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1954 Ian J Leary

1 Introduction

A group H is said to be of type F if there is a finite classifying space for H , ie, if
there exists a finite simplicial complex whose fundamental group is isomorphic
to H and whose universal cover is contractible. A group of type F is necessarily
torsion-free. It is easily seen that any finite-index subgroup of a group of type
F is also of type F .

A group G is said to be of type V F if G contains a finite-index subgroup H
which is of type F , ie, if G is virtually of type F . If H has index n in G, then
the kernel of the action of G on the cosets of H has index at most n!. Hence any
group of type V F contains a finite-index normal subgroup of type F , and so
for any group G of type V F there is a bound on the orders of finite subgroups
of G.

K S Brown’s book ‘Cohomology of Groups’ contains a result that implies that a
group of type V F can contain only finitely many conjugacy classes of subgroups
of prime power order [4, IX.13.2]. The question of whether a group of type V F
could ever contain infinitely many conjugacy classes of finite subgroups was
posed in [11, 8], and remained unanswered until Brita Nucinkis and the author
constructed examples in [7]. These examples may be summarized as follows:

Theorem 1 Let Q be a finite group admitting a simplicial action on a finite
contractible simplicial complex L such that the fixed point set LQ is empty.
Then there is a group HL of type F (depending only on L) and an action
of Q on HL such that the semi-direct product HL:Q contains infinitely many
conjugacy classes of subgroup isomorphic to Q.

R Oliver has shown that a finite group Q admits an action on a finite con-
tractible L without a global fixed point if and only if Q is not expressible as
p–group-by-cyclic-by-q–group for any primes p and q [9]. (Oliver’s main result
is the construction of actions: the proof that actions do not exist in the other
cases is far simpler and we include it in Section 3.)

The purpose of this paper is to close the gap between Brown’s result and the
construction of Theorem 1. For any finite group Q that is not of prime power
order, we construct a group H of type F with an action of Q so that the semi-
direct product H:Q contains infinitely many conjugacy classes of subgroup
isomorphic to Q, and finitely many conjugacy classes of other finite subgroups.
As a corollary we obtain the following apparently stronger result.
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Theorem 2 Let Q = {Q1, . . . , Qn} be a finite list of isomorphism types of
finite group, such that no Qi is a group of prime power order. There exists a
group G = G(Q) of type V F such that G contains infinitely many conjugacy
classes of subgroup isomorphic to a finite group Q if and only if Q ∈ Q.

In particular, it follows that a group of type V F may contain infinitely many
conjugacy classes of elements of finite order, although any such group can only
contain finitely many conjugacy classes of elements of prime power order.

Our techniques also apply to other weaker finiteness conditions. Recall that a
group G is of type FP over a ring R if the trivial module R for the group ring
RG admits a finite resolution by finitely generated projective RG–modules, ie,
if and only if there is an integer n and an exact sequence of RG–modules

0 → Pn → · · · → P1 → P0 → R→ 0

in which each Pi is a finitely generated projective. If there exists such a sequence
in which each Pi is a finitely generated free module, then G is said to be of
type FL over R.

In [7] Brita Nucinkis and the author proved the following.

Theorem 3 Let Q be a finite group admitting a simplicial action on a finite
Q–acyclic simplicial complex L such that the fixed point set LQ is empty. Then
there is a virtually torsion-free group G = HL:Q of type FP over Q containing
infinitely many conjugacy classes of subgroup isomorphic to Q.

R Oliver has shown that a finite group Q admits such an action if and only if
Q is not of the form cyclic-by-p–group for some prime p [9]. In particular, the
above construction did not give rise to any groups of type FP over Q containing
infinitely many conjugacy classes of elements of finite order. The question of
whether such groups can exist was posed by H Bass in [1, 11]. One reason why
this question is of interest is that if G contains infinitely many conjugacy classes
of elements of finite order, then the Grothendieck group K0(QG) may be shown
to have infinite rank. (We give a proof of this fact below in Theorem 22.)

Any group of type F is of type FP over any ring R, and a group G of type
V F is of type FP over any ring R in which the orders of all finite subgroups
of G are units. In particular, every group of type V F is of type FP over
Q. It follows that examples coming from Theorem 2 may be used to answer
Bass’s question. By Brown’s result, groups of type V F necessarily contain only
finitely many conjugacy classes of elements of prime power order. This is not
the case for groups of type FP over Q, and in fact for any non-trivial finite

Geometry & Topology, Volume 9 (2005)



1956 Ian J Leary

group Q we construct a group of type FP over Q containing infinitely many
conjugacy classes of subgroup isomorphic to Q, and finitely many conjugacy
classes of other finite subgroup. The following is a corollary of our result.

Theorem 4 Let Q = {Q1, . . . , Qn} be a finite list of isomorphism types of
non-trivial finite groups. There exists a virtually torsion-free group G = G(Q)
of type FP over Q such that G contains infinitely many conjugacy classes of
subgroup isomorphic to a finite group Q if and only if Q ∈ Q.

The groups HL appearing in the statements of Theorems 1 and 3 are the groups
introduced by M Bestvina and N Brady, who used them to solve a number of
open problems concerning homological finiteness conditions [2]. In particular,
in the case when L is a finite acyclic complex that is not contractible, they
showed that the group HL is of type FL over Z but is not finitely presented.
The main idea in [7] was to allow a finite group Q to act on the complex L,
and hence on the group HL .

The main idea in this paper is to consider Bestvina–Brady groups HL for
infinite complexes L. If Q is any finite group not of prime power order, then
there exists a complex L with a Z ×Q–action such that

(1) L is contractible;

(2) Z ×Q acts cocompactly on L;

(3) all cell stabilizers are finite;

(4) {0} ×Q fixes no point of L.

The first three properties together imply that the semi-direct product HL:Z
is of type F , and the fourth property implies that the semi-direct product
HL:(Z ×Q) contains infinitely many conjugacy classes of subgroup isomorphic
to Q. A construction for L as above in the case when Q is cyclic was given by
Conner and Floyd [5]. In Section 3 we give a construction for arbitrary finite
Q which was shown to us by Bob Oliver.

A similar (but simpler) construction involving an infinite Q–acyclic complex L
is used in proving our theorem concerning groups of type FP over Q.

