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1128 André de Carvalho and Toby Hall

1 Introduction

1.1 Overview

Pseudo-Anosov homeomorphisms were introduced by Thurston in his classifi-
cation of surface homeomorphisms up to isotopy. A surface homeomorphism
Φ: S is pseudo-Anosov if it preserves a transverse pair of measured folia-
tions with finitely many singularities, expanding one foliation uniformly by a
factor λ > 1 and contracting the other by a factor 1/λ. Pseudo-Anosov maps
can be described combinatorially by train tracks — a class of graphs embedded
in the surface with additional information on the vertices which specifies the
turns a train riding along the track can make at each vertex — and their endo-
morphisms. Using information obtained from an associated transition matrix,
the surface can be reconstructed by identifying sides of Euclidean rectangles
foliated by horizontal and vertical line segments. The pseudo-Anosov expands
the rectangles horizontally and contracts them vertically, mapping them as dic-
tated by the train track map. Up to this point, the discussion is finite: train
tracks are graphs with finitely many edges (Thurston’s theorem can be proved
algorithmically, the main step being to find a finite train track invariant under
a given isotopy class of homeomorphisms) and train track maps are finite-to-
one. It is possible, however, to forgo some of the finiteness requirements —
the graphs remain finite, the endomorphisms remain finite-to-one, but the ad-
ditional information at the vertices is allowed to be infinite — but otherwise
to go through the construction of the maps as before. This leads to the con-
struction of generalized pseudo-Anosov homeomorphisms. These are defined
similarly to pseudo-Anosov homeomorphisms, except that the invariant folia-
tions are permitted to have infinitely many singularities, provided that they
accumulate on only finitely many points. The purpose of this paper is to give a
detailed construction and description of an infinite family of generalized pseudo-
Anosovs of the sphere for which the underlying graph and graph map are the
simplest possible: an interval and a unimodal endomorphism (ie, a continuous
piecewise monotone map of the interval with exactly two monotone pieces).

In [12], a complete description of the family of pseudo-Anosov maps with un-
derlying unimodal interval endomorphisms was given. It was shown that there
is a countable family of such maps parameterized by a rational number be-
tween 0 and 1/2, called height. Height turns out to be a braid type invariant
and this leads to the proof of weak universality results for families of plane
homeomorphisms passing from trivial to chaotic dynamics as parameters are
varied. Height also plays a central role in this paper and, in turn, the results
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Unimodal generalized pseudo-Anosov maps 1129

presented here provide a geometric interpretation of it. The family of unimodal
generalized pseudo-Anosovs extends that of unimodal pseudo-Anosovs. The
height specifies the behaviour of the maps at infinity: given a rational m/n,
there is an interval of kneading sequences of height m/n, whose associated gen-
eralized pseudo-Anosovs have the same behaviour at infinity. The generalized
pseudo-Anosov is a pseudo-Anosov for exactly one kneading sequence in this
interval.

This paper provides an explicit description of the generalized train track asso-
ciated to any periodic or preperiodic kneading sequence, depending crucially
on its height. The process of constructing a generalized pseudo-Anosov from a
generalized train track map is similar to that of constructing a pseudo-Anosov
from a train track map, but requires more care because of the more intricate
nature of the identifications carried out on the sphere. The topological tool used
to guarantee that the identification space is again a sphere is Moore’s theorem
about monotone upper semi-continuous decompositions of the sphere.

The invariant foliations of a generalized pseudo-Anosov define a complex struc-
ture on the sphere away from the accumulations of singularities. It is shown
that for the unimodal generalized pseudo-Anosovs considered here, these ac-
cumulations are removable singularities of the complex structure, so that the
sphere is a complex sphere, with the foliations being the horizontal and vertical
trajectories of an integrable quadratic differential having infinitely many zeros
and poles. The construction therefore provides a complexification of unimodal
maps as quasiconformal automorphisms of the Riemann sphere, in contrast to
the complexification arising via the theory of Fatou/Julia, where one thinks of
the unimodal map as the real slice of an endomorphism of the Riemann sphere.

By a suitable normalization, the sphere of definition of the generalized pseudo-
Anosovs can be identified canonically with the Riemann sphere, and hence the
family of unimodal generalized pseudo-Anosovs, which initially are constructed
on abstract topological spheres, can be regarded as a family of Teichmüller
mappings of the Riemann sphere, making it possible to consider taking limits
within the family. This is a necessary step in the problem of constructing a
completion of the set of all pseudo-Anosov homeomorphisms of the sphere.

Section 2 describes the class of thick interval maps. These are homeomor-
phisms of the sphere which provide the starting point for the definition and
construction of invariant generalized train tracks, a process which is described
in Section 3. Section 4 provides a summary of necessary results on unimodal
maps and Smale’s horseshoe, and defines the subclass of unimodal thick interval
maps which are used in the remainder of the paper. In Section 5, the outside
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1130 André de Carvalho and Toby Hall

dynamics of a unimodal map is defined and analysed: intuitively, this provides
a description of those orbits of a unimodal map which are never lost ‘inside’ the
fold. The main contents of the paper can be found in Sections 6, 7 and 8. The
invariant generalized train track for a given unimodal thick interval map is de-
scribed explicitly, a detailed account is given of how the generalized train track
map can be used to construct the corresponding generalized pseudo-Anosov,
and the complex structure induced by the invariant foliations is analysed.

Acknowledgements The authors are grateful for the referee’s careful reading
of the paper and helpful comments. This material is based upon work supported
by the National Science Foundation under Grant No. 0203975. The first author
is supported by FAPESP Grant No. 02/05072-5.

1.2 Definitions and notation

Let X be a metric space. An isotopy on X is a continuous map ψ : X × [0, 1]
→ X with the property that the slice maps ψt : X → X are homeomorphisms
for 0 ≤ t ≤ 1. A pseudo-isotopy is defined similarly but it is only required that
the slice maps be homeomorphisms for 0 ≤ t < 1. In particular, this means that
the map ψ1 is a near-homeomorphism, ie, it can be approximated arbitrarily
closely by homeomorphisms. An isotopy or pseudo-isotopy ψ : X × [0, 1] → X
is said to be supported on a subset U of X if all of its slice maps agree on X \U .

Symbolic dynamics on both {0, 1}N and {0, 1}Z will be used in this paper.
Elements of these spaces are regarded as semi-infinite or bi-infinite sequences
of 0s and 1s, and in the case of {0, 1}Z a period is placed before the origin
of the sequence (ie, the image of 0 ∈ Z): . . . s−2s−1 · s0s1s2 . . . ∈ {0, 1}Z . If
w ∈ {0, 1}n for some n, then the notation w∞ is used to indicate semi-infinite
repetition of w (w∞ = wwww . . . ∈ {0, 1}N ), while w is used to indicate bi-
infinite repetition (w = . . . www · www . . . ∈ {0, 1}Z ).

The notation S1 and S2 is reserved for the standard 1- and 2-dimensional
spheres, and different symbols are used to denote general topological spheres.

A homeomorphism Φ: S of a smooth surface S is called a generalized pseudo-

Anosov map if there exist

a) a finite Φ-invariant set Σ;

b) a pair (Fs, µs), (Fu, µu) of transverse measured foliations of S \ Σ with
countably many pronged singularities (with local charts as depicted in
Figure 1), which accumulate on each point of Σ and have no other accu-
mulation points. The transverse measures are required to be equivalent
to Lebesgue measure on transversals;

Geometry & Topology, Volume 8 (2004)



Unimodal generalized pseudo-Anosov maps 1131

c) a real number λ > 1;

such that
Φ(Fs, µs) = (Fs, 1

λµ
s)

Φ(Fu, µu) = (Fu, λµu).

Figure 1: Pronged singularities of the invariant foliations

In particular, a generalized pseudo-Anosov is a pseudo-Anosov map if and only
if there are only finitely many pronged singularities (ie, Σ = ∅). Note that the
measures necessarily have full support and no atoms.

2 Markov thick interval maps

2.1 Thick interval maps

Thick graph maps are a class of surface homeomorphisms which have been de-
scribed and used in several papers (for example [2, 5, 10, 4]). In this section a
brief description of thick interval maps (where the surface is the sphere and the
graph is an interval) is given. As the name suggests, a thick interval map is es-
sentially an interval endomorphism which has been thickened up and made into
a homeomorphism of the sphere, whose dynamics reflects that of the underlying
interval map.

Throughout the paper, S2 will be thought of as the one-point compactification
of R2 . The point at infinity will be denoted ∞ and the thick intervals defined
below will always be assumed not to contain ∞.

Definitions 1 A thick interval I ⊂ S2 is a closed topological 2-disk partitioned
into compact decomposition elements, such that

i) each decomposition element of I is either a leaf homeomorphic to [0, 1],
or a junction homeomorphic to a closed 2-disk;

ii) the boundary in I of each junction consists of one or two disjoint arcs:
if there is one (respectively two) such arc(s) the junction is called a 1-
junction (respectively 2-junction);
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1132 André de Carvalho and Toby Hall

iii) there are exactly two 1-junctions and finitely many 2-junctions;

iv) each decomposition element is contained in a chart as depicted in Figure 2.

If I is a thick interval, then the space obtained by collapsing each decomposition
element to a point is an interval, whose vertices (the two endpoints, coming
from the two 1-junctions, and finitely many valence 2 vertices) correspond to
the junctions of I. The union of the junctions of I is denoted V, and the
components of I \ V are called strips: each strip is therefore homeomorphic to
(0, 1)× [0, 1]. The union of the closures of the strips is denoted E. Thus E∩V

is a union of closed arcs which are the boundary components (in I) of both the
junctions and the strips of I.

1-junction 2-junction

leaves

Figure 2: Charts in a thick interval

The following definition of a thick interval map is more restrictive than that
used in other papers: conditions iv) to vi) have been added in order to make
the definition and construction of generalized train tracks more straightforward.
However, thick interval maps in the sense of [5] can be made to conform to the
definition below by simple isotopies and changes in the thick interval structure
which do not change the dynamics. In order to make the description more
explicit, fixed orientation-preserving coordinate maps hs : s→ [0, 1]× [0, 1] are
introduced on the closure of each strip s, with the property that the leaves of
s are of the form h−1

s ({x} × [0, 1]) for 0 < x < 1.

Definition 2 A thick interval map is an orientation-preserving homeomor-
phism F : (S2, I) such that:

i) F (I) ⊂ Int(I).

ii) If γ is a leaf of I, then F (γ) is contained in a decomposition element,
and diam(Fn(γ)) → 0 as n → ∞. If J is a junction of I, then F (J) is
contained in a junction.

iii) The point at infinity is a repelling fixed point whose basin contains S2 \I.
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iv) F is linear with respect to the coordinates hs : in each connected compo-
nent of si ∩ F

−1(sj), where si , sj are strips, F contracts vertical coor-
dinates uniformly by a factor µj < 1 and expands horizontal coordinates
uniformly by a factor λj ≥ 1;

v) If J, J ′ are junctions such that F (J) ⊂ J ′ , then F (∂IJ) ⊂ ∂IJ
′ ;

vi) If J is a junction with Fn(J) ⊆ J for some (least) n ≥ 1, then J has
an attracting periodic point of least period n in its interior whose basin
contains Int(J).

Remark 1 Item iii) in the definition says that the dynamics of a thick interval
map in S2 \ I is easily understood and uninteresting.

Let F : (S2, I) be a thick interval map, Ĩ be the interval obtained by col-
lapsing each decomposition element of I to a point, and π̃ : I → Ĩ be the
canonical projection. Then F induces a continuous map f̃ : Ĩ : however f̃
is locally constant at preimages of π̃(V). It is therefore convenient to collapse
all intervals on which some iterate f̃n is constant. Because closed intervals are
collapsed to points, the quotient of the interval Ĩ is either a point or an inter-
val I . In the latter case f̃ induces a continuous piecewise strictly monotone
interval map f : I , which is called the quotient of F : (S2, I) . All thick
interval maps considered in this paper will have an interval map for quotient
(see Section 2.2). Note that if π : I → I denotes the canonical projection, then
π ◦ F |I = f ◦ π .

Example 1 The first example is Smale’s horseshoe map which will be denoted
F0 : (S2, I) here and in what follows. It is shown in Figure 3. The horseshoe
has three fixed points, denoted x, x0 , and x1 . The fixed point x is attracting
(condition vi)), while x0 and x1 are saddles by conditions iv) and vi). The
quotient interval map — the tent map f0 : I — is also shown in the figure.

Example 2 Figure 4 depicts an example of a thick interval map associated to a
horseshoe periodic orbit: such thick interval maps are the starting point for the
construction of unimodal generalized train tracks described in Section 6. The
interval endomorphism f is one with kneading sequence κ(f) = (1001011)∞

(see Section 4).

2.2 The MIA property

First the basic concepts of the Perron-Frobenius theory for non-negative integer
matrices are described (see [11]). Let M be a square matrix with non-negative
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π̃

f̃0
π

I

F0

f0

x

x0

x1

Figure 3: The horseshoe map

F

f

Figure 4: A thick interval map associated to a horseshoe periodic orbit

integer entries, which is not equal to the 1 × 1 matrix (1). M is said to
be reducible if, by a permutation of the index set, it is possible to put it in
triangular block form:

M =

(
A 0
B C

)
,

with A and C non-trivial square matrices. Otherwise, M is said to be ir-

reducible. An irreducible matrix M has a unique positive eigenvector (up to
scaling), and the associated eigenvalue λ, called the Perron-Frobenius eigen-

value of M , is simple and is equal to the spectral radius of M . M is irreducible

and aperiodic if there is a positive integer k such that every entry of Mk is
positive. In this case the Perron-Frobenius eigenvalue λ satisfies λ > 1, and is
the only eigenvalue of M on the circle {z ∈ C : |z| = λ}.

Let F : (S2, I) be a thick interval map. Associate a transition matrix M =
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Unimodal generalized pseudo-Anosov maps 1135

(mij) to F in the following way: let s1, s2, . . . , sn be the strips of I and set

mij = number of times F (sj) crosses si.

Definition 3 A thick interval map is MIA if its associated transition matrix
is irreducible and aperiodic (the ‘M’ stands for Markov).

