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Dynamics of the mapping class group action
on the variety of PSL2C characters

JUAN SOUTO

PETER STORM

We study the action of the mapping class group Mod.S/ on the boundary @Q of
quasifuchsian space Q . Among other results, Mod.S/ is shown to be topologically
transitive on the subset C � @Q of manifolds without a conformally compact end. We
also prove that any open subset of the character variety X .�1.S/;SL2 C/ intersecting
@Q does not admit a nonconstant Mod.S/–invariant meromorphic function. This is
related to a question of Goldman.

57M50; 58D27

1 Introduction

Let S be a closed oriented surface of genus g � 2 and let � be its fundamental group.
The mapping class group

Mod.S/D Diff.S/=Diff0.S/D Out.�/

of S acts on the character variety

X .�;PSL2 C/D Hom.�;PSL2 C/� PSL2 C

by precomposition. Quasifuchsian space Q is the open cell in the character variety
X .�;PSL2 C/ formed by the conjugacy classes of faithful representations with convex
cocompact image. It is invariant under the mapping class group, and the action of
Mod.S/ on Q is properly discontinuous. On the other hand, our first result shows that
the action of Mod.S/ on @Q has very complicated dynamics.

Theorem 1.1 Let C � SQ denote the set of representations whose quotient manifold
has no conformally compact end and let C denote the closure of C . Then:

(1) C is a Mod.S/–invariant nowhere dense topologically perfect set.

(2) The action of Mod.S/ on C is topologically transitive.

(3) The points � 2 @Q satisfying C �Mod.S/ � � form a dense Gı–set.
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In particular, Theorem 1.1 implies that any continuous Mod.S/–invariant function
on @Q is constant. Recall that the action of a group on a locally compact Hausdorff
separable topological space is topologically transitive if the translates of any two open
sets intersect, or equivalently, if there is a dense orbit.

The group PSL2 C is the group of orientation preserving isometries of hyperbolic
3-space H3 . It is well known that � is faithful and that the action of �.�/ on H3 is
free and properly discontinuous for each � 2 SQ (see Kapovich [14, Theorem 9.1.4]). In
particular M� D H3=�.�/ is an orientable hyperbolic manifold homotopy equivalent
to S . From this point of view the set C of Theorem 1.1 is the set of all � 2 SQ such
that the boundary of the convex core of the associated hyperbolic manifold M� does
not have a compact component.

A special role is played by geometrically finite representations �2C where the boundary
of the convex core of M� is a collection of thrice-punctured spheres. We call these
representations full maximal cusps. The proof of Theorem 1.1 involves studying the
dynamics of the Mod.S/–action near these points. For example, the techniques used
to prove Theorem 1.1 are also used to prove that for any open neighborhood U � @Q
of a full maximal cusp, the orbit Mod.S/ �U is dense in @Q (see Corollary 4.3).

It is well known that two representations �; �0 2Q are close if and only if the associated
hyperbolic manifolds M� and M�0 are bi-Lipschitz with a small bi-Lipschitz constant.
This is why geometric invariants of the manifold M� , for example the volume of
the convex core, the injectivity radius, the lowest eigenvalue of the Laplacian, or the
Hausdorff dimension of the limit set, are continuous functions on quasifuchsian space.
However, in the larger set SQ the picture is more complex. Two representations �; �0 2 SQ
may be close without there being any bi-Lipschitz homeomorphism from M� to M�0 .
With this motivation one may ask which geometric invariants remain continuous on SQ.
In each case it was previously known via different methods that these quantities are no
longer continuous on SQ. We derive from Theorem 1.1 a unified proof of this fact:

Theorem 1.2 The volume of the convex core, the injectivity radius, the lowest
eigenvalue of the Laplacian and the Hausdorff dimension of the limit set do not vary
continuously on SQ.

We also apply Theorem 1.1 to study Mod.S/–invariant meromorphic functions defined
on subsets of the character variety X .�;SL2 C/. In [12], Goldman proved that every
Mod.S/–invariant meromorphic function defined on the whole of X .�;SL2 C/ must
be constant. This result motivates the question of which connected open subsets U of
X .�;SL2 C/ admit nonconstant Mod.S/–invariant meromorphic functions. (A weaker
form of this question can be found in [12, Section 1.4].) Goldman [11] deduced the
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Dynamics of the mapping class group action on character varieties 717

nonexistence of invariant nonconstant meromorphic functions from the ergodicity of
the Mod.S/–action on the (real) subvariety X .�;SU2/. In particular his result applies
to every connected open set U � X .�;SL2 C/ containing unitary representations. We
obtain the following analogue of Goldman’s result:

Theorem 1.3 Let U �X .�;SL2 C/ be a Mod.S/–invariant connected open set. If U

contains both (faithful) convex cocompact representations and indiscrete representations
then any Mod.S/–invariant meromorphic function on U is a constant function.