In the final section of the paper we discuss some further finiteness properties
of the groups that we construct. We show that the groups are residually finite,
although we are unable to decide whether they are linear. We also show that
each of the groups used in the proofs of Theorems 2 and 4 occurs as the kernel
of a map to Z from a group that acts cocompactly with finite stabilizers on a
CAT(0) cube complex.
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2 Bestvina–Brady groups

In this section we define the Bestvina–Brady group HL associated to a flag
complex L, and we check that some of the results in [2, 7] extend to the case
when L is an infinite flag complex.

A flag complex, L, is a simplicial complex which contains as many higher
dimensional simplices as possible, given its 1–skeleton. In other words, whenever
the complete graph on a finite subset of the vertex set of L is contained in the
1–skeleton of L, then there is a simplex of L with that set of vertices. The
realisation of any poset is a flag complex (since a subset is totally ordered if any
two of its members are comparable). In particular, the barycentric subdivision
of any simplicial complex is a flag complex.

Given a flag complex L, the associated right-angled Artin group GL is the
group with generators the vertices of L subject only to the relations that the
ends of each edge commute. There is a model for the classifying space BGL

with one n–dimensional cubical cell for each (n−1)–simplex of L (including one
vertex corresponding to the empty simplex in L). Let XL denote the universal
cover of this space. Cells of XL are n–cubes of the form (g, v1, . . . , vn) where
(v1, . . . , vn) is an n − 1–simplex of L and g is an element of G. The ith pair
of opposite faces of this n–cube consists of the cubes (g, v1, . . . , v̂i, . . . , vn) and
(gvi, v1, . . . , v̂i, . . . , vn), where gvi is the product of two elements of GL , and
as usual v̂i means ‘omit vi ’. The action of GL is given by g′(g, v1, . . . , vn) =
(g′g, v1, . . . , vn). If σ = (v1, . . . , vn) is a simplex of L, we will write (g, σ) in
place of (g, v1 . . . , vn). In particular, we will write (g) for a vertex of XL .

The space XL admits the structure of a CAT(0) cubical complex: there is
a geodesic CAT(0) metric on XL in which each cubical cell is isometric to a
standard Euclidean unit cube, and the action of GL is by isometries of this
metric. In the case when L is infinite, XL is not locally finite, and the metric
topology on XL is not the same as the CW–topology, but this will not cause
any difficulties.
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Suppose now that f : L → L′ is a simplicial map. Then f defines a group
homomorphism f∗ : GL → GL′ , which takes the generator v to the generator
f(v), and f defines a piecewise-linear continuous map f! : XL → XL′ , which
takes the vertex (g) to the vertex (f(g)), and extends linearly across each cube.
The map f! is GL–equivariant, where f∗ is used to define the GL–action on
XL′ , and so induces a map from XL/GL to XL′/GL′ , which is an explicit con-
struction for the map B(f∗) : BGL → BGL′ . If f is an injective simplicial map,
then f∗ is an injective group homomorphism and f! is an isometric embedding.

Two special cases of this construction are of interest to us. Firstly, any group
Γ of automorphisms of L gives rise to a group of automorphisms of GL and
to a group of cellular automorphisms of XL/GL . Since the unique vertex in
XL/GL is fixed by Γ, the group of all lifts of elements of Γ to the covering
space XL → XL/GL is the semi-direct product GL:Γ, where Γ acts on GL via
the action described above.

Secondly, let ∗ denote a 1–point simplicial complex. For this choice of simplicial
complex, G∗ is infinite cyclic, and X∗ is the real line triangulated with one
orbit of vertices and one orbit of edges. For any L, there is a unique map
fL : L → ∗, and the Bestvina–Brady group HL is defined to be the kernel of
fL∗ : GL → G∗ . The map fL! : XL → X∗

∼= R may be considered as defining a
‘height function’ on X∗ . Identifying the integers Z ⊆ R with the vertex set in
X∗ , one sees that fL! sends each vertex of XL to an integer, and that each cube
of XL has a unique minimal and maximal vertex for this height function. For
the cube C , we shall write min(C) and max(C) respectively for its minimal
and maximal vertices. Any simplicial map f : L→ L′ fits in to a commutative
triangle with fL : L → ∗ and fL′ : L′ → ∗, and hence one obtains an induced
map f∗ : HL → HL′ . In particular, if Γ is a group of simplicial automorphisms
of L, then the semi-direct product HL:Γ is defined and is equal to the kernel
of the composite GL:Γ → G∗ × Γ → G∗ .

The work of Bestvina and Brady [2] relies on a study of the height function
f : XL → X∗ = R. We recall part of this, and check that it applies to the case
when L is infinite (which was not considered in [2]).

Pick a point c in the interior of an edge of X∗ , and define Y = YL = f−1(c) ⊆
XL . (The point c will remain fixed for the remainder of this section, but will
be suppressed from the notation.) Give Y the structure of a polyhedral CW–
complex by taking as cells the sets C ∩ Y where C is a cube of XL . Note
that the CW–structure on Y gives rise to the same topology as the subspace
topology coming from the CW–topology on X .
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Now let C be a cube in XL whose highest vertex is v1 . Define a subset Cc of
C by

Cc = C ∩ f−1([c,∞)) = C ∩ f−1([c, f(v1)]).

Similarly, if the lowest vertex of C is v0 , define a subset Cc by

Cc = C ∩ f−1((−∞, c]) = C ∩ f−1([f(v0), c]).

If C = (g, σ) for some simplex σ ∈ L, then the link of v1 in C is homeomorphic
to σ . It follows that if f(v1) > c, then Cc is homeomorphic to the cone on L
with vertex v1 . If f(v1) < c, then Cc is empty. Similarly, if f(v0) < c then Cc

is empty, and otherwise Cc is homeomorphic to the cone on σ . Now for v a
vertex of XL , define F (v) to be either

F (v) =

{

⋃

v=max(C) Cc f(v) > c
⋃

v=min(C) C
c f(v) < c

For each v , one may show that F (v) is homeomorphic to the cone on L with
vertex v . (Here, as usual, we are using the CW–topology on both F (v) and
the cone on L.) Now for a, b ∈ X∗ = R with a < c < b, define a subspace Y[a,b]

of XL by

Y[a,b] = Y ∪
⋃

a≤f(v)≤b

F (v).

