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Rounding corners of polygons and the
embedded contact homology of T 3

MICHAEL HUTCHINGS

MICHAEL SULLIVAN

The embedded contact homology (ECH) of a 3–manifold with a contact form is a
variant of Eliashberg–Givental–Hofer’s symplectic field theory, which counts certain
embedded J –holomorphic curves in the symplectization. We show that the ECH of
T 3 is computed by a combinatorial chain complex which is generated by labeled
convex polygons in the plane with vertices at lattice points, and whose differential
involves “rounding corners”. We compute the homology of this combinatorial chain
complex. The answer agrees with the Ozsváth–Szabó Floer homology HFC.T 3/ .

57R58; 57M27

1 Introduction

1.1 Motivation

Let Y be a closed oriented 3–manifold with a contact form, ie a 1–form � such that
�^d� > 0. The corresponding contact structure is the 2–plane field � WD Ker.�/; this
is oriented by d�. Also associated to � is the Reeb vector field R characterized by
�.R/D 1 and R�Í d�D 0. A periodic orbit of the Reeb flow R is called a Reeb orbit.
We assume that the Reeb orbits are nondegenerate or Morse–Bott. For � 2H1.Y /,
one can then define the “embedded contact homology” ECH�.Y; �I�/, as we explain
in Section 11.2. This is the homology of a chain complex which is generated by certain
unions of Reeb orbits with total homology class � . The differential counts “maximal
index” J –holomorphic curves in R� Y , for a suitable almost complex structure J .
These maximal index curves turn out to be embedded, except that they may contain
multiple covers of “trivial cylinders” R�  where  is a Reeb orbit. The embedded
contact homology is a relatively Z=N –graded Z–module, where N is the divisibility
of the image of c1.�/C2 PD.�/ in Hom.H2.Y /;Z/. When �D 0, there is a canonical
absolute Z=N –grading.

Embedded contact homology (ECH) is analogous to the periodic Floer theory (PFH)
for mapping tori considered by Hutchings, Sullivan and Thaddeus [11; 9; 10]. ECH is
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similar to the symplectic field theory (SFT) of Eliashberg–Givental–Hofer [7], but has
different generators and grading, and counts more restricted J –holomorphic curves.
Unlike SFT, which is highly sensitive to the contact structure, ECH is conjectured to
be a topological invariant, except that it detects the Euler class of the contact structure
via the identification (1) below. More precisely, we conjecture that ECH�.Y; �I�/

agrees with the Seiberg–Witten Floer homology zHM �.�Y / defined by Kronheimer
and Mrowka [12] and summarized with Ozsváth and Szabó in [14], or the conjecturally
isomorphic Ozsváth–Szabó Floer homology HFC� .�Y / defined in [18], as follows.
The latter two Floer homologies depend on the choice of a spin-c structure s on �Y ,
which is equivalent to a spin-c structure on Y . Let Spinc.Y / denote the set of spin-c
structures on Y . Recall that an oriented 2–plane field on Y determines a spin-c structure,
cf Turaev [28]. Hence the contact structure � gives rise to an H 2.Y IZ/–equivariant
bijection
(1) s� W H1.Y /

'
�! Spinc.Y /

sending 0 to the spin-c structure determined by the oriented 2–plane field � .

Conjecture 1.1 Let Y be a closed oriented 3–manifold with a contact form �. Then
for � 2H1.Y /, the embedded contact homology is related to the Seiberg–Witten and
Ozsváth–Szabó Floer homologies by

(2) zHM �.�Y; s�.�//'ECH�.Y; �I�/'HFC� .�Y; s�.�//;

up to a grading shift.

Recall that Taubes’s “SW=Gr” theorem [25] states that the Seiberg–Witten invariant of
a closed symplectic 4–manifold X is equivalent to the “Gromov invariant”, which is a
certain count of embedded (except for multiply covered tori) J –holomorphic curves in
X . The conjectural relation between ECH and Seiberg–Witten Floer homology can be
regarded as an analogue of “SW=Gr” for the noncompact symplectic manifold R�Y .
This was the original motivation for the definition of PFH and ECH. Note also that the
Ozsváth–Szabó Floer homology has been given a four-dimensional reformulation by
Lipshitz [15]. It is possible that the latter could be directly related to ECH by defining
a more general theory including both as special cases.

A proof of Conjecture 1.1, while perhaps a long way off, would have implications for
contact dynamics. For example, one version of the Weinstein conjecture asserts that
any contact 1–form � on a closed oriented 3–manifold Y has a Reeb orbit, see eg
Abbas–Cieliebak–Hofer [1]. If � has no Reeb orbit, then by definition, the ECH chain
complex has only one generator given by the empty set of Reeb orbits, so

ECH�.Y; �I�/D

�
Z; � D 0 and � D 0,
0; otherwise:
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However, Tom Mrowka has pointed out to us that by results in Kronheimer–Mrowka
[12], for any closed oriented 3–manifold Y , if s is a spin-c structure with c1.s/ torsion
then zHM �.Y; s/ is infinitely generated. Since T Y is a trivial bundle, one can always
find a spin-c structure s with c1.s/ D 0. Therefore, the first part of Conjecture 1.1
implies the Weinstein conjecture for every closed oriented 3–manifold.

ECH has some additional structure, analogous to structures in the Seiberg–Witten and
Ozsváth–Szabó Floer homologies. For example, there is a canonical element

(3) c.�/ 2ECH0.Y; �I 0/:

In the ECH chain complex, the homology class c.�/ is represented by the empty set
of Reeb orbits. Under the conjectured isomorphisms (2), c.�/ may agree with the
Ozsváth–Szabó contact invariant [19], and the Seiberg–Witten analogue implicit in the
paper by Kronheimer and Mrowka [13].

Further motivation for studying ECH (and PFH) is that it is expected to be the recipient
of (yet to be defined) relative Gromov invariants of symplectic 4–manifolds with
boundary. For example, Taubes has proposed [24; 26] that the Gromov invariant may
be extended to near-symplectic 4–manifolds by counting J –holomorphic curves in the
complement of the circles where the near-symplectic form vanishes. We expect such
a counting invariant to take values in the embedded contact homology of a disjoint
union of S1 �S2 ’s, one for each vanishing circle, with the contact form studied by
Taubes in [27]. Also, the relative Gromov invariants should enter into gluing formulas
for Gromov invariants of closed symplectic 4–manifolds cut along 3–manifolds.

Much of the embedded contact homology story is still conjectural. In particular, a proof
that ECH�.Y; �I�/ is well-defined is currently in preparation; the precise statement
is given here as Conjecture 11.10. In any case, the results in this paper from Section 2
to Section 10, while motivated by this conjecture, are logically independent of it.

1.2 The embedded contact homology of T 3

This paper is concerned with computations of embedded contact homology. We will
restrict attention to the example of Y D T 3 , although the methods developed here are
applicable to some other simple contact manifolds such as S1�S2 , or T 2 –bundles
over S1 , see Section 12.2. For each positive integer n, there is a standard contact form
�n on T 3 defined as follows. We choose the following coordinates on T 3 that depend
on n:

(4) T 3
D S1

�T 2
D .R=2�nZ/� � .R

2=Z2/x;y
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Then

(5) �n WD cos � dxC sin � dy:

The associated Reeb vector field is given by

RD cos � @xC sin � @y :

In particular, �n is a Morse–Bott contact form; for each � 2 R=2�nZ with tan � 2
Q[f1g, there is an S1 –family of Reeb orbits in f�g �T 2 .

It turns out that to compute ECH in this example, for suitable almost complex structures
J , the relevant J –holomorphic curves can be counted quite explicitly. For this purpose
we modify some arguments from our previous paper [10] on the PFH of a Dehn twist,
and use some results of Taubes [27]. Consequently, for

� 2 Z2
DH1.T

2/�H1.S
1
�T 2/;

we can define a combinatorial chain complex SC�.2�nI�/, see Section 1.3 and Section
3, whose homology SH�.2�nI�/ agrees with the embedded contact homology of T 3 .
(Throughout this paper we adopt the convention that changing the letter ‘C ’ to ‘H ’
indicates passing from a chain complex to its homology.) Namely:

Theorem 1.2 If Conjecture 11.10 holds (so that ECH is well-defined), then

ECH�.T
3; �nI�/' SH�.2�nI�/:

Note that since all Reeb orbits have homology classes in the subgroup H1.T
2/, the

ECH automatically vanishes for � 2H1.S
1�T 2/nH1.T

2/, because the chain complex
has no generators.

As will be explained in Section 12.1, ECH has some variants and additional structure.
In particular, there is a degree �2 operation

U W ECH�.Y; �I�/ �!ECH��2.Y; �I�/;

which counts J –holomorphic curves with a marked point mapping to a chosen point in
R�Y . In the case of T 3 , the operation U corresponds to a combinatorial chain map

U W SC�.2�nI�/ �! SC��2.2�nI�/

defined in Section 4. We can now state our main computational result:

Theorem 1.3 For every positive integer n:

(a) If � ¤ 0, then SH�.2�nI�/D 0:

Geometry & Topology, Volume 10 (2006)



Rounding corners of polygons and the embedded contact homology of T 3 173

(b) For � D 0,

SHi.2�nI 0/'

�
Z3; i � 0;

0; i < 0:

(c) For all i � 2, the map U induces an isomorphism

U W SHi.2�nI 0/
'
�! SHi�2.2�nI 0/:

In particular, the ECH of .T 3; �n/ does not depend on n. By contrast, the sim-
plest version of SFT, namely cylindrical contact homology, distinguishes the contact
structures �n D Ker.�n/; see Eliashberg–Givental–Hofer [7, Theorem 1.9.9], and for
generalizations see Bourgeois–Colin [3]. On the other hand, the contact invariant (3)
for �n does depend on n, see Section 12.1.2.

The above computation of the ECH of T 3 , together with some additional structure
on it described in Section 12.1.3, agree perfectly with HFC.T 3/ as computed in
Ozsváth–Szabó [17], and also zHM �.T

3/ as computed in Kronheimer–Mrowka [12].
This provides a nontrivial check of Conjecture 1.1.

1.3 Rounding corners of polygons

We now introduce the combinatorial chain complex SC�.2�nI�/, along with two
variants �C�.2�nI�/ and C�.2�nI�/, in the simplest case where nD 1 and � D 0.

1.3.1 The generators The complex C�DC�.2� I 0/ is a free Z–module. A generator
of C� is a convex polygon in R2 , possibly a 2–gon or a point, such that the corners
are lattice points, and every edge is labeled either ‘e ’ or ‘h’. To fix the signs in the
differential, we choose an ordering of the ‘h’ edges, and we declare that a reordering
of the ‘h’ edges multiplies the generator by the sign of the reordering permutation.

1.3.2 The grading The grading, or index, of a generator ˛ is defined by

(6) I.˛/ WD 2.#L.˛/� 1/� #h.˛/:

Here #L.˛/ denotes the cardinality of the set L.˛/ of lattice points on the polygon or
enclosed by it, and #h.˛/ denotes the number of ‘h’ edges. By Pick’s formula for the
area of a lattice polygon, equation (6) is equivalent to

(7) I.˛/D 2 Area.˛/C #`.˛/� #h.˛/:

Here Area.˛/ denotes the area enclosed by ˛ , and `.˛/ denotes the sum of the
divisibilities of the edges of the polygon.

For example, equation (7) implies that I.˛/� 0, and the only index zero generators
are the following:
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� Points, which we denote by p.u/ where u 2 Z2 .
� 2–gons with vertices u; v 2 Z2 with u � v indivisible and with both edges

labeled ‘h’. If the edge from u to v is first in the ordering, then we denote this
generator by h.u; v/. Thus h.v;u/D�h.u; v/.

1.3.3 The differential The differential ıW C�!C��1 is defined as follows. Roughly,
if ˛ is a generator, then ı˛ is the signed sum of all generators ˇ obtained by “rounding
a corner” and “locally losing one ‘h’”. More precisely:

� “Rounding a corner” means that L.ˇ/DL.˛/ n c where c is a corner of ˛ .
� “Locally losing one ‘h’” means the following. First, at least one of the two

edges in ˛ adjacent to c must be labeled ‘h’. Second, of the edges in ˇ that
are created or shortened by rounding the corner c , all are labeled ‘e ’, except for
one when both edges adjacent to c are labeled ‘h’. Finally, all other edges in ˇ
have the same labels as the corresponding edges in ˛ .

� To determine the sign, let � denote (one of) the ‘h’ edge(s) of ˛ adjacent to
c . Without loss of generality, � is last in the ordering of the ‘h’ edges of ˛ ,
while the remaining ‘h’ edges of ˛ are ordered the same way as the ‘h’ edges
of ˇ under the obvious bijection between them. Then the differential coefficient
hı˛; ˇiDC1 if � comes immediately after c as we traverse ˛ counterclockwise.
If � comes immediately before c , then hı˛; ˇi D �1.

Here is a random example of ı . In the pictures below, the unmarked edges are labeled
‘e ’, and on the left side the bottom ‘h’ edge is first in the ordering.

ı W
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It is shown in Section 3.2 that ı has degree �1 and ı2 D 0.
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1.3.4 The homology To further illustrate the definitions, let us compute the degree–0
homology H0 . The index one generators are the following:

� 2–gons with no lattice points in the interiors of the edges and one edge labeled
‘e ’ and one edge labeled ‘h’. We denote such a generator by e.u; v/, where u

and v are the two corners and the edge from u to v is labeled ‘e ’.

� Triangles enclosing no lattice points except the corners u; v; w , with all three
edges labeled ‘h’. We denote such a generator by h.u; v; w/, where u; v; w are
listed in counterclockwise order and the edges are ordered counterclockwise.

It follows from the definitions that

ıp.u/D ıh.u; v/D 0;

ıe.u; v/D p.u/�p.v/;

ıh.u; v; w/D h.u; v/C h.v; w/C h.w;u/:

Therefore H0 is generated by the homology classes Œp.u/� and Œh.u; v/� modulo the
relations

Œp.u/�D Œp.v/�;

Œh.u; v/�C Œh.v; w/�D Œh.u; w/�:

The computation of the higher homology is more complicated, but the result is simpler.
Let ƒ be a convex polygon that encloses and contains k lattice points with k � 2.
Let Eƒ denote the generator consisting of the polygon ƒ with all edges labeled ‘e ’.
Let Hƒ denote the sum of all generators consisting of the polygon ƒ with one edge
labeled ‘h’ and all other edges labeled ‘e ’. It follows from the definitions that Eƒ
and Hƒ are cycles. We will see in Section 5 that the homology classes of these cycles
depend only on k . Moreover,

H2k�2 D Z fEƒg ; H2k�3 D Z fHƒg :

1.3.5 Variants Let �C� denote the chain complex C� regarded as a module over the
group ring ZŒZ2�, where Z2 acts on the generators by translation in the plane. The
homology �H� can be read off from the preceding calculations. Let I.Z2/ denote the
augmentation ideal in ZŒZ2�, ie the kernel of the augmentation map ZŒZ2�!Z sending
a group ring element to the sum of its coefficents. Also, let Z denote the ZŒZ2�–module
with one generator on which Z2 acts by the identity, ie

Z WD fa j .x� 1/aD .y � 1/aD 0g
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where x and y denote generators of Z2 . Then we have

�H� '
8<:

0; �< 0;

I.Z2/˚Z; � D 0;

Z; �> 0:

Here the isomorphism �H0'I.Z2/˚Z sends Œp.u/� to the generator of Z and Œh.u; v/�
to u� v 2 I.Z2/.

We can obtain another complex SC� over Z by declaring generators to be equivalent
when they differ by translation in the plane. The homology SH� of SC� is partially but
not entirely determined by �H� , via a “universal coefficient spectral sequence”

(8) E2
p;q D Torp

� �Hq;Z
�
H) SHpCq:

It turns out that some of the differentials in the spectral sequence (8) are nonzero, and
we will find in Section 8 that

SH� '

�
0; �< 0;

Z3; � � 0:

1.3.6 Geometric interpretation The rough idea of the relation between SH� and
ECH�.T

3; �1I 0/ is as follows. For a generator of SC� , each edge of the polygon
corresponds to a circle of Reeb orbits in T 3 . The labels ‘e ’ and ‘h’ reflect the fact
that each circle of Reeb orbits for the Morse–Bott contact form �1 can be perturbed
into two nondegenerate orbits, one elliptic and one hyperbolic. It turns out that in
R � T 3 , every J –holomorphic curve counted by the ECH differential consists of
one embedded genus zero component with two positive ends (corresponding to the
edges adjacent to the corner being rounded) and an arbitrary number of negative ends
(corresponding to the edges created by rounding), together with some R–invariant
cylinder components (corresponding to the edges or parts thereof not involved in the
corner rounding). The chain complex �C� corresponds to a “partially twisted” version
of ECH in which one keeps track of some information about the relative homology
classes of the J –holomorphic curves.

1.3.7 The rest of the paper The combinatorial chain complexes for general n and
� , roughly speaking, involve left-turning polygonal paths of rotation number n and
period � . The precise definitions require some care and are given in Section 3, after
some combinatorial preliminaries in Section 2. The combinatorial chain map U is
defined in Section 4; aside from its significance for ECH, it will help compute the
homology of the combinatorial chain complexes. In Section 5–Section 8 we compute
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the homology of all of the above combinatorial chain complexes and in particular prove
Theorem 1.3.

In Section 9 we establish an axiomatic characterization of the combinatorial chain
complexes. In Section 10 we recall and prove some relevant facts about J –holomorphic
curves in R�T 3 . In Section 11 we outline the definition of ECH and prove Theorem 1.2.
The proof uses the results in Section 10 to show that the chain complex computing the
ECH of T 3 satisfies the axioms in Section 9. In Section 12 we make some concluding
remarks.

1.3.8 Acknowledgments We thank Y Eliashberg, P Kronheimer, T Mrowka, P
Ozsváth, Z Szabó, and C Taubes for enlightening discussions. We thank the anonymous
referee for many helpful comments. The first author was partially supported by NSF
grant DMS-0204681 and the Alfred P Sloan Foundation. The second author was
partially supported by NSF grant DMS-0305825.

1.3.9 Index of frequently used notation

Z the ZŒZ2�–module with one generator on which
Z2 acts trivially, see Section 1.3.5

I.Z2/ augmentation ideal, see Section 1.3.5 and also Section 6.2
ƒ n c rounding of ƒ at c, see Section 2.2
ƒ0 �ƒ ƒ0 is to the left of ƒ, see Section 2.3
A length of a polygonal path defined in equation (14), and

symplectic action of an orbit set defined in Definition 10.6
C�.2�nI�/ combinatorial chain complex generated by polygons

of rotation number n and period � , see Section 3.1�C�.2�nI�/ above complex regarded as a ZŒZ2�–module
SC�.2�nI�/ above complex modulo translation of polygons
C�.ƒ/ complex of polygons to the left of ƒ, see Section 3.1.5
I combinatorial relative index defined in Section 3.1, and

analytical relative index defined in Section 11.1
ı combinatorial differential defined in Section 3.1
Eƒ;Hƒ two distinguished cycles defined in Section 3.1.6
c� corner at � , see Section 4
U combinatorial degree �2 chain map defined in Section 4, and

analytical degree �2 map defined in Section 12.1.4
C .j/ subcomplex where I � #hD j , see Definition 5.1
@c connecting homomorphism in long exact sequence in Section 5.1
F� flattening chain map, see Definition 6.13
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Zn.a; b/ a degree zero cycle defined in Section 6.2
CX� subcomplex consisting of x–axis polygons, see Section 7.1
S splicing chain map, see Section 7.1
H2.Y; ˛; ˇ/ relative homology classes as in Definition 10.2
MJ moduli space of J–holomorphic curves, see Section 10
ind SFT index, see Definition 11.1
ECH�.Y; �I�/ embedded contact homology, see Section 11.2
AECH�.Y; �I�;G/ twisted embedded contact homology, see Section 11.2
@ embedded contact homology differential, see Section 11.2

2 Rounding corners of polygonal paths

In this section we lay the foundations for our combinatorial investigations. We are
preparing to define (in Section 3) a general combinatorial chain complex C�.2�nI�/

in which the generating polygons have rotation number n � 1, and when � ¤ 0 are
periodic with period � rather than closed. In Section 2.1 we define the relevant classes
of polygonal paths, which we call “admissible paths”. In Section 2.2 we define the
corner rounding operation for these polygonal paths. In Section 2.3 we introduce a
closely related partial order on admissible paths, and we prove various facts about
corner rounding and the partial order which will be needed later. A dictionary between
some of this combinatorics and the geometry of pseudoholomorphic curves in R�T 3

will be given later in Section 10.

2.1 Admissible (left-turning polygonal) paths

We now define three types of “admissible paths”: “open”, “closed”, and “periodic”.
Closed and periodic admissible paths will be used to define the chain complex

C�.2�nI�/

for � D 0 and � ¤ 0 respectively, while we will use open admissible paths to help
compute its homology.

Let ‚ denote the set of � 2 R such that tan � 2Q[f1g. For each � 2‚, there is a
unique integer vector �

x�
y�

�
2 Z2

such that x� ;y� are relatively prime and such that .cos �; sin �/ is a positive real
multiple of .x� ;y� /.
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Definition 2.1 An open admissible path defined on an interval I � R is a locally
constant map ƒW I nT ! Z2 , where T �‚\ int.I/ is a finite set of edges, and there
is a multiplicity function mW T ! Z>0 such that ƒ satisfies the “jumping condition”

(9)
d

dt
ƒ.t/D

X
�2T

m.�/

�
x�
y�

�
ı� .t/:

Here ı� denotes the delta function supported at � . A corner of ƒ is a component of
I nT , other than the first and last components. The endpoints of ƒ are its values on
the first and last components of I nT . A kink of ƒ is a corner between consecutive
edges �1; �2 with �2� �1 > � .

That is, ƒ is a polygonal path in the plane with corners in Z2 , parametrized so that it
is usually stopped at a corner, and jumps discontinuously to the next corner at time t

when the vector .cos t; sin t/ points in the direction of the corresponding edge. That is,
a smooth locally convex curve is naturally parametrized by its tangent direction, and
we are extending this notion to polygonal paths. We will sometimes abuse notation
and pretend that ƒ is a continuous, piecewise linear path, moving along straight line
segments from one vertex to the next. The path ƒ turns to the left at its corners, except
at kinks where it rotates by more than � and hence may turn in any direction. Note
that by equation (9), ƒ determines m, while m determines ƒ up to a Z2 translation
ambiguity.

Now fix a positive integer n and an integer vector � 2 Z2 . Let pW R! R=2�nZ

denote the projection.

Definition 2.2 A periodic admissible path of rotation number n and period � is a
locally constant map ƒW R np�1.T /! Z2 , where T � p.‚/ is a finite set of edges,
and there is a multiplicity function mW T ! Z>0 such that ƒ satisfies the jumping
condition

(10)
d

dt
ƒ.t/D

X
�2p�1.T /

m.p.�//

�
x�
y�

�
ı� .t/:

We also assume that ƒ satisfies the periodicity condition

ƒ.t C 2�n/Dƒ.t/C�;

which by (10) is equivalent to X
�2T

m.�/

�
x�
y�

�
D �:
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A corner of ƒ is a component of .R=2�nZ/ nT . A kink is a corner of length greater
than � . If � D 0, we say that ƒ is a closed admissible path of rotation number n.

Example 2.3 In the simplest case of this definition, where nD 1 and � D 0, a closed
admissible path ƒ of rotation number 1 is equivalent to a convex polygonal region P

in R2 (possibly a 2–gon or a 0–gon) with corners in Z2 . The path ƒ traverses the
boundary of P counterclockwise.

Here is an example of a closed admissible path with rotation number n D 2. The
bottom corner is a kink at which the path turns by angle 5�=4.

. . . .

. . . .

. . . .

. . . .

@
@
@

@I
?�
�
�
�
�
�3
�

?

Here is an example of a periodic admissible path with

nD 1 and � D
�

2

1

�
:

(The path continues infinitely in both directions.)
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. . . . . . . .
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��
��1
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?��

��
��1
@
@I
?��

��
��1

For closed admissible paths with n>1, our definition keeps track of the parametrization
of the path; that is, Z=n acts nontrivially on the set of closed admissible paths of rotation
number n by precomposing ƒ with translations on R by multiples of 2� . For periodic
admissible paths with � ¤ 0, precomposing ƒ with translations by multiples of 2�

gives a Z action on the set of periodic admissible paths. (The parametrization is not
indicated in the above two pictures.)

We say that two admissible paths ƒ;ƒ0 are of the same type if they are both open and
defined on the same interval I and have the same endpoints, or if they are both closed
or periodic for the same n and � .
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2.2 Rounding corners of admissible paths

We now define the corner rounding operation for admissible paths of any type.

Definition 2.4 Let ƒ be an admissible path, let c be a corner of ƒ adjacent to
consecutive edges �1; �2 , and assume that c is not a kink, ie �2� �1 2 .0; ��. Define
a new admissible path ƒ n c of the same type as follows.

� If ƒ is an open admissible path defined on I , then ƒn c Dƒ on I n Œ�1; �2�. If
ƒ is periodic or closed, then ƒ n c Dƒ on R np�1Œ�1; �2�.

� If m and mc denote the multiplicity functions for ƒ and ƒ n c respectively,
then mc.�i/Dm.�i/� 1 for i D 1; 2.

� If ƒ is an open admissible path, let W � Z2 be the set of lattice points enclosed
by the triangle (or 2–gon when �2� �1 D � ) in the plane whose corners are

ƒ.c/�

�
x�1

y�1

�
; ƒ.c/; ƒ.c/C

�
x�2

y�2

�
:

Then .ƒ n c/j.�1;�2/ traverses counterclockwise the boundary of the convex hull
of W n fƒ.c/g, except for the edge from

ƒ.c/C

�
x�2

y�2

�
to ƒ.c/�

�
x�1

y�1

�
:

If ƒ is periodic or closed, then ƒnc is defined the same way on each component
of p�1.�1; �2/.

We say that ƒ n c is obtained from ƒ by rounding the corner at c .

Example 2.5 Suppose ƒ is a closed admissible path of rotation number 1, corre-
sponding to the boundary of a convex polygonal region P . If c is a corner of ƒ
mapping to a corner ƒ.c/ of P , then ƒn c corresponds to the boundary of the convex
hull of the set of lattice points in P n fƒ.c/g.

2.3 A partial order on admissible paths

We now introduce a partial order on the set of admissible paths and collect some useful
facts about it. This partial order plays a fundamental role both in our computation
of the homology of the chain complexes C�.2�nI�/ and in the connection with
pseudoholomorphic curves in R�T 3 .