After some preliminaries in Section 2 we present in Section 3 a concrete construction of
hyperbolic 3-manifolds which will be one of the key ingredients in the proof of Theorem
1.1. Full maximal cusps are the other key ingredient. In particular, in Section 4 we
deduce that full maximal cusps are dense in C . The proof uses techniques developed by
McMullen [16], Canary, Culler, Hersonsky, and Shalen [6; 7], who studied the ubiquity
of maximally cusped representations on the boundaries of various deformation spaces.
Theorem 1.2 is proved in Section 5 and Theorem 1.3 is proved in Section 6.
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Science Foundation Postdoctoral Fellowship. The first author would like to thank the
members of the University of Chicago Department of Mathematics for their hospitality.
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2 Preliminaries

We refer to Heusener and Porti [13] for basic facts about the character variety and
to Anderson [1] for a survey about the deformation theory of discrete subgroups of
PSL2 C. If H is a finitely generated non-virtually abelian torsion free group then
Hom.H;PSL2 C/ is a complex algebraic variety on which PSL2 C acts by conjugacy.
The character variety

X .H;PSL2 C/D Hom.H;PSL2 C/� PSL2 C

is the quotient of Hom.H;PSL2 C/ under this action in the sense of invariant theory.
We remind the reader that X .H;PSL2 C/ does not coincide with the set theoretic
quotient Hom.H;PSL2 C/=PSL2 C. However, the set of conjugacy classes of discrete
faithful representations is contained in a smooth open manifold in X .H;PSL2 C/ [13,
Section 4]. This paper is concerned only with discrete faithful representations, so the
machinery of invariant theory will not be needed.
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Notation The Greek letters � and � (possibly with decoration) will be used to indicate
conjugacy classes of representations. Thus � and � will be elements of the appropriate
character variety. The notation �.H / will indicate the image of H under any fixed
homomorphism of the conjugacy class � .

We identify the group PSL2 C with the group of orientation preserving isometries of
hyperbolic 3-space H3 . We will denote the convex core of a hyperbolic manifold M

by C C.M /. The convergence of sequences in X .H;PSL2 C/ is said to be algebraic
convergence. Let �i!� be an algebraically convergent sequence. If the representations
�i are discrete and faithful for all i , then it is well known that � is discrete and faithful
as well (see Kapovich [14, Theorem 9.1.4]). Moreover, up to a choice of a subsequence,
the groups �i.H / converge in the Chabauty topology to a discrete subgroup HG of
PSL2 C which contains the image of � . HG is the geometric limit of the sequence
f�i.H /g.

In this paper we will mainly consider discrete and faithful representations of the
fundamental group � of a closed surface S . A faithful and discrete representation
� 2 X .�;PSL2 C/ induces a homotopy class of homotopy equivalences S �!M� .
(Recall that M� denotes the hyperbolic 3–manifold H3=�.�/.) A theorem of Bonahon
[3] ensures that M� is homeomorphic to a trivial interval bundle over S . Moreover,
the homotopy equivalence S �!M� determines a unique isotopy class of orientation
preserving homeomorphisms S � .�1; 1/ �!M� . In other words, M� has a positive
end (the top end) and a negative end (the bottom end). Observe that orientation
reversing elements in Mod.S/ extend in a canonical way to orientation preserving
homeomorphisms of S � .�1; 1/ which interchange the top and bottom ends.

A component of @C C.M�/ is said to face the top (resp. bottom) end of M� if it is
isotopic in M��C C.M�/ out the top (resp. bottom) end of M� . With this terminology,
the top (resp. bottom) end of M� is conformally compact if there is a single compact
component of @C C.M�/ facing the top (resp. bottom) end of M� , or equivalently if
there are compact embedded convex surfaces exiting the top (resp. bottom) end of M� .
(This terminology comes from the fact that a conformally compact end limits onto a
compact boundary component of the conformal manifold

�
H3[��

�
=�.�/, where

�� � S2
1 denotes the domain of discontinuity of �.�/.)

Quasifuchsian space Q�X .�;PSL2 C/ is the open set of conjugacy classes of faithful
convex cocompact representations. The closure SQ of quasifuchsian space Q consists
of faithful representations with discrete image and hence it is contained in an open
submanifold of X .�;PSL2 C/. Let @Q denote the boundary of quasifuchsian space
SQ�Q� X .�;PSL2 C/. Sullivan [21] proved that @Q is also the set�

X .�;PSL2 C/� SQ
�
�
�
X .�;PSL2 C/� SQ

�
:
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Dynamics of the mapping class group action on character varieties 719

In other words, @Q is the frontier of SQ. Note that � 2 SQ is quasifuchsian if and only
if it has two conformally compact ends.

The following Mod.S/–invariant subset of @Q will play a central role:

C D f� 2 @Q jM� has no conformally compact endg:

For example, if C C.M�/DM� then � 2 C . In particular, a cyclic cover of a fibered
hyperbolic 3–manifold lies in C . On the other hand, the closure of any Bers slice is
disjoint from C . Finally, any representation in SQ without parabolic elements has a
neighborhood disjoint from C (see the proof of Theorem 1.1). This gives a decomposi-
tion of SQ into three pieces: the manifolds with two conformally compact ends Q, the
manifolds with exactly one conformally compact end @Q� C , and finally C , which
contains several types of manifolds. Roughly speaking, the Mod.S/–action becomes
increasingly chaotic on these pieces. Surprisingly, C is not closed (see Section 7).