Each Y[a,b] is a CW–complex, with cells the truncated cubes Cc , C
c and C ∩Y

for each cube C of XL , and if α ≤ a < c < b ≤ β , then Y[a,b] is a subcomplex
of Y[α,β] . As a decreases (resp. b increases) the complex Y[a,b] only changes
as a (resp. b) passes through an integer. For each a < c < b, one has that
Y[a−1,b+1] is homeomorphic to Y[a,b] with a family of subspaces homeomorphic
to L coned off. (There is one such cone for each vertex in Y[a−1,b+1] − Y[a,b] .)
Thus one obtains the following lemma and corollary due to Bestvina–Brady [2],
for any simplicial complex L.

Lemma 5 If L is contractible, then for any a < c < b, the inclusion of Y in
Y[a,b] is a homotopy equivalence. If L is R–acyclic for some ring R, then for any
a < c < b, the inclusion of Y in Y[a,b] induces an isomorphism of R–homology.

Corollary 6 If L is contractible, then Y is contractible. If L is R–acyclic,
then Y is R–acyclic.

Proof We know that XL is contractible, and the lemma implies that the
inclusion Y → XL is a homotopy equivalence if L is contractible and is an
R–homology isomorphism if L is R–acyclic.
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Theorem 7 Suppose that Γ acts freely cocompactly on a simplicial com-
plex L. If L is contractible, then HL:Γ is type F . If L is R–acyclic, then
HL:Γ is type FL over R.

Proof It follows from Corollary 6 that Y is contractible or R–acyclic whenever
L is. Thus it suffices to show that HL:Γ acts freely cocompactly on Y . To see
this, first note that GL:Γ has only finitely many orbits of cells in its action on
XL . If C is an n–cube of XL with top vertex v , then C ∩ Y is non-empty if
and only if c < f(v) < c + n. It follows that each GL:Γ–orbit of n–cubes in
XL gives rise to exactly n HL:Γ–orbits of (n− 1)–cells in Y .

It remains to study the conjugacy classes of finite subgroups of groups of the
form HL:Γ and GL:Γ. In fact it is no more difficult to study conjugacy classes
of subgroups Q′ such that Q′ ∩ GL = {1}. Consider first the collection of
subgroups Γ′ of GL:Γ which map isomorphically to GL:Γ/GL

∼= Γ. The action
of Γ on XL/GL fixes the unique vertex. It follows that each such Γ′ fixes some
vertex v of XL . Since the vertices form a single orbit, it follows that all such
Γ′ are conjugate in GL:Γ.

Proposition 8 Let Γ act on L, let Q ≤ Γ, and let Q′ be any subgroup of
GL:Γ that maps isomorphically to Q ≤ Γ = GL:Γ/GL . If LQ = ∅, then Q′

fixes a unique vertex in XL . If LQ contains the barycentre of an m–simplex,
and Q′ fixes a vertex (g) ∈ XL of height f(g) = a, then Q′ also fixes a vertex
of height a+ (m+ 1)n for each integer n.

Remark Since we are not assuming that the action of Γ on L makes L into
a Γ–CW–complex, it is not necessarily the case that LQ is a subcomplex of
L. However there can be a point of LQ in the interior of the simplex σ only if
qσ = σ for all q ∈ Q. In this case the barycentre of σ is a point fixed by Q.

Proof For the first time, we shall make use of the CAT(0) metric on XL .
Suppose that Q′ fixes two distinct vertices (g), (h) of XL . Since geodesics in a
CAT(0) metric space are unique, it follows that the geodesic arc from (g) to (h)
is also fixed by Q′ . The start of this arc is a straight line passing from (g) into
the interior of C , an n–cube of XL for some n > 0, which must be preserved
(setwise) by Q′ . If C = (g′, v1, . . . , vn), then it follows that the (n−1)–simplex
(v1, . . . , vn) in L is (setwise) preserved by Q, and hence that LQ 6= ∅.

For the second statement, suppose that (g) is fixed by Q′ , and that the m–
simplex (v0, . . . , vm) in L is setwise fixed by Q. Then the long diagonal from
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(g) to (gv0v1 · · · vm) in the (m+ 1)–cube (g, v0, . . . , vm) is an arc fixed by Q′ ,
which connects two vertices whose heights differ by m + 1. It follows that for
any n, the vertex g(v0v1 · · · vm)n is fixed by Q′ .

Theorem 9 Let Γ act on L, and let Q ≤ Γ. If LQ = ∅, then there are
infinitely many conjugacy classes of subgroups Q′ of HL:Γ whose members
map isomorphically to conjugates of Q in Γ. If LQ contains the barycentre of
an m–simplex, then there are at most m + 1 conjugacy classes of such Q′ in
HL:Γ. In particular, if LQ contains a vertex of L, then any two such subgroups
are conjugate.

Proof We know that any such Q′ fixes a vertex of XL and that every vertex
is fixed by some such Q′ . In the case when LQ = ∅, each Q′ fixes exactly one
vertex of XL . Since vertices of different heights are in different orbits for the
action of HL:Γ, it follows that in this case there are infinitely many conjugacy
classes of such Q′ .

In general, HL acts transitively on the vertices of fixed height. If LQ contains
the barycentre of an m–simplex, and Q′ fixes a vertex of height a, then Q′

also fixes a vertex of height a+ (m+ 1)n for each n. Hence given any (m+ 2)
subgroups of HL:Γ which map isomorphically to Q or one of its conjugates,
some pair Q′ , Q′′ of these subgroups must fix vertices of the same height.
Let Γ′ ≥ Q′ and Γ′′ ≥ Q′′ be the stabilizers of these vertices, which map
isomorphically to Γ. The subgroups Γ′ and Γ′′ are conjugate by an element
of HL . Hence it follows that Q′ and Q′′ are conjugate by some element of
HL:Γ.

3 Group actions

Here we construct the actions of finite groups Q and direct products of the
form Z × Q on finite-dimensional simplicial complex that are needed in order
to apply the constructions of the previous section. The first two propositions
are included to show why actions of finite groups alone cannot give all the
examples that we need.

Proposition 10 Suppose that Q is a finite group with normal subgroups
P ≤ P ′ , so that P and Q/P ′ are groups of prime power order and P ′/P is
cyclic. For any action of Q on a finite contractible complex L, the fixed point
set LQ is non-empty.
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Proof Let p and q be the primes (not necessarily distinct) so that |P | is a
power of p and |Q : P | is a power of q . Let C denote P ′/P , and let Q′ denote
Q/P ′ .

