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1 Introduction

In Part 1 [15] of this paper we studied the spaces of real algebraic cycles in
P(Cn) and found that their homotopy structure was particularly simple and
surprisingly related to the Stiefel–Whitney and Pontrjagin classes. We saw
that the stabilized space Z∞

R
of all such cycles is an E∞–ring space whose

homotopy groups π∗Z
∞
R

form a graded ring isomorphic to Z[x, y]/(2y). Fur-
thermore, the standard complexification and forgetful functors in K–theory
were shown to extend over the characteristic homomorphisms to infinite loop
maps of cycle spaces. Here in Part 2 we shall establish analogous results for
spaces of quaternionic cycles.

Recall that a real vector space is a pair (V, ρ) where V is a complex vector
space and ρ : V → V is an anti-linear map with ρ2 = Id. A real algebraic
subvariety (or more generally a real algebraic cycle) in P(V ) is one which is
fixed by the induced involution ρ : P(V ) → P(V ) (the action of Gal(C/R)).
This condition is equivalent to assuming that the subvariety is defined by real
algebraic equations.

Analogously a quaternionic vector space is a pair (V, j) where j : V → V is
an anti-linear map with j2 = − Id. A quaternionic algebraic variety (or cycle)
in P(V ) is one which is fixed by the induced involution. Such subvarieties are
distinctly different from real ones. The map j is fixed-point free on P(V ) and
therefore on every subvariety. The induced antilinear bundle map on O(1) has
square − Id.

In [14] we prove that the quaternionic suspension of cycles gives a Z2–homotopy
equivalence Σ/H : Zq(P(V )) → Zq(P(V ⊕ H)) of cycle spaces and in particular
a homotopy equivalence

Σ/H : Zq
H
(P(V )) −→ Zq

H
(P(V ⊕ H))

of the subgroups of codimension–q quaternionic cycles. For q odd one can
thereby reduce to 0–cycles and apply Dold–Thom [3, 19] to determine the struc-
ture of these spaces. However, for q even one can only reduce to 1–cycles by
this method. The determination of the homotopy type of Zq

H
when q is even,

is one of the main results of this paper (Theorem 2.3). Its proof, which involves
new constructions and techniques, is given in Section 6.

Under stabilization there are two limits, Z2∞
H

and Z2∞+1
H

, whose homotopy
groups together form a Z2×Z–graded ring under the algebraic join pairing.
Our second result is the determination of this ring which turns out to be quite
simple. (See Theorem 3.4.)
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In analogy with the real and complex cases, we then show that the inclusion of
linear quaternionic cycles (the quaternionic Grassmannian) into the space of all
cycles yields the characteristic map BSp −→

∏
iK(Z, 4i) classifying the total

Pontrjagin class. Furthermore, the forgetful functor and the quaternionification
functors from K–theory are shown to extend over the characteristic maps to
infinite loop maps of cycles spaces.

It turns out that the spaces Z2∞
H

and Z2∞+1
H

have a second, more mysterious
Z2–component which is not seen by the characteristic map from BSp. However,
there is an extended notion of quaternionic spaces and bundles, in analogy with
Atiyah’s notion of real spaces and real bundles [1]; and for such creatures our
new Z2–characteristic classes are nontrivial. This is discussed at the end of the
paper where examples and applications are given.

2 Spaces of quaternionic cycles

A quaternionic structure on a complex vector space V is a C–antilinear map
j : V → V such that j2 = −1. A quaternionic vector space is a pair (V, j)
consisting of a complex vector space V and a quaternionic structure j. Any
quaternionic vector space is equivalent to (Hn, j0) where j0 is left scalar multi-
plication by the quaternion j .

A quaternionic structure j on V induces a free anti-holomorphic involution
j : P(V ) → P(V ) which can be viewed as follows. Let π : P(V ) → PH(V ) be
the projection from the complex to the quaternionic projective space of V whose
fibres are projective lines. Then j preserves the fibres of π and acts on them as
the antipodal map on S2 . This map j induces an anti-holomorphic involution
on the Chow varieties Cq

d(P(V )), which in turn induces an automorphism

j : Zq(P(V )) → Zq(P(V )). (1)

of the topological group of all codimension–q cycles on P(V ).

Definition 2.1 Let (V, j) be a quaternionic vector space. Then the group
Zq

H
(P(V )) of quaternionic algebraic cycles of codimension q on P(V ), is the

fixed point set of the involution (1). It contains the closed subgroup of averaged

cycles Zq(P(V ))av = {c + jc | c ∈ Zq(P(V ))}. We define the group of reduced

quaternionic algebraic cycles to be the quotient

Z̃q
H
(P(V )) = Zq

H
(P(V ))/Zq(P(V ))av.

Note that Z̃q
H
(P(V )) is the topological Z2–vector space freely generated by the

j–invariant irreducible subvarieties of codimension–q in P(V ).
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Example When q = dim(V ) − 2, so that the cycle dimension is 1, then the
basis elements of Z̃q

H
(P(V )) are irreducible, j–invariant algebraic curves. Note

that if C ⊂ P(V ) is such a curve, then the quotient C0 = C/Z2 of C by j is a
“nonorientable” algebraic curve carrying a “nonorientable” conformal structure.
Conversely, any such creature C0 has a Z2–covering C → C0 by a complex
analytic curve where the covering involution j : C → C is anti-holomorphic
and free. The natural embedding spaces for such objects are (P(V ), j) where
V is quaternionic. Thus one could think of Z̃q

H
(P(H2)) as the topological Z2–

vector space generated by the irreducible “nonorientable algebraic curves” in
P

3 .

Given a quaternionic vector space (V, j) and an algebraic subvariety Z ⊂ P(V ),
we define the quaternionic algebraic suspension Σ/H(Z) ⊂ P(V ⊕ H) to be the
union of all complex projective lines joining Z to P({0}⊕H). This determines
a continuous Z2–equivariant homomorphism (cf [14, Section 6])

Σ/H : Zq(P(V )) −→ Zq(P(V ⊕ H)). (2)

Theorem 2.2 [14, Theorem 6.1] The quaternionic algebraic suspension ho-
momorphism (2) is a Z2–homotopy equivalence. It induces homotopy equiva-
lences

Σ/H : Zq
H
(P(V ))

∼=
−−→ Zq

H
(P(V ⊕ H))

and Σ/H : Z̃q
H
(P(V ))

∼=
−−→ Z̃q

H
(P(V ⊕ H))

for all q < dimC(V ).

Thus the homotopy types of the spaces Zq
H
(P(V )) and Z̃q

H
(P(V )) depend only

on q . One of our main results is the following computation of these homotopy
types. The proof is given in Section 6.

Theorem 2.3 For any quaternionic vector space (V, ρ) there are canonical
homotopy equivalences:

(i) Z2q
H

(P(V )) ∼=
∏q

j=0K(Z, 4j) ×
∏q

j=1K(Z2, 4j−2) and Z̃2q
H

(P(V )) ∼= Z2 ,

(ii) Z2q+1
H

(P(V )) ∼=
∏q

j=0K(Z, 4j) ×
∏q

j=0K(Z2, 4j+1) and Z̃2q+1
H

(P(V )) ∼=
{point} for all q .

Note that Σ/H changes cycle dimension by 2. Therefore, for cycles of odd codi-
mension we can de-suspend to the case of 0–cycles and apply the Dold–Thom
Theorem. For cycles of even codimension one must take a complex suspension
by O(2) and then de-suspend the resulting spaces quaternionically. This latter
argument is delicate and uses nontrivial results from the theory of cycles on
quasi-projective varieties. This is all done in Section 6.
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3 Stabilization and the ring structure

In this section we examine the limit over V ⊂ H
∞ of the cycles spaces Zq

H
(V ).

There are two series: q even and q odd, with different limits. The algebraic
join induces a product on the homotopy groups of these spaces, and we shall
compute structure of the resulting Z2–ring. We begin with the following.

Proposition 3.1 Let V and W be quaternionic vector spaces of complex
dimensions 2v and 2w respectively. Then for each q with 0 < q < 2v , the
inclusion

Zq
H
(P(V )) ⊂ Zq+2w

H
(P(V ⊕W ))

induces an injection on homotopy groups.

Proof There are two cases to consider: q even and q odd. The arguments are
analogous. In both cases one reduces to 0–cycles by quaternionic suspension:
Corollary 6.4 in the even case and Theorem 2.2 in the odd case. Then by
applying the Dold–Thom Theorem [3] to 0–cycles, it suffices to show that the
maps in homology

H∗(P(V )/Z2; Z) −→ H∗(P(V ⊕W )/Z2; Z)

and

H∗(Q(V )/Z2; Z) −→ H∗(Q(V ⊕W )/Z2; Z),

where Q(V ) is defined in (20), are injective. This is straightforward.