3 The main construction

In this section we present a construction which is the core of the proof of Theorem
1.1. The main building pieces in our construction are so called maximal cusps. Fix a
compact hyperbolic surface S with fundamental group � .

We will say that a discrete finitely generated subgroup of PSL2 C is a full maximal cusp
if it is geometrically finite and every component of the boundary of the convex core of
the associated hyperbolic manifold is a thrice punctured sphere. Observe that � 2 C
if �.�/ is a full maximal cusp. We will say a representation � 2 @Q is a one sided
maximal cusp if it is geometrically finite, has one conformally compact end, and each
component of @C C.M�/ facing the end of M� which is not conformally compact is a
thrice punctured sphere. (A one sided maximal cusp is often simply called a maximal
cusp (see McMullen [16]). Our modified terminology has been chosen for clarity.) The
set of full maximal cusps in @Q is countable, and intuitively forms a set of “rational
points” on the boundary. This intuition can be made precise in the punctured torus
case.

Maximal cusps are very convenient when making concrete constructions because any
pair of totally geodesic thrice punctured spheres in any pair of hyperbolic 3-manifolds
are isometric. In particular, if M and M 0 are hyperbolic manifolds whose convex
cores boundaries @C C.M / and @C C.M 0/ contain thrice punctured spheres X and
X 0 , and � W X �!X 0 is a homeomorphism, then � is isotopic to an isometry which
we denote again by � . Hence there is a hyperbolic manifold N which is covered by
M and M 0 , whose convex core is isometric to C C.M /[� C C.M 0/.
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The second main ingredient in our constructions is the following lemma, which is
a consequence of Thurston’s Dehn-filling Theorem (see Thurston [22, Chapter 4],
Bonahon and Otal [4], and Comar [8]).

Lemma 3.1 Let H < PSL2 C be a geometrically finite group such that H3=H is
homeomorphic to S � .0; 1/�P where P is an unlinked collection of disjoint simple
closed curves. Then the group H is the geometric limit of geometrically finite groups
Hn isomorphic to �1.S/. Moreover, if H is a full (resp. one sided) maximal cusp,
then the Hn can be chosen to be full (resp. one sided) maximal cusps.

Recall that a collection of disjoint simple closed curves in S� Œ0; 1� is unlinked if every
curve is contained in an embedded boundary parallel surface which is disjoint from
all the other curves. The groups Hn in the statement of Lemma 3.1 are obtained by
performing a hyperbolic .1; n/–Dehn surgery on a neighborhood of each of the curves
in P .

Lemma 3.2 Let H;Hn < PSL2 C be as in the statement of Lemma 3.1, and let
�nW � �!Hn be isomorphisms. If �W � �! PSL2 C is the representation induced by
an embedded level surface

S � ftg � .S � .0; 1/�P/Š H3=H

then there are automorphisms ˛n of � such that �n ı˛n converges algebraically to � .

Proof Since Hn ! H geometrically, for any a compact submanifold K � H3=H

there is a sequence of smooth embeddings �nW K �! H3=Hn which converge in
the C1–topology to isometric embeddings (see McMullen [17, Section 2.2]). Since
H3=Hn is obtained by .1; n/–Dehn surgery on H3=H , it is clear that by choosing a
sufficiently large compact submanifold K the restricted homomorphism

.�n�/j�.�/W �.�/ �!Hn < PSL2 C

will be well defined and injective, and thus an isomorphism. Since the maps �n are
converging to isometries, the sequence of homomorphisms .�n�/j�.�/ is converging to
the identity map. Therefore

�n� ı �W � �!Hn

is a sequence of discrete faithful representations converging to � . Define ˛n to be
��1

n ı�n� ı � . This proves the lemma.

The following is the main result of the present section. For clarity it has been split into
three similar pieces.
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Proposition 3.3 Let �; N� 2 @Q be one sided maximal cusps. There exists a sequence
of representations f�ig in quasifuchsian space and a sequence of mapping classes f˛ig

such that
�i! � and .˛i � �i/! N�:

Proposition 3.4 Let � 2 @Q be a one sided maximal cusp. Let �C be a full maximal
cusp. There exists a sequence of one sided maximal cusps f�ig and a sequence of
mapping classes f˛ig such that

�i! � and .˛i � �i/! �C :

Proposition 3.5 Let �C ; N�C 2 @Q be full maximal cusps. There exists a sequence of
full maximal cusps f�ig and a sequence of mapping classes f˛ig such that

�i! �C and .˛i � �i/! N�
C :

The proofs of Propositions 3.3, 3.4, and 3.5 are very similar, so we will prove carefully
only the first one.

Proof Up to composition with an orientation reversing element in Mod.S/, we may
assume that the top end of M� and the bottom end of M N� are conformally compact.

By Lemma 3.2 it suffices to construct a hyperbolic manifold N homeomorphic to the
complement in S � .0; 1/ of an unlinked collection of simple curves, which is (locally
isometrically) covered by both M� and M N� .

