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A dilogarithmic formula
for the Cheeger–Chern–Simons class

JOHAN L DUPONT

CHRISTIAN K ZICKERT

We present a simplification of Neumann’s formula for the universal Cheeger–Chern–
Simons class of the second Chern polynomial. Our approach is completely algebraic,
and the final formula can be applied directly on a homology class in the bar complex.

57M27; 57T30

Introduction

In the famous papers [1] and [2], J Cheeger, S Chern and J Simons define characteristic
classes for flat G –bundles. Each such characteristic class is given by a corresponding
universal cohomology class in H�.BGı;C=Z/, where ı denotes discrete topology.
The cohomology of the classifying space of a discrete group is isomorphic to the
Eilenberg–Maclane group cohomology, and it has been a long standing problem to find
explicit formulas for the universal classes directly in terms of the bar complex. In [3],
the first author proved that the universal Cheeger–Chern–Simons (C–C–S) class for
the group SL.2;C/ associated to the second Chern polynomial is given up to a Q=Z

indeterminacy by a dilogarithmic formula defined on the Bloch group B.C/.

An element of B.C/ is a formal sum of cross-ratios (see below), but the cross-ratio
alone does not seem to carry enough information to get rid of the Q=Z indeterminacy on
the real part. Neumann [7] constructs an extended Bloch group bB .C/, where elements,
in addition to the cross-ratio, also contain information of two choices of logarithms.
It follows from Neumann’s article that this additional information is exactly what is
needed to remove the Q=Z indeterminacy. He shows that there is an isomorphism

�W H3.PSL.2;C//Š bB .C/;
and furthermore that there is a natural extension of the dilogarithmic formula from [3]
to bB .C/ such that the composition of � with the dilogarithm is exactly the universal
C–C–S class. The formula also gives a combinatorial formula for the volume and the
Chern–Simons invariant of a complete hyperbolic manifold M with finite volume,
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since the C–C–S class evaluated on the canonical flat PSL.2;C/–bundle over M equals
i.VolCiCS/. This is shown by Neumann and Yang [8].

The isomorphism � is defined by representing an element of H3.PSL.2;C// by a
“quasisimplicial complex,” and the appropriate choices of logarithms required to obtain
an element in bB .C/ are found by studying combinatorial properties of this complex.
We construct a map similar to Neumann’s using SL.2;C/ instead of PSL.2;C/ and
the more extended Bloch group from [7, Section 8] instead of the extended Bloch
group. We thus answer affirmatively a question raised about the relation of this group to
H3.SL.2;C// [7, page 443]. The definition of our map uses only simple homological
algebra, and we obtain a formula which enables us to calculate the universal C–C–S
class directly from a representative of a homology class in the bar complex. All
geometry is replaced by algebra which vastly simplifies the proofs.

We give a brief overview of the contents: In Section 1 we review the basic theory of
the C–C–S classes, group homology and the Bloch group. Many details are included
in order to make the paper self-contained. In Section 2 we recall Neumann’s definition
of the (more) extended Bloch group. This overlaps with Neumann’s paper but for the
sake of completeness, we include most of the details. In Section 3, we construct a
map b�W H3.SL.2;C//! bB .C/ by describing a way of detecting the appropriate two
choices of logarithms directly from a tuple of group elements. The idea is that the extra
information can be found in C2nf0g rather than S2 using the Hopf map. In Section 4
we show that our map actually calculates the C–C–S class and show that b� is surjective
with kernel of order 2. Finally, we show in the appendix that our definition of the
extended Bloch group agrees with that of Neumann.

Remark The reader should keep in mind that whenever we mention the extended
Bloch group, we always mean the more extended Bloch group from [7, Section 8].
Neumann uses the notation EB.C/ for this group but we will use the notation bB.C/
even though this conflicts with the notation in [7].

Acknowledgements This work was partially supported by The Danish Natural Science
Research Council (Statens Naturvidenskabelige Forskningsråd), Denmark.

1 Preliminaries

In this section we review some basic theory and introduce our terminology. Throughout,
F always denotes either R or C.
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1.1 The Cheeger–Chern–Simons classes

We here recall some facts about the C–C–S classes that we shall need. For their
construction and basic properties, we refer to [1] or [2].

Let G be a Lie group with finitely many components and let Ik.G; F/ denote the
group of invariant polynomials. Recall from classical Chern–Weil theory that there is a
natural homomorphism

W W Ik.G; F/!H 2k.BG; F/:

Let r denote the map H�.BG;Z/ ! H�.BG; F/ induced by the inclusion. The
C–C–S classes are defined from the following data:

(1) An invariant polynomial P 2 Ik.G; F/.

(2) A class u 2H 2k.BG;Z/ satisfying W .P /D ru.

Let Kk.G; F/D
˚
.P;u/ 2 Ik.G; F/�H 2k.BG;Z/ jW .P /D ru

	
:

Let Gı denote the underlying discrete group of G . In [1] and [2], the authors describe
a way of associating a cohomology class yP .u/ in H 2k�1.BGı; F=Z/ to an element
.P;u/ in Kk.G; F/. This association is natural in the following sense:

Theorem 1.1 Let �W G ! H be a Lie group homomorphism between Lie groups
with finitely many components. The diagram below is commutative.

Kk.H; F/
��

//

C–C–S
��

Kk.G; F/

C–C–S
��

H 2k�1.BH ı; F=Z/
��

// H 2k�1.BGı; F=Z/

Remark 1.2 In the following we shall only be interested in the C–C–S classes cor-
responding to the second Chern polynomial and the first Pontrjagin polynomial. In
both cases u is just the corresponding Chern class or Pontrjagin class, and we simply
denote the associated C–C–S classes yC2 and yP1 .

