
ISSN 1364-0380 (on line) 1465-3060 (printed) 1221

Geometry & Topology
Volume 9 (2005) 1221–1252

Published: 24 July 2005

The nonuniqueness of Chekanov polynomials

of Legendrian knots

Paul Melvin

Sumana Shrestha

Department of Mathematics, Bryn Mawr College
Bryn Mawr, PA 19010, USA

Email: pmelvin@brynmawr.edu

Abstract

Examples are given of prime Legendrian knots in the standard contact 3–space
that have arbitrarily many distinct Chekanov polynomials, refuting a conjecture
of Lenny Ng. These are constructed using a new “Legendrian tangle replace-
ment” technique. This technique is then used to show that the phenomenon
of multiple Chekanov polynomials is in fact quite common. Finally, building
on unpublished work of Yufa and Branson, a tabulation is given of Legendrian
fronts, along with their Chekanov polynomials, representing maximal Thurston–
Bennequin Legendrian knots for each knot type of nine or fewer crossings. These
knots are paired so that the front for the mirror of any knot is obtained in a
standard way by rotating the front for the knot.

AMS Classification numbers Primary: 57R17

Secondary: 57M25, 53D12

Keywords: Legendrian knots, contact homology, Chekanov polynomials

Proposed: Yasha Eliashberg Received: 10 November 2004

Seconded: Robion Kirby, Joan Birman Revised: 3 December 2004

c© Geometry & Topology Publications



1222 Paul Melvin and Sumana Shrestha

1 Introduction

A smooth knot K in R
3 is Legendrian if it is everywhere tangent to the two-

plane distribution ker(α) of the standard contact one-form α = dz − ydx. It
is tacitly assumed that the projection of K onto the xz–plane, its front, is
generic, that is all self-intersections of the front are transverse double points.
Two Legendrian knots are Legendrian isotopic if they are smoothly isotopic
through (not necessarily generic) Legendrian knots. Much of the recent work
in Legendrian knot theory has been motivated by the problem of classifying
Legendrian knots up to Legendrian isotopy within a fixed knot type [12].

The two “classical” Legendrian isotopy invariants of a Legendrian knot K are its
Thurston–Bennequin number tb(K) and its (absolute) rotation number r(K).
They can be computed by the formulas

tb(K) = w − c/2 r(K) = |u − d|/2

where w is the writhe of the front of K (the difference of the number of positive
and negative crossings) and c is the number of cusps in the front, of which u
are traversed upward and d are traversed downward with respect to any chosen
orientation on K . These two invariants serve to classify the Legendrian knots
in some knot types, including the unknot [7], the figure eight and all torus knots
[9]. Such knot types are called Legendrian simple.

There are many knot types that are not Legendrian simple. The first examples,
discovered independently by Chekanov [3] and Eliashberg–Hofer [6], were the
positive twist knots (other than the trefoil and figure eight). The inequivalence
of suitable Legendrian representatives of these knots (with identical classical
invariants) was detected using contact homology [16, 8], a version of Floer ho-
mology adapted to contact manifolds. More recently, convex surface techniques
have been used to detect other examples among the iterated torus knots [11].

Chekanov’s approach to contact homology is purely combinatorial, and yields an
easily computable family of integer Laurent polynomial invariants Pε(t) indexed
by the augmentations ε of (the differential graded algebra of) K ; see Section 2
for the definitions. These will be called the Chekanov polynomials of K , and
the number ch(K) of distinct such polynomials will be called the Chekanov

number of K .

It has been observed by Chekanov [4, Section 2.2], Ng [20, Section 3.16] and [21],
and others that computational evidence (at the time) supported the following
conjecture.
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Conjecture (Uniqueness of Chekanov polynomials) The Chekanov number
ch(K) of any Legendrian knot K is at most 1.

In this paper it is shown that this conjecture fails. The first counterexample we
discovered, representing the mirror of the knot type 821 , has Chekanov number
2. Knots with arbitrarily large Chekanov numbers can then be constructed
using connected sums. With a little more work, prime knots of this kind can
be found.

Theorem 1.1 For every integer k ≥ 0, there is a prime Legendrian knot with
Chekanov number k .

The proof is given in Section 3, and a conceptual explanation of why these ex-
amples arise is given in Section 4 using a Legendrian tangle replacement method.
It should be noted that these knots also provide counterexamples to the more
speculative conjecture (cf [4, Section 2.2]) that the ranks P (1) are equal for
all Chekanov polynomials P of a given Legendrian knot K ; for the knots in
question, these ranks are in fact all distinct. In contrast, it is an easy exer-
cise to show that the Euler characteristic P (−1) = tb(K) for any Chekanov
polynomial P of K .

Our computations throughout are simplified by a beautiful recent result of Josh
Sabloff [25]:

Duality Theorem Any Chekanov polynomial of a Legendrian knot can be
written in the form

P (t) = t + p(t) + p(t−1)

for some (honest) polynomial p(t) with positive integer coefficients.

Such a polynomial p will be called a reduced Chekanov polynomial of the knot.
Using this result and elementary observations about connected sums of Leg-
endrian knots, we give (in Section 3) a characterization of reduced Chekanov
polynomials.

Theorem 1.2 Every polynomial with positive integer coefficients arises as the
reduced Chekanov polynomial of some Legendrian knot.

It is an interesting problem to determine when ch(K) is nonzero. Of course this
can be solved algorithmically, since the augmentations of K are the solutions of
a system of polynomial equations over Z2 that can be read off from the front of
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K (see Section 2). Unfortunately, the known algorithms for solving this system
are all of exponential complexity. It would be useful to find more computable
criteria.

Fuchs and Ishkhanov [15], and independently Sabloff [24], have found a use-
ful geometric criterion that is equivalent to the existence of an augmentation,
namely the existence of a ruling in the sense of Chekanov and Pushkar [4][5].
The obvious algorithms for finding a ruling, however, are still of exponential
complexity.