The convex cores C C.M�/ and C C.M N�/ are by definition homeomorphic to

.S � Œ�1; 1�/ � .PC � f�1g/ and .S � Œ�1; 1�/ � .P� � f1g/;

where PC and P� are pants decompositions of S . Choose sufficiently complicated
homeomorphisms �CW S �! S and ��W S �! S such that the two collections
�C.PC/ and ��.P�/ bind the surface S . Thurston’s hyperbolization theorem (see
Otal [19]) implies that there is a geometrically finite hyperbolic 3-manifold S �!M

whose convex core is homeomorphic to

.S � Œ�1; 1�/ � .��.P�/� f�1g[�C.PC/� f1g/ :

The middle manifold M is a full maximal cusp. M� and M N� are one sided maximal
cusps. Therefore the convex cores of M� , M N� and M can be glued together to obtain
the convex core C C.N / of a hyperbolic 3-manifold N covered by M� and M N� and
homeomorphic to

.S � Œ�3; 3�/ � .��.P�/� f�1g[�C.PC/� f1g/ :
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C C.M�/

M

PC

�C.PC/

��.P�/

P�

C C.M N�/

glue by �C

glue by ��

Figure 1: Constructing the manifold N
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(See Figure 1 for a picture of this construction. In the figure the homeomorphisms �˙
are the identity map, because the pants decompositions P˙ already bind S .)

We are now in the situation of Lemma 3.1. The holonomy representation of N

corresponds to H < PSL2 C, and

��.P�/� f�1g [ �C.PC/� f1g

corresponds to the unlinked collection of curves P . Two applications of Lemma 3.2
conclude the proof of Proposition 3.3. First apply Lemma 3.2 to the level surface
S � f2g. Then apply it to the level surface S � f�2g.

For the proof of Proposition 3.4, replace N� with �C and follow the above argument. This
will require adding a third pants decomposition to the above notation, corresponding to
the bottom end of M�C . Similarly, for the proof of Proposition 3.5, replace � with �C ,
N� with N�C , and follow the above argument. In this case it will be necessary to add a
fourth pants decomposition to the above notation. Otherwise the proof goes through
unchanged in both cases.

4 Ubiquity of maximal cusps

In this section we study the ubiquity of maximal cusps in @Q. In particular, full
maximal cusps are shown to be dense in the subset C � @Q given by manifolds without
a conformally compact end (see Proposition 4.5). This result will be used in the proof
of Theorem 1.1. We will use techniques developed by McMullen [16], Canary, Culler,
Hersonsky and Shalen [6], and Canary and Hersonsky [7]. We begin by combining
results from [16] and [6] with work of Brock, Bromberg, Evans and Souto [5] to prove
the following statement.

Theorem 4.1 One sided maximal cusps form a dense subset of @Q.

Proof A standard Baire category argument shows that the set of representations
� 2 @Q without parabolic elements forms a dense subset of @Q (see McMullen [16,
Corollary 1.5] or Canary, Culler, Hersonsky and Shalen [6, Lemma 15.2]). So it suffices
to approximate only representations without parabolic elements by one sided maximal
cusps. Pick such a representation � 2 @Q. There are only two possibilities: either
the limit set of � is the entire sphere at infinity, or M� has exactly one conformally
compact end and one geometrically infinite end.

If the limit set of such a � is the entire sphere at infinity, then Canary, Culler, Hersonsky
and Shalen have proven [6, Theorem 6.1] that � is an algebraic limit of full maximal
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cusps. Proposition 3.4 shows that a full maximal cusp is always an algebraic limit of
one sided maximal cusps in @Q� C . Therefore it only remains to consider the case
where M� has one conformally compact end.

Let us assume without loss of generality that the top end of M� is conformally compact.
Applying [5], we know the representation � 2 @Q is a strong limit of quasifuchsian
representations �i . By Kerckhoff and Thurston [15], the conformal structure at infinity
of the top end of M� must be the limit in Teichmüller space of the conformal structures
at infinity of the top ends of the M�i

. Therefore altering the manifolds M�i
by a

Ki –bi-Lipschitz deformation, where Ki ! 1, produces a sequence of quasifuchsian
manifolds in a Bers slice converging strongly to M� . We may now apply [16] to
conclude that � is an algebraic limit of one sided maximal cusps.

From Proposition 3.4 and Theorem 4.1 we derive the following ostensibly stronger
result:

Proposition 4.2 In every open subset of @Q we find a N� with the following property:
For every full maximal cusp �C there is a sequence f˛ig in Mod.S/ with

�C D lim
i
˛i � N�

Proof Recall that the set of all full maximal cusps is countable. In particular there is
a sequence of full maximal cusps f�j g � C such that every full maximal cusp appears
infinitely often in the sequence.

Moreover, we can fix open neighborhoods Vj of �j in @Q such that when a subsequence
�ji

converges then for every choice of �0ji
2 Vji

the sequence �0ji
also converges to

the same limit.

