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A cylindrical reformulation of Heegaard Floer homology

ROBERT LIPSHITZ

We reformulate Heegaard Floer homology in terms of holomorphic curves in the
cylindrical manifold † � Œ0; 1� �R , where † is the Heegaard surface, instead of
Symg.†/ . We then show that the entire invariance proof can be carried out in our
setting. In the process, we derive a new formula for the index of the @–operator in
Heegaard Floer homology, and shorten several proofs. After proving invariance, we
show that our construction is equivalent to the original construction of Ozsváth–Szabó.
We conclude with a discussion of elaborations of Heegaard Floer homology suggested
by our construction, as well as a brief discussion of the relation with a program of C
Taubes.

57R17; 57R58, 57M27

In [21], P Ozsváth and Z Szabó associated to a three–manifold Y and a SpinC –structure
s on Y a collection of abelian groups, known together as Heegaard Floer homology.
These groups, which are believed to be isomorphic to certain Seiberg–Witten Floer
homology groups (Ozsváth–Szabó [20] and Kronheimer–Manolescu [12]), fit into
the framework of a .3C 1/–dimensional topological quantum field theory. Since
its discovery around the turn of the millennium, Heegaard Floer homology has been
applied by Ozsváth, Rasmussen and Szabó to the study of knots and surgery [19; 25;
18], contact structures [23] and symplectic structures [22], and is strong enough to
reprove most results about smooth four–manifolds originally proved by gauge theory
[17]. In this paper we give an alternate definition of the Heegaard Floer homology
groups.

Rather than being associated directly to a three–manifold Y , the Heegaard Floer
homology groups defined in [21] and in this paper are associated to a Heegaard
diagram for Y , as well as a SpinC –structure s and some additional structure. A
Heegaard diagram is a closed, orientable surface † of genus g , together with two
g–tuples of pairwise disjoint, homologically linearly independent, simple closed curves
Ę D f˛1; � � � ; ˛gg and Ě D fˇ1; � � � ; ˇgg in †. A Heegaard diagram specifies a three–
manifold as follows. Thicken † to †� Œ0; 1�. Glue thickened disks along the ˛i �f0g

and along the ǰ � f1g. The resulting space has two boundary components, each
homeomorphic to S2 . Cap each with a three–ball. The result is the three–manifold
specified by .†; Ę; Ě/.
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Different Heegaard diagrams can specify the same three–manifold. Two different
Heegaard diagrams specify the same three–manifold if and only if they agree after a
sequence of moves of the following three kinds:

� Isotopies of the ˛– or ˇ–circles.

� Handleslides among the ˛– or ˇ–circles. These correspond to pulling one ˛–
(or ˇ–) circle over another.

� Stabilization, which corresponds to taking the connect sum of the Heegaard
diagram with the standard genus–one Heegaard diagram for S3 .

See Gompf and Stipsicz [9, Sections 4.3 and 5.1] or Ozsváth and Szabó [21, Section 2]
for more details.

So, after associating the Heegaard Floer homology groups to a Heegaard diagram, one
must prove they are unchanged by these three kinds of Heegaard moves (as well as
deforming the additional structure involved in their definition). Doing so comprises
most of [21] for the original definition. Similarly, for our definition, most of this paper
is involved in proving:

Theorem 1 The Heegaard Floer homology groups

HF1.†; Ę; Ě; s/; HFC.†; Ę; Ě; s/; HF�.†; Ę; Ě; s/ and bHF .†; Ę; Ě; s/

associated to a Heegaard diagram .†; Ę; Ě/ and SpinC –structure s are in fact invariants
of the pair .Y; s/.

We are also able to prove:

Theorem 2 The Heegaard Floer homology groups defined in this paper are isomorphic
to the corresponding groups defined in [21].

Theorem 2 is proved in Section 13. The proof does not rely on the invariance results
proved in this paper; it could be carried out immediately after Section 8. (We defer the
proof to the end to avoid interrupting the narrative flow.) Clearly, Theorem 2 implies
Theorem 1. However, one key goal of this paper is to demonstrate that the entire
invariance proof can be carried out in our setting, and to develop the tools necessary to
do so.

The only esentially new results in this paper are in Section 4, where we give a nice
formula for the index of the @ operator in our setup, and hence also the Maslov index in
the traditional setting, and in the discussion of elaborations of Heegaard Floer homology
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in the last section (Section 14). The casual reader might also be interested in looking
at the elaboration and speculation in Section 14.

Although this paper is essentially self contained, it is probably most useful to read it
in parallel with [21]. To facilitate this, the paper is organized similarly to [21], and
throughout there are precise references to corresponding results in their original forms.
In addition, the last appendix is a table cross referencing most of the results in this
paper with those of [21].

A more technical discussion of the difference between our setup and that of [21] follows.

The original definition of Heegaard Floer homology involves holomorphic disks in
Symg.†/. In this paper, we consider holomorphic curves in †�Œ0; 1��R . For instance,
for us the chain complex bCF is generated by g–tuples of Reeb chords fxi�Œ0; 1� j xi 2

˛i \ ˇ�.i/g. For an appropriate almost complex structure J on † � Œ0; 1� � R, the
coefficient of fyi � Œ0; 1�g in @ .fxi � Œ0; 1�g/ is given by counting holomorphic curves
in †� Œ0; 1��R asymptotic to fxi � Œ0; 1�g at �1 and to fyi � Œ0; 1�g at 1, with
boundary mapped to the Lagrangian cylinders f j̨ �f1g�Rg and f ǰ �f0g�Rg. (We
impose a few further technical conditions on the curves that we count; see Section 1.)

If J is the split complex structure j† � jD then a holomorphic curve in †� Œ0; 1��R

is just a surface S and a pair of holomorphic maps u† W .S; @S/! .†; ˛1 [ � � � [

˛g [ˇ1[ � � �[ˇg/ and uD W .S; @S/! .D; @D/. If the map uD is a g–fold branched
covering then this data specifies a map D! Symg.†/ as follows. For p 2 D, let
p1; � � � ;pg be the preiamges of p under �D ıu, listed with multiplicity. Then the map
D! Symg.†/ sends p to fu†.p1/; � � � ;u†.pg/g.

Note that the idea of viewing a map to Symg.†/ as a pair

.a g–fold covering S ! D; a map S !†/

is already implicit in [21], although they use this idea mainly for calculations in special
cases.

Working in †� Œ0; 1��R has several advantages. A main advantage is that, unlike
a g–fold symmetric product, one can actually visualize † � Œ0; 1� � R. A second
advantage is that a number of the technical details become somewhat simpler. The
main disadvantage is that we must now consider higher genus holomorphic curves, not
just disks. Another difficulty is that our setup requires compactness for holomorphic
curves in manifolds with cylindrical ends, proved by Bourgeois et al in [2]. I also
borrow from the language of symplectic field theory. Fortunately, much of the subtle
machinery of symplectic field theory, like virtual cycles or the operator formalism, is
unnecessary for this paper.

Geometry & Topology, Volume 10 (2006)



958 Robert Lipshitz

The paper is organized as follows. The first two sections are devoted to basic definitions
and notation, and certain algebro–topological considerations. The third section proves
transversality results necessary for the rest of the paper. These results should be
standard, but I am unaware of a reference that applies to our setting.

The fourth section discusses the index of the @–operator in our context. We prove
this index is the same as the Maslov index in the traditional setting, and obtain a
combinatorial formula for it. The fifth section discusses so–called admissibility criteria
necessary for the case b1.Y / > 0. The definitions and results are completely analogous
with [21]. The sixth section discusses coherent orientations of the moduli spaces. Again,
our treatment is close to [21].

The seventh section rules out undesirable codimension–one degenerations of our
holomorphic curves. After doing so, we are finally ready to define the Heegaard
Floer chain complexes in Section 8, and turn to the invariance proof. The ninth
section proves isotopy independence. Before proving handleslide independence, we
introduce triangle maps in Section 10. (As in [21], to a Heegaard triple–diagram
.†; ˛1; � � � ; ˛g; ˇ1; � � � ; ˇg; 1; � � � ; g/ is associated maps

HF.†; Ę; Ě/˝HF.†; Ě; E /!HF.†; Ę; E /;

for various decorations of HF .) Using these triangle maps and a model computation,
we prove handleslide invariance in Section 11.

Finally, in section twelve we prove stabilization invariance, completing the invariance
proof. After this, we devote a section to proving equivalence with traditional Heegaard
Floer homology and a section to elaborations and speculation.

There are also two appendices. The first is devoted to the gluing results used throughout
the paper. The second cross references our results with those in [21].

For technical results about holomorphic curves, this paper sometimes cites recent
sources when older ones would suffice. This generally reflects either that the newer
results are more broadly applicable or that I found the newer exposition significantly
clearer.

I thank Ya Eliashberg, who is responsible for communicating to me most of the ideas in
this paper. I also thank Z Szabó for a helpful conversation about the index; P Ozsváth
for a helpful conversation about annoying curves (see Section 8 below) and pointing
out a serious omission in Section 13; P Melvin for a stimulating conversation about
the index; M Hutchings for a discussion clarifying the relation between the H1.Y /–
action and twisted coefficients; M Hedden and C Wendl for pointing out errors, both
typographical and otherwise, in a previous version; and W Hsiang, C Manolescu, L
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Ng and B Parker for comments that have improved the exposition. Finally, I thank the
referees for finding several errors and making many helpful suggestions.

This work was partially supported by the NSF Graduate Research Fellowship Program,
and partly by the NSF Focused Research Group grant DMS–0244663.

1 Basic definitions and notation

By a pointed Heegaard diagram we mean a Heegaard diagram (as discussed in the intro-
duction) together with a chosen point z of the Heegaard surface in the complement of the
˛– and ˇ–circles. Fix a pointed Heegaard diagram HD .†g; Ę D f˛1; � � � ; ˛gg; Ě D

fˇ1; � � � ; ˇgg; z/. Let ˛D ˛1[� � �[˛g �† and ˇ D ˇ1[� � �[ˇg �†. Consider the
manifold W D†� Œ0; 1��R . We let .p; s; t/ denote a point in W (so p 2†, s 2 Œ0; 1�

and t 2 R). Let �DW W ! Œ0; 1� � R, �RW W ! R and �†W W ! †g denote the
obvious projections. Consider the cylinders C˛ D ˛� f1g �R and Cˇ D ˇ � f0g �R:

We will obtain Heegaard Floer homology by constructing a boundary map counting
holomorphic curves with boundary on C˛ [Cˇ and appropriate asymptotics at ˙1.

We shall always assume g> 1, as the gD 1 case is slightly different technically. Since
we can stabilize any Heegaard diagram, this does not restrict the class of manifolds
under consideration.

Fix a point zi in each component Di of †g n .˛[ ˇ/. Let dA be an area form on
†, and j† a complex structure on † tamed by dA. Let ! D ds ^ dt C dA, a split
symplectic form on W . Let J be an almost complex structure on W such that

(J1) J is tamed by ! .

(J2) In a cylindrical neighborhood Ufzi g
of fzig � Œ0; 1��R, J D j† � jD is split.

(Here, Ufzi g
is small enough that its closure does not intersect .˛[ˇ/�Œ0; 1��R).

(J3) J is translation invariant in the R–factor.

(J4) J.@=@t/D @=@s

(J5) J preserves T .†� f.s; t/g/� T W for all .s; t/ 2 Œ0; 1��R.

The first requirement is in order to obtain compactness of the moduli spaces. The
second is for “positivity of domains” (see twelve paragraphs below). The third and
fourth make W cylindrical as defined in [2, Section 2.1]. The fifth ensures that our
complex structure is symmetric and adjusted to ! in the sense of [2, Section 2.1 and
Section 2.2]. (Note that W is Levi–flat as defined there. The vector field R introduced
there is @=@s . The form � is just ds .)
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Note that we can view J as a path Js of complex structures on †. Also notice that
C˛ and Cˇ are Lagrangian with respect to ! .

At one point later – the proof of 8.2 – we need to consider almost complex structures
which, instead of satisfying (J5), satisfy the slightly less restrictive condition

(J5 0 ) there is a 2–plane distribution � on †� Œ0; 1� such that the restriction of ! to �
is non–degenerate, J preserves � , and the restriction of J to � is compatible
with ! . We further assume that � is tangent to † near .˛[ˇ/� Œ0; 1� and near
†� .@Œ0; 1�/.

This still guarantees that J is symmetric and adjusted to ! .

By an intersection point we mean a set of g distinct points Ex D fx1; : : : ;xgg in ˛\ˇ
such that exactly one xi lies on each j̨ and exactly one xi lies on each ˇk . (This
corresponds to an intersection point of the ˛– and ˇ–tori in [21].)

Observe that the characteristic foliation on †� Œ0; 1� induced by ! has leaves fpg�
Œ0; 1�� ftg. So,an intersection point Ex specifies a g–tuple of distinct “Reeb chords”
(with respect to the characteristic foliation on †�Œ0; 1� induced by ! ) in †�Œ0; 1� with
boundaries on ˛� f1g[ˇ � f0g. (The collection of Reeb chords is just fxig � Œ0; 1�.)
We will call a g–tuple of Reeb chords at ˙1 specified by an intersection point an
I–chord collection. (I stands for “intersection.”) We will abuse notation and also use Ex
to denote the I–chord collection specified by Ex .

Let M denote the moduli space of Riemann surfaces S with boundary, g “negative”
punctures Ep D fp1; � � � ;pgg and g “positive” punctures Eq D fq1; � � � ; qgg, all on the
boundary of S , and such that S is compact away from the punctures.

For J satisfying (J1)–(J5), we will consider J –holomorphic maps uW S !W such
that

(M0) The source S is smooth.

(M1) u.@.S//� C˛ [Cˇ .

(M2) There are no components of S on which �D ıu is constant.

(M3) For each i , u�1.˛i � f1g �R/ and u�1.ˇi � f0g �R/ each consist of exactly
one component of @S n fp1; � � � ;pg; q1; � � � ; qgg.

(M4) limw!pi
�R ıu.w/D�1 and limw!qi

�R ıu.w/D1.

(M5) The energy of u, as defined in [2, Section 5.3], is finite. (For the moduli spaces
defined later in the paper we shall always assume this technical condition is
satisfied, but shall not usually state it.)
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u.S/

†

Œ0; 1�

R

ˇ2

ˇ1 ˛2

˛1

Figure 1: A curve in W we might consider. Note that our curves can also be disconnected.

(M6) u is an embedding.

Note that condition (M3) implies that @S nfp1; � � � ;pg; q1; � � � ; qgg consist of exactly
2g components, none of them compact. Also note that we allow holomorphic curves
to be disconnected.

It follows from [2, Proposition 5.8] that near each negative puncture (respectively
positive puncture), a holomorphic curve satisfying (M0)–(M6) converges exponentially
(in t ) to an I–chord collection Ex (respectively Ey ) at �1 (respectively 1). We say
the holomorphic curve connects Ex to Ey . It follows from this asymptotic convergence
to Reeb chords that �D ıu is a g–fold branched covering map.

Consider the space W D†� Œ0; 1�� Œ�1; 1� as a compactification of W . Let C˛ , Cˇ
denote the closures of the images of C˛ and Cˇ in W . Let S denote the surface
obtained by blowing up S at the punctures. Then, the asymptotic convergence to
Reeb orbits mentioned earlier implies that u can be extended to a continuous map
uW S !W . (Compare, for example, [2, Proposition 6.2].)

Let �2.Ex; Ey/ denote the set of homology classes of continuous maps .S; @S/ !
.W;C˛ [Cˇ/ which converge to Ex (respectively Ey ) near the negative (respectively
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positive) punctures of S . That is, two such maps are equivalent if they induce the
same element in H2.W ;C˛[Cˇ[ .fxig � Œ0; 1�� f�1g/[ .fyig � Œ0; 1�� f1g//. (The
notation is chosen to be consistent with [21], where the notation �2 makes sense.)

Each holomorphic curve connecting Ex to Ey represents an element of �2.x;y/. For
A 2 �2.x;y/, we denote by MA the space of holomorphic curves connecting Ex and
Ey in the homology class A. (We always mod out by automorphism of the source S .)
Since we are considering cylindrical complex structures, R acts on MA by translation.

Let cMA
DMA=R. We denote by cMA

the compactification, as in [2, Section 7], ofcMA
.

Given a homology class A 2 �2.Ex; Ey/, let nz.A/ denote the intersection number of
A with fzg � Œ0; 1� � R. Define nzi

.A/ similarly. If u is a curve in the homology
class A we will sometimes write nz.u/ or nzi

.u/ for nz.A/ or nzi
.A/. We say that a

homology class A is positive if nzi
.A/� 0 for all i . Notice that if A has a holomorphic

representative (with respect to any complex structure satisfying (J2)) then A is positive;
this is the positivity of domains mentioned twelve paragraphs above. We shall let
y�2.Ex; Ey/ D fA 2 �2.Ex; Ey/jnz.A/ D 0g: Elements of y�2.Ex; Ex/ are called periodic
classes.

Remark In fact, even without (J2), positivity of domains would still hold by Micallef
and White [15, Theorem 7.1]. (See also Lemma 3.1.) On the other hand, by requiring
(J2), which is easy to obtain, we can avoid invoking here this hard analytic result.

Given a homology class A, we define the domain of A to be the formal linear com-
bination

P
nzi
.A/Di . If u represents A then we define the domain of u to be the

domain of A. The domains of periodic classes are called periodic domains.

As in [21], concatenation makes �2.Ex; Ey/ into a �2.Ex; Ex/–torseur. We shall sometimes
write concatenation with a C and sometimes with a �, depending on whether we are
thinking of domains or maps.

2 Homotopy preliminaries

These issues are substantially simplified from [21] because we need only deal with
homology, not homotopy. This is reasonable: by analogy to the Dold–Thom theorem,
the low–dimensional homotopy theory of Symg.†/ should agree with the homology
theory of †.

Given an intersection point Ex , observe that projection from W gives rise to an isomor-
phism from �2.Ex; Ex/ to H2.†g � Œ0; 1�;˛� f1g[ˇ � f0g/. Given intersection points
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Ex , Ey , either �2.Ex; Ey/ is empty or �2.Ex; Ey/ŠH2.†g � Œ0; 1�;˛�f1g[ˇ �f0g/. The
isomorphism is not canonical; it is given by fixing an element of �2.Ex; Ey/ and then
subtracting the homology class it represents from all other elements of �2.Ex; Ey/. We
calculate H2.†g � Œ0; 1�;˛� f1g[ˇ � f0g/:

Lemma 2.1 (Compare [21, Proposition 2.15]) There is a natural short exact sequence

0! Z!H2.†� Œ0; 1�;˛� f1g[ˇ � f0g/!H2.Y /! 0:

The choice of basepoint z gives a splitting nzW H2.†� Œ0; 1�;˛� f1g[ˇ � f0g/! Z

of this sequence.

Proof The long exact sequence for the pair .†� Œ0; 1�;˛� f1g[ˇ � f0g/ gives

0!H2.†� Œ0; 1�/!H2.†� Œ0; 1�;˛� f1g[ˇ � f0g/!H1.˛� f1g[ˇ � f0g/:

The image of the last map is isomorphic to H1.˛/\H1.ˇ/, viewed as a submodule
of H1.†/.

Let Y D U1[† U2 be the Heegaard splitting. The Mayer–Vietoris sequence gives

H2.U1/˚H2.U2/!H2.Y /!H1.†/!H1.U1/˚H1.U2/:

Here, the kernel of the last map is H1.˛/\H1.ˇ/. The groups H2.U1/ and H2.U2/

are both trivial, so H2.Y /ŠH1.˛/\H1.ˇ/. Combining this with the first sequence
and using the fact that H2.†� Œ0; 1�/ Š Z gives the first part of the claim. With nz

defined as in Section 1 the second part of the claim is obvious.

If we identify †� Œ0; 1� with f �1Œ3=2� �; 3=2C �� for some self–indexing Morse
function f on Y then the map H2.†� Œ0; 1�;˛� f1g[ˇ � f0g/!H2.Y / is simply
given by “capping off” a cycle with the ascending / descending disks from the index 1
and 2 critical points of f . Also, notice that a homology class A 2 �2.Ex; Ey/ specifies
and is specified by its domain. (The domain need not, however, specify uniquely the
intersection points Ex and Ey which it connects.)

Following [21, Section 2.6], we observe that a choice of basepoint z and intersection
point Ex specify a SpinC –structure s on Y as follows. Choose a metric h�; �i and a
self–indexing Morse function f which specify the Heegaard diagram H . Then Ex
specifies a g–tuple of flows of rf from the index 1 critical points of f to the index
2 critical points of f . The point z lies on a flow from the index 0 critical point
of f to the index 3 critical point of f . Choose small ball neighborhoods of (the
closure of) each of these flow lines. Call the union of these neighborhoods B . Then,
in the complement of B , rf is nonvanishing. One can extend rf to a nonvanishing
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vector field v on all of Y . The vector field v reduces the structure group of T Y from
SO.3/ to SO.2/˚ SO.1/ Š U.1/˚ 1 � U.2/ D SpinC.3/, and thus determines a
SpinC –structure on Y . We have, thus, defined a map sz from the set of intersection
points in H to the set of SpinC –structures on Y .

It is clear that the SpinC –structure sz.Ex/ is independent of the metric and particular
Morse function used to define it.

Given a SpinC –structure s on Y , we shall often suppress z and write Ex 2 s to mean
sz.Ex/D s.

Note that by the previous construction, any nonvanishing vector field on a 3–manifold Y

gives rise to a SpinC –structure. It is not hard to show that two nonvanishing vector fields
give rise to the same SpinC –structure if and only if they are homologous, ie, homotopic
through nonvanishing vector fields in the complement of some 3–ball; see [27]. We
will use the analogous construction in the case of 4–manifolds in Subsubsection 10.1.2.

Our reason for introducing SpinC –structures will become clear in a moment. First,
one more definition. Fix a pair of intersection points Ex and Ey , as well as a Morse
function f and Riemannian metric h�; �i which realize the Heegaard diagram. This
data specifies a homology class �.Ex; Ey/ as follows. Regard each of Ex and Ey as (the
closure of) a g–tuple of gradient flow trajectories in Y from the g index 1 critical
points to the g index 2 critical points. Then, Ex � Ey is a 1–cycle in Y . We define
�.Ex; Ey/ to be the homology class in H1.Y / of the 1–cycle Ex� Ey .

The element �.Ex; Ey/ can be calculated entirely in H by the following equivalent
definition. Let ˛ (respectively ˇ ) be a 1–cycle in ˛ (respectively ˇ ) such that
@˛ D @ˇ D Ex � Ey . Then ˛ � ˇ is a 1–cycle in †. Define �.Ex; Ey/ to be the image
of ˛ � ˇ under the map

H1.†/!
H1.†/

H1.˛/CH1.ˇ/
ŠH1.Y /:

The equivalence of the two definitions is easy: in the notation used just above, ExC
˛ � ˇ is homologous, rel endpoints, to Ey . It is obvious that the second definition is
independent of the choices of ˛ and ˇ .

The following lemma justifies our introduction of � and of SpinC –structures:

Lemma 2.2 (Compare [21, Proposition 2.15, Lemma 2.19]) Given a pointed Hee-
gaard diagram H and intersection points Ex and Ey , the following are equivalent:

(1) �2.Ex; Ey/ is nonempty
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(2) �.Ex; Ey/D 0

(3) sz.Ex/D sz. Ey/:

Proof

.1/) .2/ Let A 2 �2.Ex; Ey/. View A as a domain in †, ie, a chain in †. Then we
can use @A to define �.Ex; Ey/, which is thus zero in homology.

.2/) .1/ Suppose that �.Ex; Ey/D 0. Then, using the same notation as just before
the lemma, for an appropriate choice of ˛ and ˇ , ˛ � ˇ is null–homologous in
H1.†/. We can assume that ˛ and ˇ are cellular 1–chains in the cellulation of †
induced by the Heegaard diagram. Then, there is a cellular 2–chain A with boundary
˛ � ˇ , and A is the domain of an element of �2.Ex; Ey/.

.2/, .3/ Let vEx and v Ey denote the vector fields used to define sz.Ex/ and sz. Ey/,
respectively. Let v Ey DAvEx where AW Y ! SO.3/. Let Fr.v?

Ex
/ and Fr.v?

Ey
/ denote

the principal SO.2/ D U.1/–bundles of frames of v?
Ex

and v?
Ey

. Then the principal

SpinC bundles induced by vEx and v Ey are sz.Ex/W Fr.v?
Ex
/�U.1/U.2/! Fr.T Y / and

sz. Ey/W Fr.v?
Ey
/�U.1/ U.2/! Fr.T Y /.

Note that sz.Ex/ and sz. Ey/ are equivalent if and only if A is homotopic to a map
Y !SO.2/. So, the two SpinC –structures are equivalent if and only if the composition
hW Y ! SO.3/! SO.3/=SO.2/D S2 is null homotopic.

Now, homotopy classes of maps from a 3–manifold Y to S2 correspond to elements
of H 2.Y /. The Poincaré dual to such a map is the homology class of the preimage of
a regular value in S2 .

For a generic choice of the two Morse functions and metrics used to define them, the
flows through Ex and Ey glue together to a disjoint collection of circles  . Let  0 be a
smoothing of  . The map h is homotopic to a Thom collapse map of a neighborhood
of  0 . It follows that the preimage of a regular value is homologous to  .

So, sz.Ex/ D sz. Ey/ if and only if  is null–homologous. But  is a cycle defining
�.Ex; Ey/, so the result follows.

Note that the previous proof in fact shows that the map sz from intersection points to
SpinC –structures is a map of H 2.Y /DH1.Y /–torseurs.

The following result (part of [21, Lemma 2.19]) is nice to know, but will not be used
explicitly in this paper. The reader can imitate the proof of the previous proposition to
prove it, or see [21].
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Lemma 2.3 Let Ex be an intersection point of a Heegaard diagram H , and z1 , z2 two
different basepoints for H . Suppose that z1 can be joined to z2 by a path zt disjoint
from the ˇ circles and such that #.zt \˛i/D ıi;j (Kronecker delta). Let  be a loop
in † such that  �˛i D ıi;j . Then, sz2

.Ex/� sz1
.Ex/D PD. /, the Poincaré dual to  .

3 Transversality

We need to check that we can achieve transversality for the generalized Cauchy–
Riemann equations within the class of almost complex structures satisfying (J1)–(J5).
The argument is relatively standard, and is almost the same as the one found in [14,
Chapter 3]. This section is somewhat technical, and the reader might want to skip most
of it on a first reading.

Before proving our transversality result we need a few lemmas about the geometry of
holomorphic curves in W .

Lemma 3.1 Let � W E!B be a smooth fiber bundle, with dim.E/D 4, dim.B/D 2.
Let J be an almost complex structure on E with respect to which the fibers are
holomorphic. Let uW S ! E be a J –holomorphic map, S connected, with � ı u

not constant. Let p 2 S be a critical point of � ı u, q D � ı u.p/. Then there are
neighborhoods U 3 p and V 3 q , and C 2 coordinate charts zW U ! C, wW V ! C

such that w ı .� ıu/.z/D zk , for some k > 0.

Proof This follows immediately from [15, Theorem 7.1] applied to the intersection of
u with the fiber of � over q .

Corollary 3.2 Let � W E!B be a smooth fiber bundle, with dim.E/D 4, dim.B/D
2. Let J be an almost complex structure on E with respect to which the fibers are
holomorphic. Let uW S !E be a J –holomorphic map, S connected, with � ıu not
constant. Then the Riemann–Hurwitz formula applies to � ıu. That is, if S is closed
then

�.S/D �.� ıu.S//�
X
p2S

.e�ıu.p/� 1/

where e�ıu.p/ is the ramification index of p . If S has boundary and punctures then
the same formula holds with Euler measure in place of Euler characteristic.

(The Euler measure of a surface S with boundary and punctures is 1=2� times the
integral over S of the curvature of a metric on S for which @S is geodesic and the
punctures of S are right angles. See Section 4 for further discussion of Euler measure.)
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Lemma 3.3 Let � W †� Œ0; 1��R!†� Œ0; 1� denote projection. Let u be a holomor-
phic curve in †� Œ0; 1��R (with respect to some almost complex structure satisfying
(J1)–(J5)). Let S 0 be a component of S on which u is not a trivial disk and �D ı u

is not constant. Then there is a nonempty, open subset U of S 0 on which � ı u is
injective and � ı u.U /\ � ı u.S nU / D ∅. Further, we can require that u.U / be
disjoint from Uzi

and that �† ı du and �D ı du be nonsingular on U .

(By a trivial disk we mean a component of S mapped diffeomorphically by u to
fxg � Œ0; 1��R for some x 2†.)

Proof Let x be such that ujS 0 is asymptotic to the Reeb chord fxg � Œ0; 1� at infinity.
Let S denote the surface obtained by blowing–up S at its punctures. As discussed
earlier, we can extend u to a continuous map S ! W D † � Œ0; 1� � Œ�1; 1�. Let
� W W !†� Œ0; 1� denote projection. Let E denote the set of points .x; s/ 2†� Œ0; 1�
such that either .� ıu/�1.x; s/ has cardinality larger than 1 or contains the image of a
critical point of �† ıu or �D ıu. Then E is closed.

By the preceding corollary, there are only finitely many critical points of �† ı u or
�D ıu. Further, “positivity of intersections” (eg, [15, Theorem 7.1]), applied to u and
fxg� Œ0; 1��R , implies that there are only finitely many points in � ıu�1.fxg� Œ0; 1�/.
So, there are only finitely many points in E \fxg � Œ0; 1�.

However, fxg� Œ0; 1� is contained in the image of � ıu. Choose s 2 Œ0; 1� such that
.x; s/ 2 fxg � Œ0; 1� nE . Let V be an open neighborhood of .x; s/ disjoint from E .
Then .� ıu/�1.V / has the desired properties.

To prove transversality we need to specify precisely the spaces under consideration.
Fix p > 2, k � 0 (k 2 Z) and d > 0:

Definition 3.4 For a Riemannian manifold .M; @M /, a function f WM ! R lies in
L

p

k
.M / if f has k weak derivatives in Lp . The L

p

k
–norm of f is

kf kLp

k
D kf kLp Ckf 0kLp C � � �C kf .k/kLp :

A function f WM ! Rn lies in L
p

k
if each coordinate of f does, and its L

p

k
–norm is

the sum of the L
p

k
–norms of its coordinate functions.

Fix a map uW .S; @S/! .W;C˛ [Cˇ/. Fix a Riemannian metric on S ; the particular
choice is unimportant. Let fp�i g denote the negative punctures of S and fpCi g the
positive punctures. Suppose u is asymptotic to x˙i � Œ0; 1� at p˙i . Identify a neigh-
borhood U�i of each p�i with Œ0; 1�� .�1; 0�� and a neighborhood UCi of each pCi
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with Œ0; 1�� Œ0;1/. Let .�˙i ; �
˙
i / denote the coordinates near p˙i induced by this

identification. Fix also a smooth embedding of † in RN�2 for some N . This induces
an embedding of W D †� Œ0; 1��R in RN in an obvious way. For the following
definition we identify W with its image in RN .

Definition 3.5 We say that u lies in W
p;d

k

�
.S; @S/I .W;C˛ [Cˇ/

�
if for some choice

of constants ft˙
0;i
g 2 R,

� the restriction of u to S n
�
U1[ � � � [Ug [V1[ � � � [Vg

�
lies in L

p

k
(as a

function to RN ) and

� on each U˙i the functions ed j�˙
i
j
�
s ıu.�˙i ; �

˙
i /� �

˙
i

�
,

ed j�˙
i
j
�
t ıu.�˙i ; �

˙
i /� �

˙
i � t˙

0;i

�
and ed j�˙

i
j
�
u.�˙i ; �

˙
i /�x˙i

�
from Œ0;1/�R or .�1; 0� to R lie in L

p

k
.

For d small enough, all finite energy holomorphic curves (in the sense of [2, Section
5.3]) in .W;C˛ [ Cˇ/ lie in W

p;d

k
; see for instance [1, Chapter 3], particularly

Propositions 3.5 and 3.6. Conversely, all maps in W
p;d

k
have finite energy.

Choose a homology class A of maps to W and a surface S . Let Xp;d

k
denote the

collection of maps u 2W
k;p

ı

�
.S; @S/I .W;C˛ [Cˇ/

�
in class A.

Definition 3.6 Let E be a Riemannian vector bundle over S . Let f be a section of
E . Then the L

p;d

k
–norm of f is

kf k
L

p;d

k

D kf j
Sn
�
U�

1
[���[U

C
g

�kLp

k
C

gX
iD1

�
ked j�

C

i
jf j

U
C

i

kLp

k
Cked j��

i
jf jU�

i
kLp

k

�
Let L

p;d

k
.E/ denote the Banach space of all sections of E with finite L

p;d

k
–norm.

Note that the tangent space at u to Xp;d

k
is R2g˚L

p;d

k
.u�T W; @/ where

L
p;d

k
.u�T W; @/ is the subspace of L

p;d

k
.u�T W / of sections which lie in u�T .C˛[

Cˇ/ over @S . The R2g factor corresponds to varying the 2g constants t˙
0;i

in Definition

3.5. Choosing 2g smooth vector fields v˙i given by @
@t

on a neighborhood of p˙i
and zero near the other punctures p˙j , we can include the R2g into � .u�T W / as
Span

�
fv˙i g

�
.

Let J ` denote the space of C ` almost complex structures on W which satisfy (J1)–
(J5). Let J `.S/ denote the space of C ` almost complex structures on S . Let
M` D f.u; j ;Js/ 2 X k;p

ı
�J `.S/�J `j@jJs

uD 0g.

Geometry & Topology, Volume 10 (2006)



A cylindrical reformulation of Heegaard Floer homology 969

Let End.TS; j / denote the bundle whose fiber at p2S is the space of linear Y W TpS!

TpS such that Yj C j Y D 0. Then the tangent space at j to J `.S/ is the space of
C ` sections of End.TS; j /. Similarly, let End.T W;Js/ denote the space of C ` paths
Ys of linear maps T†! T† such that YsJsCJsYs D 0.

By convention, if we omit the superscripts k , `, and p then we are referring to smooth
objects.

By an annoying curve we mean a curve uW S!W such that there is a nonempty open
subset of S on which �D ıu is constant.

Proposition 3.7 For ` � 1 the space M` is a smooth Banach manifold away from
annoying curves.

Proof (This proof is a slight modification of [14, Proposition 3.4.1, page 34]. The
reader is referred there for a less terse exposition.)

Let Ep

k�1
be the bundle over Xp;d

k
�J `.S/�J ` whose fiber over a point .u; j ;Js/

is L
p;d

k�1
.ƒ0;1T �S j̋ ;Js

u�T W /.

We view @ as a section of Ep

k�1
, and want to show that it is transverse to the zero

section. At the zero section, the tangent space to E splits as

T .Xp;d

k
�J `.S/�J `/˚L

p;d

k�1
.ƒ0;1T �S j̋ ;Js

u�T W /:

Let

D@.u; j ;Js/W R2g
�L

p;d

k
.u�T W; @/�C `.End.TS; j //�C `.End.T W;Js//

! L
p;d

k�1
.ƒ0;1T �S j̋ ;Js

u�T W /

denote projection of the differential of @ onto the vertical component of the tangent
space to E at a zero .u; j ;Js/ of @. We must show that D@ is surjective.

The restriction of D@ to any trivial disk is surjective by [10, Theorem 2]. So, for
the rest of the proof we consider only the components of S which are not trivial
disks. For these components we will, in fact, show that the restriction of D@ to
0 �L

p;d

k
.u�T W; @/ � C `.End.TS; j // � C `.End.T W;Js// is surjective, and will

focus on this restriction from now on.

The differential D@ is given by

D@.u; j ;Js/.�;Y;Ys/DDu�C
1

2
Ys.u/ ı du ı j C

1

2
Js ı du ıY

where Du� denotes the differential holding j and Js fixed.
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The operator D@.u; j ;Js/ has closed range since Du is Fredholm, and we only need
to show that its range is dense. First, take k D 1. If the range is not dense then there
exists � 2 Lq;d .ƒ0;1T �S j̋ ;Js

u�T W / (where 1=pC 1=q D 1) which annihilates
the range of D@. So, for any choice of .�;Y;Ys/, we haveZ

S

h�;Du�i D 0(1) Z
S

h�;Ys ı du ı j i D 0(2) Z
S

h�;Js ı du ıY i D 0(3)

The first equation says that � is a weak solution of D�u�D 0. So, by elliptic regularity,
� 2L

r;d
`C1

for any r > 0. Further, it suffices to show that � vanishes on some open set
to show that � vanishes identically.

Let U be as in the previous lemma and z0 2 U . Choose coordinates .x;y/ on S near

z0 with respect to which j is represented by the matrix
�

0 �1

1 0

�
: Choose coordinates

.x1;y1;x2;y2/ near u.z0/ preserving the splitting T W DT†˚T D and with respect
to which the complex structure Js on W has the form

0BB@
0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

1CCA :

The map � has the form

0BB@
a b

b �a

c d

d �c

1CCA : If Y D

�
˛ ˇ

ˇ �˛

�
and Ys D

�
 ı

ı �

�
: Let

u1 D x1 ıu, u2 D x2 ıu. Then, we have

Js ı du ıY D

0BBBB@
�˛ @u1

@y
Cˇ @u1

@x
�ˇ @u1

@y
�˛ @u1

@x

�˛ @u1

@x
�ˇ @u1

@y
�ˇ @u1

@x
C˛ @u1

@y

�˛ @u2

@y
Cˇ @u2

@x
�ˇ @u2

@y
�˛ @u2

@x

�˛ @u2

@x
�ˇ @u2

@y
�ˇ @u2

@x
C˛ @u2

@y

1CCCCA
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and

Ys ı du ı j D

0BBB@
� @u1

@y
� ı @u1

@x
 @u1

@x
� ı @u1

@y

�ı @u1

@y
C  @u1

@x
ı @u1

@x
C  @u1

@y

0 0

0 0

1CCCA :
By choosing  and ı appropriately we can force a D b D 0 near z0 . (This uses
the injectivity established in the lemma and the nonvanishing of �† ı du.z0/.) Then,
choosing ˛ and ˇ appropriately we can force c D d D 0 near z0 . (This uses the
nonvanishing of �D ıdu.z0/.) This establishes the surjectivity of D@ and hence the
k D 1 case.

For general k , suppose � 2 L
p;d

k�1
.ƒ0;1T �S j̋ ;Js

u�T W /: From the k D 1 case,
choose a triple � 2L

p
1
.u�T W /, Y 2 C `.End.TS; j //, and Ys 2 C `.End.T W;Js//

such that D@.u; j ;Js/.�;Y;Ys/D �. Then, elliptic regularity implies � 2L
p;d

k
, so D@

is surjective. Since D@ is Fredholm, it follows from the infinite–dimensional implicit
function theorem that M` is a Banach manifold.

Proposition 3.8 For a dense set Jreg of C1 paths of smooth complex structures on
†, the moduli space of holomorphic curves satisfying (M1), (M2), (M4) and (M5),
and without multiply covered components, is a smooth manifold.

Proof Observing that (M2) implies the absence of annoying curve components, this
follows easily from the previous result. The set Jreg is exactly the set of regular
values for the projection of M onto J . For J ` it is immediate from Smale’s infinite–
dimensional version of Sard’s theorem that J `reg is dense. For the C1 statement a
short approximation argument is required. We refer the reader to [14, page 36]; our
case is just the same as theirs.

Remark Note that (M6) implies that u has no multiply covered components.

We will often say a complex structure J achieves transversality to mean J 2 Jreg .

There is a second way that we can sometimes achieve transversality, which is more con-
venient for computations: by keeping the complex structure on W split and perturbing
the ˛ and ˇ circles. Specifically we have:

Proposition 3.9 Suppose that a homology class A 2 �2.Ex; Ey/ with ind.A/ D 1 is
such that any j† � jD –holomorphic curve uW S !W in the homology class A must
have �† ı uj@S somewhere injective. Then for a generic perturbation of the ˛– and
ˇ–circles, for any u in the homology class A the linearization D@, computed with
respect to the complex structure j† � jD on W , is surjective.
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The proof of this proposition is analogous to the argument in [16]. It is also a corollary
of [21, Proposition 3.9], so we omit the proof.

We shall refer to the condition in the preceding proposition as boundary injectivity.
One obvious time when boundary injectivity holds is the following:

Lemma 3.10 Suppose the homology class A 2 �2.Ex; Ey/ is represented by a domain
DD

P
i niDi such that for some i and j , ni D 1, nj D 0, and @Di \@Dj ¤∅. Then

A satisfies the boundary injectivity hypothesis.

For computing the homologies defined in Section 8, if the boundary injectivity criterion
is met by every domain with index 1 it will suffice to take a generic perturbation of the
boundary conditions and the split complex structure j†� jD rather than a generic path
Js of complex structures. (The only time this is relevant in this paper is Section 11,
but in practice it is necessary for most direct computations.)

4 Index

In this section we compute the index of the linearized @–operator D@ at a holomorphic
map uW .S; j / ! .W;J /. We start by reducing to a result discussed in [1] via a
doubling argument similar to the one found in [10]. We then reinterpret this index
several times, obtaining the Chern class formula for the index of periodic domains
(Corollary 4.12, which is [21, Theorem 4.9]), J Rasmussen’s formula ([25, Theorem
9.1], proved here in Proposition 4.8) and a combinatorial formula for the index near
an embedded curve (Corollary 4.3) and, consequently, the Maslov index in traditional
Heegaard Floer homology (Corollary 4.10).

