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Manifolds with non-stable fundamental groups at infinity, III

C R GUILBAULT

F C TINSLEY

We continue our study of ends non-compact manifolds. The over-arching aim is to
provide an appropriate generalization of Siebenmann’s famous collaring theorem
that applies to manifolds having non-stable fundamental group systems at infinity. In
this paper a primary goal is finally achieved; namely, a complete characterization of
pseudo-collarability for manifolds of dimension at least 6.

57N15, 57Q12; 57R65, 57Q10

1 Introduction

This is the third in a series of papers aimed at generalizing Siebenmann’s famous PhD
thesis [13] so that the results apply to manifolds with nonstable fundamental groups
at infinity. Siebenmann’s work provides necessary and sufficient conditions for an
open manifold of dimension � 6 to contain an open collar neighborhood of infinity,
ie, a manifold neighborhood of infinity N such that N � @N � Œ0; 1/. Clearly, a
stable fundamental group at infinity is necessary in order for such a neighborhood to
exist. Hence, our first task was to identify a useful, but less rigid, ‘end structure’ to
aim for. We define a manifold N n with compact boundary to be a homotopy collar
provided @N n ,!N n is a homotopy equivalence. Then define a pseudo-collar to be a
homotopy collar which contains arbitrarily small homotopy collar neighborhoods of
infinity. An open manifold (or more generally, a manifold with compact boundary) is
pseudo-collarable if it contains a pseudo-collar neighborhood of infinity. Obviously,
an open collar is a special case of a pseudo-collar. Guilbault [7] contains a detailed
discussion of pseudo-collars, including motivation for the definition and a variety of
examples—both pseudo-collarable and non-pseudo-collarable. In addition, a set of
three conditions (see below) necessary for pseudo-collarability—each analogous to
a condition from Siebenmann’s original theorem—was identified there. A primary
goal became establishment of the sufficiency of these conditions. At the time [7] was
written, we were only partly successful at attaining that goal. We obtained an existence
theorem for pseudo-collars, but only by making an additional assumption regarding the
second homotopy group at infinity. In this paper we eliminate that hypothesis; thereby
obtaining the following complete characterization.
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Theorem 1.1 (Pseudo-collarability Characterization Theorem) A one ended n–
manifold M n (n � 6) with compact boundary is pseudo-collarable iff each of the
following conditions holds:

(1) M n is inward tame at infinity,

(2) �1.".M
n// is perfectly semistable, and

(3) �1 .M
n/D 0 2 eK0 .�1 .".M

n///.

Remark 1 While it is convenient to focus on one ended manifolds, the above theorem
actually applies to all manifolds with compact boundary. This is true because an inward
tame manifold with compact boundary has only finitely many ends. (See Section 3 of
Guilbault–Tinsley [8].) Hence, Theorem 1.1 may be applied to each end individually.
Manifolds with non-compact boundaries are an entirely different story and will not be
discussed here. A detailed discussion of that situation will be provided in Guilbault [5].

Remark 2 A side benefit of our new proof is the inclusion of the nD 6 case. In fact,
our proof is also valid in dimension five when all of the groups involved are ‘good’ in
the sense of Freedman and Quinn [4]. In that dimension the pseudo-collar structure
obtained is purely topological—as opposed to PL or smooth. This parallels the status
of Siebenmann’s theorem in dimension 5. We discuss dimensions � 4 at the end of
this section.

The condition of inward tameness means that each neighborhood of infinity can be
pulled into a compact subset of itself, or equivalently, that M n contains arbitrarily small
neighborhoods of infinity which are finitely dominated. Next let �1." .M

n// denote
the inverse system of fundamental groups of neighborhoods of infinity. Such a system
is semistable if it is equivalent to a system in which all bonding maps are surjections. If,
in addition, it can be arranged that the kernels of these bonding maps are perfect groups,
then the system is perfectly semistable. The obstruction �1 .M n/ 2 eK0 .�1 .".M

n///

vanishes precisely when each (clean) neighborhood of infinity has finite homotopy type.
More detailed formulations of these definitions will be given in Section 2.

Conditions (1)–(3) correspond directly to the three conditions identified by Siebenmann
as necessary and sufficient for the existence of an actual open collar neighborhood
of infinity for manifolds of dimension � 6. (His original version combined the first
two into a single assumption.) Indeed, condition (1) is precisely one of his conditions,
condition (2) is a relaxation of his �1 –stability condition, and condition (3) is the
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natural reformulation of his third condition to the situation where �1 .".M
n// is not

necessarily stable.