Let ƒ and ƒ0 be admissible paths of the same type, as defined in Section 2.1.
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Definition 2.6 We say that ƒ0 is to the left of ƒ, and we write ƒ0 �ƒ, if

(11) det
�

cos t

sin t
ƒ0.t/�ƒ.t/

�
� 0

for all t in I (if ƒ;ƒ0 are open) or R (if ƒ;ƒ0 are periodic or closed).

Note that the left side of (11) is defined even if t is an edge of ƒ or ƒ0 , because by
equation (9) or (10), the determinant in (11) extends to a continuous function defined
for all t in I or R.

Remark 2.7 Let Lt and L0t denote the oriented lines through ƒ.t/ and ƒ0.t/ re-
spectively in the direction .cos t; sin t/. Then ƒ0 �ƒ iff for all t , the oriented line L0t
is (not necessarily strictly) to the left of Lt in the usual sense.

Proposition 2.8 � is a partial order.

Proof By (11), we have ƒ�ƒ, and if ƒ1 �ƒ2 and ƒ2 �ƒ3 , then ƒ1 �ƒ3 .

Now suppose that ƒ0 �ƒ and ƒ�ƒ0 ; we must show that ƒ0 Dƒ. We have

det
�

cos t

sin t
ƒ0.t/�ƒ.t/

�
D 0

for all t for which ƒ;ƒ0 are defined. Now ƒ0.t/ and ƒ.t/ are locally constant and
defined on the complement of the edges of ƒ and ƒ0 . Since the vector .cos t; sin t/

rotates as t varies, the vanishing of the determinant implies that ƒ0.t/�ƒ.t/D 0 on
each interval between edges of ƒ and ƒ0 .

Example 2.9 For closed admissible paths ƒ and ƒ0 of rotation number 1, corre-
sponding to the boundaries of convex polygonal regions P and P 0 , we have

ƒ0 �ƒ” P 0 � P:

Proof .(/ Suppose P 0 � P . We need to show that ƒ0 �ƒ; equivalently, for each
t the point ƒ0.t/ is to the left of the line Lt . But this holds because convexity of P

implies that all of P is to the left of Lt , and P 0 � P .

.)/ Suppose P 0 6� P . Let x 2 P 0 maximize distance to P . Let y 2 P minimize
distance to x . If x is a corner of P 0 and y is a corner of P , then there exists t 2R=2�Z

such that x Dƒ0.t/ and y Dƒ.t/, and x is strictly to the right of the line Lt , so

(12) det
�

cos t

sin t
ƒ0.t/�ƒ.t/

�
< 0:
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If x is in the interior of an edge of P 0 and y is in the interior of an edge of P , then these
edges both point in the same direction .cos t; sin t/ and the inequality (12) still holds.
If x is a corner of P 0 and y is in the interior of an edge of P with tangent direction
.cos t; sin t/ then x Dƒ0.t/ and (12) still holds; likewise if just y is a corner.

There is a useful characterization of the corner rounding operation in terms of the
partial order �. Namely, ƒ n c is the maximal admissible path which is to the left of
ƒ and which does not “go through” the corner c of ƒ. More precisely:

Proposition 2.10 Let ƒ be an admissible path and let c be a corner of ƒ which is
not a kink. Then:

(a) ƒ n c �ƒ.

(b) If ƒ0 �ƒ, and if ƒ0 disagrees with ƒ somewhere on the interval corresponding
to c , then ƒ0 �ƒ n c .

Lemma 2.11 Suppose ƒ0 � ƒ. Let t1; t2 be real numbers in the domain of ƒ;ƒ0

with t2� t1 2 .0; �/. Then the restriction of ƒ0 to Œt1; t2� maps to the wedge consisting
of those x 2 R2 that are to the left of Lt1

and Lt2
.

Proof For i D 1; 2 and t 2 Œt1; t2� define a piecewise constant function

fi.t/ WD det
�

cos ti
sin ti

ƒ0.t/�ƒ.ti/

�
:

Note that this is well defined even if ti is an edge of ƒ, as one can then take ƒ.ti/ to
be any point on the corresponding line in R2 . Now by equation (9) or (10) and our
assumption that t2� t1 2 .0; �/, we have

d

dt
f1.t/� 0;

d

dt
f2.t/� 0

for t 2 Œt1; t2�. On the other hand, since we assumed that ƒ0 �ƒ, putting t D ti into
the definition of � gives

f1.t1/� 0; f2.t2/� 0:

Therefore for all t 2 Œt1; t2�, we have f1.t/; f2.t/ � 0, which means that ƒ0.t/ is to
the left of Lt1

and Lt2
.

Proof of Proposition 2.10 To simplify notation we assume that ƒ is an open admis-
sible path; the proof when ƒ is a closed or periodic admissible path works the same
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way. Let �1; �2 be the edges of ƒ adjacent to c . We assume that �2 � �1 < � and
leave the easier, extreme case when �2� �1 D � as an exercise.

(a) Equation (11) holds for t 62 Œ�1; �2�, as then .ƒ n c/.t/ D ƒ.t/ by definition of
ƒ n c . Now suppose that t 2 Œ�1; �2�. We need to show that .ƒ n c/.t/ is to the left of
the line Lt . But this is clear since the entire triangle W in the definition of ƒn c is to
the left of the line Lt .

(b) Suppose ƒ0 �ƒ and ƒ0 6�ƒ n c ; we will show that ƒ0 agrees with ƒ on all of
the interval .�1; �2/. For i D 1; 2 let V be the wedge as in Lemma 2.11 for ti D �i .
Let P be the path in V traced out by .ƒ n c/jŒ�1;�2� . The path P separates V into
two components, one bounded and one unbounded. By Lemma 2.11, ƒ0.t/ 2 V for all
t 2 Œ�1; �2� for which ƒ0.t/ is defined. Since ƒ0 6�ƒn c , there exists t 2 .�1; �2/ such
that if L00t denotes the oriented line through .ƒ n c/.t/ in the direction .cos t; sin t/,
then ƒ0.t/ is strictly to the right of the line L00t . Since P is convex and to the left of
L00t , it follows that ƒ0.t/ is in the bounded component of V nP . By definition of ƒnc ,
there are no lattice points in the interior of the bounded component of V nP , so we
must have ƒ0.t/Dƒ.c/. Then ƒ0 must agree with ƒ on the entire interval .�1; �2/,
since if ƒ0 had any jumps on this interval, then by equation (9) for ƒ0 it would escape
the wedge V .

The following proposition shows that the relation � imposes strong restrictions in the
presence of kinks.

Proposition 2.12 Suppose ƒ has a kink at c and ƒ0 � ƒ. Then ƒ0 agrees with ƒ
on the interval corresponding to c .

Proof Let �1; �2 be the edges of ƒ adjacent to c , and let t 2 .�1; �2/; we must show
that ƒ0.t/Dƒ.c/. Since �2� �1 > � , we can find t0 with

(13) �1 < t0 < t < t0C� < �2:

By Lemma 2.11, if
t0 < t1 < t2 < t0C�;

then ƒ0Œt1; t2� is contained in the wedge of x 2 R2 to the left of Lt1
and Lt2

. Taking
the limit as t1& t0 and t2% t0C� , we conclude that ƒ0.t/ is in the intersection of
all such wedges, which is half of the line Lt0

. Now we can perturb t0 so as to still
satisfy equation (13), so ƒ0.t/ must lie on another nearby such line, and these two
lines intersect only at the point ƒ.c/, so ƒ0.t/Dƒ.c/.

Finally, there is a sort of converse to Proposition 2.10 which characterizes the partial
order � in terms of the corner rounding operation.
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Proposition 2.13 Let ƒ;ƒ0 be admissible paths of the same type. Then ƒ0 � ƒ if
and only if one can obtain ƒ0 from ƒ by a finite sequence of corner roundings.

The proof of this proposition uses induction on the “length” of an admissible path. If ƒ
is an admissible path, define its length A.ƒ/ to be the sum of the lengths of its edges:

(14) A.ƒ/ WD
X
�2T

m.�/

q
x2
�
Cy2

�
:

Since the set of possible lengths of admissible paths (namely finite sums of square
roots of nonnegative integers) is a discrete set of nonnegative real numbers, it is valid
to perform induction on length.

Lemma 2.14 Rounding corners decreases length, ie if c is not a kink of ƒ then

A.ƒ n c/ <A.ƒ/:

Proof Let �1; �2 be the two edges adjacent to c ; since c is not a kink, �2��1 2 .0; ��.
The lemma is immediate if �2� �1 D � , as then

A.ƒ n c/DA.ƒ/� 2
q

x2
�1
Cy2

�1
:

So assume that �2� �1 2 .0; �/. Let P be the path in the plane consisting of the line
segments from

ƒ.c/�

�
x�1

y�1

�
to ƒ.c/ to ƒ.c/C

�
x�2

y�2

�
:

In passing from ƒ to ƒnc , P is replaced by a path Q, which we regard as a continuous
embedded path in the plane. We need to show that P is longer than Q. Define a map

f W Q n fcornersg �! P

as follows. If x 2Q is not a corner, let Lx be the line through x perpendicular to Q,
and define f .x/DLx \P . Since Q is convex, the map f is injective (although not
surjective if Q has corners) and increases length.

Proof of Proposition 2.13 .(/ This follows immediately from Proposition 2.10(a)
and the transitivity of �.

.)/ Suppose ƒ0 �ƒ; we need to show that there is a sequence of corner roundings
from ƒ to ƒ0 . If ƒ0Dƒ there is nothing to prove. If ƒ0¤ƒ, then there is a corner c

of ƒ such that ƒ0 disagrees with ƒ somewhere on the interval corresponding to c . By
Propositions 2.12 and 2.10(b), c is not a kink of ƒ and ƒ0 �ƒ n c . By Lemma 2.14,
A.ƒ n c/ <A.ƒ/, so by induction on length there is a sequence of corner roundings
from ƒ n c to ƒ0 .
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3 Polygon complexes

In this section we define the combinatorial chain complexes of interest, and we prove
that the combinatorial differential ı has degree �1 and satisfies ı2 D 0.

3.1 The chain complex C�.2�nI�/ and variants

Fix a positive integer n and an integer vector � 2Z2 . We now define the combinatorial
chain complex C�.2�nI�/, and its variants �C�.2�nI�/ and SC�.2�nI�/ which are
relevant to the embedded contact homology of T 3 .

3.1.1 The generators

Definition 3.1 C�.2�nI�/ is the Z–module generated by triples .ƒ; l; o/, where:

� ƒ is a periodic admissible path with rotation number n and period � , as defined
in Section 2.1. (We say that .ƒ; l; o/ has “underlying admissible path ƒ”.)

� l is a labeling of each of the edges of ƒ by ‘e ’ or ‘h’.

� o is an ordering of the set of edges that are labeled ‘h’.

We impose the relations that .ƒ; l; o/D .ƒ; l; o0/ if the orderings o and o0 differ by an
even permutation, and .ƒ; l; o/D�.ƒ; l; o0/ if o and o0 differ by an odd permutation.
Thus C�.2�nI�/ is a free Z–module with one generator (with no canonical sign) for
each pair .ƒ; l/.

3.1.2 The grading We now define the grading on C�.2�nI�/. If ˛ D .ƒ; l; o/ is a
generator, consider the sum of the multiplicities of the edges,

`.˛/ WD
X
�2T

m.�/:

That is, `.˛/ is the number of lattice points traversed by the path ƒDWƒ.˛/, counted
with repetitions, but modulo translation by 2�n. Let #h.˛/ denote the number of
edges of ƒ that are labeled ‘h’.

Definition 3.2 If � D 0, define the index of a generator ˛ to be

(15) I.˛/ WD 2

Z
ƒ.˛/

x dyC `.˛/� #h.˛/ 2 Z:

Here
R
ƒ.˛/ x dy is the area, counted with multiplicity, enclosed by the polygonal path

ƒ.˛/; twice this area is an integer by Pick’s formula.
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If � D 0 and n> 1 then the index can be any integer, since there are then admissible
paths with negative area. (An example is shown in Section 2.1.) If � ¤ 0 then there is
no canonical absolute grading, only a relative grading which is defined as follows.

Definition 3.3 Let ˛ and ˇ be generators of C�.2�nI�/. Choose

t 2 R np�1
�
T .˛/

[
T .ˇ/

�
and let � be any path in R2 from ƒ.˛/.t/ to ƒ.ˇ/.t/. Let �0 denote the the translation
of � by � . Define the composite loop

P WDƒ.˛/jŒt;tC2�n�C �
0
�ƒ.ˇ/jŒt;tC2�n�� �:

Define the relative index

(16) I.˛; ˇ/ WD 2

Z
P

x dyC .`.˛/� #h.˛//� .`.ˇ/� #h.ˇ// 2 Z:

Note that if � D 0, then I.˛; ˇ/D I.˛/� I.ˇ/. This still holds when � ¤ 0 if one
regards the index of a single generator as taking values in an affine space over Z. There
is also a canonical mod 2 index

I2.˛/ WD #h.˛/mod 2:

This satisfies I2.˛/� I2.ˇ/� I.˛; ˇ/mod 2.

3.1.3 The differential

Definition 3.4 Define the differential

ıW C�.2�nI�/! C��1.2�nI�/

as follows. Let ˛ be a generator of C�.2�nI�/. We define ı˛ to be the signed sum
of all ways to round a corner of ˛ and “locally lose one h”. More precisely, the
differential coefficient hı˛; ˇi ¤ 0 if and only if:

� If ˛ has underlying admissible path ƒ, then ˇ has underlying admissible path
ƒ n c , where c is a corner of ƒ which is not a kink, ie between consecutive
edges �1; �2 with �2� �1 2 .0; ��.

� The edge labels of ˛ and ˇ are identical for edges outside of the closed interval
Œ�1; �2�, and either:
– Exactly one of the edges �1; �2 for ˛ is labeled ‘h’, and all the edges in
Œ�1; �2� for ˇ are labeled ‘e ’, or:
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– Both of the edges �1; �2 for ˛ are labeled ‘h’, and exactly one of the edges
in Œ�1; �2� for ˇ is labeled ‘h’.

In this case hı˛; ˇi WD ˙ 1, with the sign determined as in Section 1.3.3.

3.1.4 Variants The group Z2 acts on the chain complex C�.2�nIZ/ by translation
in the plane. Thus there is a variant �C�.2�nI�/, which is just C�.2�nI�/ regarded
as a ZŒZ2�–module. There is also a variant SC�.2�nI�/ in which we mod out by
translation of polygons. Formally,

(17) SC�.2�nI 0/D �C�.2�nI 0/˝ZŒZ2� Z;

where Z is defined in Section 1.3.5. We regard SC�.2�nI�/ as a Z–module.

When

� D

�
�1

�2

�
¤ 0;

the relative grading on SC�.2�nI�/ takes values in Z=2 gcd.�1; �2/. The reason is
that if ˛ is a generator of C�.2�nI�/ and if ‰w denotes the translation in the plane
by a vector

w D

�
w1

w2

�
2 Z2;

then by the definition of the relative index (16), we have the “index ambiguity formula”

(18) I.˛;‰w˛/D 2 det
�
�1 w1

�2 w2

�
:

3.1.5 The auxiliary chain complex C�.ƒ/ We now introduce an auxiliary complex
which will be used in the computation of the homology of C�.2�nI�/. Let ƒ be
an admissible path of any type (see the end of Section 2.1). Define a chain complex
C�.ƒ/ as follows.

Definition 3.5 C�.ƒ/ is the Z–module generated by triples .�; l; o/ where � is an
admissible path of the same type as ƒ with ��ƒ, l is a labeling of the edges of �
by ‘e ’ or ‘h’, and o is an ordering of the ‘h’ edges, with .�; l; o/D˙.�; l; o0/ as in
Definition 3.1. The differential ı on C�.ƒ/ is defined just as in Definition 3.4.

Note that ı sends C�.ƒ/ to itself, by Proposition 2.10(a) and transitivity of �. If
ƒ�ƒ0 , then C�.ƒ/ is a subcomplex of C�.ƒ

0/. If ƒ is closed or periodic of rotation
number n and period � , then C�.ƒ/ is a subcomplex of C�.2�nI�/.
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The chain complex C�.ƒ/ has a relative Z–grading; if ƒ is open, this is defined by
equation (16), with P the difference between the two admissible paths. If ƒ is closed,
or if ƒ is open and its initial and final endpoints agree, then C�.ƒ/ has a canonical
absolute Z–grading, defined by equation (15).

If ƒ is an open admissible path parametrized by an interval I , then the ordering of I

gives rise to a canonical ordering of the ‘h’ edges of any generator of C�.ƒ/, so we
can regard C�.ƒ/ as generated by pairs .�; l/.

3.1.6 The cycles Eƒ and Hƒ For any admissible path ƒ, the chain complex C�.ƒ/

contains two special cycles which will play a fundamental role in our calculations.

Definition 3.6 For any admissible path ƒ, define Eƒ;Hƒ 2 C�.ƒ/ as follows:

� Eƒ is the path ƒ with all edges labeled ‘e ’.

� Hƒ is the sum of all ways of taking the path ƒ and labeling one edge ‘h’ and
all other edges ‘e ’. In particular, if ƒ has no edges, ie if ƒ is a constant path,
then Hƒ WD 0.

Note that since Eƒ is a generator with no ‘h’ edge, and Hƒ is a sum of generators
each containing exactly one ‘h’ edge, there is no choice to make here in ordering the
‘h’ edges.

Lemma 3.7 If ƒ is any admissible path, then ıEƒ D ıHƒ D 0.

Proof Eƒ is automatically a cycle because it is a generator with no ‘h’ edges.

To see that Hƒ is a cycle, let �0 < � � �< �k be the edges of ƒ, and for 0� i � k let
˛i be the summand in Hƒ in which the edge �i is labeled ‘h’. Let ci be the corner
between �i�1 and �i . If 0 < i < k and if ci and ciC1 are not kinks, then by the
definition of ı ,

ı˛i DEƒnci
�EƒnciC1

:

A modified version of this formula holds for any 0� i � k , where the first term on the
right is omitted if ci is a kink or i D 0, and the second term on the right is omitted if
ciC1 is a kink or i D k . Thus ıHƒ D

Pk
iD0 ı˛i consists of two copies of Eƒnc for

each corner c of ƒ which is not a kink, and these two copies appear with opposite
sign.
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3.1.7 Concatenation It will be important in our calculations to consider concate-
nations of the cycles Eƒ and Hƒ . Suppose that ƒ1 and ƒ2 are open admissible
paths parametrized by closed intervals I1 and I2 such that the right endpoint of I1

(resp. ƒ1 ) agrees with the left endpoint of I2 (resp. ƒ2 ). Then we can concatenate
ƒ1 and ƒ2 to obtain an open admissible path which we denote by ƒ1ƒ2 , which is
parametrized by I1[I2 , and which has a corner c at the concatenation point. There is
a natural inclusion

(19) C�.ƒ1/˝C�.ƒ2/ �! C�.ƒ1ƒ2/

which concatenates generators at c , and which we denote by juxtaposition of symbols.
For example, Eƒ1

Eƒ2
DEƒ1ƒ2

.

The map (19) is in general not a chain map. If ˛ and ˇ are generators of C�.ƒ1/ and
C�.ƒ2/ respectively, then it follows from the definition of ı that

(20) ı.˛ˇ/D .�1/#h.ˇ/.ı˛/ˇC˛.ıˇ/C ıc.˛ˇ/:

Here #h.ˇ/ denotes the number of edges of ˇ labeled ‘h’, and ıc denotes the contri-
bution to ı , if any, from rounding at the concatenation corner c .

Lemma 3.8 If the concatenation corner c of ƒ1ƒ2 is not a kink, then in C�.ƒ1ƒ2/,

ı.Eƒ1
Hƒ2

/DEƒ1ƒ2nc ;

ı.Hƒ1
Eƒ2

/D�Eƒ1ƒ2nc ;

ı.Hƒ1
Hƒ2

/DHƒ1ƒ2nc :

Moreover, for each of these equations ıx D y , for each generator  in y , there is a
unique generator ˇ in x with hıˇ;  i ¤ 0.

Proof By Lemma 3.7 and equation (20), in the left hand side of each equation, all
terms involving rounding at corners other than c cancel out. It follows directly from
the definition of ı that rounding at c gives the right hand side of each equation, and
that the last sentence of the lemma holds.

3.2 ı has degree �1 and ı2 D 0

Consider the chain complex C�.2�nI�/ or C�.ƒ/ with its differential ı . We first
check that ı has degree �1. Let ˛ and ˇ be generators of the chain complex.

Lemma 3.9 Suppose the admissible path underlying ˇ is obtained from that of ˛ by
rounding a corner. Then

I.˛; ˇ/D 2� #h.˛/C #h.ˇ/:
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Proof Let P be the polygon in the plane whose oriented boundary moves forward
along the two edges (or parts of edges) of ˛ that are rounded to obtain ˇ , and then
backwards along the edges of ˇ that are created in the rounding process. Let m denote
the sum of the multiplicities of these new edges in ˇ . By the definition of the relative
index in equation (16),

I.˛; ˇ/D 2

Z
P

x dyC 2� #h.˛/�mC #h.ˇ/:

Note that P is a simple closed polygon (except in the extremal case when the angle of
the corner rounded in ˛ is � , in which case P is a 2–gon). By Pick’s formula, since
there are no lattice points in the interior of P , we have

2

Z
P

x dy Dm:

Combining the above two equations proves the lemma.

Corollary 3.10 ı decreases degree by 1: if hı˛; ˇi ¤ 0, then I.˛; ˇ/D 1.

We now turn to the proof that ı2 D 0. An important part of this is to check that the
roundings of an admissible path at two different corners commute. Let a and b be
distinct corners of an admissible path ƒ (of any type). Suppose that a is not a kink
of ƒ so that ƒ n a is defined. Then b induces a corner b0 of ƒ n a. The interval
corresponding to b0 contains the interval corresponding to b . From now on we denote
b0 simply by b .

Lemma 3.11 Let a and b be distinct corners of an admissible path ƒ. Suppose that
ƒnanb is defined (ie a is not a kink of ƒ and b is not a kink of ƒna). Then ƒnb na

is defined and
ƒ n a n b Dƒ n b n a:

Proof We can assume that a and b are consecutive and that an edge between them
has multiplicity 1. (Otherwise the lemma is obvious as then the roundings at a and b

involve disjoint portions of the domain of ƒ and thus do not affect each other.) Without
loss of generality, a precedes b .

By Proposition 2.10(a), ƒ n a n b � ƒ. Moreover, ƒ n a n b disagrees with ƒ n a

on all of the interval corresponding to b in ƒ n a, which contains the interval of ƒ
corresponding to b . So by Propositions 2.10(b) and 2.12, b is not a kink of ƒ and

ƒ n a n b �ƒ n b:
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Now ƒ n a n b disagrees with ƒ n b on an initial segment of the interval correspond-
ing to a in ƒ, hence on some of the interval corresponding to a in ƒ n b , so by
Propositions 2.10(b) and 2.12, a is not a kink of ƒ n b and

ƒ n a n b �ƒ n b n a:

Since b is not a kink of ƒ, and a is not a kink of ƒnb , the mirror image of the above
argument shows that ƒ n b n a�ƒ n a n b . Since � is a partial order, it follows that
ƒ n a n b Dƒ n b n a.

Lemma 3.12 Let ˛; ˇ;  be generators of C�.2�nI�/ or C�.ƒ/ with hı˛; ˇi and
hıˇ;  i nonzero. Then:

(a) there is a unique (up to sign) generator ˇ0 ¤˙ˇ with hı˛; ˇ0i; hıˇ0;  i ¤ 0.

(b) For ˇ0 as in (a),

hı˛; ˇihıˇ;  iC hı˛; ˇ0ihıˇ0;  i D 0:

Proof Let a denote the corner of ˛ that is rounded to obtain ˇ , and let b denote the
corner of ˇ that is rounded to obtain  . We consider three cases.

Case 1 The corner b in ˇ comes from a corner b of ˛ which is not adjacent to a

and thus not affected by the rounding at a. Then ˇ0 is obtained by performing the
rounding at b first.

Case 2 The corner b is created by the rounding at a. (We include here the extreme
case where a and b correspond to the same interval of length � .) Since hı˛; ˇi and
hıˇ;  i are nonzero, both edges of ˛ adjacent to a must be labeled ‘h’, and one edge
of ˇ adjacent to b must be labeled ‘h’. Then ˇ0 is obtained from ˇ by switching the
labels of the edges adjacent to b .

Case 3 The corner b in ˇ comes from a corner (also denoted by b ) of ˛ which is
adjacent to a. Without loss of generality, b comes after a in ˛ ; the case where b

comes before a is proved by the mirror image of the argument below.

Any ˇ0 must be obtained from ˛ by rounding at a or b , since otherwise ˇ0 would be
strictly to the left of ˛ somewhere outside the union of the intervals corresponding
to a and b , and hence so would  , which is a contradiction. Therefore this is a local
problem and we may assume without loss of generality that the path underlying ˛ is
an open path ƒ1ƒ2ƒ3 (so we are in C�.ƒ/ for some open path ƒ) where each ƒi is
a single edge, the corner a is between ƒ1 and ƒ2 , and the corner b is between ƒ2

and ƒ3 . Since hı˛; ˇi and hıˇ;  i are nonzero, at least two of the three edges of ˛
must be labeled ‘h’. There are four ways this can happen.
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The first possibility is that
˛ DHƒ1

Hƒ2
Eƒ3

:

By Lemmas 3.8 and 3.11,

ı.˛/DHƒ1ƒ2naEƒ3
�Hƒ1

Eƒ2ƒ3nb;

ı.Hƒ1ƒ2naEƒ3
/D�Eƒ1ƒ2ƒ3nanb;

ı.Hƒ1
Eƒ2ƒ3nb/D�Eƒ1ƒ2ƒ3nbna D�Eƒ1ƒ2ƒ3nanb:

These equations imply that ı2˛D0. Here there is a unique ˇ0 , namely ˙Hƒ1
Eƒ2ƒ3nb .

Likewise ı2˛ D 0 in the other three cases ˛ D Hƒ1
Eƒ2

Hƒ3
etc. In each case the

last sentence of Lemma 3.8 implies that ˇ0 is unique.

Corollary 3.13 ı2 D 0.

Proof Lemma 3.12 shows that hı2˛;  i D 0 for any generators ˛;  .

