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Geometry of contact transformations and domains:
orderability versus squeezing

YAKOV ELIASHBERG

SANG SEON KIM

LEONID POLTEROVICH

Gromov’s famous non-squeezing theorem (1985) states that the standard symplectic
ball cannot be symplectically squeezed into any cylinder of smaller radius. Does
there exist an analogue of this result in contact geometry? Our main finding is that
the answer depends on the sizes of the domains in question: We establish contact non-
squeezing on large scales, and show that it disappears on small scales. The algebraic
counterpart of the (non)-squeezing problem for contact domains is the question of
existence of a natural partial order on the universal cover of the contactomorphisms
group of a contact manifold. In contrast to our earlier beliefs, we show that the
answer to this question is very sensitive to the topology of the manifold. For instance,
we prove that the standard contact sphere is non-orderable while the real projective
space is known to be orderable. Our methods include a new embedding technique in
contact geometry as well as a generalized Floer homology theory which contains both
cylindrical contact homology and Hamiltonian Floer homology. We discuss links to
a number of miscellaneous topics such as topology of free loops spaces, quantum
mechanics and semigroups.
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1 Introduction and main results

1.1 Contact (non)-squeezing

Consider the standard symplectic vector space R2n endowed with the symplectic form

! D dp^ dq D
nP
1

dpi ^ dqi . We often identify R2n with Cn and write z D pC iq

for the complex coordinate. Symplectic embeddings preserve the volume, and hence
the Euclidean ball

B2n.R1/ WD f�jzj2 <R1g
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cannot be symplectically embedded into B2n.R2/ if R2 <R1 . Gromov’s famous non-
squeezing theorem states that there are much more subtle obstructions for symplectic
embeddings and, in particular, B2n.R1/ cannot be symplectically embedded into the
cylinder

C 2n.R2/ WD B2.R2/�R2n�2

when R2 <R1 , see [28]. This result led to the first non-trivial invariants of symplectic
domains in dimension 2n� 4.

In the present paper we address the question whether there are any analogues of
non-squeezing results in contact geometry. Consider the prequantization space of
R2n , that is the contact manifold V D R2n �S1; S1 D R=Z, with contact structure
� D Ker.dt � ˛/ where ˛ is the Liouville form 1

2
.pdq � qdp/. Given a subset

D � R2n , write yD D D � S1 for its prequantization. The naive attempt to extend
the non-squeezing from D to yD fails. It is is easy to show (see Proposition 1.24 and
Section 2.2) that for any R1;R2 > 0 there exists a contact embedding of yB.R1/ into
yB.R2/ which, for n> 1, is isotopic to the inclusion through smooth embeddings into
V . Furthermore, due to the conformal character of the contact structure, the domain
yB.R/ can be contactly embedded into an arbitrarily small neighborhood of a point in
V (see Corollary 1.25 below).

However, the situation becomes more sophisticated if one considers only those contact
embeddings which come from globally defined compactly supported contactomor-
phisms of .V; �/. We write G D Cont .V; �/ for the group of all such contactomor-
phisms.

Given two open subsets U1 and U2 of a contact manifold V , we say that U1 can be
squeezed into U2 if there exists a contact isotopy ‰t W Closure.U1/! V; t 2 Œ0; 1�;
such that ‰0 D 1 and

‰1.Closure.U1//� U2:

The isotopy f‰tg is called a contact squeezing of U1 into U2 . If, in addition, W � V

is an open subset such that Closure.U2/�W and ‰t .Closure.U1//�W for all t , we
say that U1 can be squeezed into U2 inside W . If the closure of U1 is compact, the
ambient isotopy theorem (see, for instance, Geiges [24]) guarantees that any squeezing
of U1 into U2 inside W extends to a contactomorphism from G whose support lies in
W .1

1If the group G is not connected than the possibility to squeeze by an isotopy is stronger than by a
global contactomorphism. All squeezing and non-squeezing results in this paper are proven in the strongest
sense, ie, squeezing is always done by a contact isotopy while in our non-squeezing results we prove
non-existence of the corresponding global contactomorphism.
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Remark 1.1 If a domain U has a convex contact boundary then it admits a contact
squeezing inside itself. Let us recall that a hypersurface † in a contact manifold is
called convex (see Eliashberg and Gromov [18]) if there exists a contact vector field X

which is transversal to †. Note that the vector field �X is also contact, and hence one
cannot assign to a convex hypersurface any canonical co-orientation. Giroux showed
(see [26]) that in a 3–dimensional contact manifold any co-orientable surface can be
made convex by a generic C1–small perturbation. On the other hand, it is easy to
check that the boundary of a domain yD � R2n �S1 is never convex.

Our main results concerning the contact squeezing problem are given in the next
theorems.

Theorem 1.2 (Non-Squeezing) Assume that R2�m�R1 for some positive integer
m. Then the closure of yB2n.R1/ cannot be mapped into yC 2n.R2/ by a contactomor-
phism from G . In particular, yB2n.R1/ cannot be squeezed into yC 2n.R2/.

As a counterpoint to this result, we prove

Theorem 1.3 (Squeezing) Assume that 2n � 4. Then yB2n.R1/ can be squeezed
into yB2n.R2/ for all R1;R2 < 1.

Remark 1.4 The restriction n > 1 is essential: it was shown by Eliashberg in [16]
that yB2.R1/ cannot be squeezed into yB2.R2/ for any R1 >R2 .

We do not know whether yB2n.R1/ can be squeezed into yB2n.R2/ or yC 2n.R2/ when

mC 1>R1 >R2 >m

for an integer m� 1.

Theorem 1.5 Assume that

R2 � m

k
�R1 <R3 <

m

k � 1

for some integers k;m � 1. Then the closure of yB2n.R1/ cannot be mapped into
yB2n.R2/ by any contactomorphism ˆ 2 G with ˆ

� yB2n.R3/
�D yB2n.R3/. In particu-

lar, yB2n.R1/ cannot be squeezed into yB2n.R2/ inside yB2n. m
k�1

/.

In the case mD 1; k > 1 this result imposes a restriction on a squeezing of yB2n. 1
k
/

into itself guaranteed by Theorem 1.3. Roughly speaking, such a squeezing requires
some extra room. As we will see in Remark 1.23 below, this restriction is sharp:
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yB2n. 1
k
/ can be squeezed into itself inside yB2n.�/ for any � > 1=.k � 1/.

The proofs of Theorems 1.2 and 1.5 are based on cylindrical contact homology theory
(see Eliashberg, Givental and Hofer [17], Ustilovsky [44], Bourgeois [4] and Yau [48])
which is discussed in Sections 1.8 and 4 below. The (non)-squeezing phenomenon
described above is closely related to the geometry of the group of contactomorphisms of
the standard sphere S2n�1 , see Sections 1.7 and 6.3 below. This resembles the link be-
tween symplectic non-squeezing and the geometry of the group of symplectomorphisms
which was explored by Lalonde and McDuff in [34; 35].

1.2 Negligible domains and symplectic capacities

We say that a domain X � V is negligible if every bounded open subset U with
Closure.U /�X can be contactly squeezed into yB2n.r/ for any r > 0. We start this
section with the following generalization of Theorem 1.3 above.

Theorem 1.6 The cylinder yC 2n.1/ is negligible when 2n� 4.

This result is sharp: indeed, for R> 1 the cylinder yC 2n.R/ contains yB2n.R0/ with
R0 > 1 and hence it is not negligible due to Theorem 1.2.

The proof is given in Section 3.6 below. With this result at hand, we can present the
transition from non-squeezing to squeezing in terms of symplectic capacities. For
a bounded domain U � R2n define c.U / as the supremum of R such that the ball
B2n.R/ can be symplectically squeezed into U , and c.U / as the infimum of R such
that U can be symplectically squeezed into the cylinder C 2n.R/. These quantities
are small modifications of the standard symplectic capacities. In particular, they are
symplectic capacities in the symplectic category OH whose objects are open subsets
of R2n and morphisms are symplectic embeddings induced by compactly supported
Hamiltonian diffeomorphisms (see Cieliebak, Hofer, Latschev and Schlenk [11, Section
2.1] for the definition of a symplectic capacity in a symplectic category). Define the
contact squeezing number sq.U / as the infimum of b 2 RC such that the domain
yb�1=2 �U � V is negligible. Let us emphasize that since V is the prequantization

space of R2n , every compactly supported Hamiltonian isotopy of R2n lifts to a com-
pactly supported contact isotopy of V . Therefore the contact squeezing number is
invariant under compactly supported Hamiltonian diffeomorphisms. The next result is
an immediate consequence of Theorems 1.2 and 1.6.

Theorem 1.7
c.U /� sq.U /� c.U /

for every bounded domain U � R2n .

Geometry & Topology, Volume 10 (2006)
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As an immediate consequence of the theorem we get that the contact squeezing number
is a symplectic capacity in category OH .

1.3 Preliminaries in contact geometry

Let .P; �/ be a contact manifold with a co-oriented contact structure. Its symplectization
SP is defined as the set of all non-zero covectors from T �P whose kernel equals
the contact hyperplane and which agree with its co-orientation. One checks that SP

is a symplectic submanifold of T �P if and only if � is a contact structure. Thus it
inherits from T �P the canonical Liouville 1–form ˛ whose differential ! D d˛ is the
symplectic form. Note also that SP is a (trivial) principal RC–bundle over P . The
vector field L generating the RC–action is called the Liouville field on SP . It satisfies
iL! D ˛ , and hence RC acts by conformally symplectic transformations. Any contact
form for � is a section of the bundle SP ! P . Its graph forms a hypersurface in SP

which is called a starshaped hypersurface.

Let ˇ be a contact form on P . Then using the RC–action one can identify SP with
P � RC : the point .x; �/ 2 SP , where x 2 P and � is a contact covector at x ,
corresponds to .x; �=ˇ/ 2 P �RC . After such an identification we write a point of
SP as .x;u/ 2P �RC and call .x;u/ the canonical coordinates on SP associated to
the contact form ˇ . In canonical coordinates ˛ D uˇ , ! D du^ˇCudˇ , LD @=@u
and graph.ˇ/D fuD 1g.
The following example is crucial for understanding what is going on below:

Example 1.8 Consider the standard contact sphere .S2n�1; �/ where the sphere
S2n�1 is identified with @B2n.1/� R2n and �D Ker.˛

ˇ̌
S2n�1/. Its symplectization

can be identified by an RC–equivariant symplectomorphism with .R2n nf0g; dp^dq/,
where the RC–action on R2n n f0g is given by z!pcz for all c 2 RC . Here every
contact covector .z; s˛/ 2 SP , where z 2 P and s > 0, corresponds to the pointp

sz 2 R2n n f0g.
RC–equivariant Hamiltonian functions on SP are called contact Hamiltonians. Every
contactomorphism of .P; �/ uniquely lifts to an RC–equivariant symplectomorphism
of SP . Moreover, there is a one-to-one correspondence between paths fftgt2Œ0;1�
of compactly supported contactomorphisms with f0 D 1 and contact Hamiltonian
functions F W SP � Œ0I 1�! R which vanish outside ��1.K/� Œ0I 1� where K � P is
a compact subset and � W SP ! P the natural projection. We say the isotopy fftg is
generated by the contact Hamiltonian F .

Note that to every contact form ˇ on P corresponds a unique contact Hamiltonian on
SP which equals 1 on graph.ˇ/. The projection of its Hamiltonian field to P is a
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well defined vector field R called the Reeb vector field of ˇ . It is determined by the
conditions ˇ.R/D 1 and iRdˇ D 0.

Let Q � P be a hypersurface which is transversal to the contact structure. Every
contact plane �.x/; x 2 P; carries a conformally canonical symplectic structure given
by the differential of any contact form. The symplectic complement in �.y/; y 2Q to
the hyperplane TxQ\ �.x/� �.x/ defines a field of lines l.x/� TxQ. This field of
lines integrates to a one-dimensional foliation which is called the contact characteristic
foliation of Q.

1.4 A partial order on contact transformations

The results on contact (non)-squeezing presented in Section 1.1 above are closely related
to the geometry of the group of contactomorphisms of the standard contact sphere
S2n�1 . In order to present these applications we need to recall some preliminaries
from Eliashberg and Polterovich [19].

Let .P; �/ be a contact manifold. Denote by Cont 0.P; �/ the identity component of the
group of all compactly supported contactomorphisms of .P; �/. Let ACont 0.P; �/ be its
universal cover. Given zf ; zg 2ACont 0.P; �/ we say that zf � zg if the element zf zg�1 is
represented by a path generated by a non-negative contact Hamiltonian. In other words,
zf � zg if zf can be reached from zg by moving every point in the non-negative direction

with respect to the contact structure �. Clearly, the relation � on ACont 0.P; �/ is
reflexive and transitive. As shown in [19], for certain closed contact manifolds (eg,
the unit cotangent bundle of the n–torus) it defines a genuine partial order. For the
purpose of this discussion we shall call such manifolds orderable. The next proposition
from [19] gives a useful necessary and sufficient condition for orderability of a closed
contact manifold.

Proposition 1.9 Let .P; �/ be a closed contact manifold. The following conditions
are equivalent:

(i) .P; �/ is non-orderable;

(ii) there exists a contractible loop �W S1! Cont 0.P; �/ with �.0/D 1 which is
generated by a strictly positive contact Hamiltonian.

It follows from Givental’s theory of the non-linear Maslov index that the standard
contact projective space RP2n�1 is orderable (see [27; 19]). In view of this, the authors
of [19] tended to believe that its double cover S2n�1 is also orderable. Interestingly
enough, this is not the case:
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Theorem 1.10 Assume that 2n � 4. There exists a positive contractible loop of
contactomorphisms of the standard contact sphere S2n�1 . In particular, the sphere is
not orderable.

After the first version of this paper appeared in the arXiv, E Giroux informed us that
Theorem 1.10 can be extracted from the existing literature as follows. The standard
contact structure on S2n�1 coincides with the field of maximal complex subspaces
tangent to the sphere, where we identify

S2n�1 D @B2n � Cn :

Thus the group of complex automorphisms of the unit ball B2n acts by contact trans-
formations on the boundary sphere. This group is isomorphic to PU.n; 1/. The cone
of non-negative contact Hamiltonians on the sphere restricts to a tangent cone C in
the Lie algebra pu.n; 1/, which is invariant under the adjoint representation. It turns
out that 25 years ago G Olshanskii [39] completely characterized those cones which
give rise to a genuine partial order on the universal cover of the group. Applying
Olshanskii’s criterion, one gets that C does not generates a genuine partial order. Thus,
a fortiori S2n�1 is non-orderable. For reader’s convenience, we present more details
on the Oshanskii criterion and illustrate its application to non-orderability of S3 in
Appendix B. In the paper, we chose another route and use a method which enables us
to extend Theorem 1.10 to more general contact manifolds (cf Remark 8.3 in Appendix
B). This extension is presented in Section 1.6 below (see Theorem 1.16 whose proof
occupies Section 3).

Existence of positive contractible loops is a manifestation of “symplectic flexibility”.
However, such loops themselves exhibit a rigid behavior. We illustrate this in the case
of the standard contact sphere S2n�1 with n� 2. Let

�D fft;sg; t 2 S1; s 2 Œ0; 1�;
be a homotopy of a positive contractible loop fft;1g to the constant loop fft;0g � 1.
Assume that f0;s D 1 for all s . Write Fs; s 2 Œ0; 1�; for the contact Hamiltonian on
.R2n n f0g/�S1 generating the loop fft;sg; t 2 S1 . Put

(1) �.�/ WD �min
z;s;t

Fs.z; t/

�jzj2 :

Theorem 1.11 Assume that 2n� 4. Then

(i) �.�/� 1 for every homotopy � of a positive contractible loop of contactomor-
phisms of the sphere S2n�1 to the constant loop;
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(ii) moreover, this estimate is sharp: inf� �.�/D 1.

We shall see in Section 1.7 that the inequality �.�/ � 1 follows from Non-Squeezing
Theorem 1.2.

1.5 Liouville manifolds

In this section we introduce the class of Liouville-fillable contact manifolds which
are in the focus of our study. Let .M; !/ be a connected symplectic manifold which
satisfies the following conditions:

(i) There exists a complete vector field L on M such that ! D d˛ with ˛ D iL! .
This implies that the flow Lt ; t 2R , of L acts on M by conformally symplectic
diffeomorphisms.

(ii) There exists a closed connected hypersurface P � M which is transversal
to L and bounds an open domain U � M with compact closure such that
M D U tSt�0 LtP .

The vector field L is called a Liouville field, and a symplectic manifold .M; !/ with a
fixed Liouville field L (or, which is the same, with a fixed primitive ˛ D iL! which
is called a Liouville form) is called a Liouville manifold. We will call starshaped any
hypersurface P and any domain U in the Liouville manifold .M; !;L/ which satisfy
the condition (ii). Given any starshaped domain U �M its repeller CoreP .M / DT

t2RC L�t .U / is called the core of the Liouville manifold .M; !;L/.

Put ˇ WD ˛jP . The transversality condition in (ii) is equivalent to the requirement
that � WD Kerˇ is a contact structure on P . Moreover, the symplectization SP can
be naturally symplectically identified with the set M�;P D

S
t2R Lt .P / as follows:

Consider the splitting SP D P � .0;1/ associated to the form ˇ (see Section 1.3
above) and identify a point .x;u/ 2 SP with Llog ux 2M . Under this identification
the form ˛ and the vector field L on M correspond to the Liouville form and Liouville
vector field on SP respectively. Note that in coordinates .x;u/ we have ˛ D uˇ .

We claim that the decomposition M DM�;P tCoreP .M / does not depend on the
choice of a starshaped hypersurface P . Indeed, let Q be another starshaped hypersur-
face. Consider the subset X DM�;P \M�;Q , and denote by Y its projection to P

along the trajectories of L. Note that X is non-empty: otherwise we have M�;Q � U

which is absurd since M�;Q has infinite volume and U has compact closure by
condition (ii) above. Hence Y is an open non-empty subset of P . Furthermore,
since M nU DSt�0 LtP , every trajectory of L starting on P leaves any compact
subset K � U in finite time. The same holds true for Q. Therefore, all segments of
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trajectories of L with endpoints on P [Q have uniformly bounded length (understood
as the length of the corresponding time-interval). This readily yields that Y is closed,
and hence Y D P , since P is connected. Hence, Q is a starshaped hypersurface in
M�;P D SP , and the claim follows. In particular, the core of M is independent of P .
We write Core.M / for CoreP .M /, and M� for M nCore.M /.

Furthermore, the projection �P;Q of Q to P along the trajectories of L establishes a
contactomorphism between the contact structures Ker.˛jTP / and Ker.˛jTQ/. Thus we
associated to a Liouville manifold .M; !;L/ a canonical contact manifold, defined as
a family of contact manifolds f.P;Ker˛jTP /g and contactomorphisms �P;QW Q!P

satisfying �P;Q ı �Q;R D �P;R where P;Q;R run over the set of all starshaped
hypersurfaces in M . This contact manifold admits a more geometric description.
Note that RC acts freely on M nCore.M / by the formula c � x D Llog cx and we
have

�
Llog c

��
˛ D c˛ . Hence the plane field f˛ D 0g on M� is invariant under the

RC–action. It descends to a contact plane field �1 on P1 WDM�=RC . We will call
.P1; �1/ the ideal contact boundary of the Liouville manifold, and in the sequel
will use both of its descriptions. Let us emphasize that the symplectization of P1 is
canonically identified with M� , and hence we have a canonical decomposition

(2) M D SP1 tCore.M / :

Contact manifolds .P1; �1/ arising in this way are called Liouville-fillable, and we
refer to .M; !;L/ as a Liouville filling of .P1; �1/.