In the second paper of this series [8], we focused our attention on the interdependence
of conditions (1)–(3). Specifically, it seemed that condition (2) might be implied by
condition (1), or by a combination of (1) and (3). This turned out to be partly true.
We showed that, for manifolds with compact boundary, inward tameness implies �1 –
semistability. However, that paper also presents examples satisfying both (1) and (3)
which do not have perfectly semistable fundamental group at infinity—and thus are not
pseudo-collarable. Those results solidified conditions (1)–(3) as the best hope for a
complete characterization of manifolds with pseudo-collarable ends.

The proof of the Pseudo-collar Characterization Theorem is based upon the proof of
the ‘Main Existence Theorem’ of [7], which was based on Siebenmann’s original work.
The primary task of this paper is to redo the final step of our earlier proof without
assuming �2 –semistability. In an interesting twist, our new strategy results in a proof
that more closely resembles Siebenmann’s original argument than its predecessor. Even
so, the reader would be well served to have a copy of [7] available.

Remark 3 When �1.".M
n// is stable, conditions (1)–(3) become identical to Sieben-

mann’s conditions. Thus, an application of [13] tells us that every pseudo-collar with
stable fundamental group at infinity contains a genuine collar. This fact can also be
obtained by a relatively simple direct argument. Thus, one may view Siebenmann’s
theorem as a special case of the Pseudo-collarability Characterization Theorem. For
completeness, we have included that direct argument as Proposition 2.3 in the following
section.

Remark 4 For irreducible 3–dimensional manifolds with compact boundary the
assumption of inward tameness, by itself, implies the existence of an open collar
neighborhood of infinity, Tucker [15]. By contrast, in dimension 4, Kwasik and Schultz
[9] have given examples where Siebenmann’s Collaring Theorem fails. Since these
examples have ‘good’ fundamental groups at infinity, Proposition 2.3 (or a quick review
of [9]) shows that Theorem 1.1 also fails in dimension 4.

The first author wishes to acknowledge support from NSF Grant DMS-0072786.

2 Definitions and terminology

In this section we briefly review most of the terminology and notation needed in the
remainder of the paper. It is divided into two subsections—the first devoted to inverse
sequences of groups and the second to the topology of ends of manifolds.
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2.1 Algebra of inverse sequences

Throughout this section all arrows denote homomorphisms, while arrows of the type
� or � denote surjections. The symbol Š denotes isomorphisms.

Let

G0

�1
 �G1

�2
 �G2

�3
 � � � �

be an inverse sequence of groups and homomorphisms. A subsequence of fGi ; �ig is
an inverse sequence of the form

Gi0

�i0C1ı���ı�i1
 � Gi1

�i1C1ı���ı�i2
 � Gi2

�i2C1ı���ı�i3
 � � � � :

In the future we will denote a composition �i ı � � � ı�j (i � j ) by �i;j .

Sequences fGi ; �ig and fHi ; �ig are pro-equivalent if, after passing to subsequences,
there exists a commuting diagram:

Gi0

�i0C1;i1
 � Gi1

�i1C1;i2
 � Gi2

�i2C1;i3
 � � � �

- . - . - .

Hj0

�j0C1;j1
 � Hj1

�j1C1;j2
 � Hj2

� � �

:

Clearly an inverse sequence is pro-equivalent to any of its subsequences. To avoid
tedious notation, we often do not distinguish fGi ; �ig from its subsequences. Instead
we simply assume that fGi ; �ig has the desired properties of a preferred subsequence—
often prefaced by the words ‘after passing to a subsequence and relabelling’.

The inverse limit of a sequence fGi ; �ig is a subgroup of
Q

Gi defined by

lim
 �
fGi ; �ig D

(
.g0;g1;g2; � � � / 2

1Y
iD0

Gi

ˇ̌̌̌
ˇ�i .gi/D gi�1

)
:

Notice that for each i , there is a projection homomorphism pi W lim
 �
fGi ; �ig !Gi . It

is a standard fact that pro-equivalent inverse sequences have isomorphic inverse limits.

An inverse sequence fGi ; �ig is stable if it is pro-equivalent to an inverse sequence
fHi ; �ig for which each �i is an isomorphism. A more usable formulation is that
fGi ; �ig is stable if, after passing to a subsequence and relabelling, there is a commu-
tative diagram of the form

(�)
G0

�1
 � G1

�2
 � G2

�3
 � G3

�4
 � � � �

- . - . - .

im.�1/  � im.�2/  � im.�3/  � � � �
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where each bonding map in the bottom row (obtained by restricting the corresponding
�i ) is an isomorphism. If fHi ; �ig can be chosen so that each �i is an epimorphism,
we say that our inverse sequence is semistable (or Mittag–Leffler, or pro-epimorphic).
In this case, it can be arranged that the restriction maps in the bottom row of (�) are
epimorphisms. Similarly, if fHi ; �ig can be chosen so that each �i is a monomorphism,
we say that our inverse sequence is pro-monomorphic; it can then be arranged that the
restriction maps in the bottom row of (�) are monomorphisms. It is easy to see that an
inverse sequence that is semistable and pro-monomorphic is stable.