Given an open neighborhood U1 in @Q we obtain from Proposition 3.4 and Theorem
4.1 a one sided maximal cusp �1 2U1 � @Q and ˛1 2Mod.S/ with ˛1 ��1 2 V1 . Let
U2 be an open and relatively compact neighborhood of �1 in U \˛�1

1
.V1/. Applying

again the same argument we find a one sided maximal cusp �2 2U2 and ˛2 2Mod.S/
with ˛2 � �2 2 V2 . Let U3 be an open and relatively compact neighborhood of �2

in U2 \ ˛
�1
2
.V2/. Inductively we find a sequence of one sided maximal cusps f�ig,

a sequence f˛ig in Mod.S/, and a sequence of open sets fUig such that: UiC1

is relatively compact in Ui , �i is in Ui , and ˛i.Ui/ � Vi : By our choice of the
neighborhoods Vi we can conclude that every N� in \iUi has the desired property.

By reversing the logic of Proposition 4.2 we obtain:
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Corollary 4.3 If W � @Q is an open set containing a full maximal cusp then
Mod.S/ �W is a dense open subset of @Q. Moreover, the set

f� 2 @Q jMod.S/ � � contains every full maximal cuspg

is a dense Gı–set.

Proof The first sentence of the corollary follows immediately from Proposition 4.2. To
prove the second, let us reuse the notation f�j g and fVj g from the proof of Proposition
4.2. Then\

j

Mod.S/ �Vj D f� 2 @Q jMod.S/ � � contains every full maximal cuspg:

From this the corollary follows.

The following theorem paraphrases the results of Canary and Hersonsky [7, Section 10].
It will be used in the proof of Proposition 4.5.

Theorem 4.4 [7, Theorem 10.1] Let M be a hyperbolic 3–manifold with a holo-
nomy representation � . Assume there is a sequence of geometrically finite representa-
tions �i converging algebraically to � such that the homomorphisms �.�1.M // �!

�i.�1.M // are induced by homeomorphisms

.M; cusps of M / �! .M�i
; cusps of M�i

/:

Let E denote the geometrically infinite ends of M � {cusps}. Then there exists a
sequence of geometrically finite representations b�j converging algebraically to �

satisfying:

(1) There exists a homeomorphism �j W M �!Mb�j taking the cusps of M into
the cusps of Mb�j .

(2) If † is a component of @C C.Mb�j / isotopic in

Mb�j � int.C C.Mb�j //
outside every bounded subset of �j .E/, then † is a thrice punctured sphere.

Using some standard terminology we have not defined here (see Anderson [1]), this
theorem can be restated informally as follows. If M lies on the boundary of the defor-
mation space of a pared manifold, then it can be approximated by geometrically finite
manifolds on the boundary of the same deformation space, where each geometrically
infinite end of M �fcuspsg has been replaced by a maximally cusped geometrically
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finite end. The statement of Theorem 4.4 differs slightly from the statement of [7,
Theorem 10.1]. However, the proof of [7, Theorem 10.1] proves Theorem 4.4.

Recall that C � @Q is the set of manifolds without a conformally compact end. We are
now ready to prove the main result of this section, which will be used in the proof of
Theorem 1.1.

Proposition 4.5 Full maximal cusps are dense in C .

Proof Pick a representation � 2 C . The goal is to approximate � by a sequence of
full maximal cusps. We divide the proof into four cases, depending on what type of
representation � is.

Case 1 Assume � is geometrically finite.

We will produce a hyperbolic manifold covered by M� which is the geometric limit of
a sequence of full maximal cusps in C . Then we will apply Lemma 3.2 to complete
Case 1.

The convex core C C.M�/ of M� is homeomorphic to

N0 WD .S � Œ�1; 1�/� .P� � f�1g[PC � f1g/ ;

where P˙ are nonempty collections of disjoint, nonparallel simple closed curves.
Define

N WD .S � Œ�1; 2�/ � .P� � f�1g[PC � f1g/:
We consider the embedding N0 �!N and the induced morphism

…W X .�1.N /;PSL2 C/ �! X .�;PSL2 C/:

By a result of Brock, Bromberg, Evans and Souto [5, Lemma 5.1] there is an open set in
…�1.�/ consisting of discrete, faithful, geometrically finite, and minimally parabolic
representations. (Here, minimally parabolic means that every parabolic conjugacy class
of �1.N / corresponds to a component of one of the pants decompositions P� or PC .)
Moreover, the marked conformal structure at infinity corresponding to the bottom end
of any manifold in the fiber …�1.�/ is equivalent to the marked conformal structure at
infinity corresponding to the bottom end of M� .

On the other hand, by deforming the added generator in any Z�Z subgroup of �1.N /,
we see that every connected component of …�1.�/ contains indiscrete representations.
So there must be a nonempty separating set of discrete faithful representations in
…�1.�/ which are either geometrically infinite or not minimally parabolic. A generic
� 2…�1.�/ is minimally parabolic. (This is again a Baire category argument; com-
pare with McMullen [16, Corollary 1.5] or Canary, Culler, Hersonsky and Shalen [6,
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Lemma 15.2].) We deduce that there is a discrete, faithful, and minimally parabolic
� 2…�1.�/ such that the top end of M� is geometrically infinite.

One should imagine that M� has been obtained by adding a geometrically infinite
cap onto the top end of M� . With its geometrically infinite end, M� is more easily
approximated by one sided maximal cusps. Indeed, we may now apply Theorem 4.4 to
conclude that � is the algebraic limit of a sequence �i in X .�1.N /;PSL2 C/ such �i

is discrete, faithful, geometrically finite, and the top end of M�i
is maximally cusped.