If F is MIA then the quotient interval I is not a point, and indeed the projec-
tion π(sj) of each strip of I is a non-trivial interval. For there are integers nj

such that Fnj(sj) crosses sj at least twice, with horizontal expansion and ver-
tical contraction bounded away from 1. Thus the set of points of sj whose
forward Fnj -orbits remain in sj contains h−1

sj
(C × [0, 1]) for some Cantor set

C ⊆ [0, 1], and π(h−1
sj

(x1, y1)) 6= π(h−1
sj

(x2, y2)) whenever x1, x2 are distinct
points of C and y1, y2 ∈ [0, 1].

3 Generalized train tracks

This section contains a description of generalized train tracks associated to
thick interval maps. It follows [4], where a description of generalized train
tracks associated to general thick graph maps is given.

Let I be a thick interval and A ⊂ I be a finite puncture set, each of whose
points lies in the interior of a junction and such that no junction contains more
than one point of A. For each strip s of I, let γs be (the image of) the
arc t 7→ h−1

s (t, 1/2), which joins the two boundary components of s in I and
intersects each leaf of s exactly once. Let RE denote the set of these arcs. The
endpoints of the arcs γs are called switches and the set of switches is denoted L.

Definitions 4 A generalized train track τ ⊆ I\A is a graph with vertex set L
and countably many edges, each of which intersects ∂V only at L, such that

i) The edges of τ which intersect the interior of E are precisely the elements
of RE, and

ii) No two edges e1 , e2 contained in a given junction J are parallel: that is,
they do not bound a disk which contains no point of A or other edges.

Two generalized train tracks τ and τ ′ are equivalent, denoted τ ∼ τ ′ , if they
are isotopic by an isotopy supported on V \ A.

The edges of τ which are contained in E (that is, the elements of RE) are called
real, and the others (contained in V) are called infinitesimal. Let IE denote
the set of infinitesimal edges of τ .

Geometry & Topology, Volume 8 (2004)
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A generalized train track τ is finite if it has only finitely many edges. An
infinitesimal edge is called a loop if its two endpoints coincide, and a bubble if
in addition it bounds an open disk which is disjoint from τ . A bubble of τ is
homotopically trivial if this disk contains no point of A, and is homotopically

non-trivial otherwise.

Clearly τ is determined by its infinitesimal edges, and may be written τ = τ(IE)
when the thick interval I and the set A are clear from the context.

Note that τ is not required to be connected: while the generalized train tracks
constructed below will always be connected, disconnected ones are needed dur-
ing the construction.

Definitions 5 A homotopy {αt} of a path α : [0, 1] → X is said to be relative

to U ⊂ X if, for each s ∈ [0, 1], α0(s) ∈ U implies αt(s) ∈ U for all t. Let [α]
be a homotopy class of paths in S2 \A relative to ∂IV, with endpoints in ∂IV.
Then [α] is carried by a generalized train track τ if it can be realized by an
edge-path in τ with alternating real and infinitesimal edges.

Generalized train tracks are normally drawn in such a way as to suggest that if
a real edge γs and an infinitesimal edge e share a common endpoint, then their
union is a smooth (branched if the endpoints of e coincide) 1-manifold. With
this intuition, [α] is carried by τ if it can be realized by a smooth path in τ
(or, even more intuitively, by a train running along τ ). It is more convenient,
however, to express this smoothness combinatorially as above.

The next aim is to define the image of τ under a thick interval map F . In
order that this image should itself be a generalized train track, it is necessary
to apply pseudo-isotopies to F (τ) so as to squash F (τ)∩E onto the real edges,
and amalgamate pairs of parallel edges.

Let (I, A) be a thick interval together with a puncture set. On each strip s of I

define ψs : s̄× [0, 1] → s̄ using the coordinates hs by

ψs(x, y, t) = (x, (1 − t)y + t/2)

(thus ψs(·, 1) maps s̄ onto γs ). Extend these maps to a pseudo-isotopy ψ0 : S2×
[0, 1] → S2 in the following way: first extend the ψs to mutually disjoint disk
neighbourhoods Us ⊃ s̄, with Us ⊂ S2 \A, so that they are isotopies on Us \ s̄,
the identity on ∂Us , and send V into V; then extend them to be the identity
elsewhere.

Geometry & Topology, Volume 8 (2004)



Unimodal generalized pseudo-Anosov maps 1137

If τ is a graph in I\A which satisfies the definition of a generalized train track
except that there are finitely many pairs (e, e′) of parallel edges, define a pseudo-
isotopy ψe,e′ supported on a neighbourhood in V of the closed disk ∆ bounded
by e∪e′ with the property that ψe,e′(e, 1) = ψe,e′(e

′, 1) but no points outside ∆
are identified by ψe,e′(·, 1). Since this pseudo-isotopy introduces no new pairs
of parallel edges, it is possible to define a pseudo-isotopy ψ1 : S2 × [0, 1] →
S2 (whose dependence on τ is suppressed) by composing successive pseudo-
isotopies on each pair of parallel edges, with the property that ψ1(τ, 1) is a
generalized train track.

In this paper, the puncture set A will always be taken to be the set of attract-
ing periodic points of the thick interval map F (so in particular F (A) = A).
Conditions iv) and vi) in the definition of a thick interval map ensure that the
points of A are contained in the interiors of the junctions of I, with at most
one point of A in each junction.

Definitions 6 Let F : (S2, I, A) be a thick interval map, where A is the
set of attracting periodic points of F , and let τ ⊆ I \ A be a generalized
train track. Since F restricts to an embedding (V, A) and the underlying
interval endomorphism is piecewise monotone, there can be only finitely many
pairs of parallel edges in ψ0(F (τ), 1), and the image F∗(τ) of τ under F is
defined as F∗(τ) = ψ(τ), where the near-homeomorphism ψ : S2 is given by
ψ(x) = ψ1(ψ0(F (x), 1), 1).

A generalized train track τ is F -invariant if F∗(τ) is equivalent to τ .

If τ is F -invariant, then by definition there is a homeomorphism H : S2 , iso-
topic to the identity by an isotopy supported on V\A, such that H(ψ(τ)) = τ .
The train track map φ : τ associated to F : (S2, I, A) is the restriction of
H ◦ ψ to τ , well-defined up to homotopy relative to the vertices of τ .

The following straightforward result guarantees the existence of invariant gen-
eralized train tracks, and its proof provides a method for constructing them.

Theorem 1 Let F : (S2, I, A) be a thick interval map, where A is the set of
attracting periodic points of F . Then there exists an F -invariant generalized
train track τ ⊆ I \ A.

Proof Let τ0 = τ(∅) be the generalized train track with no infinitesimal edges.
By definition, τ0 ⊆ τ1 = F∗(τ0). Let τ ′2 = F∗(τ1). Then τ1 need not be a subset
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τ

φ

Figure 5: The invariant train track for the horseshoe

of τ ′2 , since τ ′2 is only defined up to equivalence, but there is a generalized train
track τ2 ∼ τ ′2 with τ1 ⊆ τ2 . Continuing in this way, construct a nested sequence
(τn) of generalized train tracks with F∗(τn) ∼ τn+1 for all n. Then τ =

⋃
n≥0 τn

is a generalized train track which satisfies F∗(τ) ∼ τ .

The F -invariant generalized train track τ constructed in this proof is minimal,
in the sense that it contains only those edges which arise as images of its real
edges: more precisely, if τ ′ is also F -invariant then there is a subset IE of the
infinitesimal edges of τ ′ such that τ ∼ τ(IE). For this reason τ is referred to
as the F -invariant generalized train track.

Example 3 The invariant generalized train track for the horseshoe map F0 is
shown in Figure 5. The set A consists of the fixed point x contained in the left
1-junction of I. No bubble encloses it and it is not shown in the figure. It is
instructive to construct this train track starting from τ(∅) as described in the
proof of Theorem 1.

The invariant train track τ and the train track map φ can be thought of as
more careful 1-dimensional representations of the thick interval I and the thick
interval map F : (S2, I, A) . Whereas f : I does not pay attention to
junctions — they are collapsed to points — the map φ : τ gives a careful
account of the behaviour of the images of strips under iterates of F inside the
junctions.

Definition 7 An infinitesimal polygon of τ is a component of S2 \ τ bounded
by finitely many infinitesimal edges. It is called an n-gon if it is bounded by n
infinitesimal edges (see Figure 6, in which the n-gons are shaded).

Remark 2 Bigons (2-gons) can only occur if they contain a point of A (oth-
erwise the two edges bounding the bigon would be parallel).

Geometry & Topology, Volume 8 (2004)
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Figure 6: Examples of n-gons for n = 1, 3, 4

4 Unimodal maps, symbolic dynamics and the horse-

shoe

This section contains a summary of the theory of unimodal maps, symbolic
dynamics, and the Smale horseshoe which will be used later. Detailed accounts
can be found in [8, 15, 7, 13] (unimodal maps) and [8, 12] (horseshoe).

4.1 Unimodal maps

Let I = [a, b]. For the purposes of this paper, a unimodal map on I is a
continuous surjection f : I with f(b) = a, for which there exists c ∈ (a, b)
such that f is strictly increasing on [a, c] and strictly decreasing on [c, b] (and
in particular f(c) = b). The point c is the critical or turning point of f , and
b = f(c) is its critical value.

The conditions that f be surjective and that f(b) = a are not standard. How-
ever, a unimodal map f which doesn’t satisfy them has trivial dynamics outside
of its dynamical interval [f2(c), f(c)], and hence there is no loss of generality,
and a gain of convenience, in adding these requirements. Note also that some
authors don’t require the monotonicity on [a, c] and [c, b] to be strict, and would
refer to a map defined as above as strictly unimodal.

Symbolic dynamics for unimodal maps is introduced by defining the itinerary

of a point x ∈ I to be the sequence

i(x) = s0s1s2 . . . ∈ {0, 1}N

given by

sj =

{
0 if f j(x) < c

1 if f j(x) ≥ c.

This defines a map i : I → {0, 1}N with the property that i ◦ f = σ ◦ i, where
σ : {0, 1}N is the shift map given by σ(s0s1s2 . . .) = s1s2s3 . . . .

Remark 3 In other contexts it is useful to define the itinerary i(x) to lie in
{0, C, 1}N , where ij(x) = C if f j(x) = c. This distinction will not be necessary
here.
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The unimodal order � is a total order (but not a well-ordering) on {0, 1}N

which reflects the usual ordering of points in I . If s and t are distinct elements
of {0, 1}N , then s ≺ t if and only if

∑n
j=0 sj is even, where n is least such that

sn 6= tn . For general s, t ∈ {0, 1}N , define s � t if and only if s ≺ t or s = t.

The unimodal order is defined precisely in order that i(x) ≺ i(y) =⇒ x < y
for all x, y ∈ I . It follows immediately that x < y =⇒ i(x) � i(y): the
possibility of equality in this partial converse cannot be excluded in general.
A unimodal map f is said to have no homtervals if the full converse holds, ie,
x < y ⇐⇒ i(x) ≺ i(y) (a homterval is a non-trivial interval J with c 6∈ fn(J)
for all n ≥ 0).

The itinerary of the critical value of a unimodal map f : I plays a particularly
important role: the kneading sequence κ(f) of a unimodal map f : I is the
itinerary κ(f) = i(b). Since σ(κ(f)) = i(a), it follows that σ(κ(f)) � i(x) �
κ(f) for all x ∈ I , and in particular σ(κ(f)) � σn(κ(f)) � κ(f) for all n ≥ 0.
This statement characterizes those elements of {0, 1}N which are the kneading
sequence of some unimodal map, as expressed by the following definition and
theorem (which is a translation into the language of this paper of Theorem 12.1
of [15]).

Definition 8 An element s of {0, 1}N is a kneading sequence if σ(s) � σn(s)
� s for all n ∈ N.

Theorem 2 An element s of {0, 1}N is equal to κ(f) for some unimodal
map f if and only if it is a kneading sequence.

Definition 9 An MIA thick interval map F : (S2, I) is unimodal if its quo-
tient interval endomorphism f : I is unimodal. In this case, define the knead-

ing sequence κ(F ) of F to be κ(f).

The quotient f : I of a unimodal thick interval map has no homtervals.
For since F : (S2, I) is MIA, there is some n such that fn expands each
subinterval J of I for which c 6∈

⋃n−1
i=0 f

i(J), the expansion being bounded
away from 1 with respect to the projections of the coordinate maps hs on the
strips of I.

Because thick intervals as defined here have only finitely many junctions, the
orbits of the vertices of I under f are finite. In particular, the kneading se-
quence of a unimodal thick interval map is always periodic or preperiodic. The
set of periodic or preperiodic kneading sequences whose associated transition
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matrices are irreducible and aperiodic will be denoted MIA. Notice that given
a kneading sequence in MIA, there is a natural construction of a unimodal
MIA thick interval map with that kneading sequence: contruct a piecewise
affine interval map with the given kneading sequence and thicken it.

4.2 Symbolic dynamics for the horseshoe

This section contains a brief summary of the application of symbolic dynamics
to the horseshoe map of Example 1: see [8] for a more detailed description. The
set Λ =

⋂
n∈Z F

n
0 (s) (where s is the strip of I) is a Cantor set, and an itinerary

homeomorphism i : Λ → {0, 1}Z is defined by setting

ij(z) =

{
0 if F j

0 (z) ∈ V0

1 if F j
0 (z) ∈ V1

where V0, V1 are the left and right connected components of F−1
0 (s) ∩ s re-

spectively. The itinerary homeomorphism conjugates F0|Λ with the shift map
σ : {0, 1}Z , defined by

σ(. . . s−2s−1 · s0s1 . . .) = . . . s−1s0 · s1s2 . . .

Let f0 : I be the quotient interval map (which is conjugate to a full tent
map). Then the invariant Cantor set Λ of F0 inside s projects to the whole
interval I , and this projection establishes a 1-1 correspondence between the
F0 -periodic orbits in Λ and the f0 -periodic orbits in I .

Note that for all z ∈ Λ, i(π(z)) is obtained from i(z) by deleting all symbols
before the origin. The correspondence between periodic orbits is reflected in
the correspondence between itineraries in the obvious way: the itinerary of a
period n periodic point of F0 is of the form w for some length n word w ,
and the itinerary of its projection is w∞ . This correspondence will be invoked
without further comment in the remainder of the paper.