1.2 The homology of a group

Let G be a group. For a right G –module A, we let AG denote the group A˝ZŒG� Z,
where Z is regarded as a trivial G–module. The homology of G is by definition
the homology of the complex .P�/G , where P� is a projective resolution of Z by
right G –modules. The following general construction of a projective resolution is of
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particular interest to us: For X a set, let C�.X / be the acyclic complex of free abelian
groups, which in dimension n is generated by .nC 1/–tuples of elements in X . The
differential is given by

@.x0; : : : ;xn/D

nX
iD0

.�1/i.x0; : : : ; yxi ; : : : ;xn/:

In particular for X D G , the diagonal left G–action on tuples makes C�.G/ into a
complex of G –modules (considered as right modules in the standard way) and C�.G/

augmented by the map C0.G/! Z given by .g0/ 7! 1 is a free resolution of Z. The
complex C�.G/G thus calculates the homology of G .

There is another description of this complex. Consider the complex B�.G/ of free
abelian groups, which in dimension n is generated by symbols Œg1j � � � jgn� and with
differential given by

@Œg1j � � � jgn�D Œg2j � � � jgn�C

n�1X
iD1

.�1/i Œg1j � � � jgigiC1j � � � jgn�

C .�1/nŒg1j � � � jgn�1�:

This complex is isomorphic to C�.G/G via the map

(1–1) Œg1j � � � jgn� 7! .1;g1;g1g2; : : : ;g1g2 � � �gn/

with inverse

(1–2) .g0; : : : ;gn/ 7! Œg�1
0 g1j � � � jg

�1
n�1gn�:

Hence, we can represent a homology class in Hn.G/ either by a chain in Cn.G/ or by
a cycle in Bn.G/. These two ways of representing homology classes are called the
homogenous and the inhomogenous representation, respectively.

Let M be a left G –module. The cohomology H�.G;M / is defined as the homology
of the complex HomZŒG�.P�;M /, where P� , this time, is a projective resolution of Z

by left G –modules. Regarding a divisible abelian group A as a trivial G –module, we
have by the universal coefficient theorem a natural isomorphism

H n.G;A/D Hom.Hn.G/;A/:

It is well known that the homology of a group is isomorphic to the singular homology
of its classifying space, and since the abelian group F=Z is obviously divisible, we can
regard the C–C–S classes as homomorphisms from H3.G/ to F=Z. It is an interesting
problem to try to find explicit formulas for the C–C–S classes directly in terms of the
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resolution C�.G/ (or some subcomplex). We shall investigate this in the following
sections.

We conclude the section with a little lemma that will be useful later. For each g 2 G

there is a map sgW C�.G/! C�.G/ given by sg.g0; : : : ;gn/D .g;g0; : : : ;gn/.

Lemma 1.3 Let D�.G/ be a G –subcomplex of C�.G/. Suppose that for each cycle
� in D�.G/, there exists a point g.�/ in G such that sg.�/� is in DnC1.G/. Then
D�.G/ is acyclic and D�.G/G calculates the homology of G .

Proof Note that @sg.g0; : : : ;gn/ D .g0; : : : ;gn/ � sg.@.g0; : : : ;gn//. Let � be a
cycle in D�.G/. Since @� D 0 we have � D @sg.�/� , that is, � is a boundary.

1.3 The Bloch group

In all the following, we let G denote the group SL.2;C/.

Definition 1.4 The pre-Bloch group P.C/ is an abelian group generated by symbols
Œz�, z 2 Cnf0; 1g subject to the relation

(1–3) Œx�� Œy�C
hy

x

i
�

h1�x�1

1�y�1

i
C

h1�x

1�y

i
D 0:

This relation is called the five term relation.

In [3] and [6] the five term relation is different, but this is because of the different
definition of the cross-ratio (1–4).

Definition 1.5 The Bloch group B.C/ is the kernel of the homomorphism

�W P.C/! C� ^C�

to the second exterior power of the abelian group C� defined by mapping a generator
Œz� to z ^ .1� z/.

There is an important interpretation of the pre-Bloch group in terms of a homology
group. Recall the notation from Section 1.2. Let C

¤
� .S

2/ denote the subcomplex of
C�.S

2/ consisting of tuples of distinct elements. Recall that G D SL.2;C/ acts on
S2 D C[f1g by Möbius transformations, that is,�

a b

c d

�
z D

azC b

czC d
:
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Via this action, the complex C
¤
� .S

2/ becomes a complex of G –modules. The action
is 3–transitive and four distinct points z0; : : : ; z3 are determined up to the action by
the cross-ratio

(1–4) z D Œz0 W z1 W z2 W z3� WD
.z0� z3/.z1� z2/

.z0� z2/.z1� z3/
:

Note that in [3] and [6] the cross-ratio is defined to be the reciprocal of (1–4). It follows
that C

¤

3
.S2/G is just the free abelian group on Cnf0; 1g. One easily checks that the

five term relation is equivalent to the relation

4X
iD0

.�1/i Œz0 W � � � W yzi W � � � W z4�D 0:

This means that the kernel of the cross-ratio map � W C¤
3
.S2/! P.C/ is exactly the

boundaries. Since C¤
2
.S2/G D Z by 3–transitivity, C¤

3
.S2/G consists entirely of

cycles, and � induces an isomorphism

� W H3.C
¤
� .S

2/G/! P.C/:

We have the following relations in the pre-Bloch group [6, Lemma 5.11]:

Œx�D
h 1

1�x

i
D

h
1�

1

x

i
D�

h 1

x

i
D�

h x

x� 1

i
D�Œ1�x�

If we extend the cross-ratio by setting Œz0 W z1 W z2 W z3�D 0 if there are equals among
z0; : : : ; z3 , it follows from the above relations that � can be extended to H3.C�.S

2/G/.
We omit the details. We can now define a map

�W H3.G/! P.C/

as the composition

H3.G/ // H3.C�.S
2/G/

�
// P.C/

where the left map is induced by

C3.G/! C3.S
2/; .g0; : : : ;g3/ 7! .g01;g11;g21;g31/:

In [6] it is shown that � has image in the Bloch group and that the following sequence,
which is essentially due to Bloch and Wigner, is exact.

(1–5) 0 // Q=Z // H3.G/
�

// B.C/ // 0

Geometry & Topology, Volume 10 (2006)
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Using the isomorphism Q=ZD lim
�!

Z=nZD lim
�!

H3.Z=nZ/, the left map is the limit
map induced by the maps Z=nZ!G given by sending 1 to the matrix of a rotation
by 2�=n.