Example 1.12 The standard symplectic linear space .R2n; dp^dq/ equipped with the
vector field LD 1

2
.p @
@p
C q @

@q
/ is a Liouville manifold. The Liouville form ˛ equals

1
2
.pdq� qdp/. It follows from Example 1.8 above that the ideal contact boundary of

R2n is the standard contact sphere S2n�1 , and the core equals f0g. Our convention is
that the zero-dimensional space (that is, the point) is a Liouville symplectic manifold:
it coincides with its core, and its ideal contact boundary is empty.

Example 1.13 The cotangent bundle T �X of a closed manifold X equipped with the
standard symplectic form dp ^ dq and the Liouville vector field p @

@p
is a Liouville

manifold. Its ideal contact boundary is called the space of co-oriented contact elements
of X and is denoted PCT �X . The core coincides with the zero section.

Example 1.14 (Weinstein manifolds) A Liouville manifold .M; !;L/ is called
Weinstein if the vector field L is gradient-like for an exhausting (that is, proper and
bounded from below) Morse function h on M . Contact manifolds .P; �/ arising as
ideal contact boundaries of Weinstein manifolds are called Weinstein-fillable [18]. This
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class of contact manifolds has an alternative description in terms of complex geometry,
see [15]: namely, they appear as strictly pseudo-convex boundaries of Stein domains
equipped with the field of complex tangent subspaces of maximal dimension. (Recall
that a Stein domain is a sublevel set of an exhausting plurisubharmonic function on
a Stein manifold.) All critical points of the function h as above have Morse index
� nD 1

2
dim W . If all the indices do not exceed n� k for 1 � k � n, the Weinstein

manifold M is called k –subcritical. Otherwise, it is called critical. For instance,
R2n is n–subcritical (and hence, of course, k –subcritical for every k 2 Œ1; n�), while
PCT �X is critical. A Weinstein-fillable contact manifold is called k –subcritical if it
admits a k –subcritical Weinstein filling, and critical otherwise.

Example 1.15 (Stabilization) Let .M; !;L/, .M 0; !0;L0/ be two Liouville mani-
folds. Their product .M �M 0; !˚!0;L˚L0/ is again a Liouville manifold. In the
case when

.M 0; !0;L0/D
�

R2n; dp^ dq;
1

2
.p

@

@p
C q

@

@q
/

�
the obtained Liouville manifold is called the n–stabilization of .M; !;L/. The sig-
nificance of this notion is due to the following result by K Cieliebak [8]: Every
k –subcritical Weinstein manifold is a k –stabilization of another Weinstein manifold.

1.6 On orderability of Liouville-fillable manifolds

The next theorem is a generalization of Theorem 1.10:

Theorem 1.16 For any Liouville manifold .M; !;L/ the ideal contact boundary of
its n–stabilization is not orderable provided that n� 2.

The proof is given in Section 3 below. Theorem 1.10 corresponds to the case when M

is a point. Our discussion in Example 1.15 above yields the following corollary.

Corollary 1.17 Weinstein-fillable 2–subcritical contact manifolds are not orderable.

It is interesting to confront this result with the following

Theorem 1.18 Let X be a closed manifold. Assume that either �1.X / is finite, or
�1.X / has infinitely many conjugacy classes. Then the space PCT �X of co-oriented
contact elements of X with its canonical contact structure is orderable.
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This result generalizes Theorem 1.3.B. from [19]. We refer to Section 5.3 for the proof.
Interestingly enough, it is unknown whether Theorem 1.18 covers all closed manifolds.
This depends on the answer to the following long-standing open question in group
theory due to J Makowsky [36]: does there exist an infinite finitely-presented group
with finitely many conjugacy classes? (See Baumslag, Myasnikov and Shpilrain [2] for
further discussion.) Note that spaces of co-oriented contact elements, or unit cotangent
bundles, are examples of contact manifolds with critical Weinstein filling. We refer the
reader to Section 6 for further discussion on fillability and orderability.

1.7 Orderability versus squeezing

Let .M; !;L/ be a Liouville manifold with the ideal contact boundary .P; �/. Write
˛ for the Liouville 1–form on M . Consider the prequantization space of M which is
defined as the contact manifold .V DM �S1; � D Ker.˛� dt//. In this section we
present a basic link between contact (non)-squeezing in V and the orderability of P .

Convention In what follows we identify SP with M� DM nCore.M / and extend
all contact Hamiltonians from M� to M by setting them equal to 0 on Core.M /. Of
course, this extension is not, necessarily, smooth along Core.M /.

An open domain of V with smooth compact boundary is called fiberwise starshaped if
it intersects the fibers M �ftg; t 2 S1 along starshaped domains and its boundary is
transversal to the fibers.

Suppose that P is non-orderable, that is it admits a positive contractible loop of
contactomorphisms. Denote by fftg the corresponding loop of RC–equivariant sym-
plectomorphisms of M� . Let

fft;sg; t 2 S1; s 2 Œ0; 1�;
be a homotopy of fft;1g D fftg to the constant loop fft;0g � 1. Assume that f0;s D 1
for all s . Write Fs ; s 2 Œ0; 1�; for the contact Hamiltonian on V generating the loop
fft;sg; t 2 S1 . Let EW M ! R be a positive contact Hamiltonian. For each R> 0 let
us consider a domain

A.R/D fE <Rg �S1 � V :

Roughly speaking, the next theorem shows that every homotopy of a positive con-
tractible loop of contactomorphisms of P to the constant loop serves as a “squeezing
tool” for the domain A.R/ provided that R is small enough.

Geometry & Topology, Volume 10 (2006)



1646 Yakov Eliashberg, Sang Seon Kim and Leonid Polterovich

Theorem 1.19 Suppose there exists � > 0 such that

Fs.z; t/ > ��E.z/

for all z 2M�; t 2 S1; s 2 Œ0I 1�. Then

(i) there exists  > 0 such that A.R/ can be contactly squeezed into A
�

R
1CR

�
for

all R< ��1 ;

(ii) A.R/ can be contactly squeezed into itself inside A.�/ for all

R< ��1 and � >
1

R�1�� :

Moreover the squeezing in (i) and (ii) can be performed in the class of fiberwise
starshaped domains.

The proof is based on an elementary geometric construction from [19] which links
together positive paths of contactomorphisms of P and fiberwise starshaped domains
in V . Let �Dfftg; t 2 Œ0I 1�; f0D 1; be a path of contactomorphisms of P generated
by a positive time-periodic contact Hamiltonian F W V ! R. Define a domain

U.�/ WD fF < 1g � V :

Vice versa, every fiberwise starshaped domain of V is of the form fF < 1g for a unique
positive time-periodic contact Hamiltonian F , and thus corresponds to the positive
path of contactomorphisms of P generated by F .

Example 1.20 (Standard rotation) The rotation et .z/ D e2�itz; t 2 R, defines
a positive path of contact transformations of P D S2n�1 generated by the contact
Hamiltonian �jzj2 . Fix R > 0 and consider the path � WD fet=Rg. Clearly, the
corresponding starshaped domain U.�/ is simply

yB2n.R/D B2n.R/�S1 � Cn :

A crucial feature of the correspondence �! U.�/ is as follows:

Lemma 1.21 Let f�sg; s 2 Œ0I 1� be a homotopy of paths of contactomorphisms of
P through positive paths with fixed end points. Then there exists an ambient contact
isotopy ‰sW V ! V with ‰0 D 1 and ‰s.U.�0//D U.�s/ for all s 2 Œ0I 1�.

The proof virtually repeats the one of Lemma 3.1.B in [19].
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Remark 1.22 Note, however, that existence of a global contact isotopy which de-
forms U.�0/ into U.�1/ through starshaped domains implies only that there exists a
homotopy of positive paths of contactomorphisms

�s D ff t
s gt2Œ0;1�; s 2 Œ0; 1�;

such that f 0
s D 1 and f 1

s D g�1
s ı f 1

0
ı gs for a certain path of contactomorphisms

gsW P ! P; s 2 Œ0; 1�.

Sketch of the proof of Theorem 1.19 (ii) Denote by et the Hamiltonian flow of E on
M� . Denote by � the path of contactomorphisms of P corresponding to et=R; t 2 Œ0I 1�.
With this notation A.R/D U.�/.

Consider the following homotopy of the path � WD fet=Rg with fixed endpoints:

�s D fet=Rft;sg; t 2 S1; s 2 Œ0I 1�:
The Hamiltonian Hs generating �s is given by

(3) Hs.z; t/DR�1E.z/CFs.e�t=Rz; t/ :

The assumptions of the theorem guarantee that

Hs.z; t/ >R�1E.z/��E.e�t=Rz/ :

The energy conservation law for fetg yields E.e�t=Rz/DE.z/, and therefore

Hs.z; t/ > .R
�1��/E.z/ > ��1E.z/ :

Hence, by Lemma 1.21 the family of closed domains Closure.U.�s// provides a
contact isotopy of Closure.U.�0// D Closure.A.R// inside A.�/. Recall that we
started with a positive loop, hence F1 > 0. Therefore H1 >R�1E.z/ which yields
Closure.U.�1//�U.�0/DA.R/, and thus we get the desired squeezing of A.R/ into
itself inside A.�/.

The argument above contains a gap: Hamiltonians Hs.z; t/ are in general not 1–periodic
in time, and hence formally speaking domains U.�s/ are not well defined. This can be
corrected by an appropriate “smoothing of corners” argument: see Section 2 below for
the complete proof of Theorem 1.19.

Theorem 1.19 applied to the case when M D R2n D Cn and E.z/D �jzj2 enables us
to reduce Theorem 1.11(i) to Theorem 1.2 and Theorem 1.3 to Theorem 1.11(ii). Note
that in this case A.R/D B2n.R/.
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Theorem 1.2 ) Theorem 1.11(i) Assume on the contrary that �.�/ < 1. Then
Theorem 1.19(i) gives us a squeezing of Closure. yB.1// into its interior, in contradiction
to Theorem 1.2.

Theorem 1.11(ii) ) Theorem 1.3 Assume that 0 < R2 < R1 < 1. Choose a
homotopy � D fft;sg of a positive contractible loop fft;1g of contactomorphisms
of the sphere to the constant loop fft;0g � 1 with �.�/ < 1=R1 . Theorem 1.19(i)
guarantees that for every R�R1 , the domain yB2n.R/ can be squeezed into yB2n.v.R//

where the function v.R/ is given by

v.R/D R

1C R

for some  > 0. Note that 0<v.R/<R for R> 0, and the N -th iteration v.N /.R/D
.v ı ::: ı v/.R/ satisfies v.N /.R/! 0 as N !C1. Choose N large enough so that
v.N /.R1/ < R2 . Hence, iterating our construction N times we get a squeezing of
yB2n.R1/ into yB2n.R2/. This completes the proof.

Remark 1.23 The second part of Theorem 1.11 states that for every " > 0 there exists
a homotopy � of a positive contractible loop to the constant loop with �.�/� 1C ".
Hence, Theorem 1.5 provides a sharp restriction on any squeezing of yB2n. 1

k
/ into

itself, where k > 1 is an integer. Indeed, apply Theorem 1.19(ii) with R D 1
k

and
�.�/ � 1C ". We get a squeezing of yB2n. 1

k
/ into itself inside yB2n.�/ provided

� > 1=.k ��/. Taking " small enough we see that � can be chosen arbitrarily close to
1

k�1
.

Let us mention also that there is an alternative way to use a positive (not necessarily
contractible) loop of contactomorphisms of the sphere S2n�1 for producing contact
embeddings of domains in R2n �S1 , see Section 2.2 below. A special (trivial) case
of this construction enables us to prove the following result which we already have
mentioned in Section 1.1 above.

Proposition 1.24 For all R1;R2 > 0 there exists a contact embedding of yB2n.R1/

into yB2n.R2/. For n > 1 this embedding can be chosen isotopic through smooth
embeddings to the natural inclusion

yB2n.R1/ ,! R2n �S1 :

Of course, in general this isotopy cannot be made contact. Furthermore, assume that
R2 �m<R1 for some m 2 N. Then the embedding guaranteed by the proposition
does not extend to a compactly supported contactomorphism of V in view of the
Non-Squeezing Theorem above.
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Proof For any integer N > 0 define a map FN W R2n�S1!R2n�S1 by the formula

.z; t/ 7!
�
v.z/e2�N itz; t

�
;

where

(4) v.z/D 1s
1CN�

nP
1

jzj j2
:

It is straightforward to check that FN is a contactomorphism of R2n �S1 . It maps
yB2n.R1/ onto yB2n.R/ with RD R1

1CNR1
!

N!1 0. For n> 1 and an even N the map

FN is isotopic to the inclusion.

The following fact is well known to specialists. However, we provide it with a proof
for a reader’s convenience.

Corollary 1.25 For every R > 0 there exists a contact embedding of yB.R/ into an
arbitrarily small neighbourhood of a point in any contact manifold.

Proof By the contact Darboux theorem it suffices to show that for every R> 0; � > 0

there exists a contact embedding of yB.R/ into Euclidean ball of radius � in the standard
contact space

.R2nC1;Ker .dzC 1

2
.pdq� qdp// :

Consider the Euclidean circle of radius �=2 with the center at 0 lying in the .p1; q1/–
plane. This circle is transversal to the contact structure, and hence by the relative
Darboux theorem (eg see [24], Example 2.33) its sufficiently small neighbourhood is
contactomorphic to yB.r/ with some r > 0. But yB.R/ can be contactly embedded into
yB.r/ in view of Proposition 1.24. This completes the proof.

1.8 Contact homology

The proof of Non-Squeezing Theorem 1.2 is based on contact homology theory. Here
we present a brief outline of contact homology adjusted to our purposes and refer
the reader to Section 4 below for more details and generalizations.2 Let .M; !;L/

be a Liouville manifold whose first Chern class c1.TM / vanishes on �2.M /. Put

2The more general contact homology groups constructed in Section 4 have a more sophisticated
grading which involves the set of free homotopy classes of loops in M . The simpler version presented in
this section corresponds to the component associated to the class of contractible loops.
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V DM �S1 and set �D dt �˛ , where ˛ is a Liouville form on M . Equip V with
the contact structure � D Ker.�/.

Consider the set U consisting of all fiberwise starshaped open domains in V and their
images under the group G D Cont.V; �/ of compactly supported contactomorphisms
of .V; �/. Contact homology CH.U / of a domain U 2 U is a Z–graded vector space
over Z2 . Every inclusion U1 � U2 gives rise to a morphism

inW CH.U1/! CH.U2/:

Every contactomorphism ˆ 2 G induces an isomorphism

ˆ]W CH.U /! CH.ˆ.U //:

These morphisms preserve the grading and have the following properties (the diagrams
below are commutative):

(5) CH.U1/
in //

in

%%KKKKKKKKKK
CH.U2/

in
��

CH.U3/

provided U1 � U2 � U3 are domains from U ;

(6) CH.U1/
in //

ˆ]

��

CH.U2/

ˆ]

��
CH.ˆ.U1//

in // CH.ˆ.U2//

provided U1 � U2 are domains from U ;

(7) .ˆ ı‰/] Dˆ] ı‰]I
for all ˆ;‰ 2 G ;

(8) inU D 1 and 1] D 1 ;

where inU is the natural inclusion U ! U .

In a more formal language, CH is a G–functor from the category, whose objects are
domains from U and morphisms correspond to inclusions, to the category of Z–graded
vector spaces over Z2 .3

3Let U be a category, and a group G acts on U by functors. A G–functor is a functor F from U to
another category, and a family of natural transformations g]W F!F ıg; g 2 G such that .gh/]D g] ıh]
for all g; h 2 G . The terminology is borrowed from Jackowski and Słomińska [33].

Geometry & Topology, Volume 10 (2006)



Geometry of contact transformations and domains 1651

A typical application of contact homology to non-squeezing is given in the following
statement:

Proposition 1.26 Let U1;U2 and W be domains from U such that Closure.U1/�W

and Closure.U2/�W . Assume that that the inclusion morphism CHk.U1/!CHk.W /

does not vanish, while the inclusion morphism CHk.U2/! CHk.W / vanishes for
some k 2 Z. Then U1 cannot be mapped into U2 by a contactomorphism ˆ 2 G with
ˆ.W /DW .

Proof Assume on the contrary that there exists a contactomorphism ˆ 2 G such that
ˆ.W / D W and ˆ.U1/ � U2 . Then the diagrams (5) and (6) yield the following
commutative diagram:

CHk.U1/
in¤0 //

ˆ]

��

CHk.W /
ˆ]

&&MMMMMMMMMM

CHk.ˆ.U1//
in // CHk.U2/

inD0 // CHk.W /

But ˆ] is an isomorphism, and we get a contradiction which proves the desired non-
squeezing.

Our next result relates contact homology of a split domain yD DD�S1 , where D is a
starshaped domain of M , with filtered symplectic homology SH�.D/. We use a version
of symplectic homology associated to negative compactly supported Hamiltonians as
in [3; 10; 25], see Section 4 below for the definition and conventions about the grading.

Theorem 1.27 Assume that the characteristic foliation of @D has no closed orbits 
with

R
 ˛ D 1. Then

CH�. yD/D SH
.�1I�1/� .D/:

Moreover, the above correspondence between symplectic and contact homology is
functorial in the sense that it commutes with the morphisms induced by inclusions and
symplectic/contact diffeomorphisms of domains.

We restate and prove this result in Section 5.1 below (see Theorem 5.3 and Proposition
5.6). Theorem 1.27 enables us to calculate contact homology for domains of the form
yE.N;R/, where E.N;R/ is an ellipsoid given by

(9) E.N;R/ WD f�jz1j2C �

N

nX
iD2

jzi j2 <Rg; N 2 N;
1

R
… N
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Put

(10) k.N;R/D�2
h 1

R

i
� 2.n� 1/

h 1

NR

i
;

where Œs� stands for the integer part of a positive real number s .

Theorem 1.28 CHi. yE.N;R//D Z2 for i D k.N;R/ and CHi. yE.N;R//D 0 for all
i ¤ k.N;R/.

Using the correspondence between contact and symplectic homologies, it is easy to
calculate the morphisms induced by natural inclusions of balls (that is N D 1):

Theorem 1.29 Assume that
1

k
<R1 <R2 <

1

k � 1

for some k 2 N. Then the inclusion B2n.R1/ ,! B2n.R2/ induces an isomorphism
of contact homologies.

Theorems 1.28 and 1.29 are proved in Section 5.2 below. Now we are ready to prove
Non-Squeezing Theorem 1.2.

Proof of Theorem 1.2 Without loss of generality assume that R2<m<R1 for some
m 2 N.

First of all we reduce the problem to the case mD 1 as follows. Assume on the contrary
that there exists a contactomorphism ˆ 2 G so that

ˆ.Closure. yB2n.R1///� yC 2n.R2/ :

Define the m–fold covering

� W R2n �S1! R2n �S1; .z; t/ 7! .
p

mz;mt/ :

Observe that ��.dt �˛/Dm.dt �˛/, and therefore

(11) ��� D � :
Furthermore,

��1. yB2n.R1//D yB2n.R1=m/ and ��1. yC 2n.R2//D yC 2n.R2=m/ :

Recall that the diffeomorphism ˆ is compactly supported. In particular, ˆ acts
trivially on the fundamental group of R2n �S1 , and the complement to the support is
connected. Thus ˆ admits a unique lift (with respect to � ) to a compactly supported
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diffeomorphism of the covering space. In view of (11) this lift, denoted ˆ0 , is a
contactomorphism.