A periodic orbit P of F0 of (least) period n is described by its code cP ∈ {0, 1}n ,
which is given by the first n symbols of the itinerary i(p) of its rightmost
point p: thus, for example, the period 5 orbit which contains the point with
itinerary 01001 has code 10010. A word w ∈ {0, 1}n is therefore the code of a
period n horseshoe orbit if and only if it is maximal in the sense of the following
definition.

Definition 10 w ∈ {0, 1}n is maximal if σi(w∞) ≺ w∞ for 1 ≤ i < n.

It follows that if w is the code of a periodic orbit of F0 , then w∞ is a kneading
sequence.
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4.3 Braid types

Let F : S2 be a homeomorphism (which in this paper will always be orient-
ation-preserving), and A be a finite F -invariant subset of S2 . Then the braid

type bt(A,F ) is defined to be the isotopy class of F relative to A up to topo-
logical change of coordinates [3]: that is, bt(A,F ) = bt(B,G) if and only if
there is an orientation-preserving homeomorphism h : S2 with h(A) = B
such that h ◦ F ◦ h−1 is isotopic to G relative to B . Using Thurston’s classifi-
cation theorem for surface homeomorphisms [17], braid types can be classified
as finite order, reducible, or pseudo-Anosov.

The braid type of a periodic orbit P of the horseshoe map F0 : S2 is defined
to be bt(P ∪ {∞}, F0). Thus horseshoe periodic orbits can also be classified as
finite order, reducible, or pseudo-Anosov.

4.4 Height

The description of unimodal generalized train tracks in Section 6 depends upon
the notion of the height of an element s of MIA. The height is defined using
words cq ∈ {0, 1}n+1 associated to each rational q = m/n ∈ (0, 1/2]. Motiva-
tion for the definition can be found in [12].

Definition 11 Given q = m/n ∈ Q∩ (0, 1/2], define a word cq ∈ {0, 1}n+1 as
follows. Let Lq be the straight line in R2 from (0, 0) to (n,m). For 0 ≤ i ≤ n,
let si = 1 if Lq crosses some line y = integer for x ∈ (i− 1, i + 1), and si = 0
otherwise. Then cq = s0s1 . . . sn .

Example 4 Figure 7 shows that c3/10 = 10011011001.

00000 111111
(0,0)

(10,3)

Figure 7: c3/10 = 10011011001

The words cq are manifestly palindromic. Their general form is indicated by
the examples in Table 1, in which the column headings and row headings denote
the numerator and denominator of q respectively. The n − 2m + 1 zeros are
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1 2 3 4

3 1001

4 10001

5 100001 101101

6 1000001

7 10000001 10011001 10111101

8 100000001 101101101

9 1000000001 1000110001 1011111101

10 10000000001 10011011001

11 100000000001 100001100001 100110011001 101101101101

Table 1: Examples of the words cq

partitioned ‘as even-handedly as possible’ into m subwords (possibly empty),
separated by 11.

The following description of the words cq is easily shown to be equivalent: given
q = m/n, define integers κi(q) for 1 ≤ i ≤ m by

κi(q) =

{
⌊1/q⌋ − 1 if i = 1
⌊i/q⌋ − ⌊(i− 1)/q⌋ − 2 if 2 ≤ i ≤ m

(1)

(⌊x⌋ denotes the greatest integer which does not exceed x). Then

cq = 10κ1(q)110κ2(q)11 . . . 110κm(q)1.

Example 5 Let q = 3/7, so κ1(q) = ⌊7/3⌋ − 1 = 1, κ2(q) = ⌊14/3⌋ − ⌊7/3⌋ −
2 = 4 − 2 − 2 = 0, and κ3(q) = ⌊21/3⌋ − ⌊14/3⌋ − 2 = 7 − 4 − 2 = 1. Thus
c3/7 = 10111101.

The next lemma [12] motivates the definition of height: in particular, it will
imply that the height function q : {0, 1}N → [0, 1/2] is decreasing with respect
to the unimodal order ≺ on {0, 1}N and the usual order on [0, 1/2].

Lemma 3 For each q ∈ Q ∩ (0, 1/2], the word cq1 is maximal. Moreover, if
q, r ∈ Q ∩ (0, 1/2] with q < r then (cr1)

∞ ≺ (cq1)
∞ .

Definitions 12 Let c ∈ {0, 1}N . Then the height q(c) ∈ [0, 1/2] of c is given
by

q(c) = inf{q ∈ Q ∩ (0, 1/2] : q = 1/2 or (cq1)
∞ ≺ c}.

If P is a horseshoe periodic orbit of period n ≥ 2 with code cP , then the height

q(P ) of P is given by q(P ) = q(c∞P ).

Geometry & Topology, Volume 8 (2004)
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The height of a horseshoe periodic orbit is a braid type invariant. The height
of any element of MIA is rational, and can be computed using an algorithm
described in [12].

The next result describes the kneading sequences with given rational height [12].

Definition 13 For each m/n ∈ (0, 1/2), define wm/n ∈ {0, 1}n−1 to be the
word obtained by deleting the last two symbols of cm/n , and ŵm/n ∈ {0, 1}n−1

to be the reverse of wm/n .

Theorem 4 Let s ∈ MIA. Then q(s) ∈ [0, 1/2) ∩ Q, and

a) q(s) = 0 if and only if s = 10∞ .

b) If m/n ∈ (0, 1/2), then q(s) = m/n if and only if

(wm/n1)∞ � s � wm/n01(1ŵm/n)∞.

Note that wm/n01(1ŵm/n)∞ can be written more concisely as cm/n(1ŵm/n)∞ ,
but the former expression is more suggestive in calculations, as in the proof
of Lemma 5 below. In fact, although it isn’t immediately apparent from the
definitions, this kneading sequence is preperiodic to (wm/n1)∞ , ie, there is an
integer j with σj((1ŵm/n)∞) = (wm/n1)∞ .

The endpoints of the intervals of kneading sequences of given height will be im-
portant in the remainder of the paper, as will the kneading sequences (cm/n1)∞

used to define the height. The acronym NBT in the following definitions stands
for ‘no bogus transitions’, and reflects the original motivation of these ideas.

Definitions 14 Let m/n ∈ (0, 1/2). Then write NBT(m/n) = (cm/n1)∞ ,
lhe(m/n) = (wm/n1)∞ , rhe(m/n) = cm/n(1ŵm/n)∞ , and KS(m/n) for the set
of kneading sequences s ∈ MIA with lhe(m/n) � s � rhe(m/n) (ie, the set of
kneading sequences of height m/n).

Example 6 Let m/n = 2/7, so c2/7 = 10011001, w2/7 = 100110, and
ŵ2/7 = 011001. Then NBT(2/7) = (100110011)∞ , lhe(2/7) = (1001101)∞ ,
and rhe(2/7) = 10011001(1011001)∞ = 10(0110011)∞ . An element s of MIA
lies in KS(2/7) (ie, has height 2/7) if and only if

(1001101)∞ � s � 10(0110011)∞ .

Notice that by Theorem 4,

MIA = {10∞} ∪
⋃

m/n∈(0,1/2)

KS(m/n).
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Lemma 5 Let s ∈ MIA have height q = m/n > 0. Then either s =
(wq1)

∞ or s has cq as an initial word. In particular, if s is periodic then either
s = lhe(m/n) (period n), or s = NBT(m/n) (period n+ 2), or the period of s
is at least n+ 3.

Proof By Theorem 4, s has wq as an initial word. If the next symbol is 0,
then since wq is odd and s � wq01(1ŵq)

∞ , it follows that s = wq01 . . . , ie,
s = cq . . . . If the next symbol is 1, then either s = (wq1)

∞ , or let k ≥ 1 be
the greatest integer such that s = (wq1)

kd for some d ∈ {0, 1}N . Then d � s
(since s is a kneading sequence), but d � (wq1)

∞ (by Theorem 4), and hence
d = wq1 . . . , contradicting the definition of k . The proof of the final statement
follows readily, and can be found in [12] (Theorem 3.5).

5 The outside dynamics of a unimodal map

The unimodal maps considered in this paper are destined to be thickened into
thick interval maps, and as such have an implicit two-dimensional structure:
the interval [a, b] is thought of as being folded at the critical point c, and laid
down over itself in such a way that points to the right of c end up above points
to the left. Thus all of the points below the interval and some of the points
above it (namely those whose image is to the left of f(a)) remain outside the
interval, whereas the other points above the interval are trapped in the fold
(see the left hand side of Figure 8 for clarification). The aim of this section is
to formalize this intuitive idea, and to analyze the dynamics of points whose
entire orbits remain outside the interval. This will play an important role in
the construction of generalized pseudo-Anosovs, when it is necessary to ‘sew up
the outside boundary’.

The outside of the interval is represented by a circle S1 obtained by gluing to-
gether two copies of [a, b] at their endpoints, and the unimodal map f : [a, b]
induces a map θ : S1 → S1∪ [a, b], reflecting the two possible fates of the image
of a point on the outside: to remain outside, or to be folded inside the interval.

Let f : I = [a, b] be a unimodal map with critical point c. Let S1 be the
unit circle in R2 , coordinatize both the upper and lower halves of S1 with
coordinates in I in such a way that (−1, 0) has coordinate a and (1, 0) has
coordinate b, and let π : S1 → I take each point of S1 to the point of I given
by its coordinate. Thus π−1(a) and π−1(b) each contain a single point, denoted
â and b̂ respectively, while for an interior point x of I , π−1(x) contains two
points, denoted xu (in the upper half circle) and xl (in the lower half circle).
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a b
c p

f
f(b)

f(a)
f(c)

f(p)

γ

â b̂

pu

θ
θ(â)

θ(b̂)

θ(γ)

θ(pu)

Figure 8: A unimodal map and the induced outside map

Let p ∈ I be the point with p > c and f(p) = f(a). The (discontinuous)
function θ : S1 → S1 ∪ I is defined by

θ(â) = f(a)l

θ(b̂) = â

θ(xu) = f(x) if x < p

θ(xu) = f(x)l if x ≥ p

θ(xl) = f(x)l if x < c

θ(cl) = b̂

θ(xl) = f(x)u if x > c,

reflecting the intuitive notion of the action of f on the outside of the interval
(see Figure 8), and in particular satisfying π ◦ θ = f ◦ π . Note that the set of
points mapped by θ into I is an open interval γ = {xu : a < x < p}, and
that the complement of γ is mapped strictly monotonically onto S1 , with both
endpoints mapping to f(a)l .

The following result describes the relationship between the dynamics on the
outside and the height of κ(f) which will be used later. If x, y ∈ S1 then the
notation (x, y) always denotes the open interval with endpoints x and y which
is disjoint from γ (so x, y 6∈ γ ), while (x, y)γ denotes the interval contained
in γ (so x, y ∈ γ ). Similar notation is used for half-open and closed intervals:
intervals which intersect but are not contained in γ are not used.

Theorem 6 Let f : [a, b] be the quotient of a unimodal thick interval map
with s = κ(f) ∈ MIA, and let θ : S1 → S1 ∪ I be the induced map on the
outside. Let q(s) = m/n > 0. Then θi(â) 6∈ γ for 0 ≤ i < n, while θn(â) ∈ γ ,
with

i) θn(â) = â ⇐⇒ s = lhe(m/n)
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ii) θn(â) = cu ⇐⇒ s = NBT(m/n)

iii) θn(â) = pu ⇐⇒ s = rhe(m/n)

iv) θn(â) ∈ (â, cu)γ ⇐⇒ lhe(m/n) ≺ s ≺ NBT(m/n)

v) θn(â) ∈ (cu, pu)γ ⇐⇒ NBT(m/n) ≺ s ≺ rhe(m/n).

Let Λ =
⋂∞

n=0 θ
−n(S1) be the set of points whose θ -orbits remain in S1 . Then

Λ contains exactly one periodic orbit, which has period n and whose points
are permuted as by a rigid rotation of the circle through angle 2πm/n. If
lhe(m/n) ≺ s ≺ rhe(m/n) then there are no other points in Λ, while if s =
lhe(m/n) (respectively s = rhe(m/n)) then Λ is the union of this periodic orbit
and the set {θ−i(pu) : i ≥ 0} (respectively {θ−i(â) : i ≥ 0}).

Notice in particular that the periodic orbit in Λ is the orbit of â in the case when
s = lhe(m/n), and is the orbit of pu when s = rhe(m/n) (since θ(pu) = θ(â)).

Three lemmas are used in the proof. The integers κi(q) in the statement of the
first are as defined by (1).

Lemma 7 Let q = m/n ∈ Q ∩ (0, 1/2). For each integer r with 1 ≤ r ≤ m,
the word

10κr(q)120κr+1(q)12 . . . 120κm(q)1

disagrees with the word

10κ1(q)−1120κ2(q)12 . . . 120κm(q)1

within the shorter of their lengths, and is greater than it in the unimodal order.

Proof (See also [6], Lemma 63.) If r = 1 then the result is obvious, so suppose
that 1 < r ≤ m. If the two words didn’t disagree, then it would follow that
κ1(q) = κr(q) + 1 and that κm(q) = κm−r+1(q), contradicting the fact that cq
is palindromic.

Observe that formula (1) gives, for each s with 1 ≤ s ≤ m+ 1 − r ,

(κ1(q) − 1) +
s∑

i=2

κi(q) =

⌊
s

q

⌋
− 2s,

and
r+s−1∑

i=r

κi(q) =

⌊
r + s− 1

q

⌋
−

⌊
r − 1

q

⌋
− 2s

≥

⌊
r + s− 1

q
−
r − 1

q

⌋
− 2s

=

⌊
s

q

⌋
− 2s.
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Hence at the point where they first disagree, 10κr(q)120κr+1(q)12 . . . 120κm(q)1
has a longer block of 0s than 10κ1(q)−1120κ2(q)12 . . . 120κm(q)1, and so is greater
in the unimodal order.

Lemma 8 Let s ∈ MIA have height q = q(s) > 0, and suppose s = cqd for
some d ∈ {0, 1}N . Then σ(d) � σ2(s) and d � 1σ2(s).