Another necessary (but far from sufficient) condition for the existence of an
augmentation is that K be nondestabilizable, ie not Legendrian isotopic to
a front with a kink . An important class of such knots are the ones of
maximal Thurston–Bennequin number in their knot types, which we simply
call maximal knots. (Note that there exist nondestabilizable knots that are not
maximal [11].) All the knots tabulated in Section 5 are maximal. Less that half
of them, however, have augmentations. Moreover, there is no known algorithm
for deciding in the first place if a knot is maximal (or nondestabilizable).

A less obvious (but readily computable) necessary condition is the vanishing
of the rotation number r(K). This was surmised from our calculations in
Section 5, and confirmed by Sabloff as an easy consequence of the existence of
a ruling [24].

Proposition 1.3 If r(K) 6= 0, then ch(K) = 0.

Most of the knots with rotation number zero tabulated below have augmenta-
tions, although presumably this becomes less prevalent with increasing crossing
number. Among these is the knot of type 74 , of Chekanov number 1. In
contrast, Ng [20, Section 4.2] has given examples of knots in this knot type,
with the same classical invariants, which do not have augmentations. Thus the
Chekanov number can be used to distinguish knots of the same type with the
same classical invariants.

Note that in general, tb(K) and r(K) are of opposite parity; this can be proved
in variety of ways, for example by induction on the number of crossings in the
front of K . It follows from the Proposition that only knots with odd Thurston–
Bennequin invariant can have augmentations.

It remains an open problem to find complete criteria, computable in polynomial
time, for the existence of an augmentation.

Acknowledgments We are grateful to Josh Sabloff for introducing us to this
subject through his beautiful lectures in the TriCo Contact Seminar, and for
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providing us with an early version of his book on Legendrian knots. We would
also like to thank Lisa Traynor for stimulating discussions and graphics advice.
The first author is partially supported by National Science Foundation grant
FRG-0244460.

2 Chekanov polynomials

Let K be a Legendrian knot with rotation number zero. For computational
convenience we assume following Ng [19] that the front of K is simple, ie all the
right cusps have the same x–coordinate. This can be arranged by a Legendrian
isotopy of K . Any smooth path in the front joining a left and right cusp will
be called a spanning arc of K (so if there are c cusps, then the front consists
of c spanning arcs). Any connected component of the complement of the front
in the xz–plane will be called a region in the front, and a disk formed from the
closure of a union of regions will be called a disk with corners. The corners refer
to the nonsmooth points in the boundary that occur at right cusps or crossings.

Now recall the definition of Chekanov’s differential graded algebra (A, ∂) for K .
The underlying algebra A is the free noncommutative algebra over Z2 generated
by the crossings c1, . . . , cn and right cusps cn+1, . . . , cn+r in the front. Thus
the elements of A are finite sums of words in the ci , where the empty word,
denoted by 1, is the identity. The full set {c1, . . . , cn+r} of generators will be
denoted by C .

The grading on A is defined by assigning an integer degree |c| to each c ∈ C ,
and then extending to higher order terms by the rule |ab| = |a|+ |b|. To define
|c|, choose a Maslov potential µ on the front of K . By definition, µ assigns a
real number to each spanning arc in the front in such a way that the upper arc
at any cusp is assigned one more than the lower arc; such an assignment can
be made consistently since r(K) = 0. Now set |c| = 1 if c is a cusp, and

|c| = µ(α) − µ(β)

if c is a crossing, where α is the upper (smaller slope) arc at the crossing and
β is the lower arc. We will denote the subset of C of generators of degree k by
Ck , and its cardinality by nk .

Finally the differentials ∂c for c ∈ C are defined using suitable embedded disks,
and then extended by the Leibnitz rule and linearity, setting ∂1 = 0, to all of
A. (If the front is not simple, one must consider immersed disks.) In particular,
a disk D with corners is called an admissible disk for c if its right-most corner
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is at c, its left-most point is at a left cusp, and the remaining corners, called the
negative corners of D for reasons explained in [23], are convex (meaning that
they occur at crossings that lie on the boundary of exactly one of the regions
in D). There is an associated monomial ∂D ∈ A obtained by reading off the
labels at the negative corners of D , proceeding from c counterclockwise around
the boundary. Now define

∂c =

{

∑

∂D if c is a crossing

1 +
∑

∂D if c is a right cusp

where the sums are over all admissible disks D for c. It is not difficult to show
that ∂ lowers degree by 1, and that ∂2 = 0. The graded homology H∗(A, ∂),
which coincides with the contact homology of the standard contact R

3 relative
to K [13], is invariant under Legendrian isotopy of K .

The algebra (A, ∂) is infinite dimensional (over Z2 ) and generally cumbersome
to deal with as a whole, but useful information can be extracted from its finite
dimensional quotients. In particular, consider projections π∗ : A → C where
C is the finite dimensional space spanned by C . Under suitable conditions
the induced endomorphism ∂∗ = π∗∂ of C is a differential (that is ∂2

∗ = 0)
and the associated Poincaré polynomial P∗(t) =

∑

k dim (Hk(C, ∂∗)) tk is a
Legendrian isotopy invariant. The Chekanov polynomials Pε arise in this way
from projections πε : A → C associated with augmentations ε of (A, ∂). Here
are the details.

Definition 2.1 An augmentation of (A, ∂) (also called an augmentation of
K ) is an algebra map

ε : A → Z2

that vanishes on elements of nonzero degree and satisfies ε∂ = 0. The genera-
tors c ∈ C with ε(c) = 1, which are all crossings of degree zero, will be called
the augmented crossings of ε.

The associated projection πε is defined on monomials m = ci1 . . . cik (which
form a basis for A over Z2 ) by extracting the linear term in

(ci1 + ε(ci1)) . . . (cik + ε(cik))

where πε(1) = 0 by convention. Thus

πε(m) = ci1 + · · · + cik

if all the factors cij are augmented. Such a monomial will be called pure. If all
but one of the factors, say c, are augmented, then πε(m) = c. In this case we
say that m is full. In all other cases πε(m) = 0.
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The projection πε induces a graded differential ∂ε = πε∂ on C , or more pre-
cisely a chain complex

· · · −→ Ck+1

∂k+1

−→ Ck
∂k−→ Ck−1 −→ · · ·

where Ck is the vector space spanned by the set Ck of generators of degree k ,
and ∂k = ∂ε|Ck . Explicitly, the differential ∂εb for any b ∈ C is the sum of all
the factors in all the pure monomials in ∂b added to the unaugmented factors
in the full monomials in ∂b.

