutes {z,w, z+w}. So by (1) and (2), we see that this action
fixes c2, c3 and permutes the set {c′4, c′′4 , c′4 + c′′4}. This proves (a).
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It remains to prove the formulas in (b). From (1) and (3) we get

b4 = D1(x, y, z) = c′4 + c22,

b6 = D2(x, y, z) = Sq2(b4) = c2c
′
4 + c23,

b7 = D3(x, y, z) = Sq1(b6) = c3c
′
4.

Also, by (1) and (2),

b8 =
∏

α∈〈x,y,z〉
(w + α) =

( ∏
α∈〈x,y〉

(w + α)
)
·
( ∏
α∈〈x,y〉

(w + z + α)
)

= c′′4(c′4 + c′′4).

This proves the formulas for the bi in terms of ci . Finally, we have

a8 = D1(x, y, z, w) = b8 + b24,

a12 = D2(x, y, z, w) = Sq4(b8 + b24) = Sq4(c′′4(c′4 + c′′4) + (c′4 + c22)2)

= c′4c
′′
4(c′4 + c′′4) + c22c

′′
4(c′4 + c′′4) + c22c

′
4
2 + c43 = b8b4 + b26

a14 = D3(x, y, z, w) = Sq2(a12) = c2c
′
4c
′′
4(c′4 + c′′4) + c23c

′′
4(c′4 + c′′4) + c23c

′
4
2

= b8b6 + b27

a15 = D4(x, y, z, w) = Sq1(a14) = c3c
′
4c
′′
4(c′4 + c′′4) = b8b7 ;

and this finishes the proof of the proposition.

Lemma 4.8 Let κ ∈ Aut(C) be the algebra involution which exchanges c′4 and
c′′4 and leaves c2 and c3 fixed. An element of C will be called “κ–invariant” if
it is fixed by this involution. Then the following hold:

(a) If β ∈ B is κ–invariant, then β ∈ A.

(b) If β ∈ B is such that β·c′4i is κ–invariant, then β = β′·bi8 for some β′ ∈ A.

Proof Point (a) follows from Proposition 4.7 upon regarding A, B, and C as
the fixed subrings of the groups GL4(F2), GL3

1(F2) and GL2
2′(F2) acting on

F2[x, y, z, w], but also follows from the following direct argument. Let m be
the degree of β as a polynomial in b8 ; we argue by induction on m. Write
β = β0 + bm8 ·β1 , where β1 ∈ F2[b4, b6, b7], and where β0 has degree < m (as
a polynomial in b8 ). If m = 0, then β = β1 ∈ F2[b4, b6, b7] ⊆ F2[c2, c3, c′4],
and hence β ∈ F2[c2, c3] since it is κ–invariant. But from the formulas in
Proposition 4.7(b), we see that F2[b4, b6, b7] ∩ F2[c2, c3] contains only constant
polynomials (hence it is contained in A).

Now assume m ≥ 1. Then, expressed as a polynomial in c2, c3, c
′
4, c
′′
4 , the

largest power of c′′4 which occurs in β is c′′4
2m . Since β is κ–invariant, the
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highest power of c′4 which occurs is c′4
2m ; and hence by Proposition 4.7(b), the

total degree of each term in β1 (its degree as a polynomial in b4, b6, b7 ) is at
most m. So for each term br4b

s
6b
t
7 in β1 ,

br4b
s
6b
t
7b
m
8 − am−r−s−t8 ar12a

s
14a

t
15

is a sum of terms which have degree < m in b8 , and thus lies in A by the
induction hypothesis.

To prove (b), note first that since β·c′4i is κ–invariant and divisible by c′4
i , it

must also be divisible by c′′4
i , and hence c′′4

i|β . Furthermore, by Proposition
4.7, all elements of B as well as c′4 are invariant under the involution which
fixes c′4 and sends c′′4 7→ c′4 + c′′4 . Thus (c′4 + c′′4)i|β . Since b8 = c′′4(c′4 + c′′4), we
can now write β = β′·bi8 for some β ∈ B. Finally, since

β·c′4i = β′·c′4i·c′′4 i·(c′4 + c′′4)i

is κ–invariant, β′ is also κ–invariant, and hence β′ ∈ A by (a).

Note that C3 ≤ Σ3 = GL2(F2) act on C = F2[x, y, z, w]GL
2
2′ (F2) : via the action

of the group GL2
2(F2)/GL2

2′(F2), or equivalently by permuting c′4 , c′′4 , and
c′4 + c′′4 (and fixing c2, c3 ). Thus A = B ∩ CC3 , since GL4(F2) is generated
by the subgroups GL3

1(F2) and GL2
2(F2). This is also shown directly in the

following lemma.

Proposition 4.9 The following square is a pullback square, where all maps
are induced by inclusions between the subrings of F2[x, y, z, w]:

Ω∗A/F2
→
(
Ω∗C/F2

)C3

Ω∗B/F2

↓
→ Ω∗C/F2

.

↓

Proof Let κ be the involution of Lemma 4.8: the algebra involution of C
which exchanges c′4 and c′′4 and leaves c2 and c3 fixed. By construction, all
elements in the image of Ω∗

B/F2
are invariant under the involution which fixes

c′4 (and c2, c3 ), and sends c′′4 to c′4 + c′′4 . Hence elements in the image of Ω∗
B/F2

are fixed by C3 if and only if they are fixed by Σ3 , if and only if they are κ–
invariant. So it will suffice to show that all of the above maps are injective, and
that all κ–invariant elements in the image of Ω∗

B/F2
lie in the image of Ω∗

A/F2
.

The injectivity is clear, and the square is a pullback for Ω0
−/F2

by Lemma 4.8.
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Fix a κ–invariant element

ω = P1 db4 + P2 db6 + P3 db7 + P4 db8

= P2c
′
4 dc2 + P3c

′
4 dc3 + P4c

′
4 dc
′′
4 + (P1 + P2c2 + P3c3 + P4c

′′
4) dc′4 ∈ Ω1

B/F2
,

(1)

where Pi ∈ B for each i. By applying κ to (1) and comparing the coefficients of
dc2 and dc3 , we see that P2c

′
4 and P3c

′
4 are κ–invariant. Also, upon comparing

the coefficients of dc′4 , we get the equation

P1 + P2c2 + P3c3 + P4c
′′
4 = κ(P4)c′′4 . (2)

So by Lemma 4.8, P2 = P ′2b8 and P3 = P ′3b8 for some P ′2, P
′
3 ∈ A. Upon

subtracting

P ′2 da14 + P ′3 da15 = P2 db6 + P3 db7 + (P ′2b6 + P ′3b7) db8

from ω and introducing an appropriate modification to P4 , we can now assume
that P2 = P3 = 0. With this assumption and (2), we have

P1 + P4c
′′
4 = κ(P4c

′
4) = κ(P4)·c′′4,

so that
P1c
′
4 = (P4 + κ(P4))c′4c

′′
4 (3)

is κ–invariant. This now shows that P1 = P ′1b8 for some P ′1 ∈ A, and upon
subtracting P ′1 da12 from ω we can assume that P1 = 0. This leaves ω =
P4 db8 = P4 da8 . By (3) again, P4 is κ–invariant, so P4 ∈ A by Lemma 4.8
again, and thus ω ∈ Ω1

A/F2
.

The remaining cases are proved using the same techniques, and so we sketch
them more briefly. To prove the result in degree two, fix a κ–invariant element

ω = P1 db4 db6 + P2 db4 db7 + P3 db4 db8 + P4 db6 db7 + P5 db6 db8 + P6 db7 db8

= P4c
′
4

2 dc2 dc3 + (P1c
′
4 + P4c3c

′
4 + P5c

′
4c
′′
4) dc2 dc′4 + P5c

′
4

2 dc2 dc
′′
4

+ (P2c
′
4 + P4c2c

′
4 + P6c

′
4c
′′
4) dc3 dc′4 + P6c

′
4

2 dc3 dc
′′
4

+ (P3c
′
4 + P5c2c

′
4 + P6c3c

′
4) dc′4 dc

′′
4 ∈ Ω2

B/F2
.

Using Lemma 4.8, we see that P4 = P ′4b
2
8 , and hence can assume that P4 = 0.