Proof Suppose first that the first symbol of d is 0. In this case it is obvi-
ous that d � 1σ2(s), so, writing d = 0e, it is only necessary to show that
e � σ2(s) = ŵq0e . Now σn(s) = 10e � s, since s is a kneading sequence, and
s = 10 . . . , so σn+2(s) = e � σ2(s) as required.

If d = 1e for some e∈{0, 1}N then σ(d) � σ2(s) clearly implies that d � 1σ2(s),
so again it is required to show that e � σ2(s) = ŵq1e.

Assume for a contradiction that e ≺ ŵq1e. Now s = cq1e � cq(1ŵq)
∞ by

Theorem 4, and so e � (ŵq1)
∞ (since cq1 is an odd word). Thus

(ŵq1)
∞ � e ≺ ŵq1e,

and so e has ŵq1 as an initial word. Let k ≥ 1 be the greatest integer such
that e = (ŵq1)

kf for some f ∈ {0, 1}N (such a greatest integer exists since if
e = (ŵq1)

∞ then it is not true that e ≺ ŵq1e). Since ŵq1 is an even word, this
gives

(ŵq1)
∞ � f ≺ ŵq1f,

so f = ŵq1 . . . , contradicting the definition of k .

Lemma 9 Let s ∈ MIA have height q = q(s) > 0. Then every t ∈ {0, 1}N

on the σ -orbit of (wq1)
∞ of the form t = 1k0 . . . , where k is odd, satisfies

t � 1σ2(s).

Proof If s = cqd for some d ∈ {0, 1}N , then d � 1σ2(s) = 1ŵqd by Lemma 8,
so by induction using the fact that 1ŵq is an even word, d � (1ŵq)

nd for all
n ≥ 0, and hence d � (1ŵq)

∞ and 1σ2(s) = 1ŵqd � (1ŵq)
∞ . If s = (wq1)

∞ ,
then 1σ2(s) � (1ŵq)

∞ by direct comparison. It therefore suffices to show
that each such t satisfies t � (1ŵq)

∞ . Recall that rhe(m/n) is preperiodic
to lhe(m/n), ie, (1ŵq)

∞ lies on the σ -orbit of (wq1)
∞ .

Writing q = m/n and writing κi for κi(q),

(wq1)
∞ = (10κ1120κ212 . . . 120κm−1120κm−11)∞ and

(1ŵq)
∞ = (10κ1−1120κ212 . . . 120κm−1120κm1)∞,
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and hence it is required to show that

(10κm−1120κ1120κ212 . . . 120κm−11)∞ � (10κ1−1120κ212 . . . 120κm−1120κm1)∞,

and

(10κj12. . . 120κm−1120κ112. . . 120κj−11)∞ � (10κ1−1120κ212. . . 120κm−1120κm1)∞

for 1 ≤ j ≤ m− 1.

For the former, since κm − 1 = κ1 − 1, it is equivalent to show that

(10κ1120κ212 . . . 120κm−1120κm−11)∞ � (10κ212 . . . 120κm−1120κm120κ1−11)∞,

which is immediate since the left hand side is (wq1)
∞ , a kneading sequence,

and the right hand side is a shift of it.

For the latter, Lemma 7 gives that either 10κj 12 . . . 120κm−11 disagrees with
10κ1−112 . . . 120κm−j+11 and is greater than it (which establishes the result), or
the two are equal. If they are equal, then removing this even word from the
front of each side of the inequality leaves (wq1)

∞ on the left hand side and a
shift of it on the right hand side, and the result follows.

Proof of Theorem 6 Recall that f has no homtervals, being the quotient of
an MIA unimodal thick interval map, and hence a point x ∈ I can be specified
uniquely by its itinerary i(x).

Let x ∈ (a, b) \ {c} have itinerary i(x) = i0i1i2 . . . . Then θ(xl) = f(x)l if
i0 = 0, and θ(xl) = f(x)u if i0 = 1. Similarly, θ(xu) = f(x)l if x ≥ p (ie, if
i(x) � 1σ2(s)), while xu ∈ γ if x ≺ 1σ2(s). Hence the least n > 0 such that
θn(â) ∈ γ is the least n > 0 such that either σn(i(a)) = i(a), or σn−k−1(i(a))
is of the form 01k . . . for some odd k with σn(i(a)) � 1σ2(s).

Suppose first that lhe(m/n) ≺ s ≺ rhe(m/n), so in particular s = cqd for some
d ∈ {0, 1}N by Lemma 5. Thus

i(a) = 0κ1120κ212 . . . 120κm1d and

1σ2(s) = 10κ1−1120κ212 . . . 120κm1d

(where κi = κi(q)). Since 10κj12 . . . 120κm1d ≻ 1σ2(s) for 2 ≤ j ≤ m by
Lemma 7, it follows that θi(â) 6∈ γ for 0 < i < n. On the other hand,
σn(i(a)) = d � 1σ2(s) by Lemma 8, and hence θn(â) ∈ γ as required.

To show the different cases for θn(â), it is only necessary to translate the
statements on the left hand sides into statements about i(fn(a)) = d, and then
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1150 André de Carvalho and Toby Hall

convert these to equivalent statements about s = cqd. For instance,

θn(â) ∈ (â, cu)γ ⇐⇒ d ≺ i(c) = 1s

⇐⇒ s ≺ cq1s

⇐⇒ s ≺ (cq1)
∞ = NBT(m/n).

Cases ii) and v) follow similarly.

Lemma 9 translates directly into the statement that θ has a periodic orbit P̃
above the period n orbit P of f containing the point with itinerary (wq1)

∞ (the
points of P̃ on the upper half-circle are exactly those with itineraries having
1k0 as an initial word for some odd k). This itinerary is known to correspond
to a periodic orbit of rotation type m/n.

Now let xl be the point of P̃ with

i(x) = (0κ1120κ212 . . . 120κm−112)∞,

and consider the interval J0 = [â, xl). Then J0 contains no fixed points
of θn : for the leftmost point yl on the corresponding periodic orbit would have
i(a) ≺ i(y) ≺ i(x) and hence i(y) = 0κ112 . . . 120κm−1 0

11 . . . , so either y = x or
i(y) = (0κ112 . . . 120κm−101)∞ , which contains an isolated 1 and therefore does
not correspond to an orbit of θ . So θn is continuous on J0 , fixes xl , maps â
into γ , and has no fixed point in J0 , and hence every point of J0 falls into γ
under iteration of θn , ie, Λ ∩ J0 = ∅.

A similar argument shows that if yu is the point of P̃ with

i(y) = (10κ1−1120κ212 . . . 120κm1)∞

and J1 = [pu, yu), then Λ ∩ J1 = ∅. Thus J = θ(J0) ∪ θ(J1) = (f(x)l, f(y)l) is
disjoint from Λ. In particular, the endpoints of J are consecutive points of P̃ ,
and so

⋃n−1
i=0 θ

i(J) = S1 \ P̃ , establishing that Λ = P̃ as required.

The two special cases s = lhe(m/n) and s = rhe(m/n) can be treated similarly,
but more straightforwardly since explicit expressions for s are available. The
reason that Λ 6= P̃ in these cases is that P̃ contains the unique point θ(â) of S1

that has two θ -preimages, â and pu .

6 Invariant unimodal generalized train tracks

In this section, the invariant generalized train tracks corresponding to elements
of MIA are described explicitly. This is achieved by a relatively straightfor-
ward analysis of the construction of invariant generalized train tracks given in
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the proof of Theorem 1: the important point for what follows is the way in
which the structure of the train track is governed by the height of the kneading
sequence.

The case of preperiodic kneading sequences is somewhat more complicated than
the periodic case, and as such the two are treated separately.

6.1 The periodic case

Let s = κ(f) ∈ MIA be the kneading sequence of a unimodal map f whose
critical point c is periodic of period N , and let F : (S2, I, A) be the associ-
ated thick interval map, where A is the set of attracting periodic points of F ,
consisting of a single periodic orbit whose points are in natural correspondence
with the points of the f -orbit of c (see Figure 4 for an example in the case
s = (1001011)∞ ). Let τ ⊆ I \ A be the F -invariant generalized train track:
the aim of this section is to describe τ explicitly. Label the junctions of I with
integers 1 to N from left to right: thus junctions 1 and N are 1-junctions,
while junctions 2 to N − 1 are 2-junctions.

Because of the convention adopted in Section 4.1 for the itinerary of a point
whose orbit contains c, the kneading sequence is given by s = w∞ , where w is
a word of length N whose final symbol is 1.

It will be seen (Theorem 10 below) that only four different basic configurations
of infinitesimal edges can occur in any given junction of I. These are as follows:
note that the position of the puncture in the junction relative to the infinitesimal
edges is also specified (indicated by a small circle in the figures).

BP A single bubble containing the puncture.

W A configuration of infinitely many loops of which infinitely many are bub-
bles (all homotopically trivial), and infinitely many are not, as depicted
in Figure 9. There are two different versions, W+ and W− which are
mirror images of each other.

S+ A semi-infinite bouquet of homotopically trivial bubbles as depicted in
Figure 10.

V3 A single bigon containing W . There are two versions, V +
3 and V −

3 , con-
taining W+ and W− respectively (see Figure 11: V −

3 is the mirror image
of V +

3 ).

The infinitesimal edges of the train tracks described in this section are specified
as follows. For each junction of I, there is given one of the above symbols
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Figure 9: W+ and W−

Figure 10: S+

Figure 11: V +
3

describing the basic configuration of infinitesimal edges. The junction is said to
be type BP, type W+ , type W− , type S+ , type V +

3 or type V −
3 correspondingly.

For each 2-junction, there is in addition a symbol L or R, specifying whether
the loop(s) in the basic configuration are attached to the left or right switch in
that junction. The 2-junction is said to be type L or type R correspondingly.

In each 2-junction not of type V ±
3 , there is one additional infinitesimal edge,

whose endpoints are the two switches on the boundary of the junction. This
edge passes above (respectively below) all other infinitesimal edges in the junc-
tion if the junction is type R (respectively type L).

The reader seeking clarification as to how this notation is used can look ahead
to Examples 8 and the accompanying figures.

There are two special cases: the finite order case s = lhe(m/n) (where each
junction is of type S+ ), and the NBT case s = NBT(m/n) (where each junction
is of type BP, and hence τ is finite). In all other cases, the invariant generalized
train track contains junctions of types W± and V ±

3 .

In all cases, it can be determined which 2-junctions are type L and which are
type R by applying the following simple algorithm. The idea is straightforward:
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the infinitesimal edges in junction 1 are clearly attached to the right hand edge
of that junction. This information is propagated around the orbit, with the
type changing after each symbol 1 (corresponding to a ‘flip’), and remaining
unchanged after each symbol 0.

Algorithm 1 Let s ∈ MIA be a period N kneading sequence, and let π =
πs ∈ SN denote the induced permutation on the points of the critical orbit of
a corresponding unimodal map. Then the partition {2, . . . ,N − 1} = L ∪R is
determined inductively as follows: π(1) ∈ R, and for each r with 2 ≤ r ≤ N−2,
πr(1) lies in the same set as πr−1(1) if πr−1(1) < π−1(N), and in the other set
if πr−1(1) > π−1(N).

Example 7 The easiest way to determine these sets is to write down the first
N symbols of s, and to place Ls and Rs above them. The LR sequence starts
with an R at the third symbol, and changes after each 1.

For example, let s = (10011001011)∞ , so that π = (1 3 7 10 2 5 9 4 8 6 11). Then
Algorithm 1 gives

11 1 3 7 10 2 5 9 4 8 6
R R L R R R L L R

1 0 0 1 1 0 0 1 0 1 1.

Thus L = {4, 8, 10} and R = {2, 3, 5, 6, 7, 9}.

The next result describes the invariant generalized train track corresponding to
any periodic kneading sequence in MIA.

Theorem 10 Let s ∈ MIA be a periodic kneading sequence of period N with
height m/n > 0. Then the invariant generalized train track corresponding to
s has infinitesimal edges as follows. Junction i is of type L or R according as
i ∈ L or i ∈ R. The basic configurations of infinitesimal edges are:

a) If s = lhe(m/n), then all junctions are of type S+ .

b) If s = NBT(m/n), then all junctions are of type BP.

c) Otherwise, let π ∈ SN denote the induced permutation on the points of
the periodic critical orbit of a unimodal map with kneading sequence s,
and let ǫ ∈ {+,−} be given by ǫ = + if π−1(N) ∈ R, and ǫ = − if
π−1(N) ∈ L. Then for 0 ≤ r ≤ N − 1, the junction πr(N) is of type W ǫ

if r ≤ n+ 1, and of type V ǫ
3 if r > n+ 1.

The proof is delayed until some explanatory examples have been presented.
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Examples 8 The three examples correspond to the three cases of Theorem 10.

a) Let s = (101)∞ = lhe(1/3), so that π = (1 2 3). Algorithm 1 gives

3 1 2
R

1 0 1

Thus the invariant generalized train track is described by

(S+ ; S+, R ; S+)

(see Figure 12: note that the infinitesimal edge with endpoints the left
and right switches in junction 2 passes above the other infinitesimal edges
in the junction, since the junction is of type R. In this and subsequent
figures, the punctures have been labelled to clarify the dynamics.)

φ

1

1

2

2

3

3

Figure 12: The generalized train track corresponding to s = lhe(1/3) and its image

b) Let s = (10011)∞ = NBT(1/3), so π = (1 2 4 3 5). Algorithm 1 gives

5 1 2 4 3
R R L

1 0 0 1 1

Thus the invariant generalized train track is described by

(BP ; BP, R ; BP, L ; BP, R ; BP)

(see Figure 13).
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φ

1

1

2

2

3

3

4

4

5

5

Figure 13: The generalized train track corresponding to s = NBT(1/3) and its image

c) Let s = (1001011)∞ , so q(s) = 1/3 and π = (1 3 6 2 5 4 7). Algorithm 1
gives

7 1 3 6 2 5 4
R R L L R

1 0 0 1 0 1 1

Thus ǫ = +, since π−1(7) = 4 ∈ R. The junctions πr(7) with 0 ≤ r ≤ 4
are 7, 1, 3, 6, and 2, so these junctions are of type W+ , while junctions
5 and 4 are of type V +

3 . Thus the invariant generalized train track is
described by

(W+ ; W+, L ; W+, R ; V +
3 , R ; V +

3 , L ; W+, R ; W+)

(see Figure 14).