The Chekanov polynomial Pε is the Poincaré polynomial of this complex,

Pε(t) =
∑

dim(Hk) tk

where Hk = ker ∂k/ im ∂k+1 .

Remark 2.2 An augmentation ε is uniquely determined by its set of aug-
mented crossings, which by abuse of notation will also be denoted by ε. The
condition ε∂ = 0 simply asserts that (the set) ε is the support of a solution
to the system {∂c = 0 : c ∈ C} of (commutative) polynomial equations over
Z2 . Thus the set Aug(K) of all augmentations can be viewed as the set of all
subsets of C0 which are supports of solutions to this system.

This condition can be interpreted in simple geometric terms as follows: Start
with an arbitrary subset ε of C0 . In analogy with the terminology above, we
say that an admissible disk for a generator c ∈ C is a pure disk (with respect
to ε) if all of its negative corners are in ε, and full if all but one are in ε. Let
|c〉 ∈ Z2 denote the mod 2 reduction of either the number of pure disks for c,
or one more than that number, according to whether c is a crossing or a right
cusp. Then, noting that |c〉 = 0 if |c| 6= 1, we have

ε ∈ Aug(K) ⇐⇒ |c〉 = 0 for all c ∈ C1.

In the same vein, the differential ∂ε for an augmentation ε can be defined by

∂εc =
∑

b〈b|c〉b

where 〈b|c〉 is the number of admissible disks for c which have a corner at b
and for which all remaining corners are augmented. (These disks are all pure
if b is augmented, and all full otherwise.)

Remark 2.3 The coefficient of tk in Pε(t) can be expressed as

nk − rk − rk+1
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where nk = dimCk = |Ck| and rk = rk ∂k . It follows that Pε is determined
by the ranks rk for all k > 0. Indeed these give the coefficients for all k > 0,
and thence for k < 0 by the Duality Theorem (see Section 1). The constant
coefficient is then computed using the identity Pε(−1) =

∑

k(−1)knk. Note
that this last sum also computes tb(K), which is odd since r(K) = 0 is even.

By the same argument Pε is determined by the ranks rk for all k < 0. Thus if
|c| ≥ −1 for all c ∈ C , as for the examples in the next section, then the reduced
polynomial pε is linear and is determined by the single rank r0 :

pe(t) = at + b

where a = n−1 − r0 and b = a + (tb(K) + 1)/2. In particular, if there are no
crossings of negative degree then pε is constant.

3 Examples

First a familiar computation. Let K1 be the Legendrian trefoil whose front is
shown in Figure 1.

0

1 1

2

r

s

a b c

Figure 1: Front for the knot K1 representing the right-handed trefoil

The graded generating sets are C1 = {r, s} (the right cusps) and C0 = {a, b, c}
(computed using the Maslov potential indicated by the numbers above each
arc in the diagram). The differentials of a, b and c vanish since there are no
admissible disks for these crossings, while

∂r = 1 + [abc] and ∂s = 1 + [cba]

where by definition [xyz] = x + xyz + z .

The augmentations of K1 correspond to solutions to the system ∂r = ∂s =
0, or equivalently to the single equation [abc] = 1 (since [abc] = [cba] after
abelianizing). By inspection

Aug(K1) = {abc, ab, a, bc, c}

Geometry & Topology, Volume 9 (2005)



The nonuniqueness of Chekanov polynomials of Legendrian knots 1229

where for notational economy we write abc, ab, . . . for the sets {a, b, c}, {a, b}, . . .
(These five subsets will be referred to below as the admissible subsets of the
ordered set or “triple” abc.) By direct computation, or an appeal to the duality
theorem as in Remark 2.3 above, all of these augmentations yield the same
Chekanov polynomial t+2, or equivalently the same reduced polynomial 1. In
particular, K1 has Chekanov number 1.

Next consider the Legendrian knot K2 given by the front in Figure 2, which is
topologically the mirror image of the knot 821 (also denoted 8̄21 ).

0

1

2

1

2

3

ā b̄ c̄

a b c

p q

r

s

t

Figure 2: Front for the knot K2 representing 8̄21

Here C1 = {p, r, s, t}, C0 = {a, b, c, ā, b̄, c̄} and C−1 = {q}, and the nonzero
differentials are

∂c = a[āb̄]q ∂c̄ = q[ba]ā ∂p = [ba][āb̄]
∂r = 1 + [abc] + apq ∂s = [aā] + a[āb̄c̄] + [cba]ā ∂t = 1 + [c̄b̄ā] + qpā

where by definition [xy] = 1+xy . Note that two of the three appearances of aā
in ∂s can be cancelled since we are working mod 2. The differential is written in
this way in order to facilitate the calculation of augmentations, which amounts
to solving four equations over Z2 : the vanishing of ∂p, ∂r, ∂s and ∂t.

The solutions to these equations can be described simply by employing the
following terminology, which will be used throughout the rest of the paper.

Definition 3.1 The admissible subsets of a triple xyz are xyz, xy, x, yz and
z . The first two will be referred to as ample, since they contain both x and y ,
and the remaining three will be called sparse. Note that the admissible subsets
correspond to solutions to [xyz] = 1, and the additional constraint [xy] = 1
selects the sparse ones.