One then eliminates P1 and P2 , then P5 and P6 , and finally P3 .

If

ω = P1 db4 db6 db7 + P2 db4 db6 db8 + P3 db4 db7 db8 + P4 db6 db7 db8

= (P1c
′
4

2 + P4c
′
4

2c′′4) dc2 dc3 dc′4 + (P2c
′
4

2 + P4c3c
′
4

2) dc2 dc′4 dc
′′
4

+ (P3c
′
4

2 + P4c2c
′
4

2) dc3 dc′4 dc
′′
4 + P4c

′
4
3 dc2 dc3 dc

′′
4 ∈ Ω3

B/F2
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is κ–invariant, then we eliminate successively P1 , then P4 , then P2 and P3 .

Finally, if

ω = P db4 db6 db7 db8 = Pc′4
3 dc2 dc3 dc

′
4 dc

′′
4 ∈ Ω4

B/F2

is κ–invariant, then P = P ′b38 for some P ′ ∈ A by Lemma 4.8 again, and so

ω = P ′ da8 da12 da14 da15 ∈ Ω4
A/F2

.

A Appendix : Spinor groups over finite fields

Let F be any field of characteristic 6= 2. Let V be a vector space over F , and
let b : V −−→ F be a nonsingular quadratic form. As usual, O(V, b) denotes
the group of isometries of (V, b), and SO(V, b) the subgroup of isometries of
determinant 1. We will be particularly interested in elementary abelian 2–
subgroups of such orthogonal groups.

Lemma A.1 Fix an elementary abelian 2–subgroup E ≤ O(V, b). For each
irreducible character χ ∈ Hom(E, {±1}), let Vχ ⊆ V denote the corresponding
eigenspace: the subspace of elements v ∈ V such that g(v) = χ(g)·v for all
g ∈ E . Then the restriction of b to each subspace Vχ is nonsingular, and V is
the orthogonal direct sum of the Vχ .

Proof Elementary.

We give a very brief sketch of the definition of spinor groups via Clifford alge-
bras; for more details we refer to [8, section II.7] or [2, section 22]. Let T (V )
denote the tensor algebra of V , and set

C(V, b) = T (V )/〈(v ⊗ v)− b(v)〉 :

the Clifford algebra of (V, b). To simplify the notation, we regard F as a
subring of C(V, b), and V as a subgroup of its additive group; thus the class of
v1 ⊗ · · · ⊗ vk will be written v1· · ·vk . Note that vw + wv = 0 if v,w ∈ V and
v ⊥ w . Hence if dimF (V ) = n, and {v1, . . . , vn} is an orthogonal basis, then
the set of 1 and all vi1 · · · vik for i1 < · · · < ik (1 ≤ k ≤ n) is an F –basis for
C(V, b).
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Write C(V, b) = C0 ⊕ C1 , where C0 and C1 consist of classes of elements
of even or odd degree, respectively. Let G ≤ C(V, b)∗ denote the group of
invertible elements u such that uV u−1 = V , and let π : G −−→ O(V, b) be the
homomorphism

π(u) =

{
(v 7→ −uvu−1) if u ∈ C1

(v 7→ uvu−1) if u ∈ C0 .

In particular, for any nonisotropic element v ∈ V (ie, b(v) 6= 0), v ∈ G and
π(v) is the reflection in the hyperplane v⊥ . By [8, section II.7], π is surjective
and Ker(π) = F ∗ .

Let J be the antiautomorphism of C(V, b) induced by the antiautomorphism
v1 ⊗ · · · ⊗ vk 7→ vk ⊗ · · · ⊗ v1 of T (V ). Since O(V, b) is generated by hyper-
plane reflections, G is generated by F ∗ and nonisotropic elements v ∈ V . In
particular, for any u = λ·v1 · · · vk ∈ G,

J(u)·u = λ2 · vk · · · v1 · v1 · · · vk = λ2 · b(v1) · · · b(vk) ∈ F ∗ = Ker(π);

implying that π(J(u)) = π(u)−1 for all u ∈ G. There is thus a homomorphism

θ̃ : G −−−−−−−→ F ∗ defined by θ̃(u) = u·J(u).

In particular, θ̃(λ) = λ2 for λ ∈ F ∗ ≤ G, while for any set of nonisotropic
elements v1, . . . , vk of V ,

θ̃(v1 · · · vk) = (v1 · · · vk)(vk · · · v1) = b(v1) · · · b(vk).

Hence θ̃ factors through a homomorphism

θV,b : O(V, b) −−−−−−−→ F ∗/F ∗2 = F ∗/{u2 |u ∈ F ∗},

called the spinor norm.

Set G+ = π−1(SO(V, b)) = G ∩ C0 , and define

Spin(V, b) = Ker(θ̃|G+) and Ω(V, b) = Ker(θV,b|SO(V,b)).

In particular, Ω(V, b) has index 2 in SO(V, b) if F is a finite field, and Ω(V, b) =
SO(V, b) if F is algebraically closed (all units are squares). We thus get a
commutative diagram
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(A.2)

1
��

1

��

1
��

1 // {±1} //

��

F ∗
λ7→λ2

//

��

F ∗2

��

// 1

1 // Spin(V, b) //

��

G+ θ̃
//

π

��

F ∗

��

// 1

1 // Ω(V, b) //

��

SO(V, b)
θV,b

//

��

F ∗/F ∗2 //

��

1

1 1 1

where all rows and columns are short exact, and where all columns are central
extensions of groups. If dim(V ) ≥ 3 (or if dim(V ) = 2 and the form b is hyper-
bolic), then Ω(V, b) is the commutator subgroup of SO(V, b) [8, section II.8].

The following lemma follows immediately from this description of Spin(V, b),
together with the analogous description of the corresponding spinor group over
the algebraic closure of F .

Lemma A.3 Let F be the algebraic closure of F , and set V = F ⊗F V and
b = Id

F
⊗b. Then Spin(V, b) is the subgroup of Spin(V , b) consisting of those

elements fixed by all Galois automorphisms ψ ∈ Gal(F/F ).

For any nonsingular quadratic form b on a vector space V , the discriminant
of b (or of V ) is the determinant of the corresponding symmetric bilinear form
B , related to b by the formulas

b(v) = B(v, v) and B(v,w) = 1
2

(
b(v + w)− b(v)− b(w)

)
.

Note that the discriminant is well defined only modulo squares in F ∗ . When
W ⊆ V is a subspace, then we define the discriminant of W to mean the dis-
criminant of b|W . In what follows, we say that the discriminant of a quadratic
form is a square or a nonsquare to mean that it is the identity or not in the
quotient group F ∗/F ∗2 .

Lemma A.4 Fix an involution x ∈ SO(V, b), and let V = V+ ⊕ V− be its
eigenspace decomposition. Then the following hold.

(a) x ∈ Ω(V, b) if and only if the discriminant of V− is a square.
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(b) If x ∈ Ω(V, b), then it lifts to an element of order 2 in Spin(V, b) if and
only if dim(V−) ∈ 4Z.

(c) If x ∈ Ω(V, b), and if α ∈ Ω(V, b) is such that [x, α] = 1, then α =
α+⊕α− , where α± ∈ O(V±, b). Also, the liftings of x and α commute in
Spin(V, b) if and only if det(α−) = 1.

Proof Let {v1, . . . , vk} be an orthogonal basis for V− (k is even). Then x =
π(v1· · ·vk) in the above notation, since π(vi) is the reflection in the hyperplane
vi
⊥ . Hence by the commutativity of Diagram (A.2),

θV,b(x) ≡ b(v1)· · ·b(vk) = det(b|V−) (mod F ∗2).

Thus x ∈ Ω(V, b) = Ker(θV,b) if and only if V− has square discriminant.

In particular, if x ∈ Ω(V, b), then the product of the b(vi) is a square, and hence
(upon replacing v1 by a scalar multiple) we can assume that b(v1)· · ·b(vk) = 1.
Then x̃

def= v1 · · · vk ∈ Spin(V, b) = Ker(θ̃). Since vw = −wv in the Clifford
algebra whenever v ⊥ w , and since (vi)2 = b(vi) for each i,

x̃2 = (−1)k(k−1)/2·(v1)2· · ·(vk)2 = (−1)k(k−1)/2 =

{
1 if k ≡ 0 (mod 4)
−1 if k ≡ 2 (mod 4) .