1.4 Rogers’ dilogarithm

We here review a result in [3] relating the C–C–S class yP1 to a dilogarithm function
via the Bloch group.

Rogers’ dilogarithm is the following function defined on the open interval .0; 1/:

(1–6) L.z/D�
1

2
Log.z/Log

� 1

1� z

�
CLi2.z/�

�2

6

Here Li2.z/D�
R z

0
Log.1�t/

t
dt is the classical dilogarithm function. As in [9] we have

subtracted �2=6 from the original Rogers’ dilogarithm in order to make it satisfy (1–8).
L is real analytic and satisfies the functional equations

L.x/CL.1�x/D�
�2

6
(1–7)

L.x/�L.y/CL
�y

x

�
�L

�1�x�1

1�y�1

�
CL

�1�x

1�y

�
D 0; y < x:(1–8)

We can extend L (discontinuously) to R by setting

L.1/D 0; L.0/D�
�2

6
and L.x/D

(
�L.1=x/ for x > 1

�L.x=.x� 1// for x < 0

and define a map LW C3.SL.2;R//! R by

(1–9) .g0; : : : ;g3/!L.Œg01 W � � � W g31�/:

This is clearly well-defined (recall that cross-ratios are defined to be zero when there
are equals) since all cross-ratios are real. Also, a few calculations using the functional
equations show that the map takes boundaries to multiples of �2=6, that is, it is a
3–cocycle modulo �2=6. The theorem below can be found in [3]. The minus sign
there is due to the differing definition of the cross-ratio.

Theorem 1.6 1
4�2 L equals the Cheeger–Chern–Simons class yP1 modulo 1=24.

Since the restriction of the second Chern polynomial to the Lie algebra of SL.2;R/
is minus the Pontrjagin polynomial, it follows from Theorem 1.1 that we have a
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commutative diagram:

(1–10)

H3.SL.2;R//
� yP1

//

��

R=Z

��

H3.SL.2;C//
yC2

// C=Z

By Theorem 1.6, yP1 is (modulo 1=24) just a dilogarithm via the Bloch group. We
wish to find a similar expression for yC2 by extending L to H3.SL.2;C//. This is
partially solved in [3] by studying a homomorphism cW B.C/! C=Q, known as the
Bloch regulator, and showing that the composition below is 2 yC2 .

H3.SL.2;C// �
// B.C/ c

// C=Q

We shall improve this by showing that there is a commutative diagram

H3.SL.2;C//
b�

//

��

bB.C/ � 1

2�2
bL

//

��

C=Z

��

H3.SL.2;C//=.Q=Z/
�

// B.C/ c
// C=Q

so that the top composition is 2 yC2 . Here bB .C/ is Neumann’s extended Bloch group
(see [7] or Section 2). In other words, yC2 is a dilogarithm via the extended Bloch
group exactly as yP1 is a dilogarithm via the Bloch group.

2 The extended Bloch group

In this section we review Neumann’s definition of the extended Bloch group. As
mentioned in the introduction the reader should keep in mind that our extended Bloch
group is what Neumann calls the more extended Bloch group.

We shall use the conventions that the argument Arg z of a complex number always
denotes the main argument (�� <Arg z � � ) and the logarithm Log z always denotes
the logarithm having Arg z as imaginary part.

The idea is to construct a Riemann surface bC covering Cnf0; 1g and then construct
the extended pre-Bloch group bP .C/ as in Definition 1.4, with an appropriate lift of
the five term relation.

Let bC denote the universal abelian cover of Cnf0; 1g. There is a nice way of repre-
senting points in bC . Let Ccut denote Cnf0; 1g cut open along each of the intervals
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.�1; 0/ and .1;1/ so that each real number r outside of Œ0; 1� occurs twice in Ccut .
We shall denote these two occurrences of r by r C 0i and r � 0i respectively. It is
now easy to see that bC is isomorphic to the surface obtained from Ccut � 2Z� 2Z by
the following identifications:

.xC 0i; 2p; 2q/� .x� 0i; 2pC 2; 2q/ for x 2 .�1; 0/

.xC 0i; 2p; 2q/� .x� 0i; 2p; 2qC 2/ for x 2 .1;1/:

This means that points in bC are of the form .z;p; q/ with z 2 Cnf0; 1g and p; q even
integers. Note that bC can be regarded as the Riemann surface for the function

Cnf0; 1g ! C2; z 7!
�

Log z;Log
� 1

1� z

��
:

We shall show below that L can be extended holomorphically to be defined on bC , and
then we shall simply define the extended five term relation to be the smallest possible
extension of the relation (1–8).

Consider the set

FT WD
n�

x;y;
y

x
;
1�x�1

1�y�1
;
1�x

1�y

�o
� .Cnf0; 1g/5

of five-tuples involved in the five term relation. Also let

FT0 D
˚
.x0; : : : ;x4/ 2 FT j 0< x1 < x0 < 1

	
be the set of five-tuples involved in the functional equation (1–8). Define the setcFT � bC � � � � �bC to be the component of the preimage of FT that contains all points�
.x0I 0; 0/; : : : ; .x4I 0; 0/

�
with .x0; : : : ;x4/ 2 FT0 .

Remark 2.1 This notation conflicts with the notation in [7]. Our cFT is what Neumann
calls cFT00 in [7, Section 8]. This is shown in the appendix.

Definition 2.2 The extended pre-Bloch group bP .C/ is the abelian group generated
by symbols ŒzIp; q�, with .zIp; q/ 2 bC , subject to the relation

4X
iD0

.�1/i Œxi Ipi ; qi �D 0 for ..x0Ip0; q0/; : : : ; .x4Ip4; q4// 2 cFT:

This relation is called the extended five term relation.
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Definition 2.3 The extended Bloch group bB.C/ is the kernel of the homomorphism
(which is well-defined by [7, Lemma 2.3])

b� W bP .C/! C^C

defined on generators by ŒzIp; q� 7! .Log zCp� i/^ .�Log.1� z/C q� i/.

We now extend L to bC . First note that the expression in (1–6) is well-defined for
all z 2 Cnf0; 1g, and that L extended this way is holomorphic except at real points
outside the interval between 0 and 1.