4.1 First formulas for the index

We may assume that J is split, since deformations of J will not change the index.
Also, we assume that the ˛ and ˇ curves meet in right angles.

Let a1; : : : ; ag be the components of the boundary of S (in the complement of the
punctures) mapped to ˛–cylinders and b1; : : : ; bg the components mapped to ˇ–
cylinders. We define the quadruple of S , denoted 4 Ë S , by gluing four copies of S ,
denoted S1 , S2 , S3 , and S4 , as follows. Glue each ai in S1 to ai in S2 and each ai

in S3 to ai in S4 . Similarly, glue each bi in S1 to bi in S3 and each bi in S2 to bi

in S4 . Define a complex structure on 4 Ë S by taking the complex structure j on S1

and S4 and its conjugate j on S2 and S3 . Notice that these complex structures glue
together correctly.
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The complex vector bundle .u�T W;u�J / extends to a vector bundle over 4ËS , which
we denote .u�T W ;J /, in an obvious way, and D@ extends to an operator 4 Ë D@ on
the sections of this vector bundle. We restrict 4 Ë D@ to the space of sections which
approach zero near each puncture, as we require fixed asymptotics.

By [1, Corollary 5.4, page 53], the index of 4 Ë D@ is

(4) ��.4 Ë S/C 2c1.A/:

Here, c1.A/ is defined as follows. Choose a small disk near each point in ˛ \
ˇ . Trivialize .T†;J / over these disks. This gives a trivialization of u�T W in a
neighborhood of the punctures in 4 Ë S which extends to a trivialization of u�T W

over the surface 4 Ë S obtained by filling in the punctures. Then, c1.A/ is the pairing
of the first Chern class of u�T W with the fundamental class of 4 Ë S . Note that since
T .Œ0; 1��R/ is trivial, to compute c1 we need only look at the † factor. Also, it is
necessary to observe that F. Bourgeois’s calculations in [1, Section 5] are all done in the
pullback bundle, so the fact that our index problem does not correspond to a genuine
map is a nonissue.

We convert Formula (4) into one not involving the quadruple of S . First we compute
that �.4 Ë S/ D 4�.S/ � 4g . Indeed, after doubling along the ˛–arcs the Euler
characteristic is 2�.S/�g . Doubling again we obtain �.4ËS/D 2.2�.S/�g/�2g .
(The last summand of �2g comes from the 2g punctures in 4 Ë S .)

Second, c1.A/ can be computed from Maslov–type indices as follows. Choose the
trivializations of T W over the neighborhoods V of ˛\ˇ above so that for p 2˛\ˇ ,
TpˇD R� C and Tp˛D iR� C. Trivialize .�† ıu/�T† over S so that this trivial-
ization agrees with the specified trivialization of T W over the neighborhoods V . Then,
each boundary arc ai or bi gives a loop of lines in C, and so has a well–defined Maslov
index �.ai/ or �.bi/. It is not hard to see that c1.A/D 2

�Pg
iD1

�.ai/��.bi/
�
. This

is independent of the choice of trivialization subject to the specified criteria.

Fix a map uW .S; @S/! .W;C˛ [Cˇ/. An argument almost exactly like the one in
[10] shows that

(5) ind.D@/D
1

4
ind.4 Ë D@/D g��.S/C

gX
iD1

�.ai/�

gX
iD1

�.bi/:

The factor of 1=4 comes from the “matching conditions” on the boundary of S .

We again reinterpret the Maslov indices. Given a domain D , we define the Euler
measure of D as follows. Suppose first that D is a surface with boundary and corners.
Choose a metric on D such that @D is geodesic and such that the corners of D are
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Obtuse Corner Acute Corner

Figure 2: S is the shaded region.

right angles. Then the Euler measure e.D/ is defined to be 1
2�

times the integral over
D of the curvature of the metric. (This is normalized so that the Euler measure of a
sphere is 2, agreeing with its Euler characteristic.) From this definition it is clear that
the Euler measure is additive under disjoint unions and gluing of components along
boundaries, and so the definition extends naturally to domains (linear combinations of
regions in †).

It follows from the Gauss–Bonnet theorem that the Euler measure of a surface S

with k acute right–angled corners (see Figure 2) and ` obtuse right–angled corners is
�.S/�k=4C `=4. As with the previous formulation of Euler measure, this formula is
additive, so the Euler measure of a domain D D

P
i Di is e.D/D

P
i e.Di/.

From the Gauss–Bonnet theorem, we also know that if we endow D with a flat metric
such that all corners are right angles then the Euler measure e.D/ is 1

2�
times the

geodesic curvature of @D . It is then clear that for D the domain corresponding to u,Pg
iD1

�.ai/��.bi/D 2e.D/. So, we can recast the index formula as

(6) ind.D@/D g��.S/C 2e.D/:

4.2 Determining S from A

Note that the formulas for the index derived so far depend not only on the homology
class but also on the topological type of the source. This is as it should be. However,
as we will show presently, for embedded holomorphic curves the Euler characteristic
of the source is determined by the homology class. (Actually, we prove this more
generally for any curves satisfying certain hypotheses described in Lemma 4.1 below,
not just holomorphic ones.) In fact, we can give an explicit formula for the Euler
characteristic, allowing us to give a combinatorial formula for the index. We will see
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Figure 3: A degenerate corner

�e3i�=4

�e5i�=4 �e7i�=4

�ei�=4

Figure 4: np.A/D
1
4

�
n�ei�=4.A/C n�e3i�=4.A/C n�e5i�=4.A/C n�e7i�=4.A/

�
in Subsection 4.3 that this formula calculates the Maslov index in the setup of [21] as
well. Before proving this claim we introduce some more terminology and notation.

Given an intersection point Ex we call each xi 2 Ex a corner of Ex . Following Rasmussen,
we define a corner xi of Ex to be degenerate for a homology class A 2 �2.Ex; Ey/ if
xi D yj for some yj 2 Ey . This definition will be convenient presently.

Let p 2 ˛i \ ǰ . For a homology class A 2 �2.Ex; Ey/, define np.A/ to be the average
of the coefficients of A of the four cells with corners at p . More precisely, choose
coordinates identifying a neighborhood of p in † with the unit disk in C, ˛i with the
real axis, and ǰ with the imaginary axis. Then np.A/D

1
4

�
n�ei�=4.A/Cn�e3i�=4.A/C

n�e5i�=4.A/ C n�e7i�=4.A/
�

for some � < 1. See Figure 4. Define nEx.A/ to beP
xi2Ex

nxi
.A/, and n Ey.A/D

P
yi2Ey

nyi
.A/. (See [20, page 1202].)
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We need a lemma about representability of homology classes with positive coefficients:

Lemma 4.1 Suppose A 2 �2.Ex; Ey/ is a positive homology class. Then there is a
Riemann surface with boundary and corners S and smooth map uW S !W (where S

denotes the complement in S of the corners of S ) in the homology class A such that:

(1) u�1.C˛ [Cˇ/D @S .

(2) For each i , u�1.˛i � f1g �R/ and u�1.ˇi � f0g �R/ each consists of one arc
in @S .

(3) The map u is J –holomorphic in a neighborhood of .�† ıu/�1.˛[ˇ/ for some
J satisfying (J1)–(J5) (in fact, for j† � jD ).

(4) For each component of S , either
� The component is a disk with two boundary punctures and the map is a

diffeomorphism to fxig� Œ0; 1��R for some xi 2 ˛\ˇ (such a component
is a degenerate disk) or

� The map �† ıu extends to a branched covering map �† ıu, none of whose
branch points map to points in ˛\ˇ .

(5) All the corners of S are acute (see Figure 2).

(6) The map u is an embedding.

(Note that it follows from the conditions in the lemma that the map to † is orientation–
preserving. Also, observe that a generic holomorphic representative of the homology
class satisfies all of the properties of the lemma.)

Proof (For a similar construction of a u with slightly different properties, see Ras-
mussen, [25, Lemma 9.3]. His construction is slightly more subtle than we need.
Another inspiring construction can be found in [21, Lemma 2.17].)

Let D1; � � � ;DN denote the closures of the components of †n .˛[ˇ/, enumerated so
that zi 2Di . Form a surface S0 by gluing together nzi

.A/ copies of Di (iD1; � � � ;N )
pairwise along common boundaries maximally. There is then an obvious orientation–
preserving map p†;0W S0!† which covers zi nzi

.A/ times.

It is possible to perform the specified gluing so that the only corners of S0 correspond
one–to–one with non–degenerate corners of the domain. This is not automatic; see
Figure 5. One way to achieve this is to first glue maximally along ˛–arcs. Then glue
along the ˇ–arcs as much as possible without introducing any obtuse corners. After
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Figure 5: Two possible gluings S0 for a specified domain. The latter leads
to extra corners of S0 .

doing so, any remaining corners must correspond to non–degenerate corners of the
domain.

The surface S0 lacks corners at degenerate corners of the domain. Let D2
2

denote a
disk with two punctures on the boundary. Let S1 denote the disjoint union of S0 with
a copy of D2

2
for each degenerate corner of the domain. Extend p†;0 to a map p†;1

from D2
2

by mapping one copy of D2
2

to each degenerate corner of the domain.

Now, S0 inherits a complex structure from †. Extend this complex structure arbitrarily
over the new disks in S1 to obtain a complex structure on S1 . It is easy to choose
a map pD;1W S1! Œ0; 1��R such that the map .p†;1 �pD;1/W S1!W satisfies all
of the properties specified in the statement of the lemma except perhaps numbers (2)
and (6). Perturbing pD;1 we may assume that .p†;1 �pD;1/ is an embedding except
for a collection of transverse double points.

For each ˛i (respectively ǰ ), there will be exactly one arc in @†1 mapped by p†;1
to ˛i (respectively ǰ ), and possibly some circles in @†1 mapped by p†;1 to ˛i

(respectively ǰ ). The map pD;1 must be constant near each closed component of
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@S1 , and the image of the arc under .p†;1 �pD;1/ must intersect the image of each
closed component of @S1 mapped to ˛i (respectively ǰ ) exactly once.

Modifying S1 and p†;1�pD;1 near the double points of p†;1�pD;1 we can obtain a
new map uW S!W satisfying all of the stated properties: in the process of deforming
away the double points, we necessarily achieve property (2) as well.

Proposition 4.2 Let uW S !W be a map satisfying the conditions enumerated in the
previous lemma, representing a homology class A. Then the Euler characteristic �.S/
is given by

(7) �.S/D g� nEx.A/� n Ey.A/C e.A/:

Proof Applying the Riemann–Hurwitz formula to �† ıu, we only need to calculate
the degree of branching of �† ıu.

To calculate the number of branch points of �† ı u we reinterpret this number as
a self–intersection number. We will assume all branch points of �† ı u have order
2; we can clearly arrange this. Observe that since S has no obtuse corners, by the
Riemann–Hurwitz formula,

�.S/D e.S/Cg=2D e.A/� .number of branch points/

C
1
2
.number of trivial disks/Cg=2:

(Branch points on @S should each be counted as half of a branch point.)

Assume for the time being that u contains no trivial disks, and in fact has no degenerate
corners.

Notice that the number of branch points of �† ıu is equal to the number of times the
vector field @

@t
is tangent to u. (Tangencies on @S should each be counted as half of a

tangency.) Let u0 denote the curve obtained from u by translating a distance R in the
R–direction. Then, for small R, the number of branch points of �† ıu is equal to the
intersection number of u and u0 . (Intersections on @S should each be counted as half
of an intersection.)

This intersection number is invariant under isotopies of u0 such that all intersection
points of u and u0 remain in a compact subset of of W . (The only thing to check is
that when an intersection point in the interior of W hits the boundary it gives rise to a
pair of intersection points on the boundary. It is not hard to check this using a doubling
argument in a neighborhood of the boundary.) We will calculate the intersection number
by translating u0 far in the R–direction of W .

Geometry & Topology, Volume 10 (2006)



A cylindrical reformulation of Heegaard Floer homology 979

Translate u0 by some R� 0 in the R–factor of W . All intersection points between u

and u0 stay in a compact subset of W , so the intersection number #u\u0 is unchanged.

We can modify u0 so that near each negative puncture (corresponding to some xi ) u0

agrees with the trivial disk xi � Œ0; 1��R . Further, we can do this modification so that
all intersection points between u and u0 stay within some compact subset of W . (This
follows from the simple asymptotic behavior of u0 near �1.)

Similarly, we can modify u so that near the positive punctures of S , u agrees with the
trivial disks fyig� Œ0; 1��R ensuring in the process that all intersection points between
u and u0 stay within some compact subset of W .

Finally, for R large enough, we can assume that after the two modifications every
intersection point between u and u0 corresponds to an intersection point between u

and fxig � Œ0; 1��R or between fyj g � Œ0; 1��R and u0 .

Now, for each corner ck;` of each component Ek of S n .�† ıu/�1.˛[ˇ/, one of
the following four phenomena occurs:

(1) The corner ck;` is mapped by �† ı u somewhere other than xi . That is,
limp!ck;`

�† ıu.p/¤ xi .

(2) The corner ck;` is mapped by �† ıu to xi , but at �1. That is, limp!ck;`
�† ı

u.p/D xi but limp!ck;`
�R ıu.p/D�1.

(3) The corner ck;` is mapped by �† ıu to xi , and is mapped by u to the boundary
of W . That is, �† ıu.ck;`/D xi and �D ıu.ck;`/ 2 @Œ0; 1��R.

(4) The corner ck;` is mapped by �† ıu to xi , and is mapped by u to the interior
of W . That is, �† ıu.ck;`/D xi and �D ıu.ck;`/ 2 .0; 1/�R.

(Compare Figure 6.)

In the first two cases, Ek does not contribute to #.u\xi � Œ0; 1��R/. In the last two,
Ek contributes 1=4 to the intersection number. Notice that the second case occurs
exactly once, since S has no obtuse corners. There are a total of 4nEx corners satisfying
one of conditions (2)–(4) for some xi . Exactly g of them satisfy condition (2). So,
# .u\fxig � Œ0; 1��R/D nEx �g=4.

A similar analysis works for the intersection points between u0 and fyj g� Œ0; 1��R.
So, it follows that the intersection number between u and u0 is

#.u\u0/D nEx.A/C n Ey.A/�g=2:

It follows that �.S/D e.A/� nEx.A/� n Ey.A/Cg .
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Figure 6: With respect to x1 , corner c1;2 has type (2), corners c2;1 and c3;2

have type (3), and all others have type (1).

In the proof so far we assumed that there were no trivial disks. Suppose u contains trivial
disks corresponding to the intersection points xi1

; � � � ;xik
. Since we are considering

only embedded curves, nxij
.A/D 0 for j D 1; � � � ; k . By the argument above, after

ignoring the trivial disks, we find #.u\u0/D nEx.A/C n Ey.A/�g=2C k=2. So, we
have the same formula for �.S/ as before.

Finally, we deal with degenerate corners which are not trivial disks. Since we are
assuming S has only acute corners, and acute degenerate corners have exactly one
shared boundary component under �† ıu, it is easy to see that after translating in the
R–direction, there will be one intersection point along the boundary near the puncture,
so the extra corner mapped to ˙1 contributes 1

2
to the intersection number, as one

would expect from our formula. This concludes the proof.

Note that if uW S!W is an embedded holomorphic curve (with respect to any complex
structure J on W satisfying (J1)–(J5)) then, after slitting S near any obtuse corners
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and perturbing u slightly, uW S!W satisfies the conditions of Lemma 4.1. It follows
that Proposition 4.2 calculates the Euler characteristic of S .

Corollary 4.3 For A a positive homology class and uW S !W a representative for
A satisfying the conditions of Lemma 4.1, the index of the D@ operator near u is given
by

(8) ind.D@/D e.A/C nEx.A/C n Ey.A/

Proof This is immediate from formula (6) and Proposition 4.2.

Definition 4.4 Given a positive homology class A define the index ind.A/ of A to be
the index of the D@ operator near any curve satisfying the conditions of Lemma 4.1.

Corollary 4.5 If A and ACkŒ†� are both positive then ind.ACkŒ†�/D ind.A/C2k .

Proof By Corollary 4.3,

ind.AC kŒ†�/D e.AC kŒ†�/C nEx.AC kŒ†�/C n Ey.AC kŒ†�/

D e.A/C .2� 2g/kC nEx.A/CgkC n Ey.A/Cgk

D e.A/C nEx.A/C n Ey.A/C 2k

D ind.A/C 2k:

Definition 4.6 For any homology class A define the index ind.A/ of A to be ind.AC
kŒ†�/� 2k where k is chosen large enough that AC kŒ†� is positive.

Corollary 4.7 Suppose that A 2 �2.Ex; Ey/ and A0 2 �2. Ey; Ez/. Then ind.ACA0/D

ind.A/C ind.A0/.

Proof We may clearly assume that A and A0 are both positive. Let uW S !W and
u0W S 0 ! W be maps satisfying the conditions Lemma 4.1 representing A and A0

respectively. Then we can glue u and u0 to a map u\u0W S\S 0 ! W representing
ACA0 . It follows from general gluing results for the index that ind.D@/.u\u0/ D
ind.D@/.u/C ind.D@/.u0/. (Alternately, it follows from the additivity of Formula (6)
under gluing.)

Remark Formula (8) was suggested to me by Z Szabó. Specifically, he suggested
that it seemed the Maslov index in [21] can be calculated by this formula. In particular,
in the special case when A 2 �2.Ex; Ex/, Ozsváth and Szabó proved ([21, Theorem 4.9]
and [20, Proposition 7.5]) that Formula (8) does computes the Maslov index. Note that
it is not even clear a priori that Formula (8) is additive. In fact, I do not know a more
direct proof than the one we used to obtain Corollary 4.7.
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4.3 Comparison with classical Heegaard Floer homology

In this subsection we assume familiarity with [21].

By considering domains, for example, there is a natural identification of our �2.Ex; Ey/

with �2.Ex; Ey/ as defined in [21, Section 2.4]. For A 2 �2.Ex; Ey/, let �.A/ denote the
Maslov index of A, viewed as a homotopy class of maps disks in .Symg.†/;T˛[Tˇ/.
The goal of this subsection is to prove the following

Proposition 4.8 For A 2 �2.Ex; Ey/ we have ind.A/D �.A/.

Proof It is possible to give a direct proof (see [25, proof of Theorem 9.1]), but instead
of doing so we will show our formula agrees with the one given by Rasmussen in [25,
Theorem 9.1]. He proves that at a disk �W .D; @D/! .Symg.†/;T˛ [Tˇ/,

(9) �.�/D� ��C 2e.�/:

Here, e is the Euler measure defined in Subsection 4.1 and � � � is the algebraic
intersection number of � with the diagonal in Symg.†/. (The diagonal is an algebraic
subvariety of Symg.†/ of real codimension 2 so the intersection number is well–
defined.)

To compare his result with ours, we need a slight strengthening of Lemma 4.1:

Lemma 4.9 Suppose A is a positive homology class. Then we can represent AC

Œ†� by a map uW S ! W satisfying all the conditions of Lemma 4.1 and such that,
additionally:

� The map �D ıu is a g–fold branched covering map with all its branch points of
order 2.

� The map u is holomorphic near the preimages of the branch points of �D ıu.

Proof Construct a map u1W S1!W representing A as in Lemma 4.1. We would
like to say that we can then choose a branched cover pD;1W S1! Œ0; 1��R (mapping
arcs on the boundary appropriately). This may not, however, be the case: suppose, for
instance, that g D 2 and S1 were the disjoint union of a disk and a surface of genus
one with one boundary component.

However, note that Œ†� 2 �2. Ey; Ey/ can be represented by a map with connected source.
Specifically, let S† be obtained by making small slits in † along ˛i and ˇi starting
at yi 2 Ey for i D 1; � � � ;g . There is an obvious map S†!†.

Gluing the negative corners of S† to the positive corners of S1 we obtain a connected
surface S2 and map p†;2W S2!†. Since S2 is connected it is possible to choose a
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branched covering map pD;2W S2!D with appropriate boundary behavior. Perturbing
this map we can assume all of its branch points have order 2. Finally, deforming away
the double points of p†;2 �pD;2 and perturbing it to be holomorphic in appropriate
places, we obtain an embedding satisfying the specified conditions.

Now, fix a positive homology class A in �2.Ex; Ey/ and a map u representing A as in the
previous lemma. The map u induces a map �W D! Symg.†/ as follows. For a 2 D

let .�D ıu/�1.a/D fa1; : : : ; agg. Then define �.a/D f�† ıu.a1/; : : : ; �† ıu.ag/g.

There is a one–to–one correspondence between order 2 branch points of �D ıu and
transverse intersections of � with the top–dimensional stratum of the diagonal. By the
Riemann–Hurwitz formula, �.S/ D g�.D2/� � �� D g � � ��, so ind.D@/.u/ D
g��.S/C 2e.AC Œ†�/D � ��C 2e.AC Œ†�/.

This is exactly Rasmussen’s formula for the Maslov index. Thus, we have shown that
ind.AC Œ†�/D �.AC Œ†�/ for A positive. But both ind and � are additive, and have
ind.Œ†�/D �.Œ†�/D 2. Thus, it follows that ind.A/D �.A/ for all A.

Corollary 4.10 In Heegaard Floer homology, the Maslov index of a domain D is
given by

�.D/D nEx.D/C n Ey.D/C e.D/:

Remark There are no assumptions on the domain.

4.4 Index for A 2 �2.Ex; Ex/

The following result, which we will use below, is proved by Ozsváth and Szabó in [20,
Proposition 7.5] by direct geometrical argument.

Lemma 4.11 If Ex 2 s and A 2 y�2.Ex; Ex/ then hc1.s/;Ai D e.A/C 2nEx.A/. Here
h�; �i denotes the natural pairing between homology and cohomology, c1.s/ the first
Chern class of s, and A is viewed as an element of H2.Y /.

The following is completely analogous to [21, Theorem 4.9].

Corollary 4.12 Let P be a homology class in �2.Ex; Ex/. Then

ind.P /D hc1.s/;P iC 2nz.P /:
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5 Admissibility criteria

In order to define the differential in our chain complexes it will be important that for
any intersection points Ex and Ey , only finitely many homology classes A 2 �2.Ex; Ey/

with ind.A/ D 1 support holomorphic curves. For a rational homology sphere, this
is automatic: there are only finitely many homology classes in �2.Ex; Ey/. In general,
following [21], we use special Heegaard diagrams and “positivity of domains” to ensure
that only finitely many homology classes support holomorphic curves. Our definitions
are the same as theirs. For the reader’s amusement, we provide slightly different proofs
of two of the fundamental lemmas about admissibility.

Definition 5.1 (Compare [21, Definition 4.10]) The pointed Heegaard diagram
.†; Ę; Ě; z/ is called weakly admissible for the SpinC –structure s if every nontrivial
periodic domain P with hc1.s/;P i D 0 has both positive and negative coefficients.

Definition 5.2 (Compare [21, Definition 4.10]) The pointed Heegaard diagram
.†; Ę; Ě; z/ is called strongly admissible for the SpinC –structure s if every nontrivial
periodic domain P with hc1.s/;P i D 2n> 0 has nzi

.P / > n for some zi .

Remark Notice that for any SpinC –structure, c1.s/ is an even cohomology class:
c1.s/ is the first Chern class of v? for some nonvanishing vector field v . Then
c1.s/ � w2.v

?/ mod 2. Since TM is trivial and the line field determined by v is
obviously trivial, 1D .1Cw1.v

?/Cw2.v
?//, so w2.v

?/D 0.

We now need two kinds of result. The first is the finiteness mentioned just above in the
case of weak / strong admissibility. The second is that the admissibility criteria can
be achieved, and that any two admissible Heegaard diagrams can be connected by a
sequence of Heegaard moves through admissible diagrams.

First, a few simple observations. A SpinC –structure is called “torsion” if c1.s/ is a
torsion homology class. For a torsion SpinC –structure, hc1.s/;P i D 0 for any periodic
class P . So, the two definitions of admissibility agree. Further, if a Heegaard diagram
is weakly (or equivalently strongly) admissible for some torsion SpinC –structure then it
is weakly admissible for every SpinC –structure. This point is useful for computations.

Both admissibility criteria are, obviously, vacuous for a rational homology sphere.

It will be useful to have equivalent definitions of weak / strong admissibility:

Lemma 5.3 Fix a pointed Heegaard diagram HD .†; Ę; Ě; z/ and a SpinC –structure
s.
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� (Compare [21, Lemma 4.12]) The diagram H is weakly admissible for s if and
only if there is an area form on † with respect to which every periodic domain
P with hc1.s/;P i D 0 has zero signed area.

� The diagram H is strongly admissible for s if there is an area form on † with
respect to which every periodic domain P with hc1.s/;P i D 2n has signed area
equal to n, and with respect to which † has area 1.

Proof The proofs of the two statements are very similar, and the proof of the first
statement is in [21, Lemma 4.12]. We give here only the proof of the second statement.

Let fDig, i D 1; � � � ;N denote the components of † n .˛[ ˇ/. We can view the
space of periodic domains as a linear subspace V of ZN � RN . Suppose an area form
assigns the area ai to Di . Then the area assigned to P is P � .ai/, the dot product of
the vector P 2 RN and the vector .ai/. Since this is the only way the area form enters
the discussion, we will refer to the vector .ai/ as the area form.

Suppose there is an area form .ai/ on † with respect to which every periodic domain
P with hc1.s/;P i D 2n > 0 has signed area equal to n and † has area 1. Suppose
hc1.s/;P i D 2n. Then by assumption P � .ai/D n. So, .P � nŒ†�/ � .ai/D 0. Hence,
P �nŒ†� must have some positive coefficient. Hence, P must have some coefficient
greater than n.

The converse is slightly more involved. Note that since area.�P /D �area.P /, it
suffices to construct an area form with the desired property for periodic domains with
hc1.s/;P i � 0.

By Lemma 4.11, the function which assigns to a periodic domain P the number
hc1.s/;P i extends to an R–linear functional ` on V . The map v 7! v� .`.v/=2/ Œ†�

gives a linear projection map pW V ! ker.`/. Let V 0 D p.V /:

Now, we want to choose aD .ai/ orthogonal to V 0 so that ai > 0 for all i . We will
show that one can choose such an a presently; for now, assume that such an a has been
chosen. Multiplying a by some positive real number, we can assume that a � Œ†�D 1.
Now, for v 2 V ,

a � v D a �p.v/C .`.v/=2/ a � Œ†�D `.v/=2D hc1.s/;P i =2

as desired.

Finally, we need to show such an a exists. The linear space V is spanned by the
periodic domains P with hc1.s/;P i � 0, so V 0 is spanned by their images under
p . Every periodic domain P with hc1.s/;P i D 2n� 0 has a coefficient bigger than
nD `.P /=2, so every p.P / has a positive coefficient. It is also true that every p.P /
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has a negative coefficient: if `.P /D 0 this follows by applying the hypothesis to �P ;
if `.P / > 0 this follows from the fact that nz.P /D 0.

Now, we are reduced to showing the following: let V 0 be a subspace of RN such that
every nonzero vector in V 0 has both positive and negative coefficients. Then there is a
vector orthogonal to V 0 with all its entries positive. The proof of this claim is a linear
algebra exercise; see [21, Lemma 4.12].

Now we get to the two lemmas justifying the introduction of our admissibility criteria.
The following is [21, Lemma 4.13].

Lemma 5.4 If .†; Ę; Ě; z/ is weakly admissible for s then for each Ex; Ey 2 s and
j ; k 2 Z there are only finitely many positive homology classes A 2 �2.Ex; Ey/ with
ind.A/D j and nz.A/D k .

Proof If A;B 2 �2.Ex; Ey/ and ind.A/ D ind.B/ D j , nz.A/ D nz.B/ D k then
P D A�B is a periodic domain with hc1.s/;P i D 0: So, we must show that there
are only finitely many periodic domains P with hc1.s/;P i D 0 such that ACP is
positive.

Choose an area form on † so that the signed area of any periodic domain P with
hc1.s/;P i D 0 is zero. The condition that ACP be positive obviously gives a lower
bound for every coefficient of P . This and the condition that the signed area of P is
zero gives an upper bound for every coefficient of P . The coefficients are all integers,
so the result is immediate.

The following is [21, Lemma 4.14].

Lemma 5.5 If .†; Ę; Ě; z/ is strongly admissible for s then for each Ex; Ey 2 s and
j 2 Z there are only finitely many positive homology classes A 2 �2.Ex; Ey/ with
ind.A/D j .

Proof Fix a homology class A 2 �2.Ex; Ey/ with nz.A/D 0 and ind.A/D j0 . Then
any other homology class B 2 �2.Ex; Ey/ can be written as ACP C kŒ†� for some
integer k and periodic domain P . We have ind.B/ D j0 C k C hc1.s/;P i. If we
assume that ind.B/D j then hc1.s/;P i D j � j0� 2k .

Fix an area form such that the area of † is 1 and the area of any periodic domain P is
1
2
hc1.s/;P i. Then, the area of P is j�j0

2
� k .

If we impose the condition that B be positive then we automatically get lower bounds
for every coefficient of P (which are independent of k ). Note that k � 0, since
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k D nzi
.B/ for some i . The condition that the area of P be j�j0

2
�k � j�j0

2
and the

lower bound for the coefficients of P gives an upper bound for the coefficients of P ,
independent of k . This completes the proof.

The following is [21, Lemma 5.8 and Proposition 7.2]. We refer the reader there for its
(somewhat involved but essentially elementary) proof.

Proposition 5.6 Fix a 3–manifold Y and SpinC –structure s on Y .

(1) There is a weakly (respectively strongly) admissible Heegaard diagram for s.

(2) Suppose that H1 D .†; Ę; Ě; z/ and H2 D .†
0; Ę0; Ě0; z0/ are weakly (respec-

tively strongly) admissible Heegaard diagrams for s. Then there is a sequence of
pointed Heegaard moves (ie, Heegaard moves supported in the complement of z)
connecting H1 to H2 such that each intermediate Heegaard diagram is weakly
(respectively strongly) admissible for s.

6 Orientations

In order to be able to work with Z coefficients, we need to be able to choose orientations
for the moduli spaces cMA

in a coherent way. First we need to know that each cMA

(or equivalently, each MA ) is orientable. Then we will discuss what we mean by a
coherent orientation and why such orientations exist. This is all somewhat technical,
and we will sometimes supply references rather than details.

Suppose that we have chosen an almost complex structure J that achieves transversality
for the moduli space MA . Then for u 2MA the tangent space TuMA is naturally
identified with the kernel ker.Du@/ of the linearized @ operator at u. In fact, the
spaces ker.Du@/ fit together to form a vector bundle over MA naturally isomorphic
to TMA . So, orienting MA is the same as trivializing the top exterior power of the
vector bundle ker.D@/ over MA .

Rather than working with ker.D@/ it is better to work with the line bundle LD det.D@/
which is defined to be the tensor product of the top exterior power of ker.D@/ with the
dual of the top exterior power of coker.D@/. (This is the “determinant line bundle of
the virtual index bundle of the @–operator.”) Note that if J achieves transversality at a
curve u then Lu is just the top exterior power of ker.Du@/.

To keep the exposition clean we will assume that our sources are stable, ie, have
no components which are twice–punctured disks. Let T denote the Teichmüller
configuration space of pairs .j ;u/ where j is a complex structure on S (ie, an
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element of the Teichmüller space of Riemann surfaces) and u W S ! W is a map
satisfying (M1), (M3) and (M4) and which is asymptotic to the planes fxig� Œ0; 1��R

or fyig� Œ0; 1��R at the appropriate punctures. Say .j ;u/ and .j 0;u0/ are equivalent
if there is an isomorphism of Riemann surfaces � W .S; j /! .S 0; j 0/ so that

S 0

u   B
BB

BB
BB

B
� // S

u~~}}
}}

}}
}}

W

commutes. Let B be the quotient of T by this equivalence relation, so B is the moduli
configuration space of maps to W . The reason to work with L is that the bundle L is
defined over all of B .

Different topological types of S correspond to different components of B . So from
now on we restrict attention to the subspace BS corresponding to maps from a single
topological type of source S .

Note in particular that we can talk about choosing an orientation over the homology
class A even if MA is empty. This will be useful when we discuss coherence.

The determinant line bundle L is, in our case, always trivial. To prove this we combine
constructions from [5] and [13].

Under our stability assumption, we have a fiber bundle

Map.S;W / // BS

��
MS

where Map.S;W / consists of maps S !W satisfying (M1), (M3) and (M4) with
appropriate asymptotics, and MS corresponds to the moduli space of conformal
structures on S .

Call a space X homotopy discrete if every connected component of X is contractible.
The following proposition is somewhat stronger than we need. It is, however, of some
independent interest, and will be mentioned again in Section 14.

Proposition 6.1 The space Map.S;W / is homotopy discrete.

Proof The space Map.S;W / is the product Map.S; †/�Map.S; Œ0; 1��R/. The
space Map.S; Œ0; 1��R/ is convex, so it suffices to prove that Map.S; †/ is homotopy
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discrete. (Here, both Map.S; Œ0; 1��R/ and Map.S; †/ refer to spaces of maps with
certain obvious boundary and asymptotic conditions.)

There is a fibration

Map.S; †/!�.˛1/� � � � ��.˛g/��.ˇ1/� � � � ��.ˇg/

given by restricting a map to the boundary and identifying the space of paths in ˛i (or
ǰ ) with endpoints xi and yi with �.˛i/ (or �. ǰ /). (Here, � denotes the based

loop space.) Since �.˛1/� � � � ��.ˇg/ is homotopy discrete it suffices to prove that
each fiber of the fibration is homotopy discrete. Let Map.S; †I @/ denote a fiber of the
fibration.

Let Map0.S; †/ denote the space of all maps S ! † in the homotopy class of
Map.S; †I @/ with no boundary conditions. There is a fibration

Map.S; †I @/ // Map0.S; †/

��
Map.@S; †/

:

Different fibers of this fibration are homotopy equivalent. So, we can replace
Map.S; †I @/ with the space Map0.S; †I @/ of maps with all 2g punctures of S

mapped to a single point p2† and the boundary arcs mapped to a fixed list C1; � � � ;C2g

of circles.

There is a fibration
Map0.S; †I @/ // Map0�.S; †/

��

.�†/2g

where Map0�.S; †/ denotes the component of the space of based maps S !† con-
taining Map0.S; †I @/. Since �† is homotopy discrete, it suffices to prove that
Map0�.S; †/ is homotopy discrete. This follows from the following lemma.

Lemma 6.2 Let K be a K.�; 1/ and X any finite, connected CW complex. Fix
basepoints in K and X . Then the space of based maps from X to K is homotopy
discrete.

Proof We may assume the zero–skeleton X .0/ of X consists of just the basepoint, so
the one–skeleton X .1/ consists of a bouquet of circles. Let Map�.X;K/ denote based
maps from X to K . There is a fibration Map�.X;K/!Map�.X

.1/;K/D .�K/N
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(where N is the number of 1–cells in X ). The base is homotopy discrete since K is a
K.�; 1/. So, it suffices to prove that the nonempty fibers are homotopy discrete. Each
fiber F1 consists of maps of X to K fixed on X .1/ .

The proof now proceeds by induction over the skeleta of X . There is a fibration

F1!

Y
2–cells

Map�.D
2;KI @/

where Map�.D
2;KI @/ denotes (based) maps of a disk with the boundary mapped

as specified by the map of the one–skeleton. The base is homotopy discrete, as one
deduces from the fibration

Map�.D
2;KI @/ // Map�.D

2;K/

��
�.K/

in which the total space is contractible and the base space is homotopy discrete. Thus,
it suffices to show that any fiber F2 of F1!

Q
2–cells Map�.D

2;KI @/ is contractible.
Notice that each F2 consists of maps of X specified on the two–skeleton.

Proceeding as before, we have a fibration F3!
Q

3–cells Map�.D
3;KI @/, now with

contractible base. It suffices to prove the fiber F4 is contractible, and so on. Since X

is finite, the process terminates at Fn for nD dim.X /.

Since † is a K.�; 1/, this completes the proof of the proposition.

If the space MS is contractible, or even just has trivial H 1 , then we are finished: we
then have H 1.BS / trivial and hence all line bundles over BS are orientable. This is,
in fact, the case if S is a union of disks with boundary punctures. In general, however,
MS can have interesting topology.

Remark It is not hard to show, by an argument similar to but simpler than the proof
of Proposition 6.1, that the configuration spaces of disks in the original construction
of Heegaard Floer homology [21] have trivial �1 , proving orientability of the moduli
spaces in that setting.

Proposition 6.3 The determinant line bundle L over BS is trivial.

Proof By Proposition 6.1 for a given source S and homology class A, the space of
possible maps of @S is contractible. Then, it follows from the argument of [13, Lemma
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6.37] or [5, Lemma 3.8], which we sketch briefly, that the line bundle L is trivial. Fix
a map u0 of a collar neighborhood C of @S . (By a collar neighborhood, we mean
that @C is the union of @S and a collection of circles, and each component of C is an
annulus with punctures on one of its boundary circles.) We restrict to maps u W S!W

agreeing with u0 on C . (That it suffices to consider such maps is the only place we
use anything special about our situation. If we choose u0 to be an embedding, say, it
makes sense to say u agrees with u0 on a collar neighborhood of the boundary, even
though BS is a fiber bundle and not a product of MS and Map.S;W /.)

Let @in.C / denote the “interior boundary” of C , ie, the circles without punctures.

As in Section 3, we are interested in the kernel and cokernel of

D@ WL
p;d
1
.u�T W; @/˚R2g

!Lp;d
�
ƒ0;1u�T W

�
:

Let S 0 denote the surface obtained from S by collapsing @inC . The operator D@

induces an operator D0@ between bundles over S 0 , and it is not hard to see that the
determinant lines of D@ and D0@ are naturally identified. Let C 0 be the image of C in
S 0 , so S 0 consists of C 0 and some closed components. The determinant line of D0@ is
the tensor product of the determinant lines of the restriction of D0@ to each component
of S 0 .

Over the closed components of S 0 the determinant line has a natural “complex” ori-
entation. Fix once and for all trivializations of the determinant lines of D0@ over the
components of C 0 . (Since ujC D u0 , the restriction of D0@ to C 0 does not depend on
u.) Then, these trivializations induce an orientation of the determinant of D0@, and
hence of D@, independent of u. This proves orientability of L.

Remark For comparison, in [21], Ozsváth and Szabó only use the fact that the tangent
bundles to the Lagrangian submanifolds in question are trivial. In [5], although their
setup is not quite the same as standard symplectic field theory, T. Ekholm, J. Etnyre and
M. Sullivan prove orientability under the assumption that the Lagrangian manifolds in
question are Spin.

The coherence we want for our orientation system is the following. Suppose that
we have maps uW S ! W and u0W S 0 ! W in homology classes A 2 �2.Ex; Ex

0/

and A0 2 �2.Ex
0; Ex00/, respectively. Then by gluing the positive corners of u to the

negative corners of u0 (in some fixed, concrete way) one can construct a 1–parameter
family of curves u\r u0W S\r S 0!W . One obtains, thus, an inclusion MapA.T;W /�

Map0A.T;W /� .R;1/!MapACA0.T;W /. This inclusion is covered by a map of
determinant line bundles. Coherence means that this map is orientation–preserving.

Geometry & Topology, Volume 10 (2006)



992 Robert Lipshitz

A few more details can be found in the proof of Proposition 13.7, and a complete
discussion in any of [6, Section 1.8], [3] or [5].

There are strong general results about the existence of coherent orientations (see [6], [3]
or [5]). In our case, however, we can construct them quite concretely:

As in [21, Section 3.6], given a Heegaard diagram, a SpinC –structure s, and an
intersection point Ex0 2 s, a complete set of paths for s is a choice of homology class
Ti 2 �2.Ex0; Exi/ for every other Exi 2 s. Fix Ex0 2 s, a representative Pj of each
homology class in some basis for y�2.Ex0; Ex0/DH2.Y /, and a complete set of paths
for s. By the gluing properties of coherent orientations described two paragraphs
earlier, specifying a particular coherent orientation of the moduli space is equivalent to
specifying an orientation over each Ti , each Pj , and over Œ†� 2 �2.Ex0; Ex0/.

Over Œ†� there is a canonical orientation, given by viewing the map †
`�
q

g

kD1
D2
�
!

†�D given by id � f0g on † and fx0;ig � id on the i th D2 as positively oriented.
We shall always use this orientation over Œ†�. Over the Ti and Pj orientations can be
chosen arbitrarily. This is exactly as in [21].

Following [21], we shall let o.A/ denote the choice of orientation over the homology
class A.

A canonical choice of coherent orientation system is specified in [20]. An analogous
construction presumably works in our case as well. This is not, however, necessary for
the current paper.

7 Bubbling

By a holomorphic building in W we mean a list v1; v2; � � � ; vk of holomorphic curves
in W , defined up to translation in R , such that the asymptotics of vi at C1 agree with
the asymptotics of viC1 at �1. We call k the height of the holomorphic building, the
vi the stories of the building, and i the level of vi . It is proved in [2, Theorem 10.1]
that any sequence fuig of holomorphic curves in W (possibly disconnected) in a given
homology class has a subsequence converging to some (possibly nodal) holomorphic
building.