Corollary 3.2 Consider the limiting spaces

Zev
H = lim

n,q→∞
Z2q

H
(PC(Hn)) and Zodd

H = lim
n,q→∞

Z2q+1
H

(PC(Hn)).

There are canonical homotopy equivalences:

Zev
H

∼=

∞∏

j=0

K(Z, 4j) ×

∞∏

j=0

K(Z2, 4j + 2)

Zodd
H

∼=

∞∏

j=0

K(Z, 4j) ×
∞∏

j=0

K(Z2, 4j + 1)

Proof This corollary follows from Proposition 3.1, Theorem 2.3, and [15, The-
orem A.5].
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We now observe that the algebraic join gives biadditive maps

#: Zq
H
(P(V )) ∧ Zq′

H
(P(V ′)) −→ Zq+q′

H
(P(V ⊕ V ′))

for all quaternionic vector spaces V, V ′ and for all q, q′ . These maps induce
pairings

πkZ
q
H
(P(V )) ⊗ πk′Zq′

H
(P(V ′)) −→ πk+k′Zq+q′

H
(P(V ⊕ V ′))

which together with Proposition 3.1 and Corollary 3.2 above gives us the fol-
lowing.

Proposition 3.3 Set R = R
0
∗ ⊕ R

1
∗ , where

R
0
∗ = π∗Z

ev
H and R

1
∗ = π∗Z

odd
H . (3)

Then the algebraic join gives R the structure of a Z2×Z–graded ring.

The following determination of this ring will be established in Section 7.

Theorem 3.4 The subring R
0
∗ admits an isomorphism

R
0
∗
∼= Z[x, u]/(2u, u2) (4)

where x corresponds to the generator of π4Z
ev
H

∼= Z, u corresponds to the
generator of π2Z

ev
H

∼= Z2 , and (2u, u2) denotes the ideal in the ring Z[x, u]
generated by 2u and u2 .

With respect to the isomorphism (4), one has that u · R1
∗ = 0 and R

1
∗ is the

Z[x]–module

R
1
∗
∼= Z[x]λ⊕ Z2[x]v (5)

where λ corresponds to the generator of π0R
1
∗ = Z and v corresponds to the

generator of π1R
1
∗ = Z2 .

The elements λ and v satisfy the relations

λ2 = 4, λ · v = 0 and v2 = 0. (6)

Note 3.5 Note that R∗ is a Z2–graded Z[x]–algebra with even generators 1
and u and “companion” odd generators λ and v .

Geometry & Topology, Volume 9 (2005)
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4 Extending functors from K–theory

As in the case of real cycles, certain basic functors from representation theory
extend to quaternionic algebraic cycles. The constructions parallel those of the
real case but curiously the roles are interchanged.

Quaternionification To any complex vector space V we can associate the
quaternionic vector space (V ⊗C H, j) where

(V ⊗C H, j)
def
= V ⊕ V and j(v,w) = (−w, v).

Recall that if V is a complex vector space, we define V to be the same under-
lying real vector space with complex structure changed from J to −J . For any
q < dim(V ) we have a map

Zq
C
(P(V )) −→ Z2q

H
(P(V ⊕ V )) (7)

defined by c 7→ c#c.

This construction gives rise to commutative diagrams

Zq
C
(P(V )) Z2q

H
(P(V ⊗C H))//

Gq
C
(P(V ))

Zq
C
(P(V ))

c

��

Gq
C
(P(V )) G2q

H
(P(V ⊗C H))// G2q

H
(P(V ⊗C H))

Z2q
H

(P(V ⊗C H))

cH

��

(8)

where G2q
H

denotes the Grassmannian of quaternionic linear subspaces of quater-
nionic codimension q . Diagram (8) stabilizes to a commutative diagram

Zq
C

Z2q
HΓ

//

BUq

Zq
C

c

��

BUq BSpq
γ

// BSpq

Z2q
H

cH

��
(9)

which in light of [13, Theorem 1], [15, Theorem A.5] and Theorem 2.3 can be
rewritten canonically as

∏q
k=0K(Z, 2k)

∏q
k=0K(Z, 4k) ×

∏q
k=1K(Z2, 4k−2).

Γ
//

BUq

∏q
k=0K(Z, 2k)

c

��

BUq BSp2q
γ

// BSp2q

∏q
k=0K(Z, 4k) ×

∏q
k=1K(Z2, 4k−2).

cH

��

(10)
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The forgetful functor Consider a quaternionic vector space (V, j) and the
functor (V, j) 7→ V which forgets the quaternionic structure. For any q <
dimH(V ) we have a map

Z2q
H

(P(V )) −→ Z2q
C

(P(V )) (11)

which simply includes the j–fixed cycles into the group of all cycles. This gives
commutative diagrams

Z2q
H

(P(V )) Z2q
C

(P(V )).//

G2q
H

Z2q
H

(P(V ))

cH

��

G2q
H

G2q
C

(P(V ))// G2q
C

(P(V ))

Z2q
C

(P(V )).

c

��

(12)

Note that G2q
H

is exactly the subset of j–fixed planes G2q
C

. The diagram (12)
stabilizes to

Z2q
H

Z2q
CΦ

//

BSpq

Z2q
H

cH

��

BSpq BU2q
φ

// BU2q

Z2q
C

c

��

(13)

where φ : BSpq → BU2q is the map induced by the standard embedding
Spq → U2q given by forgetting the quaternionic structure. Diagram (13) can
be rewritten as

∏q
k=0K(Z, 4k) ×

∏q
k=1K(Z2, 4k − 2)

∏q
k=0K(Z, 2k)

Φ
//

BSpq

∏q
k=0K(Z, 4k) ×

∏q
k=1K(Z2, 4k − 2)

cH

��

BSpq BU2q
φ

// BU2q

∏q
k=0K(Z, 2k)

c

��

(14)

where these splittings are canonical; cf Theorem 2.3, [13, Theorem 1] and [15,
Theorem A.5].

Let ι2k ∈ H2k(K(Z, 2k); Z) be the fundamental class as above, and denote by
ξq

H
the universal quaternionic bundle of quaternionic rank q over BSpq . Since

c∗ι2k is the universal kth Chern class, the commutativity of (14) shows that

cH
∗Φ∗(ι2k) = φ∗ck

(
ξ2q

C

)
= ck

(
ξq

H

)
=

{
σm if k = 2m and 0 ≤ m ≤ q,

0 otherwise,
(15)

where σ1, . . . , σq are the canonical generators of H∗(BSpq; Z) = Z[σ1, . . . , σq].

The map Φ is entirely determined up to homotopy by the following result.

Geometry & Topology, Volume 9 (2005)
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Theorem 4.1 Let ι2k ∈ H2k(K(Z, 2k); Z) = Z be the fundamental class.
Then

Φ∗ι4k = ι4k and Φ∗ι4k−2 = 0

for all k .

Proof The diagrams (14) successively embed one into the next for q = 1, 2, . . .
by taking linear embeddings · · · ⊂ H

n ⊂ H
n+1 ⊂ . . . . Passing to quotients and

using Theorem 6.6 below gives

K(Z, 4q) ×K(Z2, 4q − 2) K(Z, 4q) ×K(Z, 4q − 2)bΦ //

BSpq

K(Z, 4q) ×K(Z2, 4q − 2)

cH

��

BSpq BU2q
φ

// BU2q

K(Z, 4q) ×K(Z, 4q − 2)

cq×cq−1

��

(16)

where Φ̂ : Z2q
H
/Z2q−2

H
−→ Z2q

C
/Z2q−2

C
is the induced map of quotient groups.

The second assertion of the theorem follows from the fact that

H4q−2(K(Z, 4q) ×K(Z2, 4q − 2); Z) = 0.

Now
H4q(K(Z, 4q) ×K(Z2, 4q−2); Z)

= H4q(K(Z, 4q); Z) ⊕H4q(K(Z2, 4q−2); Z)

= H4q(K(Z, 4q); Z) = Zι4q.

By (15) we see that cH
∗Φ∗(ι2k) is an additive generator and therefore Φ∗(ι2k)

must be also. This proves the first assertion.

Relations Consider the diagram

∏q
j=0K(Z, 2j)

∏q
j=0K(Z, 4j) ×

∏q
j=1K(Z2, 4j−2)

Γ
//

Zq
H

∏q
j=0K(Z, 2j)

∼=
��

Zq
H

Z2q
H

Γ
// Z2q

H

∏q
j=0K(Z, 4j) ×

∏q
j=1K(Z2, 4j−2)

∼=
��

Z2q
C

Φ
//

BSpq

��

BSpq BU2q
// BU2q

Z2q
C

c
��

BUq

c
��

//

∏2q
j=0K(Z, 2j).