4 The homology operation U

We now define a degree �2 chain map

U W �C�.2�nI�/ �! �C��2.2�nI�/:

The map U will not appear very often in the rest of the paper. However we will need
it in Section 8.1 to help compute SH� , and it also has a geometric counterpart in the
embedded contact homology of T 3 discussed in Section 12.1.4.

Fix � 2 R=2�nZ with tan � irrational. The admissible path underlying any generator
˛ 2C�.2�nI�/ has a distinguished corner c� , which is the component of .R=2�nZ/n

T containing � . The definition of U is similar to the definition of ı , but here we
preserve the number of ‘h’ edges and only round at the distinguished corner.

Definition 4.1 For a generator ˛ 2 C�.2�nI�/, define U�˛ to be the sum of all
generators ˇ such that:

� The admissible path underlying ˇ is obtained from that of ˛ by rounding the
distinguished corner c� .

� Of the edges created or shortened by the rounding process, let f�ig denote those
edges coming before � , and let f� 0j g denote those edges coming after � . If the
edge of ˛ before c� is labeled ‘h’, then exactly one of the edges �i of ˇ is
labeled ‘h’; otherwise all the edges �i are labeled ‘e ’. Likewise, if the edge of
˛ after c� is labeled ‘h’, then exactly one of the edges � 0j of ˇ is labeled ‘h’;
otherwise all the edges � 0j are labeled ‘e ’.
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� For all edges of ˛ not adjacent to c� , the corresponding edges of ˇ have the
same labels as the corresponding edges of ˛ . The ordering of the ‘h’ edges of ˇ
is induced from the ordering of the ‘h’ edges of ˛ under the obvious bijection
between them.

It is implicit above that U�˛D 0 when c� is a kink in ˛ . When a fixed � is understood,
we write U WD U� .

Proposition 4.2 (a) If hU˛; ˇi ¤ 0, then I.˛; ˇ/D 2.

(b) Ux D xU , and Uy D yU , where x and y denote translation in the x– and
y –directions.

(c) If the distinguished corner c� of ƒ is not a kink, then

U.Eƒ/DEƒnc� ; U.Hƒ/DHƒnc� :

Proof Property (a) follows from Lemma 3.9. Properties (b) and (c) are immediate
from the definition of U .

Proposition 4.3 U is a chain map: ıU D Uı .

Proof This will become clear after we compute U of a concatenation of Eƒ ’s and
Hƒ ’s. Let ƒ be a closed or periodic admissible path of rotation number n and period
� . Suppose that ƒ is a cyclic concatenation

(21) ƒDƒ1 � � �ƒk

where ƒi is an open admissible path parametrized by the interval Œ�i�1; �i �; ƒi.�i/D

ƒiC1.�i/, for i D 1; : : : ; k � 1; �k D �0 C 2�n; and ƒk.�k/ D ƒ0.�0/C � . Let
c0; c1; : : : ; ck D c0 denote the concatenation corners, regarded as open intervals in
R=2�nZ. If c� is not a kink of ƒ, then we can write ƒn c� as a cyclic concatenation

(22) ƒ n c� Dƒ
0
1 � � �ƒ

0
k

where

(23) ƒ0i WD

8̂̂<̂
:̂

.ƒi�1ƒi n c� / jŒ�;�i �; � 2 ci�1;

ƒi n c� ; max.ci�1/ < � <min.ci/;

.ƒiƒiC1 n c� / jŒ�i�1;��; � 2 ci ;

ƒi ; otherwise:

(Here we interpret ƒ0 and ƒkC1 as appropriate translates of ƒk and ƒ1 respectively.)
The decomposition (22) is chosen so that if the distinguished corner c� agrees with
a concatenation corner ci in (21), then the same is true for (22); and otherwise the
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concatenation corners of (21) and (22) agree. For each i D 1; : : : ; k , let Xƒi
denote

either Eƒi
or Hƒi

, and let Xƒ0
i

denote Eƒ0
i

or Hƒ0
i

respectively. Then it follows
from the definition of U that

(24) U
�
Xƒ1
� � �Xƒk

�
D

(
Xƒ0

1
� � �Xƒ0

k
; c� not a kink of ƒ;

0; otherwise.

Also if k D 1 then ıXƒ1
D 0 by Lemma 3.7; and if k > 1, then as in Lemma 3.8,

(25) ı
�
Xƒ1
� � �Xƒk

�
D

kX
iD1

˙Xƒ1
� � �Xƒi�1

YƒiƒiC1nci
XƒiC2

� � �Xƒk
:

Here

YƒiƒiC1nc WD

8<:
EƒiƒiC1nc ; if Xƒi

DEƒi
and XƒiC1

DHƒiC1
,

EƒiƒiC1nc ; if Xƒi
DHƒi

and XƒiC1
DEƒiC1

,
HƒiƒiC1nc ; if Xƒi

DHƒi
and XƒiC1

DHƒiC1
,

if ci is not a kink of ƒiƒiC1 , and YƒiƒiC1nc WD 0 otherwise.

Now any generator of C�.2�nI�/ can be written as a cyclic concatenation Xƒ1
� � �Xƒk

where each ƒi has one edge. Hence to prove that ıU D Uı , by equations (24) and
(25) it suffices to show that�

ƒ0iƒ
0
iC1

�
n ci D .ƒiƒiC1 n ci/

0 ;

and that one side of this equation is defined if and only if the other side is. This follows
directly from equation (23) and Lemma 3.11 applied to ci and c� .

We now consider the dependence of U� on � .

Definition 4.4 Let �1; �2 2 R=2�nZ with tan �1; tan �2 irrational. Define a ZŒZ2�–
linear map

K�1;�2
W �C�.2�nI�/ �! �C��1.2�nI�/

as follows. If ˛ is a generator of �C�.2�nI�/, then K�1;�2
.˛/ is the sum of all ways

of relabeling an ‘e ’ edge of ˛ in between �1 and �2 by ‘h’ and making this edge last
in the ordering of the ‘h’ edges.

Proposition 4.5 ıK�1;�2
CK�1;�2

ı D U�1
�U�2

.
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Corollary 4.6 The induced homomorphisms on homology

.U� /�W �H�.2�n; �/ �! �H��2.2�nI�/;

SH�.2�n; �/ �! SH��2.2�nI�/

do not depend on the choice of � 2 R=2�nZ.

Proof of Proposition 4.5 First note that the statement of the proposition also makes
sense in C�.ƒ/ where ƒ is an open admissible path and �1; �2 2 R. Here for � 2 R

and ˛ 2 C�.ƒ/, it is understood that U�˛ D 0 if � is not contained in any corner of
˛ . Also, if �1 > �2 , then K�1;�2

is understood to sum over ways of relabeling an ‘e ’
edge that is greater than �1 or less than �2 .

Now let Ui and K denote U�i
and K�1;�2

respectively. We want to show that

(26) ıK˛CKı˛ D U1˛�U2˛

for every generator ˛ of �C�.2�nI�/. Every term in this equation, up to edge labels,
is obtained from ˛ by rounding a single corner c (depending on the term). Hence we
need only check that for each corner c of ˛ , the contributions to both sides of the
equation involving rounding at c agree. By the definition of U , contributions to the
right hand side involving c fix all edges not adjacent to c . The same is true for the left
hand side, except for contributions in which K relabels an edge that is neither adjacent
to c nor created by rounding at c ; and by our sign conventions these terms cancel in
pairs. Therefore it is enough to prove equation (26) in C�.ƒ/, where ƒ is an open
admissible path with two edges and one corner c , and ˛ is one of the four possible
labelings of ƒ. Also we can assume that c is not a kink of ƒ, since otherwise both
sides of (26) immediately vanish.

Without loss of generality, �1 � �2 . The reason is that if �1 > �2 , then equation (26)
follows by subtracting the case where �1 and �2 are switched from the case where
�1 < �2 and the interval .�1; �2/ contains the domain of the open path ƒ.

Denote the four possibilities for ˛ in the obvious manner by ee , eh, he , and hh. Let
� WDƒ n c , let �<�i denote the part of � up to angle �i , let �>�i denote the part of �
after angle �i , and let �.�1;�2/ denote the part of � between �1 and �2 . For example,
in this notation �D �<�1�.�1;�2/�>�1 . Let E WDE� , H WDH� , H<�i WDH�<�i etc.
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Suppose first that �1; �2 2 c . Then K˛ D 0, and (26) follows from the computations

Ui.ee/DE; Ui.eh/DE<�i H>�i ;

Ui.he/DH<�i E>�i ; Ui.hh/DH<�i H>�i ;

Kı.ee/DK.0/D 0;

Kı.eh/DK.E/DE<�1H .�1;�2/E>�2 ;

Kı.he/DK.�E/D�E<�1H .�1;�2/E>�2 ;

Kı.hh/DK.H /DH<�1H .�1;�2/E>�2 �E<�1H .�1;�2/H>�2 :

Note that in the last line, there are no terms with two ‘h’ edges in � between �1 and
�2 , because each such term arises twice in K.H / with opposite sign.

The remaining cases where �1 62 c and/or �2 62 c follow by similar, straightforward
calculations.

5 Some preliminary homology calculations

The closed admissible paths ƒ of rotation number n form a directed set under the
partial order � defined in Section 2.3. Part of our strategy for computing H�.2�nI 0/

is to realize C�.2�nI 0/ as the direct limit of the subcomplexes C�.ƒ/ defined in
Section 3.1.5, spanned by generators to the left of a given ƒ. In this section, as a
preliminary step, we calculate most of the homology H�.ƒ/ when ƒ is a closed
admissible path of rotation number 1. This homology is computed inductively using a
long exact sequence introduced below. To carry out the induction, we will also need to
calculate the homology H�.ƒ/ for certain open admissible paths ƒ.

Throughout the homological calculations, the following decomposition will be useful.

Definition 5.1 Let C
.j/
� .2�nI 0/ denote the subcomplex of C�.2�nI 0/ spanned

by generators in which the index minus the number of ‘h’ edges equals j . Define
C
.j/
� .ƒ/ the same way if ƒ is a closed admissible path or an open admissible path

whose endpoints agree, so that C�.ƒ/ has a canonical Z–grading. Define �C .j/
� .2�nI 0/

to be the corresponding subcomplex of �C�.2�nI 0/.

When it should not cause confusion, we will use the same symbols to denote both
cycles and the homology classes that they represent.
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5.1 The rounding/breaking long exact sequence

If ƒ is an admissible path, the homology H�.ƒ/ fits into a long exact sequence which
provides a scheme for computing it by induction on the length of ƒ. In the statement
of the exact sequence we adopt the following:

Convention 5.2 If c is a kink of ƒ, so ƒnc is undefined, we interpret H�.ƒnc/ WD 0.

There are two versions of this exact sequence depending on whether ƒ is open or
closed/periodic. We first consider the case where ƒ is open.

Proposition 5.3 Let ƒ be an open admissible path. Suppose ƒ has a corner c which
splits it into open paths ƒ1 and ƒ2 . Then there is a long exact sequence

(27) � � �!H�.ƒnc/!H�.ƒ/!H�.C�.ƒ1/˝C�.ƒ2//
@c
�!H��1.ƒnc/!� � � :

The first arrow is induced by inclusion, the second arrow is induced by projection (see
below), and the map @c is defined by concatenating paths and computing the part of ı
involving rounding at the corner c .

Proof Suppose first that c is not a kink. Split C�.ƒ/ as the direct sum of two
submodules where the generators are those whose underlying paths lie to the left
of ƒ n c and those whose paths do not. The former submodule is the subcomplex
C�.ƒ n c/. The latter submodule, which is not a subcomplex, is naturally isomorphic
to C�.ƒ1/˝C�.ƒ2/, via concatenation of paths. For Proposition 2.10(b) shows that
any generator of C�.ƒ/ not in C�.ƒ n c/ is obtained by concatenating generators of
C�.ƒ1/ and C�.ƒ2/, and the concatenation operation is clearly injective.

Define a differential on C�.ƒ1/˝C�.ƒ2/ by starting with the differential ı on C�.ƒ/

and discarding terms involving rounding at the corner c . We now have a short exact
sequence of chain complexes

0 �! C�.ƒ n c/ �! C�.ƒ/ �! C�.ƒ1/˝C�.ƒ2/ �! 0:

The above differential on C�.ƒ1/˝C�.ƒ2/ is given more explicitly as follows. If ˛
and ˇ are generators of C�.ƒ1/ and C�.ƒ2/ respectively, and if #h.ˇ/ denotes the
number of edges of ˇ labeled ‘h’, then by equation (20),

(28) ı.˛˝ˇ/D .�1/#h.ˇ/.ı˛/˝ˇC˛˝ ıˇ:

This is the tensor product differential on C�.ƒ2/˝ C�.ƒ1/, as determined by the
canonical Z=2–grading on C�.ƒi/ given by #h mod 2. Thus we obtain a long exact
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sequence on homology as claimed. The description of the connecting homomorphism
is immediate from the definitions.

Suppose now that c is a kink. Then by Proposition 2.12, every generator of C�.ƒ/

is obtained by concatenating generators of C�.ƒ1/ and C�.ƒ2/. As above, equation
(20) then gives

H�.ƒ/'H�.C�.ƒ1/˝C�.ƒ2//:

Next suppose that ƒ is a closed or periodic admissible path with rotation number
n. Let c be a corner of ƒ. We can cut ƒ at c to obtain an open admissible path
ƒc parametrized by the interval .�0; �0C 2�n/. Here �0 2 R is a lift of a point in
R=2�nZ in the interval corresponding to c . Note that the two endpoints of ƒc will
differ by the period � of ƒ. If � ¤ 0, then ƒc depends on the choice of �0 , and the
different possibilities for ƒc differ by translation by multiples of 2�n in the domain
and � in the range.

Proposition 5.4 If ƒ is a closed or periodic admissible path, if c is a corner of ƒ,
and if ƒc is an open path obtained by cutting at c as above, then there is a long exact
sequence

(29) � � � �!H�.ƒ n c/ �!H�.ƒ/ �!H�.ƒ
c/

@c
�!H��1.ƒ n c/ �! � � � :

Proof This is a straightforward variant of Proposition 5.3.

5.2 Convex open paths with distinct endpoints

Definition 5.5 We say that an open admissible path ƒ is convex if it is parametrized
by an interval of length � 2� and if it traverses a subset of the boundary of a convex
polygon, possibly a 2–gon.

Proposition 5.6 Let ƒ be a convex open admissible path with distinct endpoints.
Then H�.ƒ/ is the free Z–module generated by the homology classes of Eƒ and Hƒ

(see Section 3.1.5).

Proof When ƒ is a straight line, the proposition is trivial since Eƒ and Hƒ are the
only two generators in C�.ƒ/, and the differential vanishes.

Now suppose that ƒ has a corner c . The corner c splits ƒ into two open paths ƒ1

and ƒ2 . Observe that ƒ1 , ƒ2 , and ƒ n c all satisfy the hypotheses of the proposition.
By induction on the length A.ƒ/ and using Lemma 2.14, we may assume that the
proposition holds for ƒ1 , ƒ2 , and ƒ n c .

Geometry & Topology, Volume 10 (2006)



200 Michael Hutchings and Michael Sullivan

By Proposition 5.3 there is a long exact sequence

� � � !H�.ƒ n c/!H�.ƒ/!H�.ƒ1/˝H�.ƒ2/
@c
�!H��1.ƒ n c/! � � � :

Here we have replaced H�.C�.ƒ1/˝C�.ƒ2// by H�.ƒ1/˝H�.ƒ2/, since we know
by inductive hypothesis that H�.ƒ1/ and H�.ƒ2/ have no torsion. We can replace
this long exact sequence by the short exact sequence

0 �! Coker.@c/ �!H�.ƒ/ �! Ker.@c/ �! 0:

By Lemma 3.8, the connecting homomorphism @c is given by

(30)

@c.Eƒ1
˝Eƒ2

/D 0;

@c.Eƒ1
˝Hƒ2

/D�@c.Hƒ1
˝Eƒ2

/DEƒnc ;

@c.Hƒ1
˝Hƒ2

/DHƒnc :

Thus Coker.@c/ D 0, and H�.ƒ/ ' Ker.@c/ is freely generated by the homology
classes of the cycles Eƒ1

Eƒ2
DEƒ and Eƒ1

Hƒ2
CHƒ1

Eƒ2
DHƒ .

5.3 Convex open paths with identical endpoints

Our next task is to compute H�.ƒ/ where ƒ is a (non-constant) convex open admissible
path whose two endpoints are the same lattice point a, so that ƒ traverses all of the
boundary of a convex polygonal region Pƒ . Let kƒ denote the number of lattice points
in Pƒ .

In this case a new homology generator appears. To describe it, let b ¤ a be a lattice
point in Pƒ , and suppose that b� a 2 Z2 is indivisible. Define

Z1.a; b/ 2 C�.ƒ/

to be the 2–gon from a to b and back with both edges labeled ‘h’, and with the edge
from a to b first in the ordering. By the definition of ı , we have ıZ1.a; b/D 0. It is
not hard to show that for the open path ƒ, the homology class of Z1.a; b/ in C�.ƒ/

does not depend on b , although we will not need this.

Proposition 5.7 Let ƒ be a nonconstant convex open admissible path whose two
endpoints are the same lattice point a. Then H�.ƒ/ is freely generated by the homology
classes of Eƒ , Hƒ , and Z1.a; b/ for a single b with b� a indivisible.

Proof We use induction on kƒ , the number of lattice points in Pƒ .

If kƒ D 2, then the chain complex C�.ƒ/ has five generators: four 2–gons which we
denote in the obvious manner by ee , eh, he , and hh; and the constant path at a which
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we denote by p.a/. The differential is given by ı.ee/D 0, ı.eh/D�ı.he/D p.a/,
ı.hh/D 0, and ı.p.a//D 0. The proposition in this case follows by inspection.

If kƒ > 2, let c be a corner of ƒ, which cuts ƒ into convex open paths ƒ1 and ƒ2

with distinct endpoints. We may inductively assume that the proposition holds for ƒnc .
By Proposition 5.6, H�.ƒi/ is freely generated by the homology classes of Eƒi

and
Hƒi

. By Proposition 5.3, there is a long exact sequence

� � � !H�.ƒ n c/!H�.ƒ/!H�.ƒ1/˝H�.ƒ2/
@c
�!H��1.ƒ n c/! � � � :

Here we have used the fact that H�.ƒi/ is free to commute homology and tensor
product in the third term. The above long exact sequence gives rise to a short exact
sequence

0 �! Coker.@c/ �!H�.ƒ/ �! Ker.@c/ �! 0:

The connecting homomorphism @c is again computed by the equations (30). Thus
Ker.@c/ is freely generated by the homology classes of Eƒ and Hƒ as before, while
now Coker.@c/ is freely generated by the homology class of Z1.a; b/.

5.4 Closed paths of rotation number 1

We now compute most of H�.ƒ/ where ƒ is a closed admissible path with rotation
number 1. Again, ƒ traverses the boundary of a convex polygonal region Pƒ ; let kƒ
denote the number of lattice points in Pƒ .

If ��ƒ is another closed admissible path with rotation number 1, then E� and H�

are cycles in C�.ƒ/. (Recall that when � is a constant path, H� is defined to be zero.)
We have the following relations between these cycles.

Lemma 5.8 Let ƒ be a closed admissible path with rotation number 1 and let �1; �2�

ƒ with k�1
D k�2

D k � 1. Then in the homology H�.ƒ/ we have

E�1
DE�2

;(31)

H�1
DH�2

:(32)

Proof If �1 Dƒ then necessarily �2 Dƒ and the lemma is trivial. If �1 ¤ƒ then
by Proposition 2.13 there exist corners a1; a2 of ƒ with �i �ƒ n ai . By induction
on kƒ , we may assume that the lemma holds for ƒ n ai . Consequently, it is enough
to choose convenient �i �ƒ n ai with k�i

D k and verify the relations (31) and (32).
Without loss of generality, a1 and a2 are consecutive corners of ƒ with a1 coming
first.
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Choose any ��ƒ with k�D kC1. The path � has at most one edge � whose initial
corner maps to the same lattice point as a1 and/or whose final corner maps to the same
lattice point as a2 . If � has no such edge, let � be an arbitrary edge of �. Let b1 and
b2 denote the corners of � before and after the edge � . Since � is a closed admissible
path of rotation number 1, it contains no kinks. Choose �i WD �n bi ; then �i �ƒnai .

Let ˛ be the generator of C�.ƒ/ with underlying path � with the edge � labeled
‘h’ and all other edges labeled ‘e ’. Let ˇ 2 C�.ƒ/ be the chain obtained from ˛ by
summing over all ways of relabeling one of the ‘e ’ edges by ‘h’ and ordering it first.
Then similarly to Lemma 3.8,

ı˛ DE�1
�E�2

;

ıˇ DH�1
�H�2

:

Hence (31) and (32) hold in homology.

Note that by the index formula (6), the indices of the above generators are

I.E�/D 2.k�� 1/;

I.H�/D 2.k�� 1/� 1; k� > 1:
(33)

Proposition 5.9 Let ƒ be a closed admissible path of rotation number 1. Then:

(a) H
.�2/
i .ƒ/D 0 for i ¤ 0. (See Definition 5.1.)

(b) M
j¤�2

H
.j/
i .ƒ/'

�
Z; 0� i � 2.kƒ� 1/;

0; otherwise.

This is generated by the homology classes of E� for ��ƒ and H� for ��ƒ
nonconstant, with the relations (31) and (32).

Proof We use induction on kƒ . If kƒ D 1 then C�.ƒ/ has only the single generator
Eƒ and the result is immediate. Suppose kƒ > 1, let c be a corner of ƒ, and assume
that the proposition holds for ƒ n c . By Proposition 5.4 there is a long exact sequence
in homology

(34) � � � �!H�.ƒ n c/ �!H�.ƒ/ �!H�.ƒ
c/

@c
�!H��1.ƒ n c/ �! � � � :

By Proposition 5.7, H�.ƒ
c/ is freely generated by Eƒc , Hƒc , and Z1.c; b/ for a

single b with b � c indivisible. By regarding the open paths as closed paths, these
cycles lift to cycles in C�.ƒ/, namely Eƒ , Hƒ , and a third cycle which we will also
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call Z1.c; b/. Hence the connecting homomorphism @c vanishes, and we have a short
exact sequence

(35) 0 �!H
.j/
� .ƒ n c/ �!H

.j/
� .ƒ/ �!H

.j/
� .ƒc/ �! 0:

The index calculation (33) implies that Eƒ and Hƒ have j � 0, while Z1.c; b/ has
j D�2. Also, the definition of the index implies that I.Z1.c; b//D 0. Thus part (a)
of the proposition follows immediately from the exact sequence (35) with j D�2. For
j ¤�2, the exact sequence (35) implies that the inclusion-induced map

ZfEƒ;Hƒg˚

M
j¤�2

H
.j/
� .ƒ n c/ �!

M
j¤�2

H
.j/
� .ƒ/

is an isomorphism. Part (b) of the proposition follows from this and Lemma 5.8.

At this point it is not hard to compute the rest of H�.ƒ/, namely H
.�2/
0

.ƒ/, and
also to take the direct limit over ƒ to recover H�.2� I 0/ and �H�.2� I 0/ as described
in Section 1.3. (The notation Z1.c; b/ here corresponds to h.c; b/ in Section 1.3.)
We will do these calculations in greater generality in Section 6.2 and Section 7.3
respectively.

6 Flattening and applications

The previous section did most of the calculation of �H�.2�nI 0/ when nD 1, which
entailed calculating most of H�.ƒ/ where ƒ is a closed admissible path of rotation
number 1. In general H�.ƒ/ is much more complicated when ƒ has rotation number
n > 1. To simplify the calculations for arbitrary n, in Section 6.1 we introduce a
“flattening” technique, exemplified by Proposition 6.14 below, which reduces many
homological calculations to more manageable ones involving admissible paths on the
x–axis. As a first application, in Section 6.2 we compute H

.�2n/
0

.ƒ/ where ƒ is
n–convex, which means the following:

Definition 6.1 An n–convex path is a closed admissible path ƒ of rotation number n

which is the pullback, via the projection R=2�nZ! R=2�Z, of a closed admissible
path of rotation number 1. By Example 2.3, the latter corresponds to a convex polygonal
region Pƒ in R2 with corners in Z2 , possibly a 2–gon or a point. Let kƒ denote the
number of lattice points in Pƒ .

As a second application of the flattening technology, we will prove in Section 6.3 that
the homology vanishes for periodic paths that are not closed:
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Theorem 6.2 For any n, if � ¤ 0, then

H�.2�nI�/D 0:

Note that this is equivalent to �H�.2�nI�/D 0, see Section 3.1.4. By the universal
coefficient spectral sequence (see Section 8.1), this implies Theorem 1.3(a).

6.1 Flattening

Let ƒ be a closed admissible path of rotation number n, and fix an angle � 2 .0; 2�/
with tan � irrational. We now define a subcomplex C �

� .ƒ/ of C�.ƒ/ which is much
smaller but has the same homology. The first step is to define a decomposition of the
Z–module C�.ƒ/ in terms of “� –corner sequences”.

Definition 6.3 For � � ƒ, the � –corner sequence associated to � is the sequence
.p0;p1; : : : ;p2n D p0/ of points in Z2 defined by

pi WD �.� C i�/:

Let S� .ƒ/ denote the set of all � –corner sequences that can arise for admissible paths
��ƒ. The set S� .ƒ/ can be characterized as follows. Define an ordering on Z2 by

(36) p � q” det
�

cos �
sin �

p� q

�
� 0:

If p � q and i is odd, or p � q and i is even, let si
p;q denote the open admissible

path parametrized by the interval

Ii WD .� C i�; � C .i C 1/�/

with endpoints at p and q and with a single edge if p ¤ q and no edges otherwise. If
�0 and � are open admissible paths parametrized by the same interval, but (unlike in
Definition 2.6) not necessarily having the same endpoints, write

�0 �0 �

if the inequality (11) holds.

Lemma 6.4 .p0;p1; : : : ;p2nDp0/2S� .ƒ/ if and only if for each i , letting p WDpi

and q WD piC1 , we have

(i) p � q if i is even, and p � q if i is odd.

(ii) si
p;q �

0 ƒjIi
.
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Proof .)/ If .p0; : : : ;p2n/ is the � –corner sequence associated to � � ƒ, then
condition (i) holds since � is an admissible path, and condition (ii) holds because
si
pi ;piC1

��jIi
�0ƒjIi

. .(/ If .p0; : : : ;p2n/ satisfies conditions (i) and (ii), then �D
s0
p0;p1

� � � s2n�1
p2n�1;p2n

is well defined by (i), satisfies ��ƒ by (ii), and has .p0; : : : ;p2n/

as its � –corner sequence.