By PA Smith theory [4, VII.10.5], the fixed point set L′ = LP has the same
mod-p homology as a point, and hence has Euler characteristic equal to 1. By
character theory, it follows that the Euler characteristic of L′′ = LP ′

= L′C

is equal to 1. By counting lengths of orbits of cells, one sees that LQ = L′′Q
′

has Euler characteristic congruent to 1 modulo q . This implies that LQ is not
empty.

The above proof also gives:

Proposition 11 Let Q be a finite group with a normal cyclic subgroup P ′

so that Q/P ′ is a group of prime power order. For any action of Q on a finite
complex L′ with Euler characteristic χ(L′) = 1, the fixed point set L′Q is
non-empty.

The actions on Q–acyclic spaces that we shall need will all come from Theo-
rem 13. In the proof of we shall need Lemma 12 concerning Wall’s finiteness
obstruction.

Suppose that G is a group of type FP over the ring R, and that

0 → Pn → · · · → P1 → P0 → R→ 0

is a resolution of R over RG by finitely generated projectives. As usual, let
K0(RG) denote the Grothendieck group of finitely-generated projective RG–
modules. The Wall obstruction or Euler characteristic of G over R is the
element of K0(RG) given by the alternating sum

w(R,G) =
∑

i

(−1)i[Pi]

and is independent of the choice of resolution [10, I.7].

Lemma 12 Let Q be a finite group. The group G = Z × Q is FP over Q,
and the Wall obstruction for this group is zero.

Proof Let the group G = Z×Q act on the real line via the projection G→ Z.
There is a G–equivariant triangulation of the line with one orbit of 0–cells of
type G/Q and one orbit of 1–cells, also of type G/Q. The cellular chain complex
for this space gives a projective resolution for Q over QG of length one:

0 → QG/Q→ QG/Q→ Q → 0,

in which the modules in degrees 0 and 1 are isomorphic to each other.
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Theorem 13 Let Q be a finite group, and let F be a non-empty family of
subgroups of Q which is closed under conjugation and inclusion. There is a
3–dimensional Q–acyclic simplicial complex L admitting a cocompact action
of Γ = Z×Q so that all cell stabilizers are finite and so that P ≤ Q fixes some
point of L if and only if P ∈ F .

Proof Let ∆ be a finite set with a Q–action, such that ∆P 6= ∅ if and only if
P ∈ F , and let Z = Q ∗Q ∗ ∆ be the join of two copies of Q and one copy of
∆, with the diagonal action of Q. This Z is a 2–dimensional simply-connected
Q–space, with the property that the Q–action is free except on the 0–skeleton.
Let Z act on R in the usual way, and let L0 be the product R × Z with the
product action of Γ = Z × Q. Now let L1 be the 2–skeleton of L0 . The cells
of L1 in non-free orbits form a copy of R × ∆ with the product action of Γ.
Let C∗ be the rational chain complex for L1 . Since L1 is 1–connected, C∗

forms the start of a projective resolution for Q over QΓ. As QΓ–modules, C2

is free and each of C1 and C0 is the direct sum of a free module and a copy
of Q[Z × ∆]. Hence the element of K0(QΓ) defined by the alternating sum
[C2] − [C1] + [C0] is in the subgroup of K0(QΓ) generated by the free module.
Since we know by Lemma 12 that the Wall obstruction for Γ over Q is zero, it
follows that H2(C∗) is a stably-free QΓ–module. Make L2 by attaching finitely
many free Γ–orbits of 2–spheres to L1 in such a way that H2(L2; Q) is a free
QΓ–module. Let c1, . . . , ck be cycles in C2(L2,Q) representing a QΓ–basis for
H2(L2; Q), and pick a large integer M so that each M.ci is an integral cycle.
Since L2 is 1–connected, each M.ci is realized by the image of the fundamental
class for S2 under some map fi : S

2 → L2 . Now define L3 by attaching free Γ–
orbits of 3–balls to L2 , using the fi as attaching maps for orbit representatives.
This L3 has all of the required properties, except that it has been constructed
as a Γ–CW–complex rather than as a Γ–simplicial complex. By the simplicial
approximation theorem, we can construct a 3–dimensional Γ–simplicial complex
L together with an equivariant homotopy equivalence L→ L3 .

Before stating and proving Theorem 15, which will provide all the actions on
contractible spaces that we shall need, we begin by establishing some notation,
and proving a lemma concerning equivariant self-maps of spheres in linear rep-
resentations. Lemma 14 and Theorem 15 were shown to the author by Bob
Oliver.

Let S denote the unit sphere in Cn , so that S is a sphere of odd dimension.
For x ∈ S , let TxS be the tangent space to S at x, and let Bx be the closed
unit ball in TxS , with boundary ∂Bx . For ǫ > 0, let eǫ,x : Bx → S denote
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the scalar multiple of the exponential map such that the image of Bx is a ball
of radius ǫ in S . In the case when ǫ = π , this map sends the whole of ∂Bx

to the point −x. The cases of interest to us include the case ǫ = π and the
case when ǫ is small. Suppose that a finite group P acts linearly on S , fixing
the point x. This induces a P –action on TxS , and the exponential map eǫ,x
is P –equivariant in the sense that eǫ,x(gv) = geǫ,x(v) for all v ∈ Bx and all
g ∈ P .

Each of the self-maps of spheres that we shall construct will have the property
that it is equal to the identity except on a number of small balls. For such a
map f : S → S , its support, supp(f), is defined to be the closure of the set
of points x ∈ S so that f(x) 6= x. Given another such map f ′ : S → S with
supp(f) ∩ supp(f ′) = ∅, the map f

∐

f ′ is defined by

f
∐

f ′(x) =











f(x) x ∈ supp(f)

f ′(x) x ∈ supp(f ′)

x x /∈ supp(f) ∪ supp(f ′).

Suppose that a group Q acts on S . For f : S → S a self-map of S and g ∈ Q,
define g ∗ f(s) = g(f(g−1(s))). The support of g ∗ f is equal to g.supp(f).

