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Nonstabilized Nielsen coincidence invariants and
Hopf–Ganea homomorphisms

ULRICH KOSCHORKE

In classical fixed point and coincidence theory the notion of Nielsen numbers has
proved to be extremely fruitful. We extend it to pairs .f1; f2/ of maps between
manifolds of arbitrary dimensions, using nonstabilized normal bordism theory as
our main tool. This leads to estimates of the minimum numbers MCC.f1; f2/ (and
MC.f1; f2/ , resp.) of path components (and of points, resp.) in the coincidence sets
of those pairs of maps which are homotopic to .f1; f2/ . Furthermore, we deduce
finiteness conditions for MC.f1; f2/ . As an application we compute both minimum
numbers explicitly in various concrete geometric sample situations.

The Nielsen decomposition of a coincidence set is induced by the decomposition of a
certain path space E.f1; f2/ into path components. Its higher dimensional topology
captures further crucial geometric coincidence data. In the setting of homotopy groups
the resulting invariants are closely related to certain Hopf–Ganea homomorphisms
which turn out to yield finiteness obstructions for MC .

55M20, 55Q25, 55S35, 57R90; 55N22, 55P35, 55Q40

1 Introduction

In this paper we develop a coherent geometric approach to coincidence phenomena
in arbitrary codimensions. We prove (and extend considerably) results which were
announced in part in [18] and [21].

Consider two continuous maps f1; f2W M !N between smooth connected manifolds
without boundary, of arbitrary positive dimensions m and n;M being compact.

We would like to measure how small (or simple in some sense) the coincidence locus

(1–1) C.f1; f2/ WD fx 2M jf1.x/D f2.x/g

can be made by varying f1 and f2 within their homotopy classes.

One possible measure is the classical minimum number of coincidence points

(1–2) MC.f1; f2/ WDminf#C.f 01; f
0

2/jf
0

1 � f1; f
0

2 � f2g
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620 Ulrich Koschorke

(cf Bogatyı̆–Gonçalves–Zieschang [2, 1.1]). It coincides with the minimum number
minf#C.f 0

1
; f2/jf

0
1
� f1g where only f1 is modified by a homotopy (cf Brooks [3]).

In particular, in topological fixed point theory (where M DN and f2 D identity) this
minimum number is the principal object of study (cf Brown [4, page 9]).

However, in higher codimensions the coincidence locus is generically a manifold of
dimension m� n > 0, and MC.f1; f2/ is often infinite (see eg Examples 1.3, 1.13,
5.2, and 6.11 below). Thus in many situations it seems more meaningful to study the
minimum number of coincidence components

MCC.f1; f2/ WDminf#�0.C.f
0

1; f
0

2//jf
0

1 � f1; f
0

2 � f2g

Dminf#�0.C.f
0

1; f2//jf
0

1 � f1g
(1–3)

where #�0.C.f
0

1
; f 0

2
// denotes the (generically finite) number of path components of

the indicated coincidence subspace of M (compare Bogatyı̆–Gonçalves–Zieschang [2,
page 47, line 3]).

Definition 1.1 The pair of maps .f1; f2/ is called loose if MC.f1; f2/ D 0 (or,
equivalently, MCC.f1; f2/D 0/, ie if the maps f1 and f2 can be deformed away from
one another.

Question How big are MCC.f1; f2/ and MC.f1; f2/? In particular, when do these
invariants vanish, ie when is the pair .f1; f2/ loose?

In order to attack this problem let us study the geometry of generic coincidence
submanifolds.

After performing an approximation we may assume that the map .f1; f2/W M!N �N

is smooth and transverse to the diagonal �D f.y;y/ 2N �N jy 2N g.

Then the coincidence locus

(1–4) C D C.f1; f2/D .f1; f2/
�1.�/D fx 2M jf1.x/D f2.x/g

is a closed smooth .m�n/–dimensional submanifold of M . It comes with two impor-
tant data. First there is a commuting diagram of maps

(1–5) E.f1; f2/

pr
��

WD f.x; �/ 2M �P .N / j �.0/D f1.x/I �.1/D f2.x/g

C

zg
::uuuuuuuuuu

gDincl
// M
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Nonstabilized Nielsen coincidence invariants 621

where P .N / (and pr, resp.), denote the space of all continuous paths � W Œ0; 1�!N ,
endowed with the compact–open topology, (and the obvious projection, resp.); the
lifting zg adds the constant path at f1.x/D f2.x/ to g.x/D x 2C . The second datum
is the (composite) vector bundle isomorphism

(1–6) xg#
W �.C;M /Š ..f1; f2/jC /

�.�.�;N �N //Š f �1 .TN /jC

which describes the normal bundle of C in M (see the figure in Koschorke [21,
Section 4] for an illustration).

The resulting bordism class

(1–7) !#.f1; f2/D ŒC.f1; f2/; zg; xg
#� 2�#.f1; f2/

in an appropriate bordism set (cf (2–1) and (2–2) below) is our key coincidence invariant.
It turns out that the lifting zg plays a crucial role. Indeed, in general the path space
E.f1; f2/ (cf (1–5)) has a very rich topology involving both M and the loop space of
N (cf Koschorke [22, 2.1]). Already the set �0.E.f1; f2// of path components can
be huge – it corresponds bijectively to the Reidemeister set

(1–8) R.f1; f2/D �1.N /=Reidemeister equivalence

(compare Bogatyı̆–Gonçalves–Zieschang [2, 3.1] and Koschorke [22, 2.1]) which is of
central importance in classical Nielsen theory. This leads to a natural decomposition

C.f1; f2/D
a

A2�0.E.f1;f2//

zg�1.A/:

We define N #.f1; f2/ to be the corresponding number of nontrivial contributions by
the various path components A of E.f1; f2/ to !#.f1; f2/ (see Definition 2.2 below).

If we forget the fact that the manifold C.f1; f2/ is embedded in M and if we stabilize
xg# to yield only a description of the stable normal bundle of C.f1; f2/ we obtain the
normal bordism class

(1–9) z!.f1; f2/D ŒC.f1; f2/; zg; xg�2�m�n.E.f1; f2/I z' WD pr�.f �1 .TN /�TM //

and the corresponding Nielsen number N.f1; f2/. These “stabilized” invariants were
studied in detail in [22].

Let us put our approach into perspective. Recall the decisive progress made by J
Nielsen on the classical minimizing problem when he decomposed fixed point sets
into equivalence classes. In our interpretation this is just the decomposition of a 0–
dimensional bordism class according to the path components of its target space. In
higher (co)dimensions .m�n/ the map zg into E.f1; f2/ and the “twisted framing”
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622 Ulrich Koschorke

xg# contain much more information and lead sometimes to a complete calculation of
MCC.f1; f2/ and MC.f1; f2/ (cf, for example, Example 1.13 below or Koschorke
[21, Examples I–IV]).

Theorem 1.2 (i) The Nielsen numbers N.f1; f2/ and N #.f1; f2/ are finite and
depend only on the homotopy classes of f1 and f2 ;

(ii) N.f1; f2/DN.f2; f1/ and N #.f1; f2/DN #.f2; f1/;

(iii) 0�N.f1; f2/�N #.f1; f2/�MCC.f1; f2/�MC.f1; f2/; if n¤ 2, then also

MCC.f1; f2/� #�0.E.f1; f2//I

if .m; n/¤ .2; 2/, then

MC.f1; f2/� #�0.E.f1; f2// or MC.f1; f2/D1I

(iv) if m D n, then N.f1; f2/ D N #.f1; f2/ coincides with the classical Nielsen
number (cf Bogatyı̆–Gonçalves–Zieschang [2, Definition 3.6]).

The proof and further details concerning our !–invariants and Nielsen numbers will be
given in Section 2 below. Section 3 is dedicated to the minimum number MC.f1; f2/.

Example 1.3 Assume N D S1 . Then both Nielsen numbers of .f1; f2/ agree with
MCC.f1; f2/ and are characterized by the identity

.f1��f2�/.H1.M IZ//DN .#/.f1; f2/ �H1.S
1
IZ/:

If f1 � f2 , then #�0.E.f1; f2//D1 and

N.f1; f2/DN #.f1; f2/DMCC.f1; f2/DMC.f1; f2/D 0:

If f1 and f2 are not homotopic then

N.f1; f2/DN #.f1; f2/DMCC.f1; f2/D #�0.E.f1; f2//¤ 0

and

MC.f1; f2/D

(
N.f1; f2/ if mD 1I

1 if m� 2

(Clearly in all other cases where mD 1 or nD 1 we have

N.f1; f2/DN #.f1; f2/DMCC.f1; f2/DMC.f1; f2/D 0:/
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Nonstabilized Nielsen coincidence invariants 623

In higher codimensional coincidence theory two settings are of particular interest. In
one of them, the so-called root case (cf Bogatyı̆–Gonçalves–Zieschang [2, page 69])
f2D� is constant (henceforth our notation will not distinguish between constant maps
and their values). Here our invariants yield the “degrees”

(1–10) deg#.f /D !#.f;�/; edeg.f /D z!.f;�/

of a given map f W M !N . The choice of the constant � 2N is not truly significant
since any path joining two such constants induces a bijection between the corresponding
bordism sets which is compatible with degrees and Reidemeister decompositions. Note
also that E.f;�/ is the mapping fiber of f (cf Whitehead [24, I.7])

The second particularly interesting setting concerns selfcoincidences (where f1 is equal
or at least homotopic to f2 ). Here we know from the very outset that MCC.f1; f2/�

1 (since C.f1; f1/ D M /. The remaining question whether MCC.f1; f2/ D 0 or,
equivalently, whether f1 can be deformed away from itself was studied in [20] (and
related – in one particular example – to a fascinating problem concerning Lie groups
and their role in homotopy theory). It is also worthwhile noting that each of the
selfcoincidence invariants !#.f; f / and z!.f; f / is determined by the corresponding
degree (cf (5–3) and Proposition 5.1 below).

Now let a map f W M !N and a constant � 2N be given.

Theorem 1.4 Consider the pairs .f1; f2/D .f;�/ (root case) and .f1; f2/D .f; f /

(selfcoincidence case) simultaneously. Define b.f1; f2/ by b.f;�/ WD #�0.E.f;�//

= index of f�.�1.M // in �1.N /, and b.f; f / WD 1.

In both cases the following holds:

(i) If !#.f1; f2/ ¤ 0 then N #.f1; f2/ D b.f1; f2/; if in addition n ¤ 2 then
this Nielsen number agrees with MCC.f1; f2/ (and also with the minimum number
MC.f1; f2/ whenever it is finite).

(ii) If even z!.f1; f2/¤ 0 then also N.f1; f2/DN #.f1; f2/.

In particular in both cases the Nielsen numbers N #.f1; f2/ and N.f1; f2/ can take
only the values 0 and b.f1; f2/.

This has important consequences. First of all since b.f;�/ depends on f but b.f; f /

does not, the compatibilities with covering spaces must be different in the root and
selfcoincidence settings.
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624 Ulrich Koschorke

Proposition 1.5 If zf W M ! zN is a lifting of f to any connected d –fold covering
space zN of N and z� 2 zN ;� 2N are arbitrary constants, then

N #.f;�/D d �N #. zf ; z�/ but N #.f; f /DN #. zf ; zf /

and the corresponding identities hold also for the weaker (stabilized) Nielsen numbers
N.f;�/ and N.f; f /.

(This holds even when d D1, provided we define 1� 0D 0).

Remark 1.6 If deg#.f / and !#.f; f /, resp., do not vanish and n ¤ 2, then these
identities still hold when we replace N # by MCC (and by MC , provided MC.f;�/
and MC.f; f /, resp., are finite; compare Theorem 1.4). In general, however, we can
only establish the inequalities

MC.f;�/� d �MC. zf ; z�/ and MC.f; f /�MC. zf ; zf /:

At least in the root case the corresponding equality is often not valid. Indeed there are
many examples where deg#.f /¤ 0 and MC. zf ; z�/D 1 while MC.f;�/ (but not d )
is infinite (see Examples 1.13 and 6.11 below). Such phenomena are closely related to
Wyler’s theory of injective points (cf Wyler [25] and our discussion following Corollary
6.10).

Theorem 1.4, Proposition 1.5, and further results concerning the root and selfcoincidence
settings will be proved in Sections 4 and 5 below (cf Remark 4.5 and the discussions
following Proposition 4.6 and (5–3)).

As an illustration we test our approach in Section 6 in the case where M is a sphere.
Here we can exploit two important advantages. On one hand there is a natural identi-
fication of the bordism set �#.f1; f2/ with a fixed group which does not vary with
f1 and f2 . On the other hand the algebraic structure of homotopy groups yields a
certain homogeneity; this allows considerable extensions of results which originally
are characteristic for the root setting. First we need to recall the following notion.

Definition 1.7 (cf Brown–Schirmer [5]) A map f W M ! N is not coincidence
producing if there exists another map xf W M !N such that the pair .f; xf / is loose
(cf Definition 1.1).

Such is always the case when N allows a fixed point free selfmap aW N ! N , eg
when the manifold N is open or its Euler number �.N / vanishes or N D Sn or N

is the total space of a nontrivial covering. (On the other hand one can easily exhibit
settings where a vast majority of maps is coincidence producing; see eg (6–9) below).
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Nonstabilized Nielsen coincidence invariants 625

In the case M D Sm non coincidence producing maps determine the subgroup

(1–11) �.2/m .N /D im p� D ker @� �m.N /

which arises also naturally in the exact homotopy sequence

(1–12) � � � �! �m. zC2.N //
p�
����! �m.N /

@
����! �m�1.N �f�g/ �! � � �

of the fibration pW zC2.N /!N of the configuration space of ordered pairs of distinct
points in N .