For a given i , if p and q satisfy conditions (i) and (ii) above, then there is a unique
maximal open admissible path ƒi

p;q parametrized by Ii with endpoints at p and q

and with ƒi
p;q �

0 ƒjIi
. The path ƒi

p;q traverses part of the boundary of the convex
hull of the set of lattice points enclosed by si

p;q , ƒjIi
, and rays from p and from q in

the direction �
cos �
sin �

�
if i is even, and

�
� cos �
� sin �

�
if i is odd.

Example 6.5 The picture below shows an example where n D 1 and � is slightly
greater than zero. Here the outer polygon is ƒ, the numbers indicate the ordering (36)
of the 10 lattice points in Pƒ , and the inner path is ƒ0

8;3
.

. . . .

. . . .

. . . .

. . . .

�
�
�
�

�
�
�
�
H
HHH

1

2 3 4

5 6 7

8 9 10
��

��*
�
��

�

Lemma 6.6 As Z–modules,

(37) C�.ƒ/D
M

.p0;:::;p2n/2S� .ƒ/

2n�1O
iD0

C�

�
ƒi

pi ;piC1

�
:

Proof It is enough to show that cyclic concatenation induces a bijection

f��ƒg D
G

.p0;:::;p2n/2S� .ƒ/

2n�1Y
iD0

n
�i �ƒ

i
pi ;piC1

o
:

If .p0; : : : ;p2n/ 2 S� .ƒ/ and �i � ƒ
i
pi ;piC1

for i D 0; : : : ; 2n� 1, then the cyclic
concatenation � D �0�1 � � ��2n�1 satisfies � � ƒ and has .p0; : : : ;p2n/ as its � –
corner sequence. Conversely, any ��ƒ is obtained this way, where .p0; : : : ;p2n/ is
�’s � –corner sequence and �i D �jIi

.
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Lemma 6.7 For a given i , suppose that the pairs .p; q/ and .p0; q0/ satisfy conditions
(i) and (ii) above. Suppose that under the ordering (36), the interval between p and q

contains the interval between p0 and q0 . Then

(38) ƒi
p0;q0 �

0 ƒi
p;q:

Proof Since ƒjIi
is parametrized by an interval of length � , we can find a convex

polygonal region P such that ƒjIi
is part of the boundary of P . Then the right side of

(38) is part of the boundary of the convex hull of the set of lattice points in P that are
between p and q in the ordering (36), inclusive. The left side of (38) has an analogous
description for a subset of these lattice points. The relation (38) then follows as in
Example 2.9.

Definition 6.8 Let Ei
p;q and H i

p;q respectively denote Eƒi
p;q
;Hƒi

p;q
2C�.ƒ

i
p;q/, see

Section 3.1.6. In terms of the decomposition (37), define

C �
� .ƒ/ WD

M
.p0;:::;p2n/2S� .ƒ/

2n�1O
iD0

span
n
Ei

pi ;piC1
;H i

pi ;piC1

o
� C�.ƒ/:

Lemma 6.9 C �
� .ƒ/ is a subcomplex of C�.ƒ/.

Proof For .p0; : : : ;p2n/ 2 S� .ƒ/, define the cyclic concatenation

ƒ.p0;p1; : : : ;p2n/ WDƒ
0
p0;p1

� � �ƒ2n�1
p2n�1;p2n

:

Recall from Section 4 that c�Ci� denotes the corner of ƒ containing � C i� . By
Lemma 3.8, it is enough to show that if .p0; : : : ;p2n/ 2 S� .ƒ/ and c�Ci� is not a
kink of ƒ.p0;p1; : : : ;p2n/, then

ƒ.p0; : : : ;p2n/ n c�Ci� Dƒ.p0; : : : ;pi�1;p
0
i ;piC1; : : : ;p2n/

where
p0i WD .ƒ.p0; : : : ;p2n/ n c�Ci�/ .� C i�/:

By locality of rounding it is enough to show that

(39) ƒi�1
pi�1;pi

ƒi
pi ;piC1

n c�Ci� Dƒ
i�1
pi�1;p

0
i

ƒi
p0

i
;piC1

:

In (39) we have � by definition, and � by Proposition 2.10(b) and Lemma 6.7, hence
D by Proposition 2.8.

Example 6.10 If ƒ0 is on the x–axis, then C �
� .ƒ0/DC�.ƒ0/. Here Ei

p;q and H i
p;q

are single edges labeled ‘e ’ and ‘h’ respectively (when p ¤ q ).
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Proposition 6.11 For any closed admissible path ƒ of rotation number n, the inclu-
sion C �

� .ƒ/! C�.ƒ/ induces an isomorphism on homology.

Proof By Proposition 2.13 and induction on length, there are only finitely many
admissible paths to the left of ƒ. Hence only finitely many points in Z2 can appear in a
sequence in S� .ƒ/; denote these by q1; : : : ; qk , in increasing order with respect to the
ordering (36). If ˛ is a generator of C�.ƒ/ with � –corner sequence .qj0

; : : : ; qj2n
/ 2

S� .ƒ/, define the “degree”

deg.˛/ WD
2n�1X
iD0

.�1/iji � 0:

This defines an increasing filtration on C�.ƒ/. Indeed the differential ı on C�.ƒ/

splits as
ı D ı0C ı1

where ı1 is the contribution from rounding at the corners c�Ci� ; then ı0 preserves the
degree while ı1 decreases it (possibly by an arbitrarily large amount). This filtration
yields a spectral sequence E��;� converging to H�.ƒ/. The E1 term is the homology
of ı0 . By equation (28), the differential ı0 agrees with the tensor product differential
on the right hand side of (37), with the standard sign if the factors in the tensor product
are arranged in the order i D 2n � 1; : : : ; 0. So by Proposition 5.6, the inclusion
C �
� .ƒ/! C�.ƒ/ induces an isomorphism

(40) C �
� .ƒ/DE1:

We can filter the subcomplex C �
� .ƒ/ the same way to obtain a spectral sequence 0E��;�

converging to the homology of C �
� .ƒ/. Now ı0 restricts to zero on C �

� .ƒ/ by Lemma
3.7, so

(41) 0E1
D C �

� .ƒ/:

Putting this together, the inclusion of filtered complexes C �
� .ƒ/! C�.ƒ/ induces

a morphism of spectral sequences, which by equations (40) and (41) induces an
isomorphism 0E1 'E1 . Hence the inclusion induces an isomorphism 0E1 'E1 ,
and therefore an isomorphism on homology.

We now specialize to the case where ƒ is n–convex.

Lemma 6.12 Let ƒ;ƒ0 be n–convex paths with kƒD kƒ0 . Then there is a canonical
isomorphism of Z–graded chain complexes

C �
� .ƒ/D C �

� .ƒ
0/:
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Proof We compute the chain complex C �
� .ƒ/ explicitly. Denote the lattice points

enclosed by ƒ in increasing order with respect to the ordering (36) by 1; : : : ; k . By
Lemma 6.4, .j0; : : : ; j2n/2S� .ƒ/ if and only if ji�jiC1 for i even and ji�jiC1 for
i odd. Moreover if i is even and j ; j 00 > j 0 , then c�Ci� is not a kink of ƒi�1

j ;j 0ƒ
i
j 0;j 00 ,

and
ƒi�1

j ;j 0ƒ
i
j 0;j 00 n c�Ci� Dƒ

i�1
j ;j 0C1ƒ

i
j 0C1;j 00 :

Here � holds and c�Ci� is not a kink by Lemma 6.7 and Propositions 2.10(b) and 2.12,
while � holds by equation (39) and Lemma 6.7. Likewise, if i is odd and j ; j 00 < j 0

then
ƒi�1

j ;j 0ƒ
i
j 0;j 00 n c�Ci� Dƒ

i�1
j ;j 0�1ƒ

i
j 0�1;j 00 :

So by Lemma 3.8, the differential on C �
� .ƒ/ operates on a length 2n cyclic string of

E ’s and H ’s according to the local (up to sign) rules

Ei�1
j ;j 0H

i
j 0;j 00 ; H i�1

j ;j 0E
i
j ;j 00 7�!˙Ei�1

j ;j 0C1Ei
j 0C1;j 00 ;

H i�1
j ;j 0H

i
j 0;j 00 7�!˙

�
Ei�1

j ;j 0C1H i
j 0C1;j 00 CH i�1

j ;j 0C1Ei
j 0C1;j 00

�
;

(42)

for i even and j ; j 00 > j 0 , and similarly for i odd.

The important point is that the above description of the chain complex C �
� .ƒ/ depends

only on k . Thus we get a canonical isomorphism of chain complexes C �
� .ƒ/DC �

� .ƒ
0/.

This isomorphism respects the grading, as one can see by using rounding and relabeling
to inductively reduce to generators involving constant corner sequences.

Definition 6.13 Let ƒ;ƒ0 be n–convex paths with kƒ D kƒ0
and with Pƒ0

on the
x–axis. Define a chain map

F� W C�.ƒ0/ �! C�.ƒ/

to be the composition of canonical isomorphisms and inclusion

C�.ƒ0/D C �
� .ƒ0/D C �

� .ƒ/ �! C�.ƒ/:

Explicitly, F� takes a generator of C�.ƒ0/ and replaces each ‘e ’ or ‘h’ edge by a
corresponding Ei

p;q or H i
p;q to obtain a cyclic concatenation of such in C �

� .ƒ/ �

C�.ƒ/.

Proposition 6.14 Let ƒ;ƒ0 be n–convex paths with kƒ D kƒ0
and with Pƒ0

on
the x–axis. Then:

(a) The chain map F� W C�.ƒ0/! C�.ƒ/ induces an isomorphism on homology

.F� /�W H
.j/
i .ƒ0/

'
�!H

.j/
i .ƒ/:
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(b) Let ƒ0 and ƒ0
0

be the n–convex paths obtained by rounding the distinguished
corners c� of Pƒ and Pƒ0

respectively. Then the diagram

H
.j/
� .ƒ0

0
/

.F� /�
����! H

.j/
� .ƒ0/??y ??y

H
.j/
� .ƒ0/

.F� /�
����! H

.j/
� .ƒ/

commutes, where the vertical arrows are induced by inclusion.

Proof Part (a) follows from Proposition 6.11; the upper index j is preserved because
F� preserves the number of ‘h’ edges. The diagram in part (b) commutes at the chain
level, because if qk denotes the maximal lattice point in Pƒ with respect to the ordering
(36), then C �

� .ƒ
0/ is the subcomplex of C �

� .ƒ/ in which qk does not appear in any of
the � –corner sequences.

6.2 The special degree zero homology

We now apply Proposition 6.14 to compute H
.�2n/
0

.ƒ/, where ƒ is an n–convex path.
Generators for this homology are given explicitly as follows.

Definition 6.15 If a; b 2 Pƒ are distinct lattice points with b� a indivisible, define
Zn.a; b/ 2 C�.ƒ/ to be the generator that wraps n times around the 2–gon with
vertices a and b , with all 2n edges labeled ‘h’, ordered counterclockwise with an
edge from a to b coming first. If a; b 2Pƒ are distinct lattice points with m�1 lattice
points in the interior of the line segment between them, define

Zn.a; b/ WD

mX
iD1

Zn

�
aC

i � 1

m
.b� a/; aC

i

m
.b� a/

�
:

Define Zn.a; a/ WD 0. Observe that ıZn.a; b/D 0.

Definition 6.16 A simple triangle is a triple .a; b; c/ of non-colinear points in Z2 ,
ordered counterclockwise, such that the triangle with vertices a; b; c encloses no other
lattice points.

Lemma 6.17 Let ƒ be an n–convex path. Then for any lattice points a; b; c 2 Pƒ ,
the following relations hold in the homology H�.ƒ/:

Zn.a; b/CZn.b; a/D 0;(43)

Zn.a; b/CZn.b; c/CZn.c; a/D 0:(44)
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Proof Equation (43) holds at the chain level because Zn.b; a/ is obtained from
Zn.a; b/ by re-ordering the ‘h’ edges, and a 2n–cycle is an odd permutation.

Likewise, equation (44) holds at the chain level if a; b; c are colinear.

Next we prove (44) when .a; b; c/ is a simple triangle. Let � be the n–convex path that
wraps n times around this triangle. Write the corners of � in counterclockwise order
as c1; : : : ; c3n , starting with a corner that maps to a. Define an “admissible corner set”
to be a subset I � f1; : : : ; 3ng such that for distinct i; j 2 I , the corners ci ; cj are
not adjacent, ie ji � j j ¤ 1; 3n� 1. Let C denote the set of admissible corner sets. If
I D fi1; : : : ; ikg 2 C , let

�.I/ WD � n ci1
n ci2
n � � � n cik

:

Let T .I/ 2 C�.ƒ/ denote the generator with underlying path �.I/ and with all edges
labeled ‘h’. Order the ‘h’ edges counterclockwise, starting at c1 if 1 62 I and starting
at c2 if 1 2 I . In this notation,

(45)

Zn.a; b/D T .f3; 6; : : : ; 3ng/;

Zn.b; c/D T .f1; 4; : : : ; 3n� 2g/;

Zn.c; a/D�T .f2; 5; : : : ; 3n� 1g/:

The differential of a generator T .I/ is given by

(46) ıT .I/D
X

I[fig2C

.�1/#fj 62I ji<jgT .I [fig/:

Now let C0 denote the set of admissible corner sets of the form I D fi1; : : : ; in�1g

with i1 < i2 < � � �< in�1 and with i1; i3; : : : odd and i2; i4; : : : even. By (45) and (46),

ı
�X

I2C0

T .I/
�
DZn.a; b/CZn.b; c/CZn.c; a/:

To see this, observe that a generator T .I/ with I D fi1 < i2 < � � � < ing will appear
exactly once in the left hand side if the ij ’s alternate parity, twice with opposite signs
if there is exactly one j such that ij and ijC1 have the same parity, and otherwise not
at all.

For general noncolinear lattice points a; b; c 2Pƒ , we can triangulate the triangle with
vertices a; b; c by simple triangles. Adding the relations (44) for these simple triangles,
and using (43) to cancel interior edges, proves (44) for .a; b; c/.

The following is a useful way to understand the above relations. If S is any set, let I.S/
denote the set of finite formal sums of elements of S with integer coefficients such
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that the sum of the coefficients is zero. For a; b 2 S , define z.a; b/ WD a� b 2 I.S/.
We then have the following elementary fact, whose proof is left to the reader:

Lemma 6.18 If S is any set, then as a Z–module, I.S/ is generated by

fz.a; b/ j a; b 2 Sg;

with the relations z.a; b/C z.b; a/D 0 and z.a; b/C z.b; c/C z.c; a/D 0.

Proposition 6.19 Let ƒ be an n-convex path. Then there is an isomorphism

I.Pƒ\Z2/'H
.�2n/
0

.ƒ/

sending z.a; b/ 7!Zn.a; b/.

Proof By Lemmas 6.17 and 6.18, the above map I.Pƒ \ Z2/! H
.�2n/
0

is well-
defined. To show that it is an isomorphism, let k D kƒ and let ƒ0 be the n–convex
path on the x–axis with Pƒ0

D Œ1; k��f0g. Choose any � 2 .0; �/ with tan � irrational.
By Proposition 6.14(a), there is an isomorphism on homology

.F� /�W H
.j/
� .ƒ0/

'
�!H

.j/
� .ƒ/:

Since every generator of C�.ƒ0/ has nonnegative index (cf equation (49) below) and
at most 2n edges labeled ‘h’, the generators of C

.�2n/
� .ƒ0/ are those with 2n edges

labeled ‘h’ and with index 0, which since all edges are labeled ‘h’ means that all
edges have length one. Thus C

.�2n/
� .ƒ0/DH

.�2n/
0

.ƒ0/ is freely generated by the
k � 1 generators Zn..1; 0/; .2; 0//; : : : ;Zn..k � 1; 0/; .k; 0//.

By the construction of the chain map F� in Section 6.1,

F� .Zn..i; 0/; .i C 1; 0///DZn.qi ; qiC1/

where q1; : : : ; qk are the lattice points in Pƒ , ordered by (36). Hence H
.�2n/
0

.ƒ/ is
freely generated by Zn.q1; q2/; : : : ;Zn.qk�1; qk/. But it follows from the definition
of I that I.Pƒ\Z2/ is freely generated by z.q1; q2/; : : : ; z.qk�1; qk/.

6.3 Vanishing of homology for � ¤ 0

We now prove Theorem 6.2. Without loss of generality,

� D

�
k

0

�
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for some positive integer k . This is justified by the following lemma. An element
A 2 SL2Z induces a diffeomorphism S1! S1 , where S1 is the unit circle in the R2

on which A acts. This diffeomorphism can be lifted to a diffeomorphism f W R! R.
The set of pairs .A; f / forms a group eSL2Z which is an infinite cyclic cover of
SL2Z.

Lemma 6.20 A pair .A; f / 2eSL2Z induces an isomorphism

ˆ.A;f /W H�.2�nI�/
'
�!H�.2�nIA�/:

Proof If ƒW Rnp�1.T /! Z2 is an admissible path of rotation number n and period
� , define an admissible path ˆƒ of period A� by

ˆƒ WDA ıƒ ıf �1:

Then f induces a bijection from the edges of ƒ to the edges of ˆƒ, and pushing
forward edge labels via this bijection gives an isomorphism of Z–modules

ˆ.A;f /W C�.2�nI�/ �! C�.2�nIA�/:

It follows from the definition of rounding that this is a chain map, since the action of
SL2Z on Z2 preserves convex hulls and (unlike the more general action of GL2Z)
respects the signs in the differential ı .

For a; b � 1, let �.a; bI k/ denote the closed admissible path of rotation number
n and period � whose restriction to .0; 2�n� wraps n times around the rectangle
Œ0; a� 1� � Œ0; b � 1� � R2 , except that the edge at � D 2�n has length a� 1C k .
For example, �.1; 1I k/ has edges of length k along the x–axis at angles � D 2� i n

separated by kinks parametrized by the intervals .2� i n; 2�.i C 1/n/. We now have
the following analogue of Proposition 6.14(a), which replaces the path �.a; bI k/ by a
path on the x–axis.

Lemma 6.21 There is a chain map

F W C�.�.ab; 1I kb// �! C�.�.a; bI k//

which induces an isomorphism on homology, preserves the relative grading, and sends

E�.1;1Ikb/ 7�!E�.1;1Ik/:

Proof If ƒ is any periodic admissible path of rotation number n and period � ,
and if � 2 .0; 2�/ is an angle with tan � irrational, then we can define a subcomplex
C �
� .ƒ/�C�.ƒ/ as in Section 6.1. The only difference is that now a � –corner sequence

Geometry & Topology, Volume 10 (2006)



Rounding corners of polygons and the embedded contact homology of T 3 213

is an infinite sequence fpi j i 2 Zg of points in Z2 such that piC2n D pi C� for all
i . As in Proposition 6.11, the inclusion C �

� .ƒ/! C�.ƒ/ induces an isomorphism on
homology.

Now let � WD �
2
C � where � > 0 is small with respect to b . Then for two consecutive

points in a � –corner sequence for �.a; bI k/, the ordering (36) coincides with the
lexicographic order on Z2 . There is then an isomorphism of chain complexes

C �
� .�.a; bI k//

'
�! C �

� .�.ab; 1I kb//D C�.�.ab; 1I kb//:

This is defined via the bijection on � –corner sequences induced by the map

Z� f0; 1; : : : ; b� 1g �! Z� f0g;

.x;y/ 7�! .bxCy; 0/:

This is a chain map and preserves the relative grading as in the proof of Lemma 6.12,
because for ƒD�.a; bI k/, locally ƒi�1

pi�1;pi
and ƒi

pi ;piC1
are the same as they would

be if ƒ were n–convex and Pƒ were a rectangle. Clearly this isomorphism sends
E�.1;1Ik/ to E�.1;1Ikb/ .

The homology H�.�.a; bI k// may be complicated, but we will only need to establish
a lower bound on the index of nonvanishing homology groups. For y0 2 Z, let
C�.2�nI�Iy � y0/ denote the subcomplex of C�.2�nI�/ spanned by generators
whose underlying admissible paths map to the half-plane y � y0 .

Lemma 6.22 If ˛ 2 H�.2�nI�Iy � 0/ is nonzero and has pure degree, then the
relative index

I
�
˛;E�.1;1Ik/

�
� �n:

Proof By horizontally translating a cycle representing ˛ (which does not affect the
index by (18)), we may assume that ˛ is contained in H�.�.a; bI k// for some a; b .
By Lemma 6.21, ˛ D F.˛0/ for some ˛0 2H�.�.abI 1I kb//, and

I
�
˛;E�.1;1Ik/

�
D I

�
˛0;E�.1;1Ikb/

�
:

Let ˇ0 be a generator in a cycle representing ˛0 . Since ˇ0 and E�.1;1Ikb/ are on the
x–axis, the definition of the relative index (16) implies that

I
�
ˇ0;E�.1;1Ikb/

�
D `.ˇ0/� #h.ˇ0/� kb:

Since ˇ0 has period �
kb

0

�
;

we see that `.ˇ0/� #h.ˇ0/� kb� n.
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Proof of Theorem 6.2 Suppose ˛ 2 H�.2�nI�/ is nonzero and has pure degree.
Since

C�.2�nI�/D lim
y0!�1

C�.2�nI�Iy � y0/;

there exists y0 such that

˛ 2H�.2�nI�Iy � y0�m/

for all m � 0. Let ‰W C�.2�nI�/ ! C�.2�nI�/ be the isomorphism of chain
complexes that translates paths upward by one unit, ie

.‰ƒ/.t/ WDƒ.t/C

�
0

1

�
:

By Lemma 6.22 and symmetry, for all m� 0,

(47) I
�
˛;‰y0�mE�.1;1Ik/

�
� �n:

By the index ambiguity formula (18),

I
�
˛;‰y0�mE�.1;1Ik/

�
DI

�
˛;‰y0E�.1;1Ik/

�
CI

�
‰y0E�.1;1Ik/; ‰

y0�mE�.1;1Ik/

�
DI

�
˛;‰y0E�.1;1Ik/

�
�2km:

Combining this with (47) gives a contradiction when m is sufficiently large.

7 Computation of zH�.2�nI 0/

We now compute the homology for closed admissible paths of rotation number n. Recall
the notations I.Z2/ and Z from Section 1.3.5. Also recall the notation �H .j/

� .2�nI 0/

from Definition 5.1. In this section we will prove:

Theorem 7.1 (a) As ZŒZ2�–modules,

�H .j/
i .2�nI 0/'

8<:
Z; i D 2k; 2kC 1I j D 2k � 2nC 2I k 2 Z�0;

I.Z2/; i D 0; j D�2n;

0; otherwise:

(b) If i � 2, then the map

U W �Hi.2�nI 0/ �! �Hi�2.2�nI 0/

is an isomorphism between the Z components.
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In particular, �H�.2�nI 0/ is independent of n. However, the homology generators
look very different for different n. Among other things, increasing n by 1 increases
the number of ‘h’ edges (in the chain complex generators that are summands in cycles
generating the homology) by 2. For example, if ƒ is a closed admissible path of
rotation number n, then the cycles Eƒ;Hƒ 2

�C�.2�nI 0/ are homology generators
when nD 1, but they are boundaries when n> 1.

7.1 Splicing

Definition 7.2 For n� 1, let CX�.n/ denote the subcomplex of C�.2�nI 0/ spanned
by generators with underlying admissible path on the x–axis in R2 . Let

CX
.j/
� .n/ WD CX�.n/\C

.j/
� .2�nI 0/:

Thanks to the “flattening” technology of Section 6.1, to prove Theorem 7.1 it is mostly
sufficient to compute the homology HX�.n/. We will now compute HX�.n/ by
induction on n, using a “splicing” isomorphism constructed below.

We will use the following notation for generators of CX�.n/. Similarly to Section
6.1, define a corner sequence to be a sequence of integers a0; a1; : : : ; a2n D a0 with
a0�a1�a2� � � � , and let Sn denote the set of all corner sequences. If ˛ is a generator
of CX�.n/, then the x–coordinates of the values of its underlying admissible path at
�=2C i� determine a corner sequence faig. Thus as a Z–module,

(48) CX�.n/D
M
fai g2Sn

2n�1O
iD0

Z

n
e

aiC1
ai

; h
aiC1
ai

o
:

Here eb
a and hb

a denote edges from .a; 0/ to .b; 0/ labeled ‘e ’ and ‘h’ respectively. If
aD b , then eb

a denotes the lack of an edge, and we interpret hb
a D 0. (So if aD b ,

then Zfeb
a ; h

b
ag really means Zfeb

ag.) This decomposition of CX�.n/ determines a
natural convention for ordering the ‘h’ edges. By the index formula (15), the index
of a generator is the sum of the lengths of the edges, minus the number of ‘h’ edges.
That is, if ˛ has corner sequence faig, then

(49) I.˛/D

2n�1X
iD0

jai � aiC1j � #h.˛/:

The differential on CX�.n/ is given as in equation (42).

Definition 7.3 Define the “splicing map”

S W CX
.j/
� .n/ �! CX

.j�2/
� .nC 1/
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as follows. In terms of the decomposition (48), any generator of CX�.n/ has the form
w˝eb

a˝ec
b

, w˝eb
a˝hc

b
, w˝hb

a˝ec
b

, or w˝hb
a˝hc

b
, where w is a tensor product

of 2n� 2 e ’s or h’s, and a � b � c . Henceforth we will omit the tensor product
symbol when writing generators of CX�.n/ this way. Now S sums over all ways
of shortening the edges from a to b and from b to c and splicing in two ‘h’ edges
between them so that the grading is preserved. Namely

S
�
web

aec
b

�
WD

aX
iDb

cX
jDb

wei
ah

iCj�bC1
i h

j

iCj�bC1
ec
j ;

S
�
whb

aec
b

�
WD

a�1X
iDb

cX
jDb

whi
ah

iCj�bC1
i h

j

iCj�bC1
ec
j ;

and similarly for S
�
web

ahc
b

�
and S

�
whb

ahc
b

�
.

Lemma 7.4 S is a degree 0 chain map.