Summing up, passing to the covering space, we get that

ˆ0.Closure. yB2n.R1=m///� yC 2n.R2=m/

where ˆ0 2 G and R2=m < 1 < R1=m. This completes the reduction to the case
mD 1.

In view of the reduction above we assume that R2 < 1 < R1 . Furthermore, let us
suppose that 1=R2 … Z. It suffices to show that yB2n.R1/ cannot be mapped by a con-
tactomorphism ˆ2G into domain yE.N;R2/ with N large enough, which corresponds
to a “long” ellipsoid, so that ˆ keeps invariant the domain yB2n.R3/ with large R3 .
Using Theorems 1.28 and 1.29 we see that CH0. yB2n.R1//D CH0. yB2n.R3//D Z2

and, moreover, the natural inclusion induces an isomorphism in contact homology.
Here we used that R3>R1> 1. On the other hand CH0. yE.N;R2//D 0 since R2< 1.
The desired result follows now from Proposition 1.26.

Proof of Theorem 1.5 Exactly as in the previous proof, we reduce the problem to the
case mD 1. Assume that

1

kC 1
<R2 <

1

k
<R1 <R3 <

1

k � 1
:

We have to show that yB2n.R1/ cannot be mapped into yB2n.R2/ by a contactomor-
phism from G which keeps invariant the domain yB2n.R3/. Put N D �2n.k � 1/.
Using Theorems 1.28 and 1.29 we see that

CHN . yB2n.R1//D CHN . yB2n.R3//D Z2;

and moreover, the natural inclusion induces an isomorphism in contact homology. On
the other hand CHN . yB2n.R2//D 0. The desired result follows now from Proposition
1.26.

1.9 A guide for the reader

In the next diagram we present logical interrelations between the main results, methods
and phenomena described above. We abbreviate PC for positive contractible and CH
for contact homology. The arrows are labeled by the numbers of the corresponding
theorems and/or propositions.
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SQUEEZING 9 PC-LOOP
1:19oo

**TTTTTTTTTTTTTTTTT

1:9 // NO ORDERoo

CH
1:26 // NON-SQUEEZING 1:11 //

��

PC-LOOPS RIGIDITY

ORDER

The rest of the paper is organized as follows:

In Section 2 we continue our discussion started in Section 1.7 where we suggest to use
loops of contactomorphisms as a squeezing tool for contact domains. In particular, we
prove Theorem 1.19 and generalize (and demystify) the formulas which appeared in
the proof of Proposition 1.24.

In Section 3 we prove Theorem 1.16 which states that the ideal contact boundary of
the n–stabilization of any Liouville manifold is non-orderable, provided that n � 2.
To do this, we present a rather explicit construction of a positive contractible loop of
contactomorphisms. Analyzing an explicit homotopy of our positive loop to the constant
loop, we prove Theorem 1.11(ii). Finally, we prove Theorem 1.6 on negligibility of the
cylinder.

To prove our results on contact non-squeezing and orderability we shall need to under-
stand the relation between cylindrical contact homology, which is a special case of the
symplectic field theory, and Hamiltonian Floer homology. In Section 4 we introduce a
version of Floer homology which contains both theories as its special cases.

In Section 5 we complete the proof of several “hard” results stated in Section 1. First
of all, we express contact homology of the prequantization of a symplectic domain in
terms of its filtrated symplectic homology, see Theorem 5.3 and Proposition 5.6 below
which together form a slightly more explicit version of Theorem 1.27. Our approach is
based on generalized Floer homology theory developed in Section 4. We apply this
result to various calculations with contact homology. In particular, we prove Theorems
1.28 and 1.29 on contact homology of prequantizations of ellipsoids and balls in R2n .
Furthermore, we study contact homology of prequantizations of unit ball bundles of
closed manifolds in terms of cohomology of free loop spaces. As a result, we prove
Theorem 1.18 on orderability of spaces of contact elements.

In Section 6 we touch miscellaneous topics related to the geometry of contact domains
and transformations: We discuss (non)-squeezing of contact domains from the viewpoint
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of quantum mechanics. Then we speculate on links between orderability and fillability
of contact manifolds. Finally, we introduce a canonical semigroup associated to a
contact manifold. This semigroup carries footprints of a partial order even when the
manifold is non-orderable.

2 Loops of contactomorphisms as a squeezing tool

Here we prove Theorem 1.19 by filling the gaps in the sketch presented in Section 1.7
above, and generalize the formulas which appeared in the proof of Proposition 1.24.

2.1 Proof of Theorem 1.19

Denote by et the Hamiltonian flow of E on M� . Denote by � the path of contac-
tomorphisms of P corresponding to et=R; t 2 Œ0I 1�. With this notation we have
A.R/D U.�/. Fix ı > 0 small enough so that

(12) F1.z; t/ > ıR
�1E.z/ and Fs.z; t/ > �.1� ı/�E.z/

for all z 2M�; t 2 S1; s 2 Œ0; 1�. Choose a non-decreasing function � W Œ0; 1�! Œ0; 1�

such that � � 0 near 0, � � 1 near 1 and � 0.t/ < 1C ı for all t 2 Œ0; 1�. Put

�.t/D .1C ı/t � ı�.t/ :
Note that

(13) � 0.t/� 1C ı for t near 0 and 1 ; and � 0.t/� 1� ı2

for all t .

Let us first prove part (ii) of the theorem. Our strategy is as follows. We describe a
homotopy �s; s 2 Œ�1; 1�, of the path � D ��1 with fixed end-points such that

(14) U.�s/�A.�/

for all s and Closure.U.�1//�A.R/. The special attention is paid to the fact that the
paths �s have to be generated by 1–periodic in time Hamiltonians: the functions � and
� are designed just to guarantee time-periodicity.

Each �s corresponds to a path fhs;tg of RC–equivariant symplectomorphisms of M�
generated by contact Hamiltonians Hs.z; t/. These symplectomorphisms are defined
as follows.
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Step 1 s 2 Œ�1; 0�

This part of our homotopy consists of time-reparameterizations of fet=Rg. Put

�.s; t/D .�st C .sC 1/�.t//R�1 ;

and set hs;t D e�.s;t/ . Then

Hs.z; t/D .�sC .sC 1/� 0.t//R�1E.z/ :

It follows from formula (13) that Hs.z; t/ descends to M� �S1 and inclusion (14)
holds provided

(15) ı2 < 1� R

�
:

Step 2 s 2 Œ0; 1�
Put hs;t D e�.t/=R ıf�.t/;s : The corresponding Hamiltonians are given by

Hs.z; t/D � 0.t/R�1E.z/C � 0.t/Fs.e��.t/=Rz; �.t// :

Taking into account that � 0.t/� 0 and � 0.t/� 1C ı for t near 0 and 1 we get that
Hs descend to Hamiltonians on M� �S1 . Combining the first inequality in (12) with
the energy conservation law for fetg we get that

H1.z; t/ >R�1� 0.t/E.z/C � 0.t/R�1ı �E.e��.t/=Rz/

DR�1E.z/.� 0.t/C ı� 0.t//DR�1.1C ı/E.z/ :
Thus

(16) U.�1/�A
� R

1C ı
�
:

It remains to verify inclusion (14). Combining the second inequality in (12) with the
energy conservation law for fetg we get that

Hs.z; t/ > .R
�1� 0.t/��.1� ı/� 0.t//E.z/ :

But � 0.t/ < 1C ı by assumption and � 0.t/� 1� ı2 due to formula (13), and hence

Hs.z; t/� .R�1��/.1� ı2/E.z/ :

This yields inclusion (14) provided that

(17) ı2 < 1� 1

�.R�1��/ :

This completes the proof of part (ii) of the theorem.
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In order to prove part (i) we put �DC1 and note that the restrictions (15) and (17)
on ı read ı < 1. Therefore, the choice of ı is governed by inequalities (12). Assume
that

F1.z; t/ > cE.z/ and Fs.z; t/ > �.1� c/�E.z/

for some c 2 .0I 1/. Then the arguments above will work with ı D min.cR; c/. Put
 Dmin.c; c�/. Since R� < 1 we have ı � R. Thus inclusion (16) yields

U.�1/�A
� R

1C R

�
;

which proves part (i) of the theorem.

2.2 Loops in Cont 0.P / as contactomorphisms of SP � S 1

Let .P; �/ be a contact manifold. Write ˛ and L for the Liouville form and the
Liouville vector field on SP , respectively. Consider a contact manifold .SP �S1; �/

where � D Ker.dt �˛/. In this section we study a general construction which relates
loops in Cont 0.P / and contact embeddings of domains in SP �S1 . This construction
is behind the explicit formula in the proof Proposition 1.24 of the Introduction. Let
fhtg; t 2S1; h0D 1 be any loop of equivariant symplectomorphisms of SP generated
by a contact Hamiltonian H W SP�S1!R . In what follows the expression of the form
z=c with z 2 SP and c 2 RC is understood in the sense of the canonical RC–action
on SP .

Proposition 2.1 The map

‰.z; t/D
� htz

1CH.htz; t/
; t
�

is a contact embedding of the domain f1CH.htz/ > 0g � SP �S1 into SP �S1 .

Proof Recall that for any contact Hamiltonian H on SP we have

˛.sgradH /DH:

This is simply the Euler formula for homogeneous functions. Furthermore, ˛.L/D 0:

We denote by Ac W SP ! SP the action of c 2 RC on SP . Note that A�c˛ D c˛ . Put

c D .1CH.htz; t//
�1:

For every tangent vector v 2 Tz.SP /

‰�v D const �LCAc�ht�v;
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hence

(18) .dt �˛/.‰�v/D c.dt �˛/.v/ :
Furthermore,

‰�
@

@t
D const �LC c � sgradHt C @

@t
;

where Ht .z/ WDH.z; t/. Hence

.dt �˛/.‰� @
@t
/D 1� c˛.sgradHt /

D 1� cH.htz; t/

D c.dt �˛/. @
@t
/ :

(19)

Formulas (18) and (19) yield ‰�.dt � ˛/ D c.dt � ˛/ which means that ‰ is a
contactomorphism on its domain of definition.

Example 2.2 When .P; �/ is the standard contact sphere S2n�1 and ht .z/D e2�iN t

then in view of our identification of SP with Cn n 0 the map ‰ from Proposition 2.1
takes the form

‰N .z; t/D
� e2� iN tzp

1C�N jzj2
; t
�
;

which coincides with the formula (4) in the proof of Proposition 1.24.

3 Non-orderability of stabilizations

In this section we prove Theorem 1.16 which states that the ideal contact boundary
Pstab of the n–stabilization Mstab DM �Cn of any Liouville manifold .M; !;L/ is
non-orderable if n� 2. To do this, we present a rather explicit construction of a positive
contractible loop of contactomorphisms of Pstab . The desired result then follows from
Proposition 1.9. When M is a point, Pstab is simply the standard .2n�1/–dimensional
contact sphere. Analyzing an explicit homotopy of our positive loop to the constant
loop, we prove Theorem 1.11(ii). Finally, we combine our squeezing techniques with
the construction from Section 2.2 and get Theorem 1.6 on negligibility of the cylinder.

3.1 An ambient isotopy

We start with a version of the ambient isotopy theorem in contact geometry which will
be used below. Let .P; �/ be a closed contact manifold with a co-oriented contact
structure, and let †� SP be a starshaped hypersurface.
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Consider a Hamiltonian isotopy ht W W ! SP; t 2 Œ0; 1�; h0 D 1, of a neighborhood
W of † in SP . We denote by Ht the Hamiltonian function generating ht , by �t the
characteristic foliation on †t D ht .†/, and write sgradH for the Hamiltonian vector
field of a function H on SP .

Lemma 3.1 (Ambient isotopy) Assume that hypersurfaces †t are starshaped for all
t . Then there exists a path fftg; t 2 Œ0; 1�, of RC–equivariant symplectomorphisms
of SP with f0 D 1 such that ft .†/ D †t and sgradFt � sgradHt is tangent to �t ,
where we denote by Ft the Hamiltonian which generates the path ft .

Let ˇ be the contact form on SP whose graph equals †. In what follows we need a
formula for the Hamiltonian vector field of a function H in canonical local coordinates
.x;u/2P �RC associated to ˇ , see Section 1.3 above. We assume that H DH.x;u/

is defined in a neighborhood of †, that is in the set fx 2 P; ju� 1j < ıg. For every
x 2 P and u 2 .1� ıI 1C ı/ there exists a unique vector sgradˇH 2 �.x/ such that
dˇ.v; sgradˇH /D�dH j.x;u/.v/ for all v 2 �.x/. Let R be the Reeb vector field of
ˇ . A straightforward calculation shows that

(20) sgradH D�dH.R/
@

@u
Cu�1sgradˇH C @H

@u
R :

Proof of Lemma 3.1 Let Ht W ht .W /!R be the Hamiltonian function generating ht .
Denote by Ft the RC–equivariant Hamiltonian which equals Ht on †t . It generates
a path ft of equivariant symplectomorphisms. Note that, for fixed t , in canonical
coordinates near †t we have Ft .x;u/D uHt .x; 1/. Using the fact that †t D fuD 1g
and formula (20) we get that at each point of †t the difference sgradFt � sgradHt is
tangent to †t . Since this is true for all t 2 Œ0; 1�, we conclude that ft .†/D†t . Note
that the two first terms in formula (20) depend only on the restriction of the Hamiltonian
to the hypersurface and, therefore, these terms coincide for Ft and Ht . On the other
hand, the third term is tangent to �t , and hence so is sgradFt � sgradHt .

3.2 Fundamental Lemma on unitary transformations

In this section we consider unitary transformations of Cn as symplectomorphisms.
In particular, every path in U.n/ is generated by unique quadratic Hamiltonian. We
represent a point z 2 Cn as z D .z1; :::; zn/ D .z1; w/, where w D .z2; :::; zn/, and
introduce radial coordinates �j D �jzj j2 for j D 1; :::; n and %D �2C :::C �n .

The following loop, which lies in SU.n/ (and hence is necessarily contractible) is an
important character of our story:

(21) ft W .z1; w/! .e2�i.n�1/tz1; e
�2�itw/ :
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Lemma 3.2 (Fundamental Lemma) The loop fftg given by formula (21) admits a
homotopy ff .s/t g, f .1/t D ft ; f

.0/
t � 1 through loops on SU.n/ based at 1 to the

constant loop so that the corresponding Hamiltonians F .s/.z; t/ satisfy

(22) F .s/.f
.s/
t z; t/� �%

for all s 2 Œ0I 1�; t 2 S1; z 2 Cn n f0g.

Proof Denote by bj ;t the unitary transformation which preserves all the coordinates
besides the j -th one, and multiplies the j -th coordinate by e2�it . Let I

.s/
j ; j � 2; s 2

Œ0; �=2�, be the unitary transformation which preserves all the coordinates besides the
first and the j -th ones, and in the .z1; zj /–plane its action is given by

.z1; zj / 7! .cos s � z1� sin s � zj ; sin s � z1C cos s � zj / :

Put h
.s/
j ;t D I

.s/
j bj ;t .I

.s/
j /�1bj ;�t

and f
.s/

m;tz D h
.s/
2;t
ı ::: ı h

.s/
m;t ; mD 2; :::; n :

For m D n this family of loops gives a homotopy of fftg to the constant loop. To
verify that this homotopy satisfies inequality (22) we prove the following more general
inequality for every mD 2; :::; n:

Claim The Hamiltonian F
.s/
m generating the loop f .s/m;t satisfies

(23) F .s/m .f
.s/

m;tz; t/� �.�2C :::C �m/ :

In the proof of the claim we use the following fact:

Suppose that Hamiltonian G.z; t/ generates a flow gt . Then the Hamiltonian
�G.gtz; t/ generates the flow g�1

t .

We use notation .u/j for the j -th coordinate of a vector u 2 Cn . Write H
.s/

j .z; t/ for

the Hamiltonian generating h
.s/
j ;t . Calculating, we get that

(24) H
.s/

j .h
.s/
j ;t z; t/D��jzj j2C�

ˇ̌̌�
.I
.s/
j /�1bj ;�tz

�
j

ˇ̌̌2 � ��jzj j2 :

Another observation used below is that

(25) .h
.s/
j ;t z/l D zl for l ¤ 1; j :
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Proof of the Claim We use induction in m. The case mD 2 immediately follows
from inequality (24). Let us verify the induction step m 7!mC1. Note that f .s/

mC1;t
D

f
.s/

m;t ı h
.s/
mC1;t

. Hence, putting y D h
.s/
mC1;t

z , we get

(26) F
.s/
mC1;t

.f
.s/

mC1;t
z; t/DH

.s/
mC1

.h
.s/
mC1;t

z; t/CF .s/m .f
.s/

m;ty; t/ :

Applying the induction hypothesis and inequality (24) we get that the left hand side of
(26) is greater than or equal to

C WD ��jzmC1j2��
mX

jD2

j.y/j j2:

Applying (25) we see that .y/j D zj for j D 2; :::;m. Hence

C D��.�2C :::C �m/;

and inequality (23) follows.

This completes the proof of the Claim, and hence of Lemma 3.2.

3.3 Some preparations

Let .M; !;L/ be a Liouville manifold with the ideal contact boundary .P; �/. We fix a
contact form on P and equip the symplectization SP with coordinates .x;u/2P�RC
as in Section 1.3. Thus we have decomposition (2)

M D .P �RC/tCore.M / :

We extend the function u by 0 to Core.M /. As before, we introduce the functions
�1 D �jz1j2 and %DPn

jD2 �jzj j2 on Cn , and denote � WD �1C %.

In what follows we have to work with starshaped domains and hypersurfaces in the
stabilization Mstab DM �Cn . A user-friendly class of these objects arises, roughly
speaking, as follows: Take any closed starshaped domain D � Cn with boundary
� D @D . Then fu� 1g �D is a closed starshaped domain in Mstab whose boundary
is a starshaped hypersurface. The problem is that these objects (the domain and the
hypersurface) have corners unless M is a point, and hence do not fit into our setup.
However, this can be easily corrected by an appropriate smoothing of corners. Below
we describe this construction in a slightly more general context when the domain D

has the form D D fc1�1C c% � 1g and � D fc1�1C c%D 1g with c1; c 2 R. (Note
that D and � are not necessarily compact.)

We fix a real concave function � W Œ0; 1�! Œ0; 1� (a mollifier) which equals 1 near 0 and
equals 0 at 1. We assume, in addition, that its inverse ��1 , which is defined near 0, is
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flat at 0, ie all its derivatives at 0 vanish. The graph of � is a smoothing of the union of
northern and eastern edges of the unit square on the coordinate plane. In addition, we
need another technical condition. Fix a number � 2 .0; 1/ which is sufficiently close
to 1 and assume that

(27) � 0.u/ < ��2=4 provided �.u/� �2 :

The desired smoothing of corners gives rise to a domain

Dext D fc1�1C c%� �.u/g
and to a hypersurface

�ext D fc1�1C c%D �.u/g
in Mstab . The subscript ext indicates that we extended an object defined on Cn to
M � Cn . Note that with this notation the hypersurface S2n�1

ext represents the ideal
contact boundary of Mstab .