Recall that a commutator element of a group H is an element of the form x�1y�1xy

where x;y 2H ; and the commutator subgroup of H; denoted ŒH;H �, is the subgroup
generated by all of its commutators. The group H is perfect if ŒH;H � D H . An
inverse sequence of groups is perfectly semistable if it is pro-equivalent to an inverse
sequence

G0

�1� G1

�2� G2

�3� � � �

of finitely presentable groups and surjections where each ker .�i/ perfect. The following
shows that inverse sequences of this type behave well under passage to subsequences.

Lemma 2.1 A composition of surjective group homomorphisms, each having perfect
kernels, has perfect kernel. Thus, if an inverse sequence of surjective group homomor-
phisms has the property that the kernel of each bonding map is perfect, then each of its
subsequences also has that property.

Proof See [7, Lemma 1].

2.2 Topology of ends of manifolds

Throughout this paper, � will represent homeomorphism, while ' will indicate
homotopic maps or homotopy equivalent spaces. The word manifold means manifold
with (possibly empty) boundary. A manifold is open if it is non-compact and has no
boundary. We will restrict our attention to manifolds with compact boundaries. This
prevents the ‘topology at infinity’ of our manifold from getting entangled with the
topology at infinity of its boundary. Manifolds with noncompact boundaries will be
addressed in [5].

For convenience, all manifolds are assumed to be PL. Analogous results may be obtained
for smooth or topological manifolds in the usual ways. Occasionally we will observe
that a theorem remains valid in dimension 4 or 5. Results of this sort usually require
the purely topological 4–dimensional techniques developed by Freedman [4]; thus, the
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546 C R Guilbault and F C Tinsley

corresponding conclusions are only topological. The main focus of this paper, however,
is on dimensions � 6.

Let M n be a manifold with compact (possibly empty) boundary. A set N �M n is
a neighborhood of infinity if M n�N is compact. A neighborhood of infinity N is
clean if

� N is a closed subset of M n ,

� N \ @M n D∅, and

� N is a codimension 0 submanifold of M n with bicollared boundary.

It is easy to see that each neighborhood of infinity contains a clean neighborhood of
infinity.

We say that M n has k ends if it contains a compactum C such that, for every
compactum D with C �D , M n �D has exactly k unbounded components, ie, k

components with noncompact closures. When k exists, it is uniquely determined; if
k does not exist, we say M n has infinitely many ends. If M n is k –ended, then it
contains a clean neighborhood of infinity N consisting of k connected components,
each of which is a one ended manifold with compact boundary. Thus, when studying
manifolds with finitely many ends, it suffices to understand the one ended situation.
That is the case in this paper, where our standard hypotheses ensure finitely many ends.
See [8, Proposition 3.1].

A connected clean neighborhood of infinity with connected boundary is called a 0–
neighborhood of infinity. If N is clean and connected but has more than one boundary
component, we may choose a finite collection of disjoint properly embedded arcs in N

that connect those components. Deleting from N the interiors of regular neighborhoods
of these arcs produces a 0–neighborhood of infinity N0 �N .

A nested sequence N0 � N1 � N2 � � � � of neighborhoods of infinity is cofinal ifT1
iD0 Ni D ∅. For any one ended manifold M n , one may easily obtain a cofinal

sequence of 0–neighborhoods of infinity.

We say that M n is inward tame at infinity if, for arbitrarily small neighborhoods of
infinity N , there exist homotopies H W N � Œ0; 1� ! N such that H0 D idN and
H1 .N / is compact. Thus inward tameness means each neighborhood of infinity can
be pulled into a compact subset of itself.

Recall that a space X is finitely dominated if there exists a finite complex K and maps
uW X ! K and d W K! X such that d ı u ' idX . The following lemma uses this
notion to offer equivalent formulations of ‘inward tameness’.
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Lemma 2.2 [8, Lemma 2.4] For a manifold M n , the following are equivalent.

(1) M n is inward tame at infinity.

(2) Each clean neighborhood of infinity in M n is finitely dominated.

(3) For each cofinal sequence fNig of clean neighborhoods of infinity, the inverse
sequence

N0

j1

 -N1

j2

 -N2

j3

 - � � �

is pro-homotopy equivalent to an inverse sequence of finite polyhedra.