Define bL.zIp; q/DL.z/C
� i

2

�
q Log.z/�p Log

� 1

1� z

��
:

Remark 2.4 Neumann calls this map R (probably for Rogers), but in fact Rogers
originally called his dilogarithm L. Also, the name bL is more consistent with our
convention that all extended groups and maps be labelled with a hat.

Proposition 2.5 (Neumann [7, Proposition 2.5]) 1
2�2

bL gives a well-defined and
holomorphic map bC ! C=Z. Also the extended five term relation is a functional
equation so that 1

2�2
bL gives a homomorphism bP .C/! C=Z.

2.1 Geometry of the extended pre-Bloch group

We first recall some geometric properties of the cross-ratio. Let z0; z1; z2; z3 be four
distinct ordered points in C [ f1g. Regarding C [ f1g as the boundary of the
standard compactification of hyperbolic 3–space H3 , the four points define a unique
ideal hyperbolic simplex Œz0; : : : ; z3� which is determined up to orientation preserving
congruence by the cross-ratio

(2–1) z D Œz0 W z1 W z2 W z3� WD
.z0� z3/.z1� z2/

.z0� z2/.z1� z3/
:

Clearly z 2 Cnf0; 1g and since Œ0 W 1 W 1 W z�D z , every z 2 Cnf0; 1g can be realized
as the cross-ratio of an ideal hyperbolic simplex. It is well known that z is real if and
only if the four points lie on a circle (that is circle or straight line) and in this case the
simplex is called flat.

We orient H3 such that the cross-ratio of a nonflat simplex has positive imaginary part
if and only if the orientation induced by the vertex ordering agrees with the orientation
inherited from H3 . There is a nice geometric interpretation of the argument of z . If
the imaginary part of z is greater than or equal to zero then Arg z is the dihedral angle
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of the simplex corresponding to the edge Œz0z1�. Otherwise, that is if the orientation
disagrees with the orientation of H3 , it is minus the dihedral angle.

It easily follows from (2–1) that an even permutation of the zi ’s replaces z by one of
three so-called cross-ratio parameters:

z; z0 D
1

1� z
and z00 D 1�

1

z

In particular the dihedral angle corresponding to the edges Œz1z2� and Œz1z3� are Arg.z0/
and Arg.z00/ respectively, (or their negatives if the vertex ordering does not agree with
the orientation of H3 ). Since a product of two disjoint transpositions clearly keeps
the cross-ratio fixed, we see that the dihedral angles of opposite edges are the same.
Note that since zz0z00 D �1 the sum of the dihedral angles is always � . This is not
surprising since a horosphere at an ideal vertex of a hyperbolic simplex intersects the
simplex in a Euclidean triangle.

Definition 2.6 A combinatorial flattening of an ideal simplex with cross-ratio z is a
triple .w0; w1; w2/ of complex numbers with w0Cw1Cw2 D 0, where w0 and w1

are choices of logarithms of z and z0 . We call w0; w1 and w2 log-parameters.

Note that w2˙� i is a choice of logarithm of z00 . The set of combinatorial flattenings
of ideal simplices is in bijective correspondence with bC by the map l given by

(2–2) l.w0; w1; w2/D
�
zI
w0�Log z

� i
;
w1�Log. 1

1�z
/

� i

�
where z D ew0 . This means that the extended pre-Bloch group can be regarded as
being generated by combinatorial flattenings of ideal simplices, whereas the pre-Bloch
group can be regarded as being generated by congruence classes of ideal simplices. Let
us discuss the five term relation in this geometric setup.

Suppose .w0; w1; w2/ is a combinatorial flattening of an ideal simplex Œz0; : : : ; z3�.
Then we can assign log-parameters to each edge in such a way that w0 is assigned
to the edge Œz0z1�, w1 to the edge Œz1z2� and w2 to the edge Œz1z3�. The three
remaining edges are assigned the same log-parameter as their opposite edge. See
Figure 1. Let z0; : : : ; z4 be five distinct points in C [ f1g and let �i denote the
simplices Œz0; : : : ; yzi ; : : : ; z4�. Using (2–1), it is easy to see that the cross-ratios xi of
�i can be expressed in terms of x WD z0 and y WD z1 as follows:

x0 D Œz1 W z2 W z3 W z4� WD x

x1 D Œz0 W z2 W z3 W z4� WD y
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x2 D Œz0 W z1 W z3 W z4�D
y

x

x3 D Œz0 W z1 W z2 W z4�D
1�x�1

1�y�1

x4 D Œz0 W z1 W z2 W z3�D
1�x

1�y

z0 z1

z2z3 w0

w0

w1 w1

w2w2

Figure 1: Assignment of log-parameters to edges of an ideal simplex

Suppose .wi
0
; wi

1
; wi

2
/ are combinatorial flattenings of the simplices �i . Then every

edge Œzizj � belongs to exactly three of the �i ’s and is therefore assigned three log-
parameters.

Definition 2.7 Let .wi
0
; wi

1
; wi

2
/ be combinatorial flattenings of the five simplices

�i D Œz0; : : : ; yzi ; : : : ; z4�. The flattenings are said to satisfy the flattening condition if
for each edge the signed sum of the three assigned log-parameters is zero (the sign is
positive if and only if i is even).

It follows directly from the definition that the flattening condition is equivalent to the
following ten equations.

Œz0z1� W w2
0 �w

3
0 Cw

4
0 D 0 Œz0z2� W �w1

0 �w
3
2 Cw

4
2 D 0

Œz1z2� W w0
0 �w

3
1 Cw

4
1 D 0 Œz1z3� W w0

2 Cw
2
1 Cw

4
2 D 0

Œz2z3� W w0
1 �w

1
1 Cw

4
0 D 0 Œz2z4� W w0

2 �w
1
2 �w

3
0 D 0

Œz3z4� W w0
0 �w

1
0 Cw

2
0 D 0 Œz3z0� W �w1

2 Cw
2
2 Cw

4
1 D 0

Œz4z0� W �w1
1 Cw

2
1 �w

3
1 D 0 Œz4z1� W w0

1 �w
2
2 �w

3
2 D 0
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Recall that combinatorial flattenings are in one to one correspondence with points inbC via the map l in (2–2).