3.4 Distinguished RC–equivariant symplectomorphism

Consider the following subsets of Cn : the domain

W WD f.2nC 1/%� .n� 1/�1 � 1g ;
the ellipsoid

E WD f��1C %D 1 g ;
and the ball

B D f� � 1g:
For c > 0 let us denote by Yc W Cn! Cn the shift by c along the Re.z1/–axis, and
write zYc for its trivial extension 1�Yc to a diffeomorphism of M �Cn .

Lemma 3.3 There exist c > 0 large enough and � > 0 small enough such that all
ellipsoids Ys.E/; s 2 Œ0; c�, enclose 0 and hence are starshaped, and in addition

(28) Yb.E/� Interior.W / for all b � c :

Proof Let us make analysis of the problem: suppose that c and � are as required.
Take any z D .z1; w/ 2 E . Put z0 D Yb.z/ D .z1C b; w/ with b � c . We have to
check that

.n� 1/�jz1C bj2 > .2nC 1/�jwj2� 1 :

Substituting �jwj2 D 1���jz1j2 we rewrite this inequality as

.n� 1/�jz1C bj2C .2nC 1/��jz1j2 > 2n :

Geometry & Topology, Volume 10 (2006)



Geometry of contact transformations and domains 1663

Write z1 D pC iq and observe that it suffices to achieve

(29) .n� 1/�.pC b/2C .2nC 1/��b2 > 2n

for all b � c . The absolute minimum of the function in the left hand side of this
inequality equals

.n� 1/.2nC 1/��b2

.n� 1/C .2nC 1/�
:

Substitute this into the left hand side of (29). Replacing b by c and performing an
elementary algebraic manipulation we get

(30) ��c2 >
2n

2nC 1
C � 2n

n� 1
:

On the other hand, Ys.E/ encloses 0 for all s � c provided that

(31) ��c2 < 1 :

To complete the proof it remans to notice that inequalities (30) and (31) are compatible
if � is small enough.

Take c and � from the lemma and choose � 2 .0; 1/ so that

(32) ��c2 � �2 < 1

(see inequality (31) above). In what follows we assume that this number � appears in
the condition (27) on the mollifier � .

Lemma 3.4 All domains zYs.Eext /; s2 Œ0; c�; are starshaped in Mstab , and in addition

(33) zYc.Eext /� Interior.Wext / :

Proof Write zj D pj C iqj , and note that the Liouville field on Mstab can be written
as

LD @u˚ 1

2

nX
jD1

.pj
@

@pj
C qj

@

@qj
/ :

Choose s 2 Œ0; c�. The equation of zYs.Eext / is

F.p; q;u/ WD ��.p1� s/2C��q2
1 C� �

nX
jD2

.p2
j C q2

j /� �.u/ D 0 :
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We claim that dF.L/ > 0 at every point of the hypersurface zYs.Eext /. Indeed,
calculating dF.L/ at such a point we get

dF.L/D ��s.p1� s/C �.u/� � 0.u/:

On zYs.Eext / we have jp1� sj �p�.u/=.��/. Thus inequality (32) yields

dF.L/� �.u/��
p
�.u/� � 0.u/ :

The positivity of the right hand side, say A, of this expression follows from assumption
(27) on the mollifier � . Indeed, denote by I the segment

fu W �.u/� �2g :

For u … I we have �.u/ � �p�.u/ > 0 and � 0.u/ � 0 so A > 0. On I we have
�.u/��p�.u/� ��2=4 and �� 0.u/ > �2=4. Thus again A> 0.

The “singular” case when uD 1 (and so � 0.u/ is not defined) can be easily checked
separately. The claim follows.

Thus zYs.Eext /; s 2 Œ0; c�, is an isotopy of an (obviously) starshaped hypersurface Eext

in the class of hypersurfaces transversal to the Liouville field L. Therefore all these
hypersurfaces are starshaped.

In order to verify inclusion (33), we use a scaling type argument: fix u and put
%0 D %=�.u/; �0

1
D �1=�.u/; c

0 D c=
p
�.u/. Then the desired inclusion is equivalent

to inclusion (28) with b D c0 � c since �.u/� 1. This completes the proof.

Applying Ambient Isotopy Lemma 3.1 we get a family fa.s/g; s 2 Œ0; c�, of equivariant
symplectomorphisms of Mstab such that a.s/.Eext / D zYs.Eext / for all s 2 Œ0; c�.
Symplectomorphism a WD a.c/ plays an important role below.
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Lemma 3.5 The equivariant symplectomorphism a satisfies the following conditions:

a.@Bext /� Interior.Wext / I(34)

a�uD u; a�%D % :(35)

Proof The property (34) is straightforward. Let us verify formulas (35). Note that the
characteristic foliation �0 of Estab is generated by

� � sgradCn�1C sgradCn%� � 0.u/sgradM u :

The functions u and % are constant along �0 , and, moreover, the shifts zYs preserve them.
Thus, using Ambient Isotopy Lemma 3.1, we get u.a.s/x/Du.x/ and %.a.s/x/D%.x/
for all x 2Estab . In view of the homogeneity of a we conclude (35).

3.5 The main construction

Convention All transformations g from SU.n/ smoothly extend to M �Cn by 1�g .
We denote the extensions by the same letter as the original transformations.

Put etz WD e2�itz . Let ft be the loop of unitary transformations constructed in Fun-
damental Lemma 3.2. Let a be the distinguished RC–equivariant symplectomorphism
of Mstab constructed in Section 3.4.

Theorem 3.6 The loop
't WD e�tf3taeta

�1

is a positive contractible loop of RC–equivariant symplectomorphisms of

SPstab DMstab nCore.Mstab/:

In view of Proposition 1.9 this yields Theorem 1.16. In the case of the standard
contact 3–sphere somewhat similar positive contractible loops can be defined by an
explicit analytic formula. Furthermore, ”a cousin” of the distinguished map a admits a
transparent geometric meaning. We refer to Remark 8.2 in Appendix B for the details.

Proof Let ft and f
.s/
t be the loop of unitary transformations and its homotopy

from Fundamental Lemma 3.2, and let F.z/ and F .s/.z; t/ be the corresponding
Hamiltonians considered as functions on M �Cn .

(1) Put gt WD ftaeta
�1 and g

.s/
t WD f

.s/
t aeta

�1 , and denote by G.x; z; t/ and
G.s/.x; z; t/ their Hamiltonians. Here x 2M; z 2 Cn . We claim that

(36) G.s/ � 0
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and

(37) G.x; z; t/ > 2n%.z/

for all .x; z/ 2Mstab; t 2 S1; s 2 Œ0; 1�. Indeed,

G.s/.x; z; t/D F .s/.z; t/C �.a�1.x; .f
.s/
t /�1z//:

Recall that �D �1C%. Put y D .f .s/t /�1z . In view of RC–equivariance, it suffices
to verify inequalities (36) and (37) for fixed s and t assuming that .x; z/ runs over
any given starshaped hypersurface. Thus, we can assume that

(38) .x;y/ 2 a.@Bext / :

By Fundamental Lemma 3.2 and equations (35) we have

G.s/.x; z; t/D F .s/.f
.s/
t y; t/C �.a�1.x;y//� �%.y/C �.a�1.x;y//

� �%.y/C %.a�1.x;y//D�%.y/C %.y/D 0;

which proves inequality (36).

Let us now turn to the case s D 1. Inclusion (34) guarantees that

(39) �.u.x;y//C .n� 1/�1.y/� .2nC 1/%.y/ > 0 :

Note that when s D 1 we have y D f�tz , and hence

(40) �1.y/D �1.z/ and %.y/D %.z/:
Using equations (35), inequality (39) and inclusion (38) we get

G.x; z; t/D F.y/C �.a�1.x;y//D .n� 1/�1.y/� %.y/C �.u.a�1.x;y///

D .n� 1/�1.y/� %.y/C �.u.x;y// > 2n%.y/D 2n%.z/:

This proves inequality (37), and the claim follows.

(2) Put ht WD f2tgt , h
.s/
t D f .s/2t

gt and let H.x; z; t/ and H .s/.x; z; t/ be corre-
sponding Hamiltonians. We claim that

(41) H .s/ � 0

and

(42) H.x; z; t/ > .2n� 2/�.z/

for all .x; z/ 2Mstab; t 2 S1; s 2 Œ0; 1�. Indeed,

H .s/.x; z; t/D 2F .s/.z; 2t/CG.x; .f
.s/

2t
/�1z; t/:
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Put y D .f .s/
2t
/�1z . Applying Fundamental Lemma and (37) we have

H .s/.x; z; t/D 2F .s/.f
.s/

2t
y; 2t/CG.x;y; t/� �2%.y/C 2n%.y/� 0 ;

which proves inequality (41).

When s D 1 we apply formulas (40) and (37) and get

H.x; z; t/D 2.n� 1/�1.z/� 2%.z/CG.x;y; t/ > .2n� 2/.�1.z/C %.z// :
This proves inequality (42). The claim follows.

(3) Note that the loop f'tg presented in the formulation of the theorem is given by
't D e�tht . Let ˆ.x; z; t/ be the Hamiltonian of f'tg. Then using inequality (42) we
get

ˆ.x; e�tz; t/D��.z/CH.x; z; t/ > .2n� 3/�.z/� 0

and hence

(43) ˆ.x; z; t/ > .2n� 3/�.z/� 0

for all .x; z/ 2Mstab and t 2 S1 . This proves positivity of the loop f'tg.

(4) Let us present a homotopy � of the loop f'tg to the constant loop. For that
purpose write

't D e�tf2tftaeta
�1 :

The homotopy � is given in three steps.

Step 1 Contract the term f2t using homotopy f .s/
2t

given by the Fundamental Lemma
and arrive to

'0t D e�tftaeta
�1 :

Step 2 Contract the term ft using homotopy f .s/t given by the Fundamental Lemma
and arrive to

'00t D e�taeta
�1 :

Step 3 Use the path a.s/ joining the identity with a described in Section 3.4. We get
the homotopy

e�ta
.s/et .a

.s//�1;

which equals the constant loop when s D 0.

This completes the proof.

Let us emphasize that the proof above works when M D fpointg with the following
modifications:
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� We do not need any mollifier � , and work directly with W;E;B �Cn , omitting
sub-index ext ;

� The shift zYs coincides with Ys .

Taking into account these remarks we are ready to prove Theorem 1.11(ii).

Proof of Theorem 1.11(ii) Look at the homotopy � of the loop 't described in
Part 4 of the proof of Theorem 3.6 above. It suffices to show that the Hamiltonians
generating loops obtained in the process of this homotopy are ���jzj2 . In Steps 1 and
2 of the homotopy we get loops e�th

.s/
t and e�tg

.s/
t , respectively. Inequalities (41)

and (36) guarantee that in both cases the corresponding Hamiltonians are ���jzj2:
In Step 3 the Hamiltonian again is � ��jzj2 . This shows that �.�/� 1 (and in fact,
one can see that �.�/D 1, as it should be in accordance with Theorem 1.11(i).) This
completes the proof.

3.6 Proof of Theorem 1.6

We work in Cn with coordinates .z1; :::; zn/. Put �j D �jzj j2 , %DPn
jD2 �jzj j2 and

�DPn
jD1 �jzj j2 . We will prove that the cylinder C D f�2 < 1g � Cn is negligible.

D D ˚% < 1

n

	
Put

W D f.nC 1/�2C n�3C :::C n�n� �1 < 1g :and

Introduce the loops of transformations from SU.n/

ft .z/D .e2�.n�1/itz1; e
�2� itz2; :::; e

�2�itzn/

gt .z/D .e2�itz1; e
�2�itz2; z3; :::; zn/and

which are generated by the Hamiltonians

F.z/D .n� 1/�1.z/� %.z/
G.z/D �1.z/� �2.z/;and

respectively. Our main squeezing tools will be contact embeddings

ˆ.z; t/D ft .z/p
1CF.z/

‰.z; t/D gt .z/p
1CG.z/

and
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associated to loops fftg and fgtg, respectively, in accordance to Proposition 2.1. (The
square root in these formulas reflects the fact that the natural RC–action on Cn n f0g
considered as the symplectization of S2n�1 is given by z!pcz for c 2 RC .)

In view of Fundamental Lemma 3.2 the loop fftg is homotopic to a point through
loops whose Hamiltonians are � �%. In particular, the embedding ˆW D! V is well
defined and contactly isotopic to the inclusion.

In view of Claim (23) inside the proof of Fundamental Lemma, the loop fgtg is
homotopic to a point through loops with Hamiltonians � ��2 . In particular, the
embedding ‰W C ! V is well defined and contactly isotopic to the inclusion.

Let K �C be any compact subset. Arguing exactly as in Section 3.4 we find a contact
isotopy of K to its shift Y .K/ along the Rez1 –axis such that Y .K/� C \W . Take
z 2 C \W and put z0 D‰.z/. Then

%.z0/D %.z/

1C �1.z/� �2.z/
<

1

n
;

where the equality follows from the explicit formula for ‰ and the inequality follows
from the definition of W . We conclude that ‰.Y .K//�D . Take now any u 2D and
put u0 Dˆ.u/. Then

�.u0/D �1.u/C %.u/
1C .n� 1/�1.u/� %.u/ �

�1.u/C 1
n

1C .n� 1/�1.u/� 1
n

D 1

n� 1
;

where the equality on the left follows from the explicit formula for ˆ and the inequality
follows from the definition of D . We conclude that

ˆ.‰.Y .K///� yB2n.
1

n� 1
/ :

Thus, we contactly squeezed K into the set yB2n. 1
n�1

/, which is negligible in view of
Theorem 1.3. This shows that any compact subset of C is negligible, as required.

4 Different flavors of Floer homology

To prove our results on contact non-squeezing and orderability we need to understand the
relation between cylindrical contact homology which is a special case of the symplectic
field theory (see [17; 44; 48; 4]), and (periodic) Floer homology for the symplectic
action functional (see [21; 37]). In order to do that we introduce a more general version
of Floer homology for Hamiltonian structures which contains both theories as its
special cases.
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4.1 Stable Hamiltonian structures

Two differential 1–forms on a manifold are called equivalent if they differ by an exact
1–form. We denote by .‚/ the equivalence class of a 1–form ‚. The 2–form d‚ does
not depend on the choice of a representative ‚ 2 .‚/ and will be denoted by d.‚/.
A Hamiltonian structure H on an odd-dimensional oriented, possibly non-compact
manifold V is an equivalence class .‚/ of 1–forms such that � D d.‚/ has the
maximal rank. The tangent line field `D Ker� is called the characteristic line field.
The field ` integrates to a 1–dimensional characteristic foliation of �. Note that �
defines a fiberwise symplectic structure (and hence an orientation) on the bundle T V =`.
Thus the line bundle ` is equipped with an orientation. We will call characteristic any
vector field R which generates ` and respects its orientation.

Any co-orientable hypersurface V in an exact symplectic manifold .W; z� D d z‚/
inherits a Hamiltonian structure .‚/D .z‚jV /. Conversely, any Hamiltonian structure
.V; .‚// embeds as a hypersurface in a symplectic manifold .V � .�"; "/; d z‚/ where
the form z‚ can be constructed as follows. Let � be any 1–form which is not vanishing
on `, and s be the coordinate along the second factor. Then we set z‚ D ‚C s�.
Note that by Darboux’ theorem the Hamiltonian structure .V; .‚// determines the
symplectic structure in its neighborhood uniquely up to a diffeomorphism fixed on V .
We call (a germ along V of ) the symplectic structure z� on V � .�"; "/ the symplectic
extension of .V; .‚//.

A Hamiltonian structure .V; .‚// is called stable (see [32]) if its symplectic extension
can be realized by a form z� on V � .�"; "/, such that all the Hamiltonian structures
Hs; s 2 .�"; "/ induced on V by the inclusions V D V � s ,! V � .�"; "/ have the
same characteristic line field `.

Proposition 4.1 A Hamiltonian structure .V; .‚// is stable if and only if there exists
a 1–form � and a characteristic vector field R such that

(44) �.R/D 1 and iRd�D 0 :

Note that in view of the Cartan formula we have LR�D d.�.R//C iRd�; and hence
the second condition can be restated as invariance of � under the flow of R.

Proof Suppose that there exists � which satisfies the above conditions. Set z‚D‚Cs�

and z�D d z‚. Then for z�s WD z�jV�s D�C sd� we have

iR z�s D iR�C siRd�D 0 ;

and hence .V; .‚// is stable.
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Conversely, suppose that a Hamiltonian structure .V; .‚// is stable. Then according to
the definition it has a symplectic extension .V �.�"; "/; z�D d z‚/ such that iR z�s D 0,
where z�s D z�jV�s and R is a characteristic vector field for �. Let us write z� as
�C �s C �s ^ ds , where �s , �s are families of 1– and 2–forms on V and �0 D 0.
We have

0D d z�D d�C d�s � P�s ^ dsC d�s ^ ds D d�s � P�s ^ dsC d�s ^ ds ;

where P�s D d�s

ds
. Hence, d�s D P�s . On the other hand,

0D iR z�s D iR�s D 0 :

Differentiating with respect to s we get iR P�s D 0, and therefore, iRd�s D 0. Note
that �0.R/ does nor vanish. Indeed along V � 0 we have z�nC1 D�n^�0^ds; and
thus 0¤ iR z�nC1 D �0.R/�

n^ds . (Here dim V D 2nC 1.) Normalizing R in such
a way that �0.R/� 1, we get that �0.R/D 1 and iRd�0 D 0, as required.

The structures characterized by existence of a 1–form � satisfying the conditions of
Proposition 4.1 appeared in [6], but were not identified there with stable hypersurfaces
in symplectic manifolds which were first studied in [32].

The 1–form � as in Proposition 4.1 is called a framing of the stable Hamiltonian
structure H D .V; .‚//. The hyperplane field � D f� D 0g, called a cut of H , and
the characteristic vector field R, called a Reeb field of the Hamiltonian structure, are
uniquely determined from (44) by the framing �. The triple .V; .‚/; �/ is called
a framed Hamiltonian structure and is denoted by

�!
H . Here are examples of stable

Hamiltonian structures taken from [6].

Example 4.2

1 Contact forms Let � be a contact structure on V and � a corresponding contact
form. Then .V; .�/; �/ is a framed stable Hamiltonian structure with cut � . In this
case R the usual Reeb field of the contact form � and �D d�.

2 Hamiltonian functions Let .M; ! D d˛/ be an exact symplectic manifold and
Ht W M!R , t 2S1DR=Z, a 1–periodic time-dependent Hamiltonian function. Write
sgradHt for its Hamiltonian vector field. Put V DM �S1 . Set ‚D�˛CHtdt and
�D dt . Then .V; .‚/; �/ is a framed stable Hamiltonian structure. Its Reeb vector
field is given by R D @

@t
C sgradHt and its cut � D f� D 0g is formed by tangent

spaces to M � t; t 2 S1 .

3 Prequantization spaces Let .M; !/ be a symplectic manifold with the integral
cohomology class Œ!� of the symplectic form ! . Consider the corresponding prequan-
tization space, that is a principal S1 –bundle pW V !M with the first Chern class Œ!�.
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In this case the lift � WDp�! of the symplectic form is exact: �Dd‚. Then .V; .‚//
is a stable Hamiltonian structure. Indeed, one can choose any S1 –connection form �

as its framing. The corresponding Reeb vector field R is the infinitesimal generator of
the S1 –action, and the cut � is the horizontal distribution of the connection.

4.2 Special Hamiltonian structures

As it is stated above, the goal of Section 4 is to develop the Floer homology theory
for Hamiltonian structures. To avoid unnecessary technicalities we will restrict the
theory to a special class of stable Hamiltonian structures which will be sufficient for all
the applications considered in this paper. In Section 4.11 we briefly discuss possible
generalizations of the theory.