Now consider the two level triples abc, āb̄c̄ of degree zero crossings of K2 . The
subsets of these triples that are augmented for a given augmentation ε will be
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called the levels of ε. Now the vanishing of ∂r and ∂t simply says that both
levels of ε must be admissible, and ∂p = 0 then forces at least one of these
to be ample. The last equation ∂s = 0 imposes no further restrictions as it
is a consequence of the other three equations. It follows that K2 has sixteen
augmentations, four of which

abcāb̄c̄, abcāb̄, abāb̄c̄, abāb̄

have no sparse levels, while the remaining twelve

abcā, abcb̄c̄, abcc̄, abā, abb̄c̄, abc̄, aāb̄c̄, aāb̄, bcāb̄c̄, bcāb̄, cāb̄c̄, cāb̄

have exactly one. It is now straightforward (although tedious without a com-
puter) to show that the reduced Chekanov polynomial is t+2 for the augmenta-
tions in the first group, and 1 for those in the second. Alternatively this can be
proved using the Duality Theorem (see the last remark in Section 2): It suffices
to show that an augmentation is in the first group if and only if the rank r0

of the differential C0 → C−1 vanishes, or equivalently a[āb̄] = [ba]ā = 0. But
a = b = ā = b̄ = 1 is clearly the only solution to these equations. Thus K2 has
Chekanov number 2.

Knots with arbitrarily large Chekanov number can now be constructed by taking
connected sums of copies of K2 . To see this, recall that the connected sum
K#K ′ of Legendrian knots can be formed in a variety of ways, all equivalent
up to Legendrian isotopy [10]. A convenient one for our purposes is shown in
Figure 3.

K # K ′ = K c K ′

Figure 3: Legendrian connected sum K#K ′

With this choice, the front of K#K ′ has one extra degree zero crossing c. Its
differential graded algebra is generated by C ∪ C′ ∪ {c}, with augmentations

ε#ε′ = ε ∪ ε′ ∪ {c}

where ε and ε′ range over all the augmentations of K and K ′ . Fixing such an
augmentation yields the chain complex

C#C ′ = C ⊕ C ′ ⊕ Z2

where C and C ′ are the chain complexes for ε and ε′ , and the last factor
is generated by c. The dth differential for C#C ′ is the block sum of the
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d+1 crossings

Figure 4: Twist knot Td

corresponding differentials for C and C ′ , with an extra column of zeros when
d = 0, and an extra nonzero row when d = 1. Its rank is therefore the sum
of the corresponding ranks rd and r′d , except possibly when d = 1. In fact in
this case the rank is r1 + r′1 + 1, as can be seen using the duality theorem. It
follows that

Pε#ε′(t) = Pε(t) + Pε′(t) − t,

or equivalently, the reduced Chekanov polynomials add pε#ε′ = pε + pε′ . This
proves the following (well-known) result, cf [3, Section 12].

Lemma 3.2 The reduced Chekanov polynomials of a Legendrian connected
sum are exactly the sums of the reduced Chekanov polynomials of its factors.

Thus the set of reduced Chekanov polynomials of the connected sum nK2 of n
copies of K2 is {kt + n + k : k = 0, . . . , n}. In particular ch(nK2) = n + 1.

Connected sums can also be used to construct Legendrian knots with prescribed
Chekanov polynomials. For example, noting that the twist knot Td in Figure 4
has td as its unique reduced Chekanov polynomial (as is easily verified), the
knot #d(adTd) is seen using the lemma to have (unique) reduced polynomial
∑

d adt
d . This proves Theorem 1.2 in the Introduction.

One must work a bit harder to produce prime knots with large Chekanov num-
bers or with prescribed Chekanov polynomials. We show how to do the former,
as claimed in Theorem 1.1.

Proof of Theorem 1.1 Let K0 be the left-handed trefoil in the tables below
(representing 31 ). This knot has Chekanov number zero, as can be seen by
direct calculation or by appealing to the fact that its rotation number is nonzero
(see Proposition 1.3). It is also prime, even in the Legendrian sense (since it
has maximal Thurston–Bennequin number).
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a1 b1 c1

a2

b2
c2

a3

b3
c3

s0

s1

s2

s3

p1 q1

p2
q2

Figure 5: Front for the knot K3

It is well-known that the knots K1 and K2 above, with Chekanov numbers 1
and 2 respectively, are prime. There is a natural way to view them as the first
two knots in a sequence Kn , noting that each can be described as the “plat”
closure of a positive braid (see eg [1]) where the plats correspond to cusps in the
front: K1 is the closure of the 4–braid σ3

2 , and K2 is the closure of the 6–braid
(σ2σ4)

2(σ3)
2(σ2σ4). For n ≥ 3, let Kn be the closure of the (2n + 2)–braid

e2
no2

nen , where en = σ2σ4 . . . σ2n and on = σ3σ5 · · · σ2n−1 . The case n = 3 is
shown in Figure 5.

The labels in Figure 5 suggest a general procedure for labeling Kn . The
degree zero crossings ai, bi, ci occur in descending level triples (one for each
i = 1, . . . , n) while the inner crossings pj, qj , of degrees ±1 respectively, occur
in descending level pairs (one for each j = 1, . . . , n−1). The right cusps are la-
beled sj for j = 0, . . . , n from top to bottom. Setting variables with subscripts
outside their prescribed ranges equal to 1, the nonzero differentials are

∂pj = [bjaj][aj+1bj+1]

∂ci = qi−1[bi−1ai−1]ai + ai[ai+1bi+1]qi + · · ·

∂sj = [ajaj+1] + aj[aj+1bj+1cj+1] + [cjbjaj ]aj+1 + · · ·

where as above [xy] = 1 + xy and [xyz] = x + xyz + z . Here all monomials
with more than one factor of nonzero degree are suppressed, since they never
contribute to the differential associated with an augmentation.

Arguing as above it is seen that the augmentations of Kn correspond to subsets
of the set of degree zero crossings whose levels (ie augmented subsets of the level
triples aibici ) are admissible, and whose sparse levels are nonadjacent. Indeed,
the equation ∂s0 = 1 + [a1b1c1] + · · · = 0 establishes the admissibility of the
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top level. Substituting this into ∂s1 = 0 gives [a1a2] + a1[a2b2c2] + a2 = 0,
which combined with ∂p1 = 0 establishes the admissibility of the second level
and forces it to be ample if the top level is sparse. Similarly ∂s2 = ∂p2 = 0
then gives the admissibility of the third level, and forces it to be ample if the
level above is sparse. Proceeding in this way gives the desired conclusion.