Theorem 2.8 (Neumann [7, Lemma 3.4]) Flattenings .wi
0
; wi

1
; wi

2
/ satisfy the flat-

tening condition if and only if
P4

iD0.�1/i Œl.wi
0
; wi

1
; wi

2
/�D 0 in bP .C/.

This means that the flattening condition is equivalent to the extended five term relation.

3 Mappings via configurations in C2nf0g

In this section we explore the idea that the extra information needed to remove the
Q=Z indeterminacy in Dupont’s formula for the C–C–S class yC2 can be detected by
configurations in C2nf0g instead of S2 . Let h denote the Hopf map hW C2nf0g !

S2 D C[f1g given by
.z; w/ 7! z=w:

We will show that for certain tuples .v0; : : : ; v3/ of points in C2nf0g, there is a natural
choice of combinatorial flattening of the ideal simplex Œhv0; : : : ; hv3�. This means that
such a tuple gives an element in bP .C/. We also describe a way of associating such a
tuple to a tuple of group elements in such a way that we obtain a mapb�W H3.G/! bP .C/:
Recall from Section 1.3 that there is a map � W C

¤

3
.S2/G ! P.C/. We saw that

boundaries were mapped to zero and that the induced map

� W H3.C
¤
� .S

2/G/! P.C/

is an isomorphism. We shall elaborate on this and construct a G –complex C
h¤
� .C2/

and a map b� W C h¤
3
.C2/G! bP .C/ giving rise to a commutative diagram:

H3.C
h¤
� .C2/G/

b�
//

h
��

bP.C/
��

H3.C
¤
� .S

2/G/
�

// P.C/

We define the complex C
h¤
� .C2/ as the subcomplex of C�.C

2nf0g/ consisting of tuples
mapping to different elements in S2 by the Hopf map h. The G –module structure is
given by the natural G–action on C2nf0g, and since this action is h–equivariant, h

induces a G –map C
h¤
� .C2/! C

¤
� .S

2/ and hence a map

hW H3.C
h¤
� .C2/G/!H3.C

¤
� .S

2/G/:
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3.1 Mapping to the extended pre-Bloch group

We now assign to each 4–tuple .v0; v1; v2; v3/2C
h¤
3
.C2/ a combinatorial flattening of

the ideal simplex Œhv0; hv1; hv2; hv3� in such a way that the combinatorial flattenings
assigned to tuples .v0; : : : ; yvi ; : : : v4/ satisfy the flattening condition. This will give us
a map b� W H3.C

h¤
� .C2/G/! bP .C/:

The key step is to observe that the cross-ratio parameters z and 1
1�z

of a simplex
Œhv0; hv1; hv2; hv3� can be expressed in terms of determinants

z WD Œhv0 W hv1 W hv2 W hv3�D

�
v1

0

v2
0

�
v1

3

v2
3

�
�
v1

0

v2
0

�
v1

2

v2
2

�
�
v1

1

v2
1

�
v1

2

v2
2

�
�
v1

1

v2
1

�
v1

3

v2
3

� D det.v0; v3/ det.v1; v2/

det.v0; v2/ det.v1; v3/

where the upper indices refer to first or second coordinate in C2 . Similarly,

1

1� z
D Œhv0 W hv2 W hv0 W hv3�D

�
v1

1

v2
1

�
v1

3

v2
3

�
�
v1

1

v2
1

�
v1

0

v2
0

�
�
v1

2

v2
2

�
v1

0

v2
0

�
�
v1

2

v2
2

�
v1

3

v2
3

� D det.v1; v3/ det.v0; v2/

det.v0; v1/ det.v2; v3/
:

Since obviously hvi ¤ hvj if and only if det.vi ; vj /¤ 0, all these determinants are
nonzero. This suggests that we can assign a flattening to .v0; v1; v2; v3/ by setting

w0 DLog det.v0; v3/CLog det.v1; v2/�Log det.v0; v2/�Log det.v1; v3/

w1 DLog det.v0; v2/CLog det.v1; v3/�Log det.v0; v1/�Log det.v2; v3/

w2 DLog det.v0; v1/CLog det.v2; v3/�Log det.v0; v3/�Log det.v1; v2/:

This defines a map b� W C h¤
3
.C2/! bP .C/ by

(3–1) .v0; v1; v2; v3/ 7! Œl.w0; w1; w2/�:

Now suppose .w0
0
; w0

1
; w0

2
/; : : : ; .w4

0
; w4

1
; w4

2
/ are flattenings defined as above of

simplices Œhv0; : : : ;bhvi ; : : : ; hv4�. We must check that these flattenings satisfy the
flattening condition. This is equivalent to checking that all the ten equations listed
below Definition 2.7 are satisfied. We check the first of these and leave the others to
the reader. Using the notation .v; w/ WD Log det.v; w/ we have
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w2
0 D .v0; v4/C .v1; v3/� .v0; v3/� .v1; v4/

w3
0 D .v0; v4/C .v1; v2/� .v0; v2/� .v1; v4/

w4
0 D .v0; v3/C .v1; v2/� .v0; v2/� .v1; v3/

from which it follows that the equation w2
0
�w3

0
Cw4

0
D 0 is satisfied.

Having verified all the ten equations, it now follows from Theorem 2.8 that b� sends
boundaries to zero. Since b� obviously factors through C

h¤
3
.C2/G , we obtain a mapb� W H3.C

h¤
� .C2/G/! bP .C/.

It is clear that the diagram below is commutative.

H3.C
h¤
� .C2/G/

b�
//

h
��

bP.C/
��

H3.C
¤
� .S

2/G/
�

// P.C/

Proposition 3.1 The image of b� W H3.C
h¤
� .C2/G/! bP .C/ is in bB.C/.

Proof Define a map �W C h¤
2
.C2/G! C^C by

.v0; v1; v2/ 7! .v0; v1/^ .v0; v2/� .v0; v1/^ .v1; v2/C .v0; v2/^ .v1; v2/

where we still use the notation .v; w/ WD Log det.v; w/. A straightforward calculation
shows that the diagram below is commutative.