Let .M 2n; !;L/ be a Liouville manifold with the Liouville form ˛ . We will work
on the manifold V DM �S1 , write t .mod1/ for the coordinate on S1 D R=Z, and
orient V by the volume form .�!/n ^ dt .

Let us denote by ±C;K the set of all 1–forms on V which coincide with Cdt � K˛
(C; K 2 R) outside a compact subset of V . We identify the set ± WDSC;K2R ±C;K with
R�R�±0;0 and equip it with the product topology, where ±0;0 is considered with the
strong Whitney topology. It induces a topology on the set of equivalence classes of
1–forms.

A Hamiltonian structure HD .V; .‚// on V is called special if ‚ 2 ±C;K , where C
and K are positive constants which are called the structure constants of H , and the
following Axioms 1–3 are satisfied.

Axiom 1 The first Chern class of the symplectic vector bundle .T V =`;�D d.‚//,
where ` is the characteristic line field of H , vanishes on any 2–cycle represented by a
mapping T2! V .

Recall that the characteristic foliation T of H is equipped with an orientation. The
action of a periodic orbit  of T is defined by

(45) A. /D
Z


‚ :

By Stokes’ formula, the action does not depend on the specific choice of a 1–form ‚

representing .‚/. In view of the conditions “at infinity” imposed on ‚, the trajectories
of T outside a sufficiently large compact subset of V are circles fpointg �S1 , and
their action equals to the structure constant C.

Geometry & Topology, Volume 10 (2006)



Geometry of contact transformations and domains 1673

Axiom 2 The characteristic foliation T has no contractible closed orbits of action
� C.

Axiom 3 There exist numbers � � 0; P > 0; Q � 0 and a 1–form � 2 ±P;Q such that
� � �‚ is a closed 1–form representing cohomology class .P � �C/Œdt � and � is
positive on the characteristic foliation T with respect to its natural orientation.

Note that in view of Axiom 3 we have d� D ��, which implies stability of H . In
particular, � is a framing of the Hamiltonian structure H . Such a framing is called
special. Special framings form a convex cone. The constant � is called the parameter,
and the numbers P and Q the structure constants of the framing. Note that QD �K.
Clearly, the cut � is a contact structure on V if � > 0, and � integrates to a foliation
defined by a closed 1–form if �D 0. Sometimes, in order to emphasize the dependence
of the introduced objects on H we will write .‚/H; �H; TH;AH etc.

Consider a special Hamiltonian structure .V; .‚// with a special framing �. We start
with the following useful period-action equation, which is an immediate consequence
of the definitions. Let  be a T –periodic closed orbit of the Reeb vector field R. Then

(46) T D �A. /C .P��C/hŒdt �; Œ �i :

Proposition 4.3 Let .‚/ be a special Hamiltonian structure on V . Then every 1–form
‚0 in a sufficiently small neighborhood of ‚ defines a special Hamiltonian structure.
Moreover, if � is a special framing of ‚ then there exists a special framing �0 of ‚0
which is sufficiently close to �.

Proof If ‚0 is sufficiently close to ‚ then Axiom 1 for ‚0 is fulfilled automatically.
To check Axiom 3, note that the 1–form

�0 D �C�.‚0�‚/
is a framing of .‚0/ with the same parameter �. It remains to verify Axiom 2. Note
that if �D 0 then in view of equation (46) the characteristic foliation T of .‚0/ cannot
have contractible closed orbits. Let us assume that � > 0 and suppose on the contrary
that there exists a sequence of 1–forms ‚i!‚ whose characteristic foliations admit
contractible closed orbits of action � Ci , where Ci is the structure constant of ‚i .
Applying again (46) we see that the periods of i are bounded, and thus these orbits
converge to a contractible closed orbit of .‚/ of action � C. This contradicts to Axiom
2 for ‚.
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We will be mostly dealing in this paper with special Hamiltonian structures, and hence,
if not otherwise noted,

all considered Hamiltonian structures and
their framings will be assumed special.

4.3 Basic examples

The following two basic examples of special Hamiltonian structures which will appear
below (see [6]) are specifications of Examples 4.2.1 and 4.2.2.

Example 4.4 (Contact forms) Let F W V ! R be a positive function which is equal
to a constant C outside a compact set. Consider a contact form � WD F.dt � ˛/ on
V whose Reeb vector field has no contractible closed orbits of period � C. We call
such a form admissible. Then .�/ is a Hamiltonian structure on V . The same 1–form
� serves as its framing, and so the framing parameter � equals 1. All the structure
constants are equal to C. The cut � D Ker.�/ is a contact structure on V , and the
Reeb vector field is the usual Reeb field of �. One can easily check that the symplectic
subbundles .�;�D d�/ and .TM;�!/ of T V are homotopic, and thus have the same
first Chern classes (see Section 4.13 for more details). Hence, Axiom 1 is equivalent
to the requirement that c1.TM / vanishes on any cycle represented by a mapping
T2 !M . Verification of other axioms is straightforward. We denote the obtained
framed Hamiltonian structure by

�!
H� , as it is fully determined by the contact form �

on V .

Example 4.5 (Hamiltonian functions) Let F W V DM�S1!R be a time-dependent
1–periodic Hamiltonian function on M which is equal to a positive constant C outside
a compact set. Let us introduce a Hamiltonian structure .Fdt �˛/ on V . The framing
is chosen as � WDdt , and hence the framing parameter � vanishes. Thus the cut � is the
tangent bundle to the fibers M �fpointg, and the Reeb vector field is RD @

@t
CsgradF .

As in the previous example it is straightforward that all axioms are satisfied provided
that c1.TM / vanishes on any cycle represented by a mapping T2!M . This framed
Hamiltonian structure is fully determined by the function F and will be denoted by�!
HF .

4.4 Periodic orbits of the characteristic foliation

Let T be the oriented characteristic foliation of a Hamiltonian structure H D .‚/.
Write C for the structure constant. Denote by S the set of free homotopy classes of
loops S1 ! V which project to the class Œpoint� S1� under the natural projection
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V D M � S1 ! S1 . We will focus on those orbits of T with action < C which
represent classes from S , and denote the set of such orbits by P .

Definition 4.6 A Hamiltonian structure is called regular if all periodic orbits from P
are non-degenerate, that is their linearized Poincaré return maps do not contain 1 in
their spectra.

Proposition 4.7 Regular Hamiltonian structures form a Baire set in the space of all
Hamiltonian structures.

Outline of the proof A little nuance here is that the “flat” orbits at infinity, whose
action equals C, are certainly degenerate. One goes round this difficulty as follows.
Choose a starshaped hypersurface P � M such that M D Core.M /

F
SP , and

introduce coordinates .x;u/ on SP D P �RC . In these coordinates ˛D uˇ where ˇ
is the contact form on P defined by the restriction of ˛ . Denote by Rˇ the Reeb field
of ˇ and by T the minimal period of a closed orbit of Rˇ .

Let HD .‚/ be any Hamiltonian structure with the structure constants C and K. We can
assume without loss of generality that KD 1 and ‚D Cdt�uˇ for u� 1=2. We claim
that there exists an arbitrarily small perturbation ‚1 of ‚ such that ‚1D‚ for u� 2

and the region A WD f1 � u < 2g does not contain closed orbits of the characteristic
foliation of .‚1/ representing classes from S . Indeed, write ‚1 D G.u/‚, where
G.u/� 1 for u� 2. Put H.u/D CG0=.Gu/0 . Assume that for u 2 Œ1; 2/ the function
G is strictly increasing and C 1 –close to the constant function u � 1. Then the
characteristic foliation T1 of .‚1/ on A is generated by the field @

@t
CH.u/Rˇ with

0 < H.u/ < 1=T . Thus T1 has no closed orbits in A representing classes from S .
Now one can extend ‚1 to the rest of V to get the desired perturbation.

It remains to perturb ‚1 , keeping it fixed on the set fu > 3=2g, in such a way that
all closed orbits of the characteristic foliation outside this set will be non-degenerate.
This can be done by a standard adaptation of the Kupka-Smale type argument, see eg
[40].

Remark 4.8 Period-action equation (46) guarantees that the periods of all orbits from
P are bounded. Indeed, given an orbit from P of period T we have

T � �CC .P��C/ � 1D P :

Thus for a regular Hamiltonian structure and for any "> 0 the set f 2PjA. /� C�"g
is finite.

Geometry & Topology, Volume 10 (2006)



1676 Yakov Eliashberg, Sang Seon Kim and Leonid Polterovich

Consider the functional AH. /D
R
 ‚ defined on the space of smooth loops S1! V

representing classes from S . Define the action spectrum specH of a Hamiltonian
structure H as the set of values of AH on orbits from P . Note that this set can be
interpreted as the set of critical values of AH lying in the interval .�1I C/. Indeed,
the critical points of AH correspond to closed orbits of the characteristic foliation
parameterized in an arbitrary way by the circle S1 . Using period-action equation (46)
one can show (by a lengthy, but quite straightforward modification of the standard
argument, cf [32]) that even for a non-regular Hamiltonian structure H the set specH[
fCg is a closed nowhere dense subset of R. The points from .0; C/ n specH are called
non-critical values of AH . For two non-critical values a; b we denote by P.aIb/ the
subset of P which consists of periodic orbits  with a<AH. / < b .

4.4.1 The Conley-Zehnder index and the grading Recall that the Conley-Zehnder
index is an integer number associated to a path of symplectic matrices ADA.t/; t 2
Œ0; 1�, where A.0/ D 1 and A.t/ does not contain 1 in its spectrum, see eg [41].
It is denoted by CZ.A/. Different authors use different conventions on the sign and
normalization (up to an additive constant) of the Conley-Zehnder index. Our convention
is as follows:

� If a path A of symplectic matrices is generated by a sufficiently small quadratic
Hamiltonian F on R2n D Cn then the Conley-Zehnder index of A equals the
Morse index of F , that is the number of negative squares;

� Given a path 1 and a loop 2 of symplectic matrices, the Conley-Zehnder index
of their concatenation satisfies

CZ.1]2/D CZ.1/�Maslov.2/

(note the minus sign!), where Maslov stands for the Maslov index of a loop;
� The Maslov index is normalized by

Maslov.fe2�itgt2Œ0;1�/DC2 :

The Conley-Zehnder index plays a crucial role in the definition of a grading on the space
C D SpanZ2

.P/ which in turn is a basic ingredient in the definition of generalized
Floer homology. Let us discuss this grading in more details.4 First of all, given a free
homotopy class e 2 S let us denote by Pe the set of all orbits from P which represent
e . Set Ce D SpanZ2

.Pe/. Then we have a decomposition C D˚e2SCe .

Fix a class e 2 S , and take any loop �0W S1 ! V representing e . Pick a sym-
plectic trivialization g0W ��0 .T V =`/ ! R2n � S1 of the symplectic vector bundle

4This material is essentially known to the experts.
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.��
0
.T V =`/; d.‚// over S1 . Given any other loop �1W S1 ! V representing e ,

choose a homotopy ˆW S1� Œ0I 1� between �0 and �1 with ˆjS1�fig D �i ; i 2 f0; 1g.
Extend g0 to a symplectic trivialization of ˆ�.T V =`/ and denote by g1 its restriction
to S1 � f1g. We get a symplectic trivialization of the bundle .��

1
.T V =`/; d.‚//.

Axiom 1 in the definition of a special Hamiltonian structure guarantees that g1 does
not depend on the choice of the homotopy ˆ up to multiplication by a contractible
loop of symplectic matrices. We say that trivializations g0 and g1 are equivalent, and
call the equivalence class a coherent trivialization of the bundle T V =` in the class e .
The set of coherent trivializations in the class e is denoted by Je . Importantly, this set
carries a natural action of Z. Indeed, consider a coherent trivialization j 2 Je as above
induced by a pair .�;g/, where �W S1! V is a loop and gW ��.T V =`/! R2n�S1

is a symplectic trivialization. Take any loop A.t/ of symplectic matrices with the
Maslov index 2k; k 2 Z. Define a map

xAW R2n �S1! R2n �S1

by xA.x; t/D .A.t/x; t/. Consider a new trivialization g0 D xA ıg of ��.T V =`/, and
denote by j 0 the induced coherent trivialization. By definition, j 0 is the result of the
action of k 2 Z on j , which is denoted by j 0 D j Ck . One can easily check that this
Z–action on Je is well defined, transitive and free.

Choose any framing of a regular Hamiltonian structure .V; .‚//. Denote by Rt W V !V

the flow of the corresponding Reeb vector field. The linearization Rt� of this flow
acts by symplectic automorphisms of the bundle .T V =`; d.‚//. Let p.t/ be a closed
orbit of Rt from Pe with period T . Put zp.t/D p.T t/. Every coherent trivialization
j 2 Je gives rise to a symplectic trivialization

gW zp�.T V =`/! R2n �S1 :

Denote by gt its restriction to the fiber over t 2 S1 . Define the Conley-Zehnder
index CZ.p; j / of the orbit p 2 Pe with respect to the coherent trivialization j as
the Conley-Zehnder index of the loop gtR

tT� g�1
0

of symplectic matrices. One readily
checks that this definition does not depend on the choice of a special framing. Taking
into account our convention on the Conley-Zehnder index and the definition of the
Z–action on Je we have

(47) CZ.p; j C k/D CZ.p; j /� 2k for all k 2 Z :

As an immediate consequence we get that for each pair of orbits p;p02Pe the difference
CZ.p; j /�CZ.p0; j / does not depend on the choice of a coherent trivialization j 2 Je .
Thus we often denote it by CZ.p/�CZ.p0/ even though each term in this expression
depends on j . We conclude that the space Ce is equipped with a Z–grading up to an
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additive shift. Formula (47) yields, however, that the even and the odd parts of Ce are
well defined.

Instead of speaking about a Z–grading up to an additive shift we prefer to adopt the
following more concrete viewpoint. Let us call a Z–set any set equipped with a free
transitive Z–action. Given such a set, say Y , one introduces the notions of a Y –graded
vector space and a Y –graded chain complex. The homology groups of a Y –graded
chain complex are naturally Y –graded.

Introduce a structure of a Z–set on

Ie WD Je � f0I 1g
as follows: put .j ; 0/C1D .j ; 1/ and .j ; 1/C1D .j C1; 0/. For an element p 2Pe

define its degree deg.p/ 2 Ie as .j ; 0/ if CZ.p; j /D 0 and as .j ; 1/ if CZ.p; j /D 1.
One can easily check that the degree is well defined and

deg.p0/D deg.p/C .CZ.p0/�CZ.p//

for all p;p0 2 P . Thus we endowed the space Ce with Ie –grading. Put

ID f.e; i/ W e 2 S; i 2 Ieg :
Then

C D˚.e;i/2ICe;i :

Definition 4.9 The set I (respectively, Ie ) is called the grading set of the Hamiltonian
structure H (respectively, in the class e ).

In Section 4.7 below we shall define generalized Floer homology of a Hamiltonian
structure H as the homology of .C; d/ where d W C ! C is a differential which maps
Ce;i! Ce;i�1 . Hence the homology will inherit the same I–grading.

We write Je.H/, Ie.H/ and I.H/ whenever we wish to emphasize dependence of the
set of coherent trivializations and the grading sets on the Hamiltonian structure H .

Remark 4.10 In the case when eD Œpoint�S1� the set Ie has a distinguished element.
Namely, take any point x 2M outside a sufficiently large compact subset of M where
‚D Cdt � K˛ . Consider the loop �.t/D .x; t/ and notice that .��T V =`; d‚/ can
be naturally identified with .TxM �S1;�Kd˛/. Denote by j0 2 Je the corresponding
coherent trivialization, and put i0D .j0; 0/. Identify Z with Ie via the map k! i0Ck .
With this identification, deg.p/ D CZ.p; j0/ for every p 2 Pe . Thus we have a
canonical Z–grading of Ce . This remark is especially useful when M is simply
connected, for instance M D R2n . Let us mention also that if we wish to restrict
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ourselves to periodic orbits from the class Œpoint�S1� only, we can relax Axiom 1 of
special Hamiltonian structures and require that the first Chern class of .T V =`; d.‚//

vanishes on all spherical 2–cycles.

Remark 4.11 Another possibility to introduce a natural Z–grading on the spaces
Ce for all e appears in the case when the bundle .T V =`; d.‚// is equipped with a
Lagrangian subbundle, say, L. In this case we choose any almost complex structure J

on T V =` compatible with d.‚/. Given any loop �W S1! V representing the class
e , we trivialize ��.T V =`/ by choosing the homotopically unique J –unitary frame
in ��L � ��.T V =`/. This procedure is applied, for instance, when .M; !/ is the
cotangent bundle of a closed manifold X equipped with the standard symplectic form,
and the Hamiltonian structure .V; .‚// is associated to a time-dependent Hamiltonian
function on M as in Example 4.5 above. Here the bundle .T V =`; d.‚// can be
identified with .T T �X;�!/ and the Lagrangian subbundle L � T T �X is simply
formed by the tangent spaces to the fibers of T �X !X .

4.5 Adjusted almost complex structures

Next, we introduce a class of almost complex structures compatible with a framed
Hamiltonian structure

�!
H D ..‚/; �/. These almost complex structures are defined on

a manifold V D V �R.

Take any starshaped hypersurface P �M , and denote by �D Ker.˛jTP / the contact
structure on P . In view of the canonical splittings M n Core.M / D P � RC and
V DM �S1 �R we will consider the cut of

�!
H , denoted by � , and the contact plane

field � on P as subbundles of T V .

The group R acts on V by translations .z; s/ 7! .z; sC c/ where s; c 2 R and z 2 V .

Definition 4.12 An R–invariant almost complex structure J on V is called adjusted
to the framed Hamiltonian structure

�!
H if

� the cut � of
�!
H is J –invariant, and d.‚/j� is compatible with J ;

� J @
@s
DR, where R is the characteristic (Reeb) vector field;

� the contact plane field � is J –invariant outside Z � R where Z � M is a
sufficiently large compact subset.

An important feature of the almost complex manifold .V ;J / with the adjusted J is that
it carries a natural foliation by J –holomorphic curves. It has the form TJ DT �R where
T is the characteristic foliation of V generated by R. We call TJ the characteristic
J –holomorphic foliation of .V ;J /.
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Remark 4.13 Suppose that J is adjusted to a framed Hamiltonian structure .H; �/.
Given c > 0 let us define a new almost complex structure Jc by setting Jcj� D J j�
and J @

@s
D 1

c
R. Then Jc is adjusted to the framed Hamiltonian structure .H; c�/, and

the map
.x; s/ 7! .x; cs/

is a biholomorphism
.V D V �R;J /! .V ;Jc/:

The next lemma will allow us to feel comfortable with pseudo-holomorphic curves in
.V ;J /. Recall that a (co-)oriented hypersurface, say †, in an almost complex manifold
.W;J / is called weakly J –convex if there exists a 1–form � on † such that

TC†D Ker�;

d�.v;Jv/� 0 for v 2 TC†, and the orientation of TC† determined by the orientation
of † and its co-orientation by � coincides with its complex orientation.

Write z 7! c � z , c 2 RC; z 2M for the natural RC–action on M associated to the
Liouville vector field. Consider a hypersurface

†u D .u�P /�S1 �R� V :

Lemma 4.14 For all sufficiently large u the hypersurface †u is weakly J –convex in
.V ;J /.