Given a nested cofinal sequence fNig
1
iD0 of connected neighborhoods of infinity, base

points pi 2 Ni , and paths ˛i � Ni connecting pi to piC1 , we obtain an inverse
sequence:

�1 .N0;p0/
�1
 � �1 .N1;p1/

�2
 � �1 .N2;p2/

�3
 � � � � :

Here, each �iC1W �1 .NiC1;piC1/! �1 .Ni ;pi/ is the homomorphism induced by

inclusion followed by the change of base point isomorphism determined by ˛i . The
obvious singular ray obtained by piecing together the ˛i ’s is often referred to as the
base ray for the inverse sequence. Provided the sequence is semistable, one can show
that its pro-equivalence class does not depend on any of the choices made above. We
refer to the pro-equivalence class of this sequence as the fundamental group system
at infinity for M n and denote it by �1 ." .M

n//. We denote the inverse limit of this
sequence by L�1 ." .M

n//. (In the absence of semistability, the pro-equivalence class of
the inverse sequence depends on the choice of base ray, and hence, this choice becomes
part of the data.) It is easy to see how the same procedure may also be used to define
�k ." .M

n// and L�k ." .M
n//for k > 1.

In [16], Wall shows that each finitely dominated connected space X determines a
well-defined element � .X / lying in eK0 .Z Œ�1X �/ (the group of stable equivalence
classes of finitely generated projective Z Œ�1X �–modules under the operation induced
by direct sum) that vanishes if and only if X has the homotopy type of a finite complex.
Given a nested cofinal sequence fNig

1
iD0 of connected clean neighborhoods of infinity

in an inward tame manifold M n , we have a Wall obstruction �.Ni/ for each i . These
may be combined into a single obstruction

�1.M
n/D .�1/n .�.N0/; �.N1/; �.N2/; � � � /

2 eK0

�
�1

�
"
�
M n

���
� lim
 �

eK0 .Z Œ�1Ni �/

that is well-defined and which vanishes if and only if each clean neighborhood of
infinity in M n has finite homotopy type. See Chapman and Siebenmann [1] for details.

We conclude this section by providing a direct proof of the following:
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Proposition 2.3 Every pseudo-collar of dimension � 5 with stable fundamental group
contains an open collar neighborhood of infinity. In dimension 4 this remains true in
the topological category provided the fundamental group at infinity is good.

Proof If N n is a connected pseudo-collar, then by definition there exists a cofinal
sequence N n D N1 � N2 � N3 � � � � of homotopy collar neighborhoods of in-

finity. Letting Wi D Ni �
ı

N iC1 for each i , divides N n into a countable sequence
f.Wi ; @Ni ; @NiC1/g of cobordisms with the property that each @Ni ,!Wi is a homotopy
equivalence. (We call these one-sided h–cobordisms.) Although @NiC1 ,!Wi needn’t
be a homotopy equivalence, an argument involving duality in the universal cover of
Wi (see [8, Theorem 2.5]), implies that �1 .@NiC1/! �1 .Wi/ is surjective for each
i . By commutativity of

�1 .@NiC1/ � �1 .Wi/

Š# Š#

�1 .NiC1/ �! �1 .Ni/

each bonding map in the following sequence is surjective

�1 .N1/� �1 .N2/� �1 .N3/� � � � :

The only way that an inverse sequence of surjections can be stable is that eventually
all bonding homomorphisms are isomorphisms. Choose i0 sufficiently large that
�1 .NiC1/ ! �1 .Ni/ is an isomorphism for all i � i0 . Then for each i � i0 ,
.Wi ; @Ni ; @NiC1/ is a genuine h–cobordism. If each is a product, we may piece
the product structures together to obtain an open collar structure on Ni0

. Otherwise
we will apply the ‘weak h–cobordism theorem’ (Stallings [14] or Connell [3]) to
rechoose the cobordisms so that each is a product. To accomplish this, assume
that n � 5. Then, by the weak h–cobordism theorem, there is a homeomorphism
hW @Ni0

� Œ0; 1/ ! Wi0
� @Ni0C1 . Choose t close to 1; then replace Ni0C1 with

N 0
i0C1
DNi0

�h
�
@Ni0

� Œ0; t/
�

and Wi0
with W 0i0

DNi0
�

ı

N 0i0C1D h .@Ni � Œ0; t �/.
Next apply the same procedure to N 0

i0C1
, Ni0C2 and the h–cobordism between @N 0

i0C1

and @Ni0C2 to rechoose that cobordism so that it is a product. Continue this procedure
inductively to arrange that all of the h–cobordisms are products. If nD 4, the weak
h–cobordism theorem (and hence, the above proof) is still valid provided the common
fundamental group is good and the conclusion we seek is only topological [6, Corollary
3.5].
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3 One sided h–cobordisms and the Plus Construction

As noted above, a pseudo-collar structure on the end of a manifold allows one to express
that end as a countable union of compact ‘one-sided h–cobordisms’ f.Wi ;Ai ;Bi/g

1
iD1

in the sense that each inclusion Ai ,!Wi is a homotopy equivalence. For any such
cobordism, �1 .Bi/ ! �1 .Wi/ is surjective and has perfect kernel (again see [8,
Theorem 2.5]). Quillen’s famous ‘plus construction’ ([11] or [4, Section 11.1]) provides
a partial converse to that observation.