Φ
//

∼=
��

(17)
From (7) we see that if V has a real structure ρ, then under the isomorphism
I ⊕ ρ : V ⊕ V −→ V ⊕ V , the map Γ: Zq

C
→ Z2q

H
becomes Γ(c) = c#ρ∗(c). It

follows that
Φ ◦ Γ(c) = c#ρ∗(c)

for c ∈ Zq
C
. As in [15, Proposition 5.1] we conclude the following.
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Proposition 4.2 Let ι2k ∈ H2k(K(Z, 2k); Z) = Z be the fundamental class.
Then for each k the composition Φ ◦ Γ satisfies

(Φ ◦ Γ)∗ι2k =
∑

i+j=k

(−1)jι2i ∪ ι2j . (18)

Note that in particular (Φ ◦ Γ)∗ι4k−2 = 0 as predicted by Theorem 4.1.

Combining Theorem 4.1 and Proposition 4.2 gives the following.

Corollary 4.3 For each k ≤ q one has

Γ∗ι4k =
∑

i+j=2k

i,j≤q

(−1)jι2i ∪ ι2j + (−1)kι 22k.

To completely determine Γ up to homotopy we need to compute the classes
Γ∗ι̃4k−2 where ι̃4k−2 ∈ H4k−2(K(Z2, 4k−2); Z2) denotes the fundamental class.
From the commutative diagram (10) we see that

c∗Γ∗ι̃4k−2 = γ∗c∗Hι̃4k−2 = 0

since H4k−2(BSpq; Z2) = 0. Thus Γ∗ι̃4k−2 lies in the kernel of c∗ on mod 2
cohomology. (Note that c∗ is injective on Z2[ι1, . . . , ιq].) However, a complete
calculation of this class remains to be done.

5 Infinite loop space structures.

In this section we carry the discussion in Section 6 of [15] over to the quater-
nionic case. Given a quaternionic vector space (V, j) with dimC(V ) = 2q , we
define I∗–functors

TGH
(V ) = G2q

H
(P(V ⊕ V ) and TZH

(V ) = Z2q
H

(P(V ⊕ V ).

The action on morphisms and the natural transformations ωGH
and ωZH

are
defined exactly as in [15, Section 6]. The inclusion

TGH
(V ) ⊂ TZH

(V )

as cycles of degree one is a natural transformation of I∗–functors. As seen in
[20, page 16], the limiting space

lim
q→∞

TGH
(Hq) = BSp

is a connected L–space whose associated infinite loop space structure coincides
with the usual connective Bott structure. The arguments of [15, Section 6] and
[15, Theorems 6.9 and 6.10] apply directly to prove the following.

Geometry & Topology, Volume 9 (2005)
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Theorem 5.1 The limiting space Zev
H

is an E∞–ring space and forms the
0–level space of an E∞–ring spectrum. The component Zev

H
(1) consisting of

cycles of degree 1 carries an infinite loop space structure which enhances the
algebraic join and for which the induced mapping

BSp −→ Zev
H (1)

is a map of infinite loop spaces.

Consider now the “forgetful” homomorphism

Φ: Z2q
H

(P(V ⊕ V )) −→ Z2q
C

(P(V ⊕ V ))

defined in the last section. This is a natural transformation of I∗–functors, and
so we have:

Proposition 5.2 The limiting “forgetful” homomorphism

Φ: Zev
H −→ Z∞

C

is a map of E∞ ring spaces. In particular, its restriction Φ: Zev
H

(1) −→ Z∞
C

(1)
is an infinite loop map.

Now the “quaternionification” maps

Γ: Z2q
C

(P(V ⊕ V )) −→ Z4q
H

(P(V ⊕ V̄ ⊕ V ⊕ V̄ ))

are not additive mappings. Nevertheless, they do give natural transforma-
tions of I∗–functors (with values in topological spaces, not topological groups).
Hence we have:

Proposition 5.3 The limiting “quaternionification” mapping

Γ: Z∞
C −→ Zev

H

is a mapping of L–spaces. In particular, its restriction Γ: Z∞
C

(1) −→ Zev
H

(1)
is an infinite loop map.

These maps sit in a commutative diagram:

Zev
H

Z∞
CΦ

//

BSp

Zev
H

��

BSp BU
φ

// BU

Z∞
C

��

Zev
HΓ

//
��

BSp
γ

// BSp

Zev
H

��

Geometry & Topology, Volume 9 (2005)
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6 Proof of Theorem 2.3

Part (ii) of this result was established in [14, Theorem 6.4], so it remains only
to prove part (i). The Quaternionic Suspension Theorem of [14, Theorem 6.1]
applies also to cycles of even codimension, but since quaternionic suspension
changes cycle-dimension by 2, one is unable in this case to reduce to 0–cycles
where the Dold–Thom Theorem can be used. We shall solve this problem by
“replacing” P(V ) with an even-dimensional variety Q(V ).

To begin consider the Veronese embedding v : P(V ) →֒ P(Sym2(V )) which
converts P(V ) to a real subvariety under a real structure r : P(Sym2(V )) →
P(Sym2(V )) coming from a complex conjugation on Sym2(V ). (To see this
explicitly choose coordinates zα + wαj , for α = 1, . . . , n, on V = H

n and note
that v(zα, wα) = (zαzβ, wαwβ , zαwβ).) The following is a direct consequence
of [12]. See also [14].

Proposition 6.1 The Z2–equivariant complex suspension map

Σ/ : Zq(P(V )) −→ Zq(Q(V )) (19)

where

Q(V ) ≡ Σ/{v(P(V ))} = Thom
{
OP(V )(2)

}
(20)

is a Z2–homotopy equivalence.

The idea now is to compute the Z2–homotopy type of the spaces Zq(Q(V )),
for q even, by “de-suspending” to the case of 0–cycles. To begin we fix some
notation. Let

Q2n ≡ Q(Hn) − {∞} ≡ OPC(Hn)(2)
p
−→ PC(Hn)

denote the square of the complex hyperplane bundle over PC(Hn). Our real
structure, r : Q(Hn) −→ Q(Hn), when restricted to Q2n , is an anti-linear bun-
dle map for which the diagram

PC(Hn) PC(Hn)
q

//

Q2n

PC(Hn)

p

��

Q2n Q2nr
// Q2n

PC(Hn)

p

��

commutes. (This bundle map is the one naturally induced on O(2) via multi-
plication by the quaternion j .) Now the topological groups of algebraic cycles,
Zq(U) are defined for any quasi-projective variety U (cf [17, Definition 4.5]),
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and, since Q(Hn) − Q2n consists of a single point, there are Z2–equivariant
homeomorphisms

Zq(Q2n)
∼=
−→

{
Zq(Q(Hn)) for q < 2n,

Zq(Q(Hn))/Z for q = 2n.
(21)

We now observe that there is a commutative diagram of Z2–equivariant bundle
maps

Q2n
PC(Hn)

p
//

Q2n+2−Q2

Q2n

eπ
��

Q2n+2−Q2
PC(Hn ⊕ H)−PC(H)

p
// PC(Hn ⊕ H)−PC(H)

PC(Hn)

π

��

(22)

where π is linear projection and π̃ is defined as follows. Let ℓ0 −→ PC(Hn)
and ℓ −→ PC(Hn ⊕ H) denote the tautological complex line bundles O(−1),
and note that

Q2n+2 = Hom(ℓ⊗ ℓ,C) and Q2n = Hom(ℓ0 ⊗ ℓ0,C).

The linear projection H
n ⊕ H −→ H

n induces a bundle mapping π∗ : ℓ −→ ℓ0
covering π which is an isomorphism on fibres. The map π̃ in (22) is given by
π̃(h) = h ◦ (π−1

∗ ⊗ π−1
∗ ) for h ∈ Hom(ℓ⊗ ℓ,C).

Our main assertion here is the following.

Proposition 6.2 The flat pull-back of cycles gives a Z2—homotopy equiva-
lence

π̃∗ : Zq(Q2n) −→ Zq(Q2n+2 −Q2)

for all q ≤ 2n.

Interesting note 6.3 A quick proof of Proposition 6.2 can be given for q<2n
as follows. By [14] and [12] the flat pull-back of cycles gives equivariant homo-
topy equivalences

π∗ : Zq(PC(Hn)) −→ Zq(PC(Hn ⊕ H) − PC(H)) ∼= Zq(PC(Hn+1))

and p∗ : Zq(PC(Hn)) −→ Zq(Q2n)

for all q and n; see also [4, Proposition 4.15]. Equivariant excision arguments
(cf [17, 18, 14] or [4, Remark 4.14]) then show that

p∗ : Zq(PC(Hn ⊕ H) − PC(H)) −→ Zq(Q2n+2 −Q2)

is also a Z2–homotopy equivalence, and the Proposition follows from the com-
mutativity of (22). Unfortunately this will not allow us to reduce to 0–cycles,
so we must construct a proof directly in this case.
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Proof of Proposition 6.2 We compactify each Q2n ∼= OPC(Hn)(2) by taking
the projective closure

Q
2n

= P{O(2) ⊕ C}.