Since M� is minimally parabolic, we may apply a theorem of Evans [10] to conclude
that the manifolds M�i

also converge geometrically to M� . Lemma 3.1 implies
now that for all i the manifold M�i

is the geometric limit of a sequence M
j
i of

geometrically finite hyperbolic manifolds homeomorphic to S � .0; 1/ such that the
top end of each M

j
i is maximally cusped. Taking a diagonal sequence we deduce that

M� is the geometric limit of a sequence of geometrically finite manifolds whose top
ends are maximally cusped. Since M� is covered by M� , we may apply Lemma 3.2
to conclude that

M� is an algebraic limit of geometrically finite manifolds in C whose top ends are
maximally cusped.

Therefore, we may without loss of generality assume the the top end of M� is maximally
cusped. Now apply the above argument again to M� , swapping the roles of the
bottom end and the top end. This yields a sequence of full maximal cusps converging
algebraically to M� . The completes the proof of Case 1.

Case 2 M� has at least one rank one cusp in each end.

By Case 1 it suffices to approximate M� by geometrically finite manifolds in C . Let
PC (resp. P� ) be a nonempty collection of disjoint essential annuli on S such that
there is a relative homeomophism

.S � .0; 1/ ; .PC � Œ:8; 1//
[
.P� � .0; :2�// �! .M�; cusps of M�/:

By a result of Brock, Bromberg, Evans and Souto [5, Corollary 3.2], M� is the algebraic
and geometric limit of a sequence of geometrically finite manifolds M�i

such that for
each i there is a relative homotopy equivalence

.S � .0; 1/ ; .PC � Œ:8; 1//
[
.P� � .0; :2�// �! .M�i

; cusps of M�i
/:

The concurrence of algebraic and geometric convergence implies that, after passing
to a subsequence, these relative homotopy equivalences are rel homotopic to relative
homeomorphisms. This implies that the manifolds M�i

are in C .
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Case 3 M� has all of its rank one cusps in exactly one end.

Assume without loss of generality that M� has rank one cusps in its bottom end. Then
the top end of M� is necessarily geometrically infinite. The proof begins as in Case 3.
Let P� be a nonempty collection of disjoint essential annuli on S such that there is a
relative homeomophism

.S � .0; 1/;P� � .0; :2�/ �!
�
M�; cusps of M�

�
:

As above, applying [5, Corollary 3.2] yields that M� is the algebraic and geometric
limit of a sequence of geometrically finite manifolds M�i

such that for each i there is
a relative homotopy equivalence

.S � .0; 1/;P� � .0; :2�/ �!
�
M�i

; cusps of M�i

�
:

Again using the fact that M�i
converges both algebraically and geometrically to

M� , after possibly passing to a subsequence we may assume these relative homotopy
equivalences are homotopic to relative homeomorphisms.

Having verified its hypotheses, we may now apply Theorem 4.4 to find an M� conver-
gent sequence of geometrically finite manifolds in C whose top ends are maximally
cusped. This reduces the proof to Case 1.

Case 4 M� has no cusps.

In this case M� must have an empty domain of discontinuity. We may then directly
apply [7, Theorem 10.1] to conclude that M� is the algebraic limit of a sequence of
full maximal cusps.

5 The main theorem

In this section we prove the main result of this paper, Theorem 1.1. As an application
we also prove Theorem 1.2.

Recall that C denotes the set of representations whose quotient manifolds have no
conformally compact end. A goal of Theorem 1.1 is to prove that the closure C of C
is a small set, but up to this point we have not found even a single discrete faithful
representation outside of C . This we now do, using a theorem of Evans [10].

Lemma 5.1 If � 2 @Q is a representation with no parabolic elements and exactly one
conformally compact end (i.e. a singly degenerate representation without parabolics),
then � is not contained in C .
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Proof Pick a representation � 2 @Q with no parabolic elements and exactly one
conformally compact end. Suppose that � 2 C . Then by Proposition 4.5 there is a
sequence of full maximal cusps �i! � . Since � has no parabolic elements, it follows
from a theorem of Evans [10] that the manifolds M�i

converge geometrically to M� .
Since the top end of M� is conformally compact, there is a strictly convex surface †
embedded in the top end of M� . Use the almost isometric embeddings provided by
geometric convergence to push the surface † into M�i

. For sufficiently large i this
yields a strictly convex embedded surface in M�i

, showing that the manifolds M�i

eventually have a conformally compact end. Since they are all full maximal cusps, this
is a contradiction. Therefore � is not in C .

Theorem 1.1 Let C �Q denote the set of representations whose quotient manifold
has no conformally compact end. Then:

(1) The closure C of C is a Mod.S/–invariant nowhere dense topologically perfect
set.

(2) The action of Mod.S/ on C is topologically transitive.

(3) The points � 2 @Q satisfying C �Mod.S/ � � form a dense Gı–set.

Proof The set C is Mod.S/–invariant by definition, implying the same for its closure
C . The set C is topologically perfect since full maximal cusps are dense in C and
Proposition 3.5 implies full maximal cusps are not isolated.