This proves (b).

It remains to prove (c). The first statement (α = α+⊕α− ) is clear. Fix liftings
α̃± ∈ C(V±, b)∗ . Rather than defining the direct sum of an element of C(V+, b)
with an element of C(V−, b), we regard the groups C(V±, b)∗ as (commuting)
subgroups of C(V, b)∗ , and set

α̃ = α̃+ ◦ α̃− = α̃− ◦ α̃+ ∈ Spin(V, b).

Let x̃ = v1· · ·vk be as above. Clearly, x̃ commutes with all elements of C(V+, b).
Since

(v1· · ·vk)·vi = (−1)k−1·vi·(v1· · ·vk) = −vi·(v1· · ·vk)
for i = 1, . . . , k , we have x̃·β = (−1)i·β·x̃ for all β ∈ Ci(V−, b) (i = 0, 1). In
particular, since [α̃+, α̃−] = 1, [x̃, α̃] = [x̃, α̃−] = det(α−), and this finishes the
proof.

We will need explicit isomorphisms which describe Spin3(F ) and Spin4(F ) in
terms of SL2(F ). These are constructed in the following proposition, where
M0

2 (F ) denotes the vector space of matrices of trace zero. Note that the de-
terminant is a nonsingular quadratic form on M2(F ) and on M0

2 (F ), in both
cases with square discriminant.
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Proposition A.5 Define

ρ3 : SL2(F ) −−−−−−→ Ω(M0
2 (F ),det)

and

ρ4 : SL2(F )× SL2(F ) −−−−−−→ Ω(M2(F ),det)

by setting

ρ3(A)(X) = AXA−1 and ρ4(A,B)(X) = AXB−1.

Then ρ3 and ρ4 are both epimorphisms, and lift to unique isomorphisms

SL2(F )
ρ̃3−−−−−−→∼= Spin(M0

2 (F ),det)

and

SL2(F )× SL2(F )
ρ̃4−−−−−−→∼= Spin(M2(F ),det).

Proof See [24, pages 142, 199] for other ways of defining these isomorphisms.
By Lemma A.3, it suffices to prove this (except for the uniqueness of the lifting)
when F is algebraically closed. In particular,

Ω(M0
2 (F ),det) = SO(M0

2 (F ),det) and Ω(M2(F ),det) = SO(M2(F ),det)

in this case.

For general V and b, the group SO(V, b) is generated by reflections fixing
nonisotropic subspaces (ie, of nonvanishing discriminant) of codimension 2 (cf
[8, section II.6(1)]). Hence to see that ρ3 and ρ4 are surjective, it suffices
to show that such elements lie in their images. A codimension 2 reflection in
SO(M0

2 (F ),det) is of the form RX (the reflection fixing the line generated by
X ) for some X ∈ M0

2 (F ) which is nonisotropic (ie, det(X) 6= 0). Since F
is algebraically closed, we can assume X ∈ SL2(F ). Then X2 = −I (since
Tr(X) = 0 and det(X) = 1), and RX = ρ3(X) since it has order 2 and fixes
X . Thus ρ3 is onto.

Similarly, any 2–dimensional nonisotropic subspace W ⊆ V has an orthonormal
basis {Y,Z}, and ZY −1 and Y −1Z have trace zero (since they are orthogonal
to the identity matrix) and determinant one. Hence their square is −I , and
one repeats the above argument to show that RW = ρ4(ZY −1, Y −1Z). So ρ4

is onto.

The liftings ρ̃m exist and are unique since SL2(F ) is the universal central
extension of PSL2(F ) (or universal among central extensions by 2–groups if
F = F3 ).
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We now restrict to the case F = Fq where q is an odd prime power. We refer to
[2, section 21] for a description of quadratic forms in this situation, and the no-
tation for the associated orthogonal groups. If n is odd and b is any nonsingular
quadratic form on Fnq , then every nonsingular quadratic form is isomorphic to
ub for some u ∈ F∗q , and hence one can write SOn(q) = SO(Fnq , b) = SO(Fnq , ub)
without ambiguity. If n is even, then there are exactly two isomorphism classes
of quadratic forms on Fnq ; and one writes SO+

n (q) = SO(Fnq , b) when b is the
hyperbolic form (equivalently, has discriminant (−1)n/2 modulo squares), and
SO−n (q) = SO(Fnq , b) when b is not hyperbolic (equivalently, has discriminant
(−1)n/2·u for u ∈ F∗q not a square). This notation extends in the obvious way
to Ω±n (q) and Spin±n (q).

The following lemma does, in fact, hold for for orthogonal representations over
arbitrary fields of characteristic 6= 2. But to simplify the proof (and since we
were unable to find a reference), we state it only in the case of finite fields.

Lemma A.6 Assume F = Fq , where q is a power of an odd prime. Let
V be an F –vector space, and let b be a nonsingular quadratic form on V .
Let P ≤ O(V, b) be a 2–subgroup which is orthogonally irreducible; ie, such
that V has no splitting as an orthogonal direct sum of nonzero P –invariant
subspaces. Then dimF (V ) is a power of 2; and if dim(V ) > 1 then b has
square discriminant.

Proof This means showing that each orthogonal group O(Fqn, b), such that
either n is not a power of 2, or n = 2k ≥ 2 and the quadratic form b has
nonsquare discriminant, contains some subgroup O±m(q) × O±n−m(q) (for 0 <
m < n) of odd index. We refer to the standard formulas for the orders of these
groups (see [24, p.165]): if ε = ±1 then

|Oε2n(q)| = 2qn(n−1)(qn − ε)
n−1∏
i=1

(q2i − 1) and |O2n+1(q)| = 2qn
2
n∏
i=1

(q2i − 1).

We will also use repeatedly the fact that for all 0 < i < 2k (k ≥ 1), the largest
powers of 2 dividing (q2k+i − 1) and (qi − 1) are the same. In other words,
(q2k+i − 1)/(qi − 1) is invertible in Z(2) .

For any n ≥ 1,
|O2n+1(q)|

|Oε2n(q)|·|O1(q)| = qn·q
n + ε

2

is odd for an appropriate choice of ε. Thus, there are no irreducibles of odd
dimension.

Geometry & Topology, Volume 6 (2002)



Construction of 2–local finite groups 973

Assume n is not a power of 2, and write n = 2k + m where 0 < m < 2k and
k ≥ 1. Then

|Oε2n(q)|
|O+

2k+1(q)|·|Oε2m(q)|
= qm2k+1 ·

(
m−1∏
i=1

q2(2k+i) − 1
q2i − 1

)
·
(
q2k+m − ε
qm − ε

)
·
(
q2k + 1

2

)
,

and each factor is invertible in Z(2) . When n = 2m = 2k and k ≥ 1, then
O−2n(q) is the orthogonal group for the quadratic form with nonsquare discrim-
inant, and

|O−2n(q)|
|O+

2m(q)|·|O−2m(q)|
= q2m2 ·

(
m−1∏
i=1

q2(m+i) − 1
q2i − 1

)
·q

2m + 1
2

,

and again each factor is invertible in Z(2) . Finally,

|Oε2(q)|
|O1(q)|·|O1(q)| =

q − ε
2

is odd whenever q ≡ 1 (mod 4) and ε = −1, or q ≡ 3 (mod 4) and ε = +1; and
these are precisely the cases where the quadratic form on Fq2 has nonsquare
discriminant.

We must classify the conjugacy classes of those elementary abelian 2–subgroups
of Spin7(q) which contain its center. The following definition will be useful when
doing this.

Definition A.7 Fix an odd prime power q . Identify SO7(q) = SO(F7
q , b) and

Spin7(q) = Spin(F7
q, b), where b is a nonsingular quadratic form with square

discriminant. An elementary abelian 2–subgroup of SO7(q) or of Spin7(q) will
be called of type I if its eigenspaces all have square discriminant (with respect
to b), and of type II otherwise. Let En be the set of elementary abelian 2–
subgroups in Spin7(q) which contain Z(Spin7(q)) ∼= C2 and have rank n. Let
EIn and EIIn be the subsets of En consisting of those subgroups of types I and
II, respectively.