Theorem 3.1 (The Plus Construction) Let B be a closed .n� 1/–manifold .n� 6/

and hW �1 .B/ ! H a surjective homomorphism onto a finitely presented group
such that ker .h/ is perfect. Then there exists a compact n–dimensional cobordism
.W;A;B/ such that ker .�1 .B/! �1 .W //D ker h, and A ,!W is a simple homo-
topy equivalence. These properties determine W uniquely up to homeomorphism rel
B . If nD 5, this result is still valid (in the topological category) provided the group H

is good.

When a one-sided h–cobordism has trivial Whitehead torsion, ie, when the correspond-
ing homotopy equivalence is simple, we refer to it as a plus cobordism.

In [7] techniques borrowed from the proof of Theorem 3.1 were used in obtaining
pseudo-collar structures. In the current paper we apply the plus construction itself
to isolate the difficulties caused by non-stability of the fundamental group. The key
technical tool is the following:

Theorem 3.2 (The Embedded Plus Construction) Let R be a connected manifold of
dimension � 6; B be a closed component of @R; and

G � ker .�1 .B/! �1 .R//

a perfect group which is the normal closure in �1 .B/ of a finite set of elements. Then
there exists a plus cobordism .W;A;B/ embedded in R which is the identity on B for
which ker .�1 .B/! �1 .W //DG . If nD 5 and �1 .B/ =G is good, the conclusion
is still valid provided we work in the topological category.

Proof Let .W;A;B/ be the plus cobordism promised by Theorem 3.1 for the homo-
morphism �1 .B/! �1 .W /. We will show (indirectly) how to embed this cobordism
into R in the appropriate manner. Let R1DR[B W , the manifold obtained by gluing
a copy of W to R along a common copy of B .

Claim 1 R ,!R1 is a simple homotopy equivalence.
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Since A ,!W is a simple homotopy equivalence, duality implies that B ,!W is a
ZŒ�1W �–homology equivalence; in other words, H�

�fW ; bB�D 0, where bB is the

preimage of B under the universal covering projection fW !W . By Van Kampen’s
theorem, R ,!R1 induces a �1 –isomorphism, so eR may be viewed as a subset ofeR1: So excision implies that H�

� eR1; eR� Š H�

�fW ; bB� D 0. From there we see
that �j .R1;R/ is trivial for all j , so R ,!R1 is a homotopy equivalence.

The Duality Theorem for Whitehead torsion (Milnor [10, page 394]) may be used
to check that this homotopy equivalence is simple. In particular, even though B ,!

W is not a homotopy equivalence, it is a ZŒ�1W �–homology equivalence, and thus
determines an element of W h .�1W /. But A ,!W is a simple homotopy equivalence,
so by duality, both of these inclusions have trivial torsion. By an application of the Sum
Theorem for Whitehead torsion (Cohen [2, Section 23]), R ,!R1 also determines the
trivial element of W h .�1R/, so we have the desired simple homotopy equivalence.
Let

X nC1
D

�
R�

�
0;

1

2

��
[R�f 1

2g

�
R0 �

�
1

2
; 1

��
;

R0 DR� f0g , and

QD .R0 � f1g/[

�
A�

�
1

2
; 1

��
[

�
W �

�
1

2

��
See Figure 1.

R W

1

1
2

0

Q

R0

X nC1

Figure 1: The cobordism
�
X nC1;R0;Q

�

Claim 2
�
X nC1;R0;Q

�
is an s–cobordism.
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First note that
�
X nC1;R0

�
' .R1;R/, so by Claim 1, R0 ,! X nC1 is a homotopy

equivalence. Next observe that R0 � f1g ,! X nC1 and R0 � f1g ,! Q are both
homotopy equivalences. The first of these is obvious, while the second follows from the
fact that A�

n
1
2

o
,!W �

n
1
2

o
is a homotopy equivalence. It follows that Q ,!X nC1

is a homotopy equivalence.

To show that R0 ,! X nC1 has trivial torsion, factor the inclusion map as R0 ,!

R � Œ0; 1� ,! X nC1 . The first of these inclusions is obviously a simple homotopy
equivalence, and the second is a simple homotopy equivalence by an easy application
of Claim 1; thus Claim 2 follows.

By the relative s–cobordism theorem (Rourke and Sanderson [12, Chapter 6]), X nC1

is a product, so there is a homeomorphism (rel boundary) from Q onto R0 . The
image of W �

n
1
2

o
under this homeomorphism provides the desired plus cobordism

.W;A;B/ embedded in R0 .