Theorem 1.8 Given m � 1, consider maps fi W S
m ! N , i D 1; 2, which are not

both coincidence producing. Assume !#.f1; f2/¤ 0.

Then

N #.f1; f2/D #�0.E.f1; f2//D Œ�1.N / W .f1��f2�/.�1.S
m//�:

If in addition n¤ 2, then this Nielsen number agrees with MCC.f1; f2/ (and also with
the minimum number MC.f1; f2/ whenever it is finite).

If z!.f1; f2/¤ 0 and n� 1, then also N.f1; f2/DN #.f; f2/.

Corollary 1.9 If f W Sm ! N is not coincidence producing and �1.N / ¤ 0 then
!#.f; f /D 0.

Indeed otherwise N #.f; f / would have to agree both with #�1.N / and with 1. This
highlights a rather astonishing feature of our invariant in the non simply connected
case: if f can be deformed away from any map, !# behaves as if f can be deformed
away from itself.

Corollary 1.10 If �1.N / has a nontrivial proper subgroup G then !#.f; f /D 0 for
every map f W Sm!N .

Indeed G corresponds to a nontrivial covering space zN of N with �1. zN /¤ 0. Thus
a lifting zf of f is not coincidence producing and we have here 0 D N #. zf ; zf / D

N #.f; f / (cf Proposition 1.5).

For certain specific target manifolds N (eg when N is open or when N ¤ S1 has
an infinite fundamental group or when N is a nontrivial product of manifolds) it is
rather easy to see that all pairs of maps f1; f2W S

m!N are loose (see Corollary 6.3
below). In view of Theorem 1.8 a more systematic and detailed discussion is desirable:
what happens in general when !#.f1; f2/ vanishes? It is reasonable to concentrate
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first on the root case. Given m � 1, we define (in Definition 6.4) an abelian group
Xm.N / which measures to some extend the comparative strength of the Nielsen number
N #.f;�/ on one hand and of MCC.f;�/ on the other hand, taking into account all
maps f W Sm!N . This group vanishes precisely if the conditions N #.f;�/D 0 and
MCC.f;�/D 0 are equivalent. Actually this is often satisfied (cf Theorem 6.5 below).

Theorem 1.11 Given m�1, assume Xm.N /D0. Then a pair of maps f1; f2W S
m!

N is loose if and only if !#.f1; f2/ D 0 and at least one of the maps f1; f2 is not
coincidence producing.

Thus, if in the situation of Theorem 1.8 Xm.N / and !#.f1; f2/ vanishes, then so do
also N #.f1; f2/;MCC.f1; f2/ and MC.f1; f2/.

Example 1.12 (.N D Sn/) Consider maps f1; f2W S
m! Sn where m; n� 1, and

let a denote the antipodal involution. Then

MCC.f1; f2/DN #.f1; f2/D

(
0 if fi � af2I

#�0.E.f1; f2// otherwise.

If f1 6� af2 then #�0.E.f1; f2// equals 1 (and jd0.f1/�d0.f2/j, resp.) according
as n¤ 1 (or mD nD 1, resp.; here d0.fi/ 2 Z is the usual degree).

This shows that the “strong” Nielsen number N #.f1; f2/ (based on the nonstabilized
invariant !#.f1; f2// is often strictly larger than N.f1; f2/. For example, [22, Corol-
lary 1.17] contains a long list of dimension combinations .m; n/ such there exists a
map f W Sm! Sn with N.f;�/D 0 but MCC.f;�/D 1.

Clearly MC.f1; f2/ � 1 whenever Œf1�� Œaıf2� lies in E.�m�1.S
n�1//, the image

of the Freudenthal suspension. On the other hand, it is well known that MC.f1; f2/ is
infinite if Œf1�� Œaıf2� 62 E.�m�1.S

n�1// and m; n¤ .1; 1/. This follows also as a
very special consequence of one of our results concerning MC (cf Theorem 3.1(i)).

In Section 3 we discuss in great generality lower and upper bounds for MC.f1; f2/

(and deduce the classical Wecken theorem for coincidences as a corollary). In particular,
in the case M D Sm we obtain a necessary (and, if Xm.N / D 0 , also sufficient)
finiteness condition for MC.f1; f2/, expressed in terms of !#.f1; f2/ (cf Theorem
6.9 below).
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Example 1.13 Let N be an odd-dimensional spherical space form (ie the quotient of
Sn by a free action of a finite group G ). Then we have for all f1; f2W S

m!N :

MCC.f1; f2/DN #.f1; f2/D

8̂<̂
:

0 if f1 � f2 or m< nI

#G if f1 6� f2 and m> 1I

jd0.f1/� d0.f2/j if mD 1 and N D S1:

(Here d0.fi/ 2 Z denotes the usual degree).

Moreover, if n� 3 then

MC.f1; f2/D

8̂<̂
:
1 if Œf1�� Œf2� 62 p�ıE.�/I

0 if f1 � f2 or m< nI

#G otherwise:

Here

� � �m�1.S
n�1/

E
����! �m.S

n/
p�
����! �m.N /

are the natural (eg suspension) homomorphisms and � denotes all of �m�1.S
n�1/ if

#G � 2, and the kernel of the (total) Hopf–Hilton homomorphism h (cf Corollary 6.10
below) if #G � 3.

Observe that no specific feature of the group action – apart from the order of G – enters
the picture here. For a geometric explanation of such phenomena in terms of almost
injective points see the discussion of Definition 6.12 below.

For further concrete geometric settings where the minimum numbers MC.f1; f2/ and
MCC.f1; f2/ have been calculated explicitly, see Koschorke [21, Examples I–III].

Having the precise finiteness criterion Theorem 6.9 for MC.f1; f2/ at our disposal we
may ask: what can we say in case it is satisfied?

Theorem 1.14 Consider maps f1; f2W S
m! N into an arbitrary n–manifold such

that .m; n/¤ .2; 2/. Assume that MC.f1; f2/ is finite. If the suspension

EW �m�1.S
n�1/! �m.S

n/

is injective (eg if m< 2n� 2 or nD 2), then

N #.f1; f2/DMCC.f1; f2/DMC.f1; f2/� #�1.N /:

This follows from Theorem 6.14 below.

At the end of this paper we give purely homotopy theoretical descriptions of our
basic geometric coincidence invariant deg# (cf Theorem 7.2 and Corollary 7.3). We
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obtain a decomposition of deg# into two components (cf (7–8)). One of them is the
Ganea–Hopf invariant HC relative to an attaching map of top dimensional cells in the
universal covering space zN of N . It turns out that HC is a finiteness obstruction for
the minimum number MC (and actually the only one in a dimension range depending
on the connectivity of N , cf Corollary 7.4 and Theorem 7.6). Here we use homotopy
theoretical tools such as Ganea’s exact EHP–sequence.

In much of our discussions we can switch freely back and forth between base point
preserving maps and homotopies and their base point free counterparts. This is made
precise in Appendix A.

The approach of this paper can also be applied fruitfully to general inverse image
problems (where the submanifolds f�g �N and ��N �N , cf (1–4), are replaced
by arbitrary closed smooth submanifolds) or to over- and under-crossings of link maps
into a manifold of the form N �R . In the latter case we obtain unlinking obstructions
which often settle unlinking questions and which, in addition, turn out to distinguish a
great number of different link homotopy classes (and sometimes even classify them
completely). Moreover, our approach also leads to the notion of Nielsen numbers for
link maps (cf Koschorke [19]).

Conventions 1.15 All manifolds are assumed to be Hausdorff spaces having a count-
able basis; they have empty boundaries unless stated otherwise. A submanifold C �M

with a specified trivialization of its normal bundle �.C;M / is called framed. In
any bordism set 0 denotes the class represented by empty data. We will often ne-
glect the notational distinction between constant maps and their values. Given any
topological space X , P .X / is the space of all paths � W I ! X , endowed with the
compact–open topology. #S denotes the (finite or infinite) number of elements in a
set S . E stands for Freudenthal suspension. ' WD f �

1
.TN /�TM 2KO.M / and

z' WD pr�.'/ 2 KO.E.f1; f2// (compare (1–9)) are the relevant virtual coefficient
bundles for our (stabilized) obstruction theory. Arbitrary reflections on spheres are
denoted by r .

2 The strong !–invariant !#.f1; f2/ and the strong Nielsen
number N #.f1; f2/

Throughout this paper f1; f2; f W M ! N denote (continuous) maps between the
smooth connected (non-empty) manifolds M and N without boundary, of strictly
positive dimensions m and n, resp., M being compact.
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Consider the set

(2–1) �#.f1; f2/ WD f.C; zg; xg
#/g�bordism in M � I

of bordism classes of triples of the indicated form where

(i) C is a closed smooth submanifold of M ;

(ii) zgW C !E.f1; f2/ is a section of pr j (cf (1–5)), ie pr ızg is the inclusion;

(iii) xg#W �.C;M / Š f �
1
.TN /jC is a vector bundle isomorphism which gives a

(nonstabilized) description of the normal bundle of C in M in terms of the
tangent bundle TN of N .

Such triples occur very naturally when we study the coincidence behavior of f1 and f2 .
Indeed, if the map .f1; f2/W M �!N �N is smooth and transverse to the diagonal
� then the coincidence data (1–4)–(1–6) yield the desired triple.

If f1 and f2 are arbitrary continuous maps, we apply this procedure to a smooth map
.f 0

1
; f 0

2
/ which approximates .f1; f2/ and is transverse to �. Using the techniques

of [22, Section 3], we see that there is a canonical bijection �#.f 0
1
; f 0

2
/��#.f1; f2/

induced by any sufficiently small homotopy from .f 0
1
; f 0

2
/ to .f1; f2/.

In any case the resulting triple .C; zg; xg#/ determines a well-defined bordism class

(2–2) !#.f1; f2/D ŒC; zg; xg
#� 2�#.f1; f2/:

The same kind of argument allows us to handle also arbitrary (possibly “large”) ho-
motopies. The result can be best expressed in the language of functors. Consider the
category P whose objects are continuous maps .f1; f2/W M ! N �N and whose
morphisms are equivalence classes of homotopies F W .f1; f2/ � .f

0
1
; f 0

2
/; here two

homotopies f0; f1 from .f1; f2/ to .f 0
1
; f 0

2
/ are called equivalent if they can be

deformed continuously into one another through such homotopies (ie at each stage of
the deformation Ft ; t 2 Œ0; 1�, is a homotopy from .f1; f2/ to .f 0

1
; f 0

2
/).

Proposition 2.1 The nonstabilized coincidence invariant determines a functor .�#; !#/

from the category P of pairs of maps and (deformation classes of) homotopies to the
category consisting of pointed sets and of bijections preserving the preferred element.

If we consider the coincidence submanifold C D C.f1; f2/ of M just as an abstract
manifold and if we stabilize xg# to yield the stable vector bundle isomorphism

xgW T C ˚f �1 .TN /jC Š TM jC
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we obtain the coincidence invariant

(2–3) z!.f1; f2/D ŒC; zg; xg� 2�m�n.E.f1; f2/I z' WD pr�.f �1 .TN /�TM //

which was studied in [22]. Clearly it, too, determines a functor as above which actually
takes values in (normal bordism) groups with a preferred element. Stabilization yields
a forgetful transformation

(2–4) stabW .�#.f1; f2/; !
#.f1; f2// �! .�m�n.E.f1; f2/I z'/; z!.f1; f2//

In the stable dimension range m � 2n� 2 we are dealing with bijections here and
stabilization leads to no loss of information. (Actually, z!.f1; f2/ is even the only
looseness obstruction if m < 2n� 2 ; cf [22, Theorem 1.10]). However, in general
there are many situations where the nonstabilized coincidence invariant !#.f1; f2/

turns out to be considerably more powerful than z!.f1; f2/. (This is reflected by the
discussion in Example 1.12). On the other hand it is often much easier to handle the
stabilized invariant z!.f1; f2/: it lies in a bordism group (not just set) and computational
techniques are available (especially for low codimensions .m�n/, cf [17, 9.3]; compare
also [21, Section 3]).

Next, given any bordism class c D ŒC; zg; xg#� 2�#.f1; f2/ (cf (2–1)), let

(2–5) cA D ŒCA D zg
�1.A/; zgjCA; xg

#
j�

denote its contribution to a given path component A 2 �0.E.f1; f2//.

Definition 2.2 (i) We call a path component A of E.f1; f2/ strongly essential if the
corresponding contribution !#

A
.f1; f2/ to !#.f1; f2/ is nontrivial (ie not representable

by empty data).

(ii) We define the strong Nielsen number N #.f1; f2/ of f1 and f2 to be the number
of strongly essential path components A 2 �0.E.f1; f2//.

This is in analogy to the (“weak”) Nielsen number N.f1; f2/ which was extracted
from

(2–6) z!.f1; f2/ 2�m�n.E.f1; f2/I z'/Š
M

A2�0.E.f1;f2//

�m�n.AI z'jA/

and discussed in detail in [22].

Remark 2.3 Clearly, if !#.f1; f2/ is trivial then so is N #.f1; f2/. However it is
conceivable that the converse does not hold in general; indeed, the various components
CA.f1; f2/ of the coincidence locus may possibly link in M so that their nulbordisms
cannot be fitted together to yield disjoint embeddings into M � I .
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Such complications cannot arise in the stabilized theory: N.f1; f2/D 0 if and only if
z!.f1; f2/D 0 (much like a norm in a vector space decides precisely whether a given
vector vanishes).