Proof S preserves the grading because

.a�b/C .c�b/D .a� i/C .ŒiCj �bC1�� i/C .ŒiCj �bC1��j /C .c�j /�2:

We now check that ıS D Sı . Recall the notation c� from Section 4. Decompose the
differential on CX�.n/ as ıD ı0Cı1 where ı1 is the contribution from rounding at the
corner c.2n�1=2/� . Similarly decompose the differential on CX�.nC 1/ as ıD ı0Cı1
where ı1 is the contribution from rounding at the corners c.2n�1=2/� , c.2nC1=2/� , and
c.2nC3=2/� . Clearly ı0S D Sı0 ; the signs agree because the number of ‘h’ edges we
are splicing in is always even. So we just have to check that ı1S D Sı1 . We will
verify that ı1S˛ D Sı1˛ when ˛ D web

ahc
b

; the calculations for the other three types
of generators are very similar. By the definitions of S and ı1 ,

ı1S
�
web

ahc
b

�
D ı1

aX
iDb

c�1X
jDb

wei
ah

iCj�bC1
i h

j

iCj�bC1
hc

j

D w

c�1X
jDb

�a�1X
iDb

eiC1
a e

iCj�bC1
iC1

h
j

iCj�bC1
�

aX
iDbC1

ei
ae

iCj�b
i h

j

iCj�b

�
hc

j

Cw

aX
iDb

ei
a

�
�

c�1X
jDbC1

h
iCj�b
i e

j

iCj�b
hc

j C

c�2X
jDb

h
iCj�bC1
i e

jC1

iCj�bC1
hc

jC1

�
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Cw

aX
iDbC1

c�1X
jDb

ei
ah

iCj�bC1
i h

jC1

iCj�bC1
ec
jC1

D 0C 0Cw

aX
iDbC1

cX
jDbC1

ei
ah

iCj�b
i h

j

iCj�b
ec
j

D S
�
webC1

a ec
bC1

�
D Sı1

�
web

ahc
b

�
:

This completes the proof.

We now come to the key argument which explains how the homologies for different n

are related.

Proposition 7.5 For all n� 1, the chain map S induces an isomorphism

HX
.j/
� .n/

'
�!HX

.j�2/
� .nC 1/:

Proof If ˛ is a generator of CX�.n C 1/ corresponding to the corner sequence
a0; a1; : : : ; a2nC2 D a0 , define the “degree”

deg.˛/ WD
2n�2X
iD0

jai � aiC1jC ja2nC1� a2nC2j :

In other words the degree is the sum of the lengths of the edges, except for the two
edges that could arise from splicing a generator of CX�.n/. This “degree” defines an
increasing filtration on CX�.nC 1/ and hence gives rise to a spectral sequence E��;� .
By equation (49), the filtration is bounded in terms of the index by

0� deg.˛/� I.˛/C 2n:

It follows that the spectral sequence E��;� converges to HX�.nC 1/.

For i; j 2 Z, let C�.i; j / denote the direct limit of C�.ƒ/, where ƒ is an open
admissible path on the x–axis parametrized by the interval .�=2C 2�.n� 1/; �=2C

2�n/ and with endpoints .i; 0/ and .j ; 0/. That is, generators of C�.i; j / have
underlying admissible paths that start at .i; 0/, go in the negative x direction by some
(possibly zero) amount, then turn by � and go in the positive x direction by some
(possibly zero) amount to .j ; 0/. In this notation, the E1 term of the spectral sequence
is given by

(50) E1
D

M
a0;:::;a2n�1;a2nC1

2n�2O
iD0

Z
˚
e

aiC1
ai

; h
aiC1
ai

	
˝H�.a2n�1; a2nC1/˝Z

˚
e

a2nC2
a2nC1

; h
a2nC2
a2nC1
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where ai � aiC1 for i ¤ 2n even, ai � aiC1 for i ¤ 2n� 1 odd, and a2nC2 D a0 .
By Propositions 5.6 and 5.7,

(51) H�.i; j /D

�
0; i ¤ j ;

Z
˚
hi�1

i hi
i�1

	
; i D j:

By equations (48), (50) and (51), there is an isomorphism of Z–modules

(52) CX�.n/'E1:

Now we can filter CX�.n/ by the sum of the lengths of all the edges. This filtration
gives rise to a spectral sequence 0E��;� converging (at the third term) to HX�.n/ with

(53) 0E1
D CX�.n/:

The splicing chain map S W CX�.n/! CX�.nC 1/ respects the above filtrations and
therefore induces a morphism of spectral sequences 0E��;�!E��;� . On the first term, S

induces the isomorphism 0E1 '
�!E1 given by (52) and (53), because by the definition

of S , the only term in which no old edge is shortened is the term in which two ‘h’
edges of length one are spliced in. Therefore S induces an isomorphism 0E1

'
�!E1 ,

hence an isomorphism HX�.n/
'
�!HX�.nC 1/.

Corollary 7.6 For .i; j /¤ .0;�2n/,

HX
.j/
i .n/'

�
Z; i D 2k; 2kC 1I j D 2k � 2nC 2I k 2 Z�0;

0; otherwise:

Proof Applying Proposition 5.9 to x–axis polygons and taking the direct limit proves
the claim for nD 1. It follows by Proposition 7.5 that the claim holds for all n.

We will also need the following lemma in Section 7.3:

Lemma 7.7 For appropriate choices of the angles used to define U ,

(54) SU D US W CX
.j/
i .n/ �! CX

.j�4/
i�2

.nC 1/:

Proof Define U on C�.2�nI 0/ using � D �=2 C .2n � 2/� , and define U on
C�.2�.nC1/I 0/ using � D �=2C .2n�1/� . We will check that equation (54) holds
when applied to a generator of the form web

ahc
b

; the other cases are very similar. Note
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that U acts on a generator of CX�.n/ simply by shrinking the two edges adjacent to
c� by one, preserving the edge labels. Thus

US
�
web

ahc
b

�
D U

� aX
iDb

c�1X
jDb

wei
ah

iCj�bC1
i h

j

iCj�bC1
hc

j

�

D

aX
iDbC1

c�1X
jDbC1

wei
ah

iCj�b
i h

j

iCj�b
hc

j

D S
�
webC1

a hc
bC1

�
D SU

�
web

ahc
b

�
;

which completes the proof.

7.2 Inclusion

The proof of Theorem 7.1 will proceed by taking a direct limit, for which purpose we
will need the following technical lemma about how H�.ƒ/ behaves under inclusion of
polygonal regions.

Lemma 7.8 Let ƒ and ƒ0 be n–convex paths with ƒ0 � ƒ. If .i; j / ¤ .0;�2n/,
and if kƒ0 is sufficiently large with respect to i and j , then inclusion induces an
isomorphism

H
.j/
i .ƒ0/

'
�!H

.j/
i .ƒ/:

To prove Lemma 7.8, we will need to compute H�.ƒ/ for certain special open ad-
missible paths ƒ on the x–axis. Similarly to the notation in Section 7.1, we can
write

ƒD �a1
a0
� � ��ak

ak�1

where �aiC1
ai

denotes an edge from .ai ; 0/ to .aiC1; 0/ occuring at angle .iC i0/� for
some integer i0 . Here we are not requiring that a0 D ak .

Definition 7.9 A spiral is a nonconstant open admissible path on the x–axis, ƒD
�

a1
a0
� � ��

ak
ak�1

, such that k � 1, and if k > 1 then

ja0� a1j> ja1� a2j;

jai � aiC1j � jaiC1� aiC2j; i D 1; : : : ; k � 2:
(55)

Lemma 7.10 If ƒ is a spiral, then H�.ƒ/D ZfEƒ;Hƒg.
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Proof If ƒ has only edge then the lemma is immediate. Otherwise let c be the corner
of ƒ preceding the last edge. Then c splits ƒDƒ1ƒ2 where ƒ1 , ƒ2 , and ƒn c are
all spirals. The lemma follows by induction using the long exact sequence (27), as in
the proof of Proposition 5.6.

Definition 7.11 A semi-spiral is an open admissible path on the x–axis, ƒ D
�

a1
a0
� � ��

ak
ak�1

�
akC1
ak

, with k � 2, satisfying the conditions (55) and

ja0� a1j � jak � akC1j:

If ƒ is a semi-spiral, define Vƒ;Wƒ 2 C�.ƒ/ by

Vƒ WDE
�

a1
a0
����

ak�1
ak�2

eak�1
ak�1

h
akC1
ak�1

;

Wƒ WDH
�

a1
a0
����

ak�1
ak�2

eak�1
ak�1

h
akC1
ak�1

:

Note that the generator Vƒ , and the generators in the sum Wƒ , each have one kink.

Lemma 7.12 If ƒ is a semi-spiral, then H�.ƒ/D ZfEƒ;Hƒ;Vƒ;Wƒg.

Proof We use induction on the length of ƒ. If ƒ has only two edges, so that
a1 D a2 D � � � D ak , then the lemma follows by inspection. Namely, C�.ƒ/ has only
four generators ee , eh, he , hh which correspond to Eƒ , Vƒ , Hƒ � Vƒ , and Wƒ

above. The differential vanishes here because the corner between the two edges is a
kink since k � 2.

If ƒ has more than two edges, let c denote the corner preceding the second-to-last
edge. Then c splits ƒDƒ1ƒ2 where ƒ2 and ƒ n c are semi-spirals, while ƒ1 is a
spiral. We now use the long exact sequence (27). The connecting homomorphism

@c W H�.C�.ƒ1/˝C�.ƒ2// �!H�.ƒ n c/

is given by the equations (30) together with

Eƒ1
˝Vƒ2

7�! 0;

Hƒ1
˝Vƒ2

; �Eƒ1
˝Wƒ2

7�! Vƒnc ;

Hƒ1
˝Wƒ2

7�! �Wƒnc :

So H�.ƒ/ is freely generated by Eƒ1
Eƒ2

D Eƒ , Eƒ1
Hƒ2

CHƒ1
Eƒ2

D Hƒ ,
Eƒ1

Vƒ2
D Vƒ , and Hƒ1

Vƒ2
CEƒ1

Wƒ2
DWƒ .
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Proof of Lemma 7.8 By Proposition 2.13, Pƒ0 is obtained from Pƒ by a finite
sequence of corner roundings. We can assume that Pƒ0 is obtained from Pƒ by
rounding a single corner c (the general case then follows by induction). Choose
� 2R=2�Z such that c is the distinguished corner c� of Pƒ . By Proposition 6.14, we
can assume that ƒDƒ0 and ƒ0 Dƒ0

0
are on the x–axis. Without loss of generality,

Pƒ0
D Œ1; k�� f0g and Pƒ0

0
D Œ1; k � 1�� f0g.

Let c1; : : : ; cn denote the corners of ƒ0 at .k; 0/, in counterclockwise order. For
p; q 2 f1; : : : ; ng distinct, let ƒp;q denote the open path given by the portion of ƒ0

starting at cp and ending at cq , with the intermediate corners cpC1; : : : ; cq�1 rounded.
There is then a decomposition of Z–modules

C�.ƒ0/D

C�.ƒ
0
0/˚

nM
mD1

M
1�p1<���<pm�n

C�.ƒp1;p2
/˝ � � �˝C�.ƒpm�1;pm

/˝C�.ƒpm;p1
/:

Furthermore, m defines an increasing filtration on C�.ƒ0/, where we interpret the
C�.ƒ

0
0
/ summand as corresponding to mD 0. (One can regard m as a weighted count

of the times that an admissible path ��ƒ0 stops at the point .k; 0/.) Thus we obtain
a spectral sequence E��;� converging to H�.ƒ0/. The E1 term is given by

(56) E1
DH�.ƒ

0
0/˚

nM
mD1

M
1�p1<���<pm�n

H�.ƒp1;p2
/˝ � � �

� � � ˝H�.ƒpm�1;pm
/˝H�.ƒpm;p1

/:

Here we have used the fact that H�.ƒp;q/ has no torsion, which is justified below.

The key now is to compute the indices of the generators of H�.ƒp;q/. Let n0 D q�p

if p < q , and let n0 D p C n� q if p � q . If n0 D 1, then H�.ƒp;q/ is given by
Proposition 5.7. The indices of the generators are

I.Z1..k; 0/; .k � 1; 0///D 0; I.Eƒp;q
/D 2k � 2; I.Hƒp;q

/D 2k � 3:

If n0 > 1, then ƒp;q is a semi-spiral, so H�.ƒp;q/ is given by Lemma 7.12. (Note
that k here is different from the k in the definition of semi-spiral.) The indices of the
generators of H�.ƒp;q/ are

I.Eƒp;q
/D 2n0.k � 2/C 2;

I.Hƒp;q
/D 2n0.k � 2/C 1;

I.Vƒp;q
/D 2.n0� 1/.k � 2/C 1;

I.Wƒp;q
/D 2.n0� 1/.k � 2/:

Geometry & Topology, Volume 10 (2006)



222 Michael Hutchings and Michael Sullivan

In particular, the index of each generator, except for Z1..k; 0/; .k�1; 0//, is a linearly
increasing function of k . Therefore the index of every m> 0 homology class in the
E1 term (56) is a linearly increasing function of k , except for the product of n Z1 ’s
in the m D n piece, which lives in C

.�2n/
0

.ƒ0/. It follows that if k is sufficiently
large with respect to .i; j /¤ .0;�2n/, then the map

H
.j/
i .ƒ00/ �!H

.j/
i .ƒ0/

induced by the inclusion is an isomorphism.

7.3 The direct limit

We can now complete the calculation of �H�.2�nI 0/.

Lemma 7.13 If .i; j / ¤ .0;�2n/, then the inclusion CX
.j/
� .n/ ! C

.j/
� .2�nI 0/

induces an isomorphism

HX
.j/
i .n/

'
�!H

.j/
i .2�nI 0/:

Proof Let ƒ0 be an n–convex path on the x–axis, and consider the commutative
diagram

(57) H
.j/
i .ƒ0/

//

&&MMMMMMMMMM
HX

.j/
i .n/

��

H
.j/
i .2�nI 0/

where the arrows are induced by the inclusions of chain complexes. The homology
H
.j/
i .2�nI 0/ is given by the direct limit

(58) H
.j/
i .2�nI 0/D lim

�!
H
.j/
i .ƒ/

over n–convex paths ƒ. It follows by Lemma 7.8 that if kƒ0
is sufficiently large

with respect to .i; j /, then the diagonal arrow in the diagram (57) is an isomorphism,
and likewise the horizontal arrow is an isomorphism. Hence the vertical arrow is an
isomorphism.

Proof of Theorem 7.1 (a) To start, we obtain an isomorphism of Z–modules

H
.�2n/
0

.2�nI 0/' I.Z2/
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by taking the direct limit (58) and applying Proposition 6.19. This is in fact an
isomorphism of ZŒZ2�–modules, because by the definition of Zn.a; b/, translation by
w 2 Z2 sends Zn.a; b/ to Zn.aCw; bCw/.

For the rest of the proof suppose that .i; j /¤ .0;�2n/. By Corollary 7.6 and Lemma
7.13, we have

H
.j/
i .2�nI 0/'

�
Z; i D 2k; 2kC 1� 0; j D 2k � 2nC 2;

0; otherwise:

To complete the proof of part (a), we must show that translations act by the identity on
H
.j/
i .2�nI 0/. Taking the direct limit of Proposition 5.9 applied to x–axis polygons

shows that HX
.j/
i .1/, if nonzero, is generated by Eƒ0

or Hƒ0
where ƒ0 is on the

x–axis. By Lemma 5.8, the homology class of Eƒ0
or Hƒ0

in HX
.j/
i .1/ depends

only on the number of lattice points enclosed by ƒ0 . Therefore translation in the x

direction acts by the identity on HX
.j/
i .1/. By Definition 7.3, the splicing isomorphism

S commutes with translation in the x direction. By Proposition 7.5, it follows that
translation in the x direction acts by the identity on HX

.j/
i .n/ for all n. So by Lemma

7.13, translation in the x direction acts by the identity on H
.j/
i .2�nI 0/. By the

symmetry of Lemma 6.20, all translations act by the identity on H
.j/
i .2�nI 0/.

(b) By Lemma 7.13 and part (a), it is enough to show that if i � 2 and j ¤ 2�2n then
U induces an isomorphism

(59) U W HX
.j/
i .n/

'
�!HX

.j�2/
i�2

.n/:

When n D 1, we know that (59) is an isomorphism by the above description of the
generators of HX

.j/
i .1/ and Proposition 4.2(c). It then follows from Proposition 7.5

and Lemma 7.7 that (59) is an isomorphism for all n.

8 Calculation of SH�.2�nI 0/

This section is devoted to computing the homology of the complex SC�.2�nI 0/ over
Z, defined in (17), in which we mod out by translation of polygons. This will prove
parts (b) and (c) of Theorem 1.3.

8.1 The universal coefficient spectral sequence

The homology SH�.2�nI 0/ is partially but not entirely determined by �H�.2�nI 0/.
The precise relation between �H� and SH� is expressed by the “universal coefficient
spectral sequence”, whose construction we now recall.
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In general let R be a commutative ring, let .C�; ı/ be a chain complex of projective
R–modules, and let A be an R–module. The task at hand is to relate the homology of
.C�˝R A; ı˝ 1/ to the homology of C� . Let

� � �
@
�! P2

@
�! P1

@
�! P0 �!A �! 0

be a projective resolution of A in the category of R–modules. Recall that if M is
another R–module then Tor�.M;A/ is defined to be the homology of the complex
.M ˝R P�; 1˝ @/. This satisfies Tor0.M;A/ DM ˝R A, and if M is projective
then Tori.M;A/D 0 for i > 0. Now form the double complex

Ci;j WD Cj ˝R Pi :

This has horizontal, vertical, and total differentials

dh WD 1˝ @; dv WD ı˝ 1; d WD dhC .�1/idv:

Filtering the double complex by j gives a spectral sequence with

E1
i;j D Tori.Cj ;A/D

�
Cj ˝R A; i D 0;

0; i > 0;

so the homology of the double complex is H�.C�˝R A/. The universal coefficient
spectral sequence is obtained by filtering the double complex by i instead. This spectral
sequence satisfies

E1
i;j DHj .C�/˝R Pi ;

E2
i;j D Tori

�
Hj .C�/;A

�
;

and by the previous calculation converges to H�.C�˝R A/.

We now specialize to the case RD ZŒZ2�, C� D �C�.2�nI 0/, and AD Z. In the rest
of this section, the tensor product is understood to be over ZŒZ2�.

We begin by computing the relevant Tor’s, ie the E2 term of the universal coefficient
spectral sequence. We fix the following projective resolution of Z:

0 �! ZŒZ2�f g
@
�! ZŒZ2�f˛; ˇg

@
�! ZŒZ2�f�g�!Z �! 0;

@ WD .y � 1/˛� .x� 1/ˇ; @˛ WD .x� 1/�; @ˇ WD .y � 1/�:
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After tensoring with Z, the differential becomes 0, so

(60) Tori.Z;Z/'

8̂̂<̂
:̂

Z; i D 0;

Z˚Z; i D 1;

Z; i D 2;

0; i > 2:

We compute Tor�.I.Z2/;Z/ by the symmetry Tor�.I.Z2/;Z/D Tor�.Z; I.Z2//. The
ZŒZ2�–module I.Z2/ has a presentation with two generators aD x�1 and b D y�1

and the single relation .y � 1/a� .x� 1/b D 0. Therefore

(61) Tori.I.Z2/;Z/D Tori.Z; I.Z2//'

8<:
Z˚Z; i D 0;

Z; i D 1;

0; i > 0:

In terms of the projective resolution of Z, it turns out that Tor0.I.Z2/;Z/ is generated
by .x � 1/˝ � and .y � 1/˝ � , while Tor1.I.Z2/;Z/ is generated by .y � 1/˝˛�

.x� 1/˝ˇ .

Now the only possibly nonzero higher differential in the universal coefficient spectral
sequence is, for j � 0,

d2W E
2
2;j �!E2

0;jC1;

Z' Tor2

� �Hj .2�nI 0/;Z
�
�! Tor0

� �HjC1.2�nI 0/;Z
�
' Z:

(62)

To compute this differential, the only explicit calculation we will need is given by the
following lemma, which will be proved in Section 8.3.

Lemma 8.1 If p is a cycle generating �H .2�2n/
0

.2�nI 0/ ' Z, and if s and t are
chains with ıs D .x � 1/p and ıt D .y � 1/p , then .y � 1/s � .x � 1/t generates�H .2�2n/

1
.2�nI 0/' Z.

Lemma 8.2 The differential (62) is zero if j is odd, and an isomorphism if j � 0 is
even.

Proof We first derive a general formula for d2 . Let p 2 �Cj .2�nI 0/ be a cycle
generating the Z component of �Hj .2�nI 0/. Referring back to the generator  of
our projective resolution of Z, we want to compute d2Œp ˝  �. This is done by
“zig-zagging”. First we calculate the horizontal differential

dh.p˝  /D p˝ ..y � 1/˛� .x� 1/ˇ/ 2 C1;j :
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Next we need to find an element

�t ˝˛C s˝ˇ 2 C1;jC1

with �dv.�t˝˛C s˝ˇ/D dh.p˝ /. That is, we need to find s; t 2 �CjC1.2�nI 0/

with

(63) ıs D .x� 1/p; ıt D .y � 1/p

in �Cj .2�nI 0/. For s and t satisfying (63), we then have

d2Œp˝  �D Œdh.�t ˝˛C s˝ˇ/�

D Œ.y � 1/s� .x� 1/t/˝ ��:
(64)

If j D 0, then Lemma 8.1 and equation (64) imply that d2Œp˝  � is a generator of
Tor0

� �H1.2�nI 0/;Z
�
' Z.

Suppose next that j D 2k . Since the chain map U commutes with x and y according
to Proposition 4.2(b), it follows by functoriality or by equation (64) that the induced
map on homology U� commutes with the differential d2 . By Theorem 7.1(b), we are
done in this case by induction on k .

Finally, if j D 2kC 1, we show that the differential (62) is zero by considering the
decomposition into subcomplexes from Definition 5.1. First, Theorem 7.1(a) implies
that �Hj .2�nI 0/D �H .2k�2nC2/

j .2�nI 0/;

so we can take p2 �C .2k�2nC2/
j .2�nI 0/ and s; t 2 �C .2k�2nC2/

jC1
.2�nI 0/. But Theorem

7.1(a) also implies that�HjC1.2�nI 0/D �H .2k�2nC4/
jC1

.2�nI 0/:

Hence the cycle .y� 1/s� .x� 1/t is nullhomologous in �C�.2�nI 0/, so by equation
(64), d2Œp˝  �D 0.

Proof of Theorem 1.3(b) By equations (60) and (61) and Lemma 8.2, the E2 term
of the universal coefficient spectral sequence looks like this:

Z3 Z3 Z

Z Z2 Z

Z Z2 Z

Z Z2 Z

PP
Pi

PP
Pi

:::
:::

:::
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Here the d2 arrows drawn are isomorphisms, while the others are zero. It follows
immediately that the spectral sequence converges to Z3 in each nonnegative degree.
This is SH�.2�nI 0/ as a ZŒZ2�–module; as a Z–module, it is simply Z3 in each
nonnegative degree.

More explicitly, the proof of Theorem 1.3(b) shows the following.

Proposition 8.3 For k�0, let pk be a cycle generating �H .2k�2nC2/

2k
.2�nI 0/, and let

qk be a cycle generating �H .2k�2nC2/

2kC1
.2�nI 0/. Then SH�.2�nI 0/ is freely generated

over Z by the images in SC�.2�nI 0/ of the following chains in �C�.2�nI 0/:

� The index 2k cycle pk , for each k � 0.

� Two index 2kC1 chains sk and tk with ısk D .x�1/pk and ıtk D .y�1/pk ,
for each k � 0.

� The index 0 cycles u0 WDZn..1; 0/; .0; 0// and v0 WDZn..0; 1/; .0; 0//.

� Two index 2k chains uk and vk with ıukD .x�1/qk�1 and ıvkD .y�1/qk�1 ,
for each k � 1.

� An index 2kC 1 chain wk with ıwk D .y � 1/uk � .x� 1/vk for each k � 0.

Moreover, the corresponding homology classes in SH�.2� I 0/ do not depend on any of
the choices of pk ; qk ; sk ; tk ;uk ; vk ; wk .

Note for example that the cycle qk maps to zero in SH�.2�nI 0/, because we saw above
that ˙qk is homologous in �C�.2�nI 0/ to .y � 1/sk � .x � 1/tk , and .y � 1/ and
.x� 1/ are in the kernel of the augmentation map ZŒZ2�! Z.

8.2 The action of U on SH�.2�nI 0/

We now prove Theorem 1.3(c). Fix � 2 R=2�nZ with tan � irrational in the definition
of U . We will use the following lemma which is proved in Section 8.3.

Lemma 8.4 There exist q0 2
�C .2�2n/

1
.2�nI 0/ generating �H .2�2n/

1
.2�nI 0/ and

u1; v1 2
�C .2�2n/

2
.2�nI 0/ such that

ıu1 D .x� 1/q0; ıv1 D .y � 1/q0;(65)

Uu1 DZn..1; 0/; .0; 0//; Uv1 DZn..0; 1/; .0; 0//:(66)
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Proof of Theorem 1.3(c) It is enough to show that for any k � 0, one can make the
choices in Proposition 8.3 for k and kC 1 such that

UpkC1 D pk ; UskC1 D sk ; UtkC1 D tk ;(67)

UukC1 D uk ; UvkC1 D vk ; UwkC1 D wk(68)

in �C�.2�nI 0/.

First choose any pkC1; qkC1; skC1; tkC1;ukC1; vkC1; wkC1 . By Theorem 7.1(b), we
can choose pk WD UpkC1 and qk WD UqkC1 . Since U is a translation-invariant chain
map, we can then choose sk WD UskC1 and tk WD UtkC1 , and if k > 0 we can also
choose uk WD UukC1 , vk WD UvkC1 , and wk WD UwkC1 .

To complete the proof, it is enough to show that for suitable choices,

(69) Uu1 D u0; Uv1 D v0; Uw1 D w0:

We can obtain the first two conditions in (69) by Lemma 8.4. Then to obtain the third
condition, given any choice of w1 , we can choose w0 WD Uw1 .

8.3 Some explicit homology generators and relations

This subsection is devoted to the proofs of Lemmas 8.1 and 8.4 above.

Definition 8.5 Let a; b 2 Z2 be lattice points with a� b indivisible. Choose � 2 R

such that the line from a to b has angle � mod 2� .