4 Proof of Theorem 1.1

We now move to the proof of our main theorem. For a full understanding, the reader
should be familiar with the proof of the Main Existence Theorem of [7] up to the last
few pages—which our current argument will replace. Those familiar with [13] will
understand the key points. We begin with a brief review.

Start by assuming only that M n is a one ended manifold with compact boundary,
and that n is at least 5. (In [7] we took the traditional route and assumed M n was
an open manifold; but this is unnecessary as long as @M n is compact.) Recall that
a 0–neighborhood of infinity is a generalized 1–neighborhood of infinity provided
�1 .@U /! �1 .U / is an isomorphism. If, in addition, �i .U; @U /D 0 for all i � k ,
then U is a generalized k –neighborhood of infinity.

By the Generalized .n� 3/–neighborhoods Theorem ([7, Theorem 5]), inward tameness
alone allows us to obtain a cofinal sequence fUig of generalized .n� 3/–neighborhoods
of infinity in M n . Since [8, Theorem 1.2] assures that �1 ." .M

n// is semistable, we
may also arrange that �1 .Ui/ �1 .UiC1/ is surjective for all i � 1. For each i let

Ri DUi �
ı

U iC1 and consider the collection of cobordisms f.Ri ; @Ui ; @UiC1/g. Then

(i) Each inclusion @Ui ,!Ri ,! Ui induces a �1 –isomorphism,

(ii) @UiC1 ,!Ri induces a �1 –epimorphism for each i ,

(iii) �k.Ri ; @Ui/D 0 for all k < n� 3 and all i , and
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(iv) Each .Ri ; @Ui ; @UiC1/ admits a handle decomposition based on @Ui containing
handles only of index .n� 3/ and .n� 2/.

The first two observations follow easily from Van Kampen’s Theorem. The third
is obtained inductively. First note that by the Hurewicz Theorem �k.Ri ; @Ui/ Š

�k.eRi ; @eU i/ŠHk.eRi ; @eU i/, provided that �j .Ri ; @Ui/ is trivial for j < k . Then
examine the homology long exact sequence for the triple

� eU i ; eRi ; @eU i

�
to obtain

the desired result. See [7, page 561] for details. The fourth observation is obtained
from standard handle theoretic techniques (see [12]). In particular, (iii) allows us to
eliminate all handles of index � n� 4; then observation (ii) allows us to eliminate
0– and 1–handles from the corresponding dual handle decomposition of Ri based on
@UiC1 .

By observation (iv), each Ui admits an infinite handle decomposition having handles
only of index .n� 3/ and .n� 2/. Thus, .Ui ; @Ui/ has the homotopy type of a relative
CW pair .Ki ; @Ui/ with dim .Ki � @Ui/ � n� 2. Therefore, if one of the Ui is a
generalized .n� 2/–neighborhood of infinity, then it is a homotopy collar. Thus, our
goal is to improve arbitrarily small Ui to generalized .n� 2/–neighborhoods of infinity.
This must be done in the above context—in particular, condition (ii) must be preserved.
We accomplish this by altering the Ui without changing their fundamental groups.

The next key observation is that, for each i , �n�2 .Ui ; @Ui/ Š Hn�2.eU i ; @eU i/

is a finitely generated projective ZŒ�1Ui �–module. Moreover, as an element ofeK0 .ZŒ�1Ui �/,
�
Hn�2.eU i ; @eU i/

�
D .�1/n � .Ui/, where � .Ui/ is the Wall finiteness

obstruction for Ui . This is the content of [7, Lemma 13]. As discussed in Section 2,
these elements of eK0 .ZŒ�1Ui �/ determine the obstruction �1 .M n/ found in Theorem
1.1. By assuming that �1 .M n/ vanishes, we are given that each Hn�2.eU i ; @eU i/ is a
stably free ZŒ�1Ui �–module. By carving out finitely many trivial .n� 3/–handles from
each Ui we can arrange that these homology groups are finitely generated free ZŒ�1Ui �–
modules. This can be done so that each remains a generalized .n� 3/–neighborhood of
infinity, and so that none of the fundamental groups of the neighborhoods of infinity or
their boundaries are changed. To save on notation, we continue to denote this improved
collection by fUig. See [7, Lemma 14] for details.