Remark 2.4 In higher codimensions our bordism approach allows us to capture
coincidence phenomena which seem to be entirely outside the reach of the methods of
singular (co)homology theory. Already the weakened stabilized bordism invariant

!.f1; f2/ WD pr�.z!.f1; f2// 2�m�n.M I' WD f
�

1 .TN /�TM /

(which involves neither the path space E.f1; f2/, cf (1–5), nor the resulting Nielsen
decomposition) has lead to the solution of a problem which corresponds to determining
cohomological obstructions of arbitrarily high order (cf the theorem in the introduction
of [20] and its corollaries).

Theorem 1.2 and Example 1.3 of the introduction follow now from (1–8), (1–10), (2–1),
(4–5), (5–2) and from [22, Example I], or they can be proved by refining the methods
of that paper (cf also Theorem 3.1(iii) below).

In general the nonnegative integer N #.f1; f2/ contains considerably less information
than the invariant !#.f1; f2/ which, however, has the drawback that it lies in a bordism
set which varies with f1 and f2 .

This complication can be avoided in some important settings. Given y0 2 N , let
�.N;y0/

C denote the loop space of N at y0 , with an extra point C added; thus
Sn ^ .�.N;y0/

C/ is the Thom space of the trivial n–plane bundle over �.N;y0/.

Proposition 2.5 (cf Hatcher–Quinn [12, 3.1]) Assume that M is .m�nC1/–con-
nected. Then any choice of points x0 2M , y0 2 N and of paths i in N joining
fi.x0/ to y0 , i D 1; 2; and of a local orientation of N at y0 induces a bijection

�#.f1; f2/� ŒM;Sn
^ .�.N;y0/

C/�

(involving the Pontryagin–Thom procedure) and thus allows us to identify the coin-
cidence invariant !#.f1; f2/ with an element of the indicated homotopy set. These
identifications commute with the bijections induced by homotopies of .f1; f2/, cf
Proposition 2.1, provided the paths in N are chosen compatibly.

Moreover there is a canonical involution inv of the homotopy set ŒM;Sn^.�.N;y0/
C/�

such that

(2–7) !#.f2; f1/D inv.!#.f1; f2//:
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Proof Given a triple .C; zg; xg#/ as in (2–1), a cell-by-cell argument allows us to
construct a homotopy GW C � I !M from the inclusion g D pr ızgW C �M to the
constant map g1 at x0 . A lift of G in E.f1; f2/, starting with zg , ends with a map

(2–8) zg1W C �! pr�1.fx0g/��.N;y0/I

(compare diagram (1–5)); if x 2 C and zg.x/D .x; �/ then zg1.x/ can be given by the
concatenated path

(2–9)
y0

�1
1
�! f1.x0/

f1ıG.x;�/
�1

���������! f1.x/
�
�! f2.x/

f2ıG.x;�/
�������! f2.x0/

2
�! y0:

G induces also a vector bundle isomorphism (cf [22, 3.1]).

(2–10) f �1 .TN /jC Š g�1 .f
�

1 .TN //Š C �Rn

which we compose with xg# (cf (2–1)) to obtain a normal framing xg#
1

of C in M .
The Pontryagin–Thom construction transforms the resulting triple .C; zg1; xg

#
1
/ into an

element of the homotopy set ŒM;Sn ^ .�.N;y0/
C/�.

Our connectivity assumption guarantees that this procedure yields a well defined
bijection. It implies also that n� 2 (since Hm.M IZ2/¤ 0/. In particular, the Thom
space Sn ^ .�.N;y0/

C/ is simply connected and we may identify the elements of
�#.f1; f2/ with base point preserving or base point free homotopy classes, as we wish.
(Note also that the choices of x0; 1 and 2 do not matter in case N is 1–connected).

Next we describe the involution inv of the homotopy set ŒM;Sn ^ .�.N;y0/
C/�

at the level of bordism classes. Given a submanifold C of M , a map zg1W C !

�.N;y0/ and a framing xg#W �.C;M / Š C � Rn , evaluate zg1 to obtain a homo-
topy hW C � I ! N from the constant map at y0 to itself. Choose a trivialization
xh#W h�.TN /

Š
����! .C � I/�Ty0

.N / which restricts to the identity over C � f0g

and let xh#
1

denote the corresponding automorphism of C � Ty0
.N / Š C �Rn over

C � f1g D C . Compose xg#
1

with �xh#
1

and zg1 with the involution of �.N;y0/ which
reverses the loops. The resulting triple represents inv.ŒC; zg1; xg

#
1
�/.

Now apply the whole preceding discussion to the special case where .C; zg; xg#/ are
the coincidence data of the (generic) pair .f1; f2/. Interchanging f1 and f2 clearly
reverses the path zg1.x/, x 2 C (cf (2–9) where � D const in this case). Also if we
describe �.C;M / by f �

2
.TN / (instead of f �

1
.TN /, cf (2–1)(iii)) we must base the

analogue of (2–10) on a trivialization .f2ıG/
�.TN /Š C � I �Ty0

.N /. Moreover
note that the two projections from the diagonal ��N �N to N yield isomorphisms
�.�;N �N /Š TN which play a role in (1–6) but differ by a factor �1. Indeed, for
all y 2N and v 2 Ty.N / the two vectors .v; 0/; .0;�v/ 2 T.y;y/.N �N / yield the
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same element in �.�;N �N / since their difference is tangential to �. This explains
the negative sign in the definition of the involution inv.

Our chosen local orientation of N at the point y0 2N (cf Proposition 2.5) determines
a collapsing map

(2–11) collW N �!N=.N � VBn/Š Bn=@Bn
Š Sn

up to homotopy (where Bn is a small ball around y0 ). Consider also the maps

Sn
in`
����! Sn ^ .�.N;y0/

C/
ret0
����! Sn

defined by the inclusion at a fixed loop `2�.N;y0/ and by the “horizontal projection”.
We obtain the diagram of (induced) maps

(2–12) Œ.M;x0/; .N;y0/�
deg#

//HI JK
coll�

OOŒM;Sn ^ .�.N;y0//
C�

ret0� //
ŒM;Sn�

in`�

oo

Proposition 2.6 Assume that M is .m�nC1/–connected.

Then we have in diagram (2–12)

coll� Du"�ı ret0� ı inv ı deg# and

ret0� ı in`� Didentity

where u" denotes a selfmap of Sn of degree "D .�1/n (cf also Proposition 2.5).

Hence for every map f W .M;x0/! .N;y0/ the degree deg#.f / D !#.f;y0/ deter-
mines the homotopy class of coll ıf W M!Sn . Moreover the selfcoincidence invariant
!#.f; f / lies in the image of in`� for some ` 2�.N;y0/ and therefore is determined
by the seemingly weaker invariant ret0�.!

#.f; f //.

In particular, if N D Sn then deg#.f / determines f up to homotopy and we have

N #.f;y0/DMCC.f;y0/D

(
0 if f � y0I

1 if f 6� y0:

Proof Generically f is smooth with regular value y0 . Represent !#.y0; f / D

inv.deg#.f // (cf (2–7)) by the triple .C D C.y0; f /D f
�1.fy0g/; zg1; xg

#
1
/ (cf (2–8),

(2–10)) and forget the map zg1W C !�.N;y0/ (or, equivalently, apply the “horizontal”
projection Sn ^ .�.N;y0/

C/ ! Sn/. Then the data .C;�xg#
1
/ give the standard

characterization (in the sense of Pontryagin–Thom) of coll ıf . (For the negative sign
compare the proof of Proposition 2.5.)
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An inspection of (2–9) shows that zg1 is homotopy trivial when f1 D f2 and � is a
constant path. Thus !#.f; f / lies in the image of in`� where `D �1

1
2 (compare

Proposition 2.5).

If N D Sn , then #�0.E.f;�//D 1 must agree with N #.f;�/ whenever f 6� � and
hence deg#.f / is nontrivial. The last claim follows from Theorem 1.2(iii) and can be
established also for nD 2 by a connected sum argument.

3 Isolated coincidence points

In this section we establish a finiteness criterion as well as upper bounds for MC.f1; f2/.
In the special case mD n> 2 we reobtain the classical Wecken theorem.

In view of Example 1.3 we may (and do) assume that m� 2.

First we construct a map

(3–1) eW
M

A2�0.E.f1;f2//

�m�1.S
n�1/ �!�#.f1; f2/

Step I Given a path component A of E.f1; f2/, choose an element .x; �/ 2 A as
well as the following data:

(i) a diffeomorphism bW .Bm; 0/! .Bx;x/ from the standard compact unit ball Bm

in Rm onto a small “ball” Bx around x in M ; and

(ii) a trivialization xb of f �
1
.TN /jBx , the pullback of the tangent bundle of N by

f1jBx .

These data, together with the inclusion Bx�M , allow us to interpret any framed closed
smooth submanifold C of VBm as a triple .C;g; xg#/ (compare (1–5), (1–6), and (2–1)).
Moreover the embedding gW C �M lifts canonically (up to homotopy) to a map zg into
E.f1; f2/ as follows: given x0 2 C , let rx0 be the straight path in Bx � Bm joining
x0 to x and define zg.x0/D .x0; .f1ırx0/�.f2ırx0/

�1/ by concatenating the resulting
image paths in N with the fixed chosen path � . In view of the Pontryagin–Thom
procedure we obtain the well-defined composite map

(3–2) eAW �m�1.S
n�1/

E
����! �m.S

n/ �!�#.f1; f2/

where E is the Freudenthal suspension.

Since tubular neighborhoods are essentially unique up to isotopy, the map eA does not
really depend on the data b and xb , but only on the resulting orientations of the tangent
spaces TxM and Tf1.x/N . Clearly, changing one of these orientations amounts to
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replacing eA.˛/ by eA.�˛/; ˛ 2 �m�1.S
n�1/.Thus, in fact, eA depends only on

the co-orientation of f1 at x , ie on the orientation of the virtual coefficient bundle
' D f �

1
.TN /�TM (cf Conventions 1.15) at x (or, equivalently, of z' D pr�.'/ at

.x; �/, cf (2–3)). Furthermore, eA does not really depend on the choice of the element

.x; �/ in A either. Indeed, any path in A (if it projects to a smooth path in M ) gives
rise to an isotopy of Bx and to the corresponding deformation of the other data needed
in our construction.

Step II Given any element f˛Aj
g 2˚�m�1.S

n�1/ in the domain of e (cf (3–1)), the
summands ˛Aj

are nontrivial for only finitely many path components A1; : : : ; ;Ak

of E.f1; f2/. Apply the construction in step I to each of them simultaneously, using
disjoint balls Bx1

; : : : ;Bxk
, and define

(3–3) e.f˛Aj
g/D

ka
jD1

eAj
.˛Aj

/ 2�#.f1; f2/:

If we can (and do!) orient the virtual coefficient bundle z' (cf (2–3)) then the map e is
well defined and independent of all other choices (recall our assumption m� 2 which
allows for the necessary disjoint isotopies). In general e is only well defined up to
replacing some of the summands ˛Aj

by �˛Aj
. But in any case the image of e is a

well defined subset of �#.f1; f2/.

Furthermore the construction of e and of its image is compatible with homotopies of
.f1; f2/ (cf Proposition 2.1).

Now consider an isolated coincidence point x 2M of f1 and f2 . Identify a neighbor-
hood Uy of y WD f1.x/D f2.x/ in N with the Euclidean space via a diffeomorphism
.Uy ;y/ � .R

n; 0/; also identify Bm with a small ball Bx � f
�1

1
.Uy/\ f

�1
2
.Uy/

around x (as in step I, (i), above) which contains no coincidence point other than x .
This allows us to define the “index map”

(3–4) q D f1�f2

kf1�f2k
W Sm�1 Š

����!
bj

@Bx �! Sn�1

(compare Wyler [25, Theorems 3 and 4]) and its “concentric extension” QW Bx!Bn ,
Q.tb.z// WD tq.z/ for z 2 Sm�1 . We can easily deform f1 (while leaving it fixed
outside of a small neighborhood of Bx ) into a map f 0

1
such that the corresponding

index map q0 is smooth and f 0
1
D f2 CQ0 on Bx . Indeed, leaving the map f2

(which we may assume to be smooth) unchanged, first deform the difference f1�f2

in a collar neighborhood of Sm�1 until .f1 � f2/jS
m�1 coincides with a smooth

approximation q0 of q ; then use the linear structure on Uy � Rn to obtain the desired
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homotopy from .f1 � f2/jBx to the concentric extension Q0 of q0 . After a further
small homotopy near x we have f 0

1
D f2CQ0 � " � � where � 2 Sn�1 is a regular

value of q0 . Thus the (generic!) coincidence locus of f 0
1

and f2 near x consists of the
framed submanifold "q

0�1.f�g/ of the "–sphere around x and hence corresponds to
the Freudenthal suspension of the homotopy class of q0 � q .

We conclude that the contribution of an isolated coincidence point x 2 C.f1; f2/

towards !#.f1; f2/ is given by the image eA.Œq�/ of its index map q (cf (3–2) and
(3–4); here A contains .x , constant path at f1.x/D f2.x//).

Theorem 3.1 Assume that the minimum number MC.f1; f2/ is finite. Then the
following holds.

(i) If m� 2, then !#.f1; f2/ lies in the image of the map e (cf (3–1)). In particular,
if m> n the homology class defined by a generic coincidence manifold C.f1; f2/ in
M must vanish.

(ii) If n ¤ 2, then MC.f1; f2/ � #�0.E.f1; f2//; more precisely: if n > 2 and
C.f1; f2/ is finite, then there exists a deformation of f1 and f2 which preserves empty
Nielsen classes of coincidence points and replaces each nonempty Nielsen class by (at
most) a single coincidence point.