By the last remark in Section 2, the reduced Chekanov polynomial for ε ∈
Aug(Kn) is

pε(t) = (n − 1 − r0)t + (n − r0)

where r0 is the rank of the associated differential

∂0 : C0 → C−1 = 〈q1, . . . , qn−1〉.

It is shown below that r0 can range from 0 to ⌊2n/3⌋, depending on the
positions of the sparse levels of ε, and so ch(Kn) = ⌊2n/3⌋ + 1. In particular

ch(K⌊3k/2⌋−1) = k

for any given integer k .

To compute r0 , observe that it is the rank of the (n − 1)×n–matrix Q repre-
senting the restriction of ∂0 to the subspace 〈c1, . . . , cn〉. Now focus on the ith
level for some i = 1, . . . , n. The formula for ∂ci above shows that ∂0ci = qi if
the level above is sparse, qi−1 if the level below is sparse, qi + qi−1 if both are
sparse, and 0 otherwise. It follows that the nonzero rows of Q are all standard
basis vectors for R

n , and any particular one ej arises if and only if either level
adjacent to the j th one is sparse. Thus r0 is just a count of the number of
levels adjacent to the sparse levels, and an inductive argument shows that this
number assumes all possible values between 0 and ⌊2n/3⌋, as claimed.

It remains to show that the knots Kn are prime. One way to do this is to use the
notion of prime tangles introduced by Kirby and Lickorish in [17]. The reader
is referred to Lickorish [18], where prime tangles were first used for primality
testing in knot theory, for the relevant definitions. The main result of that
paper is that any knot that can be written as a sum of two prime tangles is
prime, and so it suffices to show that Kn is of that form for n > 2.

It should be noted that in [18], a sum of tangles S and T refers to any link
obtained by gluing the tangles together by a homeomorphism of their bound-
aries, as in Figure 6(a), rather than gluing them together along only part of
their boundaries, as in Figure 6(b). The latter produces another tangle called
a partial sum (or tangle sum) of S and T . To distinguish the two, write S ⊕ T
for a sum and S + T for a partial sum.
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S T S T

(a) sum (b) partial sum

Figure 6: Tangle sums

P

Tn

Figure 7: Decomposition of Kn

Now the decomposition of a knot as a sum of two tangles can be specified by
drawing a simple closed curve in a projection plane that intersects the knot in
four points, while proper arcs can be used to specify the decomposition of a
tangle as a partial sum of tangles. So consider the decomposition Kn = P ⊕Tn

coming from a simple closed curve enclosing the top five crossings in Kn , as
shown in Figure 7 for the case n = 3.

It is easy to verify that the top tangle P , shown in its Legendrian form in
Figure 8(a) or its topological equivalent in Figure 8(b), is prime (see [18, Fig-
ure 2a]).

(a) Legendrian form (b) topological form

Figure 8: The prime tangle P

The bottom tangle Tn is also prime. Indeed it can be written as a partial sum
S0+S1+S2+ · · · , where S0 is the prime tangle (equivalent to P ) encompassing
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T T

(a) adding a clasp (b) adding a twist

Figure 9: Adding clasps and twists

S0

S1

S2

S3

S4

S5 T4

Figure 10: The decomposition of T4

the bottom five crossings in Tn , and the Si are trivial (aka rational) tangles
added so as to appear as “clasps” or “twists”, as shown in Figure 9.

The case n = 4 is illustrated in Figure 10.

Since adding a twist does not change the equivalence class of the tangle, and
straightforward (innermost disk) arguments show that adding a clasp preserves
primality, it follows that Tn is prime. Thus for n > 2, the knot Kn is a sum of
two prime tangles, and is therefore a prime knot. This completes the proof of
Theorem 1.1.

4 Legendrian tangle replacement

The purpose of this section is to reinterpret the examples in Section 3 as in-
stances of iterated tangle replacement. In general one can modify a Legendrian
knot K that is expressed as a tangle sum S ⊕ T by replacing T with another

Geometry & Topology, Volume 9 (2005)



1236 Paul Melvin and Sumana Shrestha

e
t

s
a b c

p q

r

s

t
eK τ(K)

T P

(a) Special Legendrian knot (b) Tangle replacement

Figure 11: Legendrian tangle replacement

tangle T ′ , giving S ⊕ T ′ . For simplicity we study only the case in which K
has a simple front with upper right corner as shown in Figure 4(a). Such a
knot will be called a special Legendrian knot. Also assume that T is the trivial
tangle near the top right cusp s, and that T ′ is the prime tangle P considered
in the last section. The Legendrian knot resulting from this particular tangle
replacement will be denoted τ(K).

Remark 4.1 If S is a prime tangle, then the knot τ(K) = S ⊕ P is prime,
by Lickorish’s theorem [18]. In fact all the knots in the sequence

τ(K), τ2(K), τ3(K), . . .

are then prime. This can be seen by induction since S ⊕ P can be written as
S′ ⊕ T where S′ is a prime tangle obtained by adding two “clasps” and one
“twist” to S as in Section 3.

Theorem 4.2 If K is any special Legendrian knot with nonzero Chekanov
number, then the sequence of Chekanov numbers

ch(τ(K)), ch(τ2(K)), ch(τ3(K)), . . .

grows without bound.

For example, applying the theorem to the mirror trefoil (3̄1 in the table be-
low) recovers the unboundedness of the Chekanov numbers of the knots 8̄21, . . .
discussed in Section 3, and the fact that these knots are prime follows from Re-
mark 4.1. The mirror figure eight (4̄1 in the table) produces another sequence
9̄45, . . . of prime knots with increasing Chekanov numbers. (It is suggestive that
8̄21 and 9̄45 are the only knots in the table below with Chekanov number greater
than one.) In fact, every knot with nonzero Chekanov number is isotopic to a
special Legendrian knot, and thence yields such a sequence.
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s

e

s

(a) disks for s1 (b) disks for s2

Figure 12: Decomposition of ∂s

The theorem will be proved by analyzing the effect of a tangle replacement
on the the set of Chekanov polynomials of K . This analysis depends on a
number of factors, the most basic of which is the difference between the Maslov
potentials of the upper and lower strands of T . (See Section 2 for the definition
of the Maslov potential.) This potential difference will be denoted by d below,
and will be referred to as the Maslov number of K .