φ

1

1

2

2

3

3

4

4

5

5

6

6

7

7

Figure 14: The generalized train track corresponding to s = (1001011)∞ and its image

Proof of Theorem 10 Let τ be the invariant generalized train track, as con-
structed using the algorithm of Theorem 1. Let A ⊆ {2, . . . ,N−1} (respectively
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B ⊆ {2, . . . , N − 1}) be the set of 2-junctions which contain an infinitesimal
edge of τ joining the two switches in the junction and passing above (respec-
tively below) the puncture. There are two ways such edges can arise during the
construction. First, as images of real edges: this requires that r ∈ A (respec-
tively r ∈ B ) if r ≥ π(1) and π−1(r) < π−1(N) (respectively r ≥ π(1) and
π−1(r) > π−1(N)). Second, as images of other such infinitesimal edges: this re-
quires that if π−1(r) < π−1(N) then r lies in A (respectively B ) if π−1(r) lies
in A (respectively B ); while if π−1(r) > π−1(N) then r lies in B (respectively
A) if π−1(r) lies in A (respectively B ).

To express this symbolically, partition {1, . . . ,N} = O ∪ I , with r ∈ O if
r < π−1(N) (ie, if r corresponds to the symbol 0), and r ∈ I otherwise. Then
A and B are the smallest subsets of {2, . . . ,N − 1} such that

i) If r ≥ π(1), then r ∈ A if π−1(r) ∈ O , and r ∈ B if π−1(r) ∈ I .

ii) If π−1(r) ∈ O then r ∈ A if π−1(r) ∈ A, and r ∈ B if π−1(r) ∈ B . If
π−1(r) ∈ I then r ∈ B if π−1(r) ∈ A, and r ∈ A if π−1(r) ∈ B .

By condition ii), A ∩ B is a final segment of the sequence (πj(1))N−2
j=1 . By

conditions i) and ii), the least j such that πj(1) ∈ A ∩ B is the least j with
πj(1) > π(1) and πj−1(1) ∈ B . The main step of the proof is to establish that
this least j is equal to n + 1. In particular, by Lemma 5, A ∩ B = ∅ if and
only if either s = lhe(m/n) or s = NBT(m/n).

By Lemma 5, either s = lhe(m/n) or s = cm/nd for some d ∈ {0, 1}N . Assume
that the latter holds: the proof that A ∩ B = ∅ in the former case is similar.
Now since 1 ∈ O , condition i) gives π(1) ∈ A, and the assignments to A and
B given by condition ii) are as follows:

s =
A A B A A B A B A A

1 0κ1 1 1 0κ2 1 1 . . . 1 1 0κm 1 d

Using i(π(1)) = 0κ1−1120κ212 . . . 120κm1d = σ2(s) and applying Lemma 7 gives
j ≥ n+ 1. Since the first symbol of d corresponds to an element of B , it only
remains to show that σ(d) � σ2(s). This is given by Lemma 8.

Notice that for r 6∈ A∩B , comparing condition ii) with Algorithm 1 gives that
r ∈ A if and only if r ∈ R.

Now consider how loops can arise during the construction of τ . Again, there are
two ways. First, as the image of an infinitesimal edge joining the two switches of
junction π−1(N): this gives rise to a homotopically trivial bubble in junction N
(respectively a loop containing the puncture in junction N ) if the edge passes
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above (respectively below) the puncture in junction π−1(N). Second, as the
image of another loop.

If s = NBT(m/n), ie,

s =
A A B A A B A B A A B

1 0κ1 1 1 0κ2 1 1 . . . 1 1 0κm 1 1 . . . ,

then any infinitesimal edge joining the switches of junction π−1(N) passes below
the puncture, and hence gives rise to a loop in junction N which contains the
puncture. Statement b) follows easily. Similarly, if s = lhe(m/n), ie,

s =
A A B A A B A B A A

1 0κ1 1 1 0κ2 1 1 . . . 1 1 0κm−1 1 . . . ,

then any infinitesimal edge joining the switches of junction π−1(N) passes above
the puncture, and hence gives rise to a homotopically trivial bubble in junc-
tion N . Statement a) follows.

In any other case, π−1(N) ∈ A∩B , so that both homotopically trivial bubbles
and homotopically non-trivial loops are created in junction N , leading under
iteration of the construction to a configuration of infinitesimal edges of type W
in each junction. The orientation of these infinitesimal edges bubbles depends
on whether π−1(N) ∈ R or π−1(N) ∈ L (which determines whether a new
homotopically trivial bubble arises below or above the existing loops in junc-
tion N during the construction). Junction r is of type V ±

3 if r ∈ A ∩ B , but
of type W± if r is in only one of A and B . Statement c) follows.

6.2 The preperiodic case

The preperiodic case is somewhat more complicated than the periodic case,
though there are no new ideas introduced: as such, the treatment is more in-
formal and some of the details are omitted. The most substantial modifications
arising because the critical point is not periodic are:

a) There is a unique loop which arises during the construction as the image of
an infinitesimal edge which is not a loop, and this loop is a homotopically
trivial bubble. All other loops are images of this one, and hence all loops
are homotopically trivial bubbles.

b) Only finitely many infinitesimal edges occur in those junctions corre-
sponding to the strictly preperiodic part of the orbit of the critical point.
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c) The parity of the periodic part of the kneading sequence plays an impor-
tant role. If there are an odd number of 1s, then there is a flip each time
around the periodic orbit, and hence bubbles are attached to both the
left and right switches of 2-junctions.

d) In the periodic case, the configuration of infinitesimal edges changes (from
W to V3 ) at a point in the orbit given by the denominator of the height.
In the preperiodic case, separate cases arise according as this point lies
in the preperiodic or periodic part of the orbit.

The basic configurations of infinitesimal edges are entirely different from the
periodic case. There are two distinct types: those which arise in junctions cor-
responding to the preperiodic part of the orbit (B and V0 ), which contain only
finitely many infinitesimal edges and have no associated puncture; and those
which arise in periodic junctions, which contain infinitely many infinitesimal
edges and have an associated puncture. The configurations are:

B A single (homotopically trivial) bubble.

V0 A bigon containing a single bubble, as depicted in Figure 15.

S− The mirror image of S+ .

V1 A decorated bigon as depicted in Figure 16. There are two versions, V +
1

and V −
1 , which are mirror images of each other. In addition, an additional

external bubble may be present in the position indicated in Figure 18. In
this case, the configuration is denoted V ±

1 B .

V2 A decorated bigon as depicted in Figure 17. There are two versions, V +
2

and V −
2 : V +

2 is the mirror image of V −
2 . In addition, there may be two

additional external bubbles in the positions indicated in Figure 18. In
this case, the configuration is denoted V ±

2 B2 .

Figure 15: V0

For each junction of I, one of the above symbols is given describing the basic
configuration of infinitesimal edges: the junction is said to be type V0 , type

V −
1 , type V +

2 B2 , etc. Each 2-junction which is not of type V2 is either type L
or type R, according as the bubbles are attached to the left or right switch of
the junction. For each 2-junction of type B or S− , there is one additional
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V −

1
V +

1

Figure 16: V −

1 and V +
1

V −

2

Figure 17: V −

2

Figure 18: Extra bubbles: the configurations V +
1 B and V −

2 B2

infinitesimal edge, whose endpoints are the two switches on the boundary of
the junction. This edge passes above (respectively below) all other infinitesimal
edges in the junction if the junction is type R (respectively type L).

Throughout this subsection s denotes a strictly preperiodic kneading sequence,
written s = vw∞ , where v is taken to be as short a word as possible (so the final
symbol of v is not equal to the final symbol of w). The lengths of v and w will
be denoted k and l respectively (so k, l ≥ 1), and the size of the orbit of s under
the shift map is denoted N = k+ l . The N points of this orbit are labelled with
the integers 1 through N according to their relative unimodal ordering (so point
r lies in junction r). The shift map σ thus induces a map ρ : {1, . . . ,N} .
Note that ρ is not a permutation: the point N (corresponding to the first
symbol of s) has no preimage, and one point (corresponding to the first symbol
of w) has two preimages.
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The following algorithm is the analogue of Algorithm 1 for the preperiodic
case. Notice that L ∪ R need not be a partition of {2, . . . ,N − 1} (reflecting
the possibility that the word w may be odd): if r ∈ L ∩ R, then bubbles are
attached to both switches in junction r (configuration V2 ).

Algorithm 2 The subsets L and R of {2, . . . ,N − 1} are determined induc-
tively as follows. Let ρ2(N) ∈ R, and for each r with 3 ≤ r ≤ N + l − 1,
let ρr(N) lie in the same set as ρr−1(N) if sr−1 = 0, and in the other set if
sr−1 = 1.

If w is an even word, then the final l steps in this algorithm are unnecessary,
and L ∩R = ∅.

Examples 9 a) Let s = 1000(101)∞ . Then v = 1000, w = 101, and

ρ =

(
1 2 3 4 5 6 7
2 4 5 6 6 3 1

)

(ie, the ρ-orbit of 7 is 7124(635)∞ ). Thus

7 1 2 4 6 3 5
R R R L L ,

1 0 0 0 1 0 1

and so L = {3, 5} and R = {2, 4, 6}.

b) Let s = 100101(10)∞ . Then v = 100101, w = 10, and

ρ =

(
1 2 3 4 5 6 7 8
4 5 6 7 6 3 2 1

)

(ie, the ρ-orbit of 8 is 814725(63)∞ ). Thus

8 1 4 7 2 5 6 3 6 3
R R L L R L L R ,

1 0 0 1 0 1 1 0 1 0

and so L = {2, 3, 5, 6} and R = {3, 4, 6, 7}. Note that since w is odd, the
two repeating points 3 and 6 of the orbit lie in both L and R.

For preperiodic kneading sequences, there is only one special case: that in which
s = rhe(m/n).
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Theorem 11 Let s = vw∞ ∈ MIA be a strictly preperiodic kneading se-
quence of height m/n > 0. Let k and l be the lengths of v and w (chosen
as small as possible). Let ρ be the induced map on {1, . . . ,N = k + l}. Then
the invariant generalized train track corresponding to s has infinitesimal edges
as follows. If i ∈ L \ R (respectively i ∈ R \ L) then junction i is of type L
(respectively R). The basic configurations of infinitesimal edges are:

a) If s = rhe(m/n), then the junction ρr(N) is of type B for 0 ≤ r < k ,
and of type S− for k ≤ r < N .

b) Otherwise, let ǫ ∈ {+,−} be given by ǫ = + if ρk−1(N) ∈ R, and ǫ = −
if ρk−1(N) ∈ L. Then for each r with 0 ≤ r < N :

i) If r ≤ n+ 1, then junction ρr(N) is of type

• B , if r ≤ k .

• V ǫ
1 B or V ǫ

2 B
2 (according as w is even or odd), if r > k .

ii) If r > n+ 1, then junction ρr(N) is of type

• V0 , if r ≤ k .

• V ǫ
1 or V ǫ

2 (according as w is even or odd), if r > k .

Examples 10 The first example illustrates the case s = rhe(m/n). The other
two examples show the two possibilities w even and w odd.

a) Let q = 1/3 and s = rhe(q) so s = 1001(101)∞ = 10(011)∞ . Thus
v = 10, w = 011, and

ρ =

(
1 2 3 4 5
2 3 4 2 1

)

(ie, the ρ-orbit of 5 is 51(234)∞ ). Thus

5 1 2 3 4
R R L ,

1 0 0 1 1

and so R = {2, 3} and L = {4}.
Since k = 2 and l = 3, junctions N = 5 and ρ(N) = 1 are of type B ,
while the other junctions are of type S− .
Thus the invariant generalized train track is described by

(B ; S−, R ; S−, R ; S−, L ; B)

(see figure 19: here all junctions have been labelled to clarify the dynam-
ics).
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b) Let s =
7
1

1
0

2
0

4
0(

6
1

3
0

5
1)∞ . Then L = {3, 5} and R = {2, 4, 6} (see Exam-

ple 9 a)).
Since k = 4 and l = 3, ρk−1(N) = ρ3(7) = 4 ∈ R, and hence ǫ = +.
s has height q(s) = 1/4, so n = 4. Thus junctions N = 7, ρ(N) = 1,
ρ2(N) = 2, and ρ3(N) = 4 are of type B ; junctions ρ4(N) = 6 and
ρ5(N) = 3 are of type V +

1 B ; and junction ρ6(N) = 5 is of type V +
1 .

Thus the invariant generalized train track is described by

(B ; B,R ; V +
1 B,L ; B,R ; V +

1 , L ; V +
1 B,R ; B)

(see Figure 20).

c) Let s =
8
1

1
0

4
0

7
1

2
0

5
1(

6
1

3
0)∞ . Then L = {2, 3, 5, 6} and R = {3, 4, 6, 7} (see

Example 9 b)).
Since k = 6 and l = 2, ρk−1(N) = ρ5(8) = 5 ∈ L, and hence ǫ = −.
s has height q(s) = 1/3, so n = 3. Thus junctions N = 8, ρ(N) = 1,
ρ2(N) = 4, ρ3(N) = 7, and ρ4(N) = 2 are of type B ; junction ρ5(N) = 5
is of type V0 ; and junctions ρ6(N) = 6 and ρ7(N) = 3 are of type V −

2 .
Thus the invariant generalized train track is described by

(B ; B,L ; V −
2 ; B,R ; V0, L ; V −

2 ; B,R ; B)

(see Figure 21).

φ
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Figure 19: The generalized train track corresponding to s = rhe(1/3) and its image

Sketch proof of Theorem 11 The proof is very similar to that of Theo-
rem 10. Defining sets A and B as there, and noting that s = cm/nd for some

d ∈ {0, 1}N , the same analysis shows that A∩B = ∅ if and only if s = rhe(m/n),
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Figure 20: The generalized train track corresponding to s = 1000(101)∞ and its image
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Figure 21: The generalized train track corresponding to s = 100101(10)∞ and its
image

and in all other cases A∩B = {ρj(N) : n+ 2 ≤ j ≤ N − 1}. This is again the
essential part of the proof.

