Volume 7, issue 2 (2003)

Download this article
For printing
Recent Issues

Volume 20
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Submission Guidelines
Submission Page
Subscriptions
Author Index
To Appear
Contacts
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Splitting the concordance group of algebraically slice knots

Charles Livingston

Geometry & Topology 7 (2003) 641–643

arXiv: math.GT/0305363

Abstract

As a corollary of work of Ozsváth and Szabó, it is shown that the classical concordance group of algebraically slice knots has an infinite cyclic summand and in particular is not a divisible group.

Keywords
Knot concordance, algebraically slice
Mathematical Subject Classification 2000
Primary: 57M25
Secondary: 57Q60
References
Forward citations
Publication
Received: 1 June 2003
Accepted: 21 September 2003
Published: 22 October 2003
Proposed: Robion Kirby
Seconded: Tomasz Mrowka, Cameron Gordon
Authors
Charles Livingston
Department of Mathematics
Indiana University
Bloomington
Indiana 47405
USA