In the following two propositions, we collect together the information which
will be needed about elementary abelian 2–subgroups of Spin7(q). We fix
Spin7(q) = Spin(V, b), where V ∼= F7

q , and b is a nonsingular quadratic form
with square discriminant. Let z ∈ Z(Spin7(q)) be the generator. For any
subgroup H ≤ Spin7(q) or any element g ∈ Spin7(q), let H and g denote
their images in Ω7(q) ≤ SO7(q). For each elementary abelian 2–subgroup
E ≤ Spin7(q), and each character χ ∈ Hom(E, {±1}), Vχ ⊆ V denotes the
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eigenspace of χ (and V1 denotes the eigenspace of the trivial character). Also
(when z ∈ E ), Aut(E, z) denotes the group of all automorphisms of E which
send z to itself.

Proposition A.8 For any odd prime power q , the following table describes
the numbers of Spin7(q)–conjugacy classes in each of the sets EIn and EIIn , the
dimensions and discriminants of the eigenspaces of subgroups in these sets, and
indicates in which cases AutSpin7(q)(E) contains all automorphisms which fix
z .

Set of subgroups EI2 EI3 EII3 EI4 EII4

Nr. conj. classes 1 1 1 2 1

dim(V1) 3 1 0

dim(Vχ), χ 6= 1 4 2 1

discr(V1, b) square square nonsq. — —

discr(Vχ, b), χ 6= 1 square square nonsq. square both

AutSpin7(q)(E) = Aut(E, z) yes yes yes yes no

There are no subgroups in E2 of type II, and no subgroups of rank ≥ 5. Fur-
thermore, we have:

(a) For all E ∈ E4 , CSpin7(q)(E) = E .

(b) If E,E′ ∈ EI4 , then E′ = gEg−1 for some g ∈ SO7(q), and E and E′ are
Spin7(q)–conjugate if and only if g ∈ Ω7(q).

(c) If E ∈ EII4 , then there is a unique element 1 6= x = x(E) ∈ E with the

property that for 1 6= χ ∈ Hom(E, {±1}), Vχ has square discriminant if
χ(x) = 1 and nonsquare discriminant if χ(x) = −1. Also, the image of

AutSpin7(q)(E) in Aut(E) is the group of all automorphisms which send

x to itself; and if X ≤ E denotes the inverse image of 〈x〉 ≤ E , then

AutSpin7(q)(E) contains all automorphisms of E which are the identity on
X and the identity modulo 〈z〉 .

(d) If E ∈ E3 , then CSpin7(q)(E) = AoC2 , where A is abelian and C2 acts on

A by inversion. If E ∈ EII3 , then the Sylow 2–subgroups of CSpin7(q)(E)
are elementary abelian of rank 4 (and type II).

Proof Write Spin = Spin7(q) for short. Fix an elementary abelian subgroup
E ≤ Spin such that z ∈ E .
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Step 1 We first show that rk(E) ≤ 4, and that the dimensions of the eigen-
spaces Vχ for χ ∈ Hom(E, {±1}) are as described in the table.

By Lemma A.4, every involution in E has a 4–dimensional (−1)–eigenspace.
In particular, if rk(E) = 2, (E ∼= C2 ), then dim(Vχ) = 4 for 1 6= χ ∈
Hom(E, {±1}), while dim(V1) = 3.

Now assume rk(E) = n for some n > 2. Assume we have shown, for all
E′ ∈ En−1 , that the eigenspace of the trivial character of E′ is r–dimensional.
For each 1 6= χ ∈ Hom(E, {±1}), let Eχ ∈ En−1 be the subgroup such that
Eχ = Ker(χ); then V1 ⊕ Vχ is the eigenspace of the trivial character of Eχ =
Ker(χ), and thus dim(V1) + dim(Vχ) = r . Hence all nontrivial characters of E
have eigenspaces of the same dimension. Since there are 2n−1 − 1 nontrivial
characters of E , we have dim(V1) + (2n−1 − 1) dim(Vχ) = 7, and these two
equations completely determine dim(V1) and dim(Vχ). Using this procedure,
the dimensions of the eigenspaces are shown inductively to be equal to those
given by the table. Also, this shows that rk(E) ≤ 4, since otherwise rk(E) ≥ 4,
so the Vχ for χ 6= 1 must be trivial (they cannot all have dimension ≥ 1), so E
acts on V via the identity, which contradicts the assumption that E ≤ Spin7(q).

Step 2 We next show that EII2 = ∅, describe the discriminants of the eigen-
spaces of characters of E for E ∈ En (for all n), and show that subgroups of
rank 4 are self centralizing. In particular, this proves (a) together with the first
statement of (c).

If E ∈ E2 , then E = 〈z, g〉 for some noncentral involution g ∈ Spin7(q), and the
eigenspaces of E = 〈g〉 have square discriminant by Lemma A.4(a) (and since
the ambient space V has square discriminant by assumption). Thus EII2 = ∅.

If E ∈ E3 , then the sum of any two eigenspaces of E is an eigenspace of g
for some g ∈ Er〈z〉 . Hence the sum of any two eigenspaces of E has square
discriminant, so either all of the eigenspaces have square discriminant (E ∈ EI3 ),
or all of the eigenspaces have nonsquare discriminant (E ∈ EII3 ).

Assume rk(E) = 4. We have seen that all eigenspaces of E are 1–dimensional.
By Lemma A.4(c), for each a ∈ CSpin7(q)(E), a(Vχ) = Vχ for each χ 6= 1, and
since dim(Vχ) = 1 it must act on each Vχ via ± Id. Thus a ∈ Ω7(q) has order
2; let V± be its eigenspaces. Then dim(V−) is even since det(a) = 1, and
V− has square discriminant by Lemma A.4(a). If dim(V−) = 4, then |a| = 2
(Lemma A.4(b)), and hence a ∈ E since otherwise 〈E, a〉 would have rank 5. If
dim(V−) = 2, then V− is the sum of the eigenspaces of two distinct characters
χ1, χ2 of E , there is some g ∈ E such that χ1(g) 6= χ2(g), hence det(g|V−) =
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χ1(g)χ2(g) = −1, so [g, a] = z by Lemma A.4(c), and this contradicts the
assumption that [a,E] = 1. If dim(V−) = 6, then V− is the sum of the
eigenspaces of all but one of the nontrivial characters of E , and this gives a
similar contradiction to the assumption [a,E] = 1. Thus, CSpin7(q)(E) = E .

Now assume that E ∈ EII4 , and let x ∈ O7(q) be the element which acts via
− Id on eigenspaces with nonsquare discriminant, and via the identity on those
with square discriminant. Since b has square discriminant on V , the number of
eigenspaces of E on which the discriminant is nonsquare is even, so x ∈ Ω7(q)
by Lemma A.4(a), and lifts to an element x ∈ Spin7(q). Also, for each g ∈ E ,
the (−1)–eigenspace of g has square discriminant (Lemma A.4(a) again), hence
contains an even number of eigenspaces of E of nonsquare discriminant, and
by Lemma A.4(c) this shows that [g, x] = 1. Thus x ∈ CSpin7(q)(E) = E , and
this proves the first statement in (c).

Step 3 We next check the numbers of conjugacy classes of subgroups in each
of the sets EIn and EIIn , and describe AutSpin(E) in each case. This finishes the
proof of (b) and (c), and of all points in the above table.

From the above description, we see immediately that if E and E′ have the same
rank and type, then any isomorphism α ∈ Iso(E,E ′), such that α(x(E)) =
x(E′) if E,E′ ∈ EII4 , has the property that for all χ ∈ Hom(E′, {±1}), Vχ and
Vχ◦α have the same dimension and the same discriminant (modulo squares).
Hence for any such α, there is an element g ∈ O7(q) such that g(Vχ◦α) = Vχ

for all χ; and α = cg ∈ Iso(E,E ′) for such g . Upon replacing g by −g if
necessary, we can assume that g ∈ SO7(q). This shows that

E,E′ have the same rank and type =⇒ E and E′ are SO7(q)–conjugate
(1)

and also that

AutSO7(q)(E) =

{
Aut(E) if E /∈ EII4

Aut(E, x(E)) if E ∈ EII4 .
(2)

We next claim that

E /∈ EI4 =⇒ ∃γ ∈ SO7(q)rΩ7(q) such that [γ,E] = 1 . (3)

To prove this, choose 1–dimensional nonisotropic summands W ⊆ Vχ and W ′ ⊆
Vψ , where χ,ψ are two distinct characters of E , and where W has square
discriminant and W ′ has nonsquare discriminant. Let γ ∈ SO7(q) be the
involution with (−1)–eigenspace W ⊕ W ′ . Then [γ,E] = 1, since γ sends
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each eigenspace of E to itself, and γ /∈ Ω7(q) since its (−1)–eigenspace has
nonsquare discriminant (Lemma A.4(a)).