C
h¤
3
.C2/G

b�
//

@
��

bP.C/
b�
��

C
h¤
2
.C2/G

�
// C^C

This means that cycles are mapped to bB.C/ as desired.

3.2 The map from H3.G /

In this section we shall construct a map b� from H3.G/ to bP .C/ via the group
H3.C

h¤
� .C2/G/. To define this map explicitly on the chain level we need to restrict to

a subcomplex of C�.G/.
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Definition 3.2 A chain in C�.G/ is called good if all its tuples satisfy gi ¤˙gj and
v–good (v 2C2 ) if all its tuples satisfy det.giv;gjv/¤ 0. The G –complexes of good
and v–good chains are denoted C

good
� .G/ and C v

� .G/ respectively.

By Lemma 1.3, C
good
� .G/ and C v

� .G/ are both acyclic so C
good
� .G/G and C v

� .G/G
both calculate the homology of G . From now on we will identify H3.G/ with
H3.C

good
� .G/G/. Consider the G –maps

‰vWCn.G/! Cn.C
2/; .g0; : : : ;gn/ 7! .g0v; : : : ;gnv/

conjgWCn.G/! Cn.G/; .g0; : : : ;gn/ 7! .gg0g�1; : : : ;ggng�1/:

Note that if � is in C v
� .G/G then conjg.�/ is in C

gv
� .G/G and we have

(3–2) ‰gv.conjg.�//D‰v.�/:

It is clear that ‰v takes v–good chains to C
h¤
n .C2/.

The following is simple.

Lemma 3.3 Let g1 ¤˙g2 2G . The subset

fv 2 C2
j det.g1v;g2v/¤ 0g � C2

is open and dense.

For a good chain � belonging to either C
good
� .G/ or C

good
� .G/G consider the set

S� D fv 2 C2
j � is v–goodg:

Since finite intersections of dense open subsets is dense open, it follows from Lemma 3.3
that S� is dense open. In other words, any good chain is also a v–good chain for
almost all v 2C2 . The following is a simple consequence of (3–2) and the well-known
fact that conjugation induces the identity map on homology.

Proposition 3.4 Let � 2 C
good
� .G/G be a cycle. The homology class of ‰v.�/ is

independent of v 2 S� .

We can now define a map ‰W H3.G/!H3.C
h¤
� .C2/G/ by

Œ� � 7! Œ‰v.�/�; v 2 S� :
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Proposition 3.5 The diagram below is commutative.

H3.G/
‰

//

��

H3.C
h¤
� .C2/G/

h

((QQQQQQQQQQQQ

H3.G/=Q=Z
�

// P.C/ H3.C
¤
� .S

2/G/
�

oo

Proof The map ‰ obviously coincides with the map

H3.G/ŠH3.C
v
� .G/G/

‰v
// H3.C

h¤
� .C2/G/:

The proposition follows from this with v D
�
1
0

�
, since h

�
1
0

�
D1.

We can now define b� as the composition

H3.G/
‰

// H3.C
h¤
� .C2/G/

b�
// bB.C/:

Remark 3.6 The second author has shown that H3.C
h¤
� .C2/G/ is canonically iso-

morphic to H3.G;P /, where P is the parabolic subgroup of upper triangular matrices
with 1 on the diagonal. Under this isomorphism ‰ corresponds to the natural map
H3.G/ ! H3.G;P /. This result makes Theorem 4.1 more directly applicable to
hyperbolic manifolds, since a hyperbolic manifold with cusps has a natural fundamental
class in H3.G;P /. More on this will appear elsewhere.

4 Relation with the Cheeger–Chern–Simons class

In this section we relate the maps constructed above to the Cheeger–Chern–Simons
class yC2 . Our goal is to prove the following theorem.

Theorem 4.1 � 1
2�2

bL ıb� D 2 yC2 .

Remark 4.2 The reader who wishes to compare this result with Neumann’s may
notice that the factors of 2 seem to be missing in [7, Theorem 12.1]. This is because
Neumann uses a different normalisation of the C–C–S class. It is well known that the
natural map H3.SL.2;C//!H3.PSL.2;C// is surjective with kernel Z=4Z, so from
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Theorem 1.1 we get a commutative diagram:

0 // Z=4Z // H3.SL.2;C//

yC2

��

// H3.PSL.2;C//

yC2
��

// 0

0 // Z=4Z // C=Z // C=1
4

Z // 0

In Neumann’s normalisation C=1
4

Z is identified with C=�2Z via the map sending x

to .2� i/2x and it follows that our result agrees with that of Neumann. The reason
for using Neumann’s normalisation is that yC2 evaluated on the fundamental class of a
complete hyperbolic manifold with finite volume is i.VolCiCS/ as mentioned in the
introduction. The invariant VolCiCS is often regarded as a natural complexification
of volume, so from this point of view this normalisation seems more natural. We have,
however, chosen to keep the original normalisation to make references to earlier papers
easier.

Let H3.G/˙ denote the subgroups fx 2H3.G/ j �x D˙xg where � is the involution
induced by complex conjugation. We shall refer to these subgroups as the real and the
imaginary parts of H3.G/.

The following is simple.

Proposition 4.3 1
2�2

bL ıb� is equivariant under complex conjugation.

From Theorem 1.1, yC2 is also equivariant under conjugation, and since H3.G/ is
divisible by a result in [6], it is enough to study the real and imaginary parts separately.

4.1 The imaginary part

It is well known that the oriented volume of an ideal simplex with cross-ratio z is given
by

Vol.z/D Arg.1� z/Log jzj � Im
Z 1

0

Log.1� tz/

t
dt:

For a proof of this see [6, page 172].

Remark 4.4 As mentioned earlier Dupont and Sah [6] use a different cross-ratio
convention, but the formula for the oriented volume remains unchanged, since they
orient H3 according to their cross-ratio (the orientation of a simplex with cross-ratio z

is positive if and only if Im.z/ > 0).
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The five term relation (1–3) is easily seen to be a functional equation for Vol. This
means that Vol is well-defined on the pre-Bloch group and therefore also on the
extended pre-Bloch group.