Proof Suppose that u is large enough. Then

‚D Cdt � K˛; � D Ker.Pdt � Q˛/; RD 1

P
@

@t
;

where C; K; P; Q are the structure constants of
�!
H . By definition,

J
@

@s
DRD 1

P
@

@t
;

and hence the plane � WD Span. @
@s
; @
@t
/ is J –invariant. Furthermore, � is also J –

invariant. Thus the hyperplane

Hu WD �˚ � � T†u

is the complex tangent space to †u :

Hu D TC†u :
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Note that Hu D Ker.˛jT†u
/. Observe that � is contained in � , since both dt and

˛ vanish on �. The 2–form d˛ coincides with the restriction of �K�1d‚ to †u .
Therefore, since d‚j� is compatible with J , we obtain that �d˛ restricted to � is
also compatible with J . Finally, d˛ vanishes on � . We conclude that the hyperplane
TC†u � T†u , which coincides with Hu , and the 1–form �˛ on †u satisfy the
definition of weak J –convexity given above. We leave it to the reader to verify the
orientation condition.

4.6 J –holomorphic cylinders in V

Let
�!
H be a framed Hamiltonian structure. Take an adjusted almost complex structure

J on V WDV �R . Write ‡ DR�S1 for the standard cylinder with coordinates � 2R

and � 2 S1 . We endow ‡ with the standard complex structure by introducing the
complex coordinate zD�Ci� . Given two orbits ˙ 2P , we consider J –holomorphic
cylinders

(48) F D .f; '/ W ‡ ! V �R;
@F

@�
CJ

@F

@�
D 0

with asymptotic boundary conditions

'.�; �/ !
�!˙1D˙1;

f .�; �/ !
�!˙1D ˙.T˙�/;

(49)

where the orbits ˙ are parameterized by the Reeb field R, and T˙ are their periods.

Denote by yM.C; �/ the set of solutions of this system. The group � WDR�R�S1

acts on yM.C; �/ as follows:

.a; b; #/�F DG; where G.�; �/D .F.� C a; � C#/; '.� C a; � C#/C b/:

The action is free provided � ¤ C . This is a straightforward consequence of the fact
that the orbits � and C represent a homotopy class from S , and therefore are simple
(ie not multiply covered). Let us mention also that if  D � D C then the solution
set yM.;  / consists of maps of the form

.�; �/ 7! . .T .� C b//; � C a/;

which represent the leaf of the J –holomorphic characteristic foliation of V corre-
sponding to  �R.

Definition 4.15 An adjusted almost complex structure J is called regular if at every
J –holomorphic cylinder which satisfies (49) the linearized @–operator is surjective.
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Proposition 4.16 Regular almost complex structures are generic, that is they form a
Baire set with respect to a natural topology.

The proof of this statement is scattered in the literature for various classes of framed
Hamiltonian structures (see eg [31; 14; 5]). The cornerstone of the proof is the
following lemma, which we prove in detail in Appendix A. The reader is referred to
the above-cited papers for the rest of the argument. Consider a J –holomorphic map
F D .f; '/W ‡ ! V which converges to two distinct simple periodic orbits ˙ as
� !˙1. A point z 2 ‡ is called an injectivity point of F if dzf is injective and
f �1.f .z//D z .

Lemma 4.17 There is an open dense set in ‡ consisting of the points of injectivity.

The proof is given in Appendix A.

Assume that J is a regular almost complex structure. Then for a pair of distinct periodic
orbits C; � 2 P the moduli space

M.C; �/D yM.C; �/=�

is a smooth manifold of dimension .CZ.C/ � CZ.�// � 1. In particular, when
CZ.C/�CZ.�/D 1 the corresponding moduli space is zero-dimensional. Moreover,
this set is compact, and hence consists of a finite number of points. The compactness
can be proved along the following lines. First, by using Lemma 4.14 above one shows
that J –holomorphic cylinders in question project to a compact subset of V . Then, as
it was proved in [6], the compactness follows from the absence of contractible closed
orbits of the characteristic vector field of action � C.

4.7 Floer homology of framed Hamiltonian structures

Let
�!
H be a regular framed Hamiltonian structure with an adjusted regular almost

complex structure J . The Floer complex can be defined in a usual way. Assuming
CZ.C/�CZ.�/D 1 we denote by �.C; �/ the mod 2 number of elements of the
finite set M.C; �/ and consider the Z2 –space C generated by the orbits from P .
The boundary operator d W C ! C is defined by

(50) dC D
X
�2P

CZ.C/�CZ.�/D1

�.C; �/� :

The space C is graded by elements of the grading set I.H/, see Definition 4.9. The
differential d maps Ce;i to Ce;i�1 for every .e; i/ 2 I.
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The proof of the following theorem repeats the standard arguments in the Floer homol-
ogy theory; one have to take into account Lemma 4.14 and compactness results from
[6].

Theorem 4.18 d2 D 0.

Note that the boundary operator d preserves the filtration defined by the action func-
tional AH . Hence, for any a < b < C we get a chain complex

�
C .a;b/.

�!
H;J /; d

�
,

where
C .a;b/ D .C \fA. / < bg/=.C \fA. /� ag/ :

Its I–graded homology groups

GFH.a;b/.
�!
H;J /D Ker d=Im d

are called generalized Floer homology of the framed Hamiltonian structure
�!
H . As we

will see below (see Proposition 4.30) the homology is independent of J and of the
choice of a framing.

Suppose that a diffeomorphism ˆW V ! V is an equivalence between two framed
Hamiltonian structures

�!
H1 and

�!
H2 . Let J1 be an almost complex structure adjusted

to
�!
H1 , and J2 Dˆ�.J1/. Then ˆ induces a canonical isomorphism

ˆ]W GFH.a;b/.
�!
H1;J1/! GFH.a;b/.

�!
H2;J2/:

Indeed, ˆ sends periodic orbits to periodic orbits, preserves their action and establishes
a diffeomorphism between the moduli spaces of J1 – and J2 –holomorphic curves.
Furthermore, ˆ induces a natural bijection between the grading sets I.H1/ and I.H2/.
Isomorphism ˆ] alters the grading of generalized Floer homology in agreement with
this bijection.

The generalized Floer homology are equipped with canonical varying window homo-
morpisms

(51) E.a; a0/W GFH.a
0;b/! GFH.a;b/ and E.b; b0/W GFH.a;b/! GFH.a;b

0/

for a0 < a and b < b0 . These homomorphisms preserve the grading.

4.8 Directed concordance of Hamiltonian structures

4.8.1 Concordance Let HCD .‚C/ and H�D .‚�/ be two Hamiltonian structures
on V . We write C˙; K˙ for the corresponding structure constants. The standing
assumption of this subsection is CC > C� .
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Definition 4.19 A directed concordance between a pair of Hamiltonian structures H�
and HC is a pair .W; .…//, where .…/ is an equivalence class of 1–forms on the
manifold W D V � Œa�; aC� and a� < aC are any real numbers, such that

(i) …j@˙W D‚˙ , where @˙W D V � a˙ ;

(ii) d… is a symplectic form on W ;

(iii) …D f .s/dt�g.s/˛ outside .V nZ/� Œa�I aC�, where f and g are real valued
functions with f 0 > 0 and g > 0, and Z � V is a compact set.

The conditions f 0 > 0;g > 0 guarantee that the 2–form d… is symplectic outside
Z � Œa�; aC�. The assumption CC > C� is a consequence of f 0 > 0. We call any
1–form … representing .…/ and satisfying condition (iii) the concordance structure.

We will sometimes denote a directed concordance as Con.H�;HC/. Let us emphasize
that in this notation H� is the Hamiltonian structure on the bottom of the concordance
and HC is on its top, where the vertical direction is oriented by the variable s .

Example 4.20 We work in the situation described in Example 4.4 above. Let �˙ D
F˙.dt �˛/ be two admissible contact forms on V with FC >F� . Let SV D V �RC
be the symplectization of V endowed with the Liouville form …D s.dt�˛/. Consider
the domain

U D fF�.x; t/� s � FC.x; t/g
and define a diffeomorphism 'W V � Œ0; 1�! U by the formula

(52) '.x; t; s/D .x; t;F�.x; t/C s.FC.x; t/�F�.x; t/// :

One readily checks that .V � Œ0; 1�; .'�…// is a concordance between the Hamiltonian
structures H�C D .V; .�C// and H�� D .V; .��//.

Example 4.21 We work in the situation described in Example 4.5 above. Let FC and
F� be two time-dependent Hamiltonian functions on M with FC > F� . Consider the
domain

U D fF�.x; t/� s � FC.x; t/g � V �R

endowed with the 1–form …D sdt �˛ . Let ' be the diffeomorphism V � Œ0; 1�! U

defined by formula (52). Then .V � Œ0; 1�; .'�…// is a concordance between the
Hamiltonian structures HFC and HF� .

It will be convenient in the sequel to deal with equivalence classes of concordances.
To define it let us stick to the splitting V DM �S1 .
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Definition 4.22 Two concordances

.W1 D V � Œa�I aC�; .…1// and .W2 D V � Œb�; bC�; .…2//

are called equivalent if there is a diffeomorphism �W W1!W2 such that

(i) .��…2/D .…1/;

(ii) �.z; t; a˙/D .z; t; b˙/ for all .z; t/ 2M �S1 ;

(iii) there exists a diffeomorphism uW Œa�; aC�! Œb�; bC� with u.a˙/ D b˙ and
a positive function vW Œa�; aC� ! RC with v.a�/ D v.aC/ D 1 such that
�.z; t; s/ D .v.s/ � z; t;u.s// for every point .z; t/ lying outside a compact
subset of V . Here c � z stands for the natural RC–action on V generated by the
Liouville field.

As an immediate consequence of the Darboux theorem, we have the following useful
lemma:

Lemma 4.23 (Normal form) Let
�!
H˙ D ..‚˙/; �˙/ be framed Hamiltonian struc-

tures and let Con be any concordance between HC and H� . Then Con is equivalent
to a concordance .W D V � ŒaC; a��; .…// such that the concordance structure …
satisfies the conditions

� …D‚CC .s� aC/�C on V � .aC� "; aC�
� …D‚�C .s� a�/�� on V � Œa�; a�C "/

for some " > 0.

Let us emphasize that this normal form depends on a choice of the framings �˙ of
H˙ .

4.8.2 Concordances and coherent trivializations Let e 2 S be a free homotopy
class of loops S1!V . Every directed concordance Con.H�;HC/ induces a canonical
bijection �eW Je.HC/! Je.H�/ between the sets of coherent trivializations in the
class e associated to Hamiltonian structures on its top and on its bottom. Moreover, �e

is equivariant with respect to the canonical Z–actions on Je.HC/ and Je.H�/. In fact,
this bijection depends only on the equivalence classes of concordances. The bijection
�e is defined as follows. Let .W D V � Œa�; aC�; .…// be our concordance. Denote
by `˙ the characteristic line fields of H˙ . Choose framings of H� and HC and
denote by R˙ 2 `˙ the corresponding Reeb vector fields. Set F˙ D Span. @

@s
;R˙/,

and let E˙ be the skew-orthogonal complements (in the sense of the symplectic form
d.…/) of F˙ at the points of @˙W . Clearly, E˙ is naturally identified with T V =`˙ .
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Let �˙W S1 ! V � fa˙g be two loops representing e . Every trivialization g˙ of
��̇E˙ gives rise to a uniquely defined trivialization h˙ of ��̇ .T W /. Indeed, at the
points of @˙W we have T W DE˙˚F˙ , where the bundle F˙ is equipped with a
basis and hence is a priori trivialized. In the case when hC and h� simultaneously
extend to a trivialization of T W over a cylinder in W spanning �C and �� , we say
that �e.ŒgC�/D Œg��. One readily checks that the map � is a well defined equivariant
bijection. It gives rise to an equivariant bijection �eW Ie.HC/! Ie.H�/ between the
grading sets in the class e . Setting �.e; i/D .e; �e.i// we get a bijection �W I.HC/!
I.H�/ between the full grading sets.

Assume now that C and � are closed orbits of RC and R� in the class e . Then
the difference CZ.C; j /�CZ.�; �e.j // does not depend on the particular choice
of a coherent trivialization j 2 Je.HC/. Thus we will denote this difference by
CZ.C/�CZ.�/.

In the situation described in Remark 4.10, that is when e is the class of point�S1 , the
map � preserves the distinguished element. As far as the case M DT �X is concerned
(see Remark 4.11) the same holds true for all e 2 S for the concordances which will
arise in the present paper. We will use this without special mentioning.

Remark 4.24 Note that every homotopy ‚t ; t 2 Œ0; 1�, between H0 D .‚0/ and
H1 D .‚1/ through Hamiltonian structures gives rise to a natural equivariant bijection
between the grading sets of this structures. In order to include this situation in the
context of concordances we say that a concordance .V � Œa�; aC�; .…// is homotopy-
like if the restriction of … to each hypersurface V � fsg, where s 2 Œa�; aC�, is a
Hamiltonian structure. One can easily check that for a homotopy-like concordance the
bijection associated to the homotopy .…jV�fsg/ of Hamiltonian structures coincides
with the bijection � introduced in this section. For instance, when ‚1 is sufficiently
close to ‚0 , the linear segment between these 1–forms passes through Hamiltonian
structures (see Proposition 4.3 and its proof). Therefore, in this case the full grading
sets of H0 and H1 are naturally identified.

4.8.3 Adjusted almost complex structures on concordances Let
�!
H˙ be two

framed Hamiltonian structures. Choose adjusted almost-complex structures J˙ for�!
H˙ associated to the splittings

M nCore.M /D P˙ �R ;

where P˙ �M are starshaped hypersurfaces. Let

ConD .W DM �S1 � Œa�; aC�; .…//
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be a directed concordance between HC and H� . We assume that W lies in V DV �R .
Fix real numbers

a00C > a0C > aC and a00� < a0� < a� :
Choose a smooth family Ps; s 2 .a00�; a00C/, of starshaped hypersurfaces in M such that
Ps D PC for s > a0C and Ps D P� for s < a� . Denote by c � z , where c 2 RC and
z 2M , the natural RC–action defined by the Liouville field L on M . Hypersurfaces

†c D
[

s2.a00�;a00C/
.c �Ps/�S1 � fsg ;

c 2 RC , foliate the set

.M nCore.M //�S1 � .a00�; a00C/ :
Denote by S the vector field on this set obtained as the projection of @

@s
to T†c along

the Liouville field L. Let f .s/;g.s/ be the functions on Œa�; aC� such that f 0 > 0,
g> 0 and …Df .s/dt�g.s/˛ outside a compact subset of W (see Definition 4.19(iii)
above). Extend them to the interval .a00�; a00C/ keeping f 0 > 0 and g > 0.

Denote by �s the natural contact structure on Ps , considered as a subbundle of T W .

Definition 4.25 An almost complex structure I on V is called adjusted to the concor-
dance Con if it satisfies

(i) I D JC on fs > a0Cg and I D J� on fs < a0�g ;

(ii) there exists a 1–form z… on V � .a00�; a00C/ so that . z…/D .…/ on W and d z… is
symplectic form which tames I .

In addition, we request that there exists a compact subset Z � V such that on .V n
Z/� .a00�; a00C/ the following conditions hold:

(iii) z…D f .s/dt �g.s/˛ ;

(iv) the plane field �s is invariant under I ;

(v) IS D k.s/ @
@t

for some function k.s/ > 0.

Conditions (i) and (v) are compatible provided k.s/D 1=PC on .a0C; a00C/ and k.s/D
1=P� on .a00�; a0�/, where P˙ are the structure constants of the framings of

�!
H˙ .

The space of almost complex structures adjusted to a concordance is contractible.

Note that the definition of an adjusted almost complex structure agrees with the notion
of equivalence of concordances introduced above. Let Con0 D .W 0; .…0// be a concor-
dance which is equivalent to ConD .W; .…// via some diffeomorphism �W W !W 0 .
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Assume that I is an almost complex structure on V adjusted to concordance Con.
Consider a piecewise smooth homeomorphism z W V ! V which coincides with � on
W and has the form .z; t; s/! .z; t; sC e˙/ on the connected components of V nW

for suitable (unique!) constants e˙ . Let U be a sufficiently small neighborhood of W

in V . Smoothen z inside U nW to a diffeomorphism  W V ! V . The smoothing
can be performed in such a way that

(53)  .z; t; s/D .v.s/� z; t;u.s// on .V nK/� .a00�; a00C/ ;
where the functions u and v are defined on .a00�; a00C/ and K � V is a compact subset
(see condition (iii) of Definition 4.22).

Lemma 4.26 The push-forward I 0 of I under  is adjusted to concordance Con0 .

Proof The structure I 0 obviously satisfies conditions (i) and (ii) of Definition 4.25,
where one defines z…0 as the push-forward of z… under  . Let us verify conditions
(iii)-(v) “at infinity” using representation (53). Obviously z…0 satisfies (iii). Denote
by  1 the restriction of  to V1 WD .V nK/� .a00�; a00C/. Put b00̇ D u.a00̇ /, P 0s D
v.u�1.s//�Pu�1.s/ and

†0c D
[

s2.b00�;b00C/
.c �Ps/�S1 � fsg

where c 2 RC . Then  1.†c/D†0c for c large enough. The distribution �0s , defined
as the natural contact structure on P 0s , is the image of �s under  1 which guarantees
(iv).

Finally, writing L for the Liouville vector field on M , note that

(54) . 1/�
@

@s
D  .s/ @

@s
C ı.s/L

with  .s/ > 0. Denote by Y (respectively, Y 0 ) the projection of T V to T†c (respec-
tively, to T†0c ) along L at points of V1 (respectively, of  1.V1/). Observe that
. 1/� intertwines between Y and Y 0 . Put S 0 D Y 0 @

@s
. Then, applying (54) we have

I 0S 0 D 1

 .s/
I 0Y 0. 1/�

@

@s
D 1

 .s/
I 0. 1/�Y

@

@s
D 1

 .s/
. 1/�IS :

Using condition (v) for I we conclude that

I 0S 0 D k.s/

 .s/
. 1/�

@

@t
D k.s/

 .s/

@

@t

which proves that I 0 satisfies condition (v). This completes the proof.
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The next result is an analogue of Lemma 4.14 in the context of concordances.

Lemma 4.27 Let an almost complex structure I be adjusted to the directed concor-
dance .W; .…//. Then for a sufficiently large c > 0 the hypersurface †c is weakly
I –convex.

Proof Put � D Span.S; @
@t
/. Assume that c is large enough. Then

TC†c D �s˚ � D Ker.˛jT†c
/ :

Clearly, d˛ D 0 on � . Thus it suffices to show that the 2–form �d˛ tames I on �s .
For that purpose, note that near †c one has …D f .s/dt �g.s/˛; and hence

d…D f 0.s/ds ^ dt �g0.s/ds ^˛�g.s/d˛:

Thus d…j�s
D�g.s/d˛j�s

. By definition, d… tames I , and therefore, �d˛ tames I

on �s . This yields the desired weak convexity.

Remark 4.28 Let
�!
H˙ be two framed Hamiltonian structures, and let ConD .V �

Œa�; aC�; .…// be a concordance between them. Assume that the concordance is in
the normal form as in Lemma 4.23. Let J˙ be almost complex structures on the top
and on the bottom adjusted to

�!
H˙ . Observe that d… tames JC for s 2 .aC� "; aC�

and tames J� for s 2 .a�; a�C "� if " > 0 is small enough. Thus one can choose an
almost complex structure I on V �R which is adjusted to Con, coincides with JC for
s > aC� " and coincides with J� for s < a�C ". We say that I respects the normal
form.