If E has rank 4 and type I, then Aut(E) ∼= GL3(F2) is simple, and in particular
has no subgroup of index 2. Hence by (2), each element of Aut(E) is induced
by conjugation by an element of Ω7(q). Also, if g ∈ SO7(q) centralizes E , then
g(Vχ) = Vχ for all χ ∈ Hom(E, {±1}), g acts via − Id on an even number
of eigenspaces (since it has determinant +1), and hence g ∈ Ω7(q) by Lemma
A.4(a). Thus

E ∈ EI4 =⇒ NSO7(q)(E) ≤ Ω7(q) (4)

If E /∈ EI4 , then by (3), for any g ∈ SO7(q), there is γ ∈ SO7(q)rΩ7(q) such
that cg|E = cgγ |E , and either g or gγ lies in Ω7(q). Thus IsoSO7(q)(E,E ′) =
IsoΩ7(q)(E,E ′) for any E′ . Together with (1), this shows that E is Spin–
conjugate to all other subgroups of the same rank and type, and together with
(2) it shows that

Im
[
AutSpin(E) −−→ Aut(E)

]
=

{
Aut(E) if E /∈ EII4

Aut(E, x(E)) if E ∈ EII4 .
(5)

If E ∈ EI4 , then by (4) and (2), AutΩ7(q)(E) = AutSO7(q)(E) = Aut(E), and
so (5) also holds in this case. Furthermore, for any g ∈ SO7(q)rΩ7(q), E and
gEg−1 are representatives for two distinct Ω7(q)–conjugacy classes — since by
(4), no element of the coset g·Ω7(q) normalizes E .

We have now determined in all cases the number of conjugacy classes of sub-
groups of a given rank and type, and the image of AutSpin(E) in Aut(E). We
next claim that if rk(E) < 4 or E ∈ EI4 , then

E /∈ EII4 =⇒ AutSpin(E) ≥
{
α ∈ Aut(E)

∣∣α(z) = z, α ≡ Id (mod 〈z〉)
}
.
(6)

Together with (5), this will finish the proof that AutSpin(E) is the group of all
automorphisms of E which send z to itself. We also claim that

E ∈ EII4 =⇒ AutSpin(E) ≥
{
α ∈ Aut(E)

∣∣α|X = IdX , α ≡ Id (mod 〈z〉)
}
,
(7)

where X ≤ E denotes the inverse image of 〈x(E)〉 ≤ E , and this will finish the
proof of (c).

We prove (6) and (7) together. Fix α ∈ Aut(E) (α 6= Id) which sends z to itself,
induces the identity on E , and such that α|X = IdX if E ∈ EII4 . Then there
is 1 6= χ ∈ Hom(E, {±1}) such that α(g) = g when χ(g) = 1 and α(g) = zg
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when χ(g) = −1. Choose any character ψ such that Vψ 6= 0 and Vψχ 6= 0, and
let W ⊆ Vψ and W ′ ⊆ Vψχ be 1–dimensional nonisotropic subspaces with the
same discriminant (this is possible when E ∈ EII4 since x(E) ∈ Ker(χ)). Let
g ∈ O7(q) be the involution whose (−1)–eigenspace is W⊕W ′ . Then g ∈ Ω7(q)
by Lemma A.4(a), so g lifts to g ∈ Spin7(q), and using Lemma A.4(c) one sees
that cg = α.

Step 4 It remains to prove (d). Assume E ∈ E3 . Let 1 = χ1, χ2, χ3, χ4 be the
four characters of E , and set Vi = Vχi . Then dim(V1) = 1, dim(Vi) = 2 for
i = 2, 3, 4, and the Vi either all have square discriminant or all have nonsquare
discriminant. For each g ∈ CSpin(E), we can write g =

⊕4
i=1 gi , where gi ∈

O(Vi, bi). For each pair of distinct indices i, j ∈ {2, 3, 4}, there is some g ∈ E
whose (−1)–eigenspace is Vi⊕Vj , and hence det(gi⊕gj) = 1 by Lemma A.4(c).
This shows that the gi all have the same determinant. Let A ≤ CSpin(E) be
the subgroup of index 2 consisting of those g such that det(gi) = 1 for all i.

Now, SO1(Fq) = 1, while SO2(Fq) ∼= F∗q is the group of diagonal matrices
of the form diag(u, u−1) with respect to a hyperbolic basis of Fq2 . Thus A

is contained in a central extension of C2 by (F∗q)3 , and any such extension
is abelian since H2((F∗q)3) = 0. Hence A is abelian. The groups O±2 (q) are
all dihedral (see [24, Theorem 11.4]). Hence for any g ∈ CSpin(E)rA, g has
order 2 and (−1)–eigenspace of dimension 4 (its intersection with each Vi is
1–dimensional), and hence |g| = 2 by Lemma A.4(b). Thus all elements of
CSpin(E)rA have order 2, so the centralizer must be a semidirect product of A
with a group of order 2 which acts on it by inversion.

Now assume that E ∈ EII3 ; ie, that the Vi all have nonsquare discriminant.
Then for i = 2, 3, 4, SO(Vi, bi) has order q ± 1, whichever is not a multiple
of 4 (see [24, Theorem 11.4] again). Thus if g ∈ A ≤ CSpin(E) has 2–power
order, then gi = ±I for each i, the number of i for which gi = Id is even (since
the (−1)–eigenspace of g has square discriminant), and hence g ∈ E . In other
words, E ∈ Syl2(A). A Sylow 2–subgroup of CSpin(E) is thus generated by E
together with an element of order 2 which acts on E by inversion; this is an
elementary abelian subgroup of rank 4, and is necessarily of type II.

We also need some more precise information about the subgroups of Spin7(q) of
rank 4 and type II. Let ψq ∈ Aut(Spin7(Fq)) denote the automorphism induced
by the field automorphism (x 7→ xq ). By Lemma A.3, Spin7(q) is precisely the
subgroup of elements fixed by ψq .
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Proposition A.9 Fix an odd prime power q , and let z ∈ Z(Spin7(q)) be the
central involution. Let C and C′ denote the two conjugacy classes of subgroups
E ≤ Spin7(q) of rank 4 and type I. Then the following hold.

(a) For each E ∈ E4 , there is an element a ∈ Spin7(Fq) such that aEa−1 ∈ C .
For any such a, if we set

xC(E) def= a−1ψq(a),

then xC(E) ∈ E and is independent of the choice of a.

(b) E ∈ C if and only if xC(E) = 1, and E ∈ C′ if and only if xC(E) = z .

(c) Assume E ∈ EII4 , and set τ(E) = 〈z, xC(E)〉 . Then rk(τ(E)) = 2, and

AutSpin7(q)(E) =
{
α ∈ Aut(E)

∣∣α|τ(E) = Id
}
.

The four eigenspaces of E contained in the (−1)–eigenspace of xC(E)
all have nonsquare discriminant, and the other three eigenspaces all have
square discriminant.

Proof (a) For all E ∈ E4 , E has type I as a subgroup of Spin7(q2) since
all elements of Fq are squares in Fq2 . Hence by Proposition A.8(b), for all
E′ ∈ C , there is a ∈ SO7(q2) ≤ Ω7(q4) such that aEa−1 = E′ . Upon lifting a

to a ∈ Spin7(q4), this proves that there is a ∈ Spin7(Fq) such that aEa−1 ∈ C .

Fix any such a, and set

x = xC(E) = a−1ψq(a).

For all g ∈ E , ψq(g) = g and ψq(aga−1) = aga−1 since E, aEa−1 ≤ Spin7(q),
and hence

aga−1 = ψq(a)·g·ψq(a−1) = a(xgx−1)a−1.