The meaning of convergence is, as usual for holomorphic curves, somewhat involved.
Roughly, convergence to a several story holomorphic building means that some parts of
ui go to infinity (in the R–factor) with respect to other parts. In the source, such level
splitting corresponds to the degeneration of the complex structure along a collection
of disjoint arcs or, in principle, circles. It is also possible for the source to degenerate
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along a collection of circles or arcs without level splitting occuring; this corresponds to
formation of nodes as in traditional Deligne–Mumford theory. In principle, disks or
spheres can also bubble off. See [2, Section 7] for a precise definition of convergence
taking into account all of these possibilities.

For the definition of the Floer homology in subsequent sections to work, we need the
following:

Proposition 7.1 Fix an almost complex structure J on W satisfying (J1)–(J5) and
achieving transversality. Let ui W S !W be a sequence of holomorphic curves in a
homology class A satisfying (M0)–(M6) and converging to some holomorphic building
v . Assume that ind.A/ � 2 and that A ¤ Œ†�. Then, each story vj of v satisfies
(M0)–(M6).

Here, by Œ†� we mean the homology class with nzi
D 1 for every i .

Proof First we check that Deligne–Mumford type degenerations which do not cor-
respond to level splitting are impossible. Bubbling of spheres or disks is impossible
because �2.W / and �2.W;C˛ [ Cˇ/ vanish. This leaves us to rule out Deligne–
Mumford type degenerations along non–contractible curves and arcs.

Given transversality, Deligne–Mumford type degenerations in the interior of S are
prohibited for a generic choice of J because they have codimension 2 in the space of all
holomorphic curves. That is, these degenerations have codimension 2 after quotienting
by translation. Hence, they only occur if ind.A/� 3. This rules out all but one kind of
degeneration along the interior: bubbling of a copy of †� .s0; t0/. (Recall that our
complex structure does not achieve transversality for maps u with �D ıu constant.)
However, Corollary 4.3 shows that if a copy of † were to bubble off then the remainder
of v would have to be a collection of trivial disks, and so nzi

.A/ D 1 for every i .
Bubbling more than one copy of † or a multiply covered copy of † is prohibited by
Corollary 4.3.

So, we need to check that cusp degenerations (ie, degenerations along arcs with
boundary on @S ) are impossible.

Suppose that a cusp degeneration occurs. Let A denote an arc in S which collapses.
Since different components of @S are mapped by u to different cylinders in W , both
endpoints of A must lie on the same boundary component C of S . Without loss of
generality, suppose that C is mapped by the ui to ˛1 � f1g �R. Let S 0 denote the
nodal surface obtained from S by collapsing the arcs along which the complex structure
degenerates. In the limit curve v there will be more than one boundary component
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mapped to ˛1 � f1g � R. Let C 0 denote all the boundary components mapped to
˛1�f1g�R . Consider the map �D ıvjC 0 W C

0! iR . One of the boundary components
in C 0 will have a local (in fact, global) maximum. But this and the open mapping
theorem imply that the map �D ı v must be constant near that boundary component,
hence constant on a connected component of S 0 . In particular, this implies that all of
the boundary of S 0 is mapped to the ˛–circles.

However, the ˛–circles are non–separating, so the component of S 0 on which �D ı v

is constant must be mapped diffeomorphically onto †. As above, it then follows from
our index computation that the rest of v must consist of g trivial disks, and AD Œ†�.

Thus, we have proved the each ui satisfies (M0). Condition (M1) is automatically
satisfied.

The only way that �D ı v could be constant on some component of S would be as a
result of bubbling, which we showed is prohibited. This implies (M2) for the limit
curves.

Condition (M4) and the condition that there are exactly 2g punctures on each story
also follow from the maximum modulus, or open mapping, theorem: applying the open
mapping theorem to �D ıuj , one sees that the restriction of �R ıuj to any component
of @S n fp1; � � � ;pg; q1; � � � ; qgg must be monotone, so no new Reeb chords could
form as j !1.

Since projection onto Œ0; 1��R is holomorphic, the open mapping theorem prohibits any
new boundary components from forming. The maximum modulus theorem prohibits
boundary components from disappearing, so (M3) is satisfied by the limit curves.

That condition (M5) is satisfied by the limit curves is part of the statement of the
compactness theorem [2, Theorem 10.1].

Let Sj denote the source of vj . Suppose that v has height `. Then since all degen-
erations in S correspond to level splitting, �.S/D .1� `/gC

P`
jD1 �.Sj /: Let Dj

be the domain in † corresponding to vj . Then we have e.D/ D
P`

jD1 e.Dj /. So,

ind.ui/D g��.S/C2e.D/D `g�
P`

jD1

�
�.Sj /C 2e.Dj /

�
D
P`

jD1 ind.vj /: That
is, the index formula adds over levels.

Finally, near any immersed curve with the equivalent of k double points and with
respect to which the complex structure achieves transversality there is a 2k –dimensional
family of embedded holomorphic curves. This shows that the vj must all be embedded.
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For an almost complex structure J which achieves transversality, it follows from the
previous proposition, Proposition A.1 and the compactness Theorem 10.1 from [2] that:

Corollary 7.2 The space of holomorphic curves satisfying (M0)–(M6) in a given
homology class A (modulo translation in the R–factor of W ) with ind.A/ � 2 and

A¤ Œ†� forms a smooth manifold cMA
of dimension ind.A/� 1 which is the interior

of a compact manifold with boundary cMA
. The boundary of that manifold @cMA

consists of all multi–story holomorphic buildings each component of which satisfies
(M0)–(M6) in the homology class A.

8 Chain complexes

Here we define the four basic chain complexes used by Ozsváth–Szabó – bCF , CF1 ,
CF� and CFC . Once these are defined CF˙red are defined in exactly the same way as
in [21]. Generalizing our definitions to include the twisted theories of [20, Section 8]
is straightforward.

Fix: a pointed Heegaard diagram .†; Ę; Ě; z/, an almost complex structure J satisfying
(J1)–(J5) and achieving transversality, and a coherent orientation system. We shall
assume that the Heegaard diagram satisfies the weak or strong admissibility criterion
as necessary.

Fix a SpinC –structure s.

First we define the chain complex bCF . Suppose that our Heegaard diagram is weakly
admissible for s. Recall that, by Lemma 5.4, for Ex; Ey 2 s, there are only finitely many
A 2 y�2.Ex; Ey/ and nzi

.A/ � 0 for all i and ind.A/ D 1. Let bCF .Y; s/ be the free
Abelian group generated by the intersection points Ex .

Define cM.Ex; Ey/D
[

A2y�2.Ex; Ey/; ind.A/D1

cMA

We define a boundary operator on bCF by

@Ex D
X
Ey

�
# cM.Ex; Ey/

�
Ey:

This sum is finite by the admissibility criterion and Corollary 7.2.
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Lemma 8.1 With this boundary operator, bCF is a chain complex.

Proof Fix Ex , Ez . We will show that the coefficient of Ez in @2 Ex is zero. Consider the
space cM2.Ex; Ez/D

[
A2y�2.Ex;Ez/; ind.A/D2

cMA

with compactification cM2.Ex; Ez/. (Note that by Lemma 5.4 there are only finitely many

classes A with ind.A/D 2 and cMA
¤∅, so cM2.Ex; Ez/ is compact.) From Corollary

7.2, cM2.Ex; Ez/ is a 1–manifold with boundary and @
� cM2.Ex; Ez/

�
consists of broken

trajectories connecting Ex to Ez . Thus, 0D #
�
@cM.Ex; Ez/

�
is the coefficient of Ez in @2 Ex .

Note that the definition of a coherent orientation system is chosen exactly to make this
argument work.

Next we define CF1 . Assume the strong admissibility criterion is satisfied. The chain
group of CF1.Y I s/ is freely generated by pairs ŒEx; n� where Ex 2 s and n 2 Z.

The boundary operator is given by

@ŒEx; n�D
X
Ey

X
A2�2.Ex; Ey/
ind.A/D1

�
# cMA

�
Œ Ey; n� nz.A/�

The coefficient of each Œ Ey;m� is finite by Lemma 5.5 and Corollary 7.2.

Lemma 8.2 Suppose that J jsD0 and J jsD1 have been chosen appropriately (in a
sense to be specified in the proof) and that J achieves transversality for all holomorphic
curves of index � 1. Then CF1 is a chain complex.

Proof The proof is almost exactly the same as for bCF . The only nuance is that the
homology class Œ†� was an exception to Corollary 7.2. One resolution of this difficulty
is the following:

Recall that an annoying curve is a curve is a curve uW S !W with a component on
which �D ıu is constant. The difficulty with Corollary 7.2 for the homology class Œ†�
is the possibility of a curve degenerating to a collection of trivial disks together with a
copy of † mapped to a constant by �D ıu.

Suppose that instead of considering almost complex structures satisfying (J1)–(J5)
we considered the broader class of almost complex structures satisfying (J1)–(J4)
and (J5 0 ). All the results proved so far would still hold. (The only potential issue is
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the proof of Proposition 7.1, but the requirement that � be horizontal near ˛[ˇ is
sufficient for that proof.) The transversality result would then hold for all holomorphic
curves except for annoying curves mapped entirely into @W . Thus, annoying curves
mapped into the interior of W , which are non–generic, would cease to exist.

To eliminate annoying curves mapped into @W we adopt an idea from [21]. Suppose
that a sequence of holomorphic curves fuj g converges to a holomorphic curve u

containing an annoying curve, which is mapped by u to p 2 ˛� f1g �R, say. Then,
rescaling near p we obtain from limj!1 �D ı uj a g–fold branched covering map
.S0; @S0/! .H;R/ (where H denotes the upper half plane). Here, S0 is a surface
obtained by cutting † along the ˛–circles.

Suppose that the complex structure J is given by j 0
†
� jD at s D 1. We will show

that for appropriate choice of j 0
†

there is no map .S0; @S0/! .H;R/. Choose curves
on † not intersecting the ˛–circles whose complement in † is a disjoint union of
punctured tori (with one ˛–circle contained in each). Let fj 0

†;n
g be a sequence of

complex structures on † obtained by stretching † along the chosen curves. So, as
n!1, † degenerates to a wedge sum of tori.

Suppose that for all n there were sequences of holomorphic curves converging to
annoying curves. Then for each n we obtain a map �nW .S0;n; @S0;n/! .H;R/, where
S0;n is obtained from .†; j 0

†;n
/ by cutting along the ˛–circles. Choosing a convergent

subsequence of the �n , in the limit we obtain a g–fold covering map from a disjoint
union of g punctured tori to H. Such a map clearly does not exist.

So, for large enough n, if J agrees with j 0
†;n
�jD for sD 1 then there are no annoying

curves mapped by �D to f1g �R.

A similar argument shows that if we choose J jsD0 appropriately then there are no
annoying curves mapped by �D to f0g �R.

It follows that, with respect to a generic complex structure extending the specified
J jsD0 and J jsD1 and satisfying (J1)–(J4) and (J5 0 ), @2 D 0, by the same argument
as for bCF above.

Now, let J be an almost complex structure on W satisfying (J1)–(J5), extending the
specified J jsD0 and J jsD1 and achieving transversality for holomorphic curves of
index 1. Let fJng be a sequence of almost complex structures satisfying (J1)–(J4) and
(J5 0 ) and achieving transversality which converges to J .

Let @J denote the boundary map in CF1 computed with respect to J , @Jn
the

boundary map computed with respect to Jn . Given a finite collection of homology
classes fAj 2 �2.Exj ; Eyj /g such that ind.Aj /D 1 for all j , there is some N such that

for n>N , cMAj
Jn
Š cMAj

J . So, since @2
Jn
D 0 for all n, @2

J
D 0.
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Note that in Section 9 we will show that for any two choices of (generic) almost
complex structure on W the pairs .CF1; @/ are chain homotopy equivalent. This
implies in particular that the restriction on J jsD0 and J jsD1 are unnecessary. Until
then, we shall assume that J jsD0 and J jsD1 have been chosen so that the preceding
proof works.

Since nz.A/� 0 for any A supporting a holomorphic disk, CF1 has a subcomplex
CF� generated by the ŒEx; n� with n< 0. The quotient complex we denote CFC . The
homologies of CF1 , CFC , CF� and bCF we denote by HF1 , HFC , HF� and
bHF respectively.

For computations, it is helpful to observe that CFC is defined even if one only assumes
weak admissibility: the sum in the definition of @ŒEx; n� only involves the ŒEx; n� j �

for 0 � j � n. The weak admissibility criterion implies that for each of these finite
collection of j ’s, there are at most finitely many homology classes for which the moduli
space is nonempty.

There is a natural action U W CF1.Y I s/! CF1.Y I s/ given by U ŒEx; i �D ŒEx; i � 1�.
This action obviously descends to HF1 , making HF1.Y I s/ into a module over
ZŒU;U�1�. Further, the action of U preserves CF� , so HF� and HFC are modules
over ZŒU �.

There are relative gradings on all four homology theories. On bCF , define gr.Ex; Ey/D

ind.A/ for any A2 y�2.Ex; Ey/. It follows from Corollary 4.12 that this relative grading is
defined mod n, where nD gcdfhc1.s/;Aig for A 2H2.Y /. Obviously the boundary
map lowers the relative grading by 1, so the relative grading descends to bHF .Y I s/.

Similarly for CF1.Y; s/, CF�.Y; s/ and CFC.Y; s/ there are relative mod n grad-
ings, n D gcdfhc1.s/;Aig, given by gr.ŒEx; i �; Œ Ey; j �/ D ind.A/C 2.i � j /, where
A 2 y�2.Ex; Ey/. As before, this relative grading descends to HF1.Y; s/, HFC.Y; s/

and HF�.Y; s/. Note that the action of U lowers the relative grading by 2.

The chain complexes we have defined depend on the choice of coherent orientation
system (see Section 6). It turns out, however, that some orientation systems give
isomorphic chain complexes. Recall that the orientation system was given by specifying
orientations over a complete set of paths Ti and a basis Pj for y�2.Ex0; Ex0/ (for some
choice of Ex0 2 s).

Proposition 8.3 Different choices of orientation over the Ti yield isomorphic chain
complexes.

Proof Let o and o0 be two choices of orientation system which agree over Pj for all
j . Define �i to be 1 if o agrees with o0 over Ti and �1 otherwise. (Define �0 to
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be 1.) It is easy to check that the map sending ŒExi ; k� to �i ŒExi ; k� (respectively Exi to
�i Exi ) induces isomorphisms on CF1 , CFC , and CF� (respectively an isomorphism
on bCF ).

It follows that there are “only” 2b2.Y / genuinely different choices of coherent orientation
system.

Although the homologies depend on the choice of orientation system, we shall usually
suppress it from the notation. Similarly, we shall often suppress the SpinC –structure s

from the notation.

8.1 Action of H1.Y;Z/=Tors

We now define an action of H1.Y;Z/=Tors on the Floer homologies; cf [21, Section
4.2.5]. We will give the details only for HF1 . The corresponding results for HF˙

are immediate consequences, and the results for bHF require only slight modifications
of the proofs.

Recall that for any Exi , �2.Exi ; Exi/ is identified with H2.†� Œ0; 1�;˛� f1g[ˇ � f0g/.
From Lemma 2.1, choosing a basepoint z gives an isomorphism ‡ W H2.†� Œ0; 1�;˛�

f1g[ˇ�f0g/;Z
�
!Z˚H2.Y;Z/ and hence Hom.H2.†�Œ0; 1�;˛�f1g[ˇ�f0g/;Z/Š

Z˚Hom.H2.Y /;Z/Š Z˚H1.Y /=Tors .

Choose a complete set of paths fTi 2 �2.Ex0; Exi/g. For each pair of intersection points
Exi , Exj this gives an isomorphism „fTi g

W �2.Exi ; Exj /
�
!H2.†� Œ0; 1�;˛�f1g[ˇ�f0g/

via „fTi g
.A/D ‡.Ti CA�Tj /.

Let � 2Hom.Z˚H2.Y /;Z/. Define A�;fTi g
W CF1.Y; s/! CF1.Y; s/ by

A�;fTi g
.ŒEx; i �/D

X
Ey2s

X
A2�2.Ex; Ey/
ind.A/D1

�.„fTi g
.A// �

�
# cMA

�
Œ Ey; i � nz.A/�:

Notice that our definition is superficially different from the one used in [21, Section
4.2.5], although their definition makes sense in our language, too.

Lemma 8.4 A�;fTi g
is a chain map.

Proof The proof is the same as for [21, Lemma 4.18]. Notice that �.„fTi g
.AC

B// D �.„fTi g
.A// C �.„fTi g

.B//. Suppose C 2 �2.Ex; Ey/, ind.C / D 2. Then
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0D

�
#@cMC

�
, so

0D
X

C2�2.Ex;Ez/
ind.C /D2
nz .C /Dk

�.„fTi g
.C //

�
#
�
@cMC

��

D

X
C2�2.Ex;Ez/
ind.C /D2
nz .C /Dk

X
ACBDC

ind.A/Dind.B/D1

�
�.„fTi g

.A//
�
C
�
�.„fTi g

.B//
� �

#cMA
� �

#cMB
�
:

This is the coefficient of ŒEz; i � k� in
�
@ ıA�;fTi g

CA�;fTi g
ı @
� �
ŒEx; i �

�
; proving the

result.

The following lemma is analogous to [21, Lemma 4.19].

Lemma 8.5 If T 0i is another complete set of paths then A�;fTi g
and A�;fT 0

i
g are chain

homotopic.

Proof Let Pi D Ti �T 0i . Consider the map H W CF1.Y; s/! CF1.Y; s/ given by
H.ŒExi ; j �/D �.‡.Pi//ŒExi ; j �. Then

.A�;fTi g
� A�;fT 0

i
g/.ŒExi ; j �/

D

X
Exk2s

X
A2�2.Exi ;Exk/

ind.A/D1

�.„fTi g
.A/�„fT 0

i
g.A// �

�
#cMA

�
ŒExk ; j � nz.A/�

D

X
Exk2s

X
A2�2.Exi ;Exk/

ind.A/D1

�.‡.ACTi �Tk/�‡.ACT 0i �T 0k//

�

�
#cMA

�
ŒExk ; j � nz.A/�

D

X
Exk2s

X
A2�2.Exi ;Exk/

ind.A/D1

�.‡.Ti �T 0i /�‡.Tk �T 0k// �
�

#cMA
�
ŒExk ; j � nz.A/�

D

X
Exk2s

X
A2�2.Exi ;Exk/

ind.A/D1

�.‡.Pi/�‡.Pk// �
�

#cMA
�
ŒExk ; j � nz.A/�

D @ ıH CH ı @
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We are now justified in denoting the map on HF1 induced by A�;fTi g
(for any

complete set of paths fTig) by simply A� .

The following is [21, Proposition 4.17].

Proposition 8.6 There is a natural action of the group Z ˚ Hom.H2.Y /;Z/ on
HF1.Y; s/, HFC.Y; s/, HF�.Y; s/ and bHF .Y; s/ lowering degree by one. This
induces an action of the exterior algebra

V�
.H1.Y /=Tors/ on each group.

Proof The action of � is given by A� . Obviously A� lowers the grading by one and
A�C�0 DA� CA�0 . We need to check that A� ıA� D 0.

Choose a curve K in f �1.3=2� �; 3=2C �/D†� Œ0; 1� representing the homology
class � in H1.Y /=Tors . That is, choose K so that A�.A/ is the intersection number
of A with K for A 2 �2.Ex; Ex/. Perturb K so that K �R meets transversely every
holomorphic curve u with ind.u/D 1, and is transverse to families of holomorphic
curves with indD 2.

Let M1 denote the moduli space of Riemann surfaces with one marked point p .
Let MA

K
denote the space of holomorphic curves uW .S;p/ ! .W;K � R/ with

.S;p/ 2M1 which, after forgetting the marked point, represent the homology class

A. Let cMA

K DMA
K
=R. Then, assuming the appropriate transversality result, which

is left to the reader, we have

A�.ŒEx; i �/D
X

A2�2.Ex; Ey/
ind.A/D1

�
# cMK .A/

�
Œ Ey; i � nz.A/�:

To prove the proposition, consider the space M2 of Riemann surfaces with 2 marked
points fp1;p2g. Let MA

K ;2
denote the space of holomorphic maps uW .S; fp1;p2g/!

.W;K �R/, for .S; fp1;p2g/ 2M2 . Let cMK ;2=RDMA
K ;2

=R.

For a generic choice of Js , and a homology class A with ind.A/D 2, cMK ;2.A/ is a
smooth 1–manifold. The manifold cMK ;2.A/ has four kinds of ends:

(1) Ends corresponding to �R ı u.p1/� �R ı u.p2/!1. These correspond to
A� ıA� .

(2) Ends corresponding to �R ıu.p1/��R ıu.p2/!�1. These also correspond
to A� ıA� .

(3) Ends where there is a q in S with �Rıu.q/��Rıu.p1/!1 but �Rıu.p1/�

�R ıu.p2/ stays bounded. These correspond to @ ıA� .
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(4) Ends where there is a q in S with �R ı u.q/� �R ı u.p1/! �1 but �R ı

u.p1/��R ıu.p2/ stays bounded. These correspond to A� ı @.

There is also a free action of Z=2Z on cMA

K ;2 exchanging the labeling of p1 and

p2 . Counting the ends of cMA

K ;2=.Z=2Z/ and summing over A then shows that
A� ıA�.ŒEx; i �/ is chain homotopic to 0.

The result for HF1 is immediate. The constructions of the lemmas and this proof
preserve CF� , so the results for HF˙ follow. The proofs for bHF are analogous.

9 Isotopy invariance

In this section we prove that the homologies defined in Section 8 are independent of
deformations of the almost complex structure and isotopies of the ˛– and ˇ–circles
not crossing the basepoint z. Two parts of this story are slightly nonstandard. One
is extending the coherent orientation system through isotopies which introduce new
intersection points. The other is that we want to allow seemingly non–Hamiltonian
isotopies of the ˛ and ˇ curves. The rest of the proof is analogous to the discussion
in [6, Section 1.9].

We discuss how to extend the orientation system first. On a first reading the reader
might want to skip the next three paragraphs.

Suppose that we have two pointed Heegaard diagrams D1 D .†; j ; Ę; Ě; z/ and D2 D

.†; j 0; Ę0; Ě0; z/ which differ by pointed isotopies (ie, isotopies during which none of
the curves cross z) and deformations of the complex structure. The only interesting
case is when the SpinC –structure s, viewed as a collection of intersection points, is not
empty in either Heegaard diagram. (If in one of the diagrams s contains no intersection
points then any choice of orientation system for the other will be fine.) By choosing an
appropriate isotopy and then breaking it into a sequences of isotopies, we can assume
that some intersection point Ex0 2 s exists in both Heegaard diagrams. For convenience,
we fix a parametrization of † such that the ˛–circles stay fixed during the isotopy.
Then, with this parametrization, the ˇ–circles move and the complex structure deforms
during the isotopy.

We can identify �2.Ex0; Ex0/ in D1 with �2.Ex0; Ex0/ in D2 as follows. Denote the
isotopy by I W ˇ � Œ0; 1� ! †. Let �W .C; @C / ! .W;˛ [ ˇ/ be any singular 2–
chain in �D1

2
.Ex0; Ex0/, C a simplicial complex. Let @ˇC D @C \ I�1.ˇ/. Define

 W @ˇC � Œ0; 1�! W by  .x; t/ D .I.�† ı �.x/; t/; �D ı �.x//. Then identify �
with the chain in �D2

2
.Ex0; Ex0/ given by �C .
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Thus, an orientation system over a complete set of paths in D2 and an orientation system
for D1 determine an orientation system for D2 . We assume that we are computing the
homologies of D2 with respect to an orientation system determined from the orientation
system of D1 in this way; as observed in the section on chain complexes, different
orientation systems over a complete set of paths lead to isomorphic homologies. So,
which particular one we choose is unimportant. Note also that our choices determine,
for Exk

i an intersection point in Dk , an isomorphism �2.Ex
1
i ; Ex

2
j /Š Z˚H2.Y /.

By a basic isotopy we mean an isotopy .˛t ;ˇ t / with one of the following two proper-
ties.

(1) For all times t , ˛t intersects ˇ t transversally. (These are basic isotopies of the
first type)

(2) The isotopy introduces one pair of transverse intersections between ˛t and ˇ t

by a Hamiltonian deformation (“finger move”) of the ˛–circles. (These are basic
isotopies of the second type.)

We only consider isotopies which are sequences of basic isotopies. Call such an isotopy
strongly admissible (respectively weakly admissible) if before and after each basic
isotopy the Heegaard diagram is strongly (respectively weakly) admissible (for s).

It is clear that if two Heegaard diagrams are isotopic then they are isotopic through
a sequence of basic isotopies. In fact, by Proposition 5.6, any two isotopic strongly
admissible Heegaard diagrams are isotopic through a sequence of strongly admissible
basic isotopies, and any two isotopic weakly admissible Heegaard diagrams are isotopic
through a sequence of weakly admissible basic isotopy.

Following [21, Section 7.3], we use the fact that basic isotopies of the first type are
equivalent to deformations of the complex structures on † and W . We make this
precise. Suppose that D2 differs from D1 by a basic isotopy of the first type. Then,
there is an orientation–preserving diffeomorphism  of † taking D1 to D2 and
mapping U

D1
zi

onto U
D2
zi

. It follows that computing the homologies of D2 with
respect to the complex structures j† on † and Js on W is the same as computing
the homologies of D1 with respect to  �j† on † and . �Id/�Js on W . Note that
if Js satisfies (J1)–(J5) with respect to j† then so does . � Id/�Js with respect
to  �j† . Consequently, independence of the homologies with respect to isotopies
preserving transversality of ˛ \ ˇ will follow from independence with respect to
complex structure.

The other point we need to check is that basic isotopies of the second type do not
change the homologies, either. Suppose that D2 is obtained from D1 by a basic
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isotopy of the second type. Then we can find a collection of Lagrangian cylinders in
†� Œ0; 1��R which agrees with .˛� f1g �R/[ .ˇ � f0g �R/ near t D�1 and with
.˛0 � f1g �R/[

�
ˇ 0 � f0g �R

�
near t D1. Call the collection of these Lagrangian

cylinders C .

We combine invariance under both types of basic isotopy into one:

Proposition 9.1 Suppose that either D1 differs from D2 only by an isotopy preserving
transversality of the ˛ and ˇ circles, or that they differ by such an isotopy and a pair cre-
ation, and that both D1 and D2 are strongly (or, in the case of CFC and bCF , weakly)
admissible Heegaard diagrams. Suppose J1 (respectively J2 ) satisfies (J1)–(J5) and
achieves transversality for D1 (respectively D2 ), with respect to j1 (respectively j2 )
on †. Then the chain complexes CF1

D1
and CF1

D2
(respectively CF�

D1
and CF�

D2
;

CFC
D1

and CFC
D2

; and bCF D1
and bCF D2

) are chain homotopy equivalent. Further, the
isomorphisms induced on homologies respect the H1.Y /=Tors–module and, where
appropriate, the ZŒU;U�1�– or ZŒU �–module structures.

By the discussion preceding the proposition, proving this proposition proves the inde-
pendence of the Floer homologies under isotopies. Note that it also implies that the
restrictions we imposed in Section 8 on J jsD0 and J jsD1 for CF1 and CF˙ are not
needed for @2 to be 0.

Fix T > 0. Choose an almost complex structure J on †� Œ0; 1��R which satisfies
(J1), (J2) and (J4), agrees with J1 on .�1;�T � and with J2 on ŒT;1/, and achieves
transversality for holomorphic curves of the form uW .S; @S/! .†� Œ0; 1��R;C /.
This is possible by essentially the same argument as in Section 3.

We define a chain map from each chain complex defined on D1 to the corresponding
chain complex on D2 by counting J –holomorphic curves in W . We carry out the
details for CF1 ; the results for CFC and CF� will follow, and the proof for bCF is
similar. Let .CF1; @i/ be the chain complex defined on Di , i D 1; 2.

For Ex1 (respectively Ex2 ) an intersection point in D1 (respectively D2 ), let M0.Ex
1; Ex2/

(respectively M1.Ex
1; Ex2/) denote the space of all holomorphic curves u in .W;J /

connecting Ex1 to Ex2 in homology classes A with ind.A/D0 (respectively ind.A/D1),
and satisfying (M0)–(M6) (with respect to the new Lagrangian cylinders C ).

Consider the map ˆW CF1
1
! CF1

2
defined by

ˆ.ŒEx1; i �/D
X
Ex22s

X
u2M0.Ex1;Ex2/

ŒEx2; i � nz.u/�:

We need to check that the coefficient of ŒEx2; j � is a finite sum for each Ex2 and j :
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Lemma 9.2 Given j 2 Z there are at most finitely many homology classes A con-
necting Ex1 to Ex2 with ind.A/D j which admit a holomorphic curve.

Proof This follows from the strong admissibility criterion; our proof is essentially the
same as [21, Lemma 7.4].

Choose a point zi in each component of † n .˛1[ˇ1/ in such a way that none of the
˛– or ˇ–circles cross any of the zi during the isotopy. If A supports a J –holomorphic
curve then nzi

.A/� 0 for all i . Choose any homology class in B 2 �
D2

2
.Ex2; Ex1/. We

can view ACB as an element of �D1

2
.Ex1; Ex1/, and nzi

.ACB/ � nzi
.B/ for all i .

Now the argument used in Lemma 5.5 gives bounds for the coefficients of ACB , and
hence bounds for the coefficients of A. This proves the result.

We shall sometimes denote ˆ by ˆ12 to emphasize that ˆ is induced from a bordism
from D1 to D2 .

Lemma 9.3 ˆ is a chain map.

Proof Let @i denote the boundary map on the chain complex for Di .

We consider the compactified moduli space cM1.Ex1; Ey2; k/ of index 1 holomorphic
curves in homology classes A with nz.A/D k . There is still no bubbling, so this is a
compact one–manifold whose boundary consists of height two holomorphic buildings
one story of which lies in .W;J / and the other of which lies in either .W;J1/ or
.W;J2/. Hence,

0D #
�
@cM1.Ex1; Ey2; k/

�
:

But this is the coefficient of Œ Ey2; i � k� in ˆ ı @1.ŒEx
1; i �/C @2 ıˆ.ŒEx

1; i �/.

Lemma 9.4 Given two different choices of complex structure J and J 0 connecting J1

to J2 and two different choices C and C 0 for the cylinders connecting ˛�f1g[ˇ�f0g
to ˛0 � f1g[ˇ 0 � f0g the maps ˆ and ˆ0 are chain homotopic.

Proof We outline the proof; further details are left to the reader. Choose a generic
path Jt from J to J 0 and a Lagrangian isotopy Ct from C to C 0 . Let M�1;t .Ex

1; Ex2/

denote the moduli space of holomorphic curves u connecting Ex1 to Ex2 in homology
classes of index �1. For a finite collection of ti ’s, 0 < t1 < : : : < tk < 1, Jti

is
degenerate in such a way that M�1;t .Ex

1; Ex2/ is nonempty. (As usual, the finiteness
uses the admissibility hypothesis.) Then we define a chain homotopy � by

�.ŒEx1; i �/D
X

t

X
Ex2

X
u2M�1;t

ŒEx2; i � nz.u/�:
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Similarly, define M0;t .Ex
1; Ey2/ to be the moduli space of holomorphic curves u

connecting Ex1 to Ey2 in homology classes of index 0. Then [tM0;t .Ex
1; Ey2/ is a

1–manifold with boundary with four types of ends:

(1) Ends corresponding to height two holomorphic buildings, with a Jtk
–holomor-

phic curve of index �1 and a J1 –holomorphic curve of index 1. These corre-
spond to � ı @1 .

(2) Ends corresponding to height two holomorphic buildings, with a Jtk
–holomor-

phic curve of index �1 and a J2 –holomorphic curve of index 1. These corre-
spond to @2 ı�.

(3) Ends corresponding to t D 0 and a J –holomorphic curve. These correspond to
�ˆ.

(4) Ends corresponding to t D 1 and a J 0–holomorphic curve. These correspond to
ˆ0 .

So, counting the ends gives the result.

Lemma 9.5 If we have a third diagram D3 and a bordism from D2 to D3 then on
homology ˆ23 ıˆ12 Dˆ13 .

Note that since different choices of bordism give chain homotopic ˆij the exact choices
of ˆij are unimportant here.

Proof This is immediate from compactness and Proposition A.1.

Lemma 9.6 The maps on the homologies induced by ˆ preserve the H1.Y /=Tors–
module structure.

Proof Fix � 2H1.Y /=Tors . Let K be a knot in †� Œ0; 1� representing � , as in the
proof of Proposition 8.6.

Let M1 denote the moduli space of Riemann surfaces with one marked point p . For
iD1; 2, let MA

K ;i
denote the space of Ji –holomorphic curves uW .S;p/! .W;K�R/

with .S;p/ 2M1 which, after forgetting the marked point, represent the homology

class A. Let cMA

K ;i DMA
K ;i
=R . Assume K (or J1 and J2 ) is chosen so that we have

transversality. Then, on the chain level the action of H1.Y /=Tors on HF1
Di

is given
by

A�;i.ŒEx
i ; j �/D

X
A2�2.Ex

i ; Eyi /
ind.A/D1

�
# cMA

K ;i

�
Œ Eyi ; j � nz.A/�:
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Let MA
K

denote the space of J –holomorphic curves uW .S;p/! .W;K �R/ with
.S;p/ 2M1 which, after forgetting the marked point, represent the homology class
A. Assume K , J1 , J2 and J are chosen so that we have transversality. Consider the
ends of

MK .Ex
1; Ey2; k/D

[
A2�2.Ex

1; Ey2/
ind.A/D1
nz.A/Dk

MK .A/:

There are two kinds of ends:

(1) Ends where �Dıu.p/!1. These ends correspond to the coefficient of Œ Ey; i�k�

in A�;2 ıˆ.ŒEx; i �/

(2) Ends where �R ı u.p/! �1. These ends correspond to the coefficient of
Œ Ey; i � k� in ˆ ıA�;1.ŒEx; i �/.

(3) Ends where �R ıu.p/ stays bounded and an index 1 curve splits–off at C1.
These correspond to the coefficient of Œ Ey; i � k� in @ ıˆ.ŒEx1; i � k�/.

(4) Ends where �R ı u.p/ stays bounded and an index 1 curve splits–off at �1.
These correspond to the coefficient of Œ Ey; i � k� in ˆ ı @.ŒEx1; i � k�/.

Counting the ends, and using the fact that ˆ ı @C @ ıˆD 0, gives the result.

Proof of Proposition 9.1.

The proposition follows immediately from these four lemmas. From Lemma 9.3 we have
chain maps ˆ12 and ˆ21 whose induced maps preserve the H1.Y /=Tors–structure
by Lemma 9.6. From Lemma 9.4 and Lemma 9.5, ˆ12 ıˆ21 is chain homotopic to the
identity map, as is ˆ21ıˆ12 . All the maps are obviously maps of ZŒU;U�1�–modules.
This proves Proposition 9.1 for HF1 . To conclude the result for HFC and HF�

it is only necessary to make the trivial observation that all of the maps used preserve
HF� .

The proof for bHF is completely analogous – one simply restricts in each case to
holomorphic curves with nz D 0.

10 Triangles

By a pointed Heegaard triple–diagram we mean a Riemann surface † together with three
g–tuples of pairwise disjoint, homologically linearly independent simple closed curves
Ę D f˛1; � � � ; ˛gg, Ě D fˇ1; � � � ; ˇgg and E D f1; � � � ; gg, together with a basepoint
z2†n.˛[ˇ[/. A Heegaard triple–diagram specifies three 3–manifolds Y˛;ˇ , Yˇ;
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and Y˛; . It also specifies a 4–manifold X˛;ˇ; with boundary Y˛;ˇ[Yˇ; [�Y˛; as
follows. The curves Ę (respectively Ě, E ) specify a handlebody U˛ (respectively Uˇ ,
U ) with boundary †. Let T be a triangle with edges e1 , e2 , and e3 . Define X˛;ˇ;
to be the manifold obtained by gluing U˛� Œ0; 1�, Uˇ� Œ0; 1�, and U � Œ0; 1� to †�T

along †� e1 , †� e2 , and †� e3 by identifying ˛ 2 @U˛ � fpg with ˛ 2 †� fpg
(p 2 e1 D Œ0; 1�) and similarly for ˇ and  .

In this (rather long) section we associate to a Heegaard triple–diagram maps between
the Floer homologies of Y˛;ˇ , Yˇ; and Y˛; . Specifically

Construct 10.1 To an admissible (see Subsection 10.4) pointed Heegaard triple–
diagram .†; Ę; Ě; E ; z/ and a SpinC –structure t on X˛;ˇ; , as well as a coherent
orientation system, as described in Subsection 10.3, we associate U –equivariant homo-
morphisms

yF˛;ˇ; W bHF .Y˛;ˇI tjY˛;ˇ /˝Z
bHF .Yˇ; I tjYˇ; /!

bHF .Y˛; I tjY˛; /

F1˛;ˇ; W HF1.Y˛;ˇI tjY˛;ˇ /˝ZŒU �HF1.Y bcI tjYˇ; /!HF1.Yˇ; I tjY˛; /

FC
˛;ˇ;
W HFC.Y˛;ˇI tjY˛;ˇ /˝ZŒU �HF�0.Yˇ; I tjYˇ; /!HFC.Y˛; I tjY˛; /

F�˛;ˇ; W HF�0.Y˛;ˇI tjY˛;ˇ /˝ZŒU �HF�0.Yˇ; I tjYˇ; /!HF�0.Y˛; I tjY˛; /:

These maps satisfy an associativity property stated in Proposition 10.29.

Of course, the zero map satisfies these conditions, but our maps are usually more inter-
esting. In particular, an instance of the construction will be used to prove handleslide
invariance in the next section. (They are also a key computational tool, have been used
to define 4–manifold invariants, contact invariants, and so on.) They will be produced
by counting holomorphic curves in the product of † and a disk with three boundary
punctures, ie, a triangle.

The outline of this section is as follows. In Subsection 10.1 we discuss basic topological
properties of maps to †�T , T a “triangle”. In particular, we discuss when such maps
exist, how many homology classes of them there are, and how such homology classes
specify SpinC –structures. In Subsection 10.2 we discuss some basic prerequisites for
construction of the triangle maps (the complex structures we consider, the index) and
then define the triangle maps, conditional on certain technicalities to be addressed in the
following two sections. In Subsection 10.3 we address the first of these technicalities:
coherent orientations of the moduli spaces of triangles. In Subsection 10.4 we deal with
the second technicality: admissibility criteria for Heegaard triple–diagrams necessary
for the triangle maps to be defined. In Subsection 10.5 we return to the definition of
the triangle maps, proving that the maps are chain maps, and are independent of the
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Figure 7: The triangle T

complex structure on †�T and isotopies of the ˛–, ˇ– and  –circles. Finally, in
Subsection 10.6 we prove an associativity property of triangle maps.

10.1 Topological preliminaries on triangles

Fix a pointed Heegaard triple–diagram H3 D .†; Ę; Ě; E ; z/. Let H˛;ˇ , Hˇ; and
H˛; denote the pointed Heegaard diagrams for Y˛;ˇ , Yˇ; and Y˛; specified by H3 .

10.1.1 Homological preliminaries on triangles From now on, by the triangle T

we mean a Y–shaped region in C with three cylindrical ends, as shown in Figure 7.
Note that T is conformally equivalent to a (in fact, any) triangle with punctures at
the corners. (We will occasionally use a closed triangle, which we continue to denote
T and think of as the closure of T .) Let e1 , e2 , and e3 denote the three boundary
components of T , ordered clockwise, and v12 ,v23 and v13 the ends between e1

and e2 , e2 and e3 , and e1 and e3 respectively. Let W˛;ˇ; D †� T . For I–chord
collections Ex of H1 , Ey of H2 and Ez of H3 , let �2.Ex; Ey; Ez/ denote the collection
of homology classes of maps .S; @S/! .W˛;ˇ; ;˛ � e1 [ ˇ � e2 [  � e3/ (S a
Riemann surface with boundary and punctures on the boundary) which are asymptotic
to Ex at v12 , Ey at v23 and Ez at v13 . As before, there is a map nzW �2.Ex; Ey; Ez/! Z.
Let y�2.Ex; Ey; Ez/D fA 2 �2.Ex; Ey; Ez/jnz.A/D 0g.

Let W˛;ˇ , Wˇ; and W˛; denote the three cylindrical manifolds which are the ends
of W˛;ˇ; .
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Note that there are concatenation maps �W �2.Ex; Ex
0/��2.Ex; Ey; Ez/! �2.Ex

0; Ey; Ez/ (and
similarly for Ey and Ez ).

Suppose that �2.Ex; Ey; Ez/ is nonempty. Fix an element A 2 �2.Ex; Ey; Ez/. Let G denote
the tree with one vertex of valence three and three vertices of valence 1 (so G looks
like a figure Y). Let v1 , v2 , and v3 denote the three valence–one vertices in G . Then
A determines a map

�2.Ex; Ey; Ez/!H2.†�G;˛� fv1g[ˇ � fv2g[ � fv3g/

by subtracting from each element of �2.Ex; Ey; Ez/ a representative for A and pushing
forward via the retract suggested by Figure 7. It is easy to see that this map is bijective.