By the finite generation of Hn�2.eU i ; @eU i/, we may assume (after passing to a subse-
quence of fUig and relabeling) that Hn�2.eRi ; @eU i/!Hn�2.eU i ; @eU i/ is surjective
for each i . From there the long exact sequence for the triple

� eU i ; eRi ; @eU i

�
shows

that these surjections are, in fact, isomorphisms. As above, we may choose a handle
decompositions for the Ri based on @Ui having handles only of index n�3 and n�2.
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From now on, let i be fixed. After introducing some trivial .n� 3; n� 2/–handle pairs,
an algebraic lemma and some handle slides allows us to obtain a handle decomposi-
tion of Ri based on @Ui with .n� 2/–handles hn�2

1
; hn�2

2
; � � � ; hn�2

r and an integer
s � r , such that the subcollection fhn�2

1
; hn�2

2
; � � � ; hn�2

s g is a free Z Œ�1Ri �–basis
for Hn�2

� eRi ; @eU i

�
. Then the corresponding Z Œ�1Ri �–cellular chain complex for

.Ri ; @Ui/ may be expressed as

(|) 0!
D
hn�2

1 ; � � � ; hn�2
s

E
˚

D
hn�2

sC1; � � � ; h
n�2
r

E
@
�!

D
hn�3

1 ; � � � ; hn�3
t

E
! 0

where
˝
hn�2

1
; � � � ; hn�2

s

˛
represents the free Z Œ�1Ri �–submodule of eC n�2 generated

by the corresponding handles;
˝
hn�2

sC1
; � � � ; hn�2

r

˛
represents the free submodule ofeC n�2 generated by the remaining .n� 2/–handles in Ri ; andD

hn�3
1 ; � � � ; hn�3

t

E
D eC n�3

is the free module generated by the .n� 3/–handles in Ri . Moreover,

Hn�2.eRi ; @eU i/D ker .@/D
D
hn�2

1 ; � � � ; hn�2
s

E
˚f0g ;

and @ takes f0g ˚
˝
hn�2

sC1
; � � � ; hn�2

r

˛
injectively into

˝
hn�3

1
; � � � ; hn�3

t

˛
. This is the

content of Lemma 15 and the following paragraph in [7].

At this point, we would like to use the fact that @hn�2
j D 0 for each j D 1; � � � ; s to

slide these handles off all of the .n� 3/–handles. This would be done by repeated
use of the Whitney Lemma in @C.S [ hn�3

1
[ � � � [ hn�3

t / to remove the collection of

attaching spheres f˛n�3
j gs

jD1
from the belt spheres

n
ˇ2

j

ot

jD1
of the .n� 3/–handles.

(Here, S is a closed collar neighborhood of @Ui and @C indicates the right-hand
boundary.) After that, we would ‘carve out’ these .n� 2/–handles—those generating
the unwanted .n� 2/–dimensional homology—in an attempt to obtain a generalized
.n� 2/–neighborhood of infinity. (This process will be discussed in detail later.)
Unfortunately, the desired application of the Whitney Lemma is only assured if the
collection f˛n�3

j gs
jD1

is �1 –negligible in @C.S [hn�3
1
[� � �[hn�3

t /, ie, the inclusion

@C.S [ hn�3
1 [ � � � [ hn�3

t /�[s
jD1˛

n�3
j ,! @C.S [ hn�3

1 [ � � � [ hn�3
t /

induces a �1 –isomorphism (see [12, page 72]). Moreover, even if the handles that are
generating the unwanted homology can be made to miss the .n� 3/–handles, we still
must be sure that carving out these .n� 2/–handles does not change the fundamental
group of our neighborhood of infinity. Otherwise we will have arranged that the relative
Z Œ�1Ui �–homology of our new neighborhood of infinity is trivial, but �1 .Ui/ will be
the wrong group.
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The above two difficulties are related. To avoid them entirely, we would need to
know that, in the corresponding dual handle decomposition, the 2–handles dual to
hn�2

1
; � � � ; hn�2

s do not kill any non-trivial loops when they are attached to @UiC1 .
Since �1 .@UiC1/! �1 .Ri/ is not injective, that scenario seems highly unlikely.

Remark 5 Examples constructed in [8] show that the above problems can indeed
occur.

At this point we begin utilizing Condition (2) of Theorem 1.1. According to [7,
Theorem 5], the collection fUig may then be chosen so that each homomorphism

�1.UiC1/
�iC1

�! �1.Ui/ is surjective with perfect kernel. As noted earlier, the inclusions
@Ui ,!Ri ,!Ui each induce �1 –isomorphisms. By similar reasoning �1.@UiC1/!

�1.Ri/ is surjective with the same kernel as �iC1 . Call this kernel KiC1 . By a basic
theorem from combinatorial group theory (see [13] or [7, Lemma 3]) KiC1 is the normal
closure of a finite collection of elements of �1.@UiC1/. Thus we may apply Theorem
3.2 to .Ri ; @Ui ; @UiC1/ to obtain a plus cobordism .Wi ;Ai ; @UiC1/ embedded in Ri

which is the identity on @UiC1 and for which ker .�1 .@UiC1/! �1 .Wi//DKiC1 .