This gives us a fibre square

Q
2n

PC(Hn)
p

//

Q
2n+2

−Q
n

Q
2n

eπ
��

Q
2n+2

−Q
n

PC(Hn ⊕ H)−PC(H)
p

// PC(Hn ⊕ H)−PC(H)

PC(Hn)

π

��

(23)

of smooth Z2–maps. We recover the diagram (22) by removing the restriction

of π̃ to the “∞–section” P
2n−1
∞ ⊂ Q

2n
. Observe that taking the graph gives an

equivariant isomorphism

PC(Hn) PC(Hn)

HomC(ℓ0,H)

PC(Hn)

π

��

HomC(ℓ0,H) PC(Hn ⊕ H)−PC(H)
∼=

// PC(Hn ⊕ H)−PC(H)

PC(Hn)

π

��

(24)

where the Z2–action on HomC(ℓ0,H) is given by sending a linear map h : ℓ0 −→
H to j(h) = j ◦ h ◦ j−1 . Via this isomorphism we can rewrite the fibre square
in (23) as a pull-back diagram

Q
2n

PC(Hn).p
//

HomC(p∗ℓ0,H)

Q
2n

eπ
��

HomC(p∗ℓ0,H) HomC(ℓ0,H)
p

// HomC(ℓ0,H)

PC(Hn).

π

��

(25)

The restriction

P
2n+1
∞ Q

2n
�

�

/

HomC(p∗ℓ0,H)

P
2n+1
∞

eπ
��

HomC(p∗ℓ0,H) HomC(p∗ℓ0,H)�

�

/ HomC(p∗ℓ0,H)

Q
2n

eπ
��

of π̃ to the infinity-section is isomorphic (via p) to the bundle

PC(Hn ⊕ H) − PC(H) −→ PC(Hn)

for which the Quaternionic Suspension Theorem holds. Thus by equivariant
excision (see [4, Remark 4.14]) our Proposition will follow if we can prove that

π̃∗ : Zq(Q
2n

) −→ Zq(HomC(p∗ℓ0,H))
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is a Z2–homotopy equivalence for all q . For our application the interesting case
(and by Note 6.3 the only remaining case) is where q = 2n. Thus we shall prove
the assertion that

π̃∗ : Z0(Q
2n

) −→ Z2(HomC(p∗ℓ0,H)) is a Z2–homotopy equivalence (26)

where Zp denotes the group of cycles of dimension p.

To prove (26) we consider the submonoid

T +
2 ⊂ C2(HomC(p∗ℓ0,H)), (27)

of effective 2–cycles which meet the zero-section in proper dimension (namely
0), and denote by

T2 ⊂ Z2(HomC(p∗ℓ0,H)) (28)

the induced homomorphism of näıve topological group completions.

Observe now that scalar multiplication

Φt : HomC(p∗ℓ0,H) −→ HomC(p∗ℓ0,H)

by real numbers t > 0 gives bundle maps commuting with the Z2–action, and
pulling to the normal cone gives a Z2–deformation retraction

T2 −→ π̃∗
{
Z0(Q

n
)
}

(cf [14, Assertion 1, Section 2.3], [9], [13]). Therefore, it remains only to show
that the inclusion (28) is a Z2–homotopy equivalence.

We shall proceed in analogy with the arguments in [14, Section 2.3]. We consider
the direct sum

HomC(p∗ℓ0,H) ⊕ HomC(p∗ℓ0,H) −→ Q
n

and choose two distinct projections

π0, π∞ : HomC(p∗ℓ0,H) ⊕ HomC(p∗ℓ0,H) −→ HomC(p∗ℓ0,H).

The map π0 is simply projection onto the first factor, and π∞ = π0 ◦ S where

S =

(
Id ǫJ
0 Id

)
,

ǫ > 0, and J : {0} ⊕ HomC(p∗ℓ0,H)
∼=
−→ HomC(p∗ℓ0,H) ⊕ {0} is the canonical

isomorphism between the second and first factors.
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These projections can be viewed alternatively as follows. Via (24) and (25) we
obtain a pull-back diagram

Q
2n

PC(Hn),
p

//

HomC(p∗ℓ0,H) ⊕ HomC(p∗ℓ0,H)

Q
2n

eπ⊕eπ
��

HomC(p∗ℓ0,H) ⊕ HomC(p∗ℓ0,H) PC(Hn+2) − PC(H2)
p

// PC(Hn+2) − PC(H2)

PC(Hn),

π0⊕π∞

��

and π0, π∞ are just the pull-backs of the ones constructed in PC(Hn+2) by
projecting away from quaternionic lines λ0, λ∞ ⊂ PC(H2).

Consider now the open dense set U(d) of divisors D of degree d on PC(Hn+2)
with the property that D meets jD in proper dimension and that D = D • jD
(and all scalar multiples tD for 0 < t ≤ 1) do not meet the vertices λ0, λ∞ of
our projections To each D ∈ U(d) we associate the pull-back cycle D̃ = p∗D
and define a transformation

ΨD : C2(HomC(p∗ℓ0,H)) −→ C2(HomC(p∗ℓ0,H))

as in [14, (2.6.1)], [13, page 285] by setting

ΨD(c) = (π∞)∗

{
π∗0c • D̃

}
.

Note that π∞ and π0 are proper on D̃. Note also that if deg(D) = d, then
limt→0 ΨtD = d2 · Id.

The arguments given in [14, pp 634–641] and the proof of [14, Theorem 6.1]
may now be repeated in this context. The important point is to show that there
is a function N(d) such that N(d) → ∞ as d→ ∞ and with the property that
for any irreducible subvariety Z ⊂ HomC(p∗ℓ0,H) of dimension 4,

codim (BZ(d)) ≥ N(d)

where BZ(d) = {D ∈ U(d) : dim(Z ∩ D̃) ≥ 3}

is the set of “bad” divisors of degree d for Z .

Now given such a Z , consider the irreducible subvariety p(Z) ⊂ PC(Hn+2).
Note that

dim(p(Z)) = either 3 or 4

and that the fibres of p : Z −→ p(Z) are of dimension at most 1 since the fibres
of p are complex lines.
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Suppose that dim(p(Z)) = 3. In [14, Lemma 2.7] it is proved that, since the
Z2–action is free, there is a function N(d) independent of Z and going to
infinity with d such that

codim{D ∈ U(d) : dim(p(Z) ∩ D) ≥ 2} ≥ N(d). (29)

Since the fibre-dimension of p is ≤ 1, we see that

dim(p(Z) ∩ D) = 1 ⇒ dim(Z ∩ D̃) ≤ 2

and so the set of divisors in (29) contains BZ(d).

Suppose now that dim(p(Z)) = 4. Then the generic fibre of p : Z −→ p(Z)
has dimension 0, and there is a subvariety Σ ⊂ p(Z) of dimension ≤ 3 where
the fibre dimension is 1. Again from [14, Section 2.7] we know that there is a
function N(d) as above such that

codim{D ∈ U(d) : dim(p(Z) ∩ D) ≥ 3, or dim(Σ ∩ D) ≥ 1} ≥ N(d). (30)

The set of divisors in (30) contains BZ(d), and so we have proved the desired
estimate on the codimension of the bad sets. The arguments of [14, pp 640–
641] carry through to establish assertion (26), thereby completing the proof of
Proposition 6.2.

Corollary 6.4 There are Z2–homotopy equivalences

Zq(Q(V )) ∼= Zq(Q(V ⊕ H))

for all q ≤ dimC(V ).

Proof Note that if q < 2n, then by (21)

Zq(Q(Hn)) = Zq(Q2n) ∼= Zq(Q2n+2 −Q2)
def
= Zq(Q2n+2)/Z2n+2−q(Q

2)

= Zq(Q2n+2) = Zq(Q(Hn+1)).

This case follows also from (19) and [14]. For the final case note that

Z2q(Q(Hq))/Z = Z2q(Q2q) ∼= Z2q(Q2q+2 −Q2) = Z2q(Q2q+2)/Z2(Q
2)

= Z2q(Q2q+2)/Z = Z2q(Q(Hq+1))/Z.

From (19) and Corollary 6.4 we conclude that there is a Z2–homotopy equiva-
lence

Z2q(PC(Hn)) ∼= Z0(Q(Hq))

and therefore there is a homotopy equivalence

Z2q
H

(PC(Hn)) ∼= Z0(Q(Hq))fixed. (31)
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Since Z2 acts freely outside of one point on Q(Hq), there is a group isomorphism

Z0(Q(Hq))fixed/Z0(Q(Hq))av = Z2 (32)

from which it follows that π∗(Z0(Q(Hq))fixed) = π∗(Z0(Q(Hq))av). We also
have that

Z0(Q(Hq))av = Z0(Q(Hq)/Z2).