When s = rhe(m/n), it is then straightforward to check case a). In other cases,
it is immediate that for r ≤ k (ie, in the preperiodic part of the orbit) r has
type V0 if r ∈ A ∩B , and type B otherwise.

All of the bubbles arise in the construction as images of the bubble in junction N
(which itself is created as the image of part of a real edge). In particular, they
are all homotopically trivial. The combinatorics of the different cases can be
checked routinely.

7 Unimodal generalized pseudo-Anosov maps

In this section the construction of generalized pseudo-Anosov maps starting
from the invariant train tracks of Section 6 is described.
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7.1 Preliminaries

Let F : (S2, I, A) be a unimodal MIA thick interval map, where A is the set
of attracting periodic points of F . Let f : I be the quotient unimodal map,
and φ : τ be the associated generalized train track map. Let e1, e2, . . . , eN−1

denote the real edges of τ , and eN , eN+1, . . . denote the infinitesimal edges.
Define the transition matrix M = (mij) by

mij = number of times φ(ej) crosses ei.

Thus M is an infinite matrix, unless κ(F ) = NBT(m/n) for some m/n ∈
(0, 1/2).

From the construction of the invariant generalized train track in Section 6, it is
immediate that each φ(ej) is a finite length edge path; that each ei is contained
in the edge path φ(ej) for only finitely many j ; and that each infinitesimal
edge is mapped by φ homeomorphically onto an infinitesimal edge. These
observations yield the following facts about the strucure of the transition matrix:

a) M is of the form

M =

(
A 0
B Π

)
,

where A is an (N−1)×(N−1) matrix recording transitions between real
edges, Π records transitions between infinitesimal edges, and B records
transitions from real to infinitesimal edges.

b) All entries of Π are either 0 or 1. Each column of Π has exactly one
non-zero entry, and each row has only finitely many non-zero entries.

c) B has only finitely many non-zero entries in each column.

In particular, if M is regarded as an operator acting on l1 , then M is bounded
with ‖M‖1 ≤ maxj {

∑
i |mij |} <∞. Let λ be the Perron-Frobenius eigenvalue

of A, and Y ∈ RN−1 the associated positive eigenvector. Then Y can be
extended to a positive eigenvector y = (Y Y ′) ∈ l1 of M , called the Perron-
Frobenius eigenvector of M , by setting

Y ′ =
1

λ
(B +

1

λ
ΠB +

1

λ2
Π2B + . . .)Y.

Note that ‖Π‖1 ≤ 1 so that the series above converges in l1 , implying that
y = (Y Y ′) ∈ l1 . Note also that the matrices ΠkB represent transitions from
a real edge to an infinitesimal edge under φ, and then to another infinitesimal
edge under a further k iterations of φ. By the construction of τ described
in the proof of Theorem 1, every infinitesimal edge of τ is the image, under
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some iterate of φ, of some infinitesimal edge of F∗(τ(∅)), and each of these
infinitesimal edges is crossed by φ(e) for some real edge e. Thus for all i ≥ 1
there exists k ≥ 1 such that row i of ΠkB is non-zero. Since Y is a strictly
positive vector, this establishes that every entry of Y ′ is also positive.

Definition 15 A sequence (yi) of positive real numbers is said to satisfy the
switch conditions for τ if, for each switch q of τ ,

yi0 =
∑

yi + 2
∑

yj,

where ei0 is the real edge with endpoint q , and the first and second sums range
over the sets of indices of infinitesimal edges having one and both endpoints
at q respectively.

The proof of the following lemma is essentially the same as that of the corre-
sponding fact for finite matrices in Section 3.4 of [2].

Lemma 12 Let the transition matrix M of φ : τ have Perron-Frobenius
eigenvector y = (y1 y2 . . .). Then y satisfies the switch conditions for τ .

Proof For r, s, k ≥ 1 denote by m
(k)
rs the number of times that φk(es) crosses

er . Thus m
(k)
rs = (Mk)rs . The fact that y is an eigenvector of Mk with

eigenvalue λk thus gives that for any k and any r ,

yr =
1

λk

∞∑

s=1

m(k)
rs ys.

Now if q is a switch of τ which is an endpoint of the real edge ei0 , and if I
and J are the sets of indices of infinitesimal edges having one and two endpoints
at q respectively, then for any s,




∑

i∈I

m
(k)
is + 2

∑

j∈J

m
(k)
js



 − 2 ≤ m
(k)
i0s ≤




∑

i∈I

m
(k)
is + 2

∑

j∈J

m
(k)
js



 + 2.

This is because, except at its endpoints, φk(es) must cross both ei0 and an
edge indexed in I ∪ J each time it intersects q . Multiplying by ys , summing
over s, and dividing by λk gives

∣∣∣∣∣∣

∑

i∈I

yi + 2
∑

j∈J

yj − yi0

∣∣∣∣∣∣
≤

2
∑∞

s=1 ys

λk
,

which gives the result on letting k → ∞.
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Now let X ∈ RN−1 be an eigenvector of AT associated to the Perron-Frobenius
eigenvalue λ. If x = (X X ′) ∈ l∞ is a completion of X to an eigenvector of the
adjoint M∗ then X ′ = 0, since it satisfies the equation (λI − Π∗)X ′ = 0, and
‖Π∗‖∞ ≤ 1 < λ.

7.2 The construction

The construction will be illustrated by means of a running example, where
F : (S2, I, A) is a unimodal MIA thick interval map with κ(F ) = (1001011)∞ ,
as depicted in Figure 4. The associated generalized train track map φ : τ is
depicted in Figure 14.

Let x = (x1, x2, . . . , xN−1, 0, 0, . . .) and y = (y1, y2, . . .) be the eigenvectors
of M∗ and M associated to the Perron-Frobenius eigenvalue λ of A as de-
scribed above. For definiteness these vectors are scaled so that ‖x‖2 = 1 and∑
xiyi = 1, although this normalization can be chosen arbitrarily. In the run-

ning example, to 3 decimal places:

A =




0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 1 0
1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 0



, λ = 1.686, X =




0.543
0.104
0.191
0.724
0.175
0.322



, Y =




0.368
0.291
0.509
0.536
0.490
0.620




Associate a Euclidean rectangle Ri of width xi and height yi , foliated by hor-
izontal and vertical line segments, to each real edge ei of τ . The idea of the
construction is as follows: a topological sphere S is constructed by identifying
the vertical sides of these rectangles in the manner dictated by the infinitesimal
edges of τ and then identifying the horizontal sides in such a way that the
train track map φ defines a homeomorphism Φ: S . The foliations of the
rectangles project to singular foliations of S with transverse measures induced
by the Euclidean metric: these foliations are preserved by Φ, the horizontal
and vertical foliations being stretched and contracted by factors λ and 1/λ
respectively, so that Φ is a generalized pseudo-Anosov map.

When τ is finite (ie, when κ(F ) = NBT(m/n) for some m/n), this construc-
tion is identical to that of [2], and produces a pseudo-Anosov homeomorphism.
When τ is infinite, however, the construction involves infinitely many sets of
identifications, and it is therefore necessary to describe them carefully and to
justify that the quotient space is a sphere. The tool used to do this is Moore’s
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theorem [16] on monotone upper semi-continuous (m.u.s.c.) decompositions of
the sphere.

Definitions 16 A partition or decomposition G of a topological space into
compact sets is upper semi-continuous if for every decomposition element ζ ∈ G
and every open set U ⊃ ζ , there exists an open set V ⊂ U with ζ ⊂ V such
that every ζ ′ ∈ G with ζ ′ ∩V 6= ∅ has ζ ′ ⊂ U . The decomposition is monotone

if its elements are connected.

The proof of the following lemma is routine.

Lemma 13 A decomposition G of a compact metric space X is upper semi-
continuous if and only if whenever xn → x and yn → y are convergent sequences
in X such that xn and yn belong to the same element of G for all n, then x
and y belong to the same element of G .

Theorem 14 (Moore) Let G be a monotone upper semi-continuous decom-
position of a topological sphere S such that no decomposition element sepa-
rates S . Then the quotient space obtained by collapsing each decomposition
element to a point is a topological sphere.

The side identifications will be realized by arc bands with which m.u.s.c. de-
compositions of the sphere will be constructed. These arc bands are of two
types:

• A rectangular arc band η of size y is the image of an embedding ψ : [0, 1]×
[0, y] → S2 which restricts to a Euclidean isometry on {0} × [0, y] and
on {1} × [0, y], foliated by the leaves ψ([0, 1] × {t}) for 0 ≤ t ≤ y . The
vertices of η are the points ψ(0, 0), ψ(0, y), ψ(1, 0), and ψ(1, y).

• A semi-circular arc band η of size y is the image of an embedding

ψ : {(s, t) ∈ R2 : t ∈ [−y, y], s ∈ [0,
√
y2 − t2]} → S2

which restricts to a Euclidean isometry on {0} × [−y, y], foliated by the
leaves

ψ
(
{(

√
r2 − t2, t) : t ∈ [−r, r]}

)

for 0 ≤ r ≤ y . The vertices of η are the points ψ(0,−y) and ψ(0, y), and
its centre is ψ(0, 0).

The decomposition of an arc band η into the leaves of its foliation is clearly
m.u.s.c.
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7.2.1 Identifications of vertical sides

Place isometric copies of the rectangles Ri in S2 along the real edges of τ , as
illustrated for the running example in Figure 22.

R1 R2

R3 R4
R5

R6

Figure 22: The rectangles Ri placed along the real edges of τ

For each infinitesimal edge ei of τ , place an arc band ηi of size yi in S2 , joining
the segments of length yi on the vertical sides of the rectangles corresponding
to the real edges adjacent to the endpoints of ei . If ei is a bubble then these
segments are adjacent on the same vertical side of the same rectangle, and ηi is
a semi-circular arc band; otherwise, ηi is rectangular. The arc bands are placed
on the sphere in the configuration dictated by τ , and are chosen to be mutually
disjoint except possibly at their vertices. By Lemma 12, the arc bands incident
on any given vertical side of a rectangle precisely cover that side. When there
are infinitely many infinitesimal edges in a given junction, then some care is
needed in the placement of these arc bands to ensure that Moore’s theorem can
be applied (despite the fact that the arc bands only serve to indicate how the
vertical sides of the rectangles should be identified, and from this point of view
the details of their placement is irrelevant).

S± Choose the semi-circular arc bands with diameters converging to 0, which
is possible since their sizes converge to 0.

W± , V ±
3 Choose the semi-circular arc bands with diameters converging to 0.

It is then possible to choose the rectangular arc bands so that their di-
ameters converge to 0 (see Figure 23 for the arc bands in the junction
between R3 and R4 in the running example). Note that each bounded
complementary component of the union of the arc bands in the junction
is a 3-gon.

V ±
1 , V ±

1 B Choose the semi-circular arc bands with diameters converging to 0.
The rectangular arc bands can then be chosen so that they converge in
the Hausdorff topology to a single arc v joining the two switches of the
junction, and separating all but one of the arc bands from the puncture.
Note that the bounded complementary components of the union of the
arc bands comprise one 2-gon (containing the puncture), and infinitely
many 3-gons.
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V ±
2 , V ±

2 B2 Choose the semi-circular arc bands with diameters converging
to 0, and the rectangular arc bands so that the sequence of arc bands
above (respectively below) the puncture converges to an arc v+ (respec-
tively v− ) joining the two switches, and v+ and v− are disjoint except at
their endpoints. Again, the bounded complementary components of the
union of the arc bands comprise one 2-gon containing the puncture, and
infinitely many 3-gons.

ei

ej

ek

ηi
ηj

ηk

Figure 23: The arc bands in the junction between R3 and R4

Let R denote the closure of
⋃

i<N Ri ∪
⋃

i≥N ηi . The complement of R in

S2 consists of one unbounded component C∞ (containing ∞), finitely many
open 2-gons containing punctures, and countably many open 3-gons. Define a
decomposition of the sphere with elements of four types:

i) the closure of each bounded complementary component of R;

ii) the connected components of the intersection of the closure of C∞ with
the closure of the union of the arc bands;

iii) the arcs in each arc band except those contained in elements of i) or ii);

iv) single points in the rectangles and in C∞ which are not contained in
elements of i), ii), or iii).
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Decomposition elements of type ii), which would not otherwise be decomposi-
tion elements of type iii), arise in the following circumstances: in 2-junctions
of type B , BP , W± , and V ±

1 B there is one such element which is the union
of two arcs with a common endpoint; in 2-junctions of type V ±

2 B2 , there are
two such elements, each the union of two arcs with common endpoints; and
in junctions of type S± there is one such element, which is the closure of the
union of infinitely many arcs.

Lemma 15 This decomposition of S2 is m.u.s.c. and none of its elements
separates S2 .

Proof It is clear that the decomposition elements don’t separate the sphere.
Thus it is required to show (using Lemma 13) that if ζn is a sequence of decom-
positions elements, and xn → x, yn → y are convergent sequences in S2 with
xn, yn ∈ ζn for all n, then x and y lie in the same decomposition element.

If all but finitely many of the ζn are single points then x = y , so passing to
subsequences it can be assumed that none of the ζn is a single point. Since
there are only finitely many decomposition elements of type ii), each compact,
it can be assumed that none of the ζn is of type ii). If infinitely many of the ζn
belong to a given arc band then the result follows by the upper semi-continuity
of each arc band, so it can be assumed that no two of the ζn belong to the same
arc band. If infinitely many of the ζn are semi-circular arcs, then x = y since
the diameters of the semi-circular arc bands tend to 0, so it can be assumed
that no ζn is a semi-circular arc. If infinitely many of the ζn are the closure
of the same complementary component of R, then the result follows by the
compactness of these closures. Thus there are only two cases left to consider:
where (ζn) is a sequence of arcs from distinct rectangular arc bands, and where
(ζn) is a sequence of distinct closures of complementary components of R.

In either case, it can be assumed that the rectangular arc bands or comple-
mentary components are all in a single junction of type V ±

1 or V ±
2 , since the

diameters of rectangular arc bands and complementary components in junctions
of other types tend to 0. Then by construction, x and y lie on the limiting
arcs v or v± in that junction, which are contained in the closure of the com-
plementary component of R containing the periodic point in that junction.