� Define
p.a; �/ 2 �C .2�2n/

0
.2�nI 0/

to be the generator which wraps n� 1 times around the 2–gon between a and
b , with edges at angles �; �C�; : : : �C .2n�3/� , all labeled ‘h’, in that order.
Note that if nD 1, then p.a; �/ is the constant path at a, while if n> 1, then
p.a; �/ has a kink parametrized by the interval .� � 3�; �/ and mapping to a.
Also, ıp.a; �/D 0.

� Define
e.a; �/ 2 �C .2�2n/

1
.2�nI 0/

to be the generator obtained from Zn.a; b/, see Section 6.2, by relabeling the
edge from b to a at angle � � � by ‘e ’ and ordering the 2n� 1 ‘h’ edges
counterclockwise. Then

(70) ıe.a; �/D p.b; � C�/�p.a; �/:

Geometry & Topology, Volume 10 (2006)



Rounding corners of polygons and the embedded contact homology of T 3 229

� Let
q.a; b/ 2 �C .2�2n/

1
.2�nI 0/

be the sum of all 2n generators that wrap n times around the 2–gon between a

and b with 2n� 1 edges labeled ‘h’ and ordered counterclockwise. That is,

q.a; b/ WD

n�1X
iD0

�
e.a; � C 2i�/C e.b; � C .2i C 1/�/

�
:

Note that q.a; b/D q.b; a/. By equation (70), ıq.a; b/D 0.

Lemma 8.6 (a) �H .2�2n/
0

.2�nI 0/' Z is generated by p.a; �/.

(b) �H .2�2n/
1

.2�nI 0/' Z is generated by q.a; b/.

Proof (a) This follows from the proof of Theorem 7.1(a), since by the symmetry in
Lemma 6.20 we may assume that a and b are on the x–axis with � D 2� , and then the
generator p.a; �/ is obtained by applying the splicing map .n� 1/ times to a constant
path which generates �H .0/

0
.2� I 0/.

(b) Let ƒ0 be the n–convex path that wraps n times around the 2–gon with corners
a and b . Then H

.2�2n/
1

.ƒ0/ ' Z is generated by q.a; b/. Indeed the summands

in q.a; b/ are the only generators in C
.2�2n/
1

.ƒ0/, since such a generator must have

2n� 1 ‘h’ edges, and their sum is the only cycle in C
.2�2n/
1

.ƒ0/ by equation (70).

This cycle is not a boundary since C
.2�2n/
2

.ƒ0/D 0, as the only generator in C�.ƒ
0/

with 2n ‘h’ edges has index zero.

To finish the proof, we claim that the inclusion-induced map

H
.2�2n/
1

.ƒ0/!H
.2�2n/
1

.2�nI 0/

is an isomorphism. This follows from the spectral sequence in the proof of Lemma 7.8.
The reason is that in that spectral sequence, with k and m as in that proof, if k � 3

then there are no m > 0 generators in the E1 term in C
.2�2n/
1

.ƒ/ or C
.2�2n/
2

.ƒ/.
Such a homology generator would have to be a sum of chain complex generators each
having 2n� 1 or 2n ‘h’ edges, which means that it would be either a product of n�1

Z1 ’s and 1 H (which has index 2k�3� 3), or a product of n Z1 ’s (which has index
0).

Lemma-Definition 8.7 There exists a unique assignment, to each triple .a; �; � 0/ with
a 2 Z2 and �; � 0 2 R such that tan �; tan � 0 2Q[f1g and � � � 0 , of an equivalence
class of chains

f .a; �; � 0/ 2
�C .2�2n/

1
.2�nI 0/

Im.ı/
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such that:
(i) For each .a; �; � 0/ as above,

(71) ıf .a; �; � 0/D p.a; �/�p.a; � 0/:

(ii) Suppose that 0 < � 0 � � � � , and that b and b0 are defined from .a; �/ and
.a; � 0/ as in Definition 8.5. Then f .a; �; � 0/ 2 C�.ƒ/, where ƒ wraps n� 1

times around the triangle with vertices a; b; b0 (or 2–gon with vertices b and b0

when � 0� � D � ) and has a kink at a parametrized by the interval .� 0� 3�; �/.
(iii) If � � � 0 � � 00 , then

(72) f .a; �; � 00/D f .a; �; � 0/Cf .a; � 0; � 00/ mod Im.ı/:

Proof The proof has four steps.

Step 1 We first show that if � 0 � � < � and if .a; b; b0/ is a simple triangle (see
Definition 6.16), then there exists a chain f .a; �; � 0/ satisfying (i) and (ii). Reintroduce
the notation from the proof of Lemma 6.17, with c WD b0 . Let C0 denote the set of
subsets I � f1; : : : ; 3ng such that for distinct i; j 2 I , the corners ci and cj of �
are not adjacent, except that we allow at most one adjacent pair involving c1 or c3n .
For I D fi1; : : : ; ikg 2 C0 , let T 0.I/ 2 C�.ƒ/ be the generator with underlying path
�.I/ and with all edges labeled ‘h’, except that if I does not contain an adjacent pair,
then the edge that starts at c3n and/or ends at c1 is labeled ‘e ’. Order the ‘h’ edges
counterclockwise, starting at c1 if 1 62 I , at c2 if 12 I and 2 62 I , and at c3 if 1; 22 I .
Let �i denote the angle of the edge between corners ci and ciC1 . We may assume that
� D �1 and � 0 D �0C� . Then in this notation,

p.a; �1/D T 0.f3; 6; : : : ; 3n� 3; 3n� 1; 3ng/;

p.a; �0C�/D T 0.f2; 5; : : : ; 3n� 4; 3n� 1; 3ng/:
(73)

The differential of a generator T 0.I/ is given by

(74) ıT 0.I/D�
X

I[fig2C0
.�1/#fj 62I ji<jgT 0 .I [fig/ :

Now let C0
0 denote the set of I D fi1; : : : ; img 2 C0 with i1 < i2 < � � �< im such that

the ik ’s alternate parity with i1 odd. Define

(75)

f .a; �1; �0C�/ WD
X

IDfi1;:::;in�2;3n�1;3ng2C0
0

T 0.I/

D T .f3; 6; : : : ; 3n� 9; 3n� 6; 3n� 1; 3ng/

CT .f3; 6; : : : ; 3n� 9; 3n� 4; 3n� 1; 3ng/

C � � �CT .f5; 8; : : : ; 3n� 7; 3n� 4; 3n� 1; 3ng/:
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Then it follows from equations (73) and (74) that this satisfies condition (i), ie

ıf .a; �1; �0C�/D p.a; �1/�p.a; �0C�/:

Also, condition (ii) is satisfied since each term on the right side of (75) has the corners
c3n�1 and c3n rounded.

Step 2 We now show that if 0 < � 0 � � < � , then a chain f .a; �; � 0/ satisfying
(i) and (ii), if such exists, is unique modulo Im.ı/. The difference between any two
such chains f .a; �; � 0/ is a cycle in C

.2�2n/
1

.ƒ/. Thus it is enough to show that

H
.2�2n/
1

.ƒ/ D 0. Pick an angle � with irrational tangent between � 0 � � and � .

Proposition 6.11 shows that H
.2�2n/
1

.ƒ/'H
.2�2n/
1

.C
�
� .ƒ//. As in Lemma 6.12 and

Example 6.10, H
.2�2n/
1

.C
�
� .ƒ//'H

.2�2n/
1

.ƒ0/ where ƒ0 wraps n�1 times around

a 2–gon and has a kink. But C
.2�2n/
1

.ƒ0/D 0 because a generator of C
.2�2n/
1

.ƒ0/

would have 2n� 1 edges labeled ‘h’, but generators of C�.ƒ0/ have at most 2n� 2

edges.

Step 3 We now show that there exists an assignment f .a; �; � 0/ satisfying (i), (ii),
and (iii). Let .a; �; � 0/ be given. If � D � 0 , define f .a; �; � 0/ WD 0. Otherwise
choose � D �0 < �1 < � � �< �k D �

0 such that f .a; �i�1; �i/ is defined by Step 1 for
i D 1; : : : ; k . Then define

(76) f .a; �; � 0/ WD

kX
iD1

f .a; �i�1; �i/:

As long as this is well-defined modulo Im.ı/, it clearly satisfies (i) and (ii) (by Step 1)
and (iii) (by construction).

To show that (76) is well-defined modulo Im.ı/, let � D � 0
0
< � 0

1
< � � �< � 0

k0
D � 0 be

another set of choices to define f .a; �; � 0/. We need to show that

(77)
kX

iD1

f .a; �i�1; �i/D

k0X
iD1

f .a; � 0i�1; �
0
i/ mod Im.ı/:

Without loss of generality, �1 < �
0
1

. By Step 2,

(78) f .a; �0; �
0
1/D f .a; �0; �1/Cf .a; �1; �

0
1/ mod Im.ı/:

Subtracting (78) from (77), we see that to prove equation (77), it is enough to show that
f .a; �1; �

0/ is well defined modulo Im.ı/. We are now done by induction on kC k 0 .

Step 4 An assignment f .a; �; � 0/ satisfying (i), (ii), and (iii) is unique modulo Im.ı/,
because condition (iii) forces it to satisfy equation (76), and each summand on the right
hand side of (76) is unique modulo Im.ı/ by conditions (i) and (ii) and Step 2.
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Lemma 8.8 If .a; b; c/ is a simple triangle, then with �i defined as above,

f .c; �3; �2C�/Cf .b; �2; �1C�/Cf .a; �1; �0C�/D

D�e.b; �2/C e.a; �0C�/� e.a; �1/ mod Im.ı/:
(79)

Proof In the notation of the previous proof, define

(80) T 0k WD
X

IDfi1;:::;ikg2C00

T 0.I/:

Equation (74) implies that

(81) ı
�
�T 0n�1

�
D T 0n�T 0

�
f2; 5; : : : ; 3n� 1g

�
because on the right hand side, terms T 0.I/ in which the indices in I do not alternate
parity will appear twice with opposite signs or not at all, while terms T 0.I/ in which
the indices do alternate parity will appear exactly once, and the only way to alternate
parity starting with an even index is 2; 5; : : : ; 3n � 1. Now the right hand side of
equation (81) equals� X

IDf1;2;i3;:::;ing2C00

C

X
IDf1;i2;:::;in�1;3ng2C0

0

C

X
IDfi1;:::;in�2;3n�1;3ng2C0

0

�
T 0.I/C

CT 0.f1; 4; : : : ; 3n� 2g/�T 0.f2; 5; : : : ; 3n� 1g/CT 0.f3; 6; : : : ; 3ng/:

These six terms equal the six terms in the relation (79).

Lemma 8.9 If a, b , and � are as in Definition 8.5, then

f .a; �; � C 2�/C e.a; �/C e.b; � C�/D q.a; b/ 2 �H .2�2n/
1

.2�nI 0/:

Proof Without loss of generality,

aD

�
0

0

�
; b D

�
1

0

�
; � D 0:

We can now do the entire calculation on the x–axis, ie in the subcomplex CX�.n/, and
use the notation of Section 7.1 to describe chains in this subcomplex. In this notation,

e.a; 0/D
�
ha

bhb
a

�n�1
ea

bhb
a;

e.b; �/D
�
ha

bhb
a

�n�1
ha

beb
a :

Let

c WD

�
�1

0

�
:
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We can take

f .a; 0; �/D

n�2X
iD0

�
ha

bhb
a

�i
hc

b

�
ha

c hc
a

�n�2�i
ha

c ea
ahb

a;

f .a; �; 2�/D

n�2X
iD0

hc
a

�
ha

c hc
a

�i
hb

c

�
ha

bhb
a

�n�2�i
ha

bea
a ;

because the right hand side of each equation satisfies conditions (i) and (ii) in Lemma-
Definition 8.7. By the definition of ı and straightforward manipulation of sums,

ı

�n�2X
iD0

n�2�iX
jD0

�
ha

bhb
a

�i
hc

b

�
ha

c hc
a

�j
hb

c

�
ha

bhb
a

�n�1�i�j
�
D

�f .a; 0; �/�f .a; �; 2�/� e.a; 0/� e.b; �/C q.a; b/;

which completes the proof.

Proof of Lemma 8.1 Since this lemma is computing a differential in the universal
coefficient spectral sequence, it is enough to verify the conclusion of the lemma for
a single choice of p , s , and t . Introduce the lattice points a WD .0; 0/, b WD .1; 0/,
c WD .2; 0/, d WD .0; 1/, e WD .1; 1/, and f WD .2; 1/. By Lemma 8.6(a), we can take

p WD p.a; 0/:

By equations (70) and (71), we can take

s WD f .b; 0; �/C e.a; 0/;

t WD �f .a; 0; �=2/� e.d;��=2/�f .d;��=2; 0/:

These chains are only defined mod Im.ı/, which is fine here since we just need to
evaluate the homology class of .y � 1/s� .x� 1/t . By definition,

.y � 1/s� .x� 1/t D f .b; 0; �=2/C e.e;��=2/Cf .e;��=2; 0/

�f .a; 0; �=2/� e.d;��=2/�f .d;��=2; 0/

Cf .e; 0; �/C e.d; 0/�f .b; 0; �/� e.a; 0/:

(82)

By Lemma 8.8,

f .b; 3�=4; �/Cf .a; 0; �=2/Cf .d;��=2;��=4/D

D�e.a; 0/C e.d;��=4/� e.d;��=2/;

f .b; �=2; 3�=4/Cf .d;��=4; 0/Cf .e;��;��=2/D

D�e.d;��=4/C e.e;��=2/� e.e;��/:
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Putting these two six-term relations into equation (82) and repeatedly applying the
relation (72) gives

.y � 1/s� .x� 1/t D f .e;��; �/C e.e;��/C e.d; 0/:

By Lemmas 8.9 and 8.6(b), this generates �H .2�2n/
1

.2�nI 0/' Z.

Lemma 8.10 Let .a; b; c/ be a simple triangle, and let �1; : : : ; �3n be defined as
previously. Then there exists a chain

r.a; b; c/ 2 �C .2�2n/
2

.2�nI 0/

such that if U is defined using � , then

ır.a; b; c/D q.a; b/� q.a; c/;(83)

Ur.a; b; c/D

8̂̂<̂
:̂
�Zn.a; b/; � 2 .�3iC1��; �3i/;

Zn.b; c/; � 2 .�3i ; �3iC1/;

�Zn.c; a/; � 2 .�3iC1; �3i C�/;

0; otherwise.

(84)

Proof Suppose first that

(85) � 62 .�3i ; �3iC2��/; .�3iC1; �3i C�/; i D 0; : : : ; n� 1:

Let ƒ be the n–convex path that wraps n times around the triangle .a; b; c/. There is
an obvious action of the cyclic group Z=3n on the chain complex C�.ƒ/, given by a
chain map

�W C�.ƒ/! C�.ƒ/

which rotates everything counterclockwise, replacing �i by �iC1 , etc. Define

(86) r.a; b; c/ WD .�� 1/

n�1X
iD0

�iT 0n�1

where T 0
n�1

is defined in equation (80). We saw in the proof of Lemma 8.8 that

ı
�
�T 0n�1

�
D f .c; �3; �2C�/Cf .b; �2; �1C�/Cf .a; �1; �0C�/C

C e.b; �2/� e.a; �0C�/C e.a; �1/:
(87)
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In ır.a; b; c/, all the f ’s cancel and

ır.a; b; c/D

n�1X
iD0

�
e.a; �1C 2� i/C e.b; �1C� C 2� i/�

� e.a; �0C� C 2� i/� e.c; �0C 2� C 2� i/
�

D q.a; b/� q.a; c/:

This proves (83). To prove (84), observe from the definition of U that

U T 0.I/D

8<:
T .f1g[ I/ ; 3n; 1; 2 62 I I � 2 .�0; �2��/;

T .I [f3ng/; 3n� 1; 3n; 1 62 I I � 2 .�1��; �0/;

0; otherwise.

In particular,

U T 0n�1 D

�
T .f3; 6; : : : ; 3ng/ ; � 2 .�1��; �0/;

0; � 2 .�2��; �3nC1��/:

Note that U T 0
n�1

is more complicated when � 2 .�0; �2��/. But under our assumption
(85) on � , we do not have to consider that case, and the above gives equation (84).

If the assumption (85) does not hold, then redefine T 0
n�1

by summing over sequences
that start with an even index instead of an odd one. Then (87) holds with a minus
sign. If we redefine r.a; b; c/ with a minus sign in equation (86), then the rest of the
argument goes through.

Proof of Lemma 8.4 Let a; b; c; d; e; f be the lattice points in the proof of Lemma
8.1. By Lemma 8.6(b), �H .2�2n/

1
.2�nI 0/ is generated by

q0 WD q.a; b/:

By equation (83), the requirement (65) is satisfied by

u1 WD r.b; c; e/C r.b; e; a/;

v1 WD � r.a; b; d/� r.d; a; e/:

Choose � 2 .�=2; �/. Then by equation (84),

Ur.b; c; e/D 0;

Ur.b; e; a/D�Zn.a; b/DZn.b; a/;

Ur.a; b; d/D 0;

Ur.d; a; e/D�Zn.d; a/DZn.a; d/;

so (66) holds as well.
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9 Axioms for the chain complex

In this section we prove that the chain complex .�C�.2�nI�/; ı/ defined in Section 3.1
is characterized by certain axioms. This will be used in Section 11 to relate the chain
complex to the embedded contact homology of T 3 . It will simplify some arguments
below to consider all � at once, so introduce the notation

(88) �C�.2�n/ WD
M
�2Z2

�C�.2�nI�/:

9.1 The axioms

Fix a positive integer n. We now list a series of axioms for a chain complex .C�; @/
over ZŒZ2�.

I (Generators) C� D �C�.2�n/ as a ZŒZ2�–module.

II (Index) @ respects the decomposition (88) and has degree �1 with respect to
the relative grading I on �C�.2�nI�/ defined in Section 3.1.

To state the next axioms, let ˛ and ˇ be generators of C� with the same period � and
with underlying admissible paths � and �. By an “edge” of ˛ or ˇ , we mean an edge
of the corresponding admissible path � or �. We write ˇ � ˛ if �� �, see Section
2.3.

We say that two edges of ˛ and ˇ “agree” (resp. “partially agree”) if they correspond
to the same angle � 2 R=2�nZ, and if their adjacent corners map to the same points
in Z2 (resp. to points on the same line in R2 ) (for a given lift of � to R when � ¤ 0).

Let D.˛; ˇ/ denote the closure of the set of all t 2 R=2�nZ such that �.t/ and �.t/
are defined and unequal (for a given lift of t to R when � ¤ 0). Note that a point
� 2 R=2�nZ corresponding to an edge of ˛ (resp. ˇ ) is in D.˛; ˇ/ if and only if this
edge does not agree with any edge of ˇ (resp. ˛ ).

III (Nesting) If h@˛; ˇi ¤ 0, then ˇ � ˛ .

IV (Label Matching) Suppose that h@˛; ˇi ¤ 0. If two edges of ˛ and ˇ agree,
then the labels (‘e ’ or ‘h’) of the two edges are the same. If two edges of ˛ and
ˇ partially agree, and if the edge of ˇ is labeled ‘h’, then the edge of ˛ is also
labeled ‘h’.

V (Connectedness) If h@˛; ˇi ¤ 0 then the set D.˛; ˇ/ is connected.

VI (No Double Rounding) If h@˛; ˇi ¤ 0 then ˛ cannot have three edges in
D.˛; ˇ/.
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The next axiom says essentially that the differential coefficient h@˛; ˇi depends only
on the local change needed to get from ˛ to ˇ . To state it, suppose that ˛ and ˇ
satisfy the Nesting and Label Matching conditions above. We construct generators ˛0

and ˇ0 as follows. If two edges of ˛ and ˇ agree, remove them both. If two edges
of ˛ and ˇ partially agree (which by Nesting implies that the edge of ˇ has smaller
multiplicity than the edge of ˛ ), remove the edge of ˇ and shorten the edge of ˛ by
the same amount, while preserving the number of ‘h’ labels. (That is, if the edge of
˛ is labeled ‘h’ and the edge of ˇ is labeled ‘e ’, then the edge of ˛0 is labeled ‘h’;
otherwise the edge of ˛0 is labeled ‘e ’.) In particular the multiplicity functions of the
underlying admissible paths �, �, �0 , �0 of ˛ , ˇ , ˛0 , ˇ0 respectively satisfy

m˛ �m˛0 Dmˇ �mˇ0 :

So far we have only defined �0 and �0 up to translation, but there is a unique choice of
�0 and �0 , up to simultaneous translation of both, such that

�.t/��.t/D �0.t/��0.t/

for all t not an edge. We order the edges of ˛ and ˇ such that the agreeing ‘h’ edges
are ordered first and in the same order, and this determines an ordering of the ‘h’ edges
of ˛0 and ˇ0 . Note for future reference that

(89) I.˛; ˇ/D I.˛0; ˇ0/:

VII (Locality) Let ˛ and ˇ satisfy the Nesting and Label Matching conditions, and
let ˛0 and ˇ0 be obtained from ˛ and ˇ by removing matching edges as above.
Then

h@˛; ˇi D h@˛0; ˇ0i:

Suppose that ˇ is obtained from ˛ by rounding a corner and locally losing one ‘h’,
ie the differential coefficient hı˛; ˇi D ˙1 as in Section 3.1. If furthermore only one
new edge is created by the rounding process, and if this edge has multiplicity one (ie
the corresponding segment in Z2 contains no interior lattice points), then we say that
ˇ is obtained from ˛ by simple rounding. If no edges at all are created by the rounding
process, ie if ˛ turns by angle � at the rounded corner, then we say that ˇ is obtained
from ˛ by degenerate rounding.

VIII (Simple Rounding) If ˇ is obtained from ˛ by simple rounding, then h@˛; ˇiD
hı˛; ˇi.

IX (Degenerate Rounding) If ˇ is obtained from ˛ by degenerate rounding then
h@˛; ˇi D hı˛; ˇi.
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9.2 Uniqueness of the chain complex

As usual let ı denote the differential on �C�.2�n/ defined in Section 3.1. Of course,
.�C�.2�n/; ı/ satisfies the above axioms.

Proposition 9.1 Let @ be a differential on �C�.2�n/ satisfying the axioms of Section
9.1. Then @D ı .

Proof Throughout this proof, ˛ and ˇ will denote generators of �C�.2�n/, and �
and � will denote their underlying admissible paths.

Lemma 9.2 If h@˛; ˇi ¤ 0, then hı˛; ˇi ¤ 0.

Proof Suppose that h@˛; ˇi ¤ 0. By the Nesting axiom, ˇ � ˛ . By Proposition 2.13,
the polygon � can be obtained from � by a sequence of k corner roundings for some
nonnegative integer k . By Lemma 3.9,

I.˛; ˇ/D 2k � #h.˛/C #h.ˇ/:

Let D WDD.˛; ˇ/ be defined as in Section 9.1. Let l denote the number of edges of
˛ that are in D , ie that do not agree with any edges in ˇ . Since D is connected by the
Connectedness axiom, these l edges of ˛ are consecutive. Observe that

l � kC 1:

Otherwise, at least one of the corners between the edges of ˛ in D is not rounded in a
sequence of k roundings from � to �. If D ¤ R=2�nZ, then D is separated by such
a corner, contradicting the Connectedness axiom. If D D R=2�nZ, then two corners
in ˛ are not rounded and these two corners separate D .

By the Label Matching axiom, we can calculate #h.˛/� #h.ˇ/ by considering only
the edges of ˛ and ˇ in D , so

#h.˛/� #h.ˇ/� l:

Combining this with the previous inequality and equation gives

I.˛; ˇ/� k � 1:

By the Index axiom, I.˛; ˇ/D 1, so the only possibilities are k D 0, k D 1, or k D 2.

The case k D 0 is impossible, as then the Label Matching axiom would imply that
˛ D ˇ so that I.˛; ˇ/D 0.
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If kD 2 then equality must hold in the above inequalities so lD 3. But this is forbidden
by the No Double Rounding axiom.

Therefore k D 1, so � is obtained from � by rounding a corner. By the index
formula, #h.˛/� #h.ˇ/D 1. Together with the Label Matching axiom, this implies
that hı˛; ˇi D ˙1.

Lemma 9.3 If hı˛; ˇi ¤ 0, then

(90) h@˛; ˇi D hı˛; ˇi:

Proof Suppose that hı˛; ˇi ¤ 0; we will show that (90) holds. The strategy is to use
@2D 0 to solve for the unknown differential coefficients. The following is similar to an
argument in our earlier paper [10, Section 3.8], but because we are considering more
general polygonal paths here we can make some simplifications.

We know that ˇ is obtained from ˛ by rounding a corner c and locally losing one ‘h’.
Let �1 and �2 be the edges of ˛ preceding and following c , respectively. Let

(91) � WD det
�

x�1
x�2

y�1
y�2

�
2 Z:

By the definition of rounding a corner, �2� �1 2 .0; ��, and in particular �� 0. We
will now prove equation (90) by induction on �.

If �D 0, then (90) holds by the Degenerate Rounding axiom.

If �D 1, then the triangle with vertices

�.c/�

�
x�1

y�1

�
; �.c/; �.c/C

�
x�2

y�2

�
is simple, so (90) holds by the Simple Rounding axiom.

Now suppose that �> 1, and assume that the lemma holds for all smaller values of �.
Let c0 be the corner of ˛ following the edge �2 . Let �3 be the edge of ˇ preceding c0 ,
ie the last edge of ˇ created by rounding at c . By the Locality axiom, we may replace
˛ and ˇ by the generators ˛0 and ˇ0 in the statement of the Locality axiom, and then
add one new edge to each, to arrange the following:

� The edges �1 and �2 of ˛ have multiplicity 1.

� ˛ has only one edge other than �1 and �2 , and ˇ has only one edge other than
the edges created by rounding the corner c . In both ˛ and ˇ , this additional
edge is at angle �3C� with multiplicity 1.
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� If the edge �3 of ˇ is labeled ‘h’, then the edge �3C� of ˛ and ˇ is labeled
‘e ’; otherwise the edge �3C� of ˛ and ˇ is labeled ‘h’.

The last condition above ensures that it is possible to round the corner c0 of ˇ and
locally lose one ‘h’ to obtain a well-defined (up to sign) generator  with hıˇ;  i ¤ 0.
Since this rounding is degenerate, we also know that

h@ˇ;  i D hıˇ;  i ¤ 0:

An example of the admissible paths underlying ˛ and  is shown below.