For x ∈ S , let r : (Bx, ∂Bx) → (Bx, ∂Bx) be any map of degree −1, for example
a reflection in a hyperplane through 0 in Bx . Define φ̃x, ψ̃x : Bx → S by

φ̃x(v) =

{

−eπ,x(2v) |v| ≤ 1/2

(|v| − 1/2)v |v| ≥ 1/2

ψ̃x(v) =

{

−eπ,x(r(2v)) |v| ≤ 1/2

(|v| − 1/2)v |v| ≥ 1/2

and define self-maps φǫ,x and ψǫ,x to be the identity outside of the image of
eǫ,x and equal to φ̃x ◦ e

−1
ǫ,x and ψ̃x ◦ e

−1
ǫ,x respectively on their supports. If f is a

self-map of S of degree n whose support is disjoint from the ǫ–ball around x,
then f

∐

φǫ,x is a self-map of degree n+ 1 and f
∐

ψǫ,x is a self-map of degree
n− 1.

Suppose that a finite group Q acts linearly on S , so that the distance between
any two points of the orbit Q.x is greater than 2ǫ. If g ∈ Q, then g ∗ φǫ,x and
φǫ,g.x are equal. In particular, if g is an element of Qx , the stabilizer of the point
x, then the equation g ∗φǫ,x = φǫ,x holds. Since the definition of ψ involved an
arbitrary choice of function r , there is no corresponding equivariance property
for the ψ self-maps. However, the map g ∗ ψǫ,x is a self-map whose support is
the ǫ–ball in S centred at g.x, and if f is any self-map of S whose support is
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disjoint from this ball, the coproduct f
∐

g ∗ψǫ,x is a self-map whose degree is
one less than that of f .

For any x ∈ S , define

Q.φǫ,x =
∐

g∈Q/Qx

g ∗ φǫ,x,

for any sufficiently small ǫ, where the sum runs over a transversal to Qx in Q.
For x in a free Q–orbit, define

Q.ψǫ,x =
∐

g∈Q

g ∗ ψǫ,x,

for small ǫ. Each of these maps is Q–equivariant.

Lemma 14 Let S be the unit sphere in a complex representation of the finite
group Q, and suppose that S contains points in Q–orbits of coprime lengths.
Then S admits a Q–equivariant self-map of degree zero.

Proof Without loss of generality, we may suppose that Q acts faithfully on
S . The action of the unit circle in C on S commutes with the Q–action, and
so whenever S contains a Q–orbit of a given length, S contains infinitely many
Q–orbits of that length. Pick points x1, . . . , xm in distinct Q–orbits, such that
the sum of the lengths of the orbits is congruent to −1 modulo |Q|, ie, so that
there exists n with

|Q|n = 1 +

m
∑

i=1

|Q.xi|.

Now pick y1, . . . , yn in distinct free Q–orbits. Choose ǫ sufficiently small that
any two points in any of these orbits are separated by more than 2ǫ. The
coproduct

f =

m
∐

i=1

Q.φǫ,xi

∐

n
∐

j=1

Q.ψǫ,yj

is the required degree zero map.

Theorem 15 Let Q be a finite group not of prime power order. Then there
exists a finite-dimensional contractible simplicial complex L with a cocompact
action of Z × Q such that all stabilizers are finite and such that LQ = ∅.
Furthermore, L may be chosen in such a way that LP 6= ∅ for P any proper
subgroup of Q.
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Proof Let S be the unit sphere in the ‘reduced regular representation of Q’,
ie, the regular representation CQ minus the trivial representation. This S has
the property that SQ = ∅ but SP 6= ∅ for any proper subgroup P < Q. Since
Q is not of prime power order, S satisfies the hypotheses of Lemma 14, and so
there exists a Q–equivariant map f : S → S of degree zero.

Take a Q–equivariant triangulation of the space I × S , where Q acts trivially
on the interval I . By the simplicial approximation theorem, there is an integer
n ≥ 0 and a simplicial map f ′ : {1} × S(n) → {0} × S which is equivariantly
homotopic to f . Now let M be the nth barycentric subdivision of I × S
relative to {0} × S . This is a copy of I × S , with the original triangulation on
the subspace {0}×S and the nth barycentric subdivision of this triangulation
on {1}×S . Construct L from the direct product Z×M by identifying (m, 1, s)
with (m+1, 0, f ′(s)) for each s ∈ S and m ∈ Z. This space L is a triangulation
of the doubly infinite mapping telescope of the map f ′ : S → S . The fact that
f ′ has degree zero implies that L is contractible.

One difference between Theorem 13 and Theorem 15 is that the the dimension
of the space constructed in Theorem 15 varies with Q. The final results in this
section show that this difference cannot be avoided.

Lemma 16 Let Q be the special linear group SLn(Fp) over the field of p
elements. Let e1, . . . , en be the standard basis for the vector space Fn

p . Define
elements τ1, . . . , τn ∈ Q by

τi(ej) =











ej i 6= j

ei + ei+1 i = j < n

en + e1 i = j = n.

The elements τ1, . . . , τn generate Q, and any proper subset of them generates
a subgroup of order a power of p.

Proof Let θ be the cyclic permutation of the n standard basis elements, so
that θ(ei) = ei+1 for i < n and θ(en) = θ1 . The action of θ on Q by conjuga-
tion induces a cyclic permutation of the τi .

The elements τ1, . . . , τn−1 generate the upper triangular matrices, which form
a Sylow p–subgroup of Q. This group contains each of the elementary matrices
Ei,j for i < j , defined by

Ei,j(ek) =

{

ek k 6= i

ek + ej k = i.
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Conjugation by powers of θ induces a transitive permutation of the size n− 1
subsets of τ1, . . . , τn . Hence one sees that each such set generates a Sylow
p–subgroup of Q.

It is well-known that the elementary matrices Ei,j for all i 6= j form a generating
set for Q. Each elementary matrix may be expressed as the conjugate of an
upper triangular elementary matrix by some power of θ . It follows that the
subgroup generated by τ1, . . . , τn contains all elementary matrices and so is
equal to Q.

Theorem 17 As in the previous lemma, let Q = SLn(Fp). Suppose that L is
contractible, or that L is mod-p acyclic, and that Q acts on L so that LQ = ∅.
Then the dimension of L is at least n− 1.

Proof We may assume that L is finite-dimensional, or there is nothing to
prove. Let Li be the fixed point subspace for the action of τi . By P. A. Smith
theory, the fixed point set for the action of a p–group on a finite-dimensional
mod-p acyclic space is itself mod-p acyclic. From Lemma 16 it follows that each
intersection of at most n−1 of the Li is mod-p acyclic, and that the intersection
L1 ∩ . . . ∩ Ln is empty. Let X be the union of the Li . The Mayer–Vietoris
spectral sequence for the covering of X by the Li with mod-p coefficients is
isomorphic to the spectral sequence for the covering of the boundary of an
(n − 1)–simplex by its faces. It follows that the mod-p homology of X is
isomorphic to the mod-p homology of an (n − 2)–sphere. Hence X cannot be
a subspace of a mod-p acyclic space of dimension strictly less than n− 1.