Thus, x ∈ C
Spin7(Fq)

(E), and so x ∈ E since it is self centralizing in each

Spin7(qk) (Proposition A.8(a)).

We next check that xC(E) is independent of the choice of a. Assume a, b ∈
Spin7(Fq) are such that aEa−1 ∈ C and bEb−1 ∈ C . Then by Proposition
A.8(b), there is g ∈ Spin7(q) such that gbE(gb)−1 = aEa−1 . Set E′ = aEa−1 ∈
C , then gba−1 ∈ N

Spin7(Fq)
(E′). Furthermore, since AutSpin7(q)(E′) contains

all automorphisms which send z to itself, and since E′ is self centralizing in
each of the groups Spin7(qk) (both by Proposition A.8 again), we see that
N

Spin7(Fq)
(E′) is contained in Spin7(q). Thus, ba−1 ∈ Spin7(q), so ψq(ba−1) =
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ba−1 ; and this proves that xC(E) = a−1ψq(a) = b−1ψq(b) is independent of the
choice of a.

(b) If E ∈ C , then we can choose a = 1, and so xC(E) = 1.

If E ∈ C′ , then by Proposition A.8(b), there is a ∈ Spin7(q2) such that a ∈
SO7(q)rΩ7(q) and aEa−1 ∈ C . Then ψq(a) 6= a since a /∈ Spin7(q) (Proposi-
tion A.3), but ψq(a) = a since a ∈ SO7(q). Thus, xC(E) = a−1ψq(a) = z in
this case.

We have now shown that xC(E) ∈ 〈z〉 if E has type I, and it remains to prove
the converse. Fix a ∈ Spin7(Fq) such that aEa−1 ∈ C . If xC(E) ∈ 〈z〉 , then
ψq(a) ∈ {a, za}, so ψq(a) = a, and hence a ∈ SO7(q). Conjugation by an
element of SO7(q) sends eigenspaces with square discriminant to eigenspaces
with square discriminant, so all eigenspaces of E must have square discriminant
since all eigenspaces of aEa−1 do. Hence E has type I.

(c) Now write Spin = Spin7(q) for short. Assume E ∈ EII4 , and set x = xC(E)
and τ(E) = 〈z, x〉 . Then x /∈ 〈z〉 by (b), and thus τ(E) has rank 2.

By (a) (the uniqueness of x having the given properties), each element of
AutSpin(E) restricts to the identity on τ(E). We have already seen (Proposition
A.8(c)) that there is an element x(E) ∈ E such that the image in Aut(E) of
AutSpin(E) is the group of automorphisms which fix x(E), and this shows that
x(E) = x: the image in E of x. Since we already showed (Proposition A.8(c)
again) that AutSpin(E) contains all automorphisms which are the identity on
τ(E) and the identity modulo 〈z〉, this finishes the proof that AutSpin(E) is
the group of all automorphisms which are the identity on τ(E). The last state-
ment (about the discriminants of the eigenspaces) follows directly from the first
statement of Proposition A.8(c).

Throughout the rest of the section, we collect some more technical results which
will be needed in Sections 2 and 4.

Lemma A.10 Fix k ≥ 2. Let A = e13(2k−1) ∈ GL3(Z/2k) be the elementary
matrix which has off diagonal entry 2k−1 in position (1, 3). Let T1 and T2 be
the two maximal parabolic subgroups of GL3(2):

T1 = GL1
2(Z/2) =

{
(aij) ∈ GL3(2) | a21 = a31 = 0

}
and

T2 = GL2
1(Z/2) =

{
(aij) ∈ GL3(2) | a31 = a32 = 0

}
.
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Set T0 = T1 ∩ T2 : the group of upper triangular matrices in GL3(2). Assume
that

µi : Ti −−−−−→ SL3(Z/2k)

are lifts of the inclusions (for i = 1, 2) such that µ1|T0 = µ2|T0 . Then there is
a homomorphism

µ : GL3(2) −−−→ SL3(Z/2k)

such that µ|T1 = µ1 , and either µ|T2 = µ2 , or µ|T2 = cA ◦ µ2 .

Proof We first claim that any two liftings σ, σ′ : T2 −−→ SL3(Z/2k) are con-
jugate by an element of SL3(Z/2k). This clearly holds when k = 1, and so we
can assume inductively that σ ≡ σ′ (mod 2k−1 ). Let M0

3 (F2) be the group of
3× 3 matrices of trace zero, and define ρ : T2 −−→M0

3 (F2) via the formula

σ′(B) = (I + 2k−1ρ(B))·σ(B)

for B ∈ T2 . Then ρ is a 1–cocycle. Also, H1(T2;M0
3 (F2)) = 0 by [9, Lemma 4.3]

(the module is F2[T2]–projective), so ρ is the coboundary of some X ∈M0
3 (F2),

and σ and σ′ differ by conjugation by I + 2k−1X .

By [9, Theorem 4.1], there exists a section µ defined on GL3(2) such that
µ|T1 = µ1 . Let B ∈ SL3(Z/2k) be such that µ|T2 = cB ◦µ2 . Since µ|T0 = µ2|T0 ,
B must commute with all elements in µ(T0), and one easily checks that the
only such elements are A = e13(2k−1) and the identity.

Recall that a p–subgroup P of a finite group G is p–radical if NG(P )/P is p–
reduced; ie, if Op(NG(P )/P ) = 1. (Here, Op(−) denotes the largest normal p–
subgroup.) We say here that P is Fp(G)–radical if OutG(P ) (= OutFp(G)(P ))
is p–reduced. In Section 4, some information will be needed involving the
F2(Spin7(q))–radical subgroups of Spin7(q) which are also 2–centric. We first
note the following general result.

Lemma A.11 Fix a finite group G and a prime p. Then the following hold
for any p–subgroup P ≤ G which is p–centric and Fp(G)–radical.

(a) If G = G1 × G2 , then P = P1 × P2 , where Pi is p–centric in Gi and
Fp(Gi)–radical.

(b) If P ≤ H C G, then P is p–centric in H and Fp(H)–radical.

(c) If H C G has p–power index, then P ∩H is p–centric in H and Fp(H)–
radical.
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(d) If G C G has p–power index, then P = G ∩ P for some P ≤ G which is

p–centric in G and Fp(G)–radical.

(e) If Q C G is a central p–subgroup, then Q ≤ P , and P/Q is p–centric in
G/Q and Fp(G/Q)–radical.

(f) If G̃
α−−� G is an epimorphism such that Ker(α) ≤ Z(G̃), then α−1(P )

is p–centric in G̃ and Fp(G̃)–radical.

Proof Point (a) follows from [16, Proposition 1.6(ii)]: P = P1×P2 for Pi ≤ Gi
since P is p–radical, and Pi must be p–centric in Gi and Fp(Gi)–radical since

CG(P ) = CG1(P1)×CG2(P2) and OutG(P ) ∼= OutP1(G1)×OutP2(G2).

Point (b) holds since CH(P ) ≤ CG(P ) and Op(OutH(P )) ≤ Op(OutG(P )).

It remains to prove the other four points.

(e) Fix a central p–subgroup Q ≤ Z(G). Then P ≥ Q, since otherwise
1 6= NQP (P )/P ≤ Op(NG(P )/P ). Also, P/Q is p–centric in G/Q, since
otherwise there would be x ∈ GrP of p–power order such that

1 6= [cx] ∈ Ker
[
OutG(P ) −−−→ OutG/Q(P/Q)×OutG(Q)

]
≤ Op(OutG(P )).

It remains only to prove that P/Q is Fp(G/Q)–radical, and to do this it suffices
to show that

OutG/Q(P/Q) ∼= OutG(P ).

Equivalently, since P/Q and P are p–centric, we must show that

NG/Q(P/Q)
C ′G/Q(P/Q)× P/Q

∼= NG(P )
C ′G(P )× P ;

and this is clear once we have shown that

C ′G/Q(P/Q) ∼= C ′G(P ).