To finish claim (1), it remains to prove that C is nowhere dense. Following Lemma 5.1,
let � … C be a representation without parabolics whose quotient manifold has exactly
one conformally compact end. Let U be a neighborhood of � in the complement of C .
By Proposition 4.2 there is a representation in U whose orbit limits onto all of C . As
Mod.S/ �U \ C D∅, this proves that C is nowhere dense.

We now prove claim (2). Let U 1 and U 2 be open sets in C . By Proposition 4.5 there
are full maximal cusps �1 2U 1 and �2 2U 2 . By Proposition 3.5 there exist sequences
f�ig in C and f˛ig in Mod.S/ such that

�1
D lim

i
�i and �2

D lim
i
˛i � �i

This shows that for sufficiently large i , .˛i �U
2/\U 1 is not empty. Hence the action

of Mod.S/ on C is topologically transitive. This implies topological transitivity on C .

Finally, claim (3) follows immediately from Proposition 4.5 and Corollary 4.3.

As an application we prove the following theorem.
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Theorem 1.2 The volume of the convex core, the injectivity radius, the lowest eigen-
value of the Laplacian and the Hausdorff dimension of the limit set do not vary
continuously on SQ.

Each part of Theorem 1.2 was known previously. We present merely a unified proof.

Proof All these invariants are Mod.S/–invariant functions

@Q �! R[f1g:

In particular we derive from Theorem 1.1 (3) and (4) that they either are constant or fail
to be continuous. In particular, it suffices to find �; �0 2 @Q for which they do not take
the same value. Let � be a full maximal cusp and �0 the cyclic cover of the mapping
torus of a pseudo-Anosov � 2Mod.S/; �0 is in the boundary of quasifuchsian space
by the work of Thurston [23]. We know that

vol.C C.M�// <1 and vol.C C.M�0//D1

because � is geometrically finite and �0 is not. The manifold M�0 covers a compact
manifold and hence has positive injectivity radius while M� has cusps and hence its
injectivity radius vanishes. Geometric finiteness of � implies that ƒ� has Hausdorff
dimension less than 2 (see Tukia [24] and Sullivan [20]) while ƒ�0 D CP1 has
dimension 2.

Sullivan’s theorem tells us that the lowest eigenvalue of the Laplacian on M� is

dim.ƒ�/ .2� dim.ƒ�// > 0:

Finally, the lowest eigenvalue of the Laplacian on M�0 equals the infimum

inf
f 2C1

0
.M�0 /

R
jrf j2R
jf j2

:

(This is true for any Riemannian manifold.) Since M�0 is the cyclic cover of the
mapping torus of � , it is easy to show without any machinery that this infimum is
zero.

From this we see that it is in fact impossible to define a nontrivial purely geometric
invariant which varies continuously on SQ.
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6 Map.S /–invariant meromorphic functions

In this section we prove Theorem 1.3. As a warm up to the SL2 C Case, we first
consider meromorphic functions on open subsets of X .�;PSL2 C/.

Theorem 6.1 Let U � X .�;PSL2 C/ be a Mod.S/–invariant connected open set.
If U contains both (faithful) convex cocompact representations and indiscrete rep-
resentations then any Mod.S/–invariant meromorphic function on U is a constant
function.

Note that indiscrete representations are dense in the complement of quasifuchsian space
(see Sullivan [21]).

Proof Without loss of generality we may assume that U is a manifold. The set U

intersects the interior and the exterior of SQ and hence @Q\U ¤ ∅. We claim that
every continuous Mod.S/–invariant function f W U �! C is constant on @Q\ U .
Given one sided maximal cusps �; N� 2 @Q \ U we obtain from Proposition 3.3 a
sequence f�ig �Q and a sequence of mapping classes f˛ig �Mod.S/ with

lim
i
�i D � and lim

i
˛i � �i D N�:

We have �i 2 U for sufficiently large i . The continuity and the Mod.S/–invariance
of f imply that f .�/D f . N�/. Since maximal cusps are dense in @Q\U , the claim
follows.

Assume now that f W U �! C is meromorphic and Mod.S/–invariant. The divisor D

of poles of f is either empty or has complex codimension 1. The open set U �D

is open, connected, Mod.S/–invariant and also intersects @Q. In particular we may
assume without loss of generality that f is holomorphic. We proved above that f
is constant on the separating set @Q\U . By holomorphicity, this implies that f is
everywhere constant.

We now discuss the relationship between the character varieties X .�;SL2 C/ and
X .�;PSL2 C/ and prove Theorem 1.3. The homomorphism SL2 C�!PSL2 C induces
a map

pW X .�;SL2 C/ �! X .�;PSL2 C/

which maps onto the connected component of X .�;PSL2 C/ containing SQ (see
Heusener and Porti [13, Remark 4.3] and Culler [9]). Recall that the closure of
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quasifuchsian space SQ � X .�;PSL2 C/ is contained in a smooth open Mod.S/–
invariant manifold O � X .�;PSL2 C/ (see [13, Section 4] and Goldman [12]). After
possibly shrinking O slightly we may assume that

pjp�1.O/W p
�1.O/ �!O

is a Galois cover with covering transformation group H1.S;Z=2Z/ (see [13]). See
Goldman [12] for properties of X .�;SL2 C/.