Recall that �2.Ex; Ex/ is canonically identified with H2.†� Œ0; 1�;˛� f1g[ˇ � f0g/.
Viewing Œ0; 1� as the path from v2 through the trivalent vertex of G to v1 , we obtain
an inclusion H2.†� Œ0; 1�;˛�f1g[ˇ�f0g/!H2.†�G;˛�fv1g[ˇ�fv2g[�

fv3g/. Under these identifications, concatenation �2.Ex; Ex/��2.Ex; Ey; Ez/!�2.Ex; Ey; Ez/

corresponds to addition in H2.†�G;˛�fv1g[ˇ�fv2g[�fv3g/. Similar remarks
apply to Ey and Ez , of course.

We have:

Lemma 10.2 (Compare [21, Proposition 8.2 and Proposition 8.3]) There is a natural
short exact sequence

0! Z!H2.†�G;˛� fv1g[ˇ � fv2g[ � fv3g/!H2.X˛;ˇ; /! 0:

The basepoint z 2† n .˛[ˇ [/ determines a splitting

nzW H2.†�G;˛� fv1g[ˇ � fv2g[ � fv3g/! Z

of this sequence.

Proof From the long exact sequence for the pair .X˛;ˇ; ; †�T / we have:

H2.†�T /!H2.X˛;ˇ; /!H2.X˛;ˇ; ; †�T /!H1.†�T /:

The first map is trivial since † is null–homologous in X˛;ˇ; (it bounds in U˛ , for
example). Since the boundary map in the long exact sequence for the pair .U˛; †/ takes
H2.U˛; †/ one–to–one onto H1.˛/�H1.†/, and similarly for ˇ and  , the kernel
of the last map is the same as ker .H1.˛/˚H1.ˇ/˚H1./!H1.†// : (Here, the
map is induced from including ˛, ˇ , and  in †.) Thus, H2.X˛;ˇ; / is isomorphic
to this kernel.
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From the long exact sequence for the pair .†�G;˛�fv1g[ˇ �fv2g[ �fv3g/ we
have

0!H2.†�G/!H2.†�G;˛� fv1g [ ˇ � fv2g[ � fv3g/

!H1.˛/˚H1.ˇ/˚H1./!H1.†�G/

The kernel of the last map is ker .H1.˛/˚H1.ˇ/˚H1./!H1.†//ŠH2.X˛;ˇ; /:

H2.†�G/Š Z. The statement about the splitting is clear.

The previous lemma tells us what �2.Ex; Ey; Ez/ is if nonempty. It is worth knowing
when �2.Ex; Ey; Ez/ is in fact empty. Define �.Ex; Ey; Ez/ as follows. Choose a chain
p˛ (respectively pˇ , p ) in ˛ (respectively ˇ ,  ) with @p˛ D Ex � Ey (respectively
@pˇ D Ey � Ez , @p D Ez� Ex ). Then �.Ex; Ey; Ez/ is the image of p˛CpˇCp under the
map

H1.†/!
H1.†/

H1.˛/CH1.ˇ/CH1./
ŠH1.X˛;ˇ; /:

Lemma 10.3 (Compare [21, Proposition 8.3]) The set �2.Ex; Ey; Ez/ is nonempty if
and only if �.Ex; Ey; Ez/D 0.

Proof If �2.Ex; Ey; Ez/ is nonempty, choose an element A 2 �2.Ex; Ey; Ez/. View A as
a chain in †. Then the boundary of A is a chain which defines �.Ex; Ey; Ez/, and is
obviously zero in homology.

Conversely, if �.Ex; Ey; Ez/ is zero then we can choose p˛ , pˇ and p to be cellular chains
(with respect to the cellulation of † induced by ˛, ˇ and  ) so that p˛CpˇCp is
null–homologous. Any chain with boundary p˛CpˇCp is an element of �2.Ex; Ey; Ez/.

10.1.2 SpinC –structures and triangles While each intersection point in a Heegaard
diagram specifies a SpinC –structure on the underlying 3–manifold, for a Heegaard
triple–diagram it is the elements of �2.Ex; Ey; Ez/ that specify SpinC –structures on the
corresponding 4–manifold. This correspondence is somewhat more complicated than
in the 3–manifold case. Our exposition will be very close to that in [21, Section 8.1.4],
but the reader may find some points clearer in one treatment or the other.

Recall (Section 2) that the definition of a SpinC –structure on a 3–manifold which we
have used is a “homology class of nonvanishing vector fields.” On a 4–manifold, the
analogous definition is:
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Definition 10.4 Fix a connected 4–manifold M . Suppose that J1 and J2 are almost
complex structures on M , defined in the complement of some 4–ball in M . (We will
say that J1 and J2 are almost defined.) We say that J1 and J2 are homologous if
J1 and J2 are isotopic in the complement of some (larger) 4–ball in M . We define
a SpinC –structure on M to be a homology class of almost defined almost complex
structures.

We sketch the identification with the standard definition of SpinC –structures. Suppose
we are given an almost complex J structure defined in the complement of some 4–ball
B . On the complement of B , the almost complex structure J determines canonically a
SpinC lifting of the bundle of frames. The obstruction to extending the SpinC –structure
over B lies in H 3.B; @B/D 0 and the collection of distinct extensions correspond to
H 2.B; @B/D 0.

Conversely, a SpinC lifting of the bundle of frames determines complex positive and
negative spinor bundles. Choosing a section s of the positive spinor bundle vanishing
at a finite number of points, Clifford multiplication by s gives an isomorphism of the
negative spinor bundle with TM away from a finite number of points. Choose a ball
B containing these points. Then the identification of TM with the negative spinor
bundle determines an almost complex structure on M nB .

Now, fix a homology class A 2 �2.Ex; Ey; Ez/. Between here and Lemma 10.5 we
associate a SpinC –structure on X˛;ˇ; to A and some extra data. (It will turn out that
the SpinC –structure does not depend on the extra data.)

Fix a height function f˛ (respectively fˇ , f ) on the handlebody U˛ (respectively
Uˇ , U ) with one index 0 critical point and g index 1 critical points, such that f˛j@U˛

(respectively fˇj@Uˇ , f j@U ) is constant.

Choose a smooth immersion �W S ! W˛;ˇ; representing A. We will place some
requirements on � presently.

Let F denote the surface obtained by capping off �.S/[fzg �T with the downward
gradient flows of f˛ , fˇ and f . So, F is an immersed surface with boundary on
the 3g C 3 critical lines in X˛;ˇ; . (By a critical line we mean a line of the form
.critical point of fi /� ei .)

Let L be the 2–plane field on X˛;ˇ; nF given by

� L.p/D T .fp1g �T /� T.p1;p2/†�T for p D .p1;p2/ 2†�T

� L.p/ D ker df˛.p/ (respectively ker dfˇ.p/, ker df .p/) for p 2 U˛ � e1

(respectively p 2 Uˇ � e2 , p 2 U � e3 ).
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Figure 8: Foliation of T

To use L to define a SpinC –structure, we need to extend it further. Fix a point x 2 T

and line segments a, b and c from x to the edges e1 , e2 and e3 of L, respectively. Let
vij D e1\ej . Let `˛;ˇ.t/, `ˇ; .t/, and `˛; .t/ denote the foliations of T n.a[b[c/,
parametrized by .0; 1/, so that as t ! 0, `˛;ˇ.t/ degenerates to the corner v12 and
as t ! 1 `˛;ˇ.t/ degenerates to a [ b . See Figure 8. The map �T extends in
an obvious way to a map �T W X˛;ˇ; ! T . Let z̀˛;ˇ.t/ D ��1

T
.`˛;ˇ.t// � X˛;ˇ; ,

z̀
ˇ; .t/D �

�1
T
.`ˇ; .t//�X˛;ˇ; , and z̀˛; .t/D ��1

T
.`˛; .t//�X˛;ˇ; .

Choose � so that:

(1) The intersection of F with each z̀˛;ˇ.t/, z̀ˇ; .t/ or z̀˛; .t/ is a finite disjoint
union of contractible 1–complexes.

(2) For all but finitely many t , F \ z̀˛;ˇ.t/ consists of gC 1 disjoint embedded
arcs.

(3) In some small neighborhood of the corner v12 (respectively v23 , v13 ) of T , �
agrees with Ex �T �†�T (respectively Ey �T �†�T , Ez �T �†�T ).

(4) The intersections F \ ��1
T
.a/, F \ ��1

T
.b/ and F \ ��1

T
.c/ each consist of

gC 1 disjoint embedded arcs.

(5) The preimage under � of ˛i � e1 , ˇi � e2 and i � e3 is a connected arc for
each i .

Such � exist.
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Fix a t such that F \ z̀˛;ˇ.t/ consists of gC 1 disjoint embedded arcs. Observe that
z̀
˛;ˇ.t/ is diffeomorphic to Y˛;ˇ . For an appropriate choice of the height functions f˛

and fˇ , they and a parameter for the interval `˛;ˇ.t/ determine a Morse function ft

on Y˛;ˇ . For an appropriate choice of metric, the 2–plane field L is the orthogonal
complement of rft . As when we associated SpinC –structures on 3–manifolds to
intersection points, one can then use the .gC 1/–tuple of paths F \ z̀˛;ˇ.t/ to replace
L with a 2–plane field defined on all of z̀˛;ˇ.t/.

Doing this construction uniformly in t , we can extend L over all of z̀˛;ˇ.t/ for all t

such that F \ z̀˛;ˇ.t/ consists of gC1 disjoint arcs. The same construction obviously
works for z̀ˇ; .t/ and z̀˛; .t/.

Note that we can also extend L over the boundary Y˛;ˇ [Yˇ; [Y˛; , by exactly the
same method.

Now we have defined L except on the intersection of F with

� ��1
T
.a[ b[ c/ and

� z̀˛;ˇ.ti/, z̀ˇ; .t 0i/ and z̀˛; .t 00i / for some finite collection of ti , t 0i and t 00i .

Thus the region to which we have not extended L consists of a collection of disjoint
contractible 1–complexes. So, we can find an open ball B in X˛;ˇ; such that L is
defined on X˛;ˇ; nB .

Choose a metric on X˛;ˇ; . Then the metric, orientation, and 2–plane field L define
an almost complex structure on X˛;ˇ; nB , and hence a SpinC –structure on X˛;ˇ; .

The first question we address is how this construction depends on � .

Lemma 10.5 The SpinC –structure just constructed depends only on the restriction of
� to the boundary of S .

Proof Observe that in the construction, the restriction of � to the boundary of S

determined the SpinC –structure on X˛;ˇ; n†�T . For a manifold M , let SpinC.M /

denote the collection of SpinC –structures on M . We check that the restriction map
SpinC.X˛;ˇ; /! SpinC.X˛;ˇ; n†�T / is injective; this then proves the result.

Recall that SpinC.M / is an affine copy of H 2.M IZ/. Further, if N �M then the
restriction map from SpinC.M / to SpinC.N / commutes with the H 2 –action. That
is, let � 2 SpinC.M /, �jN its restriction to SpinC.N /, a 2 H 2.M IZ/ and ajN its
restriction to H 2.N IZ/. Then, .a ��/jN D ajN ��jN . This can be proved, for example,
by thinking about Čech cocycles.
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So, it suffices to prove that the restriction map H 2.X˛;ˇ; IZ/!H 2.X˛;ˇ; n†�T IZ/

is injective. Consider the following commutative diagram:

H 2.X˛;ˇ; ;X˛;ˇ; n†�T IZ/ //

Š

��

H 2.X˛;ˇ; IZ/
// H 2.X˛;ˇ; n†�T IZ/

H 2.†�D; †� @DIZ/
0 // H 2.†�DIZ/

� � //

OO

H 2.†� @DIZ/

:

(The top row is from the long exact sequence for the pair .X˛;ˇ; ;X˛;ˇ; n†�T /. The
bottom is from the long exact sequence for the pair .†�T ; †�T /.) It follows from
the diagram that the map H 2.X˛;ˇ; IZ/!H 2.X˛;ˇ; n†�T IZ/ is an injection.

It would be nice to have a better way of presenting the construction of a SpinC –structure
on X˛;ˇ; from an element of �2.Ex; Ey; Ez/. Unfortunately I do not know one.

The following is [21, Proposition 8.4]:

Lemma 10.6 The assignment described above induces a well–defined map

szW �2.Ex; Ey; Ez/! SpinC.X˛;ˇ; /:

Proof By the previous lemma, the construction depends only on the restriction of �
to @S . This restriction is defined up to isotopy by the element in �2.Ex; Ey; Ez/. It is
clear from the construction that an isotopy of � does not change the SpinC –structure
constructed.

For s 2 SpinC.X˛;ˇ; / we shall often write A 2 s to mean that sz.A/D s.

Definition 10.7 Given two triples of intersection points .Ex; Ey; Ez/ and .Ex0; Ey0; Ez0/, and
A 2 �2.Ex; Ey; Ez/, A0 2 �2.Ex

0; Ey0; Ez0/ define  and  0 to be SpinC –equivalent if there
exist elements B˛;ˇ 2 �2.Ex; Ex

0/, Bˇ; 2 �2. Ey; Ey
0/, and B˛; 2 �2.Ez; Ez

0/ such that
ACB˛;ˇ CBˇ; CB˛; D A0 . We let S˛;ˇ; denote the set of SpinC –equivalence
classes of triangles.

The following is [21, Proposition 8.5]:

Lemma 10.8 The assignment �2.Ex; Ey; Ez/! SpinC.X˛;ˇ; / defined above descends
to a map szW S˛;ˇ; ! SpinC.X˛;ˇ; /. This new map is injective. The image of
sz consists of all SpinC –structures whose restrictions to @X˛;ˇ; are represented by
intersection points.
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Proof Our proof is the same as in [21].

The fact that sz descends to S˛;ˇ; follows from the fact that the restriction of the
2–plane field used to define sz.A/ to Y˛;ˇ is homologous to the 2–plane field used to
define sz.Ex/ (and similarly for the restrictions to Yˇ; and Y˛; ). That is, suppose A

and A0 are SpinC –equivalent elements of �2.Ex; Ey; Ez/, A0DACB˛;ˇCBˇ; CB˛; .
Let �A and �A0 denote the 2–plane fields constructed above to define sz.A/ and sz.A

0/

respectively. We can assume that �A and �A0 agree outside some collar neighborhood U

of @W˛;ˇ; . Further, on Y˛;ˇ�Œ0; 1/�U (respectively Yˇ;�Œ0; 1/�U , Y˛;�Œ0; 1/�

U ) we can assume that �A and �A0 are given by rf ?
˛;ˇ

(respectively rf ?
ˇ;

, rf ?˛; )
for some Morse function f˛;ˇ on Y˛;ˇ (respectively fˇ; on Yˇ; , f˛; on Y˛; )
outside some ball neighborhoods of .Ex [ z/ � Œ0; 1/ (respectively . Ey [ z/ � Œ0; 1/,
.Ez [ z/� Œ0; 1/). But it is then immediate from the definition that �A and �A0 define
the same SpinC –structure on X˛;ˇ; .

Recall that the restriction map SpinC.X˛;ˇ; /! SpinC.@X˛;ˇ; / commutes with the
(transitive) actions of H 2.X˛;ˇ; / and H 2.@X˛;ˇ; / respectively. It follows that the
cokernel SpinC.@X˛;ˇ; /=SpinC.X˛;ˇ; / is naturally identified with the cokernel of the
restriction map H 2.X˛;ˇ; IZ/!H 2.@X˛;ˇ; IZ/. This in turn is identified with the im-
age of the connecting homomorphism ıW H 2.@X˛;ˇ; IZ/!H 3.X˛;ˇ; ; @X˛;ˇ; IZ/.

Summarizing, we have a map �0W SpinC.@X˛;ˇ; /!H 3.X˛;ˇ; ; @X˛;ˇ; IZ/ given by
the composition of the coboundary map

ıW H 2.@X˛;ˇ; IZ/=H
2.X˛;ˇ; IZ/!H 3.X˛;ˇ; ; @X˛;ˇ; IZ/

with the projection

SpinC.@X˛;ˇ; /! SpinC.@X˛;ˇ; /=SpinC.X˛;ˇ; /DH 2.@X˛;ˇ; /=H
2.X˛;ˇ; /:

The element �0.s/ vanishes if and only if s can be extended to all of X˛;ˇ; .

Recall that we defined earlier in this section the obstruction �.Ex; Ey; Ez/ 2H1.X˛;ˇ; / to
the existence of elements in �2.Ex; Ey; Ez/. Let sz.Ex; Ey; Ez/ denote the SpinC –structure in-
duced by Ex , Ey and Ez on @X˛;ˇ; . We next check that �.Ex; Ey; Ez/DPD.�0.sz.Ex; Ey; Ez///,
where PD denotes the Poincaré dual.

To show this, isotope the ˛–, ˇ– and  –circles so that there are intersection points
Ex0 , Ey0 and Ez0 with �2.Ex

0; Ey0; Ez0/ ¤ ∅ (this is easy). Then, �.Ex0; Ey0; Ez0/ D 0. We
already showed that the SpinC –structure sz.Ex

0; Ey0; Ez0/ extends to all of X˛;ˇ; , so
�0.sz.Ex

0; Ey0; Ez0// D 0. It is obvious from the definitions that, up to a universal sign,
�.Ex; Ey; Ez/��.Ex0; Ey0; Ez0/D i.�.Ex; Ex0//Ci.�. Ey; Ey0//Ci.�.Ez; Ez0//: (Here, i W H1.@X˛;ˇ; /
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!H1.X˛;ˇ; / is the map induced by inclusion.) Naturality of Poincaré duality gives
the commutative diagram

H1.@X˛;ˇ; /
i //

OO

PD
��

H1.X˛;ˇ; /OO

PD
��

H 2.@X˛;ˇ; /
ı // H 3.X˛;ˇ; ; @X˛;ˇ; /

which implies that

PD
�
�.Ex; Ey; Ez/

�
�PD

�
�.Ex0; Ey0; Ez0/

�
D ı

�
PD.�.Ex; Ex0/˚ �. Ey; Ey0/˚ �.Ez; Ez0//

�
:

From its definition,

�0.sz.Ex; Ey; Ez//� �
0.sz.Ex

0; Ey0; Ez0//D ı
��

sz.Ex/� sz.Ex
0/
�
˚
�
sz. Ey/� sz. Ey

0/
�

˚
�
sz.Ez/� sz.Ez

0/
��
:

Now, PD
�
�.Ex; Ex0/

�
D sz.Ex/� sz.Ex

0/ (and similarly for Ey and Ez ). So, since

PD
�
�.Ex0; Ey0; Ez0/

�
D �0

�
sz.Ex

0; Ey0; Ez0/
�
;

it follows that PD
�
�.Ex; Ey; Ez/

�
D �0.Ex; Ey; Ez/.

Now suppose we had a SpinC –structure s on X˛;ˇ; whose restriction to the boundary
is realized by intersection points Ex , Ey , and Ez . Then 0D �0.Ex; Ey; Ez/D �.Ex; Ey; Ez/. It
follows that s is in the image of sz . The converse is obvious.

Finally, it remains to show injectivity. Fix a homology class A 2 �2.Ex; Ey; Ez/. The
following diagram commutes:

y�2.Ex; Ex/˚ y�2. Ey; Ey/˚ y�2.Ez; Ez/

Š

��

CA // y�2.Ex; Ey; Ez/

Š�A

��

// S˛;ˇ; //

sz

((PPPPPPPPPPPP� _

Œ�A�

��

0

SpinC.X˛;ˇ; /

Š

�sz.A/

vvnnnnnnnnnnnn

H2.@X˛;ˇ; / // H2.X˛;ˇ; / // H2.X˛;ˇ; ; @X˛;ˇ; / :

Injectivity of sz is immediate.

10.2 Definitions of the moduli spaces and maps

We now deal with the analysis involved in defining the triangle maps. We start by
discussing the almost complex structures with which we will work. Fix a point zi in each
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component of †n.˛[ˇ[/. Fix an almost complex structure J˛;ˇ (respectively Jˇ; ,
J˛; ) on W˛;ˇ (respectively Wˇ; , W˛; ) satisfying (J1)–(J5) and which achieves
transversality for holomorphic curves of index � 1. We will work with complex
structures J on W˛;ˇ; such that:

(J 01) J is tamed by �, the split symplectic form on †�T .

(J 02) In a neighborhood Ufzi g
of fzig�T , J D j†�jT is split. (Here, Ufzi g

is small
enough that its closure does not intersect .˛[ˇ [/� Œ0; 1��T ).

(J 03) Near †�fv1g, J agrees with J˛;ˇ Similarly, J agrees with Jˇ; near †�fv2g

and with J˛; near †� fv3g.

(J 04) Projection �T onto T is holomorphic and each fiber of �† is holomorphic.

For now, fix an almost complex structure J satisfying (J 01)–(J 04). For A2�2.Ex; Ey; Ez/,
let MA denote the moduli space of embedded holomorphic curves uW .S; @S/ !

.W˛;ˇ; ;˛�e1[ˇ�e2[�e3/ asymptotic to Ex , Ey and Ez at the three ends of †�T

and in the homology class A. We require that u map exactly one component of @S to
each of the 3g cylinders ˛i � e1 , ˇi � e2 and i � e3 . We also require that there be no
components of S on which �T ıu is constant.

We digress briefly to discuss the index of the @–operator for triangles. Fix a homology
class A 2 �2.Ex; Ey; Ez/. Suppose that uW S !W˛;ˇ; is a map in the homology class
A. Then an argument similar to the one given in the beginning of Section 4 shows that

ind.D@/.u/D
1

2
g��.S/C 2e.A/:

Here, e.A/ denotes the Euler measure of A, as described in Section 4. The 1
2
g looks

strange, but for g odd it is easy to see that 2e.A/ is a half–integer. When deriving this
formula, one should keep in mind an extra �g , not appearing in Section 4, coming
from the Maslov index of �T ıu.

Analogously to Subsection 4.2 we have:

Proposition 10.9 The Euler characteristic of an embedded holomorphic curve uW S!

W˛;ˇ; is determined by the homology class of u.

Proof The only part of the index which does not depend a priori only on A is �.S/.
As in the proof of Proposition 4.2 we will re–interpret the Euler characteristic as an
intersection number.

Let uW S!W˛;ˇ; be a holomorphic map in the homology class A. By the Riemann–
Hurwitz formula, the degree of branching of �† ıu determines �.S/, and vice versa.
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Choose a diffeomorphism T ! D2 n fz3 D 1g from T to the unit disk with three
boundary punctures. Let �T be the vector field on T induced by the vector field r @

@�

on D2 . Here, we choose the diffeomorphism so that the preimage of 0 is not a branch
point of �T ı u. Let � be the vector field 0� �T on W˛;ˇ; . Then, for � small, the
degree of branching of �† ıu is given by #.u\ exp��.u//�g .

Fix embedded holomorphic curves uW S!W˛;ˇ; , u0W S 0!W˛;ˇ; in the homology
class A. Because we are in a low dimension (two), we can choose a (proper) bordism
vW R ! W˛;ˇ; from u to u0 . Choose a Morse function f W R ! R with @R D

f �1.f0; 1g/, and so that v restricts to u on f �1.0/ and to u0 on f �1.1/. We will
think of f as a coordinate on R, and write Ra for f �1.a/ and va D vjRa

.

For an appropriate choice of R, v and f there is a partition 0D t0 < s1 < t1 < s2 <

t2 < � � �< sk D 1 of Œ0; 1� such that

� The function f has no critical values in Œsi ; ti �, i D 1; � � � k (and so f �1.Œsi ; ti �/

is a product).

� For each point si (respectively ti ), vsi
(respectively vti

) is an embedding in the
homology class A which projects as a branched cover to T .

� The map vjf �1..ti ;siC1//
is constant near infinity (as a function of f .p/).

In words, we have chosen R, v and f so that we can subdivide Œ0; 1� into subintervals
over which either the map doesn’t change near the punctures or the topology of S

doesn’t change near the punctures (and so that each interval starts and ends with maps
for which the degree of branching of �† ı va determines �.Ra/).

For each i , �.Rsi
/D �.Rti

/, by the first property.

Also, if a; a0; a00 2 .ti ; siC1/ are regular values then #.va \ va0/ D #.va \ va00/. It
follows from the Riemann–Hurwitz formula that �.Rti

/D �.RtiC1
/:

But this implies that �.S/D �.Rt0
/D �.Rsk

/D �.S 0/, completing the proof.

For A 2 �2.Ex; Ey; Ez/, let ind.A/ denote the index of the D@ problem for embedded
curves in the homology class A, if such an embedded curve exists. Note that the index
is additive in the sense that for B˛;ˇ 2�2.Ex; Ex

0/, ind.ACB˛;ˇ/D ind.A/C ind.B˛;ˇ/
(and similarly for the other ends), if both sides are defined. We shall omit the words
“if defined” from all subsequent discussion of the index – that we are only discussing
homology classes representable by holomorphic curves will be implicit throughout.

Remark We could have proved Proposition 10.9 in more generality by using an
analog of Lemma 4.1. Then, ind.A/ would have a natural meaning for any homology
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class A 2 �2.Ex; Ey; Ez/. The only cases in which we are interested in the index, however,
are when there is an embedded holomorphic curve.

We now must check that, for generic J satisfying (J 01)–(J 04), the moduli spaces of J –
holomorphic curves MA are reasonably well behaved. Again, we achieve transversality
by varying J . The argument to show that one can achieve transversality among J

satisfying (J 01)–(J 04) is analogous to the one given in Section 3.

Note that bubbling and Deligne–Mumford type degenerations in moduli spaces with
ind � 1 are prohibited by the argument used in Section 7. So, by the compactness
theorem [2, Theorem 10.2], the compactification of MA consists of holomorphic
buildings with one story in W˛;ˇ; and all of their other stories in W˛;ˇ , Wˇ; or
W˛; . (As is standard in symplectic field theory, the stories in the cylindrical bordisms
W˛;ˇ , Wˇ; , and W˛; are only defined up to translation.)

For the rest of this section, fix a SpinC equivalence class of triangles. Denote it s˛;ˇ; .
Fix a complex structure satisfying (J 01)–(J 04) and achieving transversality.

There are still some technical details to address before we can define the triangle maps.
However, we will give the definitions now, asking the reader to trust that all the symbols
make sense and sums are finite. We will justify this trust presently.

Given the choice of s˛;ˇ; 2 SpinC.X˛;ˇ; / we will define a map

f1˛;ˇ; W CF1.Y˛;ˇ/˝ZŒU � CF1.Yˇ; /! CF1.Y˛; /

by

f1˛;ˇ; .ŒEx; i �˝ Œ Ey; j �/D
X
Ez

X
A2�2.Ex; Ey;Ez/\s˛;ˇ;

ind.A/D0

�
#MA

�
ŒEz; i C j � nz.A/�:

Remark For the complexes CF1 , CF� , CFC and CF�0 our tensor products shall
always be over ZŒU �. For bCF they shall be over Z. In the case of CF1 it would be
equivalent to take the tensor product over ZŒU;U�1�. It is not equivalent, and quickly
leads to nonsense, to take all the tensor products over Z. The corresponding remark
also applies to the Hom functor, if one wanted to obtain cohomology theories; cf [20,
Section 2].

There are two obvious issues that need to be addressed. Firstly, since we have been
working with Z–coefficients, the symbol “#” implies that we have chosen orientations
for the MA , which should presumably be consistent with the orientations for the
moduli spaces for H˛;ˇ , Hˇ; and H˛; . We will address this issue in Subsection

Geometry & Topology, Volume 10 (2006)



A cylindrical reformulation of Heegaard Floer homology 1021

10.3. Secondly, we need to know that the coefficient of ŒEz; k� in f1
˛;ˇ;

.ŒEx; i �; Œ Ey; j �/

is a finite sum. This will require that we impose an admissibility condition on the
Heegaard triple–diagram, as we will discuss in Subsection 10.4. Note, however, that if
we work with Z=2–coefficients and if H2.X˛;ˇ; / is finite then the formula defining
f1
˛;ˇ;

already makes perfect sense.

Before addressing the issues of orientations and admissibility, we define the rest of the
maps that will appear.

We will define a map

yf˛;ˇ; W bCF .Y˛;ˇ/˝Z
bCF .Yˇ; /!bCF .Y˛; /

by
yf˛;ˇ; .Ex˝ Ey/D

X
Ez

X
A2y�2.Ex; Ey;Ez/\s˛;ˇ;

ind.A/D0

�
#MA

�
Ez:

There is a subcomplex CF�0 of CF1 generated by all ŒEx; i � with i � 0. The
homology HF�0 of CF�0 is naturally isomorphic to HF� , but the results on triangles
are phrased most simply in terms of CF�0 . The map f1

˛;ˇ;
restricts to a map

f �0
˛;ˇ;
W CF�0.Y˛;ˇ/˝CF�0.Yˇ; /! CF�0.Y˛; /: Hence it also induces a map

f C
˛;ˇ;
W CFC.Y˛;ˇ/˝CF�0.Yˇ; IMˇ; /! CFC.Y˛; /:

Note that f1
˛;ˇ;

is a map of ZŒU �–modules (in fact, ZŒU;U�1�–modules), so f �
˛;ˇ;

and f C
˛;ˇ;

are also maps of ZŒU �–modules. Further, since CF�0.Yˇ; / is a subcom-

plex of CF1.Yˇ; /, the map f1
˛;ˇ;

restricts to a map CF1.Y˛;ˇ/˝ZŒU �CF�0.Yˇ; /

! CF1.Y˛; /, which we also denote f1
˛;ˇ;

.

The next step is to show that the maps just defined are chain maps. The proof is
completely standard, but before giving it we digress to deal with orientations and
admissibility.

10.3 Orientations

By the same arguments as in Section 6, it follows that the moduli space MA.X˛;ˇ; / are
orientable, and by general arguments we can find orientations for all the MA.X˛;ˇ; /,
MB˛;ˇ .Y˛;ˇ/, MBˇ; .Yˇ; / and MB˛; .Y˛; / (or rather, for the determinant line
bundles over the corresponding configuration spaces) which are consistent with gluings.
However, we would like somewhat more. Specifically:
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Lemma 10.10 (Compare [21, Lemma 8.7]) Given coherent orientation systems
o˛;ˇ.B˛;ˇ/ and oˇ; .Bˇ; / (for all B˛;ˇ and Bˇ; ) there are orientation systems o˛;
and o˛;ˇ; consistent with o˛;ˇ and oˇ; .

Note that we have not claimed that o˛; and o˛;ˇ; are unique. The indeterminacy
will be clear from the proof.

Proof of Lemma 10.10 Our proof is the same as in [21, Section 8.2].

Fix a SpinC –structure s˛;ˇ; on X˛;ˇ; and intersection points Ex0 2 s˛;ˇ; jY˛;ˇ ,
Ey0 2 s˛;ˇ; jYˇ; and Ez0 2 s˛;ˇ; jY˛; . Fix A0 2�2.Ex0; Ey0; Ez0/. Choose any orientation
over A0 .

Let

K D fB˛; 2 y�2.Ez0; Ez0/j9B˛;ˇ 2 y�2.Ex0; Ex0/;Bˇ; 2 y�2. Ey0; Ey0/

such that A0CB˛; DA0CBˇ; CB˛; g:

Sublemma 10.11 (1) y�2.Ez0; Ez0/ŠK˚ZN for some N .

(2) Given B˛; 2 K there is only one pair Bˇ; , B˛; such that A0 C B˛; D

A0CBˇ; CB˛; .

Assuming the sublemma, the lemma is almost immediate. By Part 2 of the sublemma,
o˛;ˇ; .A0/, o˛;ˇ , and oˇ; determine o˛; over K . Choosing o˛; arbitrarily over a
basis of ZN determines o˛; over y�2.Ez0; Ez0/. The orientation over Œ†� is determined
as in Section 6. Choosing a homology class B˛;;Ez 2 �2.Ez0; Ez/ for each intersection
point Ez (ie, a complete set of paths for Y˛; in the sense of Section 6) and then choosing
orientations arbitrarily over the B˛;;Ez determines o˛; over all of s˛;ˇ; jY˛; . The
orientation over A0 and o˛;ˇ , oˇ; and o˛; together determine o˛;ˇ; over all of
s˛;ˇ; . This completes the proof, except for the

Proof of Sublemma 10.11 The subgroup K is canonically identified with the inter-
section of H2.Y˛;ˇ [Yˇ; / and H2.Y˛; / in H2.X˛;ˇ; /. From the fragment

H3.X˛;ˇ; ;Y˛;ˇ[Yˇ; /!H2.Y˛;ˇ[Yˇ; /
j
!H2.X˛;ˇ; /

p
!H 2.X˛;ˇ; ;Y˛;ˇ[Yˇ; /

of the long exact sequence for the pair .X˛;ˇ; ;Y˛;ˇ[Yˇ; /, one sees y�2.Ez0; Ez0/=KŠ

pıi.H2.Y˛; //: By excision, H�.X˛;ˇ; ;Y˛;ˇ[Yˇ; /ŠH�.Uˇ�Œ0; 1�;Uˇ�@Œ0; 1�/:
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So, H3.X˛;ˇ; ;Y˛;ˇ[Yˇ; /D 0, so j is injective, implying part (2) of the sublemma.
Further,

H2.X˛;ˇ; ;Y˛;ˇ [Yˇ; /ŠH2.Uˇ � Œ0; 1�;Uˇ � @Œ0; 1�/

ŠH2

 
.

g_
iD1

S1/�S1; .

g_
iD1

S1/� fptg

!
Š Zg

(from the long exact sequence for the pair), so y�2.Ez0; Ez0/=K is free Abelian. It follows
that the sequence

0!K! y�2.Ez0; Ez0/! y�2.Ez0; Ez0/=K! 0

splits, yielding the result.

In the rest of this section, we shall always assume that coherent orientations have been
chosen for the moduli spaces under consideration, but shall suppress the orientation
systems from the notation.

10.4 Admissibility

As when we defined the chain complexes, we will need the Heegaard triple–diagram to
satisfy certain admissibility criteria in order to ensure finiteness when we define maps
between Floer homologies.

Definition 10.12 The pointed Heegaard triple–diagram H3 is weakly admissible
if the following condition is met. For any B˛;ˇ 2 y�2.Ex; Ex/, Bˇ; 2 y�2. Ey; Ey/, and
B˛; 2 y�2.Ez; Ez/ we require that B˛;ˇCBˇ; CB˛; have both positive and negative
coefficients (or be identically zero).

Note that the definition given in Section 5 of weak admissibility here corresponds to
the definition of weak admissibility for all SpinC –structures.

Definition 10.13 Fix a SpinC –structure s on X˛;ˇ; and let s˛;ˇ , sˇ; and s˛; be
the restrictions of s˛;ˇ; to Y˛;ˇ , Yˇ; and Y˛; respectively. We say that H3 is
strongly admissible for s˛;ˇ; if for any Ex 2 s˛;ˇ , Ey 2 sˇ; , Ez 2 s˛; , B˛;ˇ 2 y�2.Ex; Ex/,
Bˇ; 2 y�2. Ey; Ey/ and B˛; 2 y�2.Ez; Ez/ with˝

c1.s˛;ˇ/;B˛;ˇ
˛
C
˝
c1.sˇ; /;Bˇ;

˛
C
˝
c1.s˛; /;B˛;

˛
D 2n� 0

and B˛;ˇCBˇ; CB˛; not identically zero there is some coefficient of ACBCC

strictly greater than n.
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Note that weak (respectively strong) admissibility for H3 implies weak (strong) ad-
missibility for each of H˛;ˇ , Hˇ; and H˛; .

The proof of the following alternate characterization of weak admissibility is the same
as the proof of Lemma 5.3.

Lemma 10.14 With notation as above:

� The diagram H3 is weakly admissible if and only if there is an area form on †
with respect to which for any B˛;ˇ , Bˇ; and B˛; as in the definition of weak
admissibility, the domain B˛;ˇCBˇ; CB˛; has zero signed area.

� The diagram H3 is strongly admissible for s if there is an area form on † with
respect to which for any B˛;ˇ , Bˇ; and B˛; as in the definition of strong
admissibility, B˛;ˇCBˇ; CB˛; has signed area equal to n, and with respect
to which † has area 1.

Recall that we call a homology class A positive if the corresponding domain has no
negative coefficients.

The following is [21, Lemma 8.9]

Lemma 10.15 Suppose H3 is weakly admissible. Fix intersection points Ex , Ey , and
Ez and a SpinC –structure s on X˛;ˇ; . Then for each j ; k 2 Z there are only finitely
many positive A 2 s˛;ˇ; \�2.Ex; Ey; Ez/ such that

� ind.A/D j ,

� nz.A/D k ,

Proof Suppose that A;A0 2 �2.Ex; Ey; Ez/, nz.A/ D nz.A
0/ D k , and A;A0 2 s˛;ˇ; .

Then by Lemma 10.8, A and A0 are SpinC –equivalent, so A0DACB˛;ˇCBˇ;CB˛;
where B˛;ˇ 2 y�2.Ex; Ex/, Bˇ; 2 y�2. Ey; Ey/, and B˛; 2 y�2.Ez; Ez/. By the previous lemma,
we can choose an area form on † so that B˛;ˇCBˇ; CB˛; has zero signed area.
The result then follows as in Lemma 5.4.

It follows from this lemma and compactness that if H3 satisfies the weak admissibility
criterion then the sums defining yf˛;ˇ; and f C

˛;ˇ;
are finite.

The following is [21, Lemma 8.10].

Lemma 10.16 Fix j 2 Z, intersection points Ex , Ey , Ez , and a SpinC –structure s˛;ˇ; .
Suppose H3 is strongly admissible for s. Then there are only finitely many positive
A 2 �2.Ex; Ey; Ez/\ s˛;ˇ; such that ind.A/D j .
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Proof As in the previous proof, given A;A0 2 �2.Ex; Ey; Ez/ satisfying the hypotheses,
A � A0 D B˛;ˇ C Bˇ; C B˛; for some B˛;ˇ 2 �2.Ex; Ex/, Bˇ; 2 �2. Ey; Ey/ and
B˛; 2 �2.Ez; Ez/. The proof then follows as in Lemma 5.5.

It follows from this lemma and compactness that if H3 satisfies the strong admissibility
criterion then the sums defining f1

˛;ˇ;
and f �0

˛;ˇ;
are finite.

The following is [21, Lemma 8.11]. We refer the reader there for its proof.

Proposition 10.17 Given any pointed Heegaard triple–diagram .†; Ę; Ě; E ; z/ there
is an isotopic weakly admissible Heegaard triple–diagram. Given any pointed Heegaard
triple–diagram .†; Ę; Ě; E ; z/ and a SpinC –structure s˛;ˇ; on X˛;ˇ; there is an
isotopic pointed Heegaard triple–diagram which is strongly admissible for s˛;ˇ; .

10.5 Moduli spaces and maps, part 2

If we wish to make a statement about all of f1
˛;ˇ;

, f �0
˛;ˇ;

, f C
˛;ˇ;

, or yf˛;ˇ; at once
we will simply write f˛;ˇ; . For example

Lemma 10.18 The maps f˛;ˇ; are chain maps.

Proof This follows by considering the 1–dimensional moduli spaces MA˛;ˇ; where
A˛;ˇ; 2 �2.Ex; Ey; Ez/, ind.A˛;ˇ; /D 1. The proof of Proposition 7.1 still works, so the
boundary of MA˛;ˇ; consists of height two holomorphic buildings in the homology
class A˛;ˇ; . Each of of these height two holomorphic buildings consists of

(1) a curve of index 0 in †�T and

(2) a curve of index 1 (defined up to translation) in one of W˛;ˇ , Wˇ; or W;˛ ,

and every such building is in @MA˛;ˇ; for some A˛;ˇ; of index 1. This follows
from [2, Theorem 10.2] and Proposition A.1. Hence,

0D #
�
@MC

�
D

X
B˛;ˇ2�2.Ex;Ex

0/
ind.B˛;ˇ/D1

�
#cMB˛;ˇ

� �
#MA˛;ˇ;�B˛;ˇ

�

C

X
Bˇ;2�2. Ey; Ey

0/
ind.Bˇ; /D1

�
#cMBˇ;

� �
#MA˛;ˇ;�Bˇ;

�

C

X
B˛;2�2.Ez

0;Ez/
ind.B˛; /D1

�
#cMB

˛;

� �
#MA˛;ˇ;�B˛;

�
:
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But summing this over A˛;ˇ; with nz.A˛;ˇ; /Dk gives the coefficient of ŒEz; iCj�k�

in @ ıf1
˛;ˇ;

Cf1
˛;ˇ;

ı @, proving the result for f1
˛;ˇ;

:

The results for f �0
˛;ˇ;

and f C
˛;ˇ;

follow immediately. The proof for yf˛;ˇ; is analogous,
restricting to curves with nz D 0; we leave the details of this case to the reader.

We use F˛;ˇ; (appropriately decorated) to denote the maps on homology induced by
f˛;ˇ; .

Lemma 10.19 The maps F˛;ˇ; just defined are independent of the choice of complex
structure J on W˛;ˇ; satisfying (J 01)–(J 04).