It follows by Theorem 14 that the quotient space obtained by collapsing each
decomposition element to a point with the induced quotient topology is a topo-
logical sphere S̃ . The projection of the complement of C∞ is a closed topolog-
ical disk which is denoted R. The horizontal line segments in the rectangles
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project to a singular foliation of R at all but finitely many points (the accumu-
lations of singularities). There is a 3-pronged singularity at each point of the
quotient corresponding to a bounded complementary 3-gon, and a 1-pronged
singularity at each point corresponding to the centre of a semi-circular arc band.
The disk R and parts of its foliation in the case of the running example is de-
picted in Figure 24, and details of the shaded regions of Figure 24 are shown
in Figure 25.

Figure 24: The quotient disk R and its foliation

Figure 25: Detailed view of the shaded regions of Figure 24

The train track map φ : τ induces a map Φ̃ : R : unstable leaves (coming
from horizontal segments) are stretched by the factor λ, stable leaves (coming
from vertical segments) are contracted by the factor 1/λ, the (projections of)
rectangles are mapped as dictated by the action of φ on the real edges of τ and
the identifications are mapped according to the action of φ on the infinitesimal
edges of τ .
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7.2.2 Identifications of horizontal sides

The identifications of the horizontal sides of R are carried out in such a way as
to restore the injectivity of Φ̃ on ∂R. In order to describe them, it is therefore
necessary to understand the structure of ∂R and the action of Φ̃ on it. This
was the purpose of the analysis of the outside map of the unimodal map f in
Section 5: the dynamics of Φ̃|∂R is modelled by the dynamics of the outside
map, in a sense made precise by the following lemma.

Lemma 16 Let θ : S1 → S1 ∪ I be the outside map of f . Then there is a
homeomorphism h : S1 → ∂R with the property that θ(x) ∈ S1 if and only if
Φ̃(h(x)) ∈ ∂R, and in this case h(θ(x)) = Φ̃(h(x)).

Proof An analysis of the different possible configurations of infinitesimal edges
in the junctions of I, as given by Theorems 10 and 11, shows that for any
kneading sequence s ∈ MIA the two corners on the left of R1 are identified, the
two corners on the right of RN−1 are identified, and for 1 ≤ j < N − 1 the top
(respectively bottom) right corner of Rj is identified with the top (respectively
bottom) left corner of Rj+1 . The corners of the rectangles therefore define
2N − 2 points on ∂R, which correspond naturally with the 2N − 2 points on
S1 defined by the critical orbit of f (namely â and b̂, together with xl and xu

for each other point x in the critical orbit).

Define h : S1 → ∂R to map each of these 2N − 2 points on S1 to the corre-
sponding point on ∂R, and to map each interval of S1 between two such points
affinely onto the corresponding interval of ∂R. Then h is a homeomorphism,
the points x ∈ S1 with θ(x) 6∈ S1 are precisely those for which Φ̃(h(x)) 6∈ ∂R,
and away from these points both θ and Φ̃ are affine on each of the 2N − 2
intervals, and send corresponding endpoints to corresponding endpoints.

Abusing notation, let γ ⊆ ∂R, a, c, p ∈ ∂R be defined as h(γ), h(â), h(cu),
h(pu) respectively (see Figure 26).

Theorem 17 Let s = κ(F ), and suppose that q(s) = m/n ∈ (0, 1/2) ∩
Q. Then Φ̃|∂R has a unique periodic orbit, which has period n and rotation
number m/n. The boundary ∂R has the structure of an n-sided polygon, with
vertices the points Φ̃j(a) for 1 ≤ j ≤ n. Moreover, v = Φ̃n(a) ∈ γ satisfies:

i) v = a (so that a is periodic under Φ̃) if and only if s = lhe(m/n)

ii) v = c if and only if s = NBT(m/n)
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η0

η−1

η−2

γ

Φ̃(γ) Φ̃(c)

c
a

p

q=Φ̃(a)=Φ̃(p)

Figure 26: R and its image under Φ̃

iii) v = p (so that p is periodic under Φ̃) if and only if s = rhe(m/n)

iv) v is strictly between a and c if and only if lhe(m/n) ≺ s ≺ NBT(m/n)

v) v is strictly between c and p if and only if NBT(m/n) ≺ s ≺ rhe(m/n)

Proof The statements about the periodic orbit on ∂R and the position of v
are direct translations of Theorem 6. An analysis of the different possible
configurations of infinitesimal edges in the junctions of I shows that there are
singularities on ∂R corresponding to each junction with configuration S± , and
cusps on ∂R corresponding to each 2-junction with configuration BP , B , W± ,
V ±

1 B , or V ±
2 B

2 . By Theorems 10 and 11, there are exactly n such junctions,
and these junctions are precisely those containing the first n images under F
of the left hand 1-junction.

Remark 4 Observe that if s is not one of the endpoints of KS(m/n), then
the vertices of ∂R correspond exactly to the vertices of the unbounded com-
plementary component of τ .

The m.u.s.c. decomposition giving the identifications on the horiztonal edges
can now be described: as before, it is constructed using rectangular and semi-
circular arc bands joining points on the horizontal edges which will be identified.
These arc bands will be labelled ηj for j ≤ 0 (in fact ηj will often denote a
union of two arc bands), with the arcs of ηj joining precisely those points of
∂R which are identified by Φ̃1−j but not by Φ̃−j : thus Φ̃ will project to a
homeomorphism of the quotient space. In particular, η0 is a semi-circular arc
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band centred at c whose arcs join pairs of points of γ which are identified
by Φ̃. This is illustrated for the running example in Figure 26, where the
image of γ has been depicted slightly separated for clarity. Notice that Φ̃|−1

∂R

is discontinuous at q = Φ̃(a) = Φ̃(p) and is not surjective since it misses γ ,
but away from q it is a continuous injection (the injectivity is what makes it
possible to construct the arc bands ηj in such a way that they intersect ∂R
with disjoint interiors).

The preimages γj = Φ̃j(γ) are connected for −n+1 ≤ j < 0, since γ−n+1 is the
first preimage of γ which contains the point of discontinuity q by Theorem 17.
Thus the arc bands ηj for −n + 1 ≤ j < 0 are semi-circular, centred on
cj = Φ̃j(c), and can be chosen to be disjoint.

For j ≤ −n there are three different cases, according as s is an endpoint
of KS(m/n), is equal to NBT(m/n), or is neither. As in the statement of
Theorem 17, let v = Φ̃n(a) denote the vertex of ∂R which lies in γ .

a) s is an endpoint of KS(m/n): Then v coincides with an endpoint of γ
and is periodic of period n. Thus q is one of the endpoints of γ−n+1 so
the preimages γj are connected for all j < 0. The arc bands ηj are semi-
circular centred at cj for all j ≤ 0. Since their sizes tend to 0, they can
be chosen to be disjoint away from their vertices and to have diameters
tending to 0 as j → −∞. They cover ∂R by Theorem 6, accumulate on
the periodic orbit on ∂R, and their vertices lie on the orbit of preimages
of this periodic orbit (described in Theorem 6). Figure 27 depicts these
arc bands in the case s = lhe(1/3): the white dots depict the points of
the period 3 orbit on ∂R. The m.u.s.c. decomposition consists of the

η0

η−1

η−2

η−3

η−4

η−5

Figure 27: The arc bands in case a): here s = (101)∞ = lhe(1/3)

following elements:
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i) the closure of the complement of R ∪
⋃−∞

j=0 ηj , which is a closed
topological disk bounded by infinitely many arcs, containing the
periodic orbit on its boundary and the point at infinity in its interior;

ii) the arcs of each arc band ηj, j ≤ 0, except for those contained in
elements of i);

iii) the points of Int(R).

b) s = NBT(m/n): Then v = c, so q = Φ̃−n+1(c) and the point of disconti-
nuity of Φ̃|−1

∂R coincides with the centre of η−n+1 . Thus γ−n is the union
of two arcs, and each point in each arc is paired with exactly one point
in the other. Inductively, the same is true for γj for all j ≤ −n: thus the
ηj for j ≤ −n can be chosen to be rectangular arc bands, one of whose
boundaries coincides with the outer boundary of ηj+n and the other with
the inner boundary of ηj−n . The sizes of these arc bands decrease ex-
ponentially, and they cover ∂R by Theorem 6. They are depicted in
Figure 28 for the case s = NBT(1/3). The m.u.s.c. decomposition con-
sists of the following elements:

c=v

Figure 28: The arc bands in the NBT case: here s = (10011)∞

i) the closure of the complement of R ∪
⋃−∞

j=0 ηj , which is a closed
topological disk bounded by n arcs, having the points of the periodic
orbit on ∂R for vertices, and containing the point at infinity in its
interior;

ii) the arcs of each arc band ηj, j ≤ 0 (in this case, no such arc is
contained in an element of i));

iii) the points of Int(R).
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c) s is neither NBT(m/n) nor an endpoint of KS(m/n): As in case b), γj

has two connected components for j ≤ −n. However, because v 6= c,
one of the components of each such γj is divided into two subarcs: the
points of one subarc are paired with other points in the same subarc,
while those in the other are paired with points in the other component
of γj . In Figure 29, γ−n+1 = α1 ∪ α2 ∪ α3 , points of Φ̃−1(α1) are paired
to points of Φ̃−1(α3) whereas points of Φ̃−1(α2) are paired to points of
Φ̃−1(α2) itself. Thus ηj is the union of a semi-circular arc band and a
rectangular arc band; the diameters of the semi-circular bands tend to 0
as j → −∞, as do the sizes of the rectangular bands. The arc bands
cover ∂R by Theorem 6.
The m.u.s.c. decomposition consists of the following elements:

i) the closures of the (infinitely many) complementary components of
R ∪

⋃
j≤0 ηj ; there is one exterior n-gon containing ∞ and having

the points in the periodic orbit on ∂R for vertices, and infinitely
many 3-gons;

ii) the arcs of each arc band in ηj , j ≤ 0, except for those contained in
elements of i);

iii) the points of Int(R).

The complete decomposition for the running example, which satisfies
lhe(1/3) ≺ s ≺ NBT(1/3), is shown in Figure 30.

Lemma 18 Each of these decompositions is m.u.s.c. and none of its elements
separates S̃ .

Proof In case a), where the diameters of the arc bands tends to 0, and case b),
where the arc bands can be regarded as a finite number of semi-circular arc
bands, the proof is straightforward. For case c), let ζn be a sequence of de-
composition elements, and xn → x, yn → y be convergent sequences with
xn, yn ∈ ζn for all n. Then it is required to show that x and y lie in the same
decomposition element. As in the proof of Lemma 15, it can be assumed that
either every ζn is an arc of a distinct rectangular arc band, or every ζn is a
distinct complementary component. In both cases, both x and y lie on the
boundary of the complementary component containing ∞.

By Theorem 14 the quotient space is a topological sphere S , and by construc-
tion Φ̃ projects to a homeomorphism Φ: S . The following theorem asserts
that Φ is a generalized pseudo-Anosov map, and describes the orbits of 1-
pronged singularities, which are the most important from the point of view of

Geometry & Topology, Volume 8 (2004)



Unimodal generalized pseudo-Anosov maps 1177

Φ̃−1

cv

q
α1 α2

α3

Φ̃−1(α1)Φ̃−1(α2)

Φ̃−1(α3)

η0

η−n

cn−1

Figure 29: The arc bands in case c)

dynamics. Recall that an orbit {fn(x) : n ∈ Z} of a homeomorphism f : X
is homoclinic to a fixed point p of f if fn(x) → p as n→ ±∞.

Theorem 19 Let s ∈ MIA have height q(s) = m/n ∈ (0, 1/2) and let
Φs : S denote the associated homeomorphism constructed above. Then Φs

is a generalized pseudo-Anosov map. Moreover, it has exactly one orbit of
1-pronged singularities which

i) is homoclinic to the point at infinity if and only if s is an endpoint of the
interval KS(m/n);
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Figure 30: The complete second stage decomposition for the running example

ii) is finite if and only if s = NBT(m/n);

iii) is backward asymptotic to the point at infinity and forward asymptotic
to the periodic orbit determined by s if and only if lhe(m/n) ≺ s ≺
NBT(m/n) or NBT(m/n) ≺ s ≺ rhe(m/n).

Proof Let π : S2 → S denote the projection map given by the construction,
and let Q =

⋃N−1
i=1 Ri . Then π(Q) = S , since every fibre of π intersects Q; and

π|Int(Q) is an embedding, since every fibre which intersects Int(Q) is trivial.
Thus the foliations of Q by horizontal and vertical line segments project to
regular foliations of π(Int(Q)), which are equipped with transverse measures
induced by Euclidean distance in Q. The arc bands describe isometric iden-
tifications of segments of ∂Q, with vertical (respectively horizontal) segments
always identified with other vertical (respectively horizontal) segments. Thus
the measured foliations are also regular at points of π(∂Q) other than those
which are the projections of vertices of arc bands, or centres of semi-circular
arc bands. The foliations have a 1-pronged singularity at π(c) whenever c is
the centre of a semi-circular arc band. If v is the vertex of an arc band, there
are more possibilities.

a) If v is the vertex of an arc band on the interior of a vertical segment of
∂Q corresponding to a junction of any type other than S± , then π(v) is
a 3-pronged singularity.

b) If v is the vertex of an arc band on a vertical segment of ∂Q correspond-
ing to a junction of type S± , then π(v) is an essential (∞-pronged)
singularity.
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c) If v is a vertex of an arc band on a horizontal segment in the case where s
is an endpoint of KS(m/n), then π(v) is an essential singularity.

d) If v is a vertex of an arc band on a horizontal segment in the case where
s = NBT(m/n), then π(v) is an n-pronged singularity if v is a point of
the periodic orbit on ∂Q, and is a regular point otherwise.

e) If v is a vertex of an arc band on a horizontal segment in the case where
s 6= NBT(m/n) and s is not an endpoint of KS(m/n), then π(v) is an
essential singularity if v is a point of the periodic orbit on ∂Q, and is a
3-pronged singularity otherwise.

By considering the singularities corresponding to junctions of each given type,
it can easily be seen that junctions of types BP , B , and V0 give rise to only
finitely many singularities, whereas all other types give rise to infinitely many
singularities which accumulate on the periodic point in the associated junction.
If s 6= NBT(m/n) then the singularities arising from arc bands on horizon-
tal segments of ∂Q accumulate on the point π(P ), where P is the periodic
orbit on ∂Q; while if s = NBT(m/n) then there are only finitely many such
singularities.