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .
S
S
S
S
S
S
S
Sw��

�
�*�

@
@
@
@
@
@R -

�1

c

�2

c0
�3C�

In general the rounding of ˛ at c0 is simple, because the triangle with vertices

�.c/; �.c0/; �.c0/�

�
x�3

y�3

�
is simple, by the definition of rounding the corner of ˛ at c . Thus there is a unique (up
to sign) generator ˇ0 obtained from ˛ by rounding the corner at c0 and locally losing
one ‘h’. This generator ˇ0 satisfies hı˛; ˇ0i ¤ 0, and because ˇ0 is obtained from ˛

by simple rounding, we also know that

h@˛; ˇ0i D hı˛; ˇ0i ¤ 0:

Finally, the edge labels work out so that we can round ˇ0 at c and locally lose one ‘h’
to obtain  , and in particular hıˇ0;  i ¤ 0. Moreover the determinant corresponding
to this rounding as in (91) is less than �, because the triangle with vertices

�.c/�

�
x�1

y�1

�
; �.c/; �.c0/�

�
x�3

y�3

�
is a proper subset of the triangle with vertices

�.c/�

�
x�1

y�1

�
; �.c/; �.c0/:
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So by inductive hypothesis,

h@ˇ0;  i D hıˇ0;  i ¤ 0:

By Lemmas 3.12(a) and 9.2, there does not exist a generator ˇ00 , other than ˙ˇ0 and
possibly ˙ˇ , with h@˛; ˇ00i; h@ˇ00;  i ¤ 0. Using this fact and then plugging in the
previous three equations, we get

0D h@2˛;  i D h@˛; ˇih@ˇ;  iC h@˛; ˇ0ih@ˇ0;  i

D h@˛; ˇihıˇ;  iC hı˛; ˇ0ihıˇ0;  i:

By Lemma 3.12(b),

0D hı2˛;  i D hı˛; ˇihıˇ;  iC hı˛; ˇ0ihıˇ0;  i:

Since all factors on the right hand side are nonzero, comparing this equation with the
previous one proves (90).

The above two lemmas prove Proposition 9.1.

10 J –holomorphic curves in R�T 3

Having completed the proofs of our algebraic theorems, we now gather some funda-
mental facts about J –holomorphic curves in R�T 3 , in preparation for computing the
embedded contact homology of T 3 . Section 10.1 gives basic definitions. In Section
10.2 we establish a dictionary between some of the combinatorics of Section 2 and
the geometry of J –holomorphic curves in R�T 3 . In Section 10.3 we prove a useful
restriction on the latter in terms of the partial order from Section 2.3. In Section 10.4 and
Section 10.5 we recall and prove some basic classification results for J –holomorphic
curves in R�T 3 .

10.1 J –holomorphic curves in symplectizations

Let Y be a closed oriented 3–manifold with a contact form �; see Section 1.1 for the
basic contact terminology.

Definition 10.1 An orbit set is a finite set of pairs ˛ D f.˛i ;mi/g where the ˛i ’s are
distinct embedded Reeb orbits and the mi ’s are positive integers (“multiplicities”). The
homology class of ˛ is defined by

Œ˛� WD
X

i

mi Œ˛i � 2H1.Y /:
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Definition 10.2 If ˛ D f.˛i ;mi/g and ˇ D f. ǰ ; nj /g are orbit sets with Œ˛� D Œˇ�,
let H2.Y; ˛; ˇ/ denote the set of relative homology classes of 2–chains Z in Y with

@Z D
X

i

mi˛i �

X
j

nj ǰ :

Thus H2.Y; ˛; ˇ/ is an affine space modelled on H2.Y /.

Definition 10.3 An almost complex structure J on R�Y is admissible if J is R–
invariant; J.�/ D � with d�.v;Jv/ > 0 for nonzero v 2 � ; and J.@s/ is a positive
multiple of R, where s denotes the R coordinate.

For our purposes, a J –holomorphic curve is a nonconstant map uW C!R�Y , modulo
reparametrization, where C is a punctured compact (possibly disconnected) Riemann
surface with a complex structure j , such that duıj DJ ıdu. When u is an embedding,
we often identify u with its image in R�Y .

For admissible J , if  � Y is an embedded Reeb orbit, then R �  � R � Y is
a J –holomorphic cylinder, which we call a trivial cylinder. Given a more general
J –holomorphic curve uW C ! R�Y , a positive end at  of multiplicity k is an end
of u asymptotic to R �  k as s ! C1, where  k denotes the k –fold connected
covering of  . A negative end is defined analogously with s!�1.

Definition 10.4 If ˛ D f.˛i ;mi/g and ˇ D f. ǰ ; nj /g are orbit sets with Œ˛� D Œˇ�,
let MJ .˛; ˇ/ denote the moduli space of J –holomorphic curves uW C ! R�Y as
above such that:

� u has positive ends at ˛i , whose multiplicities sum to mi .

� Similarly u has negative ends at ǰ of total multiplicity nj .

� u has no other ends.

Note that R acts on MJ .˛; ˇ/ by translation in the R direction in R � Y . If u 2

MJ .˛; ˇ/, then the projection of u from R � Y to Y has a well-defined relative
homology class

Œu� 2H2.Y; ˛; ˇ/:

Definition 10.5 If Z 2H2.Y; ˛; ˇ/, let

MJ .˛; ˇIZ/ WD
n
u 2MJ .˛; ˇ/ Œu�DZ

o
:
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Definition 10.6 If ˛ D f.˛i ;mi/g is an orbit set, define the symplectic action

A.˛/ WD
X

i

mi

Z
˛i

�:

Lemma 10.7 For an admissible almost complex structure J , if MJ .˛; ˇ/ is non-
empty, then:

(a) A.˛/�A.ˇ/.
(b) If A.˛/DA.ˇ/, then ˛ D ˇ and every element of MJ .˛; ˇ/ maps to a union

of trivial cylinders.

Proof Suppose u2MJ .˛; ˇ/. Admissibility of J implies that if v is a tangent vector
to a point in the domain .C; j /, then u�d�.v; j v/� 0. Part (a) follows immediately
from Stokes theorem. Part (b) holds because u�d�.v; j v/D 0 only if du sends v to
the span of @s and R in T .R�Y /.

10.2 Admissible paths and orbit sets in T 3

Fix a positive integer n. We now specialize to the example Y D T 3 with the contact
form �n defined by (4) and (5). The Reeb orbits of �n consist of circles of Reeb orbits
at each � 2‚n , where

‚n WD f� 2 R=2�nZ j tan � 2Q[f1gg:

Each Reeb orbit  in the circle at � has homology class

Œ �D .0; .x� ;y� // 2H1.T
3/:

In this setting we define a Morse–Bott orbit set to be a finite set of pairs ˛D f.˛i ;mi/g

where each ˛i is a component of the space of embedded Reeb orbits and each mi is a
positive integer. A Morse–Bott orbit set ˛ with Œ˛�D � 2 Z2 DH1.T

2/�H1.T
3/ is

equivalent to a multiplicity function

mW ‚n �! Z�0

which is finitely supported and which satisfies

(92)
X
�2‚n

m.�/

�
x�
y�

�
D �:

So by the discussion in Section 2.1, there is a canonical bijection

(93)
�

Morse–Bott orbit
sets ˛ with Œ˛�D �

�
D

�
periodic admissible paths of

rotation number n and period �

�
=translation:
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Remark 10.8 Under this correspondence, the length of a periodic admissible path,
defined in Section 2.3, agrees with the symplectic action of the corresponding Morse–
Bott orbit set as in Definition 10.6.

There seems to be no natural way to resolve the translation ambiguity in (93) for a
single path. However, the relative translation ambiguity of a pair of paths does have a
geometric interpretation, as we now explain.

Definition 10.9 Let m and m0 be finitely supported functions ‚n! Z�0 satisfying
(92). A relative placement of m and m0 is a locally constant map

f W .R=2�nZ/ n .supp.m/[ supp.m0// �! Z2

satisfying the “jumping condition”

df .t/

dt
D
�
m.t/�m0.t/

� X
�2‚n

�
x�
y�

�
ı� .t/:

Let R.m;m0/ denote the set of all such f ; this is an affine space over Z2 .

The significance of this definition is that if ƒ and ƒ0 are periodic admissible paths of
rotation number n and period � with multiplicity functions m and m0 respectively,
then

f Dƒ�ƒ0

is a relative placement of m and m0 .

On the geometric side, if ˛ and ˛0 are Morse–Bott orbit sets with Œ˛� D Œ˛0�, then
H2.T

3; ˛; ˛0/ is a well-defined affine space over H2.T
3/=H2.T

2/D Z2 . We have to
mod out by H2.T

2/ because each circle of Reeb orbits sweeps out a surface f�g�T 2

in S1 �T 2 .

Lemma-Definition 10.10 Let ˛ and ˛0 be Morse–Bott orbit sets corresponding to
multiplicity functions m and m0 . Then there is a canonical Z2 –equivariant bijection
between relative homology classes in T 3 and relative placements of periodic admissible
paths,

H2.T
3; ˛; ˛0/DR.m;m0/:

Proof Let T and T 0 denote the supports of m and m0 . For Z 2H2.T
3; ˛; ˛0/ and

�0 2 .R=2�nZ/ n .T [T 0/, the intersection of Z with the slice f� D �0g � T 3 has a
well-defined homology class as follows. If Z is represented by a smooth surface †
intersecting f� D �0g transversely, then the intersection is a compact 1–manifold. We
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orient the intersection so that if fv;wg is an oriented basis for the tangent space to †
at a point and v is a positively oriented tangent vector to the intersection, then w has
positive @� component. Now define

f .�0/ WD
�
Z \f� D �0g

�
2H1.T

2/D Z2:

Then f 2R.m;m0/, and this defines the required bijection.

For an admissible almost complex structure J as in Section 10.1 and Z2H2.T
3; ˛; ˛0/,

we can define MJ .˛; ˛0;Z/ by analogy with Definition 10.5.

Definition 10.11 If ƒ and ƒ0 are periodic admissible paths of rotation number n and
period � corresponding to the Morse–Bott orbit sets ˛ and ˛0 , let

MJ .ƒ;ƒ0/ WDMJ .˛; ˛0; ƒ�ƒ0/:

10.3 Nesting of polygons and intersection positivity

There is a simple but important constraint on J –holomorphic curves in R� T 3 in
terms of the partial order � from Section 2.3.

Proposition 10.12 Let J be an admissible almost complex structure on R�T 3 for
the contact form �n . Let ƒ and ƒ0 be periodic admissible paths of rotation number n

and period � . Then
MJ .ƒ;ƒ0/¤∅H)ƒ0 �ƒ:

Proof Let u 2MJ .ƒ;ƒ0/. We want to show that for all � 2 R,

(94) det
�

cos �
sin �

ƒ0.�/�ƒ.�/

�
� 0:

Choose �0 2 .R=2�nZ/ n .T [T 0/ such that u is transverse to f� D �0g � R�T 3 .
Consider a component of u�1f� D �0g, parametrized in an orientation-preserving
manner by

�D .s;x;y/W S1
�! f� D �0g:

Let � denote the S1 coordinate. By admissibility of J , the transversality assumption,
and our orientation convention for the intersection, we have

sin.�0/
dx

d�
� cos.�0/

dy

d�
> 0:
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(This can also be understood as positivity of intersections of u with the leaves of the
J –holomorphic foliation of f� D �0g by R times the Reeb flow.) Hence the homology
class .�x; �y/ 2 Z2 of this component satisfies

det
�
�x cos �0

�y sin �0

�
> 0:

Adding this up for all components of u�1f� D �0g proves equation (94) whenever
� 2 R is a lift of �0 2 .R=2�nZ/ n .T [T 0/. By continuity, equation (94) holds for
all � 2 R.

Remark 10.13 For a given �0 62 T [T 0 , the above argument shows that if equality
holds in (94), then u does not intersect the slice f� D �0g.

10.4 Spheres with two or three punctures, and degenerate and simple
rounding

Of particular interest is the “standard” almost complex structure Jstd on R�T 3 defined
by

Jstd.@s/ WD cos � @xC sin � @y ;

Jstd.@� / WD � sin � @xC cos � @y :
(95)

It is easy to check that Jstd is admissible. Since Jstd does not depend on s , x , or
y , the action of R� T 2 on R� T 3 preserves Jstd and hence induces an action on
MJstd.ƒ;ƒ0/.

Definition 10.14 If ƒ;ƒ0 are periodic admissible paths with rotation number n, let
MJ

0
.ƒ;ƒ0/ denote the set of irreducible, genus zero curves u 2MJ .ƒ;ƒ0/.

Proposition 10.15 Let J be any T 2 –invariant admissible almost complex structure
on R�T 3 for the standard contact form �n . Suppose ƒ is a periodic admissible path
of rotation number n, with two edges. Then:

(a) If ƒ0 is obtained from ƒ by degenerate rounding (see Section 9.1), then R�T 2

acts transitively on MJ
0
.ƒ;ƒ0/ with S1 stabilizer.

(b) If ƒ0 is obtained from ƒ by simple rounding, then R � T 2 acts freely and
transitively on MJ

0
.ƒ;ƒ0/.

Proof We will deduce the proposition from analogous results of Taubes [27], which
hold for a similar contact form �T on S1 �S2 and a T 2 –invariant admissible almost
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complex structure JT on R � S1 � S2 . For this purpose we will need to consider
slightly more general contact forms on T 3 . Namely, consider

�D a1.�/ dxC a2.�/ dy

where
aD .a1; a2/W R=2�nZ �! R2

n f0g

has properties (i)–(iii) below. (In the following, if v D .v1; v2/ and w D .w1; w2/ are
vectors in R2 , then v�w WD v1w2� v2w1 .)

(i) The path a has winding number n around the origin in R2 .

(ii) a� a0 > 0 for all � .

(iii) a0 � a00 > 0 for all � .

Condition (ii) ensures that � is a contact form. The Reeb vector field is given by

RD
a0

2
@x � a0

1
@y

a� a0
:

By (i) and (ii), R has winding number n. Condition (iii) implies that R turns to the left
as � increases. Hence we can reparametrize the � coordinate (in exactly n different
ways) so that

(iv) R is a positive multiple of cos � @xC sin � @y for all � .

Of course the standard contact form �n is recovered by taking aD .cos �; sin �/, which
satisfies conditions (i)–(iv) above. Also, any two contact forms satisfying (i)–(iv) above
are homotopic through such forms (by linear interpolation). For such a contact form,
all of Section 10.2 and Section 10.3 holds verbatim (except for Remark 10.8). We will
prove the proposition for any such contact form. We proceed in three steps.

Step 1 Denote the edges of ƒ by �1 and �2 with �2� �1 2 .0; ��. Then the subset

Œ�1; �2��T 2
� T 3

can be identified with a subset of S1 � S2 between two latitude lines, such that
the pullback of Taubes’s contact form �T extends to a contact form �0

T
satisfying

(i)–(iv) above. The pullback of Taubes’s almost complex structure JT extends to a
T 2 –invariant admissible J 0

T
on R � T 3 . By Remark 10.13, any u 2MJ 0

T .ƒ;ƒ0/

maps to R� Œ�1; �2�� T 2 , and an analogous argument works for JT –holomorphic
curves in R � S1 � S2 . Hence Taubes’s results are applicable to MJ 0

T .ƒ;ƒ0/. In
particular, [27, Theorem A.1(c)] proves (a), and [27, Theorem A.2] proves (b), for �0

T

and J 0
T

.
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Step 2 Now consider another contact form � on T 3 satisfying (i)–(iv) above, and an
admissible T 2 –invariant admissible J on R�T 3 . We can deform �0

T
to � through

contact forms satisfying (i)–(iv), and for this family of contact forms we can find a
family of T 2 –invariant admissible almost complex structures interpolating between
J 0

T
and J . The moduli spaces M0.ƒ;ƒ

0/ are smooth manifolds of the expected
dimension throughout the deformation, as in [23, Theorem 1.2]. (For more general
automatic transversality results see Wendl’s doctoral thesis [29, Section 4.5.5].) By
Gromov compactness (see the paper [4] by Bourgeois, Eliashberg, Hofer, Wysocki and
Zehnder) the moduli spaces M0.ƒ;ƒ

0/=R are compact throughout the deformation,
because by Propositions 2.10(b) and 10.12 and Lemma 10.7(b), there are never any
broken pseudoholomorphic curves from ƒ to ƒ0 . So the moduli spaces M0.ƒ;ƒ

0/=R

for J 0
T

and for J are diffeomorphic.

Step 3 Consideration of the Reeb orbits that appear at the ends of the J –holomorphic
curves shows that in case (b), R�T 2 acts freely on MJ

0
.ƒ;ƒ0/. This action must

then be transitive, or else MJ
0
.ƒ;ƒ0/ would be disconnected or not of the expected

dimension, contradicting Step 2. In case (a), R�T 2=S1 acts freely on MJ
0
.ƒ;ƒ0/,

where S1 � T 2 is generated by the vector .x�1
;y�1

/. So R�T 2 must act transtively
with S1 stabilizer, or else again there would be a contradiction of Step 2.

The above proposition can also be deduced from work of Parker [20], which classifies
genus zero pseudoholomorphic curves in R�T 3 for a degeneration of Jstd , in terms
of certain labeled graphs in R2 n f0g.

10.5 The zero area constraint

We now show that the sets of Reeb orbits that can appear at the ends of a Jstd –
holomorphic curve in R�T 3 satisfy a codimension one constraint. This will be used
in Section 11.3 to establish the No Double Rounding axiom for the embedded contact
homology of T 3 . To state the constraint, for � 2‚n we explicitly identify the circle
of Reeb orbits in f�g � T 2 with S1 D R=Z via a map ' defined as follows. If the
Reeb orbit  contains a point .�;x;y/ 2 T 3 , then we define

(96) '. / WD x�y �y�xC
x�y�

2
2 R=Z:

If u 2MJ .˛; ˇ/, let EC.u/ and E�.u/ denote the set of positive and negative ends
of u, respectively. For e 2E˙.u/, let  .e/ denote the corresponding embedded Reeb
orbit and m.e/ the multiplicity of the end as defined in Section 10.1.
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Proposition 10.16 Let u 2MJstd.ƒ;ƒ0/. Then

(97)
X

e2EC.u/

m.e/'. .e//�
X

e2E�.u/

m.e/'. .e//D 0 2 R=Z:

Proof (Conpare our earlier paper [10, Lemma A.2]) It follows from (95) that the
2–form �ds d�Cdx dy on R�T 3 annihilates any pair of tangent vectors of the form
.v;Jstdv/. Therefore Z

C

u�.dx dy/D

Z
C

u�.ds d�/:

Now
R

C u�.ds d�/D 0 by Stokes’ theorem, because the 1–form s d� vanishes along
the Reeb orbits. Therefore

R
C u�.dx dy/D 0, ie the projection of u to the .x;y/–torus

has area zero. It follows from the identification (96) that this area is congruent modulo
Z to the left side of equation (97).

11 Embedded contact homology

We now (in Section 11.2) outline the definition of the embedded contact homology of
a contact 3-manifold. The idea is to count J –holomorphic curves with I D 1, where
I is a certain upper bound on the index introduced in Section 11.1. In Section 11.3 we
explain the correspondence between the embedded contact homology of T 3 and our
combinatorial chain complexes. This will prove Theorem 1.2.

11.1 The index inequality

As in Section 10.1, let Y be a closed oriented 3–manifold, let � be a contact 1–form
on Y , and let J be an admissible almost complex structure on R�Y .

If  is a Reeb orbit passing through a point y 2 Y , then the linearization of the Reeb
flow R on the contact planes along  determines a linearized return map P W �y! �y .
This is a symplectic linear map whose eigenvalues do not depend on y . The Reeb orbit
 is nondegenerate if P does not have 1 as an eigenvalue. Assume now that all Reeb
orbits, including multiply covered ones, are nondegenerate.

A Reeb orbit  is called elliptic or positive (resp. negative) hyperbolic when the
eigenvalues of P are on the unit circle or the positive (resp. negative) real line
respectively. If � is a trivialization of � over  , one can then define the Conley–
Zehnder index �� . / 2 Z. In our three-dimensional situation this is given explicitly as
follows. For a positive integer k , let  k denote the kth iterate of  . If  is elliptic,
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then there is an irrational number � 2 R such that P is conjugate in SL.2;R/ to a
rotation by angle 2�� , and

(98) �� .
k/D 2bk�cC 1:

Here 2�� is the total rotation angle with respect to � of the linearized flow around
the orbit. If  is positive (resp. negative) hyperbolic, then there is an even (resp. odd)
integer r such that the linearized flow around the orbit rotates the eigenspaces of P
by angle �r with respect to � , and

(99) �� .
k/D kr:

Let ˛ D f.˛i ;mi/g and ˇ D f. ǰ ; nj /g be orbit sets as in Section 10.1. Suppose that
Œ˛�D Œˇ� and let Z 2H2.Y; ˛; ˇ/.

Definition 11.1 (Compare Eliashberg–Givental–Hofer [7]) If u 2MJ .˛; ˇIZ/,
define the SFT index

(100) ind.u/ WD

��.C /C 2c1.u
��; �/C

X
e2EC.u/

��
�
 .e/m.e/

�
�

X
e2E�.u/

��
�
 .e/m.e/

�
:

Here � is a trivialization of the 2–plane bundle � over the ˛i ’s and ǰ ’s, and c1 denotes
the relative first Chern class with respect to � , see our earlier paper [9, Section 2].

The following proposition is the 3–dimensional case of a formula from [7] which is
proved in the paper by Dragnev [6], using an index calculation by Schwarz [21].

Proposition 11.2 If J is generic, and if u 2MJ .˛; ˇ/ has no multiply covered
components, then MJ .˛; ˇ/ is a manifold near u of dimension ind.u/.

Definition 11.3 (Hutchings [9]) Define the ECH index

(101) I.˛; ˇ;Z/ WD c1.�jZ ; �/CQ� .Z/C
X

i

miX
kD1

��

�
˛k

i

�
�

X
j

njX
kD1

��

�
ˇk

j

�
:

Here Q� denotes the “relative intersection pairing”, which is defined in [9, Section 2].
If u 2MJ .˛; ˇ;Z/, write I.u/ WD I.˛; ˇ;Z/.

The following basic properties of I are proved in [9]. First, I.˛; ˇ;Z/ does not depend
on the choice of � . Second, I is additive in the sense that

(102) I.˛; ˇ;Z/C I.ˇ; ;W /D I.˛; ;ZCW /:
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Third, I depends on Z via the “index ambiguity formula”

(103) I.˛; ˇ;Z/� I.˛; ˇ;W /D hc1.�/C 2 PD.�/;Z �W i :

Fourth, the index mod 2 is given by

I.˛; ˇ;Z/� #h.˛/� #h.ˇ/ mod 2

where #h.˛/ denotes the number of positive hyperbolic Reeb orbits in ˛ .

The key, nontrivial property of I is the inequality (104) below which bounds the SFT
index in terms of the ECH index.

Proposition 11.4 Suppose that u2MJ .˛; ˇ/ does not multiply cover any component
of its image and that the image of u contains no trivial cylinders. Then

(104) ind.u/� I.u/� 2ı.u/:

Moreover, if T is a union of (possibly multiply covered) trivial cylinders, then

(105) I.u/� I.u[T /� 2#.u\T /:

Here ı.u/ is a count of the singularities of u with positive integer weights; in particular
ı.u/D 0 iff u is an embedding. Also, ‘#’ denotes the algebraic intersection number in
R�Y . By intersection positivity (see McDuff [16]), #.u\T /� 0, with equality iff
u\T D∅.

Proof Equation (104) follows from [9, Equation (18) and Proposition 6.1], and
equation (105) holds as in [9, Proposition 7.1]. Note that these results in [9] are
proved in a slightly different setting, where Y is a mapping torus and a “local linearity”
assumption is made. The asymptotic analysis needed to carry over these results to the
present setting is done in Siefring’s doctoral thesis [22].

The above proposition leads to strong restrictions on curves of low ECH index:

Corollary 11.5 Suppose J is generic and u 2MJ .˛; ˇ/. Then:

(a) I.u/� 0.

(b) If I.u/D 0, then the image of u is a union of trivial cylinders.

(c) If I.u/ D 1, then u contains one embedded component u1 with ind.u1/ D

I.u1/ D 1. All other components of u map to trivial cylinders that do not
intersect u1 .
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Proof The image of u consists of a union of k irreducible non-multiply-covered
J –holomorphic curves ui , covered by u with multiplicity di . Let u0 be the union of
di different translates of ui in the R direction, for each i such that ui is not a trivial
cylinder. Let T be the union of the components of u that map to trivial cylinders. Note
that if ui is a trivial cylinder then ind.ui/D 0. So by equations (104) and (105),

(106)
kX

iD1

di ind.ui/D ind.u0/� I.u0/� 2ı.u0/� I.u/� 2#.u0\T /� 2ı.u0/:

Since J is generic, each nontrivial ui has ind.ui/ > 0 by Proposition 11.2, since R

acts nontrivially on the moduli space containing ui . Also, ı.u0/ D 0 only if u0 is
embedded, which implies that all of the nontrivial ui ’s are embedded. We can now
read off the conclusions (a), (b), and (c) from the inequality (106).

11.2 The definition of embedded contact homology

Continue to assume that all Reeb orbits are nondegenerate.

11.2.1 The chain complex

Definition 11.6 An orbit set f.˛i ;mi/g is admissible if mi D 1 whenever ˛i is
hyperbolic.

Definition 11.7 If � 2H1.Y /, then C�.Y; �I�/ is the free Z–module generated by
admissible orbit sets ˛ such that Œ˛�D � , and an ordering of the positive hyperbolic
Reeb orbits in ˛ is chosen. We declare that changing this ordering multiplies the
generator by the sign of the reordering permutation.

Let N denote the divisibility of the image of c1.�/C 2 PD.�/ in Hom.H2.Y /;Z/.
It follows from (103) and (102) that I.˛; ˇ;Z/ mod N does not depend on Z and
defines a relative Z=N grading on C�.Y; �I�/.

There is also a twisted chain complex defined for any subgroup G � H2.Y /. Fix a
“reference cycle”, consisting of an oriented 1–dimensional submanifold � � Y such
that

(107) Œ��D � 2H1.Y /:

Definition 11.8 Let �C�.Y; �I�;G/ be the free Z–module generated by pairs .˛; ŒW �/

where ˛ is generator of C�.Y; �I�/ and ŒW � 2H2.Y; �; ˛/=G .
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The H2.Y / action on H2.Y; �; ˛/ makes �C�.Y; �I�;G/ into a free module over
the group ring ZŒH2.Y /=G�, with one generator for each admissible orbit set in the
homology class � . If G DH2.Y /, then �C� reduces to the “untwisted” complex in
Definition 11.7. The “fully twisted” version has G D f0g.