Note that the Maslov number of τn(K) is equal to 1 for each n > 0. Thus
for the purposes of proving the theorem, it suffices to consider the case d = 1
once it is shown in general that ch(τ(K)) 6= 0 (which follows from Lemma 4.4
when d 6= 0 and Remark 4.5 when d = 0). But for other purposes it may
be of interest to study the general case. Hence we do not at present put any
restrictions on d.

The basic strategy of the proof is to identify a class of augmentations of K
that are “fertile” enough to cause the Chekanov number to grow under iterated
tangle replacements. Writing (A, ∂) for the differential graded algebra of K ,
consider the elements s1 and s2 in A defined by

∂s = 1 + s1e + s2.

Thus s1e is the sum of all the monomials ∂D associated with admissible disks
D (for s) that end in the crossing e, while s2 is the sum of the remaining
admissible disk monomials (see Figure 12). Note that if d 6= 1, then the term
s1e can be ignored for the purposes of computing Chekanov polynomials, since
e and s1 are then both of nonzero degree (their degrees add to zero and |e| =
1 − d 6= 0).

Definition 4.3 An augmentation ε of K , viewed as a subset of the degree
zero crossings, is fertile if either (a) d > 1, or (b) d = 1, s1 = 0 (in Z2 , after
substituting 1 for the crossings in ε and 0 for the remaining generators of A),
and ∂0e is a sum of differentials of some of the other degree zero crossings of
K .†

†Here ∂0 is the differential C0 → C−1 in the chain complex defined by ε .
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Now what happens after the tangle replacement? There are five new crossings
a, b, c, p, q and one new right cusp r (see Figure 4). The remaining crossings
and cusps in τ(K) retain their labels from K . At this point it is convenient to
impose a restriction on d, which will remain in effect for most of what follows,
with the exception of Remark 4.5.

Assumption The Maslov number d of K is nonzero.

Thus the crossings a, b, c, which are all of degree zero, are the only new crossings
that can potentially be augmented. The crossings p and q are of nonzero
degrees ±d, respectively.

Writing (Aτ , ∂τ ) for the differential graded algebra of τ(K) it is clear that
∂τx = ∂x for all the generators (crossings or right cusps) x of A except x = e,
s and t. For these exceptional cases, an inspection of Figure 4 shows that

∂τe = ∂e + q[ba]s2 + · · ·

∂τs = 1 + a(∂s − 1) + c[ba]s2 + · · ·

∂τ t = ∂t + · · ·

where [ba] = 1+ba, and monomials with more than one factor of nonzero degree
are omitted since they do not contribute to the differential for any augmentation
of τ(K). Similarly the nonzero differentials of the new generators of Aτ are

∂τp = [ba]s1

∂τc = as1q

∂τr = 1 + [abc] + · · ·

where [abc] = a + abc + c.

Lemma 4.4 If d 6= 0, then the augmentations of τ(K) are exactly the sets
ε ∪ α where ε is an augmentation of K and α is an admissible subset of abc,
with the following restriction when d = 1:

s1 = 1 (in Z2 , after the usual substitution) =⇒ α is ample (⋆)

(Recall from Section 3 that the admissible subsets of abc are abc, ab, a, bc, c, of
which the first two are ample and the last three are sparse.)

Proof Start with an augmentation ετ of τ(K), written as the union ε ∪ α
where α = ετ ∩ abc. If ε were not an augmentation of K , then there would
exist a crossing x in K for which ∂x = 1 (after substitution). Since ∂τx = 0 (as
ετ is an augmentation) it would follow that x = s, and so ∂τs = 1+c[ba]s2 = 0.
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This would imply c = [ba] = s2 = 1, which in turn would force s1 = 1, since
∂s = 1, and thence contradict ∂τp = 0. Thus ε is an augmentation of K .

Now the condition ∂τ r = 0 (after substitution) is equivalent to the admissibility
of α, and the condition ∂τp = 0 imposes the desired restriction (⋆) on α since
[ba] vanishes if and only if α is ample. (Note that this restriction only arises
when d = 1 since s1 = 0 otherwise.) The remaining conditions ∂τs = 0
and ∂τ t = 0 impose no further restrictions on α. This is clear for the latter,
and for the former it follows from the observation that ∂s = 0 (since ε is an
augmentation) which shows that ∂τs = 1 + a + c[ba]s2 = 0 is equivalent to the
pair of implications s2 = 1 =⇒ 1 + a + c[ba] = 1 + [abc] = 0 (which is the
admissibility of α) and s2 = 0 =⇒ a = 1 (which follows from (⋆) since ∂s = 0
shows that s1 and s2 cannot simultaneously vanish).

Remark 4.5 If d = 0, then the same argument shows that the augmentations
of τ(K) that do not contain p or q are exactly the sets ε ∪ α, where ε is an
augmentation of K and α is an admissible subset of abc. However there may
also exist augmentations that include one or both of p and q .

Lemma 4.6 If d 6= 0, then the reduced Chekanov polynomial of τ(K) corre-
sponding to an augmentation ε∪α as above is of the form pε∪α(t) = pε(t)+∆(t),
where

∆(t) =

{

1 + td for α ample

1 − td−1 for α sparse

if ε is fertile. If ε is infertile then ∆(t) = 1 + t|d| or 0 according to whether
s1 = 0 or 1. (Note that d < 0 =⇒ s1 = 0.)