4.8.4 Gluing of concordances Suppose that we have three Hamiltonian structures
H1;H2 and H3 . Let

ConiC1;i D Con.Hi ;HiC1/D .W iC1;i ; .…iC1;i// ; i D 1; 2

be directed concordances between HiC1 and Hi . Up to equivalence of concordances
we can assume that …iC1;i are in normal forms with respect to some framings �i

on Hi (see Lemma 4.23 above) and W iC1;i D V � Œai ; aiC1� for i D 1; 2, where
a1 < a2 < a3 . Then the formulas

W 31 DW 32[W 21 D V � Œa1; a3�I

…31 D
(
…32 on W 32I
…21 on W 21

(55)
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define a smooth directed concordance Con31 D .W 31; .…31// between H3 and H1 .
which is called a composition of Con21 and Con32 . We will denote this operation by

Con31 D Con32 ˘Con21 :

Note that …31 is automatically in a normal form for the framed Hamiltonian structures�!
H3 and

�!
H1 . One readily checks that the equivalence class of a directed concordance

Con31 is determined by the equivalence classes of Con32 and Con21 .

Assume now that our framed Hamiltonian structures
�!
H i are equipped with adjusted

almost complex structures Ji . Assume further that the concordances Con21 and Con32

are equipped with adjusted almost complex structures I21 and I32 which respect the
almost complex structures on the boundaries and which respect the normal forms of
the concordances (see Remark 4.28 above). Define an almost complex structure I31

on V �R which coincides with I21 for s � a2 and with I32 for s � a2 . One readily
checks that I31 is smooth, adjusted to Con31 and respects J1 ,J3 and the normal form
of Con31 .

4.9 Directed concordances as morphisms in Floer Homology

4.9.1 Monotonicity homomorphism Let
�!
H˙ be a pair of framed Hamiltonian

structures together with a directed concordance ConD .W; .…// between them. Let
�W I.HC/! I.cH�/ be the bijection between the grading sets on the top and the bottom
of the concordance introduced in Section 4.8.2. Choose adjusted almost complex
structures J˙ and I on V . Denote by C˙ the corresponding structure constants and
by P˙ the sets of periodic orbits of the Reeb vector fields R˙ (see Section 4.4).

Suppose we are given two orbits ˙ 2 P˙ . Let us denote by M.Con; I I C; �/ the
moduli space of proper I –holomorphic maps

F D .h; '/W ‡ ! V D V �R

of the cylinder ‡ D R�S1 which satisfy the following asymptotic conditions:

'.�; �/ !
�!˙1D˙1;

h.�; �/ !
�!˙1D ˙.T˙�/;

(56)

where the orbits ˙ are parameterized by the vector fields R˙ , and T˙ are their
periods. Similarly to the cylindrical case we will impose the following generic regularity
condition: the almost complex structure I is regular along holomorphic cylinders.
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This implies, in particular, that for every pair of orbits C; � 2 P˙ with CZ.C/�
CZ.�/D 0 we have

dimM.Con; I; C; �/D 0:

This enables us to define a monotonicity morphism

monW C .a;b/.
�!
HC;JC/! C .a;b/.

�!
H�;J�/

by the formula

(57) mon.C/D
X

2P.a;b/.RC/

CZ.C/�CZ.�/D0

�.C; �/� ;

where �.C; �/ is the mod 2 number of elements of the finite set M.Con; I; C; �/.
This morphism respects the gradings of the complexes. The next standard fact from
the Floer theory is as follows.

Theorem 4.29 Under the above assumptions, for any a< b<min.C�; CC/ and for all
.e; i/ 2 I.HC/ formula (57) defines a homomorphism of generalized Floer complexes

monW
�
C
.a;b/
e;i .

�!
HC;JC/; dC

�
!
�
C
.a;b/

�.e;i/
.
�!
H�;J�/; d�

�
;

so that we have
d� ımonDmon ı dC:

In particular, mon defines a homology homomorphism

monW GFH
.a;b/
e;i .

�!
H;JC/! GFH

.a;b/

�.e;i/
.
�!
H;J�/ :

The homomorphism mon constructed above a priori depends on the following data:

� a concordance ConD Con.H�;HC/D .W; .…//;

� an almost complex structure I adjusted to Con which respects almost complex
structures J˙ adjusted to

�!
H˙ .

Standard arguments of Floer theory show that the homomorphism mon does not change
under the following operations:

� replacing the pair .Con; I/ by a pair .Con0; I 0/ where Con0 is a concordance
equivalent to Con and I 0 is the corresponding (see Lemma 4.26) almost complex
structure adjusted to Con0 ;

� a homotopy of the concordance structure .…/ on W through the concordance
structures;
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� a homotopy of the adjusted almost complex structure I on W through almost
complex structures adjusted to Con and respecting J˙ .

Consider now three framed Hamiltonian structures
�!
H1;
�!
H2 and

�!
H3 equipped with

adjusted almost complex structures J1;J2 and J3 respectively. Assume that we are
given directed concordances

ConiC1;i D Con.Hi ;HiC1/ ; i D 1; 2;

which induce monotonicity morphisms

moniC1;i W GFH.
�!
H iC1;JiC1/! GFH.

�!
H i ;Ji/ :

A standard argument of Floer theory shows that the gluing Con32 ˘Con21 of concor-
dances corresponds to the composition mon32 ımon21 of the monotonicity morphisms.

The next result is crucial for our proof of non-squeezing results in contact geometry. It
will enable us to reduce calculations in contact homology to more traditional calculations
in Floer homology.

Proposition 4.30 For a regular Hamiltonian structure the generalized Floer homology
does not depend on the choice of a framing and of an adjusted almost complex structure.

We start with two auxiliary lemmas whose proof is elementary and is left to the reader.

Lemma 4.31 Let Aıi , where ı 2 f�; 0;Cg and i 2 f0; 1g be a collection of six
linear spaces. Suppose that we are given eight morphisms between them such that the
following diagram commutes:

(58) AC
0

//

��@
@@

@@
@@

A0
1

//

��?
??

??
??

?
A�

0

AC
1

//

??~~~~~~~
A0

0
//

??��������
A�

1

Assume that the diagonal arrows are isomorphisms. Then all the arrows are isomor-
phisms.

Lemma 4.32 Let E be a topological linear space and let ƒ � E be a convex cone.
Given any �0; �1 2 E with �1 � �0 2 Interior.ƒ/ and any �0; �1 2ƒ, there exists a
smooth path �s , s 2 Œ0; 1�, connecting �0 with �1 such that its derivative P�s satisfies
the following conditions:

(i) P�s D �0 for s near 0 and P�s D �1 for s near 1;
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(ii) P�s 2ƒ for all s .

Let us mention that it suffices to prove the lemma in dimension at most 3 by passing
to E0 D Span.�1� �0; �0; �1/ and ƒ0 Dƒ\E0 .

Let .‚/ be a Hamiltonian structure and let ƒ be the convex cone of its framings.
Define the set D of 1–forms � D c�, where c 2R and � 2ƒ so that .‚C�/ is again
a Hamiltonian structure. Recall that according to Axiom 3 for any � 2ƒ there exists
�� 0 such that d�D�d‚. Hence, we have ��� 2D if �� < 1. Then, given � 2D

we have d� D �0d‚ with 1C �0 > 0, and hence Hamiltonian structures .‚/ and
.‚C�/ share the same characteristic foliation and the set of framings, and �Cƒ�D

for every � 2D .

Suppose that we are given �0; �1 2 D such that �1 � �1 2 Interior.ƒ/. For any
�0; �1 2 ƒ consider framed Hamiltonian structures

�!
H i D ..‚ C �i/; �i/, where

i 2 f0; 1g, equipped with adjusted almost complex structures Ji . We wish to associate
to these data a monotonicity morphism

monW GFH.
�!
H1;J1/! GFH.

�!
H0;J0/

associated to a certain directed concordance .V � Œ0; 1�; .…// between H0 and H1

equipped with an adjusted almost complex structure I which respects J0 and J1 . Here
the form … is defined by …D‚C�s , where the family of 1–forms �s is chosen from
Lemma 4.32. Since �s 2D for all s in view of condition (ii) of the lemma, we have
d�s D �sd‚ with 1C�s > 0. Then the 2–form

d…D .1C�s/d‚C ds ^ P�s

is symplectic since the 1–form P�s lies in ƒ and hence is positive on the characteristic
foliation of d‚. Take � > 0 small enough and define an almost complex structure
I on V �R as J0 for s < � and as J1 for s > 1� � . It follows from condition (i)
of Lemma 4.32 that d… tames I near the top and the bottom of our concordance.
Extending I in an arbitrary way to an adjusted almost complex structure on V �R

which is tamed by d…, we complete the construction. For the sake of further reference,
we call the constructed morphism the preparatory morphism.

Remark 4.33 Assume that in the above setting �0 D �1 and J0 D J1 D J . Then the
adjusted almost complex structure I on the constructed concordance can be chosen as
I D J . In this case all I –holomorphic cylinders with 0–dimensional moduli spaces
are of the form  �R where  is a closed orbit of the common characteristic foliation
of H0 and H1 . Therefore, our concordance induces the identity morphism in the
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generalized Floer chain complexes CF.
�!
H1;J / and CF.

�!
H0;J /. Let a < b be non-

critical values of the Hamiltonian structure .‚/ so that the intervals .a� �; aC �/ and
.b � �I bC �/ do not intersect the action spectrum spec..‚// for some � > 0 small
enough. Suppose now that the 1–forms �0 and �1 are sufficiently small. Then the sets
P.a;b/.H1/ and P.a;b/.H0/ consist of the same periodic orbits. Thus our concordance
gives an isomorphism between GFH.a;b/.

�!
H1;J / and GFH.a;b/.

�!
H0;J /.

Proof of Proposition 4.30 Let a < b be non-critical values of the Hamiltonian
structure .‚/. Let �0; �1 be two different framings of the Hamiltonian structure .‚/,
and Ji an almost complex structure on V �R adjusted to the framed Hamiltonian

structure
�!
H

0

i D ..‚/; �i/, i D 0; 1. Pick any framing � 2 Interior.ƒ/, and take � > 0

small enough so that �"� lies in the set D . Consider framed Hamiltonian structures

�!
H
˙
i D ..‚˙ "�/; �i/; i 2 f0; 1g ;

and put

Aıi WD GFH.a;b/.
�!
H
ı

i ;Ji/; ı 2 f�; 0;Cg; i 2 f0; 1g :
Consider the diagram (58) whose arrows are defined as the preparatory morphisms.
One can easily check that this diagram is commutative: in order to prove commutativity
of a parallelogram formed by its arrows, one has to verify that the compositions of
the concordances corresponding to these arrows have homotopic concordance data.
We leave the details to the reader. Decreasing if necessary � , we get that the diagonal
arrows are isomorphisms, see Remark 4.33. Hence by Lemma 4.31 all the arrows
are isomorphisms and in particular the spaces A0

0
D GFH.a;b/..‚/; �0/ and A0

1
D

GFH.a;b/..‚/; �1/ are isomorphic. Note that these isomorphisms preserve the grading
since all the concordances involved into their construction are homotopy-like in the
sense of Remark 4.24 above. This completes the proof.

Remark 4.34 One can readily check that the isomorphism between generalized Floer
homologies provided by Proposition 4.30 is canonical in the following sense. Let �i ,
i 2 f1; 2; 3g, be three framings of .‚/ and let Ji be almost complex structures adjusted
to
�!
H i D ..‚/; �i/. Let

Fi;j W GFH.
�!
Hj ;Jj /! GFH.

�!
H i ;Ji/ ; i; j 2 f1; 2; 3g;

be our isomorphism. Then F13 D F12 ıF23 .

It follows from Proposition 4.30 and Remark 4.34 that we can remove the framing and
the almost complex structure from the notation and write
GFH.a;b/.H/ for the generalized Floer homology of a Hamiltonian structure H .
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Consider now two regular Hamiltonian structures H0 D .‚0/ and H1 D .‚1/. Recall
that the full grading sets of sufficiently close Hamiltonian structures can be naturally
identified (see Remark 4.24).

Proposition 4.35 Take any two non-critical values a< b of AH0
. If ‚1 is sufficiently

close to ‚0 , there is a grading-preserving isomorphism

GFH.a;b/.H0/! GFH.a;b/.H1/:

Proof Fix a framing �0 of H0 with the framing parameter �. Then �1 D �0 C
�.‚1 �‚0/ is a framing of H1 . Take � > 0 small enough so that .‚0 � "�0/ is a
Hamiltonian structure. If ‚1 is sufficiently close to ‚0 , the 1–form ‚1 � "�1 also
defines a Hamiltonian structure. Consider Hamiltonian structures Hi̇ D .‚i ˙ "�i/,
where i 2 f0; 1g. Re-denote H0

i WDHi and put

Aıi WD GFH.a;b/.Hıi /; ı 2 f�; 0;Cg; i 2 f0; 1g :
Our next goal to describe the arrows in the diagram (58). The diagonal arrows are defined
as the isomorphisms presented in Remark 4.33. The horizontal arrows are associated to
the following directed concordances between the corresponding Hamiltonian structures.
The concordance structure … on each of these concordances corresponds to the linear
segment between the 1–forms defining the Hamiltonian structures. Let us work out
the case of the upper left horizontal arrow AC

0
! A0

1
(all other cases are absolutely

similar): Here the 1–form … on V � Œ0; 1� is defined as

…D‚1C s.‚0C "�0�‚1/ :

We claim that d… is symplectic. Indeed,

d…D .1C "�s/d‚0C "ds ^�0C ds ^ .‚0�‚1/� .1� s/.d‚0� d‚1/

is a small perturbation of the non-degenerate 2–form .1C"�s/d‚0C"ds^�0 provided
that ‚1 is sufficiently close to ‚0 , and hence it is non-degenerate as well. The claim
follows.

One readily checks that we got a commutative diagram, and hence Lemma 4.31 yields
the desired isomorphism. It preserves the grading since all the concordances involved
in the construction of this isomorphism are homotopy-like in the sense of Remark 4.24
above.

We complete this section with mentioning that the monotonicity morphisms behave
naturally with respect to diffeomorphisms. Assume that Hi̇ ; i D 0; 1; are four
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Hamiltonian structures and

Con.H�0 ;H
C
0
/D .W0; .…0// and Con.H�1 ;H

C
1
/D .W1; .…1//

are two directed concordances. Let AW W0!W1 be a diffeomorphism whose restric-
tions to the boundaries @˙W0 send H

0̇
to H

1̇
and such that .A�…1/D .…0/. Then

the following diagram commutes:

(59) GFH.HC
0
/

A
C

] //

mon0

��

GFH.HC
1
/

mon1

��
GFH.H�

0
/

A�
] // GFH.H�

1
/

where the vertical arrows correspond to the monotonicity morphisms defined by the
concordances, and the horizontal arrows stand for the natural morphisms induced by
the restriction of A to @˙W0 .

4.10 GFH in the absence of regularity

Let H D .‚/ be a Hamiltonian structure, not necessarily regular. For our applica-
tions, it would be convenient to extend the definition of generalized Floer homology
GFH.a;b/.H/ to this case. This is done as follows (in fact, we imitate analogous
construction in the context of usual Floer homology). Assume that a < b are non-
critical values of AH . Take a sufficiently small regular perturbation ‚0 of ‚ defining
a Hamiltonian structure H0 D .‚0/ . Put

GFH.a;b/.H/D GFH.a;b/.H0/

Proposition 4.35 shows that if ‚0 and ‚1 is a pair of sufficiently small such per-
turbations, the spaces GFH.a;b/.H0/ and GFH.a;b/.H1/ are canonically isomorphic
and hence the definition above is correct. Similarly, one extends the monotonicity
morphisms to not necessarily regular Hamiltonian structures.

4.11 Discussion: non-special Hamiltonian structures

Most of the above theory works for stable but not necessarily special Hamiltonian
structures. Namely, suppose Axiom 3 in the definition of a special structure H D
.V; .‚// is weakened to simply the requirement of existence of a framing � 2 ±P;Q , ie,
a 1–form � such that iRd�DR and �.R/D 1 for a characteristic vector field R of
.‚// (see Section 4.1 above.) This leads to the following modifications:
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� The period-action equation (46) does not hold, and what is even worse, one does
not necessarily have a bound on the period of a closed orbit in terms of its action.

� As a result we cannot prove analogues of Proposition 4.3 (openness of the
stability condition) and of Proposition 4.7.

� Even if H is regular, it is not any longer true that the sets Pa;b for a< b < C
are finite.

� However, assuming that H is regular, one can choose an adjusted almost complex
structure J and define the complex

�
C .a;b/.

�!
H;J /; d

�
using the same formula

(50) as in the special case. Though the complex C .a;b/.
�!
H;J / can be in this

case infinitely generated, compactness results from [6] guarantee that the sum in
formula (50) contains only finite number of terms, and hence, GFH.

�!
H/ is well

defined in this case.
� Similarly, one can extend to this situation the definition of monotonicity homo-

morphisms and prove analogues of Theorems 4.29 and Proposition 4.30.

For certain applications (which we do not consider in this paper) it is important to
further enlarge the class of admissible Hamiltonian structures. In particular, one can
bypass Axiom 1, by considering Floer homology with coefficients in an appropriate
Novikov ring. Without much changes one can relax Axiom 2 by requiring that there
are no contractible periodic orbits of certain Maslov indices (cf [4; 44; 48]. Dropping
Axiom 2 altogether leads to generalized Floer homology differential algebra rather
than complex, in the spirit of [17].

4.12 GFH for Hamiltonian functions

4.12.1 (Generalized) Floer homology In this section we analyze Floer homology
of Hamiltonian structures

�!
HF associated to a generic time-dependent Hamiltonian

function F.x; t/ D Ft .x/ on M which equals to a positive constant C outside a
compact set, see Example 4.5 above.

First of all, let us recall the standard definition of the Floer homology of F (see eg
[3]). The action functional AF on the space of smooth loops  W S1!M is given by

AF . /D
1Z

0

� �˛CFt . .t//dt :

The values of AF on 1–periodic orbits of the Hamiltonian flow generated by F

form the action spectrum spec.F /. In what follows we refer to real numbers a 2
.�1I C/ n spec.F / as to non-critical values of AF .
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Let J D fJtg; t 2 S1 , be a family of almost complex structures compatible with
! D d˛ . Under certain generic assumptions, the filtrated Floer homology complex
C .a;b/.F;J / is generated by 1–periodic orbits  i of the Hamiltonian F with

a<AF . i/ < b;

where a; b are non-critical values of AF .

Denote by SM the set of free homotopy classes of loops S1!M . The generators  i

of C .a;b/.F;J / are graded by their free homotopy classes " 2 SM and by elements of
the Z–set IM

" WDJM
" �f0; 1g, where JM

" is the set of coherent symplectic trivializations
of the bundle .TM; !/ over loops representing ". The details of this construction are
exactly the same as in Section 4.4.1 above, and we leave them to the reader. Put

IM D f."; i/ W " 2 SM ; i 2 IM
" g :

Definition 4.36 The set IM (respectively, IM
" ) is called the grading set of the Liouville

manifold .M; !/ (respectively, in the class ").

In the cases when " is the class of contractible loops or when M is endowed with a
Lagrangian distribution we get the canonical Z–grading, as it was explained in Remarks
4.10 and 4.11.