Thus the singularities of the foliations of S accumulate at only finitely many
points. By construction, these foliations are invariant under Φ, with the hor-
izontal (unstable) foliation being expanded by a factor λ > 1 and the vertical
(stable) foliation being contracted by a factor 1/λ. Hence Φ is a generalized
pseudo-Anosov map as required.

To show that the one-pronged singularities arising from arc bands on the vertical
sides of ∂Q lie on a single orbit, it is necessary to consider the action of the
train track map φ : τ on the bubbles of τ . If s = NBT(m/n), then it is
clear that the n + 2 bubbles are permuted cyclically by φ. In all other cases
where s is periodic, the proof of Theorem 10 shows that there is a bubble B
in junction N which is the image of an infinitesimal edge in junction π−1(N)
joining the two switches of the junction and passing above the puncture, and
all other bubbles are images of this one. Hence the forwards Φ-orbit of the 1-
pronged singularity corresponding to B contains precisely all of the 1-pronged
singularities arising from arc bands on the vertical sides of ∂Q. Similarly, if s
is preperiodic then all of the bubbles of τ are images of the unique bubble B
of τ in junction N .

It is immediate from the construction of Section 7.2.2 that the one-pronged
singularities arising from arc bands on the horizontal sides of ∂Q are precisely
the points of the backwards Φ-orbit of the point π(c), since the centres of the
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arc bands on ∂R are at the points Φ̃−j(c) for j ≥ 0. Since Φ̃(c) lies on the right
hand edge of Q, it follows that Φ(π(c)) is the unique one-pronged singularity
corresponding to a bubble in junction N whose preimage has not already been
assigned, and hence the 1-pronged singularities form a single orbit as required.
That the asymptotics of this orbit are as given in the statement of the theorem
follows directly from the facts about 1-pronged singularities established earlier
in the proof.

Remark 5 s = 10∞ is the only element of MIA with height 0, and was ex-
cluded from the construction above in order not to have to introduce exceptions
into each statement about KS(m/n). It can, however, be treated in exactly the
same way as other elements of MIA: the invariant generalized train track,
depicted in Figure 5, is described by

(S+ ; B)

(and hence is unique among train tracks corresponding to strictly preperiodic
kneading sequences in having a junction of type S+), and the same construction
can be applied starting with this train track to obtain a ‘tight horseshoe’. This
has been described in [4].

8 The complex structure

In this section it is shown that the topological sphere S constructed above
carries a natural complex structure which makes it into a complex sphere. With
respect to this structure the Φ-invariant foliations become the horizontal and
vertical trajectories of an integrable quadratic differential which is meromorphic
away from finitely many essential singularities, with respect to which Φ is a
Teichmüller mapping. This is a special case of results sketched in [4].

Theorem 20 Let s ∈ MIA, and let Φs : S be the associated generalized
pseudo-Anosov map. Then the Euclidean structure on the rectangles used in
the construction of S induces a complex structure on S , with respect to which
it is a complex sphere.

Proof As in the proof of Theorem 19, let π : S2 → S be the projection map
given by the construction of S and Q =

⋃N−1
i=1 Ri , where the Ri are the rectan-

gles corresponding to the real edges of the invariant train track τ . Since π|Int(Q)

is a homeomorphism onto its image, the Euclidean structure on Int(Q) induces
a natural complex structure on π(Int(Q)). Moreover, the conformal mappings
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z 7→ z2/k (on the slit plane) induce complex structures on the neighbourhoods
of each k -pronged singularity. Thus S has a complex structure away from the
finite set Σ of accumulations of singularities of the invariant foliations. To es-
tablish the theorem, it is necessary to show that the complex structure on S \Σ
regards each point of Σ as a puncture rather than a hole. Using the theory
of extremal length [1, 14], this can be accomplished by constructing a nested
sequence of annuli converging to each point of Σ, the sum of whose moduli is
divergent. The standard estimate

Mod(A) ≥
Width(A)2

Area(A)

for the modulus of an annular region A will be used, where Width(A) is the
minimum distance between the two boundary components of A.

Let q(s) = m/n. If s = NBT(m/n) then Σ is empty, and there is nothing
to show. If lhe(m/n) ≺ s ≺ NBT(m/n) or NBT(m/n) ≺ s ≺ rhe(m/n) then
there is one point of Σ corresponding to each junction of type W , V1 , V2 ,
or V3 (ie, each junction containing infinitely many infinitesimal edges), and one
point of Σ corresponding to the point at infinity. Finally, if s = lhe(m/n)
or s = rhe(m/n) then Σ contains a single point. This case is harder, since the
annuli cannot be constructed locally in Q, and is treated first.

Case 1. s = lhe(m/n) or s = rhe(m/n)

Suppose that s = lhe(m/n): the case s = rhe(m/n) is entirely analogous.
Let M be the transition matrix for the train track map φ : τ , λ be its
Perron-Frobenius eigenvalue, and y be its Perron-Frobenius eigenvector. A
construction similar to that described below can be found in [9].

By Theorem 10, τ has n−2 infinitesimal edges which are not loops, one in each
junction other than the leftmost and rightmost. Carrying out the identifications
corresponding to these edges yields a Euclidean polygon E with n vertical and n
horizontal sides. Infinitely many other identifications are applied to produce S ,
each of which involves identifying the two halves of an identification interval

on the boundary of E . The identification intervals on the vertical sides of E
are given by (the eigenvector entries corresponding to) the bubbles of τ , while
those on the horizontal sides are given by the map Φ̃ and its backwards iterates,
as described in the proof of Theorem 17.

The following notation will be used:

• wv is half the length of the longest identification interval on the vertical
sides of E : in other words, wv is the largest entry of y which corresponds
to a bubble of τ .
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• wh is half the length of the longest identification interval on the horizontal
sides of E (this interval is denoted γ in the proof of Theorem 17).

• w = min(wv , wh), W = max(wv, wh).

• a0, a1, . . . , an−1 are the points of the periodic orbit on the boundary of E ,
labelled so that a0 is the rightmost and ai+1 mod n is the image of ai . Thus
a1 is the leftmost point of the orbit, denoted a in the proof of Theorem 17.
Observe that each ai is a vertex of E .

• Each side of E is the union of a sequence of adjacent identification inter-
vals which converge to one of the points ai . Denote by (ui

j)
∞
j=0 (respec-

tively (vi
j)

∞
j=0) this sequence on the vertical (respectively horizontal) side

of E with endpoint ai .

• ai
j and ai

j+1 (respectively bij and bij+1 ) are the endpoints of the identifi-

cation interval ui
j (respectively vi

j ). Thus

i) The vertical (respectively horizontal) side of E containing the vertex
ai has ai

0 (respectively bi0 ) as its other vertex.

ii) (ai
j) and (bij) are both sequences converging to ai . All of the points

of
⋃

i,j{a
i
j , b

i
j} ∪

⋃
i{a

i} are identified to the point at infinity in S .

iii) |u0
0| = 2wv (where |I| denotes the length of an interval I ), and

|vi0
0 | = 2wh for some i0 (with the property that ai0 is the topmost

point of the periodic orbit on the boundary of E ).

iv)

|ui
j | =

2wv

λi+nj
and

|vi
j | =

2wh

λ(i−i0 mod n)+nj

for i = 0, 1, . . . , n− 1 and j ≥ 0.

• For each j ≥ 0, let

rj =
w

λ(n−1)+nj
.

That is, rj is half the length of the smallest of the 2n identification
intervals ui

j and vi
j .

A sequence of nested annuli Xk , converging to the point at infinity, will now
be constructed. Each Xk will be given as the union of finitely many regions of
three types.
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Half-annuli For 0 ≤ i < n and 1 ≤ j ≤ k , let Ai
j,k (respectively Bi

j,k ) be the

half-annulus centred at ai
j (respectively bij ) with inner radius rk+1 and

outer radius rk . (These are half-annuli bounded by Euclidean semicircles
and segments of the boundary of E : see Figure 31.)
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Figure 31: The half-annuli Ai
j,k

The identification intervals which share ai
j as an endpoint are ui

j−1 and ui
j

and rk ≤ |ui
j |/2 < |ui

j−1|/2, so Ai
j,k meets the identification intervals ui

j−1

and ui
j between ai

j and the centres of the intervals, as in Figure 31. The

same argument applies to the half-annuli Bi
j,k .

After the identifications on the boundary of E have been carried out,
each

⋃k
j=1A

i
j,k and each

⋃k
j=1B

i
j,k is a strip of width rk − rk+1 and area

kπ(r2k − r2k+1)/2.

Rectangular quarter-annuli Figure 32 shows the half-annuli Ai
k,k and Bi

k,k .

The endpoints in ui
k of the boundary semicircles of Ai

k,k lie in the half of

ui
k which is further from ai , and these endpoints are identified with two

points in the half of ui
k nearer to ai , which are denoted z1 and z2 in the

figure. There are analogous points z3 and z4 identified with endpoints
of the half-annulus Bi

k,k . Since the internal angle of E at ai is π/2, it

is possible to define a rectangular quarter-annulus Zi
k as shown in the

figure, each of whose boundary components is the union of a horizontal
and a vertical arc, joining either z1 to z3 or z2 to z4 .
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Figure 32: The rectangular quarter-annulus Zi
k

A rectangular quarter-annulus is used since the distance between ai and z1
need not be equal to the distance between ai and z3 . The former distance
is less than

∑∞
j=k |u

i
j | and the latter is less than

∑∞
j=k |v

i
j |. Hence, for

each i and each k , the region

Y i
k = Zi

k ∪
k⋃

j=1

Ai
j,k ∪

k⋃

j=1

Bi
j,k

is (once the identifications have been carried out) a strip of width rk−rk+1

and area bounded above by

kπ(r2k − r2k+1) + (rk − rk+1)




∞∑

j=k

|ui
j | +

∞∑

j=k

|vi
j |



 .

Circular vertex annuli The other vertices ai
0 = bi

′

0 of E have internal an-
gle either π/2 or 3π/2. At each such vertex, construct a (circular)
quarter-annulus or three-quarter-annulus Di

k with radii rk and rk+1 ,
whose boundary components join points identified with endpoints of Ai

1,k

to points identified with endpoints of Bi′

1,k . These partial annuli have

areas bounded above by π(r2k − r2k+1).

After the identifications have been carried out,

Xk =

n−1⋃

i=0

(Y i
k ∪Di

k)
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is an annulus of width rk − rk+1 and area bounded above by

n



(k + 1)π(r2k − r2k+1) + (rk − rk+1)




∞∑

j=k

|ui
j| +

∞∑

j=k

|vi
j |







 .

The annuli X1 and X2 in the case s = lhe(1/3) = (101)∞ are depicted in
Figure 33.
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Figure 33: Annuli with divergent moduli sum surrounding the accumulation of singu-
larities of Φlhe(1/3)

Now

rk ± rk+1 =
w

λ(n−1)+nk
(1 ±

1

λn
)

and
∞∑

j=k

|ui
j | +

∞∑

j=k

|vi
j | ≤

∞∑

j=k

4W

λnj
=

4Wλn

λnk(λn − 1)
,
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so

Mod(Xk) ≥
Width(Xk)

2

Area(Xk)
≥

rk − rk+1

n
(
(k + 1)π(rk + rk+1) + 4Wλn

λkn(λn−1)

)

=
C1/λ

nk

(C2k + C3)/λnk

=
C1

C2k + C3
,

where C1 , C2 , and C3 depend only on n, λ, w , and W . Hence
∑

k≥1 Mod(Xk)
diverges as required.

Case 2. lhe(m/n) ≺ s ≺ NBT(m/n) or NBT(m/n) ≺ s ≺ rhe(m/n)

Consider first the accumulation of singularities in a junction of type W± . In
Figure 34 the identifications on Q are indicated with dotted lines, and the
shaded half-annuli Ak project to nested annular regions in S which converge to
the accumulation of singularities p. If the width of the rectangle in which these
half-annuli lie is less than half its height then not all of them can be constructed
there: in this case, simply start with the first half-annulus Ak0

which can be
constructed.
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Figure 34: Annuli with divergent moduli sum surrounding an accumulation of singu-
larities of type W .

Let µ = λ−N , where N is the period of p, let w be the width of the annu-
lus A0 , and denote by c the size of the largest semi-circular arc band. Then
Width(Ak) = wµk , and the kth semi-circular arc band has size cµk .
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The outer radius Rk of Ak is one half of the distance between the highest and
lowest points of Ak , in other words

Rk =
1

2



2w

∞∑

j=k

µj + 2c

∞∑

j=k

µj





=
(w + c)µk

1 − µ
.

Thus
Area(Ak) =

π

2
Width(Ak)(2Rk − Width(Ak)) = Cµ2k,

where C depends only on µ, w , and c. Hence

Mod(Ak) ≥
Width(Ak)

2

Area(Ak)
=
w

C

so that
∑

k≥k0
Mod(Ak) diverges as required.

Similar arguments apply to accumulations of singularities of types V . For a
junction of type V1 , let R and R′ denote the adjacent rectangles, where R is
the rectangle adjacent to the switch to which all of the bubbles in the junc-
tion are attached. Then a sequence of half-annuli is constructed in R as for
junctions of type W , but rather than being completed to annuli by the iden-
tifications they are completed by corresponding half-annuli in R′ . The moduli
of these annuli are again bounded below by a positive constant. Junctions of
type V2 are double covers of junctions of type W , and a sequence of annuli with
moduli bounded below by a positive constant at an accumulation of type W
thus induces a similar sequence at an accumulation of type V2 . Accumula-
tions of type V ±

3 (respectively V1B , V2B
2) are identical to those of type W±

(respectively V1 , V2 ) in a neighbourhood of the accumulation point.

Finally, consider the point at infinity. The pattern of identification of horizontal
sides, described in Section 7.2.2, is an n-fold cover of the pattern in junctions
of type W : there are n points on the horizontal boundary of R which are
identified to the point at infinity, and the identifications along the horizontal
sides are given by an alternating sequence of rectangular and semi-circular arc
bands whose sizes decay exponentially.
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