Any x ∈ C ′G/Q(P/Q) lifts to an element x ∈ G of order prime to p, whose
conjugation action on P induces the identity on Q and on P/Q. By [15,
Corollary 5.3.3], all such automorphisms of P have p–power order, and thus
x centralizes P . Since Q is a p–group and C ′G/Q(P/Q) has order prime to p,
this shows that the projection modulo Q sends C ′G/Q(P/Q) isomorphically to
C ′G(P ).
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(f) Let G̃
α
−−� G be an epimorphism whose kernel is central. Clearly, α−1P

is p–centric in G̃. It remains only to prove that α−1P is Fp(G̃)–radical, and
to do this it suffices to show that

Out
G̃

(α−1P ) ∼= OutG(P ).

Equivalently, since P and α−1(P ) are p–centric, we must show that

NG̃(α−1P )
C ′
G̃

(α−1P )× α−1P
∼=

NG(P )
C ′G(P )× P ;

and this is clear once we have shown that

C ′
G̃

(α−1P ) ∼= C ′G(P ).

This follows by exactly the same argument as in the proof of (e).

(c) Set P ′ = P ∩H for short. Let

NH(P ′)
π

−−−−−� OutH(P ′) ∼= NH(P ′)/(CH (P ′)·P ′)

be the natural projection, and set

K = π−1(Op(OutH(P ′))) ≤ NH(P ′).

Then K ≥ Op(NH(P ′)) is an extension of CH(P ′)·P ′ by Op(OutH(P ′)). It
suffices to show that p - [K:P ′], since this implies that Op(OutH(P ′)) = 1 (ie,
P ′ is Fp(H)–radical), and that any Sylow p–subgroup of CH(P ′) is contained
in P ′ (hence P ′ is p–centric in H ).

Assume otherwise: that p
∣∣[K:P ′]. Note first that P ′ C NG(P ), and that

NG(P ) ≤ NG(K); ie, NG(P ) normalizes P ′ and K . The first statement is
obvious, and the second is verified by observing directly that NG(P ) normalizes
NH(P ′) and CH(P ′). Thus the action of NG(P ) on K induces an action of
NG(P ), and in particular of P , on K/P ′ . Let K0/P

′ denote the fixed subgroup
of this action of P . Since p

∣∣[K:P ′] by assumption, and since P is a p–group,
p
∣∣|K0/P

′|. A straightforward check also shows that K0 C NG(P ), and therefore
that PK0 C NG(P ). Also, since P ′ ≤ K0 ≤ H ,

PK0/P ∼= K0/(P ∩K0) = K0/P
′

is a normal subgroup of NG(P )/P of order a multiple of p. Since P is p–centric
in G by assumption,

OutG(P ) = NG(P )/(CG(P )·P ) = NG(P )/(C ′G(P )× P ),

and hence the image of PK0/P in OutG(P ) is a normal subgroup which also
has order a multiple of p.
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By definition of K as an extension of CH(P ′)·P ′ by a p–group, if x ∈ K has
order prime to p, then x ∈ CH(P ′). Hence if x ∈ K0 has order prime to p, then
for every z ∈ P , [x, z] ∈ P ′ , so x acts trivially on P/P ′ . Since x also centralizes
P ′ , it follows that x centralizes P . This shows that the image of PK0/P in
OutG(P ) is a p–group, thus a nontrivial normal p–subgroup of OutG(P ), and
this contradicts the original assumption that P is Fp(G)–radical.

(d) Let G C G be a normal subgroup of p–power index and let P ≤ G be a
p–centric and Fp(G)–radical subgroup. Let

N
G

(P )
π

−−−−−� Out
G

(P ) ∼= N
G

(P )
/(
C
G

(P )·P
)

be the natural surjection, and set

K = π−1
(
Op(Out

G
(P ))

)
≤ N

G
(P ).

Then K is an extension of C
G

(P )·P by Op(Out
G

(P )). Fix any P ∈ Sylp(K).

We will show that P ∩G = P , and that P is p–centric in G and Fp(G)–radical.

For each x ∈ K ∩G ≤ NG(P ),

π(x) ∈ Op(Out
G

(P )) ∩OutG(P ) ≤ Op(OutG(P )) = 1.

Hence

x ∈ Ker
[
NG(P ) −−−−→ Out

G
(P )
]

= (C
G

(P )·P )∩G = CG(P ) ·P ∼= C ′G(P )×P,

where C ′G(P ) ≤ CG(P ) is of order prime to p. Since the opposite inclusion is
obvious, this shows that K ∩G = C ′G(P )× P , and hence (since P ∈ Sylp(K))
that P ∩G = P .

Next, note that (K∩G) C K and K/(K∩G) ≤ G/G, and hence K/C ′G(P ) has
p–power order. Since P ∈ Sylp(K), P is an extension of P by K/(K ∩G), and
NK(P ) is an extension of a subgroup of (K∩G) = (C ′G(P )×P ) by K/(K∩G).
Also, an element x ∈ C ′G(P ) normalizes P if and only if [x, P ] ∈ P∩C ′G(P ) = 1.
Hence

NK(P ) = CK(P )·P = C ′G(P )× P , (1)

where C ′G(P ) = C ′G(P )∩CG(P ) has order prime to p and is normal in NK(P ).
Since C

G
(P ) ≤ C

G
(P ) ≤ K , (1) shows that C

G
(P ) ≤ C ′G(P ) × P , and hence

that P is p–centric in G.

It remains to show that P is Fp(G)–radical. Note first that K C N
G

(P )

by construction, so for any x ∈ N
G

(P ), xPx−1 ∈ Sylp(K). Since K is an
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extension of C ′G(P )×P by the p–group K/(K ∩G), and since C ′G(P ) C K , it
follows that K is a split extension of C ′G(P ) by P . Hence for any x ∈ N

G
(P ),

xPx−1 = yPy−1 for some y ∈ C ′G(P ). Consequently, the restriction map

N
G

(P )/C
G

(P ) ∼= Aut
G

(P ) −−−−−−→ Aut
G

(P ) ∼= N
G

(P )/C
G

(P ) (2)

is surjective. Also, if x ∈ C
G

(P ) ≤ K normalizes P , then x ∈ NK(P ) ∼=
P × C ′G(P ) by (1), and so cx ∈ Inn(P ). Thus the kernel of the map in (2) is
contained in Inn(P ). Consequently,

Out
G

(P ) = Aut
G

(P )/ Inn(P ) ∼= Aut
G

(P )/Aut
P

(P ) ∼= Out
G

(P )/Op(Out
G

(P )),

and it follows that P is Fp(G)–radical.

This is now applied to show the following:

Proposition A.12 Fix an odd prime power q , and let P ≤ Spin7(q) be any
subgroup which is 2–centric and F2(Spin7(q))–radical. Then P is centric in

Spin7(Fq); ie, C
Spin7(Fq)

(P ) = Z(P ).

Proof Let z be the central involution in Spin7(q). By Lemma A.11(e), z ∈ P ,
and P

def= P/〈z〉 is 2–centric in Ω7(q) and is F2(Ω7(q))–radical. So by Lemma
A.11(d), there is a 2–subgroup P̂ ≤ O7(q) such that P̂ ∩ Ω7(q) = P , and such
that P̂ is 2–centric in O7(q) and is F2(O7(q))–radical.

Let V =
⊕m

i=1 Vi be a maximal decomposition of V as an orthogonal direct
sum of P̂ –representations, and set bi = b|Vi . We assume these are arranged so
that for some k , dim(Vi) > 1 when i ≤ k and dim(Vi) = 1 when i > k . Let V+

be the sum of those 1–dimensional components Vi with square discriminant,
and let V− be the sum of those 1–dimensional components Vi with nonsquare
discriminant. We will be referring to the two decompositions

(V, b) =
m⊕
i=1

(Vi, bi) =
k⊕
i=1

(Vi, bi)⊕ (V+, b+)⊕ (V−, b−),

both of which are orthogonal direct sums. We also write

V (∞) = Fq ⊗Fq V and V
(∞)
i = Fq ⊗Fq Vi,

and let b(∞) and b(∞)
i be the induced quadratic forms.
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Step 1 For each i, set

Di = {± IdVi} ≤ O(Vi, bi),

a subgroup of order 2; and write

D =
m∏
i=1

Di ≤ O(V, b), and D± =
∏

Vi⊆V±

Di ≤ O(V±, b±).

Thus D and D± are elementary abelian 2–groups of rank m and dim(V±),
respectively. We first claim that

P̂ ≥ D, (1)

and that

P̂ =
m∏
i=1

Pi where ∀ i, Pi is 2–centric in O(Vi, bi) and F2(O(Vi, bi))–radical.