Now by the work of Dold–Thom [3] we know that for a connected finite complex
A there is a homotopy equivalence

Z0(A) ∼=
∏

j≥0

K(Hj(A; Z), j).

Therefore the first part of Theorem 2.3(i) follows from the next Proposition.

Proposition 6.5

Hj(Q(Hq)/Z2; Z) =





Z if j ≡ 0 (mod 4) and j ≤ 4q,

Z2 if j ≡ 2 (mod 4) and j ≤ 4q − 2,

0 otherwise.

Proof Set Y = Q(Hq)/Z2 and X = PC(Hq)/Z2 , and note that Y is the Thom
space of a nonorientable real 2–plane bundle L→ X . (L is simply the quotient
of Q2q = OP2q−1(2) by the quaternion involution.) Thus,

H∗(Y ; Z) = H∗(BL, SL; Z)

where SL ⊂ BL denote the unit circle and unit disk bundles of L. By looking
at the Hopf fibration one can see that

SL = S4q−1/Z4

where Z4 is generated by multiplication by the quaternion j on the unit sphere
S4q−1 ⊂ H

q . We know that:

Hj(X; Z) =





Z if j ≡ 0 (mod 4) and j ≤ 4q − 4,

Z2 if j ≡ 1 (mod 4) and j ≤ 4q − 3,

0 otherwise

Hj(SL; Z) =





Z if j = 0 or 4q − 1,

Z4 if j is odd and j < 4q − 1,

0 otherwise
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The long exact sequence in homology for the pair (BL, SL) gives H4q(Y ; Z) =
Z, and for i < 2q it gives exact sequences

0 → H2i(X) → H2i(Y ) → Z4 → H2i−1(X) → H2i−1(Y ) → 0. (33)

When i = 2k we get

0 → Z → H4k(Y ) → Z4 → 0 → H4k−1(Y ) → 0,

and so H4k−1(Y ) = 0 and we have the short exact sequence

0 −→ Z −→ H4k(Y ) −→ Z4 −→ 0. (34)

To understand this extension we consider the Z2–homology groups

Hj(X; Z2) =

{
0 if j ≡ 3 (mod 4) and j ≤ 4q − 2,

Z2 otherwise.

By the Thom isomorphism,

Hj+2(Y ; Z2) ∼= Hj(X; Z2)

for all j . In particular we have H4k(Y ; Z2) = H4k(Y ; Z2) = Z2 . We conclude
that

H4k(Y ; Z) = Z,

since all other possibilities for the extension (34) force the dimension of the
vector space H4k(Y ; Z2) to be greater than 1.

Now when i = 2k + 2 in (33) we have

0 → H4k+2(Y ) → Z4
σ
−→ Z2 → H4k+1(Y ) → 0,

and it remains to show that σ 6= 0. For this we must also consider the Z2–
homology groups

Hj(SL; Z2) =

{
0 if j > 4q − 1,

Z2 otherwise.

From the pair (BL, SL) we get the exact sequence of Z2–homology groups

0 −→ H4k+3(Y ) −→ H4k+2(SL) −→ H4k+2(X) −→

−→ H4k+2(Y ) −→ H4k+1(SL) −→ H4k+1(X) −→ 0

which becomes

0 → Z2
∼=
−→ Z2

0
−→ Z2

∼=
−→ Z2

0
−→ Z2

∼=
−→ Z2 → 0.

The generator of H4k+1(SL; Z) = Z4 goes to the generator of H4k+1(SL; Z2) =
Z2 , and from the line above we see that

H4k+1(SL; Z2)
σ⊗Z2−−−→ H4k+1(X; Z2)

is not zero. Hence, σ is not zero, and the proposition is proved.
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We now observe that all the constructions in the proofs of Propositions 6.1
and 6.2 preserve the subgroups of averaged cycles, and so the suspension maps
induce homotopy equivalences of these subgroups. Therefore, the suspension
maps induce homotopy equivalences of the quotients

Z2q(Q(Hn))fixed/Z2q(Q(Hn))av ∼= Z0(Q(Hq))fixed/Z0(Q(Hq))av,

and by (32) the right hand side is the space of two points. This gives the second
half of Theorem 2.3(i).

The canonical nature of the homotopy equivalences in Theorem 2.3 is estab-
lished in [15, Appendix A].

From the argument above we can deduce the following.

Theorem 6.6 Fix q < n. Let

Z2q−2
H

(PC(Hn−1)) ⊂ Z2q
H

(PC(Hn)) (35)

be the subgroup of cycles contained in the linear subspace PC(Hn−1), and let

Z2q−1
H

(PC(Hn−1)) ⊂ Z2q+1
H

(PC(Hn)) (36)

be defined similarly. Then the inclusion (35) is (4q− 3)–connected, and (36) is
(4q − 1)–connected. Furthermore, there are canonical homotopy equivalences

Z2q
H
/Z2q−2

H
∼= K(Z, 4q) ×K(Z2, 4q − 2),

Z2q+1
H

/Z2q−1
H

∼= K(Z, 4q) ×K(Z2, 4q − 1).

Proof As in the proof of [15, Proposition 8.1] we see that the short exact
sequence

0 −→ Z2q−1
H

−→ Z2q+1
H

−→ Z2q+1
H

/Z2q−1
H

−→ 0

is a fibration sequence. Quaternionic algebraic suspension [14, Theorem 6.1]
shows that this sequence is equivalent to the fibration sequence

0 −→ Z0(P
2q−1
C

/Z2)
i∗−→ Z0(P

2q+1
C

/Z2) −→ Z0((P
2q+1
C

/P2q−1
C

)/Z2) −→ 0. (37)

One sees directly that i : P
2q−1
C

/Z2 ⊂ P
2q+1
C

/Z2 induces an isomorphism of
Hk(•; Z) for all k ≤ 4q − 1. Hence by the Dold–Thom Theorem i∗ induces
an isomorphism of πk(•) for k in the same range. This proves the theorem for
Z2q+1

H
. The result for Z2q

H
is proved analogously using the suspension arguments

above.
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7 Proof of Theorem 3.4

We begin by observing that for quaternionic vector spaces V, V ′ there is a
commutative diagram

Zq
C
(P(V )) ∧ Zq′

C
(P(V ′)) Zq+q′

C
(P(V ⊕ V ′))

#
//

Zq
H
(P(V )) ∧ Zq′

H
(P(V ′))

Zq
C
(P(V )) ∧ Zq′

C
(P(V ′))

Φ∧Φ
��

Zq
H
(P(V )) ∧ Zq′

H
(P(V ′)) Zq+q′

H
(P(V ⊕ V ′))

#
// Zq+q′

H
(P(V ⊕ V ′))

Zq+q′

C
(P(V ⊕ V ′))

Φ
��

where the vertical maps Φ are given by the simple inclusion of the quaternionic
cycles into the group of all cycles (cf Section 4). Under stabilization these maps
yield a ring homomorphism

Φ∗ : R∗ −→ π∗Z
∞
C = Z[s]. (38)

Proposition 7.1 Let p : PC(H2) → S4 = PH(H2) be the “Hopf mapping”
which assigns to a complex line the quaternion line containing it. Define

f : S4 → Z2
H

(
PC(H2)

)

by setting f(ℓ) = p−1(ℓ) = “ℓ”. Then [f ] = x ∈ π4Z
ev
H

∼= Z is the generator.
Furthermore, under the ring homomorphism (38) one has

Φ∗(x) = s2

and so Φ∗(x
m) = s2m for all m. Similarly, let λ denote the generator of

π0Z
odd
H

∼= Z. Then Φ∗(x
mλ) = 2s2m for all m. In particular, xm and xmλ are

additive generators for all m.

Proof Under the composition

π4Z
2
H(P3

C)
Φ
−→ π4Z

2
C(P3

C)
∼=
−→ H6(P

3
C; Z) = Z

the class of [f ] goes to class of its “trace”, which is the union of the lines
parameterized by f (cf [15, Section 9]). This trace is exactly P

3
C

whose class is
the generator of H6 . It follows that Φ∗(x

m) must be the generator s2 .

By Theorem 2.3(ii) we know that every cycle in Z2q+1
H

is deformable to an av-
eraged cycle, the homomorphism deg: π0Z

odd
H

→ Z given by projective degree
has

Im{deg} = 2Z.