Theorem 4.5 (Dupont [3, Proposition 3.1]) Im yC2 D�
1

4�2 Vol ı�.

Proposition 4.6 The restriction of Im bLW bP .C/! R to bB .C/ equals Vol.

Proof Let � D
P
.�1/"i Œzi Ipi ; qi � 2 bB .C/. Since

ImbL.ŒzIp; q�/D1

2

�
Arg.z/Log j1� zjCLog jzjArg.1� z/

�
� Im

Z 1

0

Log.1� tz/

t
dt C

�

2
p Log j1� zjC

�

2
q Log jzj

Vol.z/� ImbL.ŒzIp; q�/D 1

2

�
Log jzjArg.1� z/�Arg.z/Log j1� zj

�
we have

�
�

2
p Log j1� zj �

�

2
q Log jzj:

Let � denote the composition

C^CD .R^R/˚ .iR^ iR/˚ .R˝ iR/! R˝ iR! iR

where the left map is projection and the right map is multiplication. A simple calculation
shows that

�
�b�.ŒzIp; q�/�D�i Log jzjArg.1� z/C i Arg.z/Log j1� zj

Cp� i Log j1� zjC q� i Log jzj D �2i
�

Vol.z/� ImbL.ŒzIp; q�/�:
Since b�.�/D 0, we have Vol.�/D Im bL.�/ as desired.

4.2 The real part

Let GR D SL.2;R/. The key step is the following theorem of Dupont, Parry and Sah
[5; 10].

Theorem 4.7 The inclusion GR!G induces an isomorphism

H3.GR/ŠH3.G/C:
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This means that it is enough to study real cycles. The idea is that every homology class
in H3.GR/ has a representative such that the image of bL ıb� is the same as the image
of the cocycle L from (1–9).

In the following the reader should bear in mind the relationship between the homogenous
and the inhomogenous representations of cycles given by the equations (1–1) and (1–2).

Definition 4.8 An element
�

a b
c d

�
2GR is called positive if c is positive and nonzero

if c is nonzero. A chain in Bn.GR/ is called positive if all its group elements are
positive.

If .g1;g2;g3/ is a triple of positive elements that are so small (close to the identity)
that also g1g2 , g2g3 and g1g2g3 are positive, we have

� .v0; v1; v2; v3/ WD
��

1
0

�
;g1

�
1
0

�
;g1g2

�
1
0

�
;g1g2g3

�
1
0

��
is in C

h¤
3
.C2/.

� det.vi ; vj / > 0 for i < j .

� 1> g11> g1g21> g1g2g31.

The third property ensures that the cross-ratio z of the associated flat ideal simplex
is strictly between 0 and 1, and the second property ensures that the log-parameters
w0; w1; w2 satisfy that l.w0; w1; w2/D .zI 0; 0/. This means that if ˛ is an inhomoge-
nous representation of a class in H3.GR/ with all group elements sufficiently small
and positive then

(4–1)
1

2�2
bL ıb�.˛/D 1

2�2
L.˛/:

As we shall see below, every homology class in H3.GR/ has such a representative.

The following is essentially just an application of barycentric subdivision, and we refer
to [3, Proposition 2.8] for a proof.

Lemma 4.9 Let H be a contractible Lie group and U a neighborhood of the identity.
Every cycle in B�.H / is homologous to a cycle consisting of elements in U .

Let eGR be the universal covering group of GR . Parry and Sah [9] analyse the Hochshild–
Serre spectral sequence for the exact sequence

0! Z!eGR !GR! 0

and obtain:

Proposition 4.10 H3.eGR /!H3.GR/ is surjective.
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Since GR is homotopy equivalent to a circle, eGR is contractible, and by Lemma 4.9 and
Proposition 4.10, every homology class in H3.GR/ has an inhomogenous representative
with all group elements arbitrarily small.
Let U be an open neighborhood of the identity in GR satisfying that any product of
up to three positive elements is positive.

We now show that every sufficiently small cycle in B3.GR/ is homologous to a positive
cycle with all elements in U . This implies that every homology class has a representative
satisfying (4–1).

Define an ordering of elements in GR by

g1 < g2() g�1
1 g2 is positive.

This ordering is neither total nor transitive, but as we shall see, this can be fixed. The
following is simple.

Lemma 4.11 For every natural number n there exists an open subset Un of U

satisfying that g 2 Un if and only if g�1 2 Un and that any product of up to n positive
elements in Un is a positive element in U .

Fix neighborhoods Un as above. We may assume that Un �Un�1 and that the product
of any two elements in Un is in Un�1 .

Definition 4.12 Let k � n. A k –chain in Bk.GR/ is called a Un –k –chain if it
is nonzero and all its group elements lie in Un . A k –chain in Ck.GR/ is called a
Un –k –chain if it maps to a Un –k –chain in Bk.GR/. The set of Un –k –chains in
Ck.GR/ is denoted Ck.GR/Un

.

Proposition 4.13 Let g0; : : : ;gn 2GR satisfy that all elements g�1
i�1

gi are in Un and
nonzero. There exists a unique permutation � 2 SnC1 such that g�.0/ < � � �< g�.n/ .

Proof The assumption on the gi ’s implies that the restriction of the ordering to
fg0; : : : ;gng is transitive, and since

�
a b
c d

��1
D
�

d �b
�c a

�
, we have either gi < gj or

gi > gj . This means that we can use the bubble sort algorithm to produce the desired
permutation.

We thereby obtain GR –maps

‰k W Ck.GR/Un
! Ck.GR/:

Geometry & Topology, Volume 10 (2006)



1368 Johan L Dupont and Christian K Zickert

Note that the image of ‰k consists of chains whose images in Bk.GR/ consist entirely
of positive elements in U . Note also that the boundary map takes Ck.GR/Un

to
Ck�1.GR/Un�1

.

Proposition 4.14 Let � 2 Ck.GR/Un
, k � n, represent a cycle in Bk.GR/. Then

‰k.�/ and � represent homologous cycles in Bk.GR/.

Proof By the uniqueness in Proposition 4.13, the maps ‰k give rise to a chain map in
dimensions up to n. By a standard argument, there exist GR –maps Sk W Ck.GR/Un

!