Proof Suppose J and J 0 are two complex structures on W˛;ˇ; satisfying (J 01)–
(J 04). Note in particular that J and J 0 agree on the ends of W˛;ˇ; . Let f1

˛;ˇ;;J

and f1
˛;ˇ;;J 0

denote the maps defined above, computed with respect to J and J 0

respectively.

Choose a generic path Jt connecting J to J 0 , which is fixed on the ends of W˛;ˇ; .
Then for any k 2Z there are a finite collection of t 2 .0; 1/ such that MA˛;ˇ; ¤∅ for
some A˛;ˇ; with ind.A˛;ˇ; /D�1 and nz.A˛;ˇ; /� k . (This uses the admissibility
hypothesis.) Define a map ˆW CF1.Y˛;ˇ/˝CF1.Yˇ; /! CF1.Y˛; / by

ˆ.ŒEx; i �; Œ Ey; j �/D
X
Ez

X
.A˛;ˇ; ;t/2�2.Ex; Ey;Ez/�.0;1/

ind.A˛;ˇ; /D�1

#MA˛;ˇ; ŒEz; i C j � nz.A˛;ˇ; /�:

The coefficient of each ŒEz; k� is a finite sum. By exactly the same argument as used in
Lemma 9.4, ˆ is a chain homotopy from f1

˛;ˇ;;J
to f1

˛;ˇ;;J 0
.

The results for F1
˛;ˇ;

, F�0
˛;ˇ;

and FC
˛;ˇ;

follow. The result for yF˛;ˇ; is proved in
an analogous way; as has become our habit we leave the details of this case to the
reader.

Lemma 10.20 The maps F˛;ˇ; are independent of the choices of complex structures
J˛;ˇ , Jˇ; and J˛; satisfying (J1)–(J5) and achieving transversality, and are indepen-
dent of isotopies of the ˛ , ˇ and  preserving the admissibility hypotheses and not
crossing z.

Proof Let ˛0 , ˇ0 and  0 be isotopic to ˛ , ˇ , and  . As in Section 9, we may assume
the isotopy introduces or cancels only one pair of intersection points, and can be realized
by Lagrangian cylinders. Let J˛0;ˇ0 , Jˇ0; 0 and J˛0; 0 be a complex structures on
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E˛;ˇ

I˛;ˇ

Iˇ;

Eˇ;

I˛;

E˛;

Figure 9

W˛;ˇ , Wˇ; and W˛; respectively satisfying (J1)–(J5) and achieving transversality.
Choose a path of complex structures Jt;˛;ˇ (respectively Jt;ˇ; , Jt;˛; ), t 2 Œ0; 1�,
interpolating between J˛;ˇ and J˛0;ˇ0 (respectively Jˇ; and Jˇ0; 0 , J˛; and J˛0; 0 ),
as in Section 9.

Divide W˛0;ˇ0; 0 into seven regions: the three ends E˛;ˇ , Eˇ; and E˛; ; three
interpolation regions I˛;ˇ , Iˇ; , and I;˛ just below the ends; and the rest of W˛;ˇ; ,
which we call the heart, as in Figure 9. Let J be a complex structure on W˛;ˇ; which

(1) satisfies (J 01) and (J 04).

(2) agrees with J˛0;ˇ0 over E˛;ˇ , with Jˇ0; 0 over Eˇ; , and with J˛0; 0 over E˛; ;

(3) agrees with Jt;˛;ˇ over I˛;ˇ , with Jt;ˇ; over Iˇ; , and with Jt;˛; over I˛; ;

(4) is standard in a neighborhood of fzig �T for all but at most one i ;

(5) achieves transversality.

Let Js be a the complex structure obtained from J by inserting a neck of length s

just between each interpolation region and the heart. (See Subsection A.2 for a precise
definition of this process.)

Let C˛ (respectively Cˇ , C ) be Lagrangian cylinders which interpolate between
the ˛ and ˛0 (respectively ˇ and ˇ0 ,  and  0 ) curves in the regions I˛;ˇ and I˛;
(respectively I˛;ˇ and Iˇ; , I˛; and Iˇ; ).
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Counting Js –holomorphic curves with boundary on the C˛ we obtain maps fs;˛0;ˇ0; 0 .
By the same proof as the previous proposition, the maps fs;˛0;ˇ0; 0 are all chain
homotopic to the map f˛0;ˇ0; 0 .

Taking s!1 and using the compactness result [2, Theorem 10.3] and Proposition
A.2 we find that f˛0;ˇ0; 0 is chain homotopic to ˆ˛; ı f˛;ˇ; ı

�
ˆ˛;ˇ˝ˆˇ;

�
: Here,

ˆ˛;ˇ (respectively ˆˇ; , ˆ˛; ) is the chain map defined in Section 9, for the isotopy
between . Ę; Ě/ and . Ę0; Ě0/ (respectively between . Ě; E / and . Ě0; E 0/, between . Ę; E /
and . Ę0; E 0/).

Orientation systems, which have been implicit in the discussion, are extended as
discussed in Section 9.

10.6 Associativity of triangle maps

Next we show that the maps F˛;ˇ; satisfy an associativity property. Before stating it,
however, we need some basic properties of Heegaard quadruple–diagrams.

10.6.1 Heegaard quadruple–diagrams As the reader can presumably guess, a
pointed Heegaard quadruple–diagram consists of a genus g surface †, four g–tuples
of pairwise disjoint homologically linearly independent simple closed curves Ę; Ě,
E and Eı , and a distinguished point z 2 † n .˛[ˇ [  [ ı/. In this section we will
state the analogs for Heegaard quadruple–diagrams of the basic definitions and lemmas
stated earlier for Heegaard triple diagrams. Except as noted, the proofs are the same as
for Heegaard triple–diagrams, and hence are omitted.

Fix a pointed Heegaard quadruple–diagram H4 D .†; Ę; Ě; E ; Eı; z/. The diagram H4

specifies a 4–manifold X˛;ˇ;;ı with boundary @X˛;ˇ;;ıDY˛;ˇ[Yˇ;[Y;ı[.�Y˛;ı/

by gluing the elongated handlebodies U˛� Œ0; 1�, Uˇ� Œ0; 1�, U � Œ0; 1� and Uı� Œ0; 1�

to the product of † and a square.

Let W˛;ˇ;;ı be the product of † and a disk R with four boundary punctures, thought
of as a topological space without complex structure for the moment. Let e1; � � � ; e4

denote the four boundary arcs of R, enumerated clockwise, v12 , v23 , v34 and v41 the
four punctures, with vij between ei and ej ; see Figure 10. In W˛;ˇ;;ı we have 4g

cylinders: ˛� e1 , ˇ � e2 ,  � e3 and ı� e4 . Let �2.Ex; Ey; Ez; Ew/ denote the collection
of homology classes of maps .S; @S/! .W˛;ˇ;;ı;˛� e1[ � � � [ ı � e4/ asymptotic
to the I–chord collection Ex for H˛;ˇ at v1 , Ey for Hˇ; at v2 , and so on.

Given Ex; � � � ; Ew there is an element �.Ex; Ey; Ez; Ew/2H1.X˛;ˇ;;ı/ defined as we defined
�.Ex; Ey; Ez/ for triangles in Subsection 10.1.
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Lemma 10.21 (1) �2.Ex; Ey; Ez; Ew/ is nonempty if and only if �.Ex; Ey; Ez; Ew/D 0.

(2) If �.Ex; Ey; Ez; Ew/ D 0 then �2.Ex; Ey; Ez; Ew/ Š Z ˚ H2.X˛;ˇ;;ı/. The map
�2.Ex; Ey; Ez; Ew/! Z is given by nz . The identification of �2.Ex; Ey; Ez; Ew/=Z with
H2.X˛;ˇ;;ı/ is affine (but canonical up to translation).

Proof See Lemma 10.2 and Lemma 10.3.

As with triangles, each element A of �2.Ex; Ey; Ez; Ew/ specifies a SpinC –structure sz.A/

on X˛;ˇ;;ı ; the construction is the same as in Subsubsection 10.1.2. Also as before,
there are obvious concatenation maps �2.Ex

0; Ex/� �2.Ex; Ey; Ez; Ew/! �2.Ex
0; Ey; Ez; Ew/,

and similarly for Ey , Ez and Ew . Again we say A 2 �2.Ex; Ey; Ez; Ew/ is SpinC –equivalent
to ACB˛;ˇ CBˇ; CB;ı CB˛;ı for B˛;ˇ 2 �2.Ex; Ex/; � � � ;B˛;ı 2 �2. Ew; Ew/, and
let S˛;ˇ;;ı denote the collection of SpinC –equivalence classes. Again we have:

Lemma 10.22 The map �2.Ex; Ey; Ez; Ew/! SpinC.X˛;ˇ;;ı/ descends to an injective
map S˛;ˇ;;ı ,! SpinC.X˛;ˇ;;ı/ whose image consists of all those SpinC –structures
whose restrictions to @X˛;ˇ;;ı are realized to intersection points.

Proof See Lemma 10.8.

Now, however, there is somewhat more structure. The manifold X˛;ˇ;;ı decomposes
as X˛;ˇ; [Y˛; X˛;;ı and as X˛;ˇ;ı [Yˇ;ı Xˇ;;ı . Let ı˛; (respectively ıˇ; ) be
the coboundary map for the Mayer–Vietoris sequence for the former (respectively the
latter) decomposition. Working for the moment with the former decomposition, we
have restriction maps SpinC.X˛;ˇ;;ı/

r
! SpinC.X˛;ˇ; /�SpinC.X˛;;ı/. These maps

commute with the H 2 –actions, and so by the Mayer–Vietoris theorem, the fibers of
r are the orbits of the action of ı˛;H 1.X˛; / � H 2.X˛;ˇ;;ı/ on SpinC.X˛;ˇ;;ı/.
Corresponding statements hold for the decomposition X˛;ˇ;;ı ŠX˛;ˇ;ı [Yˇ;ı Xˇ;;ı:

Rather than fixing a single SpinC –structure over X˛;ˇ;;ı we shall fix a ı˛;H 1.Y˛; /C

ıˇ;ıH
1.Yˇ;ı/–orbit of SpinC –structures. The reason is easier to see in terms of domains.

Concatenation (addition) gives a well–defined map

�
˛;ˇ;
2

.Ex; Ey; Ea/��
˛;;ı
2

.Ea; Ez; Ew/! �
˛;ˇ;;ı
2

.Ex; Ey; Ez; Ew/:

This map, however, does not descend to a map S˛;ˇ; � S˛;;ı ! S˛;ˇ;;ı : for
A˛;ˇ; 2 �2.Ex; Ey; Ea/, A˛;;ı 2 �2.Ea; Ez; Ew/ and B˛; 2 �2.Ea; Ea/ the domains A˛;ˇ;
and A˛;ˇ; C B˛; define the same element of S˛;ˇ; , but A˛;ˇ; C A˛;;ı and
A˛;ˇ; CB˛; CA˛;;ı may not define the same element of S˛;ˇ;;ı . So, the compo-
sition F˛;ˇ;

�
F˛;;ı.�; �/; �

�
involves domains belonging to an entire �˛;

2
.Ea; Ea/–orbit
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of elements of S˛;ˇ;;ı . Since ı˛;H 1.Y˛; / and ıˇ;ıH 1.Yˇ;ı/ may not coincide, the
best we can expect to prove is associativity for certain sums of triangle maps. This is
what we will (eventually) prove.

The next issue to address is admissibility.

Definition 10.23 The pointed Heegaard quadruple–diagram H4 is weakly admissible
if given B˛;ˇ 2 y�2.Ex; Ex/, Bˇ; 2 y�2. Ey; Ey/, B;ı 2 y�2.Ez; Ez/, B˛;ı 2 y�2. Ew; Ew/ with
B˛;ˇCBˇ; CB;ıCB˛;ı ¤ 0, then B˛;ˇCBˇ; CB;ıCB˛;ı has both positive
and negative coefficients.

Definition 10.24 A pointed Heegaard quadruple–diagram H4 is strongly admissible
for a ı˛;H 1.Y˛; /Cıˇ;ıH

1.Yˇ;ı/–orbit of SpinC –structures S if for any s˛;ˇ;;ı 2S

and any six domains B�;� 2 y�
�;�
2
; f�; �g � f˛; ˇ; ; ıg (� ¤ �) such that

�
P
f�;�gB�;� ¤ 0 and

�
P
f�;�g

˝
c1

�
s˛;ˇ; jY�;�

�
;B�;�

˛
D 2n� 0

then some coefficient of
P
f�;�gB�;� is greater than n.

Lemma 10.25 (1) Given any pointed Heegaard quadruple–diagram there is an
isotopic weakly admissible pointed Heegaard quadruple–diagram.

(2) Suppose that the pointed Heegaard quadruple–diagram .†; Ę; Ě; E ; Eı; z/ satis-
fies the conditions ıˇ;ıH 1.Yˇ;ı/jY˛; D 0 and ı˛;H 1.Y˛; /jYˇ;ı D 0. Fix a
ı˛;H 1.Y˛; /C ıˇ;ıH

1.Yˇ;ı/–orbit of SpinC –structures S. Then there is an
isotopic pointed Heegaard quadruple–diagram which is strongly admissible for
S.

For the argument, see [21, Section 8.4.2].

Lemma 10.26 Suppose H4 is weakly admissible. Fix j ; k 2 Z, intersection points
Ex; Ey; Ez; Ew and a ıH 1.Yˇ;ı/C ıH

1.Y˛; /–orbit of SpinC –structures S on X˛;ˇ;;ı .
Then there are only finitely many positive A 2 �2.Ex; Ey; Ez; Ew/ such that

� ind.A/D j

� nz.A/D k

� sz.A/ 2S

Proof See Lemma 10.15.
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Lemma 10.27 Suppose H4 is strongly admissible for a ı˛;H 1.Y˛; /C

ıˇ;ıH
1.Yˇ;ı/–orbit of SpinC –structures S on X˛;ˇ;;ı . Fix j 2 Z and intersection

points Ex; Ey; Ez; Ew . Then there are only finitely many positive A 2 �2.Ex; Ey; Ez; Ew/ such
that sz.A/ 2S and ind.A/D j .

Proof See Lemma 10.16.

10.6.2 Moduli spaces of squares Fix a pointed Heegaard quadruple–diagram H4D

.†; Ę; Ě; E ; Eı; z/. Let R denote the unit disk with four punctures on its boundary. Let
e1; � � � ; e4 denote the four boundary components of R, enumerated clockwise, and
v12; v23; v34 and v4;1 the vertices of R, enumerated clockwise, with v12 between e1

and e2 . See Figure 10. Let W˛;ˇ;;ı D†�R.

The moduli space of conformal structures on a rectangle is parameterized by R. Let
ja , a 2 R, sweep out this space. Do this in such a way that as s ! �1 an arc in
R connecting e1 to e3 collapses, while as s!1 an arc in R connecting e2 to e4

collapses; see Figure 10.

Fix a point zi in each component of † n .˛[ˇ [ [ ı/. Choose complex structures
J�;� , f�; �g � f˛; ˇ; ; ıg which satisfy (J1)–(J5) and achieve transversality.

Fix a path Ja of complex structures on W˛;ˇ;;ı such that

(1) For every a 2 R, Ja is tamed by the split symplectic form on †�R.

(2) For every a 2 R, projection �R onto R is .ja;Ja/–holomorphic.

(3) In a neighborhood Ufzi g
of fzig �R, J D j† � jT is split.

(4) Near † � fv12g, J agrees with J˛;ˇ . Near † � fv23g, J agrees with Jˇ; .
Near †� fv34g, J agrees with J;ı . Near †� fv41g, J agrees with J˛;ı .

(5) As a!�1, Ja degenerates to complex structures which satisfy (J 01)–(J 04)
and achieve transversality for W˛;ˇ; and W˛;;ı .

(6) As a!1, Ja degenerates to complex structures which satisfy (J 01)–(J 04) and
achieve transversality for Wı;˛;ˇ and W;ı;ˇ .

(7) Ja achieves transversality (as a path of almost complex structures) for holomor-
phic curves with index � 1.

Checking that such a Ja exists is similar to the proof of transversality in Section 3.

Given I–chord collections Ex; Ey; Ez; Ew for Y˛;ˇ , Yˇ; , Y;ı and Y˛;ı let �2.Ex; Ey; Ez; Ew/

denote homology classes of maps to W˛;ˇ;;ı connecting Ex , Ey , Ez , and Ew . Given A 2

�2.Ex; Ey; Ez; Ew/, let MA denote the union over a2R of all embedded Ja –holomorphic
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Figure 10: Degenerations of a rectangle

curves uW .S; @S/! .W˛;ˇ;;ı;˛� e1 [ ˇ � e2 [  � e3 [ ı � e4/ (without closed
components, and with one component of @S mapped to each Lagrangian cylinder) in
the homology class A. Let ind.A/ denote the index of this @ problem in the homology
class A, so dimMA D ind.A/C 1, if MA is nonempty. (The C1 appears because
we consider a 1–parameter family of almost complex structures.)

10.6.3 Orienting squares The moduli spaces MA˛;ˇ;;ı are orientable for the same
reason all the other moduli spaces considered so far have been. Again we want to
choose orientations for the MA˛;ˇ;;ı , MA�;�;� and MB�;� , f�; �; �g � f˛; ˇ; ; ıg)
consistent with various gluings – all possible gluings of a 2–gon to a rectangle or
triangle, and the two gluings MA˛;ˇ; �MA˛;;ı � ŒR;1/ ,!MA˛;ˇ;CA˛;;ı and
MA˛;ˇ;ı �MAˇ;;ı � ŒR;1/ ,!MA˛;ˇ;ıCAˇ;;ı : Again, it follows from standard
arguments that there is some such coherent orientation system. And, again it is useful
to have something slightly stronger:

Lemma 10.28 (Compare [21, Proposition 8.15]) Suppose H4 is a Heegaard quad-
ruple–diagram such that the image of H2.Yˇ;ı/ under the map H2.X˛;ˇ;;ı/ !
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H2.X˛;ˇ;;ı; @X˛;ˇ;;ı/ is zero. Fix a ıH 1.Y˛; /–orbit of SpinC –structures S on
X˛;ˇ;;ı and orientation systems o˛;ˇ; and o˛;;ı for .†; Ę; Ě; E ; z;SjX˛;ˇ; / and

.†; Ę; E ; Eı; z;SjX˛;;ı / inducing the same orientation over Y˛; . Then there is a
coherent orientation system for H4 extending o˛;ˇ; and o˛;;ı .

Proof Our proof is the same as the one given in [21].

The orientation systems o˛;ˇ; and o˛;;ı determine orientations o˛;ˇ;;ı.A˛;ˇ;;ı/

for all A˛;ˇ;;ı with sz.A˛;ˇ;;ı/ 2S, which is well–defined since o˛;ˇ; and o˛;;ı
induce the same orientation system on Y˛; . The orientation systems o˛;ˇ; and o˛;;ı
also determine orientation systems o˛;ˇ , oˇ; , o;ı , o˛;ı and o˛; over Y˛;ˇ , Yˇ; ,
Y;ı , Y˛;ı and Y˛; .

Choose intersection points Ex2SjY˛;ˇ , Ey 2SjYˇ; , Ez2SjY;ı , Ew2SjY˛;ı , Eu2SjY˛;
and Ev 2SjYˇ;ı . Choose any A˛;ˇ;;0 2�2.Ex; Ey; Eu/ and Aˇ;;ı;0 2�2. Ey; Ez; Ev/. Choose
an arbitrary orientation o˛;ˇ;ı.A˛;ˇ;ı;0/ over A˛;ˇ;ı;0 . Then o˛;ˇ;ı.A˛;ˇ;ı;0/ and
o˛;ˇ;;ı.A˛;ˇ;ı;0CAˇ;;ı;0/ determine an orientation oˇ;;ı.Aˇ;;ı;0/:

Now, we choose oˇ;ı as follows. For Bˇ;ı 2 �2.Ev; Ev/, from the assumption that
H2.Yˇ;ı/ is trivial inside H2.X˛;ˇ;;ı; @X˛;ˇ;;ı/, we can choose B˛;ˇ , Bˇ; , B;ı
and B˛;ı so that

(10) A˛;ˇ;ı;0CAˇ;;ı;0CBˇ;ı DA˛;ˇ;ı;0CAˇ;;ı;0CB˛;ˇCBˇ; CB;ıCB˛;ı

Choose oˇ;ı.Bˇ;ı/ so that the orientations induced by the two decompositions in
Equation (10) agree. We have constructed o˛;ˇ , oˇ; , o;ı and o˛;ı so that this is
independent of the choice of B˛;ˇ; � � � ;B˛;ı . Choose arbitrary orientations over a
complete set of paths for Yˇ;ı to finish defining oˇ;ı .

Finally, o˛;ˇ;ı.A˛;ˇ;ı;0/, o˛;ˇ , oˇ;ı and o˛;ı together specify o˛;ˇ;ı completely, and a
similar remark applies to oˇ;;ı . We have, thus, finished constructing all the orientations.
It is clear that they are coherent.

10.6.4 Proof of associativity

Proposition 10.29 Let H4 D .†; Ę; Ě; E ; Eı; z/ be a pointed Heegaard quadruple–
diagram. Fix a ı˛;H 1.Y˛; / C ıˇ;ıH

1.Yˇ;ı/–orbit of SpinC –structures S on
X˛;ˇ;;ı . Assume that H4 is strongly admissible for S. Fix � 2 f1;C;�g. Then for
any �˛;ˇ 2HF�.Y˛;ˇ/ and �ˇ; 2HF�0.Yˇ; /, �;ı 2HF�0.Y;ı/ we haveX

s2S

F�
˛;;ı

�
F�˛;ˇ; .�˛;ˇ˝ �ˇ; I sjX˛;ˇ; /˝ �;ıI sjX˛;;ı

�
D

X
s2S

F�˛;ˇ;ı

�
�˛;ˇ˝F�0

ˇ;;ı
.�ˇ; ˝ �;ıI sjXˇ;;ı /I sjX˛;ˇ;ı

�
:
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An exactly similar statement holds with both HF� and HF� replaced by bHF . For
the case of bHF , weak admissibility of the Heegaard quadruple–diagram is sufficient.

(In the proposition, we assume the maps are computed with respect to a coherent
choice of orientations, as described in Subsubsection 10.6.3. Also note that every
SpinC –structure in S restricts to the same SpinC –structure on Y˛;ˇ (respectively Yˇ; ,
Y;ı , Y˛;ı ). When we speak of the Floer homology groups of Y˛;ˇ (respectively
Yˇ; , Y;ı , Y˛;ı ) we mean the Floer homology groups calculated with respect to this
SpinC –structure.)

Proof To make notation clearer, we will give the proof for � D1. The other cases
are completely analogous. Define hW CF1.Y˛;ˇ/˝CF�0.Yˇ; /˝CF�0.Y;ı/!

CF1.Y˛;ı/ by

h
�
ŒEx; i �˝ Œ Ey; j �˝ ŒEz; k�

�
D

X
Ew

X
A2�2.Ex;vy;Ez; Ew/

sz.A/2S
ind.A/D�1

�
#MA

�
Œ Ew; i C j C k � nz.A/�:

The sum defining h makes sense by compactness and Lemma 10.27. Note that the
map h has degree �1.

Counting the ends of the space [
A2S

ind.A/D0

MA

we find that

0D
X
s2S

f1
˛;;ı

�
f1˛;ˇ; .ŒEx; i �˝ Œ Ey; j �I sjX˛;ˇ; /˝ ŒEz; k�I sjX˛;;ı

�
�

X
s2S

f �˛;ˇ;ı

�
ŒEx; i �˝f �0

ˇ;;ı
.Œ Ey; j �˝ ŒEz; k�I sjXˇ;;ı /I sjX˛;ˇ;ı

�
C h ı @.ŒEx; i �˝ Œ Ey; j �˝ ŒEz; k�/C @ ı h.ŒEx; i �˝ Œ Ey; j �˝ ŒEz; k�/:

(The first two terms correspond to contributions from the degenerations shown in
Figure 10. The last two terms correspond to the usual level splittings at the (four)
cylindrical ends.)

The result is immediate.
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11 Handleslides

In this section we will prove that the Floer homologies defined in Section 8 are
unchanged by handleslides among the ˇ– (and, symmetrically, the ˛–) circles. This
follows from the associativity of the triangle maps defined in Section 10 and the
calculation of a few specific moduli spaces.

Our proof is essentially the same as the proof given by Ozsváth and Szabó in [21,
Section 9]. Indeed, their calculations are done in our language, and most of the rest
of the proof follows formally from the results of Section 10. Our proof differs from
theirs in the following ways. Firstly, we try to calculate the minimum amount necessary
in order to prove handleslide invariance. We hope this will provide a slightly better
understanding of the formal properties underlying handleslide invariance, and in turn
lead to generalizations. Secondly, we give a more geometrical proof of Proposition
11.4 (roughly [21, Proposition 9.8]), using 1–gons. Thirdly, some details about the
H1.Y /=Tors–actions look slightly different in our language.

We now state the main steps, and then return later to the proofs. First, notation. Let
H D .†; Ę; Ě; z/ be a pointed Heegaard diagram. Let ˇ0i be a small Hamiltonian
perturbation of ˇi intersecting ˇi transversally in two points and disjoint from ǰ for
i ¤ j . Let ˇH

1
be a curve obtained by handlesliding ˇ1 over ˇ2 in the complement of

z and then doing a small isotopy so that ˇH
1

intersects each of ˇ1 and ˇ0
1

transversally
in two points and is disjoint from ˇi and ˇ0i for i > 1. Let ˇH

i , i > 1, be a small
Hamiltonian perturbation of ˇi , intersecting each of ˇi and ˇ0i transversally in two
points and disjoint from ǰ and ˇ0j for j ¤ i . See Figure 11. In the notation of [21,
Section 9], our ˇ0i is their ıi and our ˇH

i is their i .

There are 2g intersection points in .†; Ě; Ě0; z/. Let E�ˇ;ˇ0 D f�1; � � � ; �gg denote the
unique intersection point of maximal grading. Similarly, in .†; Ě; ĚH ; z/ (respectively
.†; Ě; Ě0; z/) there are exactly 2g intersection points. Let E�ˇ;ˇH D f�H

1
; � � � ; �H

g g

(respectively E�ˇ0;ˇH D f� 01; � � � ; �
0
gg) denote the unique intersection point of maximal

grading. See Figure 11.

A few words about SpinC –structures. We fix a SpinC –structure s on Y˛;ˇ for the rest
of the section; when we refer to Floer homology groups of Y˛;ˇ we mean the groups
computed with respect to s. Now, note that all of the 3 � 2g intersection points in
.†; Ě; Ě0/, .†; Ě; ĚH / and .†; Ě0; ĚH / represent the unique torsion SpinC –structure
on #gS1�S2 . (This follows, for instance, from Lemma 4.11.) Throughout this section,
when discussing Heegaard diagrams for #gS1 � S2 we shall implicitly work with
the torsion SpinC –structure. Later in this section, we shall consider the Heegaard
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Figure 11: Heegaard diagrams for #gS1 �S2

triple–diagrams .†; Ę; Ě; ĚH /, .†; Ę; Ě; Ě0/, and .†; Ě; ĚH ; Ě0/. It is easy to see that
X˛;ˇ;ˇH and X˛;ˇ;ˇ0 are each diffeomorphic to the complement of (a neighborhood of)
a bouquet of g circles in Y˛;ˇ � Œ0; 1�. (Compare [21, Example 8.1].) By considering
cohomology groups, say, it follows that given a SpinC –structure s on Y˛;ˇ there is a
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unique SpinC –structure on X˛;ˇ;ˇH (respectively X˛;ˇ;ˇ0 ) which restricts to s on Y˛;ˇ

and the torsion SpinC –structure on Yˇ;ˇH (respectively Yˇ;ˇ0 ). It follows that there is
a unique SpinC –structure on Xˇ;ˇH ;ˇ0 which restricts to the torsion SpinC –structure
on the three boundary components. When discussing triangle maps we shall always
assume that they are computed with respect to these choices of SpinC –structures on
X˛;ˇ;ˇH , X˛;ˇ;ˇ0 and Xˇ;ˇH ;ˇ0 . We shall, however, tend to suppress SpinC –structures
from the notation.

Lemma 11.1 (1) There is a coherent orientation system oˇ;ˇ0 for .†; Ě; Ě0; z/ with
respect to which E�ˇ;ˇ0 is a cycle in bCF and ŒE�ˇ;ˇ0 ; 0� is a cycle in CF�0 .

(2) There is a coherent orientation system oˇ;ˇH (respectively oˇ0;ˇH ) for

.†; Ě; ĚH ; z/ (respectively .†; ĚH ; Ě0; z/) with respect to which E�ˇ;ˇH (re-

spectively E�ˇH ;ˇ0 ) is a cycle in bCF and ŒE�ˇ;ˇH ; 0� (respectively ŒE�ˇH ;ˇ0 ; 0�) is
a cycle in CF�0 .

(3) The orientation systems oˇ;ˇ0 , oˇ;ˇH and oˇH ;ˇ0 above can be chosen so that for

some orientation system oˇ;ˇH ;ˇ0 for .†; Ě; ĚH ; Ě0; z/, the orientation systems
oˇ;ˇH ;ˇ0 , oˇ;ˇ0 , oˇ;ˇH and oˇH ;ˇ0 are coherent.

The proof will be given in Subsection 11.1. We shall choose, once and for all, orientation
systems as in the lemma.

The goal of this section is the following

Proposition 11.2 (Compare [21, Theorem 9.5]) Fix a SpinC –structure s on Y˛;ˇ D

Y˛;ˇH . Then the map

yF˛;ˇ;ˇH .� ˝ E�ˇ;ˇH /W bHF .†; Ę; Ě; z; s/! bHF .†; Ę; ĚH ; z; s/

is an isomorphism. The map

F�
˛;ˇ;ˇH .� ˝ ŒE�ˇ;ˇH ; 0�/W HF�.†; Ę; Ě; z; s/!HF�.†; Ę; Ě; z; s/

is an isomorphism for � 2 f1;C; ig. These isomorphisms commute with the long
exact sequences and the ZŒU �˝Zƒ

�H 1.Y /=Tors–actions.

Note we have suppressed some discussion of orientation systems from the statement
of the proposition. See Lemma 11.11 below.

The essence of the proof of Proposition 11.2 is the following two propositions:
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Proposition 11.3 (Compare [21, Lemma 9.7])

yFˇ;ˇH ;ˇ0.
E�ˇ;ˇH ˝ E�ˇH ;ˇ0/D

E�ˇ;ˇ0 :

F�0
ˇ;ˇH ;ˇ0

.ŒE�ˇ;ˇH ; 0�˝ ŒE�ˇH ;ˇ0 ; 0�/D Œ
E�ˇ;ˇ0 ; 0�:

(The proof is in Subsection 11.1.)

Proposition 11.4 (Compare [21, Proposition 9.8]) The map yF˛;ˇ;ˇ0.� ˝ E�ˇ;ˇ0/ (re-
spectively the maps F�.� ˝ ŒE�ˇ;ˇ0 ; 0� for � 2 fC;�;1g) is the isomorphism ŷ (re-
spectively ˆ� , � 2 fC;�;1g) induced by the isotopy from Ě to Ě0 as in Section
9.

(The proof is in Subsection 11.2.)

We sketch the proof of Proposition 11.2 assuming Proposition 11.4 and Proposition
11.3.

Proof of Proposition 11.2 (sketch) Observe that

yF˛;ˇH;ˇ0

�
yF˛;ˇ;ˇH .� ˝ E�ˇ;ˇH /˝ E�ˇH ;ˇ0

�
D yF˛;ˇ;ˇ0

�
� ˝ yFˇ;ˇH ;ˇ0.

E�ˇ;ˇH ˝ E�ˇH ;ˇ0/
�

D yF˛;ˇ;ˇ0.� ˝ E�ˇ;ˇ0/

D ŷˇ;ˇ0.�/

where ŷˇ;ˇ0 is the isomorphism induced by the isotopy from Ě to Ě0 . (The first
equality follows by the associativity of triangle maps (Proposition 10.29). The second
follows from Proposition 11.3. The third follows from Proposition 11.4.)

It follows that yF˛;ˇH ;ˇ0 is surjective and yF˛;ˇ;ˇH is injective. The same argument
with the roles of ˇ and ˇH exchanged shows that yF˛;ˇ;ˇH is surjective. So, yF˛;ˇ;ˇH

is an isomorphism, proving that bHF is invariant under handleslides. The proofs for
HF� , HFC and HF1 are just the same.

11.1 Proofs of Proposition 11.3 and Lemma 11.1

Proof of Proposition 11.3 With the notation of Figure 11, note that the domain
T1C� � �CTg achieves transversality, and admits a unique holomorphic representative,
so #MT1C���CTg D˙1.

For any intersection point � ¤ E�ˇ;ˇ0 of .†; Ě; Ě0; z/ and any A2�2.E�ˇ;ˇH ; E�ˇH ;ˇ0 ; �/,
either nz.A/ < 0 or ind.A/ > 0.
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Any element of �2.E�ˇ;ˇH ; E�ˇH ;ˇ0 ;
E�ˇ;ˇ0/ other than T1C � � �CTg either has ind> 0

or some negative coefficient.

It follows that for any choice of coherent orientation system,

yfˇ;ˇH ;ˇ0.
E�ˇ;ˇH ˝ E�ˇH ;ˇ0/D˙

E�ˇ;ˇ0

f �0
ˇ;ˇH ;ˇ0

.ŒE�ˇ;ˇH ; 0�˝ ŒE�ˇH ;ˇ0 ; 0/D˙Œ
E�ˇ;ˇ0 ; 0�

Proof of Lemma 11.1 Firstly, note that Part (2), Proposition 11.3, Lemma 10.10 and
Lemma 10.18 imply Parts (1) and (3). So, it remains only to prove Part (2)

Label the components of † n .ˇ [ ˇH / by DH
1
; � � � ;DH

g ;E
H
1
; � � � ;EH

1
and FH ,

and the points in ˇi \ˇ
H
i by �H

i and �H
i as in Figure 11.

Observe that

gr
�
E�ˇ;ˇH ; f�H

i1
; � � � ; �H

ik
; �H

jkC1
; � � � ; �H

jg
g

�
D g� k:

It follows from this and positivity of domains that the only homology classes which could
contribute to y@E�ˇ;ˇH or @�0ŒE�ˇ;ˇH ; 0� are DH

1
; � � � ;DH

g ;E
H
2
; � � � ;EH

g ;E
H
1
CEH

2

and EH
1
CDH

2
.

By Proposition 3.9 and Lemma 3.10, a generic perturbation of the ˛– and ˇ–circles
achieves transversality for all of the moduli spaces under consideration. It follows from
the Riemann mapping theorem that there is a unique equivalence class of holomorphic

curves in each of cMDH
1 ; � � � ; cMDH

g and cMEH
2 ; � � � ; cMEH

g .

We will show that for a generic perturbation of the ˛– and ˇ–circles, one of cMEH
1
CEH

2

and cMEH
1
CDH

1 has one element and the other is empty. To this end, we use the
following

Sublemma 11.5 Let A be an annulus with boundary circles C1 and C2 and marked
points xi , yi on Ci . Define the conformal angle between x1 and y1 (respectively x2

and y2 ) as follows. The annulus A is conformally equivalent to f1� jzj �Rg � C for
some R. We can arrange that the equivalence takes x1 (respectively x2 ) to 1. Then
the conformal angle between x1 and y1 (respectively x2 and y2 ) as the image of y1

(respectively y2 ) in S1 under the equivalence. Then:

(1) The conformal angle is well–defined.

(2) There is a holomorphic involution of A exchanging x1 and x2 , and y1 and y2 ,
if and only if the conformal angle between x1 and y1 equals the conformal angle
between x2 and y2 .
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Proof It is well–known that every conformal automorphism of the annulus A0D f1�

jzj � Rg � C is either of the form z 7! ei�z or z 7! Rei�

z
. (Consider the universal

cover.) Both parts of the claim are immediate from this observation.

Note that the condition in Part (2) of the sublemma is the same as the condition that
there be a holomorphic 2–fold branched cover cW A!D such that c.x1/D c.x2/D�i

and c.y1/D c.y2/D i .

Now, if uW S!W is an element of cMEH
1
CEH

2 then �†ıu is an analytic isomorphism
on the interior of S . It follows that S can be obtained by cutting EH

1
CEH

2
along

ˇH
2

. Let x1 denote the preimage of �H
1

, y1 the preimage of �H
1

and let x2 and y2

denote the two preimages of �H
2

. (Which preimage should be labeled x2 and which y2

is clear.) Then elements of cMEH
1
CEH

2 correspond to choices of cuts of EH
1
[EH

2

along ˇH
2

starting at �H
2

for which there are holomorphic involutions exchanging x1

and x2 , and y1 and y2 . A similar remark applies to cMEH
1
CDH

2 with ˇ2 in place of
ˇH

2
.

For p 2 ˇH
2

, let aH .p/ denote the ratio of the conformal angle from x2 to y2 to the

conformal angle from x1 to y1 , for the annulus obtained by cutting EH
1
CEH

2
along

ˇH
2

to the point p . Let a.p/ denote the same with EH
1
CDH

2
in place of EH

1
[EH

2

and ˇ2 in place of ˇH
2

.

Observe that:

(1) a.p/D 1 (respectively aH .p/D 1) if and only if cutting to p gives an element

of cMEH
1
CDH

2 (respectively cMEH
1
CEH

2 ).

(2) a.�H
2
/D aH .�H

2
/.

(3) a and aH are monotone as p travels from �H
2

to �H
2

.

(4) a! 0 as p! �H
2

. aH !1 as p! �H
2

.

The first two claims are obvious. The third is clear. The fourth follows by considering
the Gromov limit as p! �H

2
.

For a generic choice of ˛– and ˇ–circles, a.�H
2
/¤ 1. It follows that one of a or aH

assumes the value 1 once, and the other never assumes the value 1. Hence one ofcMEH
1
CDH

2 or cMEH
1
CEH

2 has a unique element and the other is empty.

Now, specifying a coherent orientation system for .†; Ě; ĚH ; z/ is equivalent to speci-
fying orientations arbitrarily over DH

1
; � � � ;DH

g ;E
H
2
; � � � ;EH

g ; and either EH
1
CDH

2
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1–gons here.

Noncylindrical cobordism
induces ˆ

Stretch the
neck here

Triangle map here.

.˛; ˇ0/

.˛; ˇ/

Figure 12: Sketch of proof of Proposition 11.4

or EH
1
C EH

2
. Choose the orientations such that # cMDH

i
D 1 (i D 1; � � � ;g ),

# cMEH
i
D�1 (i D 2; � � � ;g ) and # cMEH

1
CDH

2
C # cMEH

1
CEH

2 =-1. Then, �ˇ;ˇH is
a cycle in bHF and Œ�ˇ;ˇH ; 0� is a cycle in HF�0 .

11.2 Proof of Proposition 11.4

Our proof, illustrated schematically in Figure 12, proceeds by a neck–stretching
argument. We will show that the moduli spaces used to define the chain map ˆ

corresponding to the isotopy from Ě to Ě0 are the products of the moduli spaces used
to define F˛;ˇ;ˇ0 and a moduli space of 1–gons. Before showing this, we need to
understand the moduli space of 1–gons.

Fix a Hamiltonian isotopy ˇt from ˇ to ˇ0 , agreeing with ˇ for t � 0 and with
ˇ0 for t � 0. Let H denote the upper half plane in C. The isotopy ˇt defines a
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z1

ˇ1 ˇ2 ˇ02

1

x1 x2

y2 z2

T1
T2

z

ˇ0
1

2
y1

Figure 13: Case g D 2

g–tuple of Lagrangian cylinders Cˇ in †� @H � †�H DW Wˇ . We will consider
maps .S; @S/! .Wˇ;Cˇ/, with one component of @S mapped to each cylinder in Cˇ .
Such maps will converge to some I–chord collection Ex D fxig � ˇ \ˇ

0 at 12 @H.
Let �2.Ex/ denote the collection of homology classes of such maps.

Lemma 11.6 The map nzW �2.Ex/ ! Z given by nz.A/ D # .A\ .H� fzg// is an
isomorphism.

Proof The ˇ–circles are homologically linearly independent.

For a given almost complex structure Jˇ;ˇ0 on Wˇ;ˇ0 we work with complex structures
J on Wˇ satisfying the obvious analogs of (J 01)–(J 04) from Subsection 10.2. For
A 2 �2.Ex/, let MA denote the moduli space of embedded J –holomorphic curves in
homology class A.

Lemma 11.7 For A 2 �2.Ex/, ind.A/D 2nz.A/.

Proof Let 1; � � � ; g be curves in † such that .†; Ě; E / and .†; Ě0; E / are both the
standard genus g Heegaard diagram for S3 . Let Ey be the intersection point between
Ě and E , and Ez the intersection point between Ě0 and E . Let Ti be a small triangle
connecting Ex , Ey and Ez , as in Figure 13.

Then, T1C� � �CTg 2�2.Ex; Ey; Ez/ has ind.T1C� � �CTg/D 0. Further, for A2�2.Ex/,
ACT1C� � �CTg 2�2. Ey; Ez/ has ind.ACT1C� � �CTg/D 2nz.A/. The result follows
by additivity of the index under gluings.