(iii) If �m�1.S
n�1/D 0 (eg if m> nD 1 or 2) then MC.f1; f2/D 0, ie .f1; f2/ is

homotopic to a coincidence free pair of maps.

Proof We may assume that C.f1; f2/ is finite. Let x;x1; : : : ;xr be the coincidence
points whose zg–values (cf (1–5)) lie in a given path component A of E.f1; f2/.

Recall that the construction of !#.f1; f2/ involves a generic approximation of .f1; f2/.
As a result each isolated coincidence point xj is replaced by an n–codimensional
coincidence submanifold Cj (eg of the form Cj D "q

0�1
j .f�g/ as in the discussion

following (3–4)) which lies in a small neighborhood Uj�Rm of xj in M , j D1; : : : ; r .
In order to prove claim (i) we have to “slide” these (disjoint) neighborhoods into a small
ball Bx �M around x . For this purpose pick a smooth “Nielsen” path �j from xj to
some point x0j 2 Bx such that �j avoids all coincidence points except xj . (Here the
Nielsen property of �j means that a lifting to E.f1; f2/, cf (1–5), joins the constant
path at f1.xj /D f2.xj / to a short path near f1.x/D f2.x/). The corresponding arc

a WD f.�j .t/; t/jt 2 Ig

has a tubular neighborhood of the form a�Rm in M�I . Then the resulting submanifold
a � Cj gives rise to a bordism which relates the local !# –data of xj (ie the triple
.Cj ; zgj ; xg

#
j / of (partial) coincidence data corresponding to Cj , cf (1–4)–(1–6)) to a
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contribution of the form eA.Œqj �/ towards !#.f1; f2/ (compare (3–2) and (3–4)). Since
E preserves addition we may iterate our argument to show that all of !#.f1; f2/ lies
in the image if e .

In order to prove claim (ii) we may have to deform f1 and f2 (and not just the local
!# –data). In view of Example 1.3 we need to consider only the case when m; n� 3.
Then, given two isolated coincidence points x;xj in the same Nielsen class, we can
join them by a smoothly embedded Nielsen path � which misses all other coincidence
points. Similarly f1ı� will be an embedding after a small deformation of f1 in a
tubular neighborhood of �.I/. Moreover, by making an approximation transverse
to f1ı�.I/ and possibly by shifting I –levels slightly near finitely many intersection
points we obtain a homotopy F from f1ı� to f2ı� which leaves endpoints fixed and
which coincides with the constant homotopy of f1ı� only at the initial deformation
parameter.

Next identify a small tubular neighbourhood V �M of the arc �.I/ with I �Rm�1 .
Without changing anything outside of V we want to use the homotopy F in order
to deform f2 into a map f 0

2
such that f1 and f 0

2
coincide in �.I/ D I � f0g but

nowhere else in V . Pick a smooth map �W I ! Œ0;1/ such that ��1.f0g/D f0; 1g.
First deform the identity map of M along the normal rays in V towards �.I/ until
each point .t; v/ of

V� WD f.t; v/ 2 V D I �Rm�1
jkvk � �.t/g

gets mapped to .t; 0/. Compose this homotopy with fi , i D 1; 2, so that in the end
fi.t; v/D fiı�.t/ whenever kvk � �.t/. Now define f 0

2
to equal f2 outside of V� ,

and f 0
2
.t; v/ WD F

�
t; kvk
�.t/

�
when .t; v/ 2 V�; t ¤ 0; 1 (ie along any normal ray in V� ,

starting at �.t/, the constant path with value f2.�.t// is replaced by the path F.t;�/

from f1.�.t// to f2.�.t///.

Clearly f 0
2

is homotopic to f2 . We have replaced our two original coincidence points
of .f1; f2/ by the full arc �.I/ of coincidence points of .f1; f

0
2
/. Extending � to a

slightly larger interval IC D .�"; 1C "/ and using suitable tubular neighbourhoods of
�.IC/ and f1ı�.IC/ we can find sets Bx �M and Uy �N as in the discussion of
(3–4) such that �.I/�Bx . After further (local) homotopies f1�f

0
2

is the concentric
extension Q of some index map q (cf (3–4)). Thus in the end x and xj are replaced
by just one coincidence point at the center of Bx . Iterating this procedure we can
reduce each Nielsen class to a single point (see [22, Section 3] for the compatibilities
of Nielsen decompositions with homotopies of f1 and f2 ).
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Finally assume that �m�1.S
n�1/ is trivial. Then at each isolated coincidence point

x the index map (cf (3–4)) allows an extension Q0 without zero. The resulting map
f 0

1
D f2CQ0 is homotopic to f1 and has no coincidence with f2 .

Example 3.2 (m D n � 2) Here we may identify �m�1.S
n�1/ with Z via the

mapping degree. Then the map

eW
M

A2�0.E.f1;f2//

Z // �#.f1; f2/ D �0.E.f1; f2/I z'/ D
L

Z˚
L

Z2

!#.f1; f2/ D

2

z!.f1; f2/

2

is the direct sum of identity maps and mod 2 reductions according to the orientability
of the coefficient bundle z'jA (compare the discussion following (3–2), and [17, 9.3]).

Now assume that n> 2. After suitable deformations the Nielsen class CA D zg
�1.A/

corresponding to a path component A of E.f1; f2/ consists of at most one point xA

(cf Theorem 3.1(ii)).

If A is nonessential we may remove the coincidence at xA altogether. This is clear
when z'jA is oriented since then the index map of xA has degree 0 and hence is
nulhomotopic. If z'jA is not orientable this degree is even; therefore we may replace
xA by nearby generic coincidences which occur in pairs of points having the same sign
C1 or �1; join each such pair by an embedded Nielsen path � which reverses the
given local orientation of z'jA; in a tubular neighbourhood of �.I/ the two endpoints
have opposite signs and give rise to a nulhomotopic index map (compare the proof of
Theorem 3.1(ii)).

We conclude that MC.f1; f2/�N.f1; f2/. In view of Theorem 1.2(iii) we obtain the
following classical “Wecken theorem” as a special consequence of Theorem 3.1.

Corollary 3.3 If mD n¤ 2, then for all maps f1; f2W M
m!N n we have

N.f1; f2/DN #.f1; f2/DMCC.f1; f2/DMC.f1; f2/:

For mD nD 1 this follows from Example 1.3.

Remark 3.4 When m� 1 and nD 1 or 2 the minimum number MC.f1; f2/ – if it is
known to be finite – is rather easily determined (cf Example 1.3 and Theorem 3.1(iii))
except in the dimension setting m D n D 2 originally studied by J Nielsen. Here it
took 57 years until the central question “are N.f1; id/ and MC.f1; id/ always equal?”
was proved by B Jiang [15; 16] to have a negative answer. Thus when mD nD 2 it
is not always possible to replace each Nielsen class by at most one coincidence point
(compare Theorem 3.1(ii), and Example 3.2).
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4 The root case

Let a map f W M !N be given. In this section we discuss the Nielsen and minimum
numbers of a pair of the form (f1 D f; f2 D constant map).

Since N is path-connected these numbers are independent of the constant value of f2 .
Thus, given a basepoint x0 2M , put y0 WD f .x0/; we may assume that f2 D y0 (our
notation will not distinguish between a constant map and its value).

We define

(4–1)

deg#.f / WD !#.f;y0/ 2�
#.f;y0/;

edeg.f / WD z!.f;y0/ 2�m�n.E.f;y0/I z'/; and

deg.f / WD !.f;y0/ 2�m�n.M I' WD f
�

1 .TN /�TM /

(compare (1–10), Remark 2.4 and (2–3))

According to [22, 2.1] we have

(4–2) #�0.E.f;y0//D Œ�1.N;y0/ W f�.�1.M;x0//�:

ie the cardinality of �0.E.f;y0// or, equivalently, of the Reidemeister set R.f;y0/,
equals the index of the subgroup f�.�1.M;x0// in �1.N;y0/. Our analysis will be
based on the simple but useful observation that the path components of E.f;y0/ can
in fact be parametrized by the endpoints of certain liftings in an appropriate covering
space of N (cf Corollary 4.2 below).

Consider the commuting diagram

(4–3) . zNf ; zy0/

p

��
.M;x0/

zf
99ssssssssss

f

// .N;y0/

where p denotes the (basically unique) covering such that

p�.�1. zNf ; zy0//D f�.�1.M;x0//

(cf Greenberg–Harper [11, 6.9]) and zf is the lifting of f determined by the choice of
zy0 2 p�1.fy0g/.

Lemma 4.1 For every point zy 2 zNf the space E. zf ; zy/ is path-connected.
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Proof Since the projection from E. zf ; zy/ to M is a Hurewicz fibration we have only
to join two elements of the form .x0; z�i/ in E. zf ; zy/, i D 1; 2. Now the path z�1 is
homotopic rel.0; 1/ to a concatenated path z� z�2 where z� starts and ends at zy0 . Thus
there is a loop � in M starting and ending at x0 such that z� � zf ı� . Clearly � lifts
to a path in E. zf ; zy/ which joins .x0; z�1/ to .x0; z�2/.

The preceding lemma allows us to study our original map f with the help of zf . Given
.x; �/2E.f;y0/, define  .x; �/D z�.1/ where z� 2P . zNf / is the lifting of � 2P .N /

(cf (1–5)) satisfying z�.0/D zf .x/.

Corollary 4.2  induces a bijection

�0.E.f;y0// �! p�1.fy0g/

which is compatible with homotopies of f (compare [22, 3.2]).

In fact the lifting procedure �  ! z� determined by zf yields a homeomorphism

(4–4) E.f;y0/Š
a

zy2p�1.fy0g/

E. zf ; zy/:

Note that all these path components are homotopy equivalent via concatenation: any
path z� in zNf from zy1 to zy2 induces a homotopy equivalence

(4–5) z�#W E. zf ; zy1/
��!E. zf ; zy2/; z�#.x; z�/D .x; z�z�/:

Theorem 4.3 Whenever n� 1 the following statements are equivalent:

(i) deg#.f /D 0;

(ii) N #.f;y0/D 0;

(iii) N #.f;y0/¤ #�0.E.f;y0//;

(iv) deg#. zf /D 0;

(v) N #. zf ; zy0/D 0 .

In particular, if �0.E.f;y0// is infinite or if the manifold N (or zNf ) is noncompact,
then deg#.f /; deg#. zf / and the Nielsen numbers N #.f;y0/ and N #. zf ; zy0/ vanish.

Remark 4.4 Precisely the analogous statement holds for the (“stabilized”) degrees
and Nielsen numbers edeg.f /;edeg. zf /;N.f;y0/ and N. zf ; zy0/ (cf [22, 1.11]).

In the nonstabilized setting the implication (ii) H) (i) is nontrivial (see Remark 2.3).
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Proof of Theorem 4.3 Clearly (i) H) (ii) H) (iii) and (iv) ” (v). Also the full
claim of the theorem holds for N Š S1 (cf Example 1.3) and (trivially) for N Š R.

Thus assume that n� 2.

In any element ŒC; zg; xg#� of �#.f;y0/ or �#. zf ; zy0/ the homotopy defined by zg
induces a vector bundle isomorphism

(4–6) f �.TN /jC Š const�y0
.TN /jC D C �V

where V WD Ty0
.N /. Thus we may henceforth interpret xg# as a trivialization of the

normal bundle �.C;M / (compare (1–6)). This gives rise to an identification of a
tubular neighborhood U of C in M with C �V .

Now, given path components A1; : : : ;Ak and A of E.f;y0/, we construct maps

(4–7) �#. zf ; zy0/
pinchA
����! �#.f;y0/

forgA
����! �#. zf ; zy0/

as follows.

Let fzy1; : : : ; zykg � p�1.fy0g/ correspond to A WD fA1; : : : ;Akg via  (cf Corollary
4.2). Choose pairwise distinct points zi in V as well as paths z�i in zNf from zy0 to zyi ,
i D 1; : : : ; k . For c D ŒC; zg; xg#� 2�#. zf ; zy0/ we represent pinchA.c/ by the union of
the “parallel” submanifolds

(4–8) Ci WD C � fzig � U

of M , together with the data zG and xG described as follows (compare (1–5) and (1–6)).
In order to obtain zG.x; zi/, x 2C , apply the covering map p to the concatenated path

zf .x; zi/
zf ı` ///o/o/o zf .x/

zg.x/ ///o/o/o zy0
z�i ///o/o/o zyi

in zNf ; here ` denotes the linear path in fxg�V from .x; zi/ to x D .x; 0/. xG is the
obvious trivialization of the normal bundle of Ci in C �V DU �M , composed with
a fixed reflection in V if TN is not orientable along the closed loop pız�i in N .

Similarly, choose a path z� in zNf from zy0 to zy WD  .A/ 2 p�1.fyog/ (cf Corollary
4.2). The map forgA in (4–7) is then built up in three steps. First it forgets all but the
A–component

(4–9) !#
A D Œzg

�1.A/; zgj; xg#
j�

of an element !# D ŒC; zg; xg#� 2�#.f;y0/. Lifting zgj to zNf then makes !#
A

into an
element of �#. zf ; zy/ (cf (4–4)). Finally concatenate with z��1 to obtain forgA.!

#/ 2

�#. zf ; zy0/.
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If ADAi for some 1� i � k and if the chosen paths z� and z�i are homotopic rel.0; 1/,
then

(4–10) forgA ı pinchA D identity:

However, if A 62 AD fA1; : : : ;Akg then

(4–11) forgA ı pinchA � 0:

Let us apply this whole discussion to deg#.f /D!#.f;y0/ and deg#. zf /D!#. zf ; zy0/.
Identify a small neighborhood Uzy0

of zy0 in zNf with V . After a suitable homotopy
we may assume that zf is smooth, with regular value zy0 , and agrees on a tubular
neighborhood U Š C �V of C WD zf �1.fzy0g/ with the projection to V D Uzy0

.