Now fix x0 ∈ PC(H) and consider the cycle c0 = x0 + jx0 whose component
generates π0Z

odd
H

. Define f̃ : S4 → Z3
H
(P5

C
) by f̃(t) = c0#f(t). Since f̃ is

homotopic to twice the suspension of f we see that f̃ has image 2Z. The same
holds for f̃ ∧ f ∧ . . . ∧ f .
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Proposition 7.2 Let 1 denote the generator of π0Z
ev
H

= Z and let u and v
denote the generators of π2Z

ev
H

= Z2 and π1Z
odd
H

= Z2 respectively. Then 1 is
the multiplicative unit and the following relations hold in the ring R∗ :

u · λ = 0, v · λ = 0, u2 = 0,

v2 = 0, u · v = 0, λ2 = 4.
(39)

Proof That 1 is a multiplicative unit is an immediate consequence of the
Quaternionic Suspension Theorem [14, Theorem 6.1]. From the paragraph
above we see that λ2 is represented by c0#c0 which has degree 4. Since
deg : π0Z

ev
H

→ Z is an isomorphism we conclude that λ2 = 4. That v2 = 0 is
Lemma 7.3 below. All the remaining relations are trivial.

It remains to prove that xmu and xmv are additive generators for all m > 0.
To do this we will need explicit representatives for these classes.

Recall the isomorphisms

π1Z
odd
H = π1Z

1
H(PC(H)) = π1Z0(PC/Z2) = H1(PC/Z2; Z) = H1(PR; Z) = Z2.

Unravelling these isomorphisms one sees that the generator v of π1Z
odd
H

is
represented by the following map. Let ℓ : [0, π] → S2 be the standard lon-
gitudinal curve joining the north and south poles. Under the identification
S2 = P

1
C
, we consider ℓ(t) to be a complex line in C

2 = H. Note that for
ℓ ∈ P

1
C
⊂ Z0(P

1
C
) = Z1

H
(PC(H)) we have that

j(ℓ) = ℓ⊥ = the antipodal image of the point ℓ. (40)

We now define φ : S1 → π1Z
1
H
(PC(H)) by

φ(t) = ℓ(t) + ℓ⊥(t) − (ℓ0 + ℓ⊥0 ). (41)

where ℓ0 = ℓ(0). By (40) we see that φ is a map into j–averaged cycles and
φ(0) = φ(π).

Lemma 7.3 The map φ represents the generator v of π1Z
odd
H

, and v2 = 0 in
π2Z

odd
H

.

Proof The first statement follows from the paragraph above. For the second
note that

φ(s)#φ(t) =
{
ℓ(s) + ℓ⊥(s) − (ℓ0 + ℓ⊥0 )

}
#

{
ℓ(t) + ℓ⊥(t) − (ℓ0 + ℓ⊥0 )

}

=
{
(ℓ(s) − ℓ0)#(ℓ(t) − ℓ0) + (ℓ⊥(s) − ℓ⊥0 )#(ℓ⊥(t) − ℓ⊥0 )

}
+

{
(ℓ(s) − ℓ0)#(ℓ⊥(t) − ℓ⊥0 ) + (ℓ⊥(s) − ℓ⊥0 )#(ℓ(t) − ℓ0)

}
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=
{
(ℓ(s) − ℓ0)#(ℓ(t) − ℓ0) + j(ℓ(s) − ℓ0)#(ℓ(t) − ℓ0)

}
+

{
(ℓ(s) − ℓ0)#(ℓ⊥(t) − ℓ⊥0 ) + j(ℓ(s) − ℓ0)#(ℓ⊥(t) − ℓ⊥0 )

}

def
= A(s, t) +B(s, t).

It is straightforward to see that A and B are homotopic as maps from S2 into
Z2

H
(PC(H2)). Hence, v2 = 2[A] = 0 in π2Z

ev
H

= Z2 as claimed.

Proposition 7.4 Let

F = φ#f# . . .#f : S1 ∧ S4 ∧ · · · ∧ S4 −→ Z2m+1
H

(PC(H2m+1)),

where f and φ are the maps from Proposition 7.1 and (41) respectively. Then
[F ] = v · xm is the generator of π4m+1Z

odd
H

= Z2 .

Proof It suffices to show that [F ] 6= 0. For this we will consider the graph of
F as in [15, 9.12ff]. To begin note that F has the form

F (t, λ1, . . . , λm)

= (ℓ(t) + ℓ⊥(t) − ℓ0 − ℓ⊥0 )#(λ1 − λ0)#(λ2 − λ0)# . . .#(λm − λ0)

= F̃ (t, λ1, . . . , λm) + jF̃ (t, λ1, . . . , λm)

where F̃ = (ℓ(t) − ℓ0)#(λ1 − λ0)# . . .#(λm − λ0) can be considered as a map

into cycles on X
def
= PC(H2m+1)/Z2 . Now by Theorem 2.3(ii) if F is homotopic

to 0, then it is homotopic to zero through j–averaged cycles, and therefore F̃
is homotopic to 0 as a map into cycles on X .

To show F̃ is not homotopic to 0 we consider its graph Γ in S4m+1 ×X and
show that its projection [pr∗Γ] 6= 0 in H8m+1(X; Z2) (see [15, Lemma 9.12]).
Now we see that

pr∗Γ =
⋃

t,λ1,...,λm

ℓ(t)#λ1# . . .#λm + ǫ ≡ G+ ǫ

where ǫ consists of terms which have dimension strictly less than 8m+ 1 and
can be ignored.

Suppose now that q = (q0, q1, . . . , qm) ∈ H ⊕ H
2 ⊕ · · · ⊕ H

2 is any point such
that qj 6= 0 for all j . Then there is exactly one subspace from the family for
G which contains q . Such a point is clearly a regular point of the cycle G.

We now consider a great circular curve µ : [0, π] → P
1
R

which intersects the
great circle defined by ℓ(t) above, transversely (in one point). We then set

γ(s) = (µ(s), q0, . . . , q0) where q0 = (1, 0) ∈ H
2.
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This closed curve intersects G in exactly one point. That point is a regular
point of G and the intersection is transversal. Thus by [15, Lemma 9.13] the
cycle G is not homologous to zero and the proposition is proved.

To complete our analysis of the ring structure we need an explicit representative
of the generator u of π2Z

ev
H

. Define the map

ψ : S2 = P
1
C(H) −→ Z2

H(PC(H2))

by ψ = ψ̃ + jψ̃ where

ψ̃(ℓ) = ℓ0 ⊕ ℓ− ℓ0 ⊕ ℓ0 in H ⊕ H. (42)

To understand this map we shall examine a basis for the homology of Q(Hn)/Z2 .
Recall the following notation from Section 6:

X2n−1 = PC(Hn)/Z2 and Y 2n = Q(Hn)/Z2

For k ≤ n there are embeddings

X2k−1 ⊂ Y 2n and Y 2k ⊂ Y 2n

where the second comes from the linear inclusion H
k ⊂ H

n and X2k−1 ⊂ Y 2k

comes from the 0–section of O(2). The analytic subsets Y 2k have oriented
regular sets and define integral cycles which generate H4k(Y

2n; Z) = Z. Each
X2k−1 is a smooth nonorientable submanifold of the regular set of Y 2n . For each
k consider the subspace U2k+1 = C⊕H

k ⊂ H
n−k ⊕H

k , let Q(U2k+1) ⊂ Q(Hn)
be the Thom space of OP(U2k+1)(2), and set

Z2k+1 = π
(
Q

(
U2k+1

))

where π : Q(Hn) → Y 2n is the projection. Each Z2k+1 is an oriented analytic
subvariety which defines an integral cycle in Y 2n .

Lemma 7.5 For each k < n the class [Z2k+1] in H4k+2(Y
2n; Z) = Z2 is

nonzero.

Proof Note that X2(n−k)−1 intersects Z2k+1 transversely in exactly one point
(in its regular set). The Lemma now follows from [15, Lemma 9.13].

Proposition 7.6 Fix m ≥ 0 and set

F = ψ#f# . . .#f : S2 ∧ S4 ∧ · · · ∧ S4 −→ Z2m+2
H

(PC(H2m+2)),

where f and ψ are the maps from Proposition 7.1 and (42) respectively. Then
[F ] = u · xm is the generator of π4m+2Z

ev
H

= Z2 .

Geometry & Topology, Volume 9 (2005)



Algebraic cycles and the classical groups II: Quaternionic cycles 1211

Proof Applying the homotopy equivalence Σ/ = Σ/O(2) of Proposition 6.1 gives
a map

F̂ = Σ/ ◦ F : S4m+2 −→ Z2m+2(Q(H2m+2))av

which splits as

F̂ = F̃ + j̃F̃

where j̃ is the real structure on Q(H2m+2). Proceeding in strict analogy with
the proof of Proposition 7.4 we are reduced to showing that the cycle

G = π

{ ⋃

ℓ,λ1,...,λm

Σ/ (ℓ0#ℓ#λ1# . . .#λm)

}

= π
{
Σ/

(
U2m+3

)}
= π

(
Q(U2m+3)

)
= Z2m+3

is not 0 in H4m+6(Y
2m+2; Z2). This was proved in Lemma 7.5.