Lemma 11.8 There is a choice of Cˇ such that for any split complex structure on Wˇ ,
if Ex ¤ E�ˇ;ˇ0 then for A 2 �2.Ex/ with ind.A/D 2nz.A/D 0, MA D∅.
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ˇ0i

� D 0

� D 2�

� D �

r D 0

ˇi

Figure 14: A Hamiltonian isotopy of ˇi

Proof Note that if one understands symplectic field theory in the Morse–Bott case
this is easy to prove by taking ˇ0! ˇ . To avoid introducing this machinery we will
instead give a somewhat perturbed argument.

Let t denote the first coordinate under the identification HD .�1;1/� Œ0;1/. We
assume that for t 2 Œ�1=4; 1=4�, Cˇ;ˇ0 is the graph of an exact Hamiltonian isotopy
of the following form. Fix ı with 0< ı < � . Identify a neighborhood in † of each
ˇi with S1 � .�2ı; 2ı/. Let �i 2 Œ0; 2�/ and ri 2 .�ı; ı/ be coordinates on the i th

neighborhood. Fix a bump function b.�/ on the circle which is ı on Œı; � � ı�, 0 on
the interval Œ�C ı; 2� � ı�, and monotone on Œ2� � ı; ı� and Œ� � ı; �C ı�. For some
fixed collection of constants Ci , i D 1; � � � ;g , consider the Hamiltonian H given by
CiC� .sin.�i/C b.�/ri/ on the i th neighborhood, and extended arbitrarily outside the
neighborhoods of the ˇi . Here, we choose � small enough that for each i the graph
with respect to ˇi of H is contained in the chosen neighborhood of ˇi up to time 1.
Then for each i , ˇ0i is the time 1 graph with respect to ˇi of the Hamiltonian isotopy
specified by H . Thus, the Hamiltonian isotopy of the ˇ–curves looks like Figure 14.

Let A be as in the statement of the proposition and uW S ! Wˇ be a holomorphic
representative of A. Note that S is a disjoint union of g disks, and �† ı u.@S/

is a collection of g pairwise disjoint simple closed curves in
S
�2S1 C� . Now, by

considering orientations and the path taken by �† ıuj@S , we see that u can not exist
unless Ex D E�ˇ;ˇ0 . See Figure 15. This proves the lemma.

Proof of Proposition 11.4 We will write the proof in the notation for HF1 , but the
proofs for the other theories are just the same.
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ˇ0iˇi

wCi

w�i

Figure 15: Two possible paths �† ıuj@S (shown in bold)

As usual, we let t denote the R–coordinate on W . Let C˛ D ˛�f1g�R�W , and let
Cˇ;ˇ0 be a g–tuple of Lagrangian cylinders which agree with ˇ � f0g �R for t < �1

4

and with ˇ 0 � f0g �R for t > 1
4

.

For a given complex structure J on W , let JR denote the complex structure obtained
from J by inserting a neck of length R along the hypersurface †�fjzj D 1=2;<.z/ >

0g �†� Œ0; 1��R. (See Subsection A.2 for a discussion of the splitting process.)

Let ˆRW CF1.†; Ę; Ě; z/! CF1.†; Ę; Eı; z/ be the map defined in Section 9, with
respect to the complex structure JR . We showed in Section 9 that ˆR is an isomorphism
for each .J;R/ such that JR achieves transversality.

Taking the limit R!1, W splits into two spaces. One is the space we denoted
W˛;ˇ;ˇ0 in Section 10. The other is a copy of Wˇ .

Choose J so that:

� The complex structure J˛;ˇ;ˇ0 induced on W˛;ˇ;ˇ0 satisfies (J 02) (the other
conditions in the triangles section are automatic).
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� The complex structure J˛;ˇ;ˇ0 and the complex structure Jˇ induced on Wˇ

achieve transversality for curves of index 0 (and hence so does JR for large R).

For such a J it follows from Proposition A.2 that, for R large,

ˆ1R .ŒEx; i �/D
X
Ez

X
A2�2.Ex/

B2�2.Ex; Ey;Ez/
ind.ACB/D0

#
�
MA

�
#
�
MB

�
Œ Ey; i � nz.ACB/�

where the first sum is over all intersection points between Ě and Ě0 .

By additivity of the index, #
�
MA

�
#
�
MB

�
D 0 unless both A and B have index 0.

So, by Lemma 11.8, it follows that

ˆ1R D .#M.E�ˇ;ˇ0// �F˛;ˇ;ı.� ˝ �ˇ;ˇ0/

where M.E�ˇ;ˇ0/ denotes the index 0 holomorphic maps in Wˇ asymptotic to E�ˇ;ˇ0 .

It only remains to understand M.E�ˇ;ˇ0/. We do this by an indirect argument. Sup-
pose that .†; Ę; Ě/ is the standard Heegaard diagram for S3 . Then bCF .†; Ę; Ě/D
bCF .†; Ę; Ě0/DZ and the boundary maps are trivial. So, for ˆR to be an isomorphism
it must be multiplication by ˙1. Further, by explicitly counting triangles (there is only
one) we know that F˛;ˇ;ˇ0 is the identity map. It follows that #M.E�ˇ;ˇ0/D˙1. This
finishes the proof.

11.3 Proof of Proposition 11.2

Lemma 11.9 In the pointed Heegaard quadruple–diagram .†; Ę; Ě; ĚH ; Ě0; z/, both
ıH 1.Yˇ;ˇ0/ and ıH 1.Y˛;ˇH / are the trivial subgroup of H 2.X˛;ˇ;ˇH ;ˇ0 ; @X˛;ˇ;ˇH ;ˇ0/.

Proof (Compare the proof of [21, Lemma 9.6])

The following diagram commutes:
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H 2.X˛;ˇ;ˇH ;ˇ0 ; @X˛;ˇ;ˇH ;ˇ0/
oo Š
P:D:

// H2.X˛;ˇ;ˇH ;ˇ0/ oo
Š // ker

0@0@ H1.˛/˚H1.ˇ/

˚

H1.ˇ
H /˚H1.ˇ

0/

1A!H1.†/

1A

H 1.@X˛;ˇ;ˇH ;ˇ0/

OO

oo Š

P:D:

// H2.@X˛;ˇ;ˇH ;ˇ0/

OO

oo Š //

0BBBBBBBBBB@

ker .H1.˛/˚H1.ˇ/!H1.†//

˚

ker
�
H1.ˇ/˚H1.ˇ

H /!H1.†/
�

˚

ker
�
H1.ˇ

H /˚H1.ˇ
0/!H1.†/

�
˚

ker
�
H1.ˇ

0/˚H1.˛/!H1.†/
�

1CCCCCCCCCCA

OOOO

It is clear that the right hand vertical map is surjective. So, from the long exact sequence
of the pair .X˛;ˇ;ˇH ;ˇ0 ; @X˛;ˇ;ˇH ;ˇ0/, the map H2.X˛;ˇ;ˇH ;ˇ0/!H1.@X˛;ˇ;ˇH ;ˇ0/Š

H 2.@X˛;ˇ;ˇH ;ˇ0/ is injective. But the image of ıH 1.Yˇ;ˇ0/ or ıH 1.Y˛;ˇH / in the
latter group is obviously 0.

Corollary 11.10 (Compare [21, Lemma 9.6])

yF˛;ˇH ;ˇ0

�
yF˛;ˇ;ˇH .� ˝ �ˇ;ˇH /˝ �ˇH ;ˇ0

�
D yF˛;ˇ;ˇ0

�
� ˝ yFˇ;ˇH ;ˇ0.�ˇ;ˇH ˝ �ˇH ;ˇ0/

�
:

Similar statements hold for F1 , FC and F� with Œ�; 0� (appropriately subscripted)
in place of � .

Proof From the previous lemma, the ıH 1.Yˇ;ˇ0/C ıH
1.Y˛;ˇH /–orbit of SpinC –

structures which restrict to s has just one element. Further, strong admissibility
for the quadruple is equivalent to strong admissibility of the six Heegaard diagrams
.†; Ę; Ě; z/; � � � ; .†; ĚH ; Ě0; z/, which in turn follows from admissibility for
.†; Ę; Ě; z/. So, the result follows from Proposition 10.29.

Lemma 11.11 Let o˛;ˇ be a coherent orientation system for .†; Ę; Ě; z/. Then there
is a coherent orientation system for the Heegaard quadruple–diagram .†; Ę; Ě; E ; Eı; z/

extending o˛;ˇ and the orientation systems constructed in Proposition 11.3.

(In fact, it is not hard to see that the coherent orientation system for the Heegaard
quadruple–diagram is essentially unique (compare Proposition 8.3).)

Proof The orientation systems o˛;ˇ and oˇ;ˇH extend to orientation systems o˛;ˇ;ˇH

and o˛;ˇH by Lemma 10.10. For Ě0 close to Ě, o˛;ˇ induces o˛;ˇ0 , which extends to
an orientation system o˛;ˇ0;ˇH . It is clear that we can perform the extensions so that
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the induced orientations oˇ0;ˇH and oˇ;ˇH are consistent with oˇ;ˇH ;ˇ0 . The result
follows.

Lemma 11.12 The map F1
˛;ˇ;ˇH .�˝ Œ�ˇ;ˇH ; 0�/ commutes with the actions of U and

H1.Y˛;ˇ/=Tors . Similar statements hold for FC , F� and yF .

Proof The fact that F˛;ˇ;ˇH .� ˝ ŒE�ˇ;ˇH ; 0�/ commutes with the U –action is obvious.
We check that it commutes with the H1=Tors–action.

Fix a homology class � 2H1.Y /. Choose a knot K ,!† representing � and meeting
˛ transversely. Let M1 denote the space of Riemann surfaces with 2g boundary
punctures (as usual) and one additional marked point p on the boundary. We give yet
another definition of the map A� for a given .†; Ę; Ě; z/. Given a homology class
B 2 �2.Ex; Ey/, let MB

K
denote the moduli space consisting of holomorphic maps from

surfaces S 2M1 to W˛;ˇ in the homology class B mapping p to K � f1g �R, andcMB

K DMB
K
=R. (Note that this definition is slightly different in form from the one

we used to prove Proposition 8.6 and Lemma 9.6. This definition is convenient here,
but either would work.)

Now, for A 2 �2.Ex; Ey; Ez/, let MA
K

denote the space of holomorphic maps from
surfaces S 2M1 to W˛;ˇ;ˇH in the homology class A mapping p to K�e1 . (Recall
that e1 is the edge of the triangle T corresponding to the ˛–circles.) Define a map
H W CF1.Y˛;ˇ/˝CF1.Yˇ;ˇH /! CF1.Y˛;ˇH / by

H.ŒEx; i �˝ Œ Ey; j �/D
X
Ez

X
A2�2.Ex; Ey;Ez/

ind.A/D0

#
�
MA

K

�
ŒEz; i C j � nz.A/�:

For A 2 �2.Ex; Ey; Ez/, ind.A/D 1, consider the space MA
K

. This is a one–dimensional
manifold the ends of which are height two holomorphic buildings with an index 0

holomorphic curve in W˛;ˇ;ˇH and an index 1 holomorphic curve (defined up to
translation) in one of W˛;ˇ , Wˇ;ˇH or W˛;ˇH . For each of these buildings, either

(1) p is mapped to W˛;ˇ;ˇH or

(2) p is mapped to W˛;ˇ or

(3) p is mapped to W˛;ˇH .

Summing the number of ends over the different choices of A with nz.A/ D k we
obtain, in each case respectively,

(1) the coefficient of ŒEz; i C j � k� in .@ ıH CH ı @/.ŒEx; i �; Œ Ey; j �/
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(2) the coefficient of ŒEz; i C j � k� in f1
˛;ˇ;ˇH .A�.ŒEx; i �/; Œ Ey; j �/ or

(3) the coefficient of ŒEz; i C j � k� in A�.f
1

˛;ˇ;ˇH .ŒEx; i �; Œ Ey; j �//.

This proves that on the level of homology the f1
˛;ˇ;ˇH commute with A� . As usual,

the result for HFC and HF�0 follow; the result for bHF is proved in an analogous
way.

Proof of Proposition 11.2 Having proved Corollary 11.10, Proposition 11.4 and
Proposition 11.3, we are completely justified in writing

yF˛;ˇH;ˇ0

�
yF˛;ˇ;ˇH.� ˝ E�ˇ;ˇH /˝ E�ˇH ;ˇ0

�
D yF˛;ˇ;ˇ0

�
� ˝ yFˇ;ˇH ;ˇ0.

E�ˇ;ˇH ˝ E�ˇH ;ˇ0/
�

D yF˛;ˇ;ˇ0.� ˝ E�ˇ;ˇ0/

D ŷˇ;ˇ0.�/

where ŷˇ;ˇ0 is the isomorphism induced by the isotopy from Ě to Ě0 .

It follows that yF˛;ˇH ;ˇ0 is surjective and yF˛;ˇ;ˇH is injective. The same argument with
the roles of ˇ and ˇH exchanged shows that yF˛;ˇ;ˇH is surjective. It then follows
from Lemma 11.12, that yF˛;ˇ;ˇH is an isomorphism of ZŒU �˝Z ƒ

�H 1.Y /=Tors–
modules, proving that bHF is invariant under handleslides. The proofs for HF� ,
HFC and HF1 are just the same.

12 Stabilization

We show that the homology groups defined in Section 8 are invariant under stabilization,
or equivalently under taking connected sum of the Heegaard diagram .†; Ę; Ě; z/with
the standard Heegaard diagram for S3 .

Because of handleslide invariance, it is enough to prove the result if we take the
connected sum at the point z. Let .†; Ę; Ě; z/ denote the original (pointed) Heegaard
diagram, .T ; ˛gC1; ˇgC1/ the standard Heegaard diagram for S3 , and .†0; Ę0; Ě0; z0/
a Heegaard diagram obtained by taking a connect sum near z.

The result for the hat theories is quite easy. There is an identification between inter-
section points in † and intersection points in †0 , identifying an intersection point
Ex D fx1; � � � ;xgg in † with the intersection point Ex0 D fx1; � � � ;xg; ˛gC1\ˇgC1g.
There is then an obvious identification of �†

2
.Ex; Ey/ with �†

0

2
.Ex0; Ey0/. Fix a homology
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class A 2 �†
2
.Ex; Ey/ with nz.A/D 0. There is an inclusion map cMA

† ,!
cMA

†0 which

takes any holomorphic curve u 2 cMA

† to the disjoint union

u
a�

.˛gC1\ˇgC1/� Œ0; 1��R
�
:

This map is clearly onto, and hence a homeomorphism. With these identifications, the
chain complex bCF for the stabilized diagram is isomorphic to the chain complexes
for the unstabilized one.

The other theories require more work.

Our strategy is to insert a longer and longer neck between the original Heegaard
diagram † and the torus T that has been spliced in. We will show that in the limit
.neck length/!1, the moduli spaces of curves we consider, correctly defined, are
naturally identified with the moduli spaces for .†; Ę; Ě; z/. A gluing result then shows
that the moduli spaces in the limit can be identified with those of large neck length.
Since the Floer homologies are independent of complex structure, the invariance under
stabilization will then follow.

Actually, although everything we say in this section is correct, it is somewhat dishonest:
we leave most of the work for Proposition A.3 in the appendix. In particular, because
of transversality issues, to prove the necessary gluing result we seem to need to work in
a more harshly perturbed setting than we use in this section. Much of the work of the
present section is redone in the proof of Proposition A.3 in the more general context.
For example, we prove there a stronger version of the compactness result Proposition
12.4.

I have chosen to write this section in this slightly dishonest way for two reasons.
Firstly, perhaps someone else will see a simpler way to correct the dishonesty (see the
discussion at the beginning of the proof of Proposition 12.4). Secondly, as written this
section is quite explicit, so one can actually see what is going on in the stabilization
proof.

Returning to mathematics, observe that from the formula for the index in Section 4
we know that for a homology class A 2 �†

2
.Ex; Ey/ corresponding to A0 2 �†

0

2
.Ex; Ey/,

ind.A/D ind.A0/. Since we only consider curves with index 1 when computing Floer
homologies, we shall generally restrict to curves of index 1. This allows us to keep
our definitions simpler and our theorems true.

We make precise what we mean by stretching the neck. Fix complex structures j† on †
and jT on T . Fix a point z0 2 T n .˛gC1[ˇgC1/. Choose small disks D† �D0

†
3 z

and DT �D0T 3 z0 so that D† nD0
†

is conformally identified with S1 � Œ�1; 0� and

Geometry & Topology, Volume 10 (2006)



1050 Robert Lipshitz

DT nD0T is conformally identified with S1 � Œ0; 1�. Here, @D0
†

is identified with
S1�f�1g and @D0T is identified with S1�f1g. (The complex structure on a cylinder
S1 � Œa; b� is given by identifying the cylinder with ferCi� 2 Cja� r � bg under the
identification .�; t/ 7! etCi� .)

Let jR be the complex structure on

†0RD .†nD
0
†/

[
D†nD

0
†
�S1�Œ�R�1;�R�

S1
�Œ�R�1;RC1�

[
S1�ŒR;RC1��@DT

.T nDT /

induced by the complex structures on †, T and S1 � Œ�R� 1;RC 1�, and !R the
area form. We refer to S1 � Œ�R� 1;RC 1� as the neck, and denote it NR . Notice
that in the limit R!1, jR degenerates to the complex structure j1 D j† _ jT on
†_ T .

Fix a complex structure J on W 0
0
D†0

0
� Œ0; 1��R satisfying (J1)–(J5), which is split

(ie, j0 � jD ) near N0 . Let JR be the complex structure on W 0
R
D †0

R
� Œ0; 1��R

which agrees with J outside NR � Œ0; 1��R and with jR � jD on NR � Œ0; 1��R.
Note that JR converges to a complex structure J1 on W 01 D .†_ T /� Œ0; 1��R.
The space W D†� Œ0; 1��R lies inside W 01 in an obvious way. We choose J so that

(1) There is a collection of Ri ! 1 such that JRi
achieves transversality for

holomorphic curves in W 0
Ri

satisfying (M0)–(M6).

(2) The restriction of J1 to W achieves transversality for holomorphic curves in
W satisfying (M0)–(M6).

Since by choosing J appropriately we can end up with any J1 which is split near z,
we can always find such a J .

For a generic choice of z and for any holomorphic curve u with ind.u/ D 1,
�D

�
.�† ıu/�1.z/

�
consists of nz.u/ distinct points. We choose z satisfying this

condition.

The holomorphic curves that we consider in W 01 are holomorphic twin towers. That
is, fix a homology class A 2 �†

2
.Ex; Ey/Š �†

0

2
.Ex0; Ey0/.

By a holomorphic twin tower u in the homology class A we mean a collection of
holomorphic maps .u1; � � � ;un; v1; � � � ; vn/ where u1; � � � ;unW S1; � � � ;Sn!W and
v1; � � � ; vnW S

0
1
; � � � ;S 0n! T 2 � Œ0; 1��R such that:

(1) The u1; � � � ;un are holomorphic curves in W satisfying (M0)–(M6).

(2) The S 0
1
; � � � ;S 0n are all closed surfaces.
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(3) There is a sequence of intersection points Ex1; � � � ; ExnC1 such that ui connects
Exi to ExiC1 .

(4) Œu1�C� � �C Œun�DA. Here, Œui � is the class in �2.Exi ; ExiC1/ represented by ui .

(5) The v1; � � � ; vn are holomorphic curves in T �Œ0; 1��R each connecting ˛gC1\

ˇgC1 to itself, satisfying (M0), (M1), (M3) and (M5)

(6) As sets, �D

�
.�† ıui/

�1.z/
�
D �D

�
.�† ı vi/

�1.z0/
�

for each i . (This is the
matching condition on the horizontal levels.)

Remark If we had not restricted to holomorphic curves of index 1 and chosen z

generically, we would need a slightly more complicated definition of holomorphic
twin towers. In particular, we would need to allow pieces of the curves to live in the
“horizontal” cylinders S1 �R� Œ0; 1��R.

Lemma 12.1 If ind.A/D 1 then any holomorphic twin tower in the homology class
A has height one (ie, in the previous definition, nD 1).

Proof This is trivial: the index adds between stories.

Lemma 12.2 If .u1; v1/ is a holomorphic twin tower in a homology class of index 1
then v1 consists of a trivial cylinder ˛gC1\ˇgC1 � Œ0; 1��R and nz.u1/ horizontal
tori, T 2 ��D

�
.�† ıu1/

�1.z/
�
.

Proof The restriction of �D ı v1 to the components on which it is nonconstant is
a 1–fold covering of the disk. Hence, it must be a disk itself. It follows easily that
the restriction of �T ı v1 to this component must be constant. Since the condition on
z guarantees that the set .�D ı v1/

�
.�T ı v1/

�1.z0/
�

consists of nz.Œu1�/D nz.Œv1�/

distinct points, each component on which �D ı v1 is constant must be a copy of T 2 ,
and the restriction of �T ı v1 to each component must be a diffeomorphism.

Corollary 12.3 The moduli space of holomorphic twin towers in a given homology

class A 2 �†
2
.Ex; Ey/ with ind.A/D 1 is naturally identified with cMA

W .

Here, cMA

W denotes the moduli space of holomorphic curves in the homology class A

in W .

We now need to identify the space of holomorphic twin towers with cMA

W 0
R

for R large
enough. As usual, doing so requires two steps: compactness and gluing. To avoid work
we torture the compactness argument slightly.
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RC†
LCT

CT

C† C

Figure 16: Interpolating Lagrangian cylinders

Proposition 12.4 Fix a sequence fuRg of JR –holomorphic curves in W 0 with index
1. Then for z chosen generically, there is a subsequence of fuRg which converges to a
holomorphic twin tower (of height one).

Proof The proof is in three stages. First we use the fact that �D ıuR is holomorphic
to extract the vertical level structure and conformal structure on the limit surface. Then
we cut † into two overlapping regions, and view the uR as maps into each of the two
regions with Lagrangian boundary conditions. This allows us to extract a convergent
subsequence of maps to W 0 .

By classical symplectic field theory [2, Theorem 10.1], we can replace uR by a
subsequence so that �D ıuR converges to a holomorphic building, which we denote
�D ıu1 (although u1 does not yet make sense on its own). We can also assume that
for all R the source of uR is some fixed topological manifold S . Let S1 denote the
source of �D ıu1 .

Let C D S1 � f0g � †0
R

denote the curve in †0 along which we are splitting. For
convenience, let us say that † “lies to the left of C ” while T “lies to the right of
C .” Let C† D S1 � f�R� 1g �†0

R
. Let CT D S1 � f�R� 1C �g �†0

R
for some

� < RC 1. Then, C† and CT lie to the left of C , and CT lies to the right of C† .
Note that the complex structures JR are split to the right of C† . We will choose �
large enough that CT lies close to C in a sense we will specify soon. Let RC† denote
the region to the right of C† and LCT denote the region to the left of CT . See Figure
16.

Let fCk ;A`g denote the collection of disjoint circles and arcs in S along which the
complex structure degenerates.

Let SRC† ;R D .�† ıuR/
�1.RC†/. Since JR is split over RC† ,

�† ıuRW
�
SRC† ;R; @SRC† ;R

�
!
�
RC†;C† [˛gC1[ˇgC1

�
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is a holomorphic map. So, again by classical symplectic field theory [2, Theorem
10.3], taking a further subsequence we can assume that �† ıuRjSRC†;R

converges to
a holomorphic building. We denote this building by �† ıu1 , with the understanding
that it is, so far, only defined over SRC† ;1 .

It now makes sense to talk about the circles in fCkg which correspond to the degenera-
tion along C – ie, the level splitting of �† ıuR . Let fpj g denote the corresponding
points in S1 .

Since the arcs and circles fCk ;A`g are disjoint, we can choose CT close enough to C

(ie, � large enough) that .�† ıu/�1.CT / is disjoint from all the Ck and A` . We can
also choose � so that �† ıu1 is transverse to CT . We do so choose it. It follows that
for R large enough �† ıuR is transverse to CT .

Now, observe that each curve in .�D ı uR/.�† ı uR/
�1.CT / converges in the C1–

topology as R!1. Let BRD .�DıuR/.�† ıuR/
�1.CT /. Let B1D limR!1BR .

Let LCT denote the portion of †0 to the left of CT . View Œ0; 1� as lying inside
S1D Œ0; 2�=.0� 2/, say. We can, thus, consider �DıuR as a map to S1�R . Consider
the symplectic 4–manifold with boundary LCT �S1 �R, given the obvious (split)
symplectic form. For each R, CT �BR is an immersed Lagrangian submanifold, and
these submanifolds C1 converge to CT �B1 .

So, applying the compactness theorem [2, Theorem 10.1] for symplectic field theory to
uRjSLCT ;R

, viewed as holomorphic curves with dynamic Lagrangian boundary condi-
tions, we can extract a subsequence converging to a holomorphic building u1jSLCT ;1

defined over SLCT ;1 .

Let qj D �D ıu1.pj /. There are nz.ŒuR �/ points qj , all of them distinct. It follows
that in the (horizontal) cylindrical regions S1�R� Œ0; 1��R connecting †� Œ0; 1��R

and T 2 � Œ0; 1��R, the building u1jSLCT ;1
consists of trivial cylinders, so we can

ignore these regions.

The holomorphic building u1jSLCT ;1
must agree with .�† ıu1/� .�D ıu1/ where

both are defined, so we can patch the two together to obtain a holomorphic twin tower
to which (the subsequence of) the sequence uR converges.

Proposition 12.5 The Floer homologies HF1 , HFC and HF� are invariant under
stabilization.

Proof This follows from the previous proposition and Proposition A.3. That is, for
given intersection points the space of holomorphic twin towers (of height one, with index
1) connecting Ex0 to Ey0 is identified with cM.Ex; Ey/. The admissibility criteria ensure
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that only finitely many homology classes matter. Thus, by the previous proposition
and Proposition A.3, we can use the space of holomorphic twin towers to compute the
boundary maps in W 0 .

Using our original definition of the action of H1.Y /=Tors it is immediate that the
two actions are the same. Obviously the U –actions correspond.

Proof of Theorem 1. By Proposition 5.6, there is an admissible Heegaard diagram for
.Y; s/, and any two admissible Heegaard diagrams can be connected by a sequence of
pointed Heegaard moves, ie, Heegaard moves supported in the complement of z. Thus,
the theorem is immediate from Proposition 9.1, Proposition 11.2, and Proposition 12.5.

13 Comparison with Heegaard Floer homology

In this section we prove the equivalence of the theory described in this paper with
Heegaard Floer homology as originally defined by Ozsváth and Szabó in [21]. For
notational convenience, we will phrase the argument in terms of HF1 , but the same
proof works for all four theories. This section assumes familiarity with [21].

By CFours we mean the chain complexes defined in this paper; by CFtheirs we mean
the chain complex defined in [21]. We extend this notation functorially to HFours/theirs ,
�ours/theirs

2
, etc. When we have successfully identified two corresponding objects we

drop the decorations “ours” or “theirs”.

Observe that there is an identification between our intersection points and those of [21],
and so between the generators of CF1ours and the generators of CF1theirs . Similarly, for
any intersection points Ex and Ey , �ours

2
.Ex; Ey/ and � theirs

2
.Ex; Ey/ are naturally identified,

by considering domains for example.

Now we deal with a simple case. Suppose that the Heegaard diagram .†; Ę; Ě; z/ is such
that the split complex structure j†�jD achieves transversality for all homology classes
of index 1 in our theory and such that Symg.j†/ achieves transversality for domains of
index 1 in their theory. Let uW S!W be a holomorphic curve with respect to j†�jD .
Define a map u0W D! Symg.†/ as follows. For p 2D, let .�D ıu/�1.p/ denote the
g preimages of p , listed with multiplicities. Then u0.p/D �† ıu

�
.�D ıu/�1.p/

�
is

a point in Symg.†/. It is easy to check that u being .j† � jD/–holomorphic implies
that u0 is holomorphic with respect to Symg.j†/. So, for any A 2 �2.Ex; Ey/ we have

a map ˆW cMA

ours!
cMA

theirs , which is clearly injective.

In [21, Lemma 3.6], Ozsváth and Szabó construct an inverse for ˆ as follows. Fix
a Symg.j†/–holomorphic map u0W D! Symg.†/. Let .g� 1/!uDW .g� 1/!S ! D
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and .g � 1/!u†W .g � 1/!S ! †g denote the pullback via u of the branched cover
†g! Symg.†/, as in the following diagram:

.g� 1/!S
.g�1/!u† //

.g�1/!uD

��

†g

p

��
D

u0 // Symg.†/

Since we are in the holomorphic category, pullbacks of branched covering maps are
well–defined.

The symmetric group Sg acts on †g by permuting the factors, and hence acts on
.g � 1/!S . The maps .g � 1/!u† and .g � 1/!uD are Sg –equivariant. Let Sg�1

denote the permutations fixing the first factor in †g D † �†g�1 . Let � W †g !

† denote projection onto the first factor. Let S D .g � 1/!S=Sg�1 . Let u† D

.� ı .g� 1/!u/ =Sg�1W S!† denote the map induced by � ı.g�1/!uW .g�1/!S!

†, and uD D ..g� 1/!uD/ =Sg�1W S ! D the map induced by .g � 1/!uD . Then,
uD u† �uD is a holomorphic map S !W . Define ˆ�1.u0/D u.

Remark In the context of multivalued sections of Lefschetz pencils, the maps ˆ and
ˆ�1 are called the tautological correspondence by M Usher [28], who attributes the
term to I Smith. We will sometimes use this terminology below.

We check that ˆıˆ�1 is the identity map. It suffices to show that ˆıˆ�1.u0/ agrees
with u0 away from the diagonal. Commutativity of the diagram

S
u† //

uD

��

†

.g� 1/!S
.g�1/!u† //

.g�1/!uD

��

ccGGGGGGGGGGGGG

†g

p

��

�

eeLLLLLLLLLLLLLLLL

D
u0 // Symg.†/

shows that ˆıˆ�1.u0/.x/, viewed as a set of g distinct points in †, agrees with the set
� ıp�1.u0.x//. (Here, it is important that elements of sets do not have multiplicities.)
But this set is exactly u0.x/.
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Observe that both ˆ and ˆ�1 are continuous. So, since ˆ was injective, we have
proved that ˆ is a homeomorphism. This is enough to prove the equivalence of
the two theories with Z=2–coefficients, under our assumption that j† � jD achieves
transversality. We will deal with the issue of orientations presently; first, we discuss
the case when j† � jD does not achieve transversality. The difficulty in the case when
j† � jD does not achieve transversality is that the nearly–symmetric almost complex
structures used in [21] are required to be split near the diagonal, while compactness is
proved in [2] for almost complex structures which are cylindrical. No non–split almost
complex structure satisfies both conditions.

To address this problem, we define a class of complex structures on Symg.†/ which
includes both (Symg of) the complex structures we consider and the complex structures
considered in [21]. Specifically, fix an open neighborhood V1 of fzig�Symg�1.†/�

Symg.†/ and an open neighborhood V2 of the diagonal � in Symg.†/. Let � W †g!

Symg.†/ denote projection, and !0D .dA/g the product symplectic form on †g . As
usual, we also fix a complex structure j† on †.

Definition 13.1 By a quasi–nearly–symmetric almost complex structure on Symg.†/

we mean an almost complex structure zJ on Symg.†/ such that

� zJ is tamed by ��.!0/ on Symg.†/ nV2 .

� zJ agrees with Symg.j†/ on V1 .

� There is some complex structure j on † such that zJ agrees with Symg.j / on
V2 .

Observe that the nearly–symmetric almost complex structures of [21, Section 3.1]
are a special case of the preceding definition. So are complex structures of the form
Symg.j / for any complex structure j on † which is tamed by dA and agrees with
j† near the zi . So, a path of nearly–symmetric almost complex structures is a path of
quasi–nearly–symmetric almost complex structures. Also, an almost complex structure
J on W satisfying (J1)–J5) corresponds to a path Js of complex structures on †,
which in turn specifies a path of quasi–nearly–symmetric almost complex structures on
Symg.†/, which we denote Symg.Js/.

For a path zJt of quasi–nearly–symmetric almost complex structures, let jt be the
complex structure on † such that zJt agrees with Symg.jt / on V2 .

Now, we prove the equivalence of our theory with that of [21] in three steps. First
we show that the compactness proof of [21] extends to zJt –holomorphic curves in
Symg.†/, where zJt is a path of quasi–nearly–symmetric almost complex structures.
Then we observe that the class of paths of almost complex structures of the form
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Symg.Js/ is sufficient to achieve transversality for holomorphic disks in Symg.†/.
Finally we show that our moduli spaces of Js –holomorphic curves can be identified
with the Ozsváth–Szabó moduli spaces of Symg.Js/–holomorphic curves.

After proving the following proposition, the first and third steps are essentially immedi-
ate.

Proposition 13.2 Fix a path zJt of quasi–nearly–symmetric almost complex structures
on Symg.†/. Fix a holomorphic disk u0W .D; @D/! .Symg.†/;T˛[Tˇ/. Then there
is a g!–fold branched covering zuDW

zS ! D and a map zu†W zS ! †g such that the
following diagram commutes.

zS
zu† //

zuD

��

†g

p

��
D

u0 // Symg.†/

:

The map zu† is holomorphic with respect to the path of almost complex structures on
†g induced by zJt , in the obvious sense, and is Sg –equivariant.

Proof The idea of the proof is that even though the complex structure is allowed to
vary near the diagonal, since it varies in the class of split structures, locally near the
diagonal we are still in the integrable case. The model for this argument is used to
prove the following

Lemma 13.3 Under the assumptions of Proposition 13.2, u0 intersects the diagonal
� in a discrete collection of points.

Proof Suppose that u0 intersects the diagonal � in a collection of points pj with
limit point p . Throwing out some of the points we may assume all of the pj lie in
the same stratum of �. For concreteness we will assume all of the pj lie in the top
dimensional stratum of �, but there is nothing special about this case.

Write p D fa1; a1; a3; � � � ; agg. Choose pairwise disjoint disk neighborhoods Ui of
the ai such that U1 �U1 �U3 � � � � �Ug is contained in V2 . Choose three points on
the boundary of each Ui . Then the Riemann mapping theorem gives a well–defined
holomorphic identification of .Ui ; jt / and .D; jD/ for each t .

So in a neighborhood V of u0
�1
.p/ we can view u0 as a map to .Symg.D/;Symg.jD//.

The diagonal � � Symg.D/ is an analytic subvariety, so by elementary complex
analysis, u0jV W V !�.
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Globally we know that the image of u0 is not entirely contained in �. So, a standard
open–closed argument gives a contradiction.

We return to the proof of Proposition 13.2. Away from the diagonal �, to obtain zS , zu†
and zuD we simply pullback the holomorphic covering space †g! Symg.†/. Near
the diagonal, the argument used in the preceding lemma’s proof shows that we can
pull back the branched covering (which locally looks like a piece of ..D2/g; j

g
D /!

.Symg.D/;Symg.jD//) by u0 . This proves the proposition.

Proposition 13.4 The moduli spaces considered in [21], computed with respect to any
quasi–nearly–symmetric almost complex structure, are compact.

Proof The only place in their proof that Ozsváth and Szabó use the condition that
their complex structures are standard near � is in the proof of their energy estimate
[21, Lemma 3.5]. The only time they use it in that proof is to observe that the previous
proposition holds. So, compactness is immediate from their work.

Proposition 13.5 The class of paths of complex structures of the form Symg.Js/ is
sufficient to achieve transversality for disks uW .D; @D/! .Symg.†/;T˛ [Tˇ/.

The proof, which we omit, is a simple adaptation of the one in Section 3.

Proposition 13.6 Calculated with respect to Jt and Symg.Jt / respectively, cMA

ours

and cMA

theirs agree.

The proof of this proposition is the same as the proof in the split case, using Proposition
13.2 where appropriate.

This is sufficient to prove that the two theories are equivalent with Z=2–coefficients.
To prove the equivalence with Z–coefficients, we need somewhat more. Specifically,
we need to check that

Proposition 13.7 (1) If u1 and u2 are two curves in the moduli space MA ,
ind.A/D 1, and signours.u1/D signtheirs.u1/ then signours.u2/D signtheirs.u2/.
(Here, sign denotes the sign of a rigid curve induced by the coherent orientation.)
That is, if the orientations agree at one curve then they agree at all curves in that
moduli space.

(2) The coherence conditions for the two theories agree. That is, there is an identi-
fication of the determinant line bundles Lours and Ltheirs with respect to which
any coherent orientation oours of Lours specifies a coherent orientation otheirs of
Ltheirs .
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To keep the exposition clean, we will assume that the complex structure is split near
the diagonal. As noted earlier, this assumption is quite restrictive. It can be removed by
using, at appropriate times, a parametrized version of the Riemann mapping theorem
to identify a neighborhood of u† .branch points of uD / with a standard disk, as in
the proof of Lemma 13.3. (Alternately, given a curve u, we can choose a family
J 0s W T†! T† of almost complex structures on † constant near ˆ.u/\� and such
that the .†;J 0s/ are conformally isomorphic to the original family .†;Js/, and then
work with the family .†;J 0s/.) We leave further details to the interested reader.

From now on, when we want to discuss both our and their theories at once, we will
drop the “ours” or “theirs” from the notation, even if we have not yet identified the
corresponding objects.

Recall from Section 3 that the tangent space at u to Bours is R2g˚L
p;d
1

.u�T W; @/,
where the R2g includes into � .u�T W / as Span

�
fv˙i g

�
where the v˙i are some fixed

smooth sections with v˙i equal to @
@t

in a small neighborhood of the i th positive or
negative puncture and zero outside a slightly larger neighborhood of that puncture and
L

p;d
1

.u�T W; @/ denotes sections tangent to C˛ [Cˇ over @S . The tangent space at

� to Btheirs is just L
p;d
1

.��T Symg.†/; @/ of L
p;d
1

sections tangent to T˛ [Tˇ over
@D and we take as a model for D the strip Œ0; 1��R.

There is the minor complication that we are working in R–invariant settings, so rigid
curves have ind D 1. For convenience, we introduce the operator Pu;oursW R2g ˚

L
p;d

k
.u�T W; @/ ! R defined by Pu;ours.v1; v2/ D hv2; @=@tiL2 . (Here, h�; �iL2

denotes the L2 inner product induced by some Riemannian metric on W and a
canonical metric on the source S of u. Since L

p;d

k
is finer than L2 , the operator

Pu;ours is continuous.) Then we replace the linearized @–map D@ours by zD@ours D

D@ours˚Pours . Similarly, for @theirs , let P�;theirs.v/D hv; d�.@=@t/iL2 , where @=@t
generates the one–parameter group of automorphisms of .D2; i;�i/. Then, replace
D@theirs with zD@theirs D D@theirs˚Ptheirs . We retain the old meaning of ind, so the
index of zDu@ours=theirs is ind.u/� 1.

We tackle point (1) of the proposition first. We begin by recalling how the coherent
orientation specifies signs of curves. Let u be a curve (not necessarily holomorphic),
ind.u/D 1, at which D@ (or equivalently zD@) is surjective. We can view the coherent
orientation o as a nonvanishing section of L, defined up to multiplication by a positive
scalar function. At u, there is also a canonically defined section

1˝ 1� 2 R˝R� D

�
ƒ0R0

�
˝

�
ƒ0R0

��
D

�
ƒtop ker. zDu@/

�
˝

�
ƒtopcoker. zDu@/

��
D Lu:

The sign sign.u/ is C1 (respectively �1) if o.u/ is a positive (respectively negative)
multiple of 1˝ 1� .
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The section 1˝ 1� does not extend continuously to the whole configuration space.
Indeed, for a generic path fuag (ie, one with only normal crossings) between curves
u0 and u1 , with Du0

@ and Du1
@ surjective, the section 1˝ 1� switches sign at each

a for which Dua
@ is not surjective. So, if c.fuag/ denotes the number of a for which

Dua
@ is not surjective then sign.u0/D .�1/c.fuag/sign.u1/.

It follows that to prove part (1) of Proposition 13.7 if suffices to show that ker. zD@ours/

and ker. zD@theirs/ are nontrivial at the same curves. For this to make sense, we first need
to identify the configuration spaces. Actually, we will define subspaces Bours � Bours

and Btheirs � Btheirs such that

� Bours=theirs �Mours=theirs and

� Bours=theirs contains a path with only normal crossings between any two curves
at with D@ is surjective. (In particular, Bours=theirs is connected.)

Then, we will construct an identification ˆ between Bours and Btheirs extending the
identification ˆ between Mours and Mtheirs . Finally, we will construct an identification
of ker. zDu@ours/ and ker. zDˆ.u/@theirs/. This suffices to prove part (1) of Proposition
13.7.

None of the steps involved are particularly intricate. The space Bours consists of
embedded curves u such that uD is holomorphic with only order 2 branch points,
near which u† is holomorphic. The space Btheirs consists of curves � intersecting the
diagonal � only in the top–dimensional stratum, transverse to �, and holomorphic
in a neighborhood of �. It is clear that Bours and Btheirs have the requisite properties.
The identification ˆW Bours!Btheirs is given in exactly the same way as ˆWMours!

Mtheirs was defined at the beginning of the section.