In the construction of pinchA (cf (4–7)) choose the set A D fA1; : : : ;Akg �

�0.E.f;y0// to be so big that zf avoids F� WD p�1.fy0g/ � fzy1; : : : ; zykg. Since
n� 2 we may also choose the paths z�i to go straight from zy0 to zi in Uzyo

D V , and
then to zyi via disjoint embedded arcs in zNf �F� , i D 1; : : : ; k .

Now compose zf with an isotopy of zNf which leaves F� fixed and which moves zi

along z�i to zyi . At the final stage of this deformation the deg# –invariants of zf and
f D pı zf satisfy the relation

(4–13) deg#.f /D pinchA.deg#. zf //

(cf (4–8)). Thus (iv) ) (i) in Theorem 4.3. On the other hand: if deg#
A.f / is trivial

for some path component A of E.f;y0/ (cf (2–5)) then so is

(4–14) deg#. zf /D forgA.deg#.f //

(cf (4–7)). Hence (iii) ) (iv) and Theorem 4.3 follows.

Remark 4.5 It follows from (4–10)–(4–14) that for every A 2 �0.E.f;y0// the
triple .CA; zgA; xg

#
A
/ (which represents deg#

A.f;y0/, cf (2–5)) contributes just as much
information towards deg#.f;y0/ as the full coincidence data .C; zg; xg#/ do. In view of
Theorem 1.2 and (4–2) this implies the claim concerning the case .f1; f2/D .f;�/ in
Theorem 1.4 of the introduction.

Next recall that – due to the compactness of M – our Nielsen numbers are always
finite. Thus according to Theorem 1.4 N #.f;�/ must vanish if b.f;�/ is infinite. It is
rather elementary to show even more.

Proposition 4.6 If the index of the subgroup f�.�1.M // in �1.N / is infinite or if
N is not compact, then the pair .f;�/ is loose; in other words f is homotopic to a
map whose image lies in N �f�g.
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Proof In view of Example 1.3 we may assume that n� 2. Let zf be a lifting of f to
the covering space zNf (cf (4–3)) which is noncompact here by assumption. Since M is
compact zf .M / intersects the fiber p�1.f�g/ in only finitely many points z�1; : : : ; z�k .
Isotop zf along disjoint embedded paths ci in zNf which start outside of zf .M / and
meet the fiber p�1.f�g/ only at the endpoints ci.1/ D z�i , i D 1; : : : ; k . After this
homotopy zf avoids p�1.f�g/, ie f D pı zf maps into N �f�g.

(If N is not compact you may also just compose f with a similar isotopy in N which
moves a point y 2N �f .M / to �.)

Proof of the root case in Proposition 1.5 f and zf allow the same lifting to the
common covering space zNf D zN zf (compare (4–3)) of N and zN . Thus according to

Theorem 4.3 N #.f;�/ vanishes if and only if N #. zf ; z�/ does; otherwise

N #.f;�/D Œ�1.N / W f�.�1.M //�D d � Œ�1. zN / W zf�.�1.M //�D d �N #. zf ; z�/

and similarly for N.f;�/. If d D1, all these Nielsen numbers vanish.

5 Selfcoincidences

In this section we prove the results Theorem 1.4 and Proposition 1.5 as far as selfcoin-
cidences are concerned. Moreover, we relate the selfcoincidence invariant of a map to
its degree.

Let �#.f1; f2/ denote the bordism set of triples .C;g; xg#/ as in (1–5) (1–6) and (2–1)
(without a lifting zg ). This set is related to �#.f1; f2/ (cf (2–1)) via the map pr�
induced by the projection pr W E.f1; f2/!M (cf (1–5)). In general the resulting
coincidence invariant

(5–1) !#.f1; f2/ WD pr�.!
#.f1; f2//D ŒC.f1; f2/;g; xg

#� 2�#.f1; f2/

(compare (2–2)) is considerably weaker than !#.f1; f2/ since it captures no longer
the Nielsen decomposition of the coincidence set, let alone the other aspects of the
lifting zg .

Now consider a map f W M !N . The selfcoincidence setting is very special in that
pr allows a canonical global section sW M !E.f; f / here (defined by s.x/D .x;

constant path at f .x//; x 2M ). We obtain induced maps

(5–2) �#.f; f /
s� //

�#.f; f /
pr�

oo
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such that pr�ıs� D identity and clearly

(5–3) !#.f; f /D s�.!
#.f; f //

(cf (5–1); compare also Proposition 2.6). Thus only the path component of E.f; f /

which contains s.M / can possibly be strongly essential. Hence if !#.f; f /¤ 0 then
N #.f; f /D 1. The same argument applies also to the stabilized coincidence invariant
z!.f; f / (which is precisely as strong as !.f; f /D pr�.z!.f; f //, compare Koschorke
[20; 22]) and N.f; f /. In view of Theorem 1.2(iii) this proves the claims of Theorem
1.4 as far as they concern the selfcoincidence case.

As for the proof of Proposition 1.5 just note that !#. zf ; zf / D !#.f; f / whenever
zf is a lifting of f into any covering space zN of N . Indeed, the corresponding

coincidence data are essentially identical, related by the tangent isomorphism of the
covering projection.

Next we show how !#.f; f / (and hence !#.f; f /D s�.!
#.f; f /, cf (5–3)) can be

calculated once we know deg#.f /D !#.f;�/).

Given k 2Z and ŒC; zg; xg#�2�#.f;�/, the homotopy f jC �� described by zg induces
a trivialization of f �.TN /jC as in (4–6) and, via xg# , of �.C;M /. As in Section 4
we may identify a tubular neighborhood U of C in M with a product C � V and
replace the submanifold C D C � f0g by the union

C.k/D
[

Ci � U �M

of jkj “parallel” copies Ci D C � fzig where the points zi 2 V , i D 1; : : : ; jkj, are
pairwise distinct. The obvious linear deformation in V leads to an isomorphism
f �.TN /jC Š f �.TN /jCi ; compose it with xg# and, if k is negative, with the
involution on Ci � V Š �.Ci ;M / Š �.C;M / determined by a fixed reflection of
V . We obtain

xg#.k/W �.C.k/;M /Š f �.TN /jC.k/:

Whenever n� 1 this construction yields a family of canonical maps

(5–4) pinchk�W �
#.f;�/ �!�#.f; f /; k 2 Z;

which are compatible with homotopies of f and defined by

pinchk�.ŒC; zg; xg
#�/D ŒC.k/�M; xg#.k/�:

Proposition 5.1 Let k equal the Euler characteristic �.N / of N if N is closed and
put k D 0 otherwise. Then for every map f W M !N and � 2N we have:

!#.f; f /D pinchk�.!
#.f;�//:
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(The weaker relation !.f; f /D k deg.f / was already proved and applied in [20]).

Proof Identify V with a small neighborhood of � in N . After a homotopy we may
assume that

(i) f is smooth with regular value �, and

(ii) C.f;�/D f �1.f�g/ has a tubular neighborhood C.f;�/�V D f �1.V / where
f is just the projection to V .

Now it is possible to choose a smooth vector field on N with generic zeroes z1; : : : ; zjkj
which all lie in V , and without other zeroes in f .M /. Apply the corresponding flow
on N to the map f and deform it slightly into a nearby map f 0 . Then the coincidence
locus C.f 0; f / consists of the inverse images f �1.fzig/ of the fixed points zi of the
flow, i D 1; : : : ; jkj. Clearly the resulting coincidence data represent both !#.f; f /

and pinchk�.!
#.f;�//.

Example 5.2 Let N be closed with Euler number �.N / ¤ 0 and commutative
nontrivial fundamental group. Given m> n, consider the projection

f W M WDN �Sm�n
�!N:

Then !#.f; f /D pinch�.N /�.!
#.f;�// (cf Proposition 5.1) is nontrivial since already

the weaker invariant !.f; f /D �.N / �!.f;�/ (cf Remark 2.4 and [20, 2.2]) fails to
vanish. This can be detected even by singular homology theory (which otherwise is
often far too crude to capture coincidence phenomena in higher codimensions). Indeed
the composite

�
f r
m�n.M /

�
����! Hm�n.M IZ/

�2�
����! Hm�n.S

m�nIZ/Š Z

maps !.f; f / to �.N / (compare the proof of Proposition 5.1. Note that ' D
f �.TN /�TM is trivial here; � and �2 denote the Hurewicz homomorphism and
the second projection, resp.).

Thus according to Theorem 1.4, (1–8), and Theorem 3.1(i)

N.f; f /DN #.f; f /DMCC.f; f /D 1 ¤ #�0.E.f; f //D #�1.N /

and MC.f; f /D1 whenever n� 1.
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6 Spherical maps

In this section we study in detail the special case M DSm Ṡince the minimum numbers
MC and MCC as well as the Nielsen numbers are (free) homotopy invariants we may
– whenever need be – assume the maps f1; f2; : : : to have a convenient base point
behavior (compare also Appendix A).

First assume n� 2 so that we can apply Proposition 2.5 to the case where M D Sm .

Fix basepoints x0 2 Sm and y0;y1;y2 2 N such that y1 ¤ y2 , and choose a local
orientation of N at y0 as well as paths in N joining y0 to y1 and y2 . For any two
maps fi W .S

m;x0/! .N;yi/, i D 1; 2; these choices allow us to identify �#.f1; f2/

with the homotopy set ŒSm;Sn ^ .�.N /C/� � �m.S
n ^ .�.N /C// where �.N /

denotes the space of loops in N starting and ending in y0 (cf Proposition 2.5 and
its proof). Thus we have a well defined addition both at the level of maps and of
!# –invariants. We will exploit their compatibilities.

Proposition 6.1 Assume n� 2. Given Œfi �; Œf
0

i � 2 �m.N;yi/, i D 1; 2; we have

!#.f1Cf
0

1; f2Cf
0

2/D !
#.f1; f2/C!

#.f 01; f
0

2/:

In particular,
!#.f1; f2/D deg#.f1/C!

#.y1; f2/:

Furthermore

deg#
WD !#.�;y2/W �m.N;y1/ �! �m.S

n
^ .�N /C/

and
!#.y1;�/W �m.N;y2/ �! �m.S

n
^ .�N /C/

are group homomorphisms which determine each other via the group isomorphism inv
defined in (the proof of) Proposition 2.5. They measure also the lack of distributivity of
!# , eg

deg#.f1/D !
#.f1; f2/C!

#.f1; f
0

2/�!
#.f1; f2Cf

0
2/:

Thus (2–12) turns out to be a diagram of homotopy groups and of group homomorphism
when M D Sm and n� 2.

Proof The coincidence locus C.f1C f
0

1
; f2C f

0
2
/ consists of the parts C.f1; f2/

and C.f 0
1
; f 0

2
/ which lie in disjoint half-spheres of Sm ; moreover the coincidence

data zg and xg are compatible with this decomposition. This establishes the additivity
of !# . Obvious homotopies such as .f1; f2/ � .f1C y1;y2C f2/ and .f1;y2/ �

.f1Cf1�f1; f2Cf
0

2
� .f2Cf

0
2
// imply the remaining claims.
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Next let MN stand for any of the numerical homotopy invariants N;N #;MCC or MC
for pairs .f1; f2/ of maps.

Proposition 6.2 Let m; n � 1. Given Œfi �; Œf
0

i � 2 �m.N;yi/, i D 1; 2, we have the
inequality

MN.f1Cf
0

1; f2Cf
0

2/�MN.f1; f2/CMN.f 01; f
0

2/I

equality holds if MN.f 0
1
; f 0

2
/D 0.

In particular, if Œf2� 2 �
.2/
m .N;y2/ (ie if there is an element Œ xf2� 2 �m.N;y1/ such that

. xf2; f2/ is loose, cf (1–11)), then

MN.f1; f2/DMN.f1�
xf2;y2/:

Proof The inequality follows from the decomposition

C.f1Cf
0

1; f2Cf
0

2/D C.f1; f2/qC.f 01; f
0

2/:

Furthermore note that MN.�f 0
1
;�f 0

2
/DMN.f 0

1
; f 0

2
/.

Corollary 6.3 If the homomorphism i�W �m.N � f�g/! �m.N / (induced by the
inclusion) is onto, then MN.f1; f2/D 0 for all maps f1; f2W S

m!N , ie .f1; f2/ is
loose.

i� is onto eg if N ¤ S1 has an infinite fundamental group, or if N is not compact, or
if N is the product of two manifolds of strictly positive dimensions, or if N fibers over
a manifold B such that �m.B �f�g/! �m.B/ is onto.

Proof After a deformation f1 and f2 have the correct base point behavior. Then
MN.f1; f2/�MN.f1;y2/CMN.y1; f2/D 0.

If Œf � 2 �m.N / and N DN1 �N2 , deform the two component maps of f until they
are constant on opposite half-spheres Sm

˙
� Sm ; then f .Sm/�N1 _N2 �N �f�g.

The remainder of our second claim follows from Proposition 4.6 and the homotopy
lifting property of fibrations.

Propositions 6.1 and 6.2 allow us also in various other situations to reduce general
coincidence questions to the root case (cf Section 4) and, in particular, to a discussion
of the degree homomorphism deg# .

Proof of Theorem 1.8 We may replace f1; f2 by basepoint preserving maps. In view
of symmetry results such as Theorem 1.2(ii) we may also assume the existence of a
loose pair . xf2; f2/ as in Proposition 6.2 and apply Theorem 1.4 to f D f1�

xf2 . Thus
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N #.f1; f2/DN #.f1�
xf2;y2/ (cf Proposition 6.2) equals the order of �1.N / when

m � 2 (and of the cokernel of f1� � f2� when mD nD 1, cf Example 1.3) which
must be finite here since deg#.f1�

xf2/D !
#.f1; f2/¤ 0 (cf Proposition 4.6).