The boundary operator d W C .a;b/.F;J /! C .a;b/.F;J / is defined by the formula

d i D
X

i

�ijj ;

where CZ. i/�CZ.j /D 1, and �ij is the number . mod 2/ of the trajectories of
the reversed gradient flow �rAF on the loop space, connecting  i and j . More
precisely, �ij counts components of the moduli space Mij of maps uW R�S1!M

which satisfy an inhomogeneous Cauchy-Riemann equation

@u

@�
.�; �/CJ�

@u

@�
.�; �/�J� sgradF� D 0 ;

lim
�!�1u.�; �/D  i.�/;

lim
�!C1u.�; �/D j .�/:

(60)

The homology FH.F / of the complex
�
C .a;b/.F;J /; d

�
is independent of J and

called the Floer homology of the Hamiltonian F .

Let us turn now to the generalized Floer homology of the framed Hamiltonian structure�!
HF . Recall that the underlying Hamiltonian structure is given by the equivalence class
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of 1–forms .‚/ with ‚D Fdt �˛ on V , and the framing is chosen as � WD dt . The
2–form � equals dFt ^dt�! . Hence the Reeb vector field equals RD @

@t
CsgradFt ,

so that all its closed orbits are automatically non-contractible. Moreover, every orbit
representing a class from S has period 1.

The cut � is the tangent bundle to the fibers M �fpointg. Extend the family of almost
complex structures �Jt W TM ! TM compatible with �! D�j� (mind the minus
sign!) to an adjusted almost complex structure J on V DM �S1 �R. This means,
in particular, that J is invariant along the shifts s! sC c , where s is the coordinate
on R, and J @

@s
DR. We assume that J is regular.

Proposition 4.37 The graded filtrated Floer complexes C .a;b/.
�!
HF ;J / and

C .a;b/.F;J / coincide together with their differentials. In particular, the (generalized)
Floer homology GFH.

�!
HF / and FH.F / are canonically isomorphic.

Proof The complex C .a;b/.
�!
HF ;J / is generated by periodic orbits i.t/ of R whose

free homotopy classes lie in the set S . Each such class, say e , has the form e D
"˚ Œpoint�S1� where " is a free homotopy class of loops S1!M . Write ` for the
kernel of � and observe that the bundle .T V =`;�/ can be canonically identified with
.TM;�!/. Therefore, we have a canonical Z–equivariant bijection between the sets
Je and JM

" of coherent trivializations, which yields an equivariant bijection between
the grading sets Ie and IM

" . The orbits i are in 1–1 correspondence with orbits  i .
Namely, each such orbit i W S1!M �S1 has the form i.t/D . i.t/; t/. Moreover,
we have deg.i/D deg.i/ since the change of the sign of the symplectic form does
not affect Conley-Zehnder indices. Furthermore,

AHF
.i/D

Z
i

Ftdt �˛ D
1Z

0

� �i ˛CFt .i.t//dt DAF . i/ :

Hence, the two complexes have the same grading and filtration. Now let us compare
the differentials of these complexes. Consider the complex

.C .a;b/.
�!
HF ;J /; d/:

Recall from Section 4.7 that the coefficient at j in the expression for di is determined
by the 0–dimensional component of the moduli space of J –holomorphic cylinders
which are defined as follows. Write ‡ D R�S1 for the standard cylinder endowed
with coordinates � 2R and � 2 S1 . We endow ‡ with the standard complex structure
by introducing the complex coordinate � C i� . The @–equation

@ˆ

@�
CJ

@ˆ

@�
D 0
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for a J –holomorphic cylinder ˆD .u;A;B/W ‡ !M �S1 �R takes the form

@A

@�
D�@B

@�
;

@A

@�
D @B

@�
;

@u

@�
�JA.�;�/

@u

@�
C @A
@�

JA.�;�/sgradFA.�;�/C @B
@�

sgradFA.�;�/ ;

lim
�!�1u.�; �/D j .�/;

lim
�!C1u.�; �/D  i.�/;

lim
�!˙1A.�; �/D �;

lim
�!˙1B.�; �/D˙1 :

(61)

The first two equations just say that B.�; �/C iA.�; �/ is a holomorphic self-map
of the cylinder, which together with the asymptotic boundary conditions imply that
A.�; �/D � and B.�; �/D � C c for some constant c . Without loss of generality we
can assume that c D 0. Thus the third equation can be rewritten as

�@u
@�
.�; �/CJ�

@u

@�
.�; �/�J� sgradF� D 0 :

The change of variables .�; �/ 7! .��; �/ transforms the last equation together with the
asymptotic boundary conditions to equation (60) arising in the usual Floer theory. Hence,
we conclude that the Floer complexes C .a;b/.

�!
HF ;J / and C .a;b/.F;J / coincide

together with their differentials.

Suppose now that we are given two Hamiltonian functions G;F W M � S1 ! R,
S1DR=Z; which are constant at infinity, and such that G >F . Then for any numbers
a < b which are non-critical values for both AF and AG , in the Floer homology
theory (see [21; 37]) there is defined a grading preserving monotonicity homomorphism
monFHW FH

.a;b/� .G/! FH
.a;b/� .F /. On the other hand, the Hamiltonian structures HG

and HF are concordant in a natural way, see Example 4.21 above. This concordance
defines a homomorphism monGFHW GFH

.a;b/� .HG/! GFH
.a;b/� .HF /, see Section 4.9

above. Proposition 4.37 supplies us with identifications between Floer homology of G

(resp., of F ) with generalized Floer homology of G (resp., of F ). It is straightforward
to check the following:

Proposition 4.38 After the identifications of GFH and FH the corresponding mono-
tonicity morphisms coincide: monFH DmonGFH .
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Moreover, the non-criticality of a; b allows us to relax the condition G >F to G �F .

In our calculations below we will use the following standard fact (see eg [3]):

Lemma 4.39 Let F .s/; s 2 Œ0; 1�, be a monotone homotopy of functions constant at
infinity: F .s/ � F .t/ for s < t . Assume that b is a non-critical value of AF .s/ for all
s . Then the natural homomorphism monW FH.�1Ib/.F .1//! FH.�1Ib/.F .0// is an
isomorphism.

4.12.2 Symplectic homology of domains Let U � M be a bounded starshaped
domain with boundary P D @U . Define the action spectrum spec.P /� R of P asn

�
Z


˛
o
;

where  runs over all closed orbits of the naturally oriented characteristic foliation of
P . Let X D X .U / be the set of all non-positive Hamiltonian functions F W M ! R

supported in a domain U . Define an “anti-natural” partial order on X by

F �G , F �G ;

and introduce symplectic homology of U (see [22], [9]) as

SH.aIb/.U / WD lim�!
F2X

FH.a;b/.F / ;

where a < b lie in .�1I 0/ n spec.P /. The grading of Floer homology induces the
grading of symplectic homology by the grading set IM of the Liouville manifold
.M; !/. With a help of the monotonicity homomorphism in Floer homology, any
inclusion U1 � U2 gives rise to a natural grading-preserving morphism

SH.�1Ib1/.U1/! SH.�1Ib2/.U2/; b1 � b2;

of symplectic homologies. The purpose of the next sections is to extend this construction
to domains in the contact manifold .V;Ker.dt �˛//.

4.13 GFH for contact forms

In this section we focus on the contact manifold .V;Ker.dt �˛/) where V DM �S1 ,
as before.

Recall (see Example 4.4) that contact form �D F.dt �˛/ is called admissible if F

equals a constant C at infinity and the Reeb field R� of � has no contractible closed
orbits of period � C.
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Denote by F the set of all contact forms on V which equal const � .dt �˛/ at infinity
for some positive constant, and by Fad �F the subset of all admissible forms. With an
admissible form � one associates a framed Hamiltonian structure

�!
H� D .�/ described

in Example 4.4. Recall that the same 1–form � serves as its framing. The cut �
coincides with the contact structure on V , and the characteristic vector field is the
Reeb field R� .

In what follows we will write CH.a;b/.�/ instead of GFH.a;b/.
�!
H�/, and call this group

the filtrated cylindrical contact homology of the contact form �. We tacitly assume
that a < b < C and that a; b are non-critical values for H� (for the sake of brevity,
we say that a; b are non-critical values for �). Note that the group CH.a;b/.V; �/ is
generated only by periodic orbits of R which belong to classes from S , unlike the
more general situation considered in [17],[44], [48], and [4]. In particular, multiply
covered periodic orbits do not contribute to this homology. As we already had seen in
some applications considered above (eg, see the proof of Theorem 1.2 in Section 1.8)
this is good enough for our purposes because we are able to recover the remaining part
of cylindrical contact homology via a covering trick.

As in the case of Hamiltonian Floer homology, contact homology CH.�/ is graded
by the grading set IM of the Liouville manifold .M; !/ (see Definition 4.36 above).
Indeed, denote by ` the characteristic line field of the Hamiltonian structure H�D .�/.
Then the symplectic bundle .T V =`; d�/ can be canonically identified with .�; d�/.
The symplectic structure on this bundle can be homotoped to �! which corresponds
to the case �D dt � ˛ . Finally, we deform .�;�!/ to .TM;�!/ via the family of
subbundles .�s D Ker .dt � .1� s/˛/;�!/, where s 2 Œ0I 1�. Furthermore, each class
e 2 S has the form "˚ Œpoint�S1� with "2SM . This readily yields that I.H�/D IM

(cf the beginning of the proof of Proposition 4.37 above). In the cases when either "
is the class of contractible loops, or M D T �X and we pick any class ", the contact
homology are Z–graded in accordance with Remarks 4.10 and 4.11.

If �C D F�� , where �˙ 2 F and the function F satisfies F > 1 (resp. F � 1), then
we write �C > �� (resp. �C � �� ). The forms �˙ can be viewed as sections of the
symplectization SV D V �RC and thus if �C > �� , the part of the symplectization
bounded by the sections �˙ is parameterized by a directed concordance between the
framed Hamiltonian structures

�!
H�� and

�!
H�C , see Example 4.20 above. Hence there

is defined a monotonicity homomorphism

mon.�C; ��/W CH.a;b/.�C/! CH.a;b/.��/:

In what follows we have to deal with the case �C � �� (note the non-strict inequality).
Let us make a digression to settle this situation.
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Remark 4.40 Let � be a contact form on V , and let J be any almost complex
structure on V adjusted to

�!
H� . Fix a real constant c > 0. The dilation .z; s/! .z; cs/

of V sends J to an almost complex structure Jc which is adjusted to Hc� , see Remark
4.13 above. Furthermore, each T –periodic orbit of the Reeb field of � is a cT –periodic
orbit of the Reeb field of c�, and hence the c�–action differs from �–action by the
factor c . Therefore, we get a canonical isomorphism

c�W CH.a;b/.�/! CH.ca;cb/.c�/ :

On the other hand, we have the following commutative diagram, assuming c < 1:

(62) CH.0;ca/.�/

mon.�;c�/

��

E.ca;a/ // CH.0;a/.�/

mon.�;c�/

��c�wwooooooooooo

CH.0;ca/.c�/
E.ca;a/// CH.0;a/.c�/

Indeed, the monotonicity homomorphism mon.�; c�/ is realized by a symplectic
concordance which can be endowed, after completion, by an almost complex structure
which is biholomorphically equivalent to a translationally invariant almost complex
structure. All index 0 holomorphic cylinders for this structure are trivial. A simple
analysis of this situation shows that on the level of complexes, the homomorphisms c�
and mon.�; c�/ differ only by a varying window homomorphism.

This implies the following useful

Proposition 4.41 Suppose that c < 1, a > 0 and that the interval Œca; a� does not
intersect the action spectrum for the form �. Then the monotonicity homomorphism

CH.0;a/.�/! CH.0;a/.c�/

is an isomorphism.

This result enables us to extend the notion of monotonicity morphism between contact
homology of forms �C and �� with �C � �� . In fact, we will need just the following
particular case of this construction. Take any real number a with 0< a<min.C�; CC/
which is non-critical for both �� and �C . Take c < 1 sufficiently close to 1 so
that c�� < �C and the interval Œca; a� does not intersect the action spectrum of �� .
Proposition 4.41 above provides an isomorphism

CH.0;a/.��/! CH.0;a/.c��/:
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Its composition with the (already defined) monotonicity morphism

CH.0;a/.�C/! CH.0;a/.c��/

gives the desired monotonicity morphism

mon.�C; ��/W CH.0;a/.�C/! CH.0;a/.��/ :

It does not depend on the particular choice of the constant c .

Given a compactly supported contactomorphism ˆ and a contact form �, we write
ˆ�� for .ˆ�/�1� and ˆ] for the induced isomorphism CH.�/! CH.ˆ��/.

Proposition 4.42 Suppose we are given two contact forms �C; �� such that �C��� .
Let ˆt W V ! V , t 2 Œ0; 1�, be a compactly supported contact isotopy with ˆ0 D 1 and
such that for all t 2 Œ0; 1� we have ˆt��C � �� . Then the following diagram commutes:

CH.a;b/.�C/
ˆt

]

��

�0 // CH.a;b/.��/

CH.a;b/.ˆt��C/

�t
77nnnnnnnnnnnn

where �t Dmon.ˆt��C; ��/.

Proof Put �tCDˆt��C . It suffices to prove the proposition for the case when �tC>��
for all t . Write … for the contact form s.dt � ˛/ on the symplectization SV and
denote W D V � Œ0I 1�. Let 't W W ! SV be the embedding given by formula
(52) of Example 4.20 above, so that .W; .'�t …// is a directed concordance between
Hamiltonian structures H�t

C
and H�� . Note that the image of 't is the domain cut out

from the symplectization SV by the graphs of the forms �tC and �� . The isotopy ˆt

lifts to a family of RC–equivariant symplectomorphisms ẑt of SV . Cutting off the
Hamiltonian which generates ẑt outside a neighborhood of graph.�tC/ we get a family
of symplectomorphisms ‰t which send Image.'0/ onto Image.'t /, coincide with ẑt
near graph.�C/ and are equal to the identity near graph.��/. Define a diffeomorphism
AW W !W by

AD '�1
t ı‰t ı'0 :

Note that the restriction of A to V �f1g sends the Hamiltonian structure H�C to H�t
C

,
while the restriction of A to V � f0g is the identity map. Take now the concordances
.W; .'�

0
…// and .W; .'�t …//. The proposition follows from commutative diagram

(59).
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4.14 Contact homology of domains

Let U � V be an open subset with compact closure, and let � 2Fad be an admissible
form. We denote by F.U; �/ the set of contact forms which coincide with � outside
of U , and by Fad .U; �/ its subset consisting of admissible forms. The set F.U; �/ is
endowed with the “anti-natural” partial order � defined as follows:

�00 � �0, �00 � �0 :
An increasing sequence in a partially ordered set is called dominating if every element
of the set is � than some element of the sequence.

Definition 4.43 An admissible form � on V is called U –basic if the partially ordered
set F.U; �/ admits a dominating sequence consisting of admissible forms. Domains
U admitting a basic form are called admissible.

This means, in the down to earth language, that there exists a sequence of admissible
forms �i 2 Fad .U; �/ such that �i=� converges to zero on every compact subset of
U as i !1.

Let � be a U –basic form of an admissible domain U . For ">0 denote by Fad .U; �; "/

the set of all forms from Fad .U; �/ which do not have " as a critical value. Given a
dominating sequence in Fad .U; �/, one can perturb it to a dominating sequence in
Fad .U; �; "/ provided " is small enough. Define contact homology of U as follows:

(63) CH.U j�/DWD lim �
"!0

lim�!
�02Fad .U;�;"/

CH.0;"/.�0/ :

Let �i 2 Fad .U; �/ be a dominating sequence. Unveiling the definitions of direct and
inverse limits we see (after, possibly, a small perturbation of f�ig) that every element
of CH.U j�/ can be represented as a sequence

fxN g; xN 2 CH.0I 1
N
/.�iN

/; iN !1 ;

such that for K >N the images of xN and xK under the natural morphisms coincide
in CH.0I 1

N
/.�j / for some j �max.iN ; iK /.

The grading of contact homology of forms induces the grading of contact homology of
domains by elements of the grading set IM of the Liouville manifold (see Definition
4.36).

Clearly, the notions introduced above are invariant under the action of the group G of
all compactly supported contactomorphisms of V . We sum up this in the following
lemma.
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Lemma 4.44 Let U be an admissible domain with a basic form �. Let ˆ 2 G be
a contactomorphism. Then the domain zU D ˆ.U / is admissible with a basic form
z� WDˆ��. Moreover, there is a canonical isomorphism

ˆ]W CH.U j�/! CH. zU jz�/:

Proof One can define CH.U / starting from the U–basic form �, and define CH.ˆ.U //

starting from the basic form z� D ˆ��. A dominating sequence �i 2 Fad .U; �/

is mapped by ˆ� to a dominating sequence z�i 2 Fad .ˆ.U /; z�/. On the other
hand, for any contact form �i the contactomorphism ˆ induces an isomorphism
ˆ]W CH.0;"/.�i/! CH.0;"/.z�i/. These isomorphisms commute with the monotonicity
morphisms monij W CH.0;"/.�i/!CH.0;"/.�j / and emonij W CH.0;"/.z�i/!CH.0;"/.z�j /,
for i < j . Hence ˆ] descends to the required isomorphism

ˆ]W CH.U j�/! CH. zU jz�/
between the limits.

An important example of admissible domains is given by the next lemma.

Lemma 4.45 Let U � V be a fiberwise starshaped domain. Then the form dt �˛ is
U –basic. In particular, U is admissible.

Proof We claim that an admissible form �0 D dt � ˛ is U –basic. Indeed, put
Pt D @U \.M �ftg/. Let us recall that the complement of Core.M / can be identified
with the symplectization SPt , and the Liouville form ˛ can be written as uˇt for
the contact form ˇt D ˛jTPt

. In these coordinates we have �0 D dt � uˇt . Take a
sequence Gi of non-decreasing positive functions Gi W RC! R which are constant
near 0, equal 1 for u> 1 and such that Gi uniformly converge to 0 on every compact
subset of U . Clearly, the sequence �i WDGi�0 2 F.U; �0/ is dominating. To see that
the forms �i are admissible note that on .M nCore.M //�S1 we have

d�i jM�ftg D�d.Giu/^ˇt �Giudˇt :

Since d.Gi u/
du

> 0 we conclude that the restriction of d�i to the fibers M � ftg is
non-degenerate. Hence the Reeb field of �i is transversal to the fibers M � ftg, and
therefore it has no contractible closed orbits. This proves that all �i are admissible.

Proposition 4.46 Let U � V be an admissible domain. With any two U –basic forms
� and �0 one can associate an isomorphism

q.�0; �/W CH.U j�0/! CH.U j�/:
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This correspondence is functorial in the sense that for any three U –basic forms �1; �2

and �3 we have
q.�1; �3/D q.�2; �3/ ı q.�1; �2/ :

Proof

Step 1 Let �0 and � be two U –basic forms such that �0 > �. Denote by f�0ig and
f�ig the corresponding dominating sequences of admissible forms. We claim that for
every i there exists j such that �0i > �j . Indeed, there exists a compact K � U such
that �0i > �1 on V nK . Thus �0i > �j on V nK for all j since �1 � �j . Choose now
j so large that �0i > �j on K . The claim follows.

It follows from the claim that the dominating admissible sequences �0i 2 Fad .U; �
0/

and �i 2 Fad .U; �/ can be chosen in such a way that for all i we have �0i > �i . By
passing to double limits in the family of monotonicity homomorphisms

mon.�0i ; �i/W CH.0;"/.�0i/! CH.0;"/.�i/

we get a homomorphism CH.U j�0/! CH.U j�/ which will be denoted by q.�0; �/.