Remark For a discrete group G, the minimal dimension of any contractible
simplicial complex admitting a G–action without a global fixed point is an
interesting invariant of G. The above theorem shows that this invariant can
take arbitrarily large finite values. When G is a finite group of prime power
order, the invariant takes the value infinity. Peter Kropholler has asked whether
there are any other finitely generated groups G for which the invariant takes
the value infinity.

4 Examples

Here we combine the results of Sections 2 and 3 to construct groups with strong
homological finiteness properties that contain infinitely many conjugacy classes
of certain finite subgroups.
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Theorem 18 Let Q be a finite group not of prime power order. There is a
group H of type F and a group G = H:Q such that G contains infinitely many
conjugacy classes of subgroup isomorphic to Q and finitely many conjugacy
classes of other finite subgroups.

Proof By Theorem 15, there is a contractible finite-dimensional simplicial
complex L with a cocompact action of Z×Q such that all stabilizers are finite,
LQ = ∅ and LP 6= ∅ if P < Q. Take a flag triangulation of L, and consider the
Bestvina–Brady group HL . By Theorem 7, the semi-direct product H = HL:Z
is of type F . By Theorem 9 the group G = HL:(Z×Q) contains infinitely many
conjugacy classes of subgroups isomorphic to Q and finitely many conjugacy
classes of other finite subgroups.

We can now prove Theorem 2 as stated in the introduction. We first give a
lemma concerning free products.

Lemma 19 Let G = G1 ∗ · · · ∗Gn be a free product of groups, and let Hi be
a finite-index normal subgroup of Gi . There is a bijection between conjugacy
classes of non-trivial finite subgroups of G and the disjoint union of the sets of
conjugacy classes of non-trivial finite subgroups of the Gi . The kernel of the
map from G to

∏

iGi/Hi is isomorphic to the free product of finitely many
copies of the Hi and a finitely-generated free group.

Proof Take a classifying space BGi for each Gi , take a star-shaped tree with
n edges whose central vertex has valency n, and make a classifying space BG
for G by attaching the given BGi to the ith boundary vertex of the tree. Now
consider the regular covering of this space BG corresponding to the kernel of
the homomorphism G →

∏

iG/Hi . This is a finite covering. The subspace of
this covering lying above each BGi is a finite disjoint union of copies of BHi ,
and the subspace lying above the tree is a finite disjoint union of trees. Hence
the whole space, which is a classifying space for the kernel, consists of a finite
number of copies of the BHi ’s, connected together by a finite number of trees.
The fundamental group of such a space is the free product of finitely many
copies of the Hi and a finitely-generated free group.

For the claimed result concerning conjugacy classes of finite subgroups, we
consider the tree obtained from the given expression for G as a free product.
One way to construct this tree is by considering the universal covering space of
the model for BG given above. This consists of copies of the EGi ’s, connected
together by trees. Now contract each copy of EGi to a point. The resulting
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G–space is contractible (since replacing EGi by a single point does not change
its homotopy type) and is 1–dimensional. It is therefore a G–tree, with n+ 1
orbits of vertices and n orbits of edges. Each edge orbit is free, one of the vertex
orbits is free, and there is one vertex orbit of type G/Gi for each 1 ≤ i ≤ n.
Whenever a finite group acts on a tree, it has a fixed point. (To see this,
take the finite subtree spanning an orbit, and peel off orbits of ‘leaves’ until
the remainder is fixed.) Since the stabilizer of each edge is trivial, it follows
that each non-trivial finite subgroup of G must fix exactly one vertex of the
tree. This implies that each non-trivial finite subgroup of G is conjugate to
a subgroup of exactly one of the Gi , and that two finite subgroups of Gi are
conjugate in G if and only if they were already conjugate in Gi .

Proof of Theorem 2 Let Q = {Q1, . . . , Qn} be a finite list of isomorphism
types of finite groups not of prime power order. For each Qi , let Gi = Hi:Qi be
a group as in Theorem 18. Let G be G1 ∗ · · · ∗Gn , the free product of the Gi .
By Lemma 19, the group G is of type V F , contains infinitely many conjugacy
classes of subgroup isomorphic to each Qi , and contains finitely many conjugacy
classes of finite subgroups of all other isomorphism types.

Theorem 20 Let Q be a non-trivial finite group. There exists a group
G = H:Q of type FP over Q, containing infinitely many conjugacy classes
of subgroups isomorphic to Q and finitely many conjugacy classes of other
finite subgroups. Furthermore, H is torsion-free, has rational cohomological
dimension at most 4 and has integral cohomological dimension at most 5.

Proof By Theorem 13 there is a 3–dimensional Q–acyclic simplicial complex
L with a cocompact Z×Q–action such that all stabilizers are finite, LQ = ∅ and
LP 6= ∅ if P < Q. Take a flag triangulation of L, and consider the Bestvina–
Brady group HL . By Theorem 7, the semi-direct product H = HL:Z is FP
over Q. By Theorem 9 the group G = HL:(Z × Q) contains infinitely many
conjugacy classes of subgroups isomorphic to Q and finitely many conjugacy
classes of other finite subgroups. The rational cohomological dimension of HL

is at most the dimension of the Q–acyclic space Y appearing in Section 2,
which is equal to the dimension of L, and the integral cohomological dimension
of HL is at most the dimension of the space XL , which is one more than the
dimension of L. The cohomological dimension of HL:Z over any ring is at most
one more than the cohomological dimension of HL over the same ring.

Proof of Theorem 4 For each Qi ∈ Q, Theorem 20 gives a group Gi of type
FP over Q containing infinitely many conjugacy classes of subgroup isomorphic
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to Q and only finitely many conjugacy classes of other finite subgroups. By
Lemma 19, the free product G = G1 ∗· · · ∗Gn is FP over Q, contains infinitely
many conjugacy classes of subgroups isomorphic to each Qi ∈ Q, and contains
finitely many conjugacy classes of all other finite subgroups.