CkC1.GR/, k D 0; : : : ; n, such that

@Sk CSk�1@D‰k � id:

This proves the assertion.

Proof of Theorem 4.1 By Proposition 4.14 and Lemma 4.9 we have that every
homology class in H3.GR/ has an inhomogenous representative satisfying (4–1).
Recall from diagram (1–10) that the restriction of yC2 to H3.GR/ equals � yP1 . By
equation (4–1), Proposition 4.6, Theorem 4.5 and Theorem 1.6, we have that
�

1
2�2

bL ıb� � 2 yC2 has image in 1
12

Z
ı

Z D Z=12Z. As mentioned earlier H3.G/ is
divisible, which means that it has no nontrivial finite quotient. Thus 2 yC2D�

1
2�2

bLıb�
as required.

The rest of this section is devoted to a proof of Theorem 4.15 below, but in order
to prove this theorem, we need to recall some properties of yC2 and the relationship
between bB.C/ and B.C/.

Recall from (1–5) that Q=Z can be regarded as a subgroup of H3.SL.2;C//. It is
known that the restriction of yC2 to this subgroup is just the inclusion � of Q=Z in C=Z.
In other words, we have a commutative diagram:

(4–2)

Q=Z
� � //
� s

�
&&MMMMMMMMMMM

H3.SL.2;C//

yC2

��

C=Z

For a proof of this see [4, Theorem 10.2, remarks on page 60].

Neumann shows in [7, Corollary 8.3] that bB.C/ and B.C/ are related by an exact
sequence

(4–3) 0 // Q=Z
b�

// bB.C/ // B.C/ // 0
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where b� is the map given by

b�.z/D Œe2� iz
I 0; 2�� Œe2�iz

I 0; 0�:

Theorem 4.15 The map b�W H3.SL.2;C//! bB.C/ is surjective with kernel Z=2Z.

Proof Suppose b�.˛/D 0. By composing with the map to B.C/, we see from (1–5)
that ˛ is in Q=Z. By (4–2) and Theorem 4.1, we have

0D�
1

2�2
bL ıb�.˛/D 2 yC2.˛/D 2˛:

Hence, ˛ is either zero or the unique element in Q=Z of order 2.

Let ˛ 2 bB.C/. A simple calculation shows that we have

�
1

2�2
bL ıb� D �;

and using (4–2) we get a commutative diagram:

(4–4)

Q=Z //

2b� &&LLLLLLLLLLL
H3.SL.2;C//

b�
��bB.C/

Let � denote the natural map bB .C/!B.C/, and let x be an element in H3.SL.2;C//
satisfying �.˛/D �.x/. By (4–3), there exists z in Q=Z such thatb�.x/�˛ D b�.z/;
and by (4–4), we have b�.x� 1

2
z/D ˛ .

Appendix

We conclude by proving that our definition of bB .C/ is equivalent to Neumann’s
definition of the more extended Bloch group EB.C/. This actually follows directly
from the brief remark in parentheses on the bottom of page 417 in [7], but we give the
details to save the reader some trouble. Recall the definition of FT from Section 2.
Neumann defines

FTC WD f.x0; : : : ;x4/ 2 FT j Im xi > 0g
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and defines cFT00 to be the component of the preimage of FT that contains all points

(4–5)
�
.x0Ip0; q0/; .x1Ip1; q1/; .x2Ip1�p0; q2/;

.x3Ip1�p0C q1� q0; q2� q1/; .x4I q1� q0; q2� q1�p0/
�

with .x0; : : : ;x4/2 FTC and the pi ’s and qi ’s even integers. He then defines the more
extended Bloch group EB.C/, as in Definition 2.2, to be the abelian group generated
by symbols ŒzIp; q�, subject to the relation

4X
iD0

.�1/i Œxi Ipi ; qi �D 0 for
�
.x0Ip0; q0/; : : : ; .x4Ip4; q4/

�
2 cFT00:

Proposition 4.16 bB .C/D EB.C/.
This follows immediately from the following lemma.

Lemma 4.17 cFT00 D cFT .

Proof Let .x0; : : : ;x4/ be a fixed point in FTC and let

P D ..x0I 0; 0/; : : : ; .x4I 0; 0// 2 cFT00:

Consider the curve in cFT00 starting in P obtained by keeping x1 fixed and letting
x0 move along a closed curve in C�f0; 1;x1g. By a simple analysis of the five term
relation, we can examine exactly how the values of the pi ’s and qi ’s change when x0

moves around. This is indicated in Figure 2. We see that if x0 traverses a closed curve
going p0 times counterclockwise around the origin, followed by q0 times clockwise
around 1, followed by r times clockwise around x1 , then the curve in cFT00 ends in�
.x0I 2p0; 2q0/; .x1I 0; 0/; .x2I �2p0; 2p0C 2r/;

.x3I �2p0� 2q0; 2p0C 2r/; .x4I �2q0; 2r/
�
:

If we start in this point and then follow the curve in cFT00 obtained by keeping x0 fixed
and letting x1 traverse a curve going p1 times counterclockwise around the origin
followed by q1 times clockwise around 1, a similar study shows that we end up at the
point

QD
�
.x0I 2p0; 2q0/; .x1I 2p1; 2q1/; .x2I �2p0C 2p1; 2p0C 2r/;

.x3I �2p0� 2q0C 2p1C 2q1; 2p0� 2q1C 2r/; .x4I �2q0C 2q1;�2q1C 2r/
�
:
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O

x1

1

x0

p0

p2

p3
p4

q0

q2

q4

q3

Figure 2: The lines in the figure are the cuts of the function sending z to
.Log.z/;Log. 1

1�z
// in the xi –plane, i D 0; 2; 3; 4 , when y D x1 is fixed.

The relevant values of pi and qi increase by 2 whenever x0 crosses the
relevant line in the direction indicated by the arrows.

By letting q2 D 2r C 2p0 we see that Q is of the form (4–5). Since we can connect
P to a point in cFT by first sliding x0 down to the interval .0; 1/ and then doing the
same with x1 , the lemma follows.
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