The calculation of MCC.f1; f2/ and MC.f1; f2/ follows similarly from Proposition
6.2 and Theorem 1.2(iii). Analogous conclusions are valid for z!.f1; f2/ and N.f1; f2/.
Our claims are still valid for nD 2. Indeed, in view of Corollary 6.3, Theorem 1.14,
and Theorem 3.1(iii) we have to check only the root case when m> 2 and N DS2 (or
RP .2/); after performing a connected sum operation we see that f �1.fy2g/ consists
of one (or two “parallel”) connected submanifold(s) of Sm (cf (4–13)).

How do our minimum numbers behave when !#.f1; f2/ vanishes? Let us focus on
this question first in the root case.

Given m� 1, consider the subgroups (cf Proposition 6.1, Corollary 6.3)

i�.�m.N �f�g//� ker.deg#/ of �m.N /

represented by maps f W Sm ! N such that MC.f;�/ D MCC.f;�/ D 0 and that
N #.f;�/D 0, resp. (cf Theorem 4.3).

Definition 6.4 Xm.N / WD ker.deg#/= i�.�m.N �f�g//.

This quotient is always an abelian group. If n � 2 it measures to what extend the
sequence

(6–1) �m.N �f�g/
i�
����! �m.N /

deg#

����! �m.S
n ^ .�N /C/

fails to be exact. For a description of Xm.N / in terms of pinching maps see Corollary
7.3 below.

Theorem 6.5 (a) Let Q be a smooth connected q–manifold and let pW Q!N be a
smooth locally trivial fibration. Assume that the fiber F D p�1.fy0g/ is compact (and
nonempty) and lies in the interior of a smoothly embedded q–ball B in Q. (This holds,
in particular, if Q is a finite covering space over N /. Moreover assume that q � 2n�2.
Then, given m� 1, we have: Xm.N / vanishes if and only if Xm.Q/ does.

(b) Xm.N / D 0 in each of the following cases (where m � 1 is arbitrary unless
specified otherwise):

(i) m� 2n� 3;

(ii) n� 2 (or m� 3/;

(iii) N is not compact;
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(iv) N is a sphere Sn or a projective space KP .n0/, KD R;C or H, n; n0 � 1;

(v) N is the total space of a Serre fibration with a section and with strictly positive
dimensions of the fiber and base space;

(vi) N fibers over a manifold which has an infinite fundamental group.

Proof Example 1.3 establishes these claims whenever mD 1 or nD 1. Thus we may
assume m; n� 2 in the remainder of this proof.

Given a smooth fibration pW .Qq; zy0/! .N n;y0/, consider the diagram

(6–2) �m.Q; zy0/
p� //

deg#
Q

��

�m.N;y0/
@ //

deg#
N

��

�m�1.F; zy0/
j�

oo_ _ _ _ _

�m.S
q ^ .�Q/C/

ˇ

//___ �m.S
n ^ .�N /C/

˛oo

which involves the homotopy sequence of p . The homomorphism ˛ is defined as
follows. Interpret an element c 2 �m.S

n ^ .�N /C/ – via Pontryagin–Thom – as a
bordism class of a framed submanifold C �Rm , together with a map zgW C!�.N;y0/.
The corresponding evaluation map C � I !N lifts to a homotopy zG in Q from the
constant map at zy0 to a map zG1W C ! F which we may assume to be smooth, with
regular value zy0 . Endow C 0 WD zG�1

1
.fzy0g/ with the map zg0W C 0!�.Q; zy0/ which

corresponds to zGjC 0� I . Moreover compose the natural framing of C 0 in C (given
by tangent map of zG1 ) with the automorphism of C 0 �Tzy0

F which is determined by
the homotopy zGjC 0 � I and the tangent bundle along the fibers of p (cf [22, 3.1]).
The resulting bordism class ŒC 0 � Rm; zg0� defines ˛.c/. We have

(6–3) deg#
Q D ˛ı deg#

N ıp�

since deg#
N ıp� and deg#

Q correspond to taking the inverse image of a fiber and of a
point in Q, resp.

If there exists a basepoint preserving homotopy zJ W F � I !Q from the constant map
at zy0 to the fiber inclusion then pı zJ corresponds to a map j W F !�N ; this induces
a splitting of the top line in diagram (6–2) since @ıj� D id. If in addition q � 2n� 2,
ie dim.F �I/ < dim N , then the image of j� lies already in i�.�m.N �f�g;y0// for
� ¤ y0 .

Finally assume the full hypothesis in Theorem 6.5(a)). Given a framed q–codimensional
submanifold C 0 � Rm together with a map zg0W C 0!�.Q; zy0/, twist the framing via
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the automorphism of C 0 �Rq determined by zg0 and TQ, use the twisted framing to
identify a tubular neighbourhood of C 0 in Rm with C 0 �B , reframe the submanifold

C WD C 0 �F � C 0 �B � Rm

using p; zg0 and a contraction zJ W F � I !B �Q, and equip C with the paths in N

which concatenate pızg0 with the adjoint j of pı zJ . The resulting bordism class ŒC; zg�
corresponds to ˇ.ŒC 0; zg0�/.

This definition of ˇ mimics the transition from deg#
Q to deg#

N where the inverse image
of a point z� 2Q is replaced by the inverse image of a whole fiber p�1.f�g/ containing
z� (where � 2N �fy0g is close to y0 ). The reframings in the construction of ˛ and
ˇ are motivated by our framing convention in the definition of deg# (cf (2–10)). We
obtain

(6–4) ˇı deg#
Q D deg#

N ıp�

and ˛ıˇ D id. Hence ˇ is injective.

Moreover the following three statements are equivalent for every Œf � 2 �m.Q/: f can
be deformed into the complement of (i) fz�g, (ii) VB , (iii) F . This completes the proof
of claim (a) in Theorem 6.5.

Clearly Xm.N / D 0 whenever i� is onto (eg in case (v) of claim (b); cf Corollary
6.3 and its proof) or when m< n. Moreover Xm vanishes for all spheres (since deg#

is split injective here, cf Proposition 2.6) and hence also for all projective spaces (by
claim (a)). In particular, Xm.N /D 0 for N D S2 or RP2 and also for the remaining
surfaces (which are noncompact or have infinite fundamental groups). This settles case
(ii) of Theorem 6.5(b). Case (i) is a (weak) consequence of [22, Theorem 1.10].

Remark 6.6 In the previous discussion we have been dealing with the very special
case where M is a sphere and f2 is constant. Here no problem arises in the dimension
setting mD nD 2 which is so critical in classical fixed point theory: see Jiang [16]
for examples where N.f; id/DN #.f; id/D 0<MCC.f; id/�MC.f; id/.

Example 6.7 (Stiefel manifolds and Grassmannians) (a) Given integers 1� k < r ,
let pr;k W Vr;k !Gr;k be the fiber projection which maps each orthonormal k –frame
in Rr to the k –plane it spans. Assume 2k � r . (This is no restriction as far as
Grassmannians are concerned since Gr;k ŠGr;r�k/. Then the fiber O.k/D Vk;k of
pr;k can be deformed into a ball via the isotopy

Vk;k �
�
0; �

2
� "
�
�! Vr;k ;
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.fvig; t/!fcos.t/viC sin.t/ekCig, where 1� i � k and ej denotes the j th standard
unit vector in Rr . Thus, given m � 1, we conclude from Theorem 6.5(a)) that
Xm.Gr;k/D 0 if and only if Xm.Vr;k/D 0.

(b) In turn, if the sphere Sr�1 allows k � 1 linearly independent vector fields then
the canonical fibration Vr;k ! Sr�1 has a section and Xm.Vr;k/ D 0 by Theorem
6.5(b)(v).

We conclude for instance that Xm.Gr;k/D 0 for all m� 1 and 1� k < r if r D 2; 4; 8,
or 16 (compare eg Atiyah–Bott–Shapiro [1, page 38]).

The same statements hold for the Grassmann manifold zGr;k of oriented k –planes in
Rr (with the added advantage that no map into zGr;k is coincidence producing).

Remark 6.8 (and proof of Theorem 1.11) The homogeneity techniques supplied by
Propositions 6.1 and 6.2 allow us (in analogy to the proof of Theorem 1.8) to extend
the condition “Xm.N /D 0” to yield the following equivalent condition: “For every
pair of maps f1; f2W S

m ! N which are not both coincidence producing we have:
.f1; f2/ is loose if and only if !#.f1; f2/D 0”.

Clearly this implies Theorem 1.11 of the introduction.

Proof of the statements in Example 1.12 In view of Example 1.3 we may assume
that n � 2. In the case N D Sn deg# is split injective (cf Proposition 2.6) and
Xm.N /D 0 (cf Theorem 6.5). Moreover .f1; f2/ is loose if and only if f1 � af2 (cf
Dold–Gonçalves [8, 1.10] or Koschorke [22, Section 8]). Thus it follows from Theorem
1.8 and Theorem 1.11 that N #.f1; f2/DMCC.f1; f2/ equals 0 or #�0.E.f1; f2//

according as !#.f1; f2/D deg#.f1� aıf2/ (cf Proposition 6.1) vanishes or not. The
restriction n¤ 2 in Theorem 1.8 can be avoided here by a connected sum argument
applied to the (generically) framed manifold .f1� aıf2/

�1f�g (compare Proposition
2.6).

If MC.f1; f2/ is finite and m > n � 2 then deg#.f1 � aıf2/ D e.ˇ/ for some ˇ 2
�m�1.S

n�1/ (cf Theorem 3.1) and hence in view of Proposition 2.6 Œf1 � aıf2� D

coll�.Œf1� aıf2�/D˙E.ˇ/.

Before we discuss the minimum number MC.f1; f2/ for maps into a general target
manifold N we introduce the composite homomorphism (for m> 2� n/

(6–5) �W
L

A2�1.N /
�m�1.S

n�1/ �! �m�1

�W
A Sn�1

�
vj�
����! �m�1.N �f�g/

as follows. Choose a homeomorphism u from the unit ball Bn � Rn onto a small
ball B.�/ in N centered at � such that y0 D u.x0/ 2 @B.�/ (where x0 2 Sn�1
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is a basepoint); lift u in the universal cover zN to all the various levels (which are
parametrized by A2�1.N;y0/��0.E.f1; f2//); join the lifted basepoints fzuA.x0/g

by appropriate paths to zy0 and project back to N . We obtain the map

(6–6) vW
�_

A

Bn;
_
A

Sn�1
�
�! .N;N �f�g/:

Compose the induced homomorphism vj� with the natural inclusion to define � in
(6–5).

On the other hand consider the mapsW
A2�1.N /

Sn in //
Sn ^ .�NC/D Thom.�N �Rn/

ret
oo

corresponding (at the level of Thom spaces of trivial n–plane bundles) to the obvious
componentwise inclusion and retraction maps between �1.N /D �0.�N / and �N .
We obtain the diagram (for m� 2)

(6–7)
L

A2�1.N /

�m.S
n/� �m

�W
A

Sn
�

in� //
�m.S

n ^ .�N /C/
ret�

oo

where ret� ı in� D identity. Moreover, in� and the Freudenthal suspension compose to
yield the homomorphism

(6–8) ˙e D in� jı˚EW
M

A2�1.N /

�m�1.S
n�1/ �! �m.S

n
^ .�N /C/

constructed at the beginning of Sections 3 and 6.

Theorem 6.9 Assume m� 3. Given any pair of maps f1; f2W S
m!N such that f2

is not coincidence producing, we have:

If MC.f1; f2/ < 1 then !#.f1; f2/ 2 e.ker.�//. In turn, if Xm.N / D 0 and
!#.f1; f2/ 2 e.ker.�// then MC.f1; f2/ is finite.

Proof In view of Propositions 6.1 and 6.2 we need to consider only pairs of the
form .f;�/. Interpret f as a map from Im to N which maps the boundary @Im to
the basepoint y0 ¤ �. If MC.f;�/ <1 then after a deformation f �1.f�g/ consist
of finitely many points xj 2

VIm; j D 1; : : : ; k . Furthermore there are small balls
Bxj
� VIm centered at xj such that f maps @Bxj

ŠSm�1 to the boundary sphere of the
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ball B.�/ around � in N . After isotoping xj into suitable positions in ImD Im�1�I

we may even assume that

f
�
Im�1

�
�
0; 1

2

��
� v

�_
A

Bn
�

(cf (6–6)) and

f
�
Im�1

�
�

1
2
; 1
��
�N � VB.�/:

Thus the index maps of the coincidence points of .f;�/ (cf (3–4)) determine an element
˛ 2 ker � (since f jIm�1�

˚
1
2

	
is nulhomotopic in N �f�g/ such that e.˛/D!#.f;�/.

On the other hand, every ˛2ker.�/ and a corresponding nulhomotopy in N�f�g yields
a map f 0W Sm!N with MC.f 0;�/ <1 and !#.f 0;�/D e.˛/. If !#.f;�/D e.˛/

and Xm.N / vanishes then so do deg#.f �f 0/ and hence MC.f �f 0;�/.

Since MC.f;�/�MC.f 0;�/CMC.f �f 0;�/ we conclude that this minimum number
is finite.

We illustrate our criterion by a sample application.