Remark One difference between Theorems 2 and 4 is that each of the groups
constructed in Theorem 4 has virtual cohomological dimension at most 5,
whereas the virtual cohomological dimensions of the groups constructed in The-
orem 2 seem to depend on the list Q. We do not know whether this necessarily
happens, but the following proposition may be relevant.

Proposition 21 Suppose that G contains infinitely many conjugacy classes
of subgroup isomorphic to SLn(Fp), and that G acts cocompactly with finite
stabilizers on a mod-p–acyclic simplicial complex X . Then X must have di-
mension at least n− 1.

Proof There are only finitely many orbits in X , and hence only finitely many
conjugacy classes of subgroup of G can fix some point of X . It follows that
there is a subgroup isomorphic to SLn(Fp) that has no fixed point, and we may
apply Theorem 17 to deduce the required result.

Remark If G is virtually torsion-free and acts cocompactly with finite sta-
blizers on a contractible simplicial complex X , then G is of type V F . It seems
to be unknown whether every group of type V F admits such an action. It also
seems to be unknown whether every group of type FL over a prime field F
admits a free cocompact action on an F –acyclic simplicial complex X . If F
is not assumed to be a prime field, then there are counterexamples. In [6] we
exhibited a group which is FL over C but which is not FL over R. This group
cannot admit a cocompact free action on any C–acyclic simplicial complex X .

We conclude this section with a brief discussion of the Grothendieck group
K0(QG) of finitely generated projective modules for QG and its connection
with conjugacy classes of elements of finite order in G. First, we recall the
definition of the Hattori–Stallings trace [1].

For any ring R, let T (R) denote the quotient of R by the additive subgroup
generated by commutators of the form rs − sr for r, s ∈ R. For a square
matrix A with coefficients in R, the Hattori–Stallings trace tr(A) is the element
of T (R) defined as the equivalence class containing the sum of the diagonal
entries of A. As an element of T (R), this satisfies the usual trace condition
tr(AB) = tr(BA) for any matrices A and B .
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Now suppose that P is a finitely generated projective R module, and that
P is isomorphic to a summand of Rn . Pick an idempotent n × n matrix eP
whose image is isomorphic to P . The Hattori–Stallings rank of P is defined
to be tr(eP ). It may be shown that this is independent of the choice of n and
eP . The Hattori–Stallings rank defines a group homomorphism from K0(R) to
T (R).

Theorem 22 For any group G, there is a subgroup of K0(QG) which is
free abelian of rank equal to the number of conjugacy classes of finite cyclic
subgroups of G.

Proof For the group algebra QG, the group T (QG) is the Q–vector space
with basis the conjugacy classes of elements of G. For any finite cyclic subgroup
C ≤ G, define an element eC ∈ QG by

eC =
1

|C|

∑

g∈C

g.

The element eC is an idempotent, and the QG–module PC defined by PC =
QGeC is a projective QG–module. With respect to the basis for T (QG) given
by the conjugacy classes of elements of G, the non-zero coefficients in the
Hattori–Stallings trace for eC are those corresponding to elements of C . If
C1, . . . , Cn are pairwise non-conjugate finite cyclic subgroups of G, it follows
that the Hattori–Stallings traces eC1

, . . . , eCn are linearly independent. It fol-
lows that the projectives of the form PC generate a subgroup of K0(QG) which
is free abelian of rank equal to the number of conjugacy classes of finite cyclic
subgroups of G.

Corollary 23 There are groups G of type V F for which K0(QG) is not
finitely generated.

Proof Apply Theorem 22 to the groups with infinitely many conjugacy classes
of finite cyclic subgroups constructed in Theorem 18.

5 Other properties of the groups

Suppose that Q is a group of automorphisms of a finite flag complex L with n
vertices. It is shown in [7] that in this case the group GL:Q is isomorphic to
a subgroup of the special linear group SL2n(Z). We do not know whether the
groups GL:Γ, for infinite L, are linear. Residual finiteness however is easier to
establish.
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Lemma 24 Suppose that Γ is residually finite and that Γ acts cocompactly
and with finite stabilizers on a flag complex L. There is a finite-index normal
subgroup Γ′ such that for any Γ′′ ≤ Γ′ , the quotient L′ = L/Γ′′ is a flag
simplicial complex.

Proof There are finitely many conjugacy classes of simplex stabilizer in L, and
each simplex stabilizer is finite. It follows that there is a finite-index normal
subgroup Γ1 of Γ that acts freely on L. Since L is locally finite, there are
only finitely many Γ1–orbits of paths of length 1, 2 and 3 in the 1–skeleton of
L. Hence we may pick Γ2 of finite-index in Γ1 , such that no two points in the
same Γ2–orbit are joined by an edge path of length less than four. We claim
that we may take Γ′ = Γ2 .

If Γ′′ is any subgroup of Γ2 , then there is no edge path of length less than
four between any two vertices in the same Γ′′–orbit. In particular, there can
be no loops in L/Γ′ . Hence every simplex of L maps injectively to a subspace
of L/Γ′′ . There can be no double edges in L/Γ′′ , since that would give rise to
an edge path of length two between vertices in the same Γ′′–orbit. Thus the
1–skeleton of L/Γ′′ is a simplicial complex.

Now suppose that v̄0, . . . , v̄n are a mutually adjacent set of vertices of L/Γ′′ ,
and let v0 be a lift of v̄0 . There exists a unique lift vi of each v̄i that is adjacent
to v0 . For each i 6= j , there exists a unique g ∈ Γ2 so that vi is adjacent to
gvj . But if g 6= e, then the path (vj , v0, vi, gvj) gives rise to a contradiction.
Thus the vi are all adjacent to each other, and so there is a simplex σ of L
with vertex set v0, . . . , vn . It follows that the quotient L/Γ′′ contains a simplex
σ̄ spanning each complete subgraph of its 1–skeleton. Suppose that σ̄′ is any
simplex of L/Γ′′ spanning the same complete subgraph as σ̄ . There is a unique
lift σ′ of σ̄′ containing v0 . If σ′ 6= σ , then there exists i and g 6= e so that
gvi is a vertex of σ′ . But then there is an edge path of length 2 from vi to
gvi . Hence any finite full subgraph of the 1–skeleton of L/Γ′′ is spanned by a
unique simplex, and so L/Γ′′ is a flag complex.

Theorem 25 Let Γ be residually finite and let Γ act cocompactly and with
finite stabilizers on a flag complex L. Then the group GL:Γ is also residually
finite.