This completes the proof of Theorem 3.4.

8 Quaternionic projective varieties

The main theme of this paper is the study of spaces of quaternionic cycles.
Their structure turns out to be surprising and rich. However the geometry
of quaternionic varieties themselves is of independent interest. In this and
subsequent sections we will examine these varieties and show how our cycle
spaces provide invariants for their study.

Definition 8.1 A quaternionic projective variety is an algebraic subvariety
X ⊂ PC(Hn) which is invariant under the quaternionic involution j. A quater-

nionic morphism of quaternionic projective varieties is a morphism which com-
mutes with j.

As we have seen, there are many quaternionic varieties. The abelian group they
generate has the rich homotopy structure determined above. It is useful to look
at some specific examples.

Example 8.2 Fermat varieties Choose coordinates (q1, . . . , qn) for H
n and

write

qk = zk + wk · j where zk, wk ∈ C (43)
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for all k . Then the Fermat variety

F (2m) =

{
(z,w) ∈ C

n ⊕ C
n · j = H

n :
∑

k

z2m
k + w2m

k = 0

}

is a quaternionic variety for all m ≥ 1. This includes the K3–surface F (4) ⊂
PC(H2).

Example 8.3 Quaternionic divisors Let Div2m
∼= P

(2(n+m)
2n )−1

C
be the space

of divisors of degree 2m on PC(Hn). Then j induces a linear antiholomorphic
involution on Div2m whose fixed-point set is nonempty by Example 8.2. Thus
the subset DivH

2m ⊂ Div2m of quaternionic divisors is a real form

DivH
2m

∼= P
(2(n+m)

2n )−1

R
⊂ P

(2(n+m)
2n )−1

C
.

In general j induces a real structure on Diveven and a quaternionic structure
on Divodd .

The evenness of degree here is required by Theorem 2.3(ii). Here is an elemen-
tary proof.

Proposition 8.4 Let X ⊂ PC(Hn) be a quaternionic projective variety of odd
(complex) codimension. Then the degree of X is even.

Proof Let codim(X) = 2q − 1 and choose a quaternionic linear subspace
V ⊂ H

n with dimH = q such that P(V ) meets X transversely at regular
points. The existence of such a V follows from the transitivity of Spn on
PC(Hn) and Sard’s Theorem for families (cf [11, Appendix A]). Now P(V )∩X
is j–invariant, and so deg(X) = #(P(V ) ∩X) is even.

Example 8.5 Quaternionic rational normal curves Notice that the mapping

PC(H) −→ PC(Hn)

given by

(z,w) 7→ (Z,W ) = (z2n−1, z2n−2w, . . . , znwn−1 ; w2n−1, w2n−2z, . . . , wnzn−1)

is a quaternionic morphism. Its image is a j–invariant rational normal curve.
The moduli space of such curves is a real form for the space of all rational
normal curves in PC(Hn).
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Example 8.6 Quaternionic Veronese and Segré embeddings More generally
one can check that there is a nonempty subspace of quaternionic Veronese
embeddings

PC(Hn) −→ PC(Sym2k+1
C

H
n)

in any odd degree 2k + 1. This is also true of the Segré embeddings

PC(Hn1) × · · · × PC(Hnk) −→ PC(Hn1 ⊗C · · · ⊗C H
nk)

for all k odd.

Example 8.7 General quaternionic curves As we saw in Section 2 quater-
nionic curves can be thought of as “nonorientable” algebraic curves over C.

Theorem 8.8 (Intrinsic characterization of quaternionic projective manifolds)
Let X be a compact Kähler manifold with an antiholomorphic involution
j : X → X . Suppose there exists a positive holomorphic line bundle π : L→ X
which admits an anti-linear bundle map j̃ : E → E such that

X X
j

//

L

X

π

��

L L
ej

// L

X

π

��

commutes, and j̃2 = − Id. Then there exists a j–equivariant holomorphic
embedding Φ: X →֒ PC(HN ) for some N .

Proof Let Wk denote the space of all holomorphic cross-sections of the bundle
L⊗k . By the fundamental theorem of Kodaira for all k sufficiently large, the
mapping

Φ: X −→ P(Wk)
∗ given by Φ(x) = ker{σ 7→ σ(x)}

is a well-defined projective embedding. For k odd the bundle L⊗k is quater-
nionic and there is a quaternionic structure j on Wk defined by setting j(σ) ≡
j̃−1 ◦ σ ◦ j . Note that Φ(jx) = ker{σ 7→ σ(jx)} = ker{σ 7→ j̃−1 ◦ σ ◦ j(x)} =
{j(σ) : σ(x) = 0} = j(Φ(x)), which proves the j–equivariance.

This theorem motivates the definition of a quaternionic topological space given
below.
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9 Quaternionic algebraic cocycles and morphic co-

homology

We now want to consider families of quaternionic varieties π : F → X over
a parameter space X . Such families generalize the concept of a quaternionic
vector bundle. We will begin in the algebraic category and adopt the viewpoint
of algebraic cocyles developed in [9]. Much of that theory carries over to the
quaternionic case.

Recall the Chow monoid

Cq(PC(Hn)) =
∐

d≥0

Cq
d(PC(Hn))

where Cq
d(PC(Hn)) is the Chow variety of effective algebraic cycles of degree d

and codimension q in PC(Hn). The map j induces an involution, also denoted j,
on each of these varieties. Let Cq

H
(PC(Hn)) ⊂ Cq(PC(Hn)) denote the submonoid

of j–fixed cycles.

Definition 9.1 Let X be a quaternionic variety (or more generally any real
variety with involution given by the action of Gal(C/R)). By a quaternionic

algebraic cocycle on X we mean a j–equivariant morphism

ϕ : X −→ Cq(PC(Hn))

for some n. The set of all quaternionic algebraic cocycles forms an abelian
monoid

MorH(X; Cq(PC(Hn))

whose group completion will be denoted by MorH(X; Zq(PC(Hn)). Note that
each cocycle ϕ ∈ MorH(X; Cq(PC(Hn)) gives rise to a mapping

ϕ̃ : X/Z2 −→ Zq
H
(PC(Hn)) where ϕ̃([x]) = ϕ(x) + jϕ(x). (44)

Example 9.2 The fundamental class Let ϕ : X ⊂ PC(Hn) be a quaternionic
variety. This inclusion is a quaternionic cocycle whose associated map

ϕ̃ : X/Z2 → Z2n−1
H

(PC(Hn))

is given by ϕ̃([x]) = x+ jx. With respect to the canonical splitting in Theorem
2.3(ii) this fundamental map can be viewed as

ϕ̃ : X/Z2 −→

q∏

k=0

K(Z, 4k) ×
n∏

k=0

K(Z2, 4k + 1).
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Define total classes

ι = 1 + ι4 + ι8 + ι12 + · · · and ι̃ = ι̃2 + ι̃6 + ι̃10 + ι̃14 + · · ·

where ι4k ∈ H4k(K(Z, 4k); Z) = Z and ι̃4k+1 ∈ H4k+1(K(Z2, 4k+1); Z2) = Z2

denote the fundamental classes. Then associated to the embedding ϕ : X ⊂
PC(Hn) we have the classes

ϕ̃∗ι ∈ H4∗(X/Z2; Z) and ϕ̃∗ι̃ ∈ H4∗+1(X/Z2; Z2). (45)

When X = PC(Hn), these classes are nonzero in every dimension.

For a general quaternionic variety X ⊂ PC(Hn) of dimension 2q − 1 we can
find quaternionic projection PC(Hn)− PC(Hn−q−1) −→ PC(Hq) which restricts
to give a quaternionic morphism X −→ PC(Hq). The classes 45 for X are the
pull-backs of those for PC(Hq).

Example 9.3 The quaternionic Gauss map Let X ⊂ PC(Hn) be a smooth
quaternionic variety of codimension–q , and consider the quaternionic morphism

γ : X −→ Gq
C
(PC(Hn)) where γ(x) = [TxX].

The associated characteristic map γ̃ : X/Z2 −→ Zq
H
(PC(Hn)) can be rewritten

in terms of the canonical splitting in Theorem 2.3 as a mapping

γ̃ : X/Z2 −→

{∏r
j=0K(Z, 4j) ×

∏r−1
j=0 K(Z2, 4j + 2) if q = 2r,

∏r
j=0K(Z, 4j) ×

∏r
j=0K(Z2, 4j + 1) if q = 2r + 1.