Corollary 6.10 Let N D Sn=G be a spherical space form (compare Example 1.13)
and assume m; n� 2. Then we have for all Œf � 2 �m.N /

MC.f;�/ <1” Œ zf � 2

(
E.ker h/ if #G � 3I

E.�m�1.S
n�1// if #G � 2:

Here Œ zf � 2 �m.S
n/ is obtained by lifting Œf �, E denotes the Freudenthal suspension

and

h WD

1M
jD0

hj W �m�1.S
n�1/ �! �m�1.S

2n�3/˚�m�1.S
3n�5/˚ : : :

is the (total) Hopf–Hilton homomorphism (cf Whitehead [24, XI, 8.5].

Recall that E.�m�2.S
n�2// lies in the kernel of h whenever n � 3 (and coincides

with it if also m� 3n� 6; see, for example, [24, XII, 2.3] or Koschorke–Sanderson
[23]).

Proof If n is even, then �.Sn/D 2� #G . In particular, this implies our claim when
mD nD 2.

Thus (in view of Theorem 3.1(iii)) we may assume that m; n� 3. Then � (cf (6–5))
lifts to

z�W .�m�1.S
n�1//k ��m�1

� k_
Sn�1

�
zvj�
�!�m�1.S

n
�fz�1;:;z�kg/Š�m�1

�k�1_
Sn�1

�
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where k WD #�1.N / D #G and the points z�1; : : : ; z�k 2 Sn are projected to � 2 N .
After a suitable homotopy vj

Wk�1
Sn�1 (cf (6–6)) lifts to an embedding

zvkW

k�1_
Sn�1

� Rn
�fz�1; : : : ; z�k�1g � Sn

�fz�1; : : : ; z�kg

which is known to be a homotopy equivalence. We use this to identify the target group
of z� with �m�1

�Wk�1
Sn�1

�
and thus make it accessible to Hilton’s computing

techniques [13].

Let �j 2 �n�1

�W
Sn�1

�
be represented by the inclusion of the j th sphere in the

wedge. Then

(6–9)
zvj�.�j /D �j ; j D 1; : : : ; k � 1; and

zvj�.�k/D��1� � � � � �k�1I

indeed, we can retract the boundary sphere of a ball around the point z�kD12Rn[f1g

into the spheres around the remaining points z�1; : : : ; z�k�1 , reversing orientations in
the process. Let r stand for a suitable reflection (ie selfmap of degree �1) on any
sphere.

Now consider an element ˛ D .˛1; : : : ; ˛k/ in the domain of z�. When k D 2 then
�.˛/D 0 if and only if ˛2D�r�.˛1/; in this case E.˛1/DE.˛2/. When k D 3 then
�.˛/ vanishes if and only if

(6–10) .�1C �2/ı˛3 D �1ı˛3C �2ı˛3C

X
j�0

wj .�1; �2/ıhj .˛3/

(cf Whitehead [24, XI, 8.5]) equals �.��1/ı˛1 � .��2/ı˛2 , or, equivalently, ˛1 D

˛2 D ˛3 2 ker h. (In order to see this, project to each of the wedge factors Sn�1 and
permute their roles; note also that ker h� ker.r�C id/: just substitute �1 and �2 , resp.,
by r and id, resp., in (6–10)). Collapsing all but three spheres in the wedge

W
Sn�1

allows us to extend our calculation of ker �D ker z� also to the case where k > 3.

Next observe that Xm.N / D 0 (cf Theorem 6.5(a) and (b)(iv)). Thus according
to Theorem 6.9 MC.f;�/ is finite if and only if deg#.f / 2 e.ker �/ (cf (6–8)) or,
equivalently, deg#. zf / lies in the image, under in`� ıE for some suitable loop `2�.N /

(cf (2–12)), of �m�1.S
n�1/ and of ker h, resp. (see Remark 4.5). But this yields the

indicated condition concerning the homotopy class Œ zf �D coll�.Œ zf �/ (cf Proposition
2.6).

Example 6.11 Let N D S3=G be a 3–dimensional spherical space form and mD 4.
Then hW �3.S

2/
Š
����! Z and E maps this group onto �4.S

3/ Š �4.N / Š Z2 .
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Hence according to Theorem 1.4, Proposition 2.6, Theorem 4.3, and Corollary 6.10 we
have for every map f W S4!N

MC.f;�/D

8̂<̂
:
1 if Œf �¤ 0 and #G � 3I

#G if Œf �¤ 0 and #G � 2I

0 if Œf �D 0:

In particular, if #G � 3 and Œf �¤ 0 then

MC.f;�/D1 but MC. zf ; z�/D 1

where zf W S4! S3 is a lifting of f .

In order to gain a better geometric understanding of the dependence on #G which we
encountered in Corollary 6.10 and in the last example let us recall (and generalize) a
classical notion (cf Wyler [25, page 29]).

Definition 6.12 Given a map f W M !N we call a point y 2N injective (or almost
injective, resp.) if its inverse image f �1.fyg/ consists of a single point (or is finite,
resp.).

Thus MC.f;�/ <1 if and only if f is homotopic to a map which possesses an almost
injective point. Furthermore, given a lifting zf of f to a k –sheeted covering space zN
over the manifold N , MC.f;�/ <1 if and only if zf is homotopic to a map which
has at least k different almost injective points (which we may isotop into the fiber
fz�1; : : : ; z�kg over � 2N ).

Clearly if a map between spheres is an (unreduced) suspension then it has a least two
injective points. Suspending again, we obtain a map which admits a whole circle of
injective points. In Corollary 6.10 and Example 6.11 Hopf–Hilton invariants describe
the precise borderline between single and double suspensions which characterizes
spherical maps having at least as many almost injective points as there are elements in
G .

Proof of the statements in Example 1.13 Since n is odd N admits a nowhere
vanishing vector field. Hence for every map f into N the pair .f; f / is loose. In
particular if f1 6� f2 and m> 1 then !#.f1; f2/D deg#.f1�f2/ (cf Proposition 6.1)
is nontrivial since Xm.N /D 0 (cf Theorem 6.5(a) and (b)) and we see from a lifting
argument that f1� f2 does not map into N �f�g. The statements in Example 1.13
follows from Theorem 1.8 and Corollary 6.10 (see also Example 1.3).
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Remark 6.13 The approach of the preceding proof still works when n is even provided
f2 occurs in a loose pair . xf2; f2/ (so that we may replace .f1; f2/ by .f1�

xf2;�/, cf
Propositions 6.1 and 6.2). But this proviso can be very restrictive. For instance if N is
an even-dimensional real projective space and m� 2, then it implies that both liftings
zf2 and aı zf2 of f2 in Sn must be homotopic to aı

'

f 2 where a denotes the antipodal
map (cf Dold–Gonçalves [8, 1.10]). Thus zf2 � aı zf2 and, if Œ zf2� 2E.�m�1.S

n�1//,
then 2Œf2� D 0. This restriction is satisfied, for example, by only two elements in
�17.RP .10//Š �17.S

10/DE.�16.S
9/Š Z240 .

Next consider again an arbitrary manifold N as well as a pair of maps f1; f2W S
m!N ,

m � 2, with only finitely many coincidence points. Adding up their index maps (cf
(3–4)) while keeping track of the Nielsen decomposition we obtain the “total index”

ind.f1; f2/D
˚
indA.f1; f2/

	
2

M
A2�1.N /

�m�1.S
n�1/

which is well defined (once the choices of an orientation of N at y0 and of paths
joining y0 to f1.x0/ and f2.x0/ have been fixed as at the beginning of this section).

Theorem 6.14 The suspended indexM
E.ind.f1; f2// 2

M
A2�1.N /

�m.S
n/

is determined by !#.f1; f2/ and hence depends only on the basepoint preserving
homotopy classes of f1 and f2 .

Furthermore, if the suspension EW �m�1.S
n�1/! �m.S

n/ is injective then

MC.f1; f2/DN #.f1; f2/D #fA 2 �1.N /j indA.f1; f2/¤ 0g:

Proof When we apply the monomorphism in� (cf (6–7)) to the suspended index we
obtain e.ind.f1; f2//D !

#.f1; f2/ (cf (6–8) and the discussion preceding Theorem
3.1).

If n> 2 we may replace any Nielsen class by (at most) one single point x (cf Theorem
3.1(ii)); if it is nonessential we may remove it altogether provided E is injective and
hence the index map q at x (cf Equation (3–4)) is nulhomotopic. In view of Theorem
3.1(iii), Proposition 6.2, Corollary 6.3, and (the last statement in) Proposition 2.6 it
remains only to consider the case where mD 2 and N D RP .2/. But here our second
claim follows from Jezierski [14, Theorem 4.0]. (I am grateful to S Bogatyı̆ and E
Kudryavtseva for bringing this reference to my attention).
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7 Hopf–Ganea invariants and the degree deg#

In this section we continue our discussion of the case M D Sm , m � 2. We give
a purely homotopy theoretical description of our (geometric) homomorphism deg#

and of the group Xm.N /. deg# turns out to consist of two components, one of them
being a Hopf–Ganea invariant HC . We show that HC is a finiteness obstruction for the
minimum number MC (and actually the only one in a dimension range depending on
the connectivity of N ).

Assume that k WD #�1.N / is finite (otherwise deg#
� 0, cf Proposition 4.6). Let

pW zN !N be the universal covering of N and let
W

Bn denote a wedge of standard
unit n–balls, pinched together at base points of the boundary spheres. Given points
y0 ¤ � 2 N and zy0 2 p�1.fy0g/ as well as an orientation of zN , we can identifyWk

Bn with a union of (compact) balls around z�1; : : : ; z�k 2 p�1.f�g/ in zN which
intersect at zy0 . We obtain a pinching map

(7–1) pinchW zN D . zN �[k VBn/[att

k_
Bn
�! zN =

k_
Sn�1

Š

k_
Sn
_ zN

which collapses the boundary spheres
W

Sn�1 to a point.

On the other hand there is the projection

(7–2) proj2W
k_

Sn
_ zN �! zN

which collapses the wedge
Wk

Sn . Its mapping fiber (cf Whitehead [24, page 43] but
without a retopologization as in [24, page 20, line 7]).

(7–3) F D
n
.y; �/ 2

� k_
Sn
_ zN

�
�P . zN / j �.0/D proj2.y/; �.1/D zy0

o
(compare Conventions 1.15) contains the contractible subspace

P D f.y; �/ 2 F j y 2 zN g Š f� 2 P . zN / j �.1/D zy0g

whose complement .Sn�fzy0g/�.qk�. zN ; zy0// admits a homotopy equivalence with
.Sn � fzy0g/��.N;y0/ which is compatible with the labelling of the center points
z�1; : : : ; z�k 2 p�1.f�g/ of the balls in

Wk
Bn .

Lemma 7.1 (cf Cornea [6, page 2769]) The quotient map

quotW F �! F=P Š Sn
^ .�.N;y0/

C/

is a homotopy equivalence.
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Proof Let �0 denote the constant loop at zy0 . We describe a map�� k_
Sn
�
��. zN ; zy0/; fzy0g ��. zN ; zy0/

�
�! .F; f.zy0; �0/g/

which induces the required homotopy inverse. In each sphere Sn contract all points y

with dist.y; zy0/D 1 into the wedge point zy0 and use this distance also as a parameter
for how far to deform loops � 2 �. zN ; zy0/ along themselves. Thus at y D zy0 each
loop is fully retracted to �0 while � is left unchanged if dist.y; zy0/� 1.

The maps in (7–1), (7–2), and Lemma 7.1 yield the diagram
(7–4)

�m.N;y0/

deg#

���
�
�
� �m. zN ; zy0/

p�

Š
oo_ _ _ _ _ _ _ _

H
uuk k k k k k k k k

pinch�
��

0! �m.S
n^.�.N;y0/

C//
i1� //

�m

� kW
Sn_ zN ; zy0

�
pr1

oo_ _ _
proj2� //

�m. zN ; zy0/! 0
incl2�
oo_ _ _

where the horizontal short exact homotopy sequence (of proj2 , turned into a fiber map)
splits canonically via the inclusion incl2W zN �

W
Sn_ zN . As we will see below (cf

(7–8)) the composite H of the resulting projection pr1 with pinch� is an enriched
Hopf–Ganea invariant homomorphism (relative to the attaching map att in (7–1)). But
let us first compare it to deg#

D !#. ;�/ (cf Proposition 6.1).

Theorem 7.2 H WD pr1 ı pinch� coincides with deg#
ıp� up to an involution of the

target group �m.S
n ^�.N;y0/

C/.

Proof Given zf W .Im; @Im/ �! . zN ; zy0/, we define

u0;u00;uW .Im; @Im/ �!
� k_

Sn
_ zN ; zy0

�
by u0 WD pinch ı zf , u00 D incl2 ı proj2 ıu

0 and u D u0 � u00 C zy0 where the three
summands have their parameters in Œ.i �1/=3; i=3�� Im�1 , i D 1; 2; 3. We lift u to a
map bu D .u;bu2/ into the fiber F of proj2 (cf (7–3)) by putting

bu2.x1;x
0/D proj2 ıuı.straight path from .x1;x

0/ to .0;x0/ in Im/

whenever .x1;x
0/ 2

�
0; 2

3

�
� Im�1 and by using the strip

�
2
3
; 1
�
� Im�1 for the

obvious deformation to make sure that bu is constant on f1g � Im�1 (and hence on
the whole boundary @Im of Im ). Then quot ıbu (cf Lemma 7.1) represents H.Œ zf �/ WD

pr1ı pinch�.Œ zf �/ (cf (7–4)).
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We compare this homotopy class to the degree deg#.f /D !#.f;�/ of f D pı zf by
inspecting the corresponding geometric (Pontryagin–Thom) data (as described eg in
(2–8) and (2–10)). We may assume that � 2N is a regular value of f . Applying the
Pontryagin–Thom procedure to quot ıbu we obtain in the first place the submanifold

u�1.fz�1; : : : ; z�kg/� VI
m
� Sm

�fx0g

which is the inverse image of the zero section �.N;y0/ � f0g in the Thom space
Sn ^ .�.N;yo/

C/ of the trivial n–plane bundle over �.N;y0/ (cf the discussion
preceding Lemma 7.1). Up to the dilation

�
0; 1

3

�
� VIm�1 � VIm this submanifold is

equal to

u
0�1.fz�1; : : : ; z�kg/D zf

�1.fz�1; : : : ; z�kg/D f
�1.f�g/D C.f;�/;

ie to the first component of the triple .C.f;�/; zg1; xg
#/ which represents deg#.f /. Also

the maps into �.N;y0/ are homotopic (up to reversing the direction of the loops).
Indeed, the straight paths which occur in the definition of bu2 and end in f0g� Im�1

correspond to a homotopy G which shifts C.f;�/ towards x0 as in the construction
of zg1 (cf (2–8)); note that the identity map on zN can be deformed into the composite

zN �! zN =

k_
Bn
D zN �

k[
VBn=

k_
Sn�1

Š zN

(the homeomorphisms to the right hand side here and in (7–1) agree). However, the
framings of the two Pontryagin–Thom data differ by an automorphism of the trivial
n–plane bundle induced by zg1 (cf (2–8) and (2–10)).