Proof Let g be a non-identity element of GL:Γ. Since (GL:Γ)/GL is isomor-
phic to Γ, it suffices to consider the case when g ∈ GL . Let K be a finite full
subcomplex of L (ie, a subcomplex containing as many simplices as possible
given its 0–skeleton) such that g is in the subgroup generated by the vertices
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of K , and let J be a finite full subcomplex of L containing K and every ver-
tex adjacent to a vertex of K . Let Γ′ be a finite-index subgroup of Γ as in
Lemma 24, and let Γ′′ be a finite-index normal subgroup of Γ contained in Γ′

such that any two vertices of J lie in distinct Γ′′–orbits. Now M = L/Γ′′ is a
finite flag complex, and K maps to a full subcomplex of L/Γ′′ .

The group Γ/Γ′′ acts on M , and g has non-trivial image under the homo-
morphism GL:Γ → GM :(Γ/Γ′′). Since this group is isomorphic to a subgroup
of SL2n(Z), where n is the number of vertices of M (see corollary 8 of [7]),
it follows that there is a finite quotient of GL:Γ in which the image of g is
non-zero.

In the special case when Γ = Z (which is the main case used earlier in the
paper), we shall show how to describe the group GL:Γ as the fundamental
group of a finite locally CAT(0) cube complex. First we present two lemmas
concerning right-angled Artin groups.

Lemma 26 Let N be a full subcomplex of a flag complex M . The inclusion
i : N →M induces a split injection GN → GM .

Proof The quotient of GM by the subgroup generated by the vertices of M−N
is naturally isomorphic to GN .

Lemma 27 Let the flag complex K be expressed as K = L∪M , where L and
M are full subcomplexes with N = L ∩M . Then the group homomorphisms
induced by the inclusion of each subcomplex in K induce an isomorphism
GL ∗GN

GM → GK .

Proof Immediate from the presentations of the groups, given the result of
Lemma 26.

Theorem 28 Let Γ be an infinite cyclic group generated by γ , let Γ act on
the flag complex L, and let M be a ‘fundamental domain’ for Γ in the sense
that L =

⋃

i γ
iM . Define subcomplexes N0 and N1 by

N0 = γ−1M ∩M, N1 = M ∩ γM.

Then GL:Γ is isomorphic to the HNN–extension GM∗GN0
=GN1

. (In this HNN–
extension, the base group is GM , and the stable letter conjugates the subgroup
GN0

to the subgroup GN1
by the map induced by γ : N0 → N1 .)
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Proof Let t denote the stable letter in the HNN–extension, and consider the
homomorphism φ from the HNN–extension to Z that sends t to 1 and sends
each element of GM to 0. The kernel of φ is an infinite free product with
amalgamation:

· · · ∗G−2 ∗H−1
G−1 ∗H0

G0 ∗H1
G1 ∗H2

G2 ∗ · · · ,

where Gi denotes tiGM t−i , and Hi denotes tiGN0
t−i . If we define Mi =

γiM and Ni = γiN0 , there is an isomorphism ψi : Gi → GMi
defined as the

composite
Gi

c(t−i)
−→G0

1
−→GM

c(γi)
−→GMi

of conjugation by t−i followed by the identification of G0 and GM , followed by
conjugation by γi . Each of ψi and ψi−1 induces an isomorphism from Hi to
HNi

, and these two are the same isomorphism. The ψi therefore fit together to
make an isomorphism from ker(φ), described as an infinite free product with
amalgamation, to the following infinite free product with amalgamation:

· · · ∗GM−2
∗HN

−1
GM−1

∗HN0
GM0

∗HN1
GM1

∗HN2
GM2

∗ · · · .

Furthermore, this isomorphism is equivariant for the Z–actions given by conju-
gation by powers of t and γ . By Lemma 27, the inclusions of the GMi

in GL in-
duce a Γ–equivariant isomorphism between the second free product with amal-
gamation and GL . Hence we obtain an isomorphism GM∗GN0

=GN1
→ GL:Γ as

required.

Corollary 29 Under the hypotheses of Theorem 28, the group GL:Γ is the
fundamental group of a finite locally CAT(0) cube complex.

Proof For any flag complex K , let YK denote the explicit model for the classi-
fying space BGK described in Section 2, so that YK = XK/GK . The naturality
properties of this construction are such that YN0

and YN1
are subcomplexes of

YM . We construct a model Z for B(GL:Γ) from YM and YN0
×I by identifying

{0}×YN0
with YN0

⊆ YM via the identity map and identifying {1}×YN0
with

YN1
⊆ YM via the action of γ which gives an isomorphism from N0 to N1 .

The space Z as above is a model for B(GL:Γ). To see that Z has the structure
of a locally CAT(0) cube complex, one may either quote a gluing lemma (such as
in [3], proposition II.11.13), or one may show that the link of the unique vertex
in Z is a flag complex, which suffices by Gromov’s lemma ([3], theorem II.5.18).
For any flag complex K , the link of the unique vertex in YK is a flag complex
S(K), which is a sort of ‘double’ of K : each vertex v of K corresponds to two
vertices v′ , v′′ of S(K), and a set of vertices of S(K) is the vertex set of an
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n–simplex in S(K) if and only if its image in the vertex set of K is the vertex
set of an n–simplex. (For example, in the case when K is a 2–simplex, S(K)
is the boundary of an octahedron.) The link of the vertex in Z is isomorphic
to S(M) with a cone attached to each of the subspaces S(N0) and S(N1), and
hence it is a flag complex.

Corollary 30 Each of the groups GL:(Z × Q) constructed in Section 4 acts
cocompactly with finite stabilizers on some CAT(0) cube complex. In particu-
lar, there is a model for the universal space for proper actions of GL:(Z × Q)
which has finitely many orbits of cells.

Proof Take a finite ‘fundamental domain’, M ′ , for the action of Z on L (as
in the statement of Theorem 28). In case M ′ is not Q–invariant, replace M ′

by M =
⋃

q∈Q qM
′ . For this choice of M , there is a base-point preserving

cellular Q–action on Z , the model for B(GL:Z) constructed in Corollary 29.
This induces the required action of GL:(Z × Q) on the universal cover of Z .
Whenever a group H acts with finite stabilizers on a CAT(0) cube complex,
that space is a model for the universal space for proper actions of H [7].
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