Proof We must analyze how the chain complexes (C, ∂) and (Cτ , ∂τ ) for K
and τ(K), associated with the augmentations ε and ε ∪ α, are related. As
noted above, there are six new generators in Cτ , namely a, b, c ∈ Cτ

0 , r ∈ Cτ
1 ,

p ∈ Cτ
d and q ∈ Cτ

−d . Write nk and nτ
k for the dimensions of Ck and Cτ

k ,
and rk and rτ

k for the ranks of ∂k and ∂τ
k . It follows from the last remark in

Section 2 that the coefficient ∆k of tk in the difference ∆(t) = pε∪α(t) − pε(t)
of the reduced Chekanov polynomials is

∆k =

{

∆n−k − ∆r−k+1 − ∆r−k−1 for k > 0

1 + (−1)d −
∑

i>0(−1)i∆i for k = 0

where ∆nk = nτ
k − nk and ∆rk = rτ

k − rk . Thus it suffices to compute ∆nj

and ∆rj for all j ≤ 0. Evidently ∆n0 = 3, ∆n−|d| = 1 and ∆nj = 0 for all
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other j < 0. To compute ∆rj it is convenient to consider the cases d 6= 1 and
d = 1 separately.

First assume d 6= 1. Then working in Z2 after the usual substitution, ∂τ
0 c = 0,

since the degrees of s1 and q are both nonzero, and so ∆r0 = 0. It is clear
that ∆rj = 0 for all j < 0, except possibly j = 1 − d with d > 1. (Note that
∂τ
−|d|p = 0 if d < 0 since s1 = 0.) But in this case ∂τ

1−de = ∂1−de + q[ba]s2 and
so

∆r1−d = [ba]s2.

Note that [ba] = 0 ⇐⇒ α is ample, and s2 = 0 =⇒ s1 = 1 =⇒ α is ample
(by (⋆)), whence ∆r1−d = 0 ⇐⇒ α is ample. The formula for ∆(t) follows
readily.

Now assume d = 1. Then ∆rj = 0 for all j < 0, and so the formulas above
show that ∆(t) = 1 + t or 0 according to whether ∆r0 = 0 or 1. To compute
∆r0 , note that (the matrix for) ∂τ

0 is obtained from ∂0 by adding three new
zero columns, corresponding to the generators a, b and c, and then adding a
new row, corresponding to q . All the entries in this last row are zero except
possibly the ones in the e and c columns, denoted 〈q|e〉 and 〈q|c〉. In particular
(working in Z2)

〈q|e〉 = [ba]s2 and 〈q|c〉 = as1

and so 〈q|e〉 = 0 ⇐⇒ α is ample (as shown above) and 〈q|c〉 = 0 ⇐⇒ s1 = 0
(since a = 0 =⇒ s1 = 0 by (⋆)). Therefore, if 〈q|c〉 = 0 (ie s1 = 0) then
∆r0 = 0 if and only if either 〈q|e〉 = 0 (ie α is ample), or 〈q|e〉 = 1 and
the e column in ∂0 is independent of the other columns (ie α is sparse and ε
is infertile). If 〈q|c〉 = 1 (ie s1 = 1) then clearly ∆r0 = 1. Unravelling the
definitions now gives the desired result.

All the ingredients are now in place to prove the theorem.

Proof of Theorem 4.2 Fix an augmentation ε of K , and consider all words
w in the letters a (for ample) and s (for sparse) satisfying

(1) w begins with a, and

(2) s never appears twice in a row in w .

Any such w naturally specifies a family of augmentations of τn(K), where n
is the length of w , as follows:

Associate the one letter word a to the family {ε∪abc, ε∪ab} of augmentations
of τ(K) obtained by extending ε by an ample subset of abc. (Lemma 4.4 and
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Remark 4.5 show that these are indeed augmentations.) Now τ(K) has Maslov
degree 1, and it is easily verified that the new s1 (the one for τ(K) with either
augmentation in a) is zero. Therefore the augmentations in a can be extended
to augmentations of τ2(K) either amply (specified by aa) or sparsely (specified
by as).

Inductively, if w specifies a family of augmentations of τn(K) for some n > 1,
then the word wa specifies the ample extensions of w to augmentations of
τn+1(K), while ws specifies the sparse extensions. To see that condition (2)
above is necessary, note that the s1 for any augmentation ε′ in w is zero if and
only if w ends in a, and apply condition (⋆) in Lemma 4.4.

Also, noting that an ε′ in w is fertile if and only if w ends in aa, it follows
from Lemma 4.6 that the reduced Chekanov polynomials for the augmentations
associated with w are all equal. This polynomial will be denoted by pw(t).

To complete the proof it suffices for each m > 1 to produce a collection of
m words of equal length whose polynomials are distinct. For example, the
polynomials associated with the words wk = (a2)k(sa)m−k+1 (for k = 1, . . . ,m)
satisfy

pwk
(t) − pa2(t) = (m + k − 2)(1 + t)

by direct calculation using Lemma 4.6. Thus these m words, all of length
2m + 2, have distinct polynomials, and the theorem is proved.

Remark 4.7 The method used in this proof shows how to compute the full list
of Chekanov polynomials of τn(K) for each n > 0, if K is a special Legendrian
knot with nonzero Maslov number d whose Chekanov polynomials are known.

The discussion above suggests two directions for further investigation:

Problem 4.8 (a) Analyze the effect of a special tangle replacement on the
Chekanov polynomials (as in Lemma 4.6) for knots of Maslov number zero.

(b) Investigate the effects of arbitrary tangle replacements, at different loca-
tions and using prime tangles other than P .

5 Tabulation

The following is a list of maximal† Legendrian fronts for each knot of nine
or fewer crossings. The knot types are ordered as in the original tabulation

†This means ‘of maximal Thurston–Bennequin number in their knot type’.
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of Alexander and Briggs: nk is the kth n–crossing knot. Taking the ambient
orientation into account, each chiral knot in the Alexander–Briggs table actually
corresponds to a pair of knot types (up to topological isotopy) that are mirror
images of each other. These are distinguished by writing nk for the knot that
appears in Rolfsen’s table [22], and n̄k for its mirror image. The fronts for these
“mirror pairs” occur side by side in the list below, with nk appearing first. The
other columns in the table give the classical invariants (tb, r) and the reduced
Chekanov polynomials of the knots and their mirrors.