The identification of kernels is somewhat more difficult. The key point is that near
the branch points, the kernel of zD@ours itself consists of holomorphic sections of T†.
Such sections correspond by the same tautological correspondence used to define ˆ to
holomorphic sections of T Symg.†/, which comprise the kernel of zD@theirs near the
diagonal. More details follow.

Recall [14, page 28] that the linearized @–operator

.Du@/W R2g
˚L

p;d
1

�
u�T W; @/

�
!Lp;d .ƒ0;1u�T W /

at a curve uW .S; @S/! .W;C˛[Cˇ/, with fixed complex structure on S , is given by

Du@.�/.v/D
1

2

�
rv�CJrj.v/�

�
�

1

2
J
�
r�J

�
@J .u/:
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Here, r is the metric connection on T W of the metric induced by ! and J , and
� 2 R2g ˚L

p;d
1
.u�T W; @/ � �.u�T W /. The space L

p;d
1

.u�T W; @/ consists of
sections of u�TM tangent to C˛ [ Cˇ over @S with one derivative in Lp;d ; see
Section 3 for more details.

If we allow the complex structure on S to vary, then there is an additional term.
The tangent space to Teichmüller space at S is a finite–dimensional subspace of
C1 .End.TS; j //, where End.TS; j / is the space of endomorphisms of TS anti-
commuting with j . The linearized @–operator is then a restriction of the map

Du@W R2g
˚L

p;d
1

�
u�T W; @

�
˚C1 .End.TS; j //!Lp;d .ƒ0;1u�T W /

defined by

Du@.�;Y /.v/D
1

2

�
rv�CJrj.v/�

�
�

1

2
J
�
r�J

�
@J .v/.u/C

1

2
J ı du ıY .v/:

For maps � W D! Symg.†/ the formulas are the same except that the R2g –factors
are absent.

In the future, we will suppress the Lagrangians from the notation.

Fix � > 0. Let Bours denote the collection of maps u in Bours for which

� uD is holomorphic,
� uD has only simple branch points p1; � � � ;p` ,
� d.pi ;pj / > 2� for i ¤ j , and
� u† has no branch points inside the B�.pi/, i D 1; � � � ; `.

Let Bours�Bours denote the space of maps u2Bours for which u† is holomorphic over
[iu
�1
D .B�.pi//. For � sufficiently small, J generic, and ind.A/D 1, MA

ours �Bours .
Note that BA

ours is nonempty if and only if the intersection number � �A of the diagonal
in Symg.†/ with A 2H2.Symg.†/;T˛ [Tˇ/ is non–negative.

Let uW S ! W be a map in Bours such that uD has branch points p1; � � � ;p` 2

.0; 1/�R.

Lemma 13.8 The tangent space to Bours at u is given by

TuBours DL
p;d

k

�
.�† ıu/�T†; @

�
˚

�
˚
`
iD1C

�
:

Proof This is clear. A point in Bours is determined by a complex structure on S

and a map from S to †. The complex structure is determined by the branch points
p1; � � � ;p` .
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An inclusion of TuBours into TuBours can be given as follows. The inclusion
L

p;d
1
.u�
†

T†; @/ ,! L
p;d
1
.u�T W; @/ is obvious. We include C` into the space of

infinitesimal deformations of the almost complex structure on the source. The C`

corresponds to moving the branch points p1; � � � ;pg in D. This, in turn, corresponds
to deforming the almost complex structure jD on D. But any almost complex structure
jD on D specifies an almost complex structure jS on S via js D .duD/

�1 ıjD ıduD .

We choose a family of infinitesimal deformations parametrizing the C` vanishing over
the branch points p1; � � � ;p` , ie, such that the almost complex structure remains fixed
near the branch points.

Lemma 13.9 ker.D@/jBours
D ker.D.@jBours

//.

Proof Again, this is clear.

To discuss the linearized @–operator for maps to Symg.†/, we must first fix a con-
nection on T Symg.†/. Away from the diagonal we choose the metric connection of
the metric induced by the split symplectic form and our almost complex structure. We
extend this connection arbitrarily over the diagonal. (By [24, Corollary 2], we could in
fact extend the symplectic form over the diagonal, and work with the induced metric
connection.) Since we will work with curves which are holomorphic near the diagonal,
the choice of linearization near the diagonal is unimportant.

Let Btheirs denote the collection of maps �W D! Symg.†/ (with boundary on the
˛– and ˇ–tori) intersecting the diagonal � transversely and only in its top stratum.
Notice that Btheirs is an open subset of Btheirs . Let Btheirs �Btheirs denote the subspace
of maps which are holomorphic near the diagonal.

Lemma 13.10 The tangent space at � to Btheirs is

T�Btheirs DL
p;d
1

�
��T Symg.†/; @;�

�
˚C`

where L
p;d
1
.��T Symg.†/; @;�/ is the space of L

p;d
1

vector fields along � which
are tangent to the diagonal over ��1.�/ and to the Lagrangian tori T˛ and Tˇ over
@D, and ` is the number of intersections of � with �.

Proof The tangent space to the space of maps

.D2; fp1; � � � ;p`g/! .Symg.†/;�/

is L
p;d
1

.��T Symg.†/; @;�/ : The C` corresponds to allowing the pi to move.
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Again, we can identify the C` with the tangent space to an `–dimensional family of
deformations of jD . We take this to be the same `–dimensional family used before. In
particular, the family of almost complex structures is constant near the pi .

There is a map ˆW .Bours;Bours/! .Btheirs;Btheirs/ defined just as ˆWMours!Mtheirs

was defined at the beginning of this section.

Now, suppose that u 2 Bours and

.v; w/ 2 ker.Du@jBours/�L
p;d
1
.u�†T†; @/�C`

We construct from .v; w/ an element of ker
�
Dˆ.u/@jBtheirs

�
. First we construct a vector

field v0 2 L
p;d
1
.ˆ.u/�T Symg.†/; @/. For p 2 D, p … [iB�.pi/, let u�1

D .p/ D

fq1; � � � ; qgg and ˆ.u/.p/ D fx1; � � � ;xgg D fu†.q1/; � � � ;u†.qg/g. Then define
v0.p/D fv.q1/; � � � ; v.qg/g 2 Tfx1;��� ;xgg Symg.†/.

Since ˆ.u/.pi/ lies in the top–dimensional stratum of the diagonal, near ˆ.u/.pi/,
Symg.†/ decomposes as Sym2.†/�†g�2 . The projection of v0 to T†g�2 is given
by the previous construction. This leaves us to define the projection v0

1
of v0 to

T Sym2.†/.

Inside the B�.pi/, w is constant so the term J ıduıY in Du@ is zero. Let Ui be the
component of u�1

D .B�.pi// on which duD is singular. Identify Ui and Vi D u†.Ui/

holomorphically with D. Then, T Vi is identified with Vi�C and u�
†

T Vi with Ui�C.
Further, v becomes a map Ui ! C, and the statement that Du@v D 0 becomes the
statement that vW Ui! C is holomorphic.

Now, ˆ.u/.B�.pi//� Sym2.Vi/� Sym2.C/Š C2 . So, ˆ.u/�T Sym2.†/ is identi-
fied with B�.pi/�C2 . The holomorphic map .uD; v/W Ui!B�.pi/�C specifies a
holomorphic map v0

1
W B�.pi/! Sym2.C/Š C2 by the same tautological correspon-

dence used to define ˆ. We view v0
1

as a section of ˆ.u/�T Sym2.†/. Observe that
v0

1
and hence v1 is tangent to the diagonal.

It is easy to check that the two definitions of v0 agree over @B�.pi/.

Finally, by its definition, w corresponded to an infinitesimal deformation of jD .

Lemma 13.11 The pair .v0; w0/ lies in the kernel of D@theirs .

Proof This is direct from the definitions. Away from the diagonal, this follows from
the fact that the complex structure and symplectic form on Symg.†/ have the form
Symg.j†/ and Symg.!†/ respectively. Near the diagonal, on the Sym2.†/ factor
the kernel of D@theirs corresponds under the trivializations used above to holomorphic
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maps B�.pi/! Sym2.C/. The map v0 is holomorphic near the diagonal by the usual
tautological correspondence.

This proves that ker.D@ours/ � ker.D@theirs/. The reverse inclusion can be proved
similarly, using the opposite direction ˆ�1 of the tautological correspondence.

This proves part (1) of Proposition 13.7. It remains to check part (2), ie, that the
coherence conditions for the two theories agree. Before doing so, we prove another

Lemma 13.12 Fix A with ind.A/ > 0 and A ��� 0. Let oA
ours and oA

theirs be sections
of Lours and Ltheirs respectively. Let u1;u2 2 BA

ours with Dui
@ surjective for i D 1; 2.

At ui we constructed an identification of Lours and Ltheirs . Suppose that with respect
to the identification of determinant liens at u1 , oA

ours.u1/ is a positive multiple of
oA

theirs.u1/. Then with respect to the identification of determinant lines at u2 , oA
ours.u2/

is a positive multiple of oA
ours.u2/.

Proof Choose a path ua in Bours from u1 to u2 . Choose also a family of subspaces
H of Lp;d

�
ƒ0;1u�aT†

�
such that the operator

Dua
@W L

p;d
1
.u�aT†; @/˚C`˚H !Lp;d

�
ƒ0;1u�aT†

�
given by

Dua
@.v; w;x/DDua

@.v; w/Cx

is surjective for all a. Further, choose H so that all sections in H vanish near the
branch points of uD . This is possible for a generic path ua .

Choose an orientation o.H / of H , ie, a section of ƒtopH . Then there is a canonical
isomorphism between the determinant lines of D@ and D@.

Since the sections in H vanish near the branch points of uD , the space H specifies a
subspace H 0 of Lp;d

�
ƒ0;1ˆ.ua/

�T Symg.†/
�

as follows: for x 2H and y 2 TpD

let y1; � � � ;yg be the preimages of y under uD . Then define

x.y/D fx.y1/; � � � ;x.yg/g 2 Tˆ.u/.p/ Symg.†/:

The vanishing of the sections in H near the branch points of uD also means that we
have an identification of ker.D@ours/ and ker.D@theirs/, defined in the same way as the
identification of ker. zD@ours/ and ker. zD@theirs/ above. Further, the following diagram
commutes:

Det.Dui
@/

˝o.H /Š

��

Š // Det.Dˆ.ui /@/

˝o.H /Š

��

Det.Dui
@/

Š // Det.Dˆ.ui /@/
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for i D 1; 2. But this implies the result.

Note that as a porism of Lemma 13.12 we also have an identification of determinant
lines for A with A ��� 0 but ind.A/� 0.

Next we recall the definition of a coherent orientation. A coherent orientation consists
of a choice of nonvanishing section o.A/ of the determinant line bundle L over
the configuration space in the homotopy class A such that the following coherence
condition is satisfied:

Let u1 2 BA1.Ex; Ey/ and u2 2 BA2. Ey; Ez/ be curves for which Dui
@ is surjective. In

Appendix A we construct a family of preglued curves u1\r u2 2 BA1CA2.Ex; Ez/. For r

large, the kernel of Du1\r u2
@ is identified with ker.Du1

@/˚ker.Du2
@/. So, oA1˝oA2

specifies a section of LA1CA2 . The coherence condition is that oA1CA2 be a positive
multiple of oA1 ˝ oA2 . One must check that this condition is independent of u1 and
u2 ; see for instance [3, Corollary 7]. (In the case that Dui

@ is not surjective, one
stabilizes Dui

@ by a finite–dimensional oriented subspace of Lp;d
�
ƒ0;1u�i T W

�
, as

in the proof of Lemma 13.12.)

(From now on, when we write a sum ACB of homotopy classes of curves we implicitly
assume that the asymptotics of A at 1 agree with those of B at �1.)

Returning to our situation, fix a coherent orientation oours . By the previous lemma, this
specifies an orientation oA

theirs for each A with ind.A/ > 0 and A ��� 0. We will refer
to the collection of A with ind.A/ > 0 and A ��� 0 as the positive cone and denote
it CC . Note that Œ†� 2 CC and for any A, ACN Œ†� 2 CC for N sufficiently large.

Lemma 13.13 The orientation otheirs is coherent over the positive cone. That is, for
A;B 2 CC , with respect to the identification induced by gluing, oA

theirs˝ oB
theirs is a

positive multiple of oACB
theirs .

Proof This follows from the commutativity of

LA1
ours˝LA2

ours
//

��

LA1

theirs˝L
A2

theirs

��

LA1CA2
ours

// LA1CA2

theirs

up to positive scaling, which follows easily from the definitions of the various maps
involved.
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Lemma 13.14 Any coherent orientation o over the positive cone can be extended
uniquely to a coherent orientation over all configuration spaces.

Proof Fix A, and N large enough that ACN Œ†� 2 CC . Then the map

LA
˝oŒN†�// LACN Œ†�

and the orientation oACN Œ†� specifies an orientation oA of LA . By the coherence of
o over the positive cone, the orientation oA is independent of N , and obviously agrees
with o over the positive cone. Commutativity of the following diagram, up to positive
scaling, implies that o is coherent:

LA˝LB
˝oŒN1†�˝oŒN2†� //

��

LACN1Œ†�˝LBCN2Œ†�

��
LACB

˝oŒN1†�˝oŒN2†� // LACBC.N1CN2/Œ†�:

(Here, the vertical maps are induced by gluing. This requires stabilizing the spaces
involved, as discussed above.)

We have now proved part (2) of Proposition 13.7. This concludes the proof of Theorem
2.

14 Other Remarks

14.1 Elaborations of Heegaard Floer

The 4–dimensional approach that we have used suggests possible elaborations of the
Floer homology groups considered in this paper. For the first one, we will describe
briefly the bHF –case, the only case that I am confident works. Our new chain complex
bCF big is freely generated over ZŒŒt �� by the intersection points. The differential is
@big D @0C t@1C t2@2C � � � . Here, @0 is boundary operator for bHF that appears
throughout this paper. The linear term @1 counts holomorphic curves with exactly
1 double point, in homology classes A with ind.A/ D 3. (This is the appropriate
condition for the resulting moduli space to be zero–dimensional.) In general, @i counts
holomorphic curves with singularity equivalent to i double points, in homology classes
A with ind.A/D 2iC1. (This idea is inspired by the so–called Taubes series described
by Ionel–Parker in [11]. The analog for disks in Symg.†/ is to consider only disks
with a prescribed number of tangencies to the diagonal.)
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Figure 17: A handleslide in genus two, with notation

The resulting filtered chain complex, up to filtered chain homotopy, is an invariant
of the three–manifold. The proof is similar to the proof of invariance of bHF above.
Undesirable codimension–one degenerations are ruled out just as in Proposition 7.1.
The fact that @2

big
D 0 now expresses the additional fact that when a holomorphic curve

with k double points splits, i of them go to one level and k � i to the other.

Isotopy invariance follows from the arguments of Section 9. Like @big , the chain maps
ˆ constructed there now take the form ˆbig D ˆ0C tˆ1C t2ˆ2C � � � , where ˆi

counts holomorphic curves with i double points or equivalent. Again, the statement
that ˆbig is a chain map expresses the observation that when a holomorphic curve
with double points splits, some double points go to one level and the rest to the other
level. Otherwise, the argument is unchanged. Similarly, the triangle maps F˛;ˇ; now
have the form

P
i�0 F˛;ˇ;;i where F˛;ˇ;;i counts curves with i double points.

Handleslide invariance is proved as in Section 11, except that some of the model
calculations are more complicated. We give those computations here. Since we are
considering bHF , it suffices to study the case gD 2. Let Ě, Ě0 and ĚH be the curves
shown in Figure 17. (This notation agrees with the notation of Section 11.) The proofs
that for an appropriate choice of orientation system the generators E�ˇ;ˇ0 D f�1; �2g,
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E�ˇH ;ˇ0 D f�
0
1
; � 0

2
g and E�ˇ;ˇH D f�H

1
; �H

2
g shown in Figure 17 are cycles are the

same as in Section 11, with the additional observation that immersed curves can only
contribute to @big if the grading difference is at least three.

However, the proof that Fˇ;ˇ0;ˇH

�
E�ˇ;ˇH ˝ E�ˇH ;ˇ0

�
D E�ˇ;ˇ0 (Proposition 11.4) is

somewhat more involved. Since triangle maps count curves in even–dimensional moduli
spaces, it is conceivable that the coefficient of tf�1; �2g is nonzero in Fˇ;ˇ0;ˇH

�
E�ˇ;ˇH

˝E�ˇH ;ˇ0

�
. Again, with notation as in Figure 17, we need to show that none of

the following domains correspond to moduli spaces containing immersed curves:
D1CD2CD3CD7CD8CD9 , D1CD2CD3CD9CD10CD11 , D1CD2CD3C

D7CD11CD12 , D3CD4CD5CD7CD8CD9 , D3CD4CD5CD9CD10CD11 ,
D3CD4CD5CD7CD11CD12 , D1CD5CD6CD7CD8CD9CD10CD11CD12 ,
D1CD5CD6CD7CD10C2D11C2D12 , D1CD5CD6CD7C2D8C2D9CD10 ,
D1CD5CD6CD9C2D10C2D11CD12 , D1CD5CD6CD8C2D9C2D10CD11 ,
D1CD5CD6C2D7C2D8CD9CD12 , and D1CD5CD6C2D7CD8CD11C2D12 .
(These are the only positive domains in �2.E�ˇ;ˇH ; E�ˇH ;ˇ0 ; E�/, where E�D f�1; �2g.)

In the first seven of these domains, there are no coefficients larger than one. It follows
that there can be no immersed curve in the corresponding moduli space. The last six of
these domains exhibit enough symmetry that it suffices to consider one of them. We
will focus on D DD1CD5CD6CD7CD10C 2D11C 2D12 . It is shown shaded
in Figure 18.

We compute the Euler characteristic of an embedded curve representing D . Observe
that DD .D5CD11CD12CD7/C .D1CD6CD10CD11CD12/DECF . Here,
E D .D5CD11CD12CD7/ 2 �2.E�

H ; f�0
1
; � 0

2
g; E�/ and F D .D1CD6CD10C

D11CD12/ 2 �2.f�
0
2
; �0

1
g; E� 0/. The domain E is represented by a pair of embedded

disks. At least for some (nonempty, open set of) almost complex structures, the domain
F is represented by an embedded annulus. Gluing representatives for E and F , it
follows that the Euler characteristic for an embedded representative of D is 0.

It follows that the source of a curve with double points representing D must have
�� 2.

It is clear from considering the boundary of D that any representative for D satisfying
(M0)–(M5) must be connected. But there are no connected surfaces with boundary
with �� 2. This proves the non–embedded moduli spaces are empty, so

Fˇ;ˇ0;ˇH

�
E�ˇ;ˇH ˝ E�ˇH ;ˇ0

�
D E�ˇ;ˇ0

as desired.
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z

ˇ1

ˇ1
0

ˇH
1

ˇH
2

ˇ2
0

�1 �2�1 �2

�H
1

�H
1

�H
2

�2
0

�1
0

�1
0

D2

D3

D4

D9

D13

D8

ˇ2

Figure 18: The domain D

Plugging this computation into the proof of handleslide invariance in Section 11 proves
handleslide invariance for bHF big . Stabilization invariance of bHF big follows in the
same simple way as stabilization invariance of bHF . Note that all of the maps we have
used are maps of ZŒŒt ��–modules. It follows that the chain complex bCF big , up to chain
homotopy equivalence over ZŒŒt ��, is an invariant of Y .

Unfortunately, I have been unable to compute a single case in which bCF big is not
homotopy equivalent to a complex in which all higher differentials vanish.

I suspect that one could similarly elaborate HF1 and HF˙ , but have not done the
computations necessary to establish handleslide invariance, and am mildly concerned
that there may be subtleties in the proof of stabilization invariance. If evidence appears
to suggest that these variants of HF1 , HF˙ or, for that matter, bHF would be new
or interesting then they will become the subject of a future paper.

Here are several other elaborations, also inspired by Gromov–Witten theory. For
convenience, I will formulate only the bHF –analogs, but in these cases analogs of the
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other theories present few added difficulties. (One does have to deal with annoying
curves, but these can be addressed similarly to the way we did in Section 8.) To start,
fix a homology class ŒK� 2 H1.Y /, a knot K ,! † representing ŒK�, and a point
s0 2 Œ0; 1�. Let bCF ŒK � be freely generated over ZŒt � by the intersection points. Define
@ŒK �D @0C

1
1!

t@1C
1
2!

t2@2C� � � , where the coefficient of Ey in @i Ex counts holomorphic
curves with i marked points in homology classes A with i nd.A/D 1 so that each
marked point is mapped to K�fs0g�R . Then the standard proof shows that @2

ŒK �
D 0.

The resulting chain complexes, up to chain homotopy equivalence over ZŒt �, are
indeed invariants of .Y; ŒK�/. However, as pointed out to me by M. Hutchings, the
resulting chain complex can be reconstructed from the chain complex with “totally
twisted” (group ring) coefficients. (This is not at all surprising; the number of times
a holomorphic curve intersects K � fs0g �R depends only on the homology class of
the curve. Since this construction imitates pulling back a 2–dimensional cohomology
class from W , this is somewhat analogous to the divisor equation in Gromov–Witten
theory.)

One could try an analogous construction by forcing points to be mapped to fp0g �

fs0g �R for some choice of p0 2†. The result is again an invariant, and independent
of p0 . However, taking p0 2† n .˛[ˇ/ and considering s0 D 0, one sees that all of
the higher differentials vanish.

This exhausts the obvious cohomology classes one could pull back, so the next idea
is to try descendent classes. For example, let bCF desc be freely generated over ZŒŒt ��

by the intersection points. Define @desc D @0C
1
1!

t@1C
1
2!

t2@2C� � � where @i counts
holomorphic curves u from Riemann surfaces S with i marked points p1; � � � ;pi

such that

� The homology class of u has index 2i C 1.

� For each i , u.pi/ 2K � fs0g �R.

� For each i , .�† ıu/0.pi/D 0.

Again, the proof that @2
desc
D 0 is standard. That the chain complex up to chain

homotopy equivalence (over ZŒŒt ��) is an invariant of .Y; ŒK�/ is almost identical to the
proof of invariance of the H1=Tors–action on Heegaard Floer homology. There are
no new computations that need to be done.

Of course, this is only one piece of a much bigger chain complex one could consider,
where one keeps track of higher branching of �† ıu and several different elements of
H1.Y /. One could also allow curves with branching of �† ıu at prescribed s0 and
arbitrary point in †. Again, invariance of the bigger complex is free.
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(One could also consider curves with prescribed branching of �D ıu, but taking s0D 0

our proof that bubbling is impossible forces higher differentials of this kind to be
trivial.)

All of these deformed complexes should have roughly the same formal properties as
Heegaard Floer homology. Unfortunately, even with this apparent wealth of additional
information I have been unable to find nontrivial examples. That is, while there are
examples where higher differentials are nontrivial, I do not know examples which are
not chain homotopy equivalent to complexes in which all higher differentials vanish.
Hopefully this is for lack of creativity or perseverance on my part.

One might hope to construct further elaborations by pairing with cohomology classes of
the space of maps S !W , but by Proposition 6.1 this space does not have interesting
topology. Finally, one might be able to obtain invariants by pulling back cohomology
classes from the space of holomorphic maps to a disk. Doing so in a useful way,
however, would require a better understanding of the cohomology of the moduli space
of maps to a disk than I presently posses.

14.2 Relationship with Taubes’ program

We conclude with a few remarks about a likely relationship between Heegaard Floer
homology as formulated in this paper and Taubes’ program to understand holomorphic
curves in 4–manifolds with singular symplectic forms.

First, a one paragraph sketch of Taubes’ idea. Any 4–manifold M with bC
2
> 0 can

be endowed with a closed two–form ! which is nondegenerate in the complement of a
collection of circles, and degenerates in a controlled way near the circles; see [26] for
further information and references. The program is then to fix a complex structure J

in the complement of the singular circles, adjusted to ! , and obtain smooth invariants
by studying J –holomorphic curves of finite !–energy in M .

The Floer homology associated to Taubes’ program would be structured as follows. For
a three–manifold Y , one chooses a closed 2–form ! on Y �R which is nondegenerate
on the complement of certain lines fpig �R. One would then choose a translation
invariant complex structure J on Y � R adjusted to ! and study J –holomorphic
curves with some specified asymptotics at the singular lines and at Y � f˙1g.

Fix a Morse function f on Y , and a metric on Y . Then, the form df ^ dt C

?df is a closed 2–form on Y � R, which is nondegenerate on the complement of
fcritical points of f g �R . (Here, ? means the Hodge star on Y , not on Y �R .) One
possible compatible complex structure pairs dt with rf and is given by rotation by
�=2 on ker.df /. We will call this the complex structure induced by f .
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But this setting bears a close resemblance to .W;C˛ [ Cˇ/. Assume f was self–
indexing. Then, view †� Œ0; 1� as the slice f �1.3=2� �; 3=2C �/ of Y . Then the
complex structure induced by f satisfies (J1)–(J5). Further, in the limit � ! 1=2,
the boundary conditions we impose become certain asymptotic conditions on the
holomorphic curves at the singular lines. So, our setup fits quite nicely in Taubes’
picture.

A serious difficulty in studying holomorphic curves in Y � R is understanding the
asymptotics at the singular lines. By studying only a middle slice of Y , Heegaard Floer
homology neatly avoids this issue. Still, it would be nice to be able to work in Y �R;
for instance, this would probably illuminate the proof of handleslide invariance.

Appendix A Gluing lemmas

A.1 Statement of results

As seems conventional in the subject, we relegate the misery called “gluing lemmas”
to the appendix.

In the following, by “symplectic manifold” we mean a symplectic manifold with
cylindrical ends, and by “complex structure” we mean a symmetric almost complex
structure, as defined in [2, Section 2]. We will always assume that Reeb orbits and
chords corresponding to the almost complex structure and Lagrangian submanifolds in
question are isolated, as the Morse–Bott case requires extra work, and all Reeb chords
in this paper are isolated. When we refer to a holomorphic curve we always mean ones
with finite energy in the sense of [2, Section 6.1]. With these conventions, the gluing
results used in this paper are

Proposition A.1 Let .M1;M2/ be a chain of symplectic manifolds (cf [6, Section
1.6]) with M2 cylindrical. Let .u1;u2/ be a height two holomorphic building in
.M1;M2/. Assume that the complex structures on M1 and M2 are chosen so that the
@ operator is transverse to the zero–section at u1 and u2 . Then there is a neighborhood
of .u1;u2/ in the space of (height one or two) holomorphic buildings diffeomorphic to
Rind.u1/Cind.u2/�1� .0; 1�: If M1 is also cylindrical then the same statement holds with
Rind.u1/Cind.u2/�1 replaced by Rind.u1/Cind.u2/�2 . Both statements remain true in
the relative case.

Proposition A.2 Let .M1;M2/ be a chain of symplectic manifolds (cf [6, Section
1.6]) obtained by splitting a symplectic manifold M along a co–oriented hypersurface
H as in [2, Section 3.4]. Let .u1;u2/ be a height two holomorphic building in
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.M1;M2/. Assume that the complex structure on M is chosen so that the @ operator
is transverse to the zero–section at u1 and u2 . Let JR denote the complex structure on
M obtained by inserting a neck of length R along H . Let MR denote the space of
JR –holomorphic curves in M Then there is a neighborhood of .u1;u2/ in the spaceS

R MR diffeomorphic to Rind.u1/Cind.u2/ � .0; 1�: The statement remains true in the
relative case.

Proposition A.3 Proposition A.2 remains true in the case of height one holomorphic
twin towers studied in Section 12. That is, with notation as in Section 12, for ind.A/D1,

we have # cMA

W 0
R
D # cMA

W .

The special case of Proposition A.1 when M1 is the symplectization of a contact
manifold follows from work of Bourgeois [1, Corollary 5.7]. His argument, however,
extends without essential changes to prove the more general results stated here. To
demonstrate this, we imitate his argument to prove Proposition A.2 in the relative case.
Proposition A.1 is similar but marginally less complicated. After proving Proposition
A.2 we discuss how the proof needs to be modified to prove Proposition A.3.

A.2 The splitting process

In this subsection we describe the process of splitting a symplectic manifold along a
hypersurface. More details can be found in [2, Section 3.4]. We describe the splitting
process (tersely) here partly because the relative case is hardly discussed in [2] but
mostly just to fix notation.

Let .M; !/ be a symplectic manifold, J a complex structure on M compatible with
! , and H �M a co–oriented compact hypersurface. We also assume that we are
given a vector field ER 2 ker.!jH / on H so that the associated cylindrical structure on
H �R is symmetric (see [2, page 802]). Let ˛ be the 1–form !.J ER; �/ on H . Then
a neighborhood of H is symplectomorphic to

�
.��; �/�H; ��

H
!jH C d.t˛/

�
so that

J ER is identified with @
@t
jHD0 (cf [2, page 806]). We will assume that J is preserved

by the flow in the t –direction. This can always be arranged by perturbing J near H .

In this case, let M ı denote the manifold M n .��=2; �=2/�H with @M ıDH 0[H 00 .
Form

MR DM ı
[

H 0Df�Rg�H
H 00DfRg�H

Œ�R;R��H:

The complex structure on MR is given by J on M ı and on Œ�R;R��H agrees with
J on H D f0g �H and is translation invariant. The symplectic form on MR is given
by 2R

�
! on M ı and by ��

H
!jH C d.t˛/ on Œ�R;R��H .
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Similarly, let

M1 D .�1; 0��H
[

f0g�HDH 0

M ı
[

H 00Df0g�H

Œ0;1/�H:

As before, the complex structures on the ends .�1; 0��H and Œ0;1/�H are induced
by translation invariance and J jH ; on M ı the complex structure is given by J . On
M ı , the symplectic form is just ! . On .�1; 0��H and Œ0;1/�H it is given by
��

H
!jH C d.t˛/:

Suppose L�M is a Lagrangian submanifold intersecting H transversally. Perturbing
L slightly we can assume that in the tubular neighborhood .��; �/�H used to perform
the stretching, L has the form .��; �/� .L\H /. (In fact, this can be achieved by a
Hamiltonian deformation of L.) We will call this property being “cylindrical” near
H . Then, the splitting procedure just described gives in an obvious way Lagrangian
submanifolds LR in MR and L1 in M1 .

Now, fix

� a symplectic manifold .M; !/ with cylindrical ends

� a symmetric, cylindrical almost complex structure J on M adjusted to !

� a compact, co–oriented hypersurface H �M and

� a closed Lagrangian submanifold L �M which is cylindrical near H , such
that in each end Œ0;1/� zE (respectively .�1; 0�� zE ) of M , L has the form
Œ0;1/� zLE (respectively .�1; 0�� zLE ) with T zLE � T zE \JT zE .

Let zE1; � � � ; zEN denote the ends of M , so near each zEi , M is modeled on Ii�
zEi DW

Ei , where Ii is a semi–infinite interval. The isomorphism Ei D
zEi � Ii is considered

fixed as part of the definition of a cylindrical complex structure. If Ii is Œr;1/ we call
the end Ei positive; otherwise we call Ei negative. Let �i be C1 if Ei is positive
and �1 if Ei is negative.

Let MR and M1 denote the manifolds obtained by splitting M along H . The ends
of MR are zE1; � � � ; zEN . The ends of M1 are zEC

0
; zE�

0
; zE1; � � � ; zEN , where zE˙

0

correspond to H . Note that zEC
0
D zE�

0
, where this identification respects the image of

L and also the Reeb field. We sometimes write zE0 for zE˙
0

.

For i D 0; � � � ;N , let L\Ei D
zLi � Ii . Let �i denote the coordinate on Ii , and

ERiDJ@�i
. Let �o

i denote the space of closed orbits of ERi , �c
i the space of ERi –chords,

ie, flows of ERi starting and ending on zLi . Let �i D �
o
i [�

c
i .

We will assume throughout that the �i are discrete.
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Fix Reeb chords/orbits 0;1; � � � ; 0;n0
2 �0 , C

i;1
; � � � ; C

i;n
C

i

2 �i (i D 1; � � � ;N ), and

�
i;1
; � � � ; i;n�

i
2�i (i D 1; � � � ;N ). For notational convenience, let C

0;j
D �

0;j
D 0;j .

Assume ˙
i;1
; � � � ; ˙

i;m˙
i

2 �o
i are closed Reeb orbits and 

i;m˙
i
C1
; � � � ; 

0;n˙
i

2 �c
i are

Reeb chords. For convenience and because it is the only case relevant to this paper we
will assume that all the 0;k and ˙

i;k
are simple Reeb chords / orbits.

Fix smooth surfaces †˙ with boundary and labeled punctures

p˙0;1; � � � ;p
˙
0;n0

; � � � ;p˙N;1; � � � ;p
˙

N;n˙
N

:

Let T ˙ be smooth families of conformal structures on † so that T ˙ surjects onto an
open set in the moduli space of Riemann surfaces. (That is, points in T ˙ are honest
surfaces with conformal structures and marked points, not equivalence classes of such.
The map from T ˙ to moduli space need not be injective.) Choose T so that there
are small neighborhoods of the punctures in † in which the conformal structure is
constant. Fix p > 2, k � 1. For convenience later, we will also fix S˙

0
2 T ˙ .

For S˙ 2 T ˙ , let B˙
S˙
D Bp;d;˙

k
denote the Banach manifold comprising W

p

k
–maps

.S˙; @S˙/! .M1;L/ converging to ˙
i;k

at p˙
i;k

(i D 0; � � � ;N , k D 1; � � � ; ni ) in

W
p;d

k
. That is:

Any ER–chord or orbit  has some period T defined by T D
1

2�

R
 !.@� ; �/. If  is

a Reeb orbit choose a tubular neighborhood N of  invariant under the ER–flow and
a diffeomorphism � from a neighborhood of S1 � E0 in S1 �R2n�2 to N such that

(1) �.S1 � E0/D 

(2) the pushforward under � of T times the unit tangent vector to S1�E0 is ER and

(3) ��!j
S1�E0

D !0jS1�E0
, where !0 denotes the standard symplectic form on

R2n�2 .

If  is a Reeb chord choose a tubular neighborhood N of  invariant under the
ER–flow and a diffeomorphism � from a neighborhood of Œ0; 1�� E0 in Œ0; 1��R2n�2

to N such that

(1) �.Œ0; 1�� E0/D 

(2) the pushforward under � of T times the unit tangent vector to Œ0; 1�� E0 is ER
and

(3) ��!j
Œ0;1��E0

D !0jŒ0;1��E0
, where !0 denotes the standard symplectic form on

R2n�2 .
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(Compare [2, Lemma A.1], but note that our N is not the same as their N .) Let
� parametrize S1 in the first case, or Œ0; 1� in the second case, by arc length. Let
z D .x1; � � � ;xn�1;y1; � � � ;yn�1/ be the standard coordinates on R2n�2 .

Via � , � and z become coordinates on N .

For S˙ 2 T ˙ we fix a holomorphic identification of a neighborhood of each p˙i;j
with Œ0;1/�S1 if p˙i;j is in the interior of S˙ and with Œ0;1/� Œ��; �� if p˙i;j is
in the boundary of S˙ . Let .t; s/ denote the coordinates near p˙i;j induced by this
decomposition.

The statement that a map u˙W S
˙!M1 is asymptotic to ˙i;j at p˙i;j means that for

some �˙
i;j ;0

; �˙
i;j ;0
2R , zıu˙.t; s/!0 as t!1, � ıu˙.t; s/��iTi;j

t��i�
˙
i;j ;0
!0

as t !1 and � ı u˙.t; s/� s � �˙
i;j ;0
! 0 as t !1. We say that the map u˙ is

L
p;d

k
near p˙i;j if z ıu.t; s/, � ıu.t; s/��iTi;j

t ��i�i;j ;0 and � ıu.t; s/� s��˙
i;j ;0

are all in L
p;d

k
D ff jf .t; s/ed jt j=p 2 L

p

k
g. Note that if i;j is a Reeb chord then

�˙
i;j ;0
D 0 while if i;j is a closed Reeb orbit then after replacing s with s� �˙

i;j ;0
we

can assume that �˙
i;j ;0
D 0. In the future we will assume that s has been chosen so

that �˙
i;j ;0
D 0. Replacing some of the neighborhoods of the punctures with smaller

ones if necessary we can assume that for each i the constants �˙
i;j ;0

are all the same,
�˙

i;j ;0
D �i;0 .

The compactness result [2, Theorem 10.2] and asymptotic convergence result [2,
Proposition 6.2] imply that there exists a d > 0 such that any holomorphic curve
of finite energy with the specified asymptotics is in Bp;d

k
. Fix such a d , and let

B˙ D Bp;d;˙

k
.

Similarly, for any Riemannian vector bundle E over S˙ we can consider the space
of L

p;d

k
–sections of E , L

p;d

k
.E/. The complex structure J and symplectic form !

induce a metric on M1 , so it makes sense to talk about the space L
p;d

k�1
.ƒ0;1T �S˙˝J

u�TM1/ of L
p;d

k�1
.0; 1/–forms on S˙ with values in T �M .

Now, the spaces B˙
S˙

fit together into a fiber bundle B˙ over T ˙ . In turn, the spaces

L
p;d

k�1
.ƒ0;1T �S˙˝J u�TM1/ fit together into a vector bundle E˙ over B˙ . The

@–operator gives a section B˙! E˙ . We will assume that this @ map is transversal
to the 0–section. We let M˙ denote the intersection of @ with the 0–section.

Recall that we fixed reference Riemann surfaces S˙
0
2 T ˙ . As all Riemann surfaces

in T ˙ have fixed smooth source †˙ , there is an obvious projection map B˙! B˙
S˙

0

.

Identify B˙ with T �B˙
S˙

0

.
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Remark While we have not yet chosen metrics or norms on the spaces under consid-
eration, when we do, a figment of the details of our definition is that the identification
of B˙ with T �B˙

S˙
0

will not induce isometries. However, by choosing T small we

can make the induced maps arbitrarily close to isometries.

Choosing a connection on M1 , for instance the Levi–Civita connection, we obtain also
a linearized @–operator D@W TuB˙!L

p;d

k�1
.ƒ0;1T �S˝J u�TM /D Eu . (The space

Eu is identified with the vertical tangent space to Eu . The map D@ is the composition
of projection onto the vertical tangent space – defined with the help of the connection –
with the derivative of the section @. See [14, Section 3.3].) We will also sometimes be
interested in the restriction of the @–operator to maps with fixed source; we denote the
@–operator on maps with source S by @S and its linearization by D@S .

Let L
p;d

k
.u�
˙

TM1; @/ denote those L
p;d

k
sections of u�

˙
TM1 which lie in TL over

@S .

The tangent space at .S˙
0
; j / to T ˙ is a finite–dimensional space V ˙ . The tangent

space to B˙
S˙

at some map u˙ is

C
PN

iD0 m˙
i ˚R

PN
iD0.n

˙
i
�m˙

i
/
˚L

p;d

k
.u�˙TM1; @/D F˙˚L

p;d

k
.u�˙TM1; @/:

Fix a vector field v˙�;i;j (respectively v˙
�;i;j

) which agrees with @
@�

(respectively @
@�

)

near p˙i;j and lies in L
p;d

k

�
u�
˙

TM1; @
�

away from p˙i;j for each interior puncture

p˙i;j of S˙
0

. Fix a vector field v˙�;i;j which agrees with @
@�

near p˙i;j and lies in

L
p;d

k

�
u�
˙

TM1; @
�

away from p˙i;j for each boundary puncture p˙i;j of S˙
0

. Then,
F˙ is Spanfv˙�;i;j ; v

˙
�;i;j
g � �u�TM1 . (Equivalently, F˙ corresponds to the con-

stants �˙
i;j ;0

and �˙
i;j ;0

varying.) Fix a norm on F˙ and use this norm to extend the

L
p;d

k
–norm to F˙˚L

p;d

k
.u�TM1; @/.

From the decomposition B˙ D T �B˙
S˙

0

we obtain an identification of Tu˙B
˙ with

V ˙˚F˙˚L
p;d

k
.u�
˙

TM1; @/. Let W ˙u˙DD@.V ˙˚f0g˚f0g/��.ƒ0;1T �S˙˝J

u�
˙

TM1/. (We use � to denote C1
0

sections.) Later, we will assume that the map
D@ is surjective at u˙ . This is equivalent to the statement that W ˙u˙ CD@S .F

˙˚

L
p;d

k
.u�
˙

TM1; @// is all of

L
p;d

k�1
.ƒ0;1T �S˙˝J u�˙TM1/DL

p;d

k�1

�
ƒ0;1u�˙TM1

�
:

(Compare [1, pages 55–56].)
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As the particulars of our asymptotics are irrelevant to linear statements, the following
lemma is completely standard; see, for instance, [7, Theorem 4, page 797].

Lemma A.4 For appropriate (small) d > 0, the linearized @–operator D@ is Fredholm.

We will use a gluing construction to define spaces TR of glued surfaces; then BR , ER ,
and MR are defined similarly to B˙ , E˙ , and M˙ . As described later, it will be
important that we modify the metric on BR and norm on ER by adding exponential
weights in the necks, but the topologies on the spaces will not be affected. We define B
(respectively E , M) to be the union over R 2 Œ0;1� of MR (respectively ER , MR ).

A.3 Notation

In summary, so far we have a symplectic manifold M , hypersurface H ,!M , and
Lagrangian submanifold L ,!M . Splitting M along H we obtain manifolds MR

and M1 , each with Lagrangian submanifolds obtained from L, which we still denote
L. The split manifold M1 has two new ends E˙

0
corresponding to H .