There is a canonical isomorphism

(7–5) �W �m.S
n
^ .�N /C/ �! �m

� k_
Sn
_ zN ; zN

�
since the natural epimorphisms from �m._Sn _ zN / onto these groups have the same
kernel (cf (7–4)). The isomorphisms p� and � allow a purely homotopy theoretical
interpretation of our basic coincidence invariant deg# (cf also Remark 7.7).

Corollary 7.3 �ı deg#
ıp� coincides with the composed homomorphism

�m. zN / �! �m

�
zN ; zN �

Sk VBn
� pinch�
����! �m

�W
Sn _ zN ; zN

�
up to an involution of the target group.
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In particular, the group Xm.N / (cf Definition 6.4) is canonically isomorphic to the
kernel of

.pinch�; @/W �m

�
zN ; zN �

k[
VBn
�
�! �m

� k_
Sn
_ zN ; zN

�
˚�m�1

�
zN �

k[
VBn
�

where @ denotes the obvious connecting homomorphism.

Next observe that both homomorphisms i1� and pr1 in diagram (7–4) commute with
in� , ret� (cf (6–7)) on one side and with the homomorphisms induced by the obvious
maps

(7–6)
W

Sn
incl1 // W

Sn _ zN
proj1

oo

on the other side. Thus we obtain a canonical decomposition

(7–7) �m.S
n
^ .�.N;y0/

C//Š �m

� k_
Sn
�
˚�m

�� k_
Sn
�
[ zN
�

where
�Wk

Sn
�
[ zN denotes the homotopy fiber of the inclusion

k_
Sn
_ zN �

� k_
Sn
�
� zN

(cf Ganea [10, (9)] or Cornea–Lupton–Oprea–Tanré [7, 6.7]). Given Œ zf � 2 �m. zN ; zy0/,
this yields the decomposition

(7–8) H.Œ zf �/D pr1 ı pinch�.Œ zf �/D .Œcoll ı zf �;HC. zf //

(cf (7–4) and Theorem 7.2) where

collW zN �! zN =
�
zN �

k[
VBn
�
Š

k_
Sn

denotes the collapsing map (7–1) and HC. zf / is the C–Hopf–Ganea invariant of zf
based on the cofibration

(7–9) CW
k_

iD1

Sn�1
� zN �

k[
iD1

VBi �!
zN

(cf Cornea–Lupton–Oprea–Tanré [7, 6.7] or Fernández-Suárez–Gómez-Tato–Tanré [9,
1.1]).
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Corollary 7.4 Given maps f; f1; f2W .S
m;x0/! .N;y0/, let zf ; zf1; zf2 be the cor-

responding (basepoint preserving) liftings to the universal covering space zN .

If MC.f;�/ <1 then HC. zf /D 0.

If MC.f1; f2/ <1 then HC. zf1/D�inv.HC. zf2// where the involution inv of

�m

��_
Sn
�
[ zN
�
Š �m.S

n
^ .�N /C/= in�

�
�m

�_
Sn
��

is induced by the involutions in (2–7) and Theorem 7.2.

Proof The involution occurring in Theorem 7.2 (and described at the end of its proof)
preserves the subgroup in�

�
�m

�W
Sn
��

of �m.S
n^.�N /C/ (cf (6–7)). Thus HC. zf /

coincides (up to an isomorphism) with the class of deg#.f / in the quotient group
�m.S

n^ .�N /C/= in�
�
�m

�W
Sn
��

. But clearly this class vanishes if MC.f;�/ <1
(see Theorem 3.1(i) and (6–8)). The second claim follows similarly from Proposition
6.1.

Remark 7.5 Our interpretation of the Hopf–Ganea invariant HC as an obstruction
can be extended considerably: given any natural number k , an embedding of

Wk
Bn

into any simply connected n–manifold zN , and any map zf W Sm ! zN , HC. zf / (cf
(7–9)) must vanish if zf is homotopic to a map with at least k almost injective points
(cf Definition 6.12).

In view of the last corollary it is natural to ask whether the Hopf–Ganea invariant is
the only finiteness obstruction. In order to get a partial answer consider the commuting
diagram (where m� 2 as before)

(7–10) �m.N / �m. zN /
Š

p�oo

j�

��

HC

((PPPPPPPPPPPP

�m�1

� kW
Sn�1

�
E0

// �m

�
zN ; zN �

S
VBn
�
zHC

// �m

�� kW
Sn
�
[ zN
�

(compare Fernández-Suárez–Gómez-Tato–Tanré [9, Section 1]). Here E0 denotes
the ‘suspension homomorphism’ described by straight paths in

�W
Bn;

W
Sn�1

�
��

zN ; zN �[ VBn
�

and zHC is a canonical extension of the C–Hopf–Ganea homomorphism
(cf (7–9)) to the indicated relative homotopy group. Given Œ zf � 2 �m. zN /, we see (as
in the proof of Theorem 6.9) that MC.pı zf ;�/ < 1 if and only if j�.Œ zf �/ lies in
E0.˚k�m�1.S

n�1// (provided m� 3 or �1.N /D 0).
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Theorem 7.6 Assume that N is q–connected and 2�m� qC2n�3. Then we have
for all Œ zf � 2 �m. zN / :

MC.pı zf ;�/ is finite if and only if HC. zf /D 0:

Assume in addition that EW �m�1.S
n�1/ �! �m.S

n/ is injective. Then Xm.N /D 0.

Proof When nD2<m then N must be open here and MC.pı zf ;�/D0 (cf Corollary
6.3). Thus we may assume that n�3. Since zN is at least .m�2nC3/–connected, so is
the (first) inclusion in C (cf (7–9); use Whitehead’s theorem and excision in homology).
Therefore the horizontal line in diagram (7–10) is part of an exact EHP–sequence (cf [9,
1.3]). Moreover E0.˚k�m�1.S

n�1// is the full image of E0 since k D #�1.N /D 1

or else m� 1 < 2n� 3 (compare Hilton [13]). Our claim follows from the previous
discussion and from Theorem 1.14.

Remark 7.7 We may also consider the C0–Hopf–Ganea homomorphism

(7–11) HC0 W �m.N / �! �m.S
n[N /

based on the cofibration

(7–12) C0W Sn�1
�N � VBn

�!N

where Sn�1 is the boundary of some embedded n–ball Bn (“top cell”) in N (compare
(7–8) and (7–9)). HC0 is induced by the corresponding pinch map

(7–13) pinch0W N �!N=Sn�1
� Sn

_N

and the second projection in the canonical decomposition
(7–14)
�m.S

n
_N /Š �m.S

n
^ .�N /C/˚�m.N /Š �m.S

n/˚�m.S
n[N /˚�m.N /

(compare (7–1), (7–4), and (7–7)); here the first component homomorphism of pinch0�
is induced by a collapsing map coll0W N ! Sn of degree ˙1 (as in (2–11)).

According to Theorem 7.2 the combined homomorphism

(7–15) .coll0�;HC0/W �m.N / �! �m.S
n/˚�m.S

n[N /

agrees with deg# up to an isomorphism between the target groups. In particular, for
all Œf � 2 �m.N / the Hopf–Ganea invariant HC0.Œf �/ (relative to the attaching class of
the top cell of N ) can be described entirely by the coincidence data of the preimage
f �1.f�g/. To be more precise assume that f is smooth with regular value � 2 N .
Then coll0�.Œf �/ corresponds (via Pontryagin–Thom) to the bordism class of the framed
submanifold C WD C.f;�/ D f �1.f�g/ of Sm � fx0g and HC0.Œf �/ measures the
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added information which the lifting zg (cf (1–5)) or, equivalently, the map zg1W C!�N

contributes to deg#.Œf �/D Œf �1.f�g/; zg1; xg
#
1
� (cf (2–8)–(2–10)). On the other hand, the

element coll�.Œ zf �/2�m._
kSm/ (cf (7–7), (7–8)) corresponds to the link C DqC˛ of

disjoint framed submanifolds (ie it captures the Nielsen decomposition of C determined
by zg , cf (2–5)), and the Ganea–Hopf invariant HC.Œ zf �/, which we studied in (7–8)–
(7–10), Corollary 7.4 and Theorem 7.6, measures the remaining information contained
in deg#.Œf �/.

In general, HC0.Œf �/ contains much more information than HC.Œ zf �/. Indeed,

(7–16) �m.S
n[N /Š ker.ret0�/˚�m

�� k_
Sn
�
[ zN
�

where ret0W _kSn! Sn maps each sphere in the wedge identically to Sn . In view of
the Hilton decomposition

(7–17) �m

� k_
Sn
�
Š

M
k

�m.S
n/˚

M
.k

2/

�m.S
2n�1/˚ : : :

(cf Hilton [13]) the kernel of ret0� in (7–16) may be highly nontrivial whenever k > 1.

In particular, HC0.Œf �/ need not vanish when MC.f;�/ is finite (eg in the case mD n

and #G > 1 in Example 1.13). Thus it is suitable to use the universal covering space
zN and the corresponding Hopf–Ganea homomorphism HC.Œ zf �/ when we develop

such finiteness criteria as Corollary 7.4 and Theorem 7.6. However, zN is not required
in Corollary 7.3: clearly Xm.N / is also canonically isomorphic to the kernel of the
obvious homomorphism

.pinch0�; @
0/W �m.N;N � VB

n/ �! �m.S
n
_N;N /˚�m�1.N � VB

n/:

Appendix A Base points

It is sometimes useful to require that the maps f1 and f2 as well as their homotopies
preserve base points. As we will see this has no impact on our numerical invariants
whenever m; n� 1.

Let x0 2M and y1 ¤ y2 2 N be a given choice of base points. For any two “base
point preserving” maps

fi W .M;x0/ �! .N;yi/; i D 1; 2;
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define MCCb.f1; f2/ (and MCb.f1; f2/, resp.) to be the minimum number of path
components (and of points, resp.) in the coincidence locus C.f 0

1
; f 0

2
/ of any pair of

maps in the same base point preserving homotopy classes, ie

Œf 0i �D Œfi � 2 Œ.M;x0/; .N;yi/�; i D 1; 2:

Lemma A MCCb.f1; f2/ D MCC.f1; f2/ and MCb.f1; f2/ D MC.f1; f2/; in
particular if the pair .f1; f2/ is loose then there are already base point preserving
homotopies which deform f1 and f2 away from one another.

(For a related result in the context of classical fixed point theory see eg Jiang [15,
Section 3]).

Proof The claims concerning MCC and MC will be treated simultaneously. We may
concentrate on the case m; n� 2.

Clearly M.C /Cb.f1; f2/�M.C /C.f1; f2/.

Conversely, let the minimum number M.C /C.f1; f2/ be realized by a pair .f 00
1
; f 00

2
/.

Without changing the number of coincidence components (or points, resp.) we may
– in a first step – deform this pair until it preserves base points. Indeed, if there is a
point bx 0 2M such that f 00

1
.bx 0/¤ f

00
2
.bx 0/, compose .f 00

1
; f 00

2
/ with isotopies in M

and N which move x0 to bx 0 and fi.bx 0/ to yi , i D 1; 2; if f 00
1
� f 00

2
remove first a

small ball VB �M from the coincidence set C.f 00
1
; f 00

2
/ by “pushing f 00

2
slightly off

f 00
1

in VB ”.

The second step is a simple modification near x0 which makes f 00i homotopic to fi in
the base point preserving sense, i D 1; 2. Let

ci DHi.x0;�/W .I; f0; 1g/ �! .N;yi/

be smooth transverse paths resulting from homotopies Hi W fi � f
00

i , i D 1; 2. After
suitable changes of the parametrization near finitely many intersection points c1 and c2

will be coincidence free. Now identify a small ball in M around x0 with the unit ball
Bm in Rm . We may assume that for every x 2 Bm , f 00i .x/D yi ; then replace this by
f 00i .x/ WD ci.kxk/, i D 1; 2. This procedure does not change the coincidence set of
.f 00

1
; f 00

2
/ but yields basepoint preserving homotopies. Thus in the end we conclude

that M.C /Cb.f1; f2/� #.�0/C.f
00

1
; f 00

2
/DM.C /C.f1; f2/.

Geometry & Topology, Volume 10 (2006)



Nonstabilized Nielsen coincidence invariants 665

References
[1] M F Atiyah, R Bott, A Shapiro, Clifford modules, Topology 3 (1964) 3–38

MR0167985
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