The achiral knots in the table are identified with an asterisk. For these knots,
the mirror pairs nk, n̄k are topologically isotopic, although they need not be
Legendrian isotopic. For example 41, 4̄1 are Legendrian isotopic by [9], while the
pairs 83, 8̄3 and 812, 8̄12 are not, since they are distinguished by their Chekanov
polynomials. The analogous question for the remaining achiral pairs in the
table is left to the reader.

A special feature of the particular fronts shown below is that the mirror pairs are
“rotationally related”. More precisely, the front for n̄k is obtained by rotating
the front for nk a quarter turn clockwise, and then swapping cusps for caps.
Another special feature is that all the fronts are of minimal crossing number,
with the exception of 942 and its mirror (for which we have not been able to
find minimal crossing, rotationally related fronts).

Our indebtedness to the tabulation efforts of Yufa [26] and Branson [2] (who
first investigated the possibility of finding rotationally related fronts for chiral
pairs) is evident. Most of the fronts drawn below appear in one or both of
their tables. To verify that all the knots shown are maximal (with the possible
exception of 9̄42 ) we appeal to Ng’s computation of the maximal Thurston–
Bennequin numbers for knots up to nine crossings [19], which builds on Yufa’s
tabulation. The classical invariants and Chekanov polynomials for the listed
knots were computed using a Mathematica program written by the first author.
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Table 1: Invariants of Legendrian Knots

knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

0∗1 (−1, 0) 0 0 (−1, 0)

31 (−6, 1) 1 (1, 0)

4∗1 (−3, 0) t t (−3, 0)

51 (−10, 3) 2 (3, 0)

52 (−8, 1) 1 (1, 0)

61 (−5, 0) 2t t (−3, 0)

62 (−7, 0) 1 + t (−1, 0)

6∗3 (−4, 1) (−4, 1)

71 (−14, 5) 3 (5, 0)
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knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

72 (−10, 1) 1 (1, 0)

73 (3, 0) 2t2 (−12, 1)

74 (1, 0) 1 (−10, 1)

75 (−12, 1) 1 + t2 (3, 0)

76 (−8, 1) t + t2 (−1, 0)

77 (−4, 1) 2t (−5, 0)

81 (−7, 0) 3t t5 (−3, 0)

82 (−11, 4) 2 + t (1, 0)

8∗3 (−5, 0) 2t3 2t (−5, 0)

84 (−7, 2) 1 + 2t (−3, 0)

85 (1, 0) 2 + t (−11, 0)
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knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

86 (−9, 2) 1 + t3 (−1, 0)

87 (−2, 1) (−8, 1)

88 (−4, 1) (−6, 1)

8∗9 (−5, 2) (−5, 2)

810 (−2, 1) (−8, 1)

811 (−9, 0) t + t2 (−1, 0)

8∗12 (−5, 0) t + t3 2t (−5, 0)

813 (−4, 1) (−6, 1)

814 (−9, 2) 1 + t (−1, 0)

815 (−13, 0) 1 + t2 (3, 0)
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knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

816 (−8, 1) (−2, 1)

8∗17 (−5, 0) (−5, 0)

8∗18 (−5, 0) (−5, 0)

819 (5, 0) 3 (−12, 1)

820 (−6, 1) (−2, 1)

821 (−9, 0) 1
2 + t

(1, 0)

91 (−18, 7) 4 (7, 0)

92 (−12, 1) t6 (1, 0)

93 (5, 0) 3t2 (−16, 5)

94 (−14, 3) 2t4 (3, 0)
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knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

95 (1, 0) (−12, 1)

96 (−16, 3) 2 + t2 (5, 0)

97 (−14, 1) 1 + t4 (3, 0)

98 (−8, 1) 1 + 2t (−3, 0)

99 (−16, 1) 1 + 2t2 (5, 0)

910 (3, 0) (−14, 3)

911 (1, 0) t + 2t2 (−12, 1)

912 (−10, 1) t3 + t4 (−1, 0)

913 (3, 0) (−14, 3)

914 (−4, 1) 3t (−7, 0)
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knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

915 (−1, 0) t + t2 (−10, 1)

916 (5, 0) 3 (−16, 1)

917 (−8, 3) 1 + 2t (−3, 0)

918 (−14, 1) 1 + t2 (3, 0)

919 (−6, 1) 2t (−5, 0)

920 (−12, 1) 2 + t (1, 0)

921 (−1, 0) (−10, 1)

922 (−3, 0) 1 + 2t (−8, 1)

923 (−14, 1) 1 + t2 (3, 0)

924 (−6, 1) (−5, 2)
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knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

925 (−10, 1) 1 + t3 (−1, 0)

926 (−2, 1) (−9, 0)

927 (−6, 1) (−5, 2)

928 (−9, 0) (−2, 1)

929 (−8, 3) 1 + 2t (−3, 0)

930 (−6, 1) (−5, 0)

931 (−9, 2) (−2, 1)

932 (−2, 1) (−9, 2)

933 (−6, 1) (−5, 2)

934 (−6, 1) (−5, 0)
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knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

935 (−12, 1) 1 (1, 0)

936 (1, 0) 1 + t + t2 (−12, 1)

937 (−6, 1) 2t3 (−5, 0)

938 (−14, 1) 1 + t2 (3, 0)

939 (−1, 0) 1 + t (−10, 1)

940 (−9, 2) (−2, 1)

941 (−7, 0) 3t (−4, 1)

942 (−3, 0) 1 + 2t (−5, 0)

943 (1, 0) 2 + t (−10, 1)

944 (−6, 1) t (−3, 0)

945 (−10, 1) 1
1 + t + t2

(1, 0)
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knot reduced reduced
type (tb, r) polynomials

front and mirror
polynomials (tb, r)

946 (−1, 0) 0 3t (−7, 0)

947 (−2, 1) 3t (−7, 0)

948 (−1, 0) 1 + t (−8, 1)

949 (3, 0) 2 (−12, 1)
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