Let ι and ι̃ be defined as in Example 9.2 when q = 2r and let them be the
obvious analogues when q = 2r+1. Then we can define the normal quaternionic

characteristic classes of X :

γ̃∗(ι) ∈ H4∗(X/Z2; Z) and γ̃∗(ι̃) ∈

{
H4∗+2(X/Z2; Z2) if q = 2r

H4∗+1(X/Z2; Z2) if q = 2r + 1
(46)

As an example consider the Fermat variety F (2) ⊂ PC(Hn). Its Gauss map

γ : F (2) −→ P
∗
C(Hn) = G1

C(PC(Hn))

is essentially the identity (F (2) is self-dual). The associated map

γ̃ : F (2)/Z2 −→ Z1
H(PC(Hn)) ∼= K(Z2, 1)

is easily seen to be nontrivial on π1 and so γ̃∗(ι̃) 6= 0.

Example 9.4 Let X ⊂ PC(Hn) be an irreducible hypersurface of degree d > 1.
The we can define

ϕ : X −→ C2
d2(PC(Hn))

by ϕ(x) = X • TxX where “•” is the intersection product ([10]).
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Example 9.5 Consider the product quaternionic variety

X = x0 × PC(H) ∐ (jx0) × PC(H) ∼= Z2 × S2

where x0 is a point, and the map f : X → G2
C
(PC(H2)) given by

f(x0 × ℓ) = ℓ0 ⊕ ℓ and f(jx0 × ℓ) = jℓ0 ⊕ ℓ in H ⊕ H

where ℓ0 ⊂ H ⊕ {0} ⊂ H
2 is a fixed complex line. Then the map

f̃ : X/Z2 = S2 −→ Z2
H

represents the generator of π2Z
2
H

= Z2 as we saw in Proposition 7.6.

Example 9.6 Suppose X ⊂ PC(H2) is a quaternionic algebraic surface of
degree 2k which contains no quaternionic lines. Then there is a well-defined
continuous map

ψX : S4 −→ Z3
H

given by ψX(p) = π−1(p)•X where π : PC(H2) −→ S4 is the Hopf fibration (See
Proposition 7.1) and “•” denotes intersection product (cf [10]). Now recall the
isomorphism τ : Z3

H
(PC(H2)) −→ Z0(PC(H2)/Z2) and set ψ̃X = τ ◦ψX . Then if

π̃ : Z0(PC(H2)/Z2) −→ Z0(S
4) is the extension of the map PC(H2)/Z2 −→ S4

then π̃ ◦ ψ̃X = k · Id. Therefore

[ψ] = k ∈ π4Z
3
H.

10 Linear cocycles

The cocycles introduced in Definition 9.1 are particularly interesting when ϕ(x)
is a linear subspace for all x.

Definition 10.1 Let X be as in Definition 9.1. By an effective quaternionic
bundle of dimension q on X we mean a j–equivariant morphism f : X →
Gq

C
(PC(HN )) for some N .

Such a morphism corresponds to an algebraic vector bundle E → X which
is generated by its global sections and which is equipped with an anti-linear
bundle map j̃ : E → E which covers j : X → X and satisfies j̃2 = − Id. These
linear cocycles form a submonoid under the algebraic join operation (∼= direct
sum in this case). The homotopy groups of its group completion are interesting
invariants of the variety. In fact this group completion can be expanded to a
generalized equivariant cohomology theory attached to X . (See [6].)
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Note that to any quaternionic bundle f : X → Gq
C
(PC(HN )) there is an associ-

ated mapping
f̃ : X/Z2 −→ Zq

H
(PC(Hn))

and we get classes f̃∗(ι) and f̃∗(ι̃) as in (46) above. For the full theory of char-
acteristic classes in this setting one must consider the full equivariant theory.
This is done in detail in [5]

11 Quaternionic spaces, quaternionic bundles and

KH–theory

The notions of quaternionic vector bundles varieties can be generalized to the
topological category. Recall that a space with a real structure is a pair (X, j)
where X is a topological space and j : X → X a continuous involution. The
following notion was introduced by Johann Dupont [7].

Definition 11.1 A quaternionic vector bundle over a real space (X, j) is a
complex vector bundle E −→ X together with an C–anti-linear bundle map
j̃ : E → E covering j with j̃2 = −1.

Such a pair (E, j̃) with j̃2 = 1 is called a real bundle (cf [1]). Real bundles
are classified by Z2–equivariant maps into the stabilized Grassmannian with
its standard real structure [15]. The corresponding statement holds for quater-
nionic bundles.

Theorem 11.2 Let X be a compact Hausdorff space with involution j : X →
X . Then the isomorphism classes of quaternionic vector bundles of complex
rank q on X are in one-to-one correspondence with Z2–homotopy classes of
Z2–maps X → Gq

C
(PC(H∞)).

Proof This is a direct adaptation of the standard arguments (cf [21]).

Corollary 11.3 Let E → X be a quaternionic vector bundle classified by a
j–equivariant map f : X → Gq

C
(PC(H∞)). Then the classes f̃∗(ι) and f̃∗(ι̃)

defined as in (46) above, depend only on the isomorphism class of E .

The Grothendieck group KR(X) of real bundles on X are the basis of Atiyah’s
real K–theory [1]. The Grothendieck group KH(X) of quaternionic bundles
on X form an analogous quaternionic K–theory [7]. However, this theory
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is not multiplicative. The tensor product of two quaternionic bundles is not
quaternionic ; it is real. However, the combined theory KR(X) ⊕KH(X) has
a product structure, and interestingly there is an isomorphism

KR(X × PC(H)) ∼= KR(X) ⊕KH(X) (47)

observed by Dupont [7]. In a subsequent paper [8] Dupont asks whether there
is an appropriate theory of characteristic classes for quaternionic bundles and
KH–theory. An answer to the analogous question for real bundles and KR–
theory was given by dos Santos [4]. The answer in the quaternionic case has
been recently given by dos Santos and Lima-Filho [5] who continued this study
of the space of quaternionic algebraic cycles.

Definition 11.4 A quaternionic space is a triple (X, j,L) where X is a topo-
logical space, j : X → X is an involution, and L → X is a complex line bundle
with quaternionic structure, that is, with a lifting of j to an anti-linear bundle
map j̃ : L −→ L such that j̃2 = −1. Note that j must be a free action.

Note 11.5 On a quaternionic projective variety X we take L = O(1).

Example 11.6 Quaternionifications of a space Any real space (X, j), with
possibly trivial involution, gives rise to a quaternionic space XH as follows. Set
XH = Z2 ×X . Define j : XH → XH by j(0, x) = (1, jx) and j(1, x) = (0, jx).
Set L = XH × C and define j̃ : L → L by

j̃(0, x, z) = (1, jx, z̄) and j̃(1, x, z) = (0, jx,−z̄).

This is the trivial quaternionification of X . There is a natural bijection be-
tween complex bundles on X and quaternionic bundles on XH , and also be-
tween complex bundles on X and real bundles on XH . In particular we have
K(X) ∼= KR(XH) ∼= KH(XH). In light of (47) above a more interesting
quaternionification of X is given by X × PC(H) with L = pr∗2O(1).

12 The equivariant homotopy type of Zq(PC(H∞))

There are two distinct real structures on projective space (this reflects the fact
that the Brauer group of R is Z2 ), and they in turn induce real structures
on the groups of algebraic cycles. The first real structure, given by complex
conjugation of homogeneous coordinates, was studied in part one of this work
[15]. The second, given by the quaternion involution on PC(Hn) (called the
Brauer–Severi variety), is studied here. It is natural to ask: what is the full
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equivariant homotopy type of the groups of algebraic cycles under the induced
involutions?

Recall from [13] that the nonequivariant homotopy type of the group of cycles
of codimension q on P

n
C

is a product of Eilenberg–MacLane spaces K(Z, 0) ×
K(Z, 2)× · · · ×K(Z, 2q). In his thesis [4] Pedro dos Santos proved a beautiful,
analogous result for cycles under the first involution. He showed that there is
a Z2–equivariant homotopy equivalence

Zq(PC(Cn)) ∼=

q∏

k=0

K(Z,Rk,k)

for any n > q , where K(Z,Rk,k) denotes the Eilenberg–MacLane space clas-
sifying Z2–equivariant cohomology indexed at the representation R

k,k (= C

with complex conjugation) with coefficients in the constant Mackey functor Z.

Very recently dos Santos and Lima-Filho [5] established the corresponding result
in the Brauer–Severi case. They prove that there are Z2–equivariant homotopy
equivalences

Z2q−1(PC(Hn)) ∼=

q∏

k=0

Map(PC(H)+, K(Z,R2k−1, 2k−1))

and Z2q(PC(Hn)) ∼=

q∏

k=0

Map(PC(H)+, K(Z,R2k, 2k)).

These spaces classify the (k,k)-equivariant cohomology of X × PC(H).
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