(2)
Clearly, [D, P̂ ] = 1 (and D is a 2–group), so D ≤ P̂ since P̂ is 2–centric.
This proves (1). The Vi are thus distinct (pairwise nonisomorphic) as P̂ –
representations, since they are pairwise nonisomorphic as D–representations.
The decomposition as a sum of Vi ’s is thus unique (not only up to isomorphism),
since Hom

P̂
(Vi, Vj) = 0 for i 6= j .

Let Ĉ be the group of elements of O(V, b) which send each Vi to itself, and let
N̂ be the group of elements which permute the Vi . By the uniqueness of the
decomposition of V ,

P̂ ·CO(V,b)(P̂ ) ≤ Ĉ =
m∏
i=1

O(Vi, bi) and NO(V,b)(P̂ ) ≤ N̂ .

Since P̂ is 2–centric in O(V, b) and F2(O(V, b))–radical, it is also 2–centric in
N̂ and F2(N̂ )–radical (this holds for any subgroup which contains NO(V,b)(P̂ )).
So by Lemma A.11(b) (and since Ĉ C N̂ ), P̂ is 2–centric in Ĉ and F2(Ĉ)–
radical. Point (2) now follows from Lemma A.11(a).

Step 2 Whenever dim(Vi) > 1 (ie, 1 ≤ i ≤ k), then by Lemma A.6, dim(Vi) is
even, and bi has square discriminant. So by Lemma A.4(a), − IdVi ∈ Ω(Vi, bi)
for such i. Together with (1), this shows that

P = P̂ ∩ Ω7(q) ≥
k∏
i=1

Di ×
(
Ω(V+, b+) ∩D+

)
×
(
Ω(V−, b−) ∩D−

)
. (3)
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Also, by Lemma A.4(a) again,(
Ω(V±, b±) ∩D±

)
=
(
SO(V±,b±) ∩D±

)
=
〈
− IdVi⊕Vj

∣∣ k+1 ≤ i < j ≤ m, Vi, Vj ⊆ V±
〉
.

(4)

Step 3 By (3) and (4), the Vi are distinct as P –representations (not only as
P̂ –representations), except possibly when dim(V±) = 2. We first check that
this exceptional case cannot occur. If dim(V+) = 2 and its two irreducible
summands are isomorphic as P –representations, then the image of P under
projection to O(V+, b+) is just {± IdV+}. Hence we can write V+ = W ⊕W ′ ,
where W⊥W ′ are 1–dimensional, P –invariant, and have nonsquare discrim-
inant. Also, dim(V−) is odd, since V+ and the Vi for i ≤ k are all even
dimensional. So − IdV−⊕W lies in CΩ7(q)(P ) but not in P . But this is im-
possible, since P is 2–centric in Ω7(q). The argument when dim(V−) = 2 is
similar.

The Vi are thus distinct as P –representations. So for all i 6= j , HomP (Vi, Vj) =
0, and hence

HomFq[P ]
(V (∞)
i , V

(∞)
j ) ∼= Fq ⊗Fq HomFq[P ](Vi, Vj) = 0.

Thus any element of O(V (∞), b(∞)) which centralizes P sends each V
(∞)
i to

itself. In other words,

C
Spin7(Fq)

(P )/〈z〉 ≤ C
Ω7(Fq)

(P ) ≤
m∏
i=1

O(V (∞)
i , b

(∞)
i ).

If dim(V±) ≥ 2, then since P contains all involutions in O(V±, b±) which
are P̂ –invariant and have even dimensional (−1)–eigenspace (see (3)), Lemma
A.4(c) shows that each element of Spin7(Fq) which commutes with P must act
on V± via ± Id. Also, for 1 ≤ i ≤ k , since − IdVi ∈ P by (3), each element in
the centralizer of P acts on Vi with determinant 1 (Lemma A.4(c) again). We
thus conclude that

C
Spin7(Fq)

(P )/〈z〉 ≤
k∏
i=1

SO(V (∞)
i , b

(∞)
i )× {± IdV+} × {± IdV−}. (5)

Step 4 We next show that

C
Spin7(Fq)

(P )/〈z〉 ≤
k∏
i=1

{± IdVi} × {± IdV+} × {± IdV−}. (6)
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Using (5), this means showing, for each 1 ≤ i ≤ k , that

pri
(
C

Spin7(Fq)
(P )/〈z〉

)
≤ {± IdVi}; (7)

where pri denotes the projection of O7(Fq) = O(V (∞), b(∞)) to O(V (∞)
i , b

(∞)
i ).

By Lemma A.6, dim(Vi) = 2 or 4. We consider these two cases separately.

Case 4A If dim(Vi) = 4, then by (2) and Lemma A.11(c), P ′i
def= Pi∩Ω(Vi, bi)

is 2–centric in Ω(Vi, bi) and is F2(Ω(Vi, bi))–radical. Also, by Proposition A.5,

Ω(Vi, bi) ∼= Ω+
4 (q) ∼= SL2(q)×C2 SL2(q).

By Lemma A.11(a,f), under this identification, we have P ′i = Q×C2 Q
′ , where

Q and Q′ are 2–centric in SL2(q) and F2(SL2(q))–radical. The Sylow 2–
subgroups of SL2(q) are quaternion groups of order ≥ 8, all subgroups of a
quaternion 2–group are quaternion or cyclic, and cyclic 2–subgroups of SL2(q)
cannot be both 2–centric and F2(SL2(q))–radical. So Q and Q′ must be
quaternion of order ≥ 8. By [23, 3.6.3], any cyclic 2–subgroup of SL2(Fq)
of order ≥ 4 is conjugate to a subgroup of diagonal matrices, whose central-
izer is the group of all diagonal matrices in SL2(Fq). Knowing this, one easily
checks that all nonabelian quaternion 2–subgroups of SL2(Fq) are centric in
SL2(Fq). It follows that P ′i is centric in

SO(V (∞)
i , b

(∞)
i ) ∼= SL2(Fq)×C2 SL2(Fq),

and hence that

pri
(
C

Spin7(Fq)
(P )/〈z〉

)
≤ C

SO(V
(∞)
i ,b

(∞)
i )

(P ′i ) = Z(P ′i ) = {± IdVi}.

Thus (7) holds in this case.

Case 4B If dim(Vi) = 2, then O(Vi, bi) ∼= O±2 (q) is a dihedral group of
order 2(q ∓ 1) [24, Theorem 11.4]. Hence Pi ∈ Syl2(O(Vi, bi)), since the Sylow
subgroups are the only radical 2–subgroups of a dihedral group. Fix Vj for
any k < j ≤ m, and choose α ∈ O(Vi, bi) of determinant (−1) whose (−1)–
eigenspace has the same discriminant as Vj . Since Pi ∈ Syl2(O(Vi, bi)), we can
assume (after conjugating if necessary) that α ∈ Pi . Then (− IdVj)⊕ α lies in

P = P̂ ∩ Ω7(q). Hence for any g ∈ C
Spin7(Fq)

(P )/〈z〉 , pri(g) ∈ O(V (∞)
i , b

(∞)
i )

leaves both eigenspaces of α invariant, and has determinant 1 by (5). Thus
pri(g) = ± IdVi ; and so (7) holds in this case.

Step 5 Clearly, − IdV± lies in SO(V±, b±) if and only if dim(V±) is even
(which is the case for exactly one of the two spaces V± ), and this holds if and
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only if − IdV± ∈ Ω(V±, b±). Also, since each Vi for 1 ≤ i ≤ k has square
discriminant (Lemma A.6 again), − IdVi ∈ Ω(Vi, bi) for all such i. Thus (6)
and (1) imply that

C
Spin7(Fq)

(P )/〈z〉 ≤ P̂ ∩Ω7(q) = P ,

and hence that P is centric in Spin7(Fq).

Proposition A.12 does not hold in general if Spin7(−) is replaced by an arbitrary
algebraic group. For example, assume q is an odd prime power, and let P ≤
SL5(q) be the group of diagonal matrices of 2–power order. Then P is 2–centric
in SL5(q) and F2(SL5(q))–radical, but is definitely not 2–centric in SL5(Fq).
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