11.2.2 The differential To define the differential, we first briefly review how to orient
the relevant moduli spaces of J –holomorphic curves following Bourgeois–Mohnke
[5]. For each Reeb orbit  , there is a determinant line O associated to @ operators on
the plane with asymptotics determined by the linearized Reeb flow along  . (When 
is an even multiple cover of a negative hyperbolic orbit, O is only defined if one also
chooses a marked point on the image of  .) For each  we choose an orientation of
O . When  is elliptic, there is a canonical “complex” orientation which we choose,
cf Floer–Hofer [8, Theorem 2]. By [5], the above choices determine a sign for any
transversely cut out indD 1 curve provided that the ends at positive hyperbolic orbits
are ordered, and there are no ends at even covers of negative hyperbolic orbits.

In the following, assume that admissible orbit sets have orderings of the positive
hyperbolic orbits chosen. If J is generic, and if ˛ and ˇ are homologous admissible
orbit sets with I.˛; ˇ;Z/D 1, define a count

(108) #
MJ .˛; ˇ;Z/

R
2 Z

as follows. Declare two curves u;u0 2 MJ .˛; ˇ;Z/=R to be equivalent if their
embedded components from Corollary 11.5(c) are the same up to translation, and if
their other components cover each embedded trivial cylinder R� with the same total
multiplicity. In other words, u and u0 define the same current (modulo translation)
in R�Y . The compactness argument of our earlier paper [9, Section 9.4] shows that
there are only finitely many equivalence classes. For each equivalence class, if we
discard the multiply covered trivial cylinders, then the resulting embedded curve has a
sign by the previous paragraph. The count (108) is now the sum over the equivalence
classes of the corresponding signs.

Definition 11.9 Define the differential

@W �C�.Y; �I�;G/ �! �C��1.Y; �I�;G/

as follows. If ˛ is an admissible orbit set with Œ˛�D � , then

@.˛; ŒW �/ WD
X

I.˛;ˇ;Z/D1

#
MJ .˛; ˇ;Z/

R
� .ˇ; ŒW CZ�/:
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Here the sum is over admissible orbit sets ˇ and relative homology classes Z 2

H2.Y; ˛; ˇ/.

For technical reasons, we also need to consider, for a positive real number L, the
subcomplex �C<L

� .Y; �I�;G/ generated by orbit sets ˛ with symplectic action A.˛/<
L. By Lemma 10.7(a), the differential @ sends �C<L

� to itself.

A proof of the following is in preparation.

Conjecture 11.10 (a) @2 D 0.

(b) The homology of �C�.Y; �I�;G/, which we denote by AECH �.Y; �I�;G/, does
not depend on J .

(c) The homology of �C<L
� .Y; �I�;G/, which we denote by AECH

<L

� .Y; �I�;G/,
is invariant under deformations of � during which all orbits of action <L are
nondegenerate and no orbit has its action increase or decrease past L.

11.2.3 Morse–Bott version Suppose now that � has not only nondegenerate Reeb
orbits but also S1 –families of Reeb orbits which are nondegenerate in the Morse–
Bott sense. In principle one could define ECH in this situation along the lines of
Bourgeois [2], without perturbing �. However, the following definition is simpler to
state. Each S1 –family of Reeb orbits, by a small perturbation of �, can be replaced
by two embedded Reeb orbits, one elliptic and one positive hyperbolic. Since there
are typically infinitely many S1 –families of Reeb orbits, we cannot expect to perturb
them all this way simultaneously. However, we can do this for all circles of Reeb orbits

of symplectic action <L. So Conjecture 11.10 implies that AECH
<L

� .Y; �I�;G/ is
well-defined, and we then define ECH as the direct limit

AECH �.Y; �I�;G/ WD lim
L!1

AECH
<L

� .Y; �I�;G/:

In both the nondegenerate and Morse–Bott cases, we denote the “untwisted” ECH by

ECH�.Y; �I�/ WD AECH �.Y; �I�;H2.Y //:

11.3 The example of T 3

We now explain why the untwisted embedded contact homology of T 3 , for the standard
contact form �n defined in (4) and (5), is computed by the combinatorial chain complex
SC�.2�nI�/. Also, the combinatorial chain complex �C�.2�nI�/ computes a partially
twisted version of the embedded contact homology of T 3 . Below, H�.T

2/ denotes
the homology of an x;y torus in T 3 .
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Theorem 11.11 Assume Conjecture 11.10, so that ECH is well-defined. Then for � 2
H1.T

2/D Z2 , the embedded contact homology of T 3 is related to the combinatorial
chain complexes by

AECH�.T
3; �nI�;H2.T

2//' �H�.2�nI�/;(109)

ECH�.T
3; �nI�/' SH�.2�nI�/:(110)

Proof This is similar to the computation of the periodic Floer homology of a Dehn
twist on a cylinder in our earlier paper [10], because the mapping torus flow for a
negative Dehn twist on a cylinder is isomorphic to the Reeb flow on a subset of T 3

where � ranges over an interval of length less than � . Thus we will carry over some
lemmas from [10]. In making the translation, note that because the results in [10] are
stated for positive Dehn twists, positive ends of J –holomorphic curves here correspond
to negative (or “incoming”’) ends there, and vice-versa. We now prove the theorem in
five steps.

Step 1 We begin by defining an isomorphism of relatively graded ZŒZ2�–modules

(111) �C<L
� .T 3; �nI�;H2.T

2//' �C<L
� .2�nI�/:

Here the right hand side denotes the subcomplex of C�.2�nI�/ generated by admissi-
ble paths of length <L, as defined in (14).

Recall from Section 10.2 that for every � 2 ‚n there is an S1 family of embedded
Reeb orbits, such that each Reeb orbit  in the family has homology class

Œ �D .0; .x� ;y� // 2H1.T
3/DH1.S

1/˚H1.T
2/:

After perturbation of �n , this family becomes an elliptic orbit e� and a positive
hyperbolic orbit h� , of approximately the same symplectic action.

To define (111), we first define an isomorphism of Z–modules

(112) C<L
� .T 3; �nI�/D SC

<L
� .2�nI�/:

Given a generator ˛ of C<L
� .T 3; �nI�/, define a multiplicity function

mW R=2�nZ �! Z�0

by setting m.�/ equal to the total multiplicity of e� and h� in ˛ . By (93), this defines
an admissible path ƒ of rotation number n and period � , up to translation. By Remark
10.8, the length of ƒ is less than L. If � is an edge of ƒ, label it ‘h’ if h� appears in
˛ , and label it ‘e ’ otherwise. (By Definition 11.6, h� cannot have multiplicity greater
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than 1 in ˛ .) For agreement with the SFT sign conventions of Eliashberg–Givental–
Hofer [7] and Bourgeois–Mohnke [5], we order the ‘h’ edges by the reverse of the
ordering of the h� orbits in ˛ . This completes the definition of the isomorphism (112).

We next lift (112) to an isomorphism of ZŒZ2�–modules (111). (The possible lifts
according to the prescription below will form an affine space over Z2 .) To specify a lift,
first choose a reference admissible path ƒ0 of rotation number n and period � . Then
choose the reference cycle � as in (107) to be a union of Reeb orbits corresponding to
ƒ0 . By Lemma-Definition 10.10, this determines an isomorphism (111).

The left side of (111) has a well-defined relative Z–grading, by (103). We claim that this
agrees with the relative grading on the right hand side of (111) defined in equation (16).
To see this, let ˛ and ˇ be generators of �C<L

� .2�nI�/. Denote the corresponding
orbit sets by f.˛i ;mi/g and f. ǰ ; nj /g. The correspondence of Lemma-Definition
10.10 then defines a relative homology class

Z 2H2.T
3; f.˛i ;mi/g; f. ǰ ; nj /g/=H2.T

2/:

We need to show that with this Z , the right hand sides of (101) and (16) agree. Observe
that the contact 2–plane field � has a nonvanishing section @� over T 3 , and this gives
rise to a global trivialization � of � . We then have

(113) c1.�jZ ; �/D 0:

Also, if ˛ or ˇ contains e� or h� with multiplicity k , then for a sufficiently small
perturbation of the Morse–Bott contact form, 0< � < 1=k in equation (98) and r D 0

in equation (99), so

(114) �� .e
k
� /D 1; �� .h

k
� /D 0:

Therefore

(115)
X

i

miX
kD1

��

�
˛k

i

�
�

X
j

njX
kD1

��

�
ˇk

j

�
D .`.˛/� #h.˛//� .`.ˇ/� #h.ˇ//:

By equations (113) and (115), to complete the proof that the relative indices agree, we
must show that

(116) Q� .Z/D 2

Z
P

x dy:

This follows as in our earlier paper [9, Lemma 3.7] when the admissible path underlying
ˇ is obtained from that of ˛ by nondegenerate rounding. The case of degenerate
rounding follows by an easy generalization of this. By induction using Proposition
2.13, equation (116) holds for any two generators ˛ and ˇ .
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Step 2 Choose a small perturbation of �n , a generic almost complex structure J , and
orientations of the determinant lines Oh� needed to define the ECH differential @ on
the left hand side of (111). We assume that the perturbed contact form agrees with �n

away from an "–neighborhood of the circles of Reeb orbits of �n with action < L,
where " is small with respect to L. We claim that the differential @, regarded as a
differential on the right hand side of (111), satisfies the Nesting, Connectedness, Label
Matching, and Locality axioms of Section 9.1 where applicable, ie whenever ˛ and ˇ
have length <L.

If ˛ and ˇ are generators of the right hand side of (111), let MJ .˛; ˇ/ denote the
J –holomorphic curves counted by the differential coefficient h@˛; ˇi. To prove the
Nesting axiom, suppose there exists C 2MJ .˛; ˇ/ where ˛ and ˇ have length <L

and ˇ 6� ˛ . Then there exists �0 2 R=2�nZ such that

det
�

cos �0

sin �0
ˇ.�0/�˛.�0/

�
< 0:

By continuity we can choose �0 such that tan �0 is not a rational number of denominator
�L. We can assume that " above is sufficiently small that the perturbed contact form
agrees with �n when � D �0 . We then get a contradiction as in Proposition 10.12.

The Connectedness axiom holds because if D.˛; ˇ/ is disconnected, then as in Remark
10.13, if " is sufficiently small, then a J –holomorphic curve in MJ .˛; ˇ/ has at
least two non-trivial components. By Corollary 11.5, such a curve cannot exist unless
I.˛; ˇ/� 2, whence h@˛; ˇi D 0.

Before continuing, we need some restrictions on the topological complexity of the
J –holomorphic curves counted by @. Suppose that u 2MJ .˛; ˇ/ and I.˛; ˇ/D 1.
By Corollary 11.5, u has one component u1 which does not map to a trivial cylinder,
with ind.u1/D 1. Let g.u1/ denote the genus of the domain of u1 , let eC.u1/ denote
the number of positive ends of u1 at elliptic Reeb orbits, and let h.u1/ denote the
number of positive or negative ends of u1 at hyperbolic Reeb orbits. Since ind.u1/D 1,
it follows from equations (100), (113), and (114) that

(117) 2g.u1/C 2eC.u1/C h.u1/D 3:

We claim now that for each J –holomorphic curve counted by @, the nontrivial compo-
nent u1 has genus zero. By equation (117) the only other possibility is that g.u1/D 1;
u1 has one positive end, which is hyperbolic; and all negative ends of u1 are elliptic.
By Nesting, u1 has only one negative end, which corresponds to the same edge as its
positive end; then u1 2MJ .˛; ˇ/ with I.˛; ˇ/D�1, contradicting Corollary 11.5(a).

We now prove the Label Matching axiom. To prove the first sentence of the axiom, if
h@˛; ˇi ¤ 0 and if two edges of ˛ and ˇ at angle �0 agree but have different labels,
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then as in Remark 10.13, the contributing J –holomorphic curves include nontrivial
components living in an "–neighborhood of the slice f� D �0g. By equation (117), the
only such nontrivial curves that can arise are cylinders with a positive end at e�0

and a
negative end at h�0

. By Morse–Bott theory, cf Bourgeois [2], these count with opposite
signs as in the Morse homology of S1 . The second sentence of the Label Matching
axiom holds because if ˛ and ˇ fail this condition, then the nontrivial component of
any u 2M.˛; ˇ/ would have a negative hyperbolic end, a positive elliptic end, and at
least one other positive end, violating equation (117).

To prove the Locality axiom, let ˛0 and ˇ0 be defined as in the statement of the axiom.
By (89) and the analogue of [10, Lemma 3.9], taking the union with trivial cylinders
defines a map M.˛0; ˇ0/=R!M.˛; ˇ/=R, which is a bijection on the equivalence
classes of curves that the differential counts. Our ordering convention in Step 1 ensures
that this bijection is orientation-preserving, so h@˛; ˇi D h@˛0; ˇ0i.

Step 3 The proof of Lemma 9.2 then shows that we can write @D @0C @1 , where
h@0˛; ˇi ¤ 0 only if hı˛; ˇi ¤ 0, and h@1˛; ˇi ¤ 0 only if ˇ is obtained from ˛

by “double rounding”, ie rounding two adjacent corners and losing three ‘h’s. Also
@2 D 0 implies that @2

0
D 0, because �C<L

� .2�nI�/ is filtered by I � #h, and @0 is
the differential on the associated graded complex.

We henceforth orient all of the Oh� ’s as follows. As mentioned above there are two J –
holomorphic cylinders from e� to h� which count with opposite signs. The projections
of these cylinders to T 2 have areas of opposite sign. (The areas differ by 1.) We
choose the orientation of Oh� so that the cylinder whose projection to T 2 has positive
area counts with positive sign.

With the above orientation choices, as in [10, Lemma 3.15(b)], @0 does not depend on
the small perturbation of the contact form, J , or L. In conclusion, @0 is a well-defined
differential on all of �C�.2�n/ satisfying the Nesting, Connectedness, Label Matching,
Locality, and No Double Rounding axioms.

Step 4 We claim now that, possibly after changing some signs in the isomorphism
(111), the differential @0 also satisfies the Degenerate Rounding and Simple Rounding
axioms. To prove either of these axioms, by Locality we may assume that ˛ has only
two edges. By the invariance of @0 , we may assume that J is close to the almost
complex structure Jstd defined in equation (95). Up to signs, the Degenerate Rounding
and Simple Rounding axioms now follow from Proposition 10.15 by using Morse–Bott
theory as in [10, Section 3.8].
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To understand the signs, recall from Lemma 6.20 that eSL2Z acts on SC�.2�n/. In
fact, an element .A; f / 2eSL2Z gives rise to a diffeomorphism of T 3 sending

.�; .x;y// 7�! .f .�/;A.x;y//

and preserving the Reeb direction, and this induces the action on the generators of
SC�.2�n/. As in [10, Lemma 3.16], with the orientation choices of Step 3, the cofficients
of @0 are eSL2Z–invariant. Thus there are only two degenerate rounding coefficients
(depending on whether the ‘h’ edge comes before or after the rounded corner) and
three simple rounding coefficients, each of which is C1 or �1.

We claim that the two degenerate rounding coefficients have opposite signs, and the
three simple rounding coefficients are related schematically by

(118) h@0.eh/; ei D �h@0.he/; ei D h@0.hh/; hi:

A shortcut to checking these signs is to consider the fully twisted chain complex with
its differential e@ , cf Section 12.1.1. Our previous discussion of the cylinders from e�
to h� implies that if ƒ has one edge thene@Eƒ D tk.1� t/Hƒ;

where t is a group ring generator corresponding to H2.T
2/ and k is some integer

depending on ƒ. (One can arrange that k D 0, but this is not necessary here.) Each
degenerate rounding coefficient is now plus or minus a power of t . Then applyinge@2
D 0 to a generator Eƒ where ƒ has two edges and a corner of angle � implies that

the two degenerate rounding coefficients have opposite sign. Next, applying @2 D 0 to
simple triangles with two edges labeled ‘h’ establishes the relations (118) between the
three simple rounding coefficients.

Thus the Degenerate Rounding and Simple Rounding axioms hold up to a global sign in
each. To make both of these signs positive, consider the automorphism �h of �C�.2�n/

that sends ˛ 7! .�1/#h.˛/˛ , and similarly let �e be the automorphism of �C�.2�n/ that
multiplies a generator ˛ by .�1/ to the number of elliptic orbits in ˛ . Then composing
the isomorphism (111) with �e will change the degenerate rounding sign but not the
simple rounding sign, while composing the isomorphism (111) with �h will change
both signs.

Step 5 We now complete the proof of the theorem. By the previous steps, the chain
complex .�C�.2�n/; @0/ satisfies all the axioms of Section 9.1. By Proposition 9.1,
@0 D ı . It follows from Proposition 10.16 as in [10, Lemma A.1(a)] that for any L,
the perturbation of �n and Jstd can be chosen so that @1 D 0. Hence�H<L

� .T 3; �nI�;H2.T
2//D �H<L

� .2�nI�/:
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Taking the direct limit as L!1 proves the isomorphism (109). The isomorphism
(110) follows because all of the chain maps in the proof of (109) are Z2 –equivariant.

12 Concluding remarks

12.1 Additional structure on ECH

We now briefly describe some additional structures on ECH in general and their
combinatorial manifestations in the example of T 3 , assuming Conjecture 11.10.

12.1.1 The fully twisted ECH of T 3 Similarly to Theorem 11.11, the fully twisted
embedded contact homology of T 3 is described combinatorially by

(119) AECH �.T
3; �nI�; 0/'H�

��C�.2�nI�/˝ZŒt; t�1�;eı�
where eı is defined below. First define a map

ı0W �C�.2�nI�/ �! �C��1.2�nI�/

as follows. If ˛ is a generator of �C�.2�nI�/, define ı0.˛/ to be the sum of all ways
of relabeling an ‘e ’ edge of ˛ by ‘h’ and making it last in the ordering. For example,
ı0.Eƒ/DHƒ . Note that ı0 is essentially a special case of the operator K�1;�2

defined
in Section 4, with �2 D �1C 2�n. So as in Proposition 4.5,

(120) ı0ıC ıı0 D 0:

We now define

(121) eı WD ıC .1� t/ı0:

It is easy to see that .ı0/2 D 0. Together with ı2 D 0 and equation (120), this implies
that eı2

D 0.

In the correspondence (119), t is an extra group ring generator corresponding to a
generator of H2.T

2/. The .1� t/ı0 term in the differential arises from the twisted
Morse complex of the circles of Reeb orbits of �n .

Similarly to Theorem 7.1,

(122) H�

��C�.2�nI�/˝ZŒt; t�1�;eı�'
8<:
I.Z3/; � D 0; � D 0;

Z; � D 0; � D 1; 3; : : : ;

0; otherwise.

Here I.Z3/ denotes the augmentation ideal in ZŒZ3�, and Z denotes the ZŒZ3�–module
with one generator on which Z3 acts by the identity.
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12.1.2 The contact element In general there is a canonical homology class

(123) c.�/ 2 AECH 0.Y; �I 0;G/:

This is the homology class of the chain complex generator ˛ D∅, namely the empty
set of Reeb orbits. (This is well-defined in the twisted cases if we choose the reference
cycle �D 0 in (107).) Note that @˛ D 0, because by convexity any J –holomorphic
curve in R�Y has at least one positive end. We conjecture that the homology class
(123) depends only on the contact structure � .

In the untwisted ECH of T 3 , the class c.�n/ corresponds to the homology class of a
0–gon in the combinatorial homology SH0.2�nI 0/. This homology class is a generator
if n D 1, and 0 if n > 1. On the other hand, in the fully twisted ECH of T 3 , the
isomorphism (122) can be chosen so that

c.�n/D .1� t/n 2 I.Z3/:

12.1.3 The action of H1 An element

� 2H1.Y /=TorsD Hom
�
H 1.Y IZ/;Z

�
D Hom .H2.Y /;Z/

induces a degree �1 map

(124) @� W AECH �.Y; �I�;G/ �! AECH ��1.Y; �I�;G/:

The map @� is defined by an algebraic operation on the fully twisted chain complex,
by analogy with a construction due to Ozsváth and Szabó [18]. We will also give an
equivalent geometric definition in Section 12.1.4.

In general, suppose we are given a free chain complex .�C�; @/ over a group ring ZŒH �

and a homomorphism �W H ! Z. Then � induces a Z–linear map e� W ZŒH �! ZŒH �

sending
P

h ahh 7!
P

h �.h/ahh and satisfying

(125) e� .xy/De� .x/yCxe� .y/:
Choose a basis fxi j i 2Ig for �C� over ZŒH �, and define a ZŒH �–linear map @� W �C��!�C��1 by

@�.xi/ WD
X
j2I

e� �h@xi ;xj i
�
xj :

Then @2 D 0 and equation (125) imply that @ ı @�C @� ı @D 0. Equation (125) further
implies that the map that @� induces on homology is natural and hence does not depend
on the choice of basis. Also @�1C�2

D @�1
C @�2

, and 2@� ı @� D 0 on homology.
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Specializing this to the fully twisted ECH, if � 2 Hom.H2.Y /;Z/, then we obtain a
chain map

@� W �C�.Y; �I�; 0/ �! �C��1.Y; �I�; 0/:

Modding out by G and passing to homology gives the map (124).

We now consider the example of T 3 and compute the map

@� W ECH�.T
3; �nI 0/ �!ECH��1.T

3; �nI 0/

in terms of the generators in Proposition 8.3. Recall that we have been using a basis
ft;x;yg for H2.T

3/; we denote the dual basis of H1.T
3/ by the same letters ft;x;yg.

It then follows from (121) that @t is induced by �ı0 . Observe that ı0 commutes with
the splicing chain map S defined in Section 7.1. It follows by induction on n that in
Proposition 8.3 one can take qk�1 WD ı

0pk for k > 0. By equation (120), one can then
take uk WD ı

0sk and vk WD ı
0tk , whence

(126) @t .sk/D�uk ; @t .tk/D�vk

for k > 0. It is not hard to obtain (126) for k D 0 as well. From the bigrading
and .ı0/2 D 0, we find that @t of all other generators is zero. We also read off from
Proposition 8.3 that

@x.sk/D pk ; @x.wk/D�vk ;

@y.tk/D pk ; @y.wk/D uk ;

and @x and @y of all other generators is zero.

12.1.4 The homology operation U We now describe a degree �2 operation on the
embedded contact homology

U W AECH �.Y; �I�;G/ �! AECH ��2.Y; �I�;G/:

Fix a point z 2 Y which is not on any Reeb orbit. Let MJ .˛; ˇ;Z/z denote the set
of curves u 2MJ .˛; ˇ;Z/ with a marked point mapping to .0; z/ 2 R� Y . For a
suitable orientation on MJ .˛; ˇ;Z/z , define

Uz W
�C<L
� .Y; �I�;G/ �! �C<L

��2.Y; �I�;G/;

.˛; ŒW �/ 7�!
X

I.˛;ˇ;Z/D2

#MJ .˛; ˇ;Z/z � .ˇ; ŒW CZ�/:

We expect to prove similarly to Conjecture 11.10 that Uz is a chain map, and a generic
path P from z to z0 induces a chain homotopy KP between Uz and Uz0 . The chain
homotopy counts J –holomorphic curves with I D 1 that contain a marked point
mapping to f0g �P � R�Y . Then Uz induces a well defined map U on ECH.
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We remark that if P is a loop, then KP is equivalent to the map @ŒP � defined in Section
12.1.3.

For Y D T 3 , if we take zD .�;x;y/, then the geometric chain map Uz defined above
is related to the combinatorial chain map U� defined in Section 4 as follows. Similarly
to Theorem 11.11, under the isomorphism (111) we have

Uz D U� CU 0;

where hU 0˛; ˇi ¤ 0 only if ˇ is obtained from ˛ by rounding two consecutive corners
and losing two ‘h’s, or rounding three consecutive corners and losing four ‘h’s. Without
knowing anything more about the “error term” U 0 , we can show that Uz and U� induce
the same map on ECH�.T

3; �nI 0/. That is, the generators in Proposition 8.3 can be
chosen so that equations (67) and (68) hold in homology with U DU� replaced by Uz .
We obtain the equations (67), ie U 0pkC1 D U 0skC1 D U 0tkC1 D 0, just by counting
the number of ‘h’s in the generators. We then obtain the equations (68) by noting that
Uz commutes with the map @t defined in Section 12.1.3, and using equation (126).

12.2 Some other 3–manifolds

12.2.1 S1 �S2 The methods of this paper can be modified to compute the ECH of
S1 �S2 with the contact form �T studied by Taubes in [27]. Apparently

AECH �.S
1
�S2; �T I�; 0/'

�
Z; � D ŒS1�� Œpt �; � D i0; i0C 2; : : : ;

0; otherwise:

Here i0 is a certain odd value of the grading. A generator in degree i0 is given
(after perturbation from the Morse–Bott setting) by a hyperbolic orbit in S1 cross the
equator of S2 . This calculation is relevant to Taubes’s program [24; 26], provides more
evidence for Conjecture 1.1, and shows that ECH need not vanish for an overtwisted
contact form.

12.2.2 Torus bundles Let Y be the T 2 –bundle over S1 with monodromy A�1 2

SL2Z. Choose a lift .A; f / 2 ASL2Z of A, as in Section 6.3, such that f .�/ > � for
all � , and f has rotation number in .2�.n� 1/; 2�n� with n> 0. Also choose a lift�
.A�1/T ;g

�
of the inverse transpose .A�1/T corresponding to the same n. Then the

diffeomorphism

R�T 2
�! R�T 2;

.�; .x;y// 7�! .g.�/;A.x;y//

preserves the contact structure given by the kernel of the standard contact form (5),
and thus defines a contact structure on the quotient, which is diffeomorphic to Y . This
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contact structure is the kernel of a � –dependent rescaling of the contact form (5). The
rescaling can be chosen so that the Reeb vector field rotates to the left as � increases,
cf Section 10.4. Similarly to Theorem 11.11, the ECH of Y for such a contact form
and for

� 2 Z2= Im.1�A/�H1.Y /

is computed by a “twisted” variant of the combinatorial complex SC�.2�nI�/. In
this chain complex, which we denote by SC�.A; nI�/, the periodicity condition in
Definition 2.2 is replaced by the conditions

dƒ

d�
ıf DA ı

dƒ

d�
;

Œƒ.f .�//�ƒ.�/�D �:

It is an interesting problem to compute the homology of this complex.
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Seconded: Peter Ozsváth, Tomasz Mrowka Revised: 27 December 2005

Geometry & Topology, Volume 10 (2006)