Theorem 1.3 Let U �X .�;SL2 C/ be a Mod.S/–invariant connected open set. If U

contains both (faithful) convex cocompact representations and indiscrete representations
then any Mod.S/–invariant meromorphic function on U is a constant function.

Again note that indiscrete representations are dense in the complement of the set of
convex cocompact representations.

Proof As above we may assume without loss of generality that U is a manifold
contained in O . Moreover, it suffices to show that a holomorphic Mod.S/–invariant
function f on U is constant.

The conditions on U imply that there is some � 2 @Q\p.U / since the image under p

of a faithful convex cocompact representation lies in Q and the image of an indiscrete
representation is again indiscrete. Choose a neighborhood V 0 of � and V � U open
such that pjV W V �! V 0 is a homeomorphism. Since the actions of Mod.S/ on
X .�;SL2 C/ and X .�;PSL2 C/ are compatible we obtain that the restriction of p to
the open Mod.S/–invariant set

W D
[

˛2Mod.S/

˛ �V

is a covering. It suffices to show that the restriction of f to W is constant. Given
n 2 N we consider the holomorphic function on p.W / given by

Sn.z/D
X

w2p�1.z/

f n.w/:

We claim that Sn is constant for all n. The function Sn is holomorphic and Mod.S/–
invariant, but we cannot directly apply Theorem 6.1 since p.W / may not be connected.
However, every connected component of p.W / intersects @Q and therefore the same
proof as in Theorem 6.1 applies to show that Sn is locally constant.

The following lemma shows that Sn being locally constant for all n implies that f is
itself constant on W .
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Lemma 6.2 Let � � Cr be a connected open set and f1; : : : ; fk W � �! C holo-
morphic such that for all n the function Sn.z/D

P
fi.z/

n is constant. Then all the
functions fi are constant.

Proof Before going further observe that it suffices to consider the case where � is a
unit disk in C, because a nonconstant holomorphic function will have a nonconstant
restriction to some holomorphic disk. Seeking a contradiction assume that the lemma
is false. One can assume without loss of generality that none of the functions fi are
constant and that no two of the functions fi and fj are proportional. We may further
assume, up to reducing �, that for all i and z we have fi.z/ ¤ 0 and f 0i .z/ ¤ 0.
Moreover, the assumption that no two of the functions are proportional implies that,
up to relabeling, there is some z0 satisfying jf1.z0/j > jf2.z0/j � � � � � jfk.z0/j.
Multiplying by a suitable scalar we may assume that f1.z0/ D 1. Computing the
derivative of Sn at the point 0 we obtain the following identity for all n:

0D S 0n.z0/D n.f 01.z0/Cf2.z0/
n�1f 02.z0/C � � �Cfk.z0/

n�1f 0k.z0//

Dividing by n and taking a limit n ! 1 we derive that f 0
1
.z0/ D 0. This is a

contradiction.

As mentioned above this concludes the proof of Theorem 1.3.

7 C � @Q is not closed

This section will show that the set

C WD f� 2 @Q jM� has no conformally compact endg

(see Section 2) is not a closed subset of @Q. This fact surprised the authors. This
section is logically independent of Sections 3–6.

The proof is a slight elaboration of a construction due to McMullen [18, Lemma A.4]
(which was in turn based on results of Kerckhoff and Thurston [15] and Anderson and
Canary [2]). As Lemma A.4 is very clearly written, we will not attempt to reproduce
its construction here. We will assume that the reader has read Lemma A.4 and the
example which follows it. (These total only two and half pages.) Our notation will be
chosen to conform to McMullen’s.

Choose two pants decompositions P˙ which bind the surface S . Choose an embedded
essential closed curve C � S such that: C and PC bind S , and C and P� bind
S . By Thurston’s hyperbolization theorem (see Otal [19]) there is an infinite volume
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hyperbolic 3–manifold N whose convex core is a finite volume manifold with totally
geodesic boundary homeomorphic to

.S � Œ0; 1�/� .PC � f1g [ P� � f0g [ C � f1=2g/ :

With this manifold N , perform McMullen’s construction in [18, Lemma A.4]. Follow-
ing his notation, let Nn be a sequence of .1; n/–Dehn surgeries on C � f1=2g � N

together with maps FnW N �! Nn converging in the compact–C1 topology to an
isometric embedding. Let f W S �!N be an immersed essential surface which wraps
around C .

Mark the manifolds Nn by the composition Fn ı f . Equipped with these markings
the sequence Nn is contained in C � @Q and converges algebraically to the covering
space of N given by f�.�.S//. Recall that the curve C binds S with either pants
decomposition PC or P� . From this it follows that the only parabolics of f�.�1.S//

correspond to the curve C . Therefore the algebraic limit must have one conformally
compact end, and does not lie in C� @Q. This shows that C is not closed and concludes
the construction.

It would be interesting to find a geometric characterization of the manifolds in the
closure C . This appears to be difficult.
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