It follows that �1 .Wi/
Š
�! �1 .Ri/

Let R0i DRi �Wi . Since Wi strong deformation retracts onto Ai we have

�
�
R0i ; @Ui

�
,! .Ri ; @Ui/ is a homotopy equivalence of pairs, and

� �1 .Ai/
Š
�! �1

�
R0i
�
.

The first property ensures that the inclusion induced maps

Hn�2.eR 0i ; @eU i/!Hn�2.eRi ; @eU i/!Hn�2.eU i ; @eU i/

are all isomorphisms; thus, Hn�2.eR 0i ; @eU i/ is a free ZŒ�1Ui �–module which carries
the ZŒ�1Ui �–homology of .Ui ; @Ui/. By performing the same procedures on the
cobordism

�
R0i ; @Ui ;A

�
as we did earlier on .Ri ; @Ui ; @UiC1/ we may obtain a handle

decomposition of R0i based on @Ui which has handles only of index n� 3 and n� 2.
Moreover, we may arrange that the corresponding cellular chain complex is of the
form (|) (although the precise numbers of handles may have changed). We adopt that
notation without changing the names of the handles.

The second property ensures that, under the dual handle decomposition of R0i , the
2–handles dual to hn�2

1
; � � � ; hn�2

s do not kill any non-trivial loops when they are
attached to A. This means that the attaching .n� 3/–spheres of hn�2

1
; � � � ; hn�2

s are
all �1 –negligible in @C

�
S [ hn�3

1
[ � � � [ hn�3

t

�
. The non-simply connected Whit-

ney Lemma [12, page 72] may now be applied to isotope the attaching spheres of
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hn�2
1

; � � � ; hn�2
s off all of the belt spheres of the .n� 3/–handles. Thus, we may assume

that hn�2
1

; � � � ; hn�2
s are attached directly to S . Let QD S [

�
hn�2

1
[ � � � [ hn�2

s

�
and

let ViDUi �Q. We will show that Vi is the desired generalized .n� 2/–neighborhood
of infinity. The first issue involves the fundamental group. We wish to observe that the
fundamental group has not changed, ie, that Vi ,! Ui induces a �1 –isomorphism and
that Vi is a generalized 1–neighborhood of infinity.

First, note that R0i �Q may be obtained from @Vi by attaching .n� 3/– and .n� 2/–
handles; in particular fhn�3

1
; � � � ; hn�3

t g and fhn�2
sC1

; � � � ; hn�2
r g. Since n� 6, @Vi ,!

R0i �Q induces a �1 –isomorphism. By inverting this handle decomposition, it is
clear that A ,! R0i �Q induces a �1 –surjection. Moreover, since the composition
A ,! R0i �Q ,! R0i induces a �1 –isomorphism, we also have injectivity; so A ,!

R0i �Q induces a �1 –isomorphism. This also implies that R0i �Q ,!R0i induces a
�1 –isomorphism.

Since UiC1 is a generalized 1–neighborhood of infinity, the Van Kampen theorem
assures us that A ,!W [UiC1 induces a �1 –isomorphism. Similar arguments then

provide the necessary isomorphisms �1 .@Vi/
Š
�! �1 .Vi/ and �1 .@Vi/

Š
�! �1 .Ui/.

Lastly, we verify that Vi is a generalized .n� 2/–neighborhood of infinity. Begin with
the long exact sequence for the triple

� eU i ; eQ; @eU i

�
.

� � � !Hk

� eQ; @eU i

�
!Hk

� eU i ; @eU i

�
!Hk

� eU i ; eQ�
!Hk�1

� eQ; @eU i

�
! � � �

Since Hk

� eU i ; @eU i

�
and Hk�1

� eQ; @eU i

�
are trivial for all k � n� 3, Hk

� eU i ; eQ�
also vanishes for k � n � 3. If k D n � 2, the surjectivity of Hn�2

� eQ; @eU i

�
!

Hn�2

� eU i ; @eU i

�
together with the triviality of Hn�3

� eQ; @eU i

�
implies the triviality

of Hn�2

� eU i ; eQ�
. But the above �1 –isomorphisms imply that

�eV i ; @eV i

�
is the

preimage of .Vi ; @Vi/ under the covering projection pW
� eU i ; @eU i

�
! .Ui ; @Ui/. Thus

we may excise the interior of eQ from eU i to show that Hk

�eV i ; @eV i

�
vanishes for

all k � n� 2.

Remark 6 With a few minor refinements, the above argument can be carried
out when n D 5 provided the Whitney Lemma is valid in the 4–manifold
@C
�
S [ hn�3

1
[ � � � [ hn�3

t

�
. This explains Remark 2.
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