We have families T ˙ of complex curves and spaces B˙ of W
p;d

k
maps of curves in T ˙

into M1 , asymptotic to Reeb orbits 0;1 D 
C

0;1
D �

0;1
; � � � ; 0;m0

D C
0;m0
D �

0;m0

and Reeb chords 0;m0C1 D 
C

0;m0C1
D �

0;m0C1
; � � � ; 0;n0

D C
0;n0
D �

0;n0
in the

ends E˙
0

at punctures p˙
0;j

and various other fixed Reeb chords in the other ends.

We have defined bundles E˙ over B˙ of which @ is a section, and M˙ to be the
intersection of @ with the 0–section of E˙ . The linearized @–operator is denoted

D@ WW ˙u˙ ˚F˙˚L
p;d

k

�
u�˙TM1; @

�
!L

p;d

k�1

�
ƒ0;1u�˙TM1

�
where F˙ Š C

PN
iD0 m˙

i ˚R
PN

iD0.n
˙
i
�m˙

i
/ is generated by sections v˙�;i;j and v˙

�;i;j

which agree with @=@� and @=@� respectively near the puncture p˙i;j . When restricting

to a fixed source S˙ those objects are replaced by B˙
S˙

, E˙
S˙

, M˙
S˙

, @S˙ and D@S˙

respectively.

To perform the gluing we will need cutoff functions. Fix a smooth function ˇW R! Œ0; 1�

such that 8<:
ˇ.t/D 0 if t � 0

ˇ.t/D 1 if t � 1

0� ˇ.`/.t/� 2` for all t 2 R and ` 2 N:
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For R=2> T
˙

0;i

, define the cutoff function ˇi;R.t/D ˇ

 
T
˙

0;i

.t�1/

R=2�T
˙

0;i

!
, so that

8̂̂<̂
:̂
ˇi;R.t/D 0 for t � 1

ˇi;R.t/D 1 for t � R
2T

0� ˇ
.`/
i;R
.t/�

�
2T

R=2�T

�`
for all t 2 R and ` 2 N:

Remark For our proofs, the explicit bounds on the higher derivatives will not be

important. All that will matter is that all derivatives of ˇi;R are uniformly bounded in
R, and that ˇ0

i;R
! 0 as R!1.

A.4 Gluing estimates

Choose elements u˙W S˙ ! M1 in M˙ . Let i nd˙ denote the index of D@ at
u˙ . Since we are assuming transversality, there is a neighborhood of u˙ in M˙

diffeomorphic to Rind˙ . We want to show that there is a neighborhood of the two–story
holomorphic building .u�;uC/ in M diffeomorphic to Rind� �RindC � .0; 1�. To
do this, we will use the

Lemma A.5 (Implicit Function Theorem) Let f W E!F be a smooth map of Banach
spaces with a Taylor expansion

f .�/D f .0/CDf .0/�CN.�/:

Assume Df .0/ has a finite–dimensional kernel and a right inverse Q satisfying

kQN.�/�QN.�/k � C .k�kCk�k/ k� � �k;

for some constant C . Assume also that kQf .0/k � 1
8C
: Then for ı D 1=.4C /,

f �1.0/\Bı.�/ is a smooth manifold of dimension dim ker Df .0/. In fact, there is a
smooth function � W ker Df .0/\Bı.�/!Q.F / such that f .� C �.�// D 0 and all
zeroes of f in Bı.�/ have the form �C�.�/.

This result is [8, Proposition 24, page 25]. The proof is essentially the same as the
finite–dimensional case. The result, which A. Floer refers to as Newton’s method, is
called “Floer’s Picard Lemma” by some authors. In the literature, I have found at least
five incorrect references to its location.

We will apply the implicit function theorem to @W B! E . Recall that for u W S !M ,
TuB D V ˚F ˚L

p;d

k
.u�TM; @/ for some finite–dimensional space V ˚F . Choose
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a norm on V ˚ F arbitrarily; together with the L
p;d

k
–norm this makes TB into a

Banach space.

We give two necessary general results before turning to the estimates needed by the
implicit function theorem.

Lemma A.6 At .uW S !M / 2W
p;d

k
the remainder N in the Taylor expansion

@.uC�u/D @.u/CD@.u/�uCN.�u/ 2L
p;d

k�1
.ƒ0;1T �S ˝J u�TM1/

for the @–operator satisfies

(11) kN.�/�N.�/k � C 0 .k�kCk�k/ k� � �k

for � , � in V ˚F ˚L
p;d

k
.u�TM; @/ and some constant C (depending on kuk

W
p;d

k�1

).
(Here, we identify a neighborhood of the map u with a neighborhood of the 0–section
in V ˚F ˚L

p;d

k
.u�TM; @/.)

Proof The argument is essentially the same as the one used by Floer to prove [7,
Theorem 3a], and we omit it. Floer finds a relatively explicit formula [7, Lemma 3.2]
for N.�/, using charts, and simple bounds on the terms in the formula. There are
several differences between our setup and the setup of [7]. We claim the bound (11)
for all L

p;d

k
, while Floer only states it for L

p;d
1

; however, Floer in fact proves the

result for all L
p;d

k
. The holomorphic curves in [7] all have source a strip, but this is

again essentially irrelevant for his proof. The extra finite–dimensional spaces cause
no additional complications. Finally, the asymptotics considered in [7] are somewhat
different from the ones we consider, but as the estimate follows from uniform pointwise
bounds, this is yet again irrelevant to the proof.

For slightly weaker estimates, still sufficient to apply the implicit function theorem,
see [14, Section 3.3]

Corollary A.7 If Q is a bounded right inverse for D@.u/ then there is a constant C ,
linear in kQk, so that

kQN.�/�QN.�/k � C .k�kCk�k/ k� � �k

for �; � 2 V ˚F˚L
p;d

k
.u�TM; @/. Thus, the inverse function theorem applies to find

nearby solutions of the @–equation.

Proof Take C D kQkC 0 , for C 0 as in Lemma A.6.
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So, the strategy to prove the gluing lemma is to construct a family of pre–glued maps
.uC\Ru�/W .S

C\RS�/!MR so that

(1) the maps uC\Ru� converge to the height two building .uC;u�/ and

(2) at each uC\Ru� there is a right inverse QR to D@ so that the QR are uniformly
bounded (in R).

The first condition then implies that D@.uC\Ru�/! 0 as R!1. It follows from
this and the second condition that for large enough R the implicit function theorem
applies to give families of solutions of the @–equation near uC\Ru� , and hence near
.uC;u�/. Further, any other solution of the @–equation near .uC;u�/ would lie in
a small neighborhood of uC\Ru� for appropriate large R, and hence be one of the
solutions given by the implicit function theorem. This then proves the gluing lemma.

Now we define the pre–glued maps uC\Ru� . Choose holomorphic coordinates
.t˙i ; s

˙
i / (s˙i 2 S1 for i D 1; � � � ;m0 , s˙i 2 Œ0; 1� for i D m0C 1; � � � ; n0 , t˙i 2 R)

near the puncture p˙
0;i

so that t˙i !�1 as p! p˙
0;i

. For i D 1; � � � ;m0 we further
require that lim

t
C

i
!�1

uC.t
C
i ; s

C
i /D limt�

i
!1 u�.t

�
i ; s
�
i /: For i Dm0C1; � � � ; n0

this is automatic. We will call such coordinates cylindrical coordinates.

Remark Our convention for which coordinate is denoted s and which is denoted t is
exactly the opposite from [1], but agrees with the convention used in the rest of this
paper.

Let �˙ denote the R–coordinate on E˙
0

chosen earlier in this section, let � zE0
denote

projection of E˙
0

onto zE0 and fix some metric on zE0 so that L\ zE0 is totally geodesic
(this is possible by the Lagrangian neighborhood theorem). Near p˙

0;i
the map u˙ has

the form

�˙ ıu˙.t
˙
i ; s

˙
i /D T0;i

t˙i ˙ �
˙
0;0C �

˙
i .t
˙
i ; s

˙
i /

� zE0
ıuD exp

0;i .s
˙
i
/
.U˙i .t

˙
i ; s

˙
i //

where �˙i and U˙i decay exponentially in ti .

Choose R0 large enough that for R>R0 and i D 1; � � � ; n0 ,
�
�

R˙�˙
0;0

T0;i

; s˙i

�
lies in

the neighborhood of p˙
0;i

on which the coordinates in use are defined. From now on we

will assume that R>R0 . Then �˙ıu˙

�
�

R˙�˙
0;0

T0;i

; s˙i

�
D˙R. So, define SC\RS�

to be the surface obtained by deleting
�
�t˙i >

R˙�˙
0;0

T0;i

�
from S˙ and gluing the
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resulting surfaces along the newly created boundary in the obvious way. We will refer
to the image of the neighborhoods of the punctures p˙

0;i
in SC\RS� as the necks.

Define coordinates .t0
i ; s

0
i / on the necks by8<: s0

i D sCi ; t0
i D tCi C

RC�0;0

T0;i

for tCi � �
RC�0;0

T0;i

s0
i D s�i ; t0

i D t�i �
R��0;0

T0;i

for t�i �
R��0;0

T0;i

:

We define the pre–glued map uC\Ru�W SC\RS� ! MR to agree with uC or u�
outside the necks. Recall that MR has a neck Œ�R;R� � zE0 ; let �R denote the
Œ�R;R�–coordinate on the neck of MR , and � zE0

projection of the neck of MR onto
zE0 . Then, on the i th neck of SC\RS� , uC\Ru� is defined by8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�R ı .uC\Ru�/.s
0
i ; t

0
i /D T0;i

t0
i Cˇ.t

0
i � 1/�Ci .s

0
i ; t

0
i /

� zE0
ı .uC\Ru�/.s

0
i ; t

0
i /D exp0;i .si /

�
ˇ.t0

i � 1/UCi .s
0
i ; t

0
i /
� ) if t0

i � 1

�R ı .uC\Ru�/.s
0
i ; t

0
i /D T0;i

t0
i

� zE0
ı .uC\Ru�/.s

0
i ; t

0
i /D 0;i.si/

)
if �1� t0

i � 1

�R ı .uC\Ru�/.s
0
i ; t

0
i /D T0;i

t0
i Cˇ.�t0

i � 1/��i .s
0
i ; t

0
i /

� zE0
ı .uC\Ru�/.s

0
i ; t

0
i /D exp0;i .si /

�
ˇ.�t0

i � 1/U�i .s
0
i ; t

0
i /
� ) if t0

i � �1

(Compare [1, page 54].) Note that since L\ zE0 is totally geodesic and U˙i j@S˙ is
tangent to L\ zE0 , this formula makes perfectly good sense in the relative setting.

We extend the gluing construction to a neighborhood of .uC;u�/ in BC �B� . The
details of this extension are unimportant, but for completeness we give them anyway.
Extend the coordinates .t˙i ; s

˙
i / smoothly to holomorphic coordinates on surfaces

in a neighborhood of .SC;S�/. Let �1; � � � ; �m0
be in some interval around 0 2

S1 D R=Z and r1; � � � ; rn0
in R, R > R0 . Let �m0C1 D � � � D �n0

D 0. Then, for
.u0CW S

0C ! M1;u
0
�W S

0� ! M1/, define S 0
C
\r1;��� ;rn0

;�1;��� ;�m0
S 0
� by deleting

the disks
n
�t˙i >

ri˙�0;0

T0;i

o
from S 0

˙ and identifying the newly created boundaries by

sCi $ s�i C �i . Define coordinates .t0
i ; s

0
i / on the necks of the glued surfaces by8̂<̂

: s0
i D sCi �ˇ.t

0
i /�i t0

i D
R
ri

tCi C
riC�0;0

T0;i

for tCi � �
riC�

C

0;0

T0;i

s0
i D s�i ; t0

i D t�i �
R
ri

ri��
�
0;0

T0;i

for t�i �
ri��

�
0;0

T0;i

Then, define u0C\r1;��� ;rn0
;�1;��� ;�m0

u0� by the same formula used to define uC\Ru�
above. Let TR denote the space of conformal structures given by the gluing construction
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just explained. Note that TR projects onto an open neighborhood of SC\RS� in moduli
space. Let BR denote the space of W

p;d

k
maps from surfaces in TR with the specified

boundary conditions and asymptotics. Note that the glued maps fill out a neighborhood
of uC\Ru� in BR .

Recall that we defined spaces W ˙
u˙
DW W ˙ as the image under D@ of V ˙ D

TS˙T . Since the conformal structures in T agree near the punctures, we can view
V C˚V � as a subspace of �.ƒ0;1T �.SC\RS�// and W C˚W � as a subspace of
.uC\Ru�/

�TMR for any R.

Recall also that we defined spaces F˙DC
PN

iD0 m˙
i ˚R

P
iD0N .n˙

i
�m˙

i
/ corresponding

to the span of a fixed collection of
PN

iD0 m˙i vector fields v˙�;i;j and v˙
�;i;j

given by @
@�

and @
@�

near the
PN

iD0 m˙i interior punctures and a fixed collection of
PN

iD0.n
˙
i �m˙i /

vector fields v˙�;i;j given by @
@�

near the
PN

iD0.n
˙
i �m˙i / boundary punctures of u˙ .

Let

F0
D Spanfv�;0;j ; v�;0;j g D C

PN
iD1.m

C

i
m�

i
/
˚R

PN
iD1.n

C

i
Cn�

i
�m
C

i
�m�

i
/

be the sections corresponding to punctures which are not being glued.

The tangent space T TR is Cm0 ˚Rn0�m0 ˚V C˚V � . (The C– and R–summands
correspond to the gluing parameters �i and ri .) So, the tangent space to BR is

(12) TuC\Ru�BRDCm0˚Rn0�m0˚V C˚V �˚F0
˚L

p;d

k

�
.uC\Ru�/

�TMR; @
�
:

The map V C ˚ V � ! W C ˚W � induced by D@ is a surjective map of finite–
dimensional vector spaces, and independent of R. It therefore has a uniformly bounded
right inverse. It therefore suffices to construct a uniformly bounded right inverse to the
map

Cm0 ˚Rn0�m0 ˚W C˚W � ˚ F0
˚L

p;d

k

�
.uC\Ru�/

�TMR; @
�

!L
p;d

k�1

�
ƒ0;1.uC\Ru�/�TMR

�
given by

.vC; vR; vC; v�; �0; �/ 7! vCC v�C .D@/.vCC vR/C
�
D@SC\RS�

�
.�0C �/:

Here, vC and vR correspond to infinitesimal variations of the almost complex structure
jS , and .D@/.vCC vR/ the image of the sum of these variations under D@. If one
views vC and v� as sections of End.TS; j / as defined in Section 3 then D@.vCCvR/

is given by J ı d.uC\Ru�/ ı .vCC vR/.
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Constructing the right inverse and proving its boundedness is what we shall do for most
of the remainder of this section.

On spaces of sections over uC\Ru� instead of the Banach norm specified earlier in
this section we use a Banach norm with additional weights of ed.R=T�s0

i / on the
necks. This paragraph and the next make this precise. Choose metrics h�; �iR on
SC\RS� and diffeomorphisms �R0;RW S

C\R0
S�! SC\RS� for so that h�; �iR0

�

��h�; �iR �
2R
R0
.h�; �i/R0

, pointwise. Integrals over SR will be with respect to the
volume forms induced by h�; �iR . Choose metrics h�; �iM

R
on MR and diffeomorphisms

�M
R0;R
W MR0

!MR such that h�; �iM
R0
� ��h�; �iM

R
�

2R
R0

�
h�; �iM

R0

�
, pointwise. The

bundles .uC\Ru�/
�TMR and ƒ0;1.uC\Ru�/

�TMR inherit metrics from h�; �iR and
h�; �iM

R
. Norms of elements of these vector bundles will be taken with respect to the

induced metrics.

Choose cylindrical coordinates .t˙i;j ; s
˙
i;j / near the punctures p˙i;j . Let � be a section of

.uC\Ru�/
�TMR . For 1� i � n0 define ��;i.�/D

R
t0
i
D0

D
@
@�R ; �

E
and for 1� i �m0

define ��;i.�/D
R

t0
i
D0

D
@
@�
; �
E

Then, define

� D

n0X
iD1

��;i.�/
�
1�ˇi;R.t

0
i /
� �

1�ˇi;R.�t0
i /
� @

@�R

C

m0X
iD1

��;i.�/
�
1�ˇi;R.t

0
i /
� �

1�ˇi;R.�t0
i /
� @

@�
:

One can think of � as an approximate projection of � to Cm0˚Rn0�m0 in FC=.F0\

FC/.

Then, the norm of a section � of .uC\Ru�/
�TMR is given by the sum of the norm of

the vector �
��;1.�/; � � � ; ��;n0

.�/; ��;1.�/; � � � ; ��;m0
.�/
�
2 Rn0Cm0

and

sup
j˛j�kˇ̌̌
@
@˛

ˇ̌̌
�1

0@Z
SC\RS�

ˇ̌̌̌
ˇ̌ @@˛

240@1C

n0X
iD0

ed.R�jt0
i
j/=pˇ.R� jt0

i j/C
X
˙

NX
iD1

niX
jD1

e
d jt˙

i;j
j=p
ˇ.jt˙i;j j/

1A .� � �/
35ˇ̌̌̌ˇ̌

p

dV

1A

where the sup is over all partial derivative of order at most k and norm 1.

The norm of a section � of ƒ0;1.uC\Ru�/
�TMR is given by
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sup
j˛j�k�1ˇ̌̌
@
@˛

ˇ̌̌
�1

0@Z
SC\RS�

ˇ̌̌̌
ˇ̌ @@˛

240@1C

n0X
iD0

ed.R�jt0
i
j/=pˇ.R� jt0

i j/C
X
˙

NX
iD1

niX
jD1

e
d jt˙

i;j
j=p
ˇ.jt˙i;j j/

1A �
35ˇ̌̌̌ˇ̌

p

dV

1A :
It is not necessary to split � into two parts.

Lemma A.8 (Compare [1, Lemma 5.5])

With this Banach structure on �
�
ƒ0;1.uC\Ru�/

�
, if u˙ are holomorphic then

lim
R!1

k@uC\Ru�kR D 0:

Proof This is the same as in [1]. Since u˙ are holomorphic, the section @uC\Ru� is
identically zero except in regions �2� t0

i ��1 and 1� t0
i � 2 in the necks. In these

regions we crudely bound k@uC\Ru�k by

X
i

0BB@
���RC��

0;0
T

;�
RC��

0;0
T

C2

�.rU�i ;r�
�
i /

C
�

24R���
0;0

T
�2;�

R��
C
0;0

T

35.rUCi ;r�
C

i /


1CCA :

Recall that these norms are weighted by ed.R=T�s0
i / . However, since u˙ are in Bp;d

k
,

the sections .U˙i ; �
˙
i / are in L

p;d

k
and so their derivatives are in L

p;d

k�1
. It follows

that the right hand side goes to zero as R!1.

Proposition A.9 Suppose that .D@/u˙ , the linearized @–operator at u˙ , is surjective.
Then, for large enough R, the operator .D@/uC\Ru� has a right inverse QR which is
uniformly bounded in R.

Proof As with all of this section, I learned this proof mainly from Bourgeois [1].
Bourgeois in turn cites McDuff–Salamon [14], who say they adopted the argument
from Donaldson–Kronheimer [4].

Once one has seen how it goes, the proof is not particularly hard. To prove the
proposition we define linearized gluing and splitting maps

gRW �˚L
p;d

k
.u�CTM1; @/˚L

p;d

k
.u��TM1; @/!L

p;d

k

�
.uC\Ru�/

�TMR; @
�

and

sRW L
p;d

k�1

�
ƒ0;1.uC\Ru�/

�TMR

�
!L

p;d

k�1
.ƒ0;1u�CTM1/˚L

p;d

k�1
.ƒ0;1u��TM1/:

where � is the diagonal in Cm
C

0 ˚Rn
C

0
�m
C

0 ˚Cm�
0 ˚Rn�

0
�m�

0 � FC˚F� (so �
corresponds to the sections at the punctures being glued which agree on the two sides).
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Let GR D sR

�
D@.Cm0 ˚Rn0�m0/

�
where Cm0˚Rn0�m0 denotes the tangent space

to the space of gluing parameters, as in Equation (12). (The map sR ı D@ is an
isomorphism when restricted to this Cm0˚Rn0�m0 , and so identifies GR with Cm0˚

Rn0�m0 . So, we will sometimes abuse notation and use GR when we mean its preimage
under sR ıD@.)

We will check that

D@.uC;u�/WW
C
˚W �˚�˚F0

˚GR˚L
p;d

k

�
u�CTM1; @

�
˚L

p;d

k

�
u��TM1; @

�
!L

p;d

k�1

�
ƒ0;1u�CTM1

�
˚L

p;d

k�1

�
ƒ0;1u��TM1

�
:

is surjective and has a uniformly bounded right inverse Q1 for large R.

We will then define an approximate right inverse zQR for

D@uC\Ru� W Cm0 ˚Rn0�m0 ˚W C˚W �˚F0
˚L

p;d

k

�
.uC\Ru�/

�TMR; @
�

!L
p;d

k�1

�
ƒ0;1.uC\Ru�/

�TMR

�
by the commutative diagram

L
p;d

k�1

�
ƒ0;1.uC\Ru�/

�TMR

�
sR

��

zQR // W C˚W �˚F0˚Cm0 ˚Rn0�m0

˚L
p;d

k
..uC\Ru�/

�TMR; @/

L
p;d

k�1
.ƒ0;1u�CTM1/˚L

p;d

k�1
.ƒ0;1u��TM1/

Q1 // W C˚W �˚F0˚GR˚�

˚L
p;d

k
.u�CTM1; @/˚L

p;d

k
.u��TM1; @/:

id˚id˚id˚id˚gR

OO

We will check that sR and gR are uniformly bounded, so that zQR is, also. We will then
show that k.D@/uC\Ru�

zQR � Ik � 1=2, so that .D@/uC\Ru�
zQR is invertible; the

inverse of .D@/uC\Ru� is then given by zQR

�
.D@/uC\Ru�

zQR

��1
, which is bounded

by 2k zQRk.

For

.�C; ��/ 2�˚L
p;d

k

�
u�CTM1; @

�
˚L

p;d

k

�
u��TM1; @

�
� Cm

C

0 ˚Rn
C

0
�m
C

0 ˚L
p;d

k

�
u�CTM1; @

�
˚Cm�

0 ˚Rn�
0
�m�

0 ˚L
p;d

k

�
u��TM1; @

�
define gR.�C; ��/ to agree with �C or �� outside the necks and by

gR.�C; ��/D

8<:
�C.t

0
i ; s

0
i /C

�
1�ˇi;R.t

0
i /
�
��.t

0
i ; s

0
i / if t0

i � 1

�C.t
0
i ; s

0
i /C ��.t

0
i ; s

0
i / if �1� t0

i � 1�
1�ˇi;R.�t0

i /
�
�C.t

0
i ; s

0
i /C ��.t

0
i ; s

0
i / if t0

i � �1
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in the necks. (Compare [1, pages 56–57].) Note that this formula makes as much sense
in the relative case as in the closed case. Exactly the same formulas define a linearized
gluing map

gRW L
p;d

k�1

�
ƒ0;1u�CTM1

�
˚L

p;d

k�1

�
ƒ0;1u��TM1

�
!L

p;d

k�1

�
ƒ0;1.uC\Ru�/

�TMR

�
;

which shall be useful when we estimate .D@/ zQR � I .

Define sR.�/D .�C; ��/ where �˙ agrees with � away from the punctures and near
p˙

0;i
is given by

�C.t
0
i ; s

0
i /D ˇ.t

0
i /�.t

0
i ; s

0
i /

��.t
0
i ; s

0
i /D .1�ˇ.t

0
i //�.t

0
i ; s

0
i /:

(Compare [1, page 57].)

Lemma A.10 The maps gR and sR are uniformly bounded in R.

Proof Although for notational reasons it may appear involved, the proof is in fact
straightforward. Let .�0; �C; ��/ 2 � ˚ L

p;d

k

�
u�CTM1; @

�
˚ L

p;d

k

�
u��TM1; @

�
.

Recall that, by definition,

kgR.�0; �C; ��/k D kgR.�0; �C; ��/kCkgR.�0; �C; ��/�gR.�0; �C; ��/kLp;d

k

where gR.�0; �C; ��/ is a certain projection of gR.�0; �C; ��/ to Cm0˚Rn0 . Observe
that as R!1, gR.�0; �C; ��/! �0 , and hence kgR.�0; �C; ��/k is bounded. In
fact, by the Sobolev inequalities,

kgR.�0; �C; ��/k � C
�
k�0kCk�CkLp;d

k

Ck��kLp;d

k

�
where C depends only on the cutoff function ˇ , and not on R.

On the other hand,

kgR.�0; �C; ��/�gR.�0; �C; ��/kLp;d

k

� kgR.0; �C; ��/kCkgR.�0; �C; ��/

�gR.0; �C; ��/�gR.�0; �C; ��/kLp;d

k

D kgR.0; �C; ��/kLp;d

k

CkgR.�0; 0; 0/

�gR.�0; �C; ��/kLp;d

k

:
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Now, on the i th neck,

gR.�0; 0; 0/�gR.�0; �C; ��/D
�
1�ˇi;R.t

0
i /
��

1�ˇi;R.�t0
i /
�"
�0� �0

�

Z
t0
i
D0

��
@

@�
; �CC ��

�
@

@�
C

�
@

@�
; �CC ��

�
@

@�

�#
:

So,

kgR.�0; 0; 0/�gR.�0; �C; ��/kLp;d

k

� C
�
k�CkLp;d

k

Ck��kLp;d

k

�
where C depends only on the cutoff function ˇ , and not on R.

Finally,

kgR.0; �C; ��/kLp;d
k

� k�CkLp;d
k

Ck��kLp;d
k

C

n0X
iD1

X
j˛j�k

 Z
s0
i
2S1

Z �1

t0
i
D�R

ˇ̌̌̌
@

@˛

�
1�ˇi;R.�t0

i /�C.t
0
i ; s

0
i /C ��.t

0
i ; s

0
i /
�

ed jt0
i
j=p

ˇ̌̌̌p
dt0

i

C

Z
s0
i
2S1

Z 1

t0
i
D�1

ˇ̌̌̌
@

@˛

�
�C.t

0
i ; s

0
i /C ��.t

0
i ; s

0
i /
�

ed jt0
i
j=p

ˇ̌̌̌p
dt0

i

C

Z
s0
i
2S1

Z R

t0
i
D1

ˇ̌̌̌
@

@˛

�
1� �C.t

0
i ; s

0
i /C

�
1�ˇi;R.t

0
i /
�
��.t

0
i ; s

0
i /
�

ed jt0
i
j=p

ˇ̌̌̌p
dt0

i

!1=p

� k�CkLp;d
k

Ck��kLp;d
k

C

n0X
iD1

X
j˛j�k

C˛

�
k�CkLp;d

k

Ck��kLp;d
k

�

� C

�
k�CkLp;d

k

Ck��kLp;d
k

�
:

Here, the terms k�CkLp;d

k

and k��kLp;d

k

on the right hand side of the first inequality
take care of the contribution of S n fthe necksg to kgR.0; �C; ��/kLp;d

k

. The second
inequality follows from the bound on the derivatives of ˇi;R . This proves boundedness
of gR . The C˛ are universal constants depending only on ˛ and the cutoff function
ˇ , not on R.

Turning to sR , we have

(13) ksR.�/kLp;d

k�1

D kˇ.t0
i /�.t

0
i ; s

0
i /kLp;d

k�1

C

�1�ˇ.t0
i /
�
�.t0

i ; s
0
i /


L
p;d

k�1

:
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Focussing on the first term on the right hand side, we have

kˇ.t0
i /�.t

0
i ; s

0
i /kLp;d

k�1

� k�k
L

p;d

k�1

C

n0X
iD1

X
j˛j�k�1

 Z
s
C

i
2S1

Z �RC�0;0

T
C
0;i

t
C

i
D�1

ˇ̌̌̌
ˇ̌ @@˛ˇ

0@tCi C
RC �0;0

T

C

0;i

1A
� �

0@tCi C
RC �0;0

T

C

0;i

; sCi

1A ed jt
C

i
j=p

ˇ̌̌̌
ˇ̌
p

dtCi

!1=p

:

� k�k
L

p;d

k�1

C

n0X
iD1

X
j˛j�k�1

C 0˛k�kLp;d

k�1

� C 0k�k
L

p;d

k�1

where the inequalities follow by the same reasoning as for gR.0; �C; ��/. A similar
argument applies to the second term on the right hand side of Equation (13), so sR is
uniformly bounded.

Lemma A.11 The linearized @–operator

D@.uC;u�/W W
C
˚W �

˚�˚F0
˚GR˚L

p;d

k

�
u�CTM1; @

�
˚L

p;d

k

�
u��TM1; @

�
!L

p;d

k�1

�
ƒ0;1u�CTM1

�
˚L

p;d

k�1

�
ƒ0;1u��TM1

�
:

is surjective and has a uniformly bounded right inverse Q1 for large R.

Proof By assumption,

D@u˙ W .W
˙

u˙
˚F˙˚L

p;d

k
.u�˙TM1; @//!L

p;d

k�1

�
u�˙TM1

�
is surjective. Recall that the inclusion of F˙ in �

�
u�
˙

TM1
�

required choosing
particular sections v˙�;i;j and v˙

�;i;j
, constant near the punctures, but the image of

D@u˙ was independent of these choices. For appropriate choices of these sections,
D@.F0\F˙/CD@.GR/ is exactly F˙ . The desired surjectivity follows. Uniform
boundedness only requires that one observe that the “appropriate choices” converge,
which is clear. (See also [1, Corollary 5.7].)
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Now we estimate .D@/ zQR�I . Given a section .�C; ��/ of �˚L
p;d

k
.u�CTM1; @/˚

L
p;d

k
.u��TM1; @/, observe that

�
.D@/gR �gR.D@/

�
.�C; ��/D

8̂̂̂̂
<̂
ˆ̂̂:

0 outside the necks�
.D@/ˇi;R.t

0
i /
�
��.t

0
i ; s

0
i / if t0

i � 1

0 if �1� t0
i � 1

�

�
.D@/ˇi;R.�t0

i /
�
�C.t

0
i ; s

0
i / if t0

i � �1:

Now, D@ is a pure first order differential operator, so j.D@/ˇi;R.t
0
i /j � C1=.R=2�

T
˙

0;i

/� C2=R for R large and some constant C2 . So, for large R,

k

�
.D@/gR �gR.D@/

�
.�C; ��/k �

C2

R
k.�C; ��/k:

Also, outside the necks gR ı sR.�/D �, while in the necks

gR ı sR.�/DgR

�
ˇ.t0

i /�.t
0
i ; s

0
i /; .1�ˇ.t

0
i //�.t

0
i ; s

0
i /
�

D

8<:
ˇ.t0

i /�.t
0
i ; s

0
i /C .1�ˇi;R.t

0
i //.1�ˇ.t

0
i //�.t

0
i ; s

0
i / if t0

i � 1

.ˇ.t0
i /C .1�ˇ.t

0
i ///�.t

0
i ; s

0
i /D �.t

0
i ; s

0
i / if �1� t0

i � 1

.1�ˇi;R.�t0
i //ˇ.t

0
i /�.t

0
i ; s

0
i /C .1�ˇ.t

0
i //�.t

0
i ; s

0
i / if t0

i � �1:

D�.t0
i ; s

0
i /:

It follows that

kD@ zQR�� �k Dk.D@/.id ˚ id ˚ id ˚ id ˚gR/Q1sR�� �k

Dk

�
.D@.id ˚ id ˚ id ˚ id ˚gR/� .gR/D@//

�
Q1sR�

CgR.D@/Q1sR�� �k

Dk

�
.D@.id ˚ id ˚ id ˚ id ˚gR/� .gR/.D@//

�
Q1sR�C �� �k

�
C2

R
kQ1sR�k

�
C3

R
k�k

!0 as R!1.

So, for R large enough we have k.D@/ zQR � Ik � 1=2, so .D@/ zQR is invertible for

large enough R. Thus, QR D
zQR

�
.D@/ zQR

��1
is a uniformly bounded right inverse

to D@.
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Proof of Proposition A.2 By Corollary A.7 and Proposition A.9, the implicit function
theorem (Lemma A.5) proves the result.

Proof of Proposition A.3 The proof of Proposition A.2 all takes place in a small
neighborhood of the split holomorphic curves in question. There are, therefore, no
additional complications because the spaces W1 involved in Proposition A.3 have two
kinds of ends: near each end the asymptotics are exactly the kind considered in the
proof of Proposition A.2.

Therefore, the one point to check is that the split complex structure achieves transver-
sality for maps D2

`�
q`

kD1
T 2
�
! T 2 � Œ0; 1� � R. Unfortunately, this isn’t true.

Presumably these maps do achieve transversality if one considers them as lying in the
space of maps from a torus–with–boundary to T 2 � Œ0; 1��R. I do not even know
how to formulate this statement properly, however. So, instead we use a rather indirect
argument.

Fix ` distinct points w1; � � �w` in .0; 1/ � R, and a point z0 2 T 2 . Fix an almost
complex structure J on T 2 � Œ0; 1��R satisfying (J1)–(J4) and (J5 0 ), which is split
near fz0g � Œ0; 1� � R. Let NJ denote the space of maps u from D2#`

kD1
T 2 with

` marked points p1; � � � ;p` to T 2 � Œ0; 1��R in the homology class `ŒT 2�, so that
u.pi/D .z0; wi/. For a generic choice of J , we have transversality of the @–operator,
and the space NJ is a smooth, compact, oriented 0–manifold. We want to show that
#NJ D 1; then we will use NJ to perform the gluing.

To show #NJ D 1, first consider the case `D 1. We show #NJ D 1 by using a special
case of stabilization invariance. Specifically, consider the two Heegaard diagrams for
S1 � S2 shown in Figure 19. They differ by two handleslides of ˛1 over ˛2 . For
an appropriate choice of coherent orientation system, in the first diagram (H1 ), it is
easy to see that bHF D Z˚Z. It follows from handleslide invariance that the same is
true for the second diagram (H2 ). It follows that, for D the domain indicated by the
numbers in the second diagram, #MD D˙1.

Now, stretch the neck in the second diagram along the dark dotted circle C in Figure 19.
In the limit, H2 degenerates to T 2

S1�S2 _T 2
S3 . Choose an almost complex structure

on H2 so that, after stretching the neck, the corresponding almost complex structure
on T 2

S3 is J .

Sublemma A.12 Compactness still holds in the current context. That is, let J0 be
an almost complex structure on H2 satisfying (J1)–(J4) and (J5 0 ), which is split
near C . Let JR denote the almost complex structure on H2 obtained by inserting
a neck of modulus R along C . Let fuRW SR ! H2 � Œ0; 1� � Rg be a sequence of
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ˇ1

˛1
˛2

ˇ2

H1

H2

ˇ1

˛1

˛2

ˇ2

1

0

0

1 0
0

z

z

C

Figure 19: Model stabilization degeneration

JR –holomorphic curves with i nd.uR/ D 1. Then there is a subsequence of fuRg

which converges to a holomorphic twin tower. (Cf Proposition 12.4.)

Proof We just sketch the proof.

Add enough marked points to each component of each SR to stabilize it. Replacing the
uR by a subsequence if necessary, we may assume that the SR converge. Now, consider
the thick–thin decomposition of SR . For given � > 0 and large R, .�† ıuR/

�1.C /

lies in Thin�.SR/. For small � and large R, the component of Thin�.SR/ containing
C is an annulus in a neighborhood of which JR is split.

On the thick part of SR convergence of a subsequence follows from the Gromov–
Schwarz lemma and Arzela–Ascoli theorem, in the standard way (cf [2, Section 10.2.2]).
So, from now on assume the uR converge in the thick part.
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On all of the thin part of SR except the components intersecting .�† ı uR/
�1.C /,

convergence of a subsequence also follows in the standard way (cf [2, Section 10.2.3]).
So, from now on assume the uR converge in these thin parts.

In components of Thin�.SR/ intersecting .�† ıuR/
�1.C /, we extract convergence

of subsequences of �† ı uR and then �D ı uR by viewing them as sequences of
holomorphic curves with converging Lagrangian boundary conditions, as in the proof
of Proposition 12.4. That is, fix circles CL and CR in H2 so that the region between
CL and CR is an annulus A containing the component of Thin�.H2/ containing C ,
and so that JR is split over A (for all R). Let SA

R
D .�† ı uR/

�1.A/. The maps
.�† ıuR/jSA

R
W SA

R
!A are a sequence of maps with Lagrangian boundary conditions,

hence have a convergent subsequence. So, from now on assume that the �† ıuRjSA
R

converge.

Finally, .�D ı uR/
�
.�† ıuR/

�1.CL[CR/
�

is a collection of circles in Œ0; 1� � R,
which converges as R!1 to a collection of circles in Œ0; 1��R . Viewing �DıuRjSA

R

as a family of maps with these Lagrangian boundary conditions, we obtain a convergent
subsequence. Replacing the uR with this subsequence, we finally have a convergent
sequence of uRW SR!H2 � Œ0; 1��R.

Let zS1�S2 (respectively zS3 ) denote the wedge point in T 2
S1�S2 (respectively T 2

S3 ).
The domain D degenerates to a domain DS1�S2 in T 2

S1�S2 (respectively DS3 in
T 2

S3 ). Now, there is clearly a unique holomorphic curve uS1�S2 in MD
S1�S2 .

By choosing C appropriately, we can force zS3 to be the point z0 and

�D ıuS1�S2

�
.�† ıuS1�S2/�1.zS1�S2/

�
to be the point w1 . Then, the claim that #NJ D ˙1 follows from the fact that
#MD D˙1, the gluing result Proposition A.2, and the remark at the beginning of this
proof. This deals with the case `D 1.

Now, the fact that #NJ D˙1 for general ` follows from the `D 1 case. Let u denote
a holomorphic curve constructed for the `D 1 case. Consider a height ` holomorphic
curve each story of which is u. Then, gluing these stories together and using the fact
that changing the wi gives bordant moduli spaces we see that #NJ D˙1 for general
`, z0 , and fw1; � � � ; w`g.

Since the @–operator is transversal for NJ , stabilization invariance now follows from
the gluing result A.2 and the remark at the beginning of this proof, just as described in
Proposition 12.5. The present proposition is also immediate.
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Appendix B Cross–references with [21]
For the reader’s convenience I include a table indicating the correspondence between results in this paper
and those in [21]. (The correspondence is also indicated in the text.) The third column indicates how
similar the statements in the two places are, and the fourth how similar the proofs are. (Both are on a scale
of 0 , 1 , 2 or 1 , where 1 indicates that I refer to [21] for the proof.) The comparison is clearly rather
subjective.

Result of this paper Result of [21]
Similarity

of statement
Similarity
of proof

Lemma 2.1
and Lemma 2.2

Proposition 2.15
and Lemma 2.19

2 1

Lemma 2.3 Lemma 2.19 2 1

Proposition 3.9
and Lemma 3.10

Proposition 3.9 2 2

Corollary 4.5 Lemma 2.8 1 0
Lemma 4.11 Proposition 7.5 of [20] 2 1

Corollary 4.12
Theorem 4.9
and Lemma 2.8

2 0

Lemma 5.3 Lemma 4.12 1 2
Lemma 5.4 Lemma 4.13 2 0
Lemma 5.5 Lemma 4.14 2 0

Proposition 5.6
Lemma 5.8 and
Proposition 7.2

2 1

Proposition 6.3 Proposition 3.10 2 1
Corollary 7.2 Theorem 3.18 1 0
Lemma 8.1 and
Lemma 8.2

Theorem 4.15 2 1

Lemma 8.4 Proposition 4.18 2 2
Proposition 8.6 Proposition 4.17 2 1

Proposition 9.1
Theorem 7.3
and Theorem 6.1

2 1

Construct 10.1 Theorem 8.12 2 1
Lemma 10.2
and Lemma 10.3

Proposition 8.3 2 1

Lemma 10.6 Proposition 8.4 2 1
Lemma 10.8 Proposition 8.5 2 2
Lemma 10.10 Lemma 8.7 2 2
Lemma 10.15 Lemma 8.9 2 0
Lemma 10.16 Lemma 8.10 2 0
Proposition 10.17 Lemma 8.11 2 1

Lemma 10.18 Theorem 8.12 1 1
Lemma 10.19 Proposition 8.13 2 1
Lemma 10.20 Proposition 8.14 2 1
Lemma 10.28 Proposition 8.15 2 2
Proposition 10.29 Theorem 8.16 2 1

Lemma 11.1
Lemma 9.1
and Lemma 9.4

1 2

Proposition 11.2 Theorem 9.5 2 1
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Result of this paper Result of [21]
Similarity

of statement
Similarity
of proof

Proposition 11.4 Proposition 9.8 1 0
Proposition 11.3 Lemma 9.7 2 2
Sublemma 11.5 Lemma 9.3 1 1
Lemma 11.9 and
Corollary 11.10

Lemma 9.6 2 2

Proposition 12.5 Theorem 10.1 1 0
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[21] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-
manifolds, Ann. of Math. .2/ 159 (2004) 1027–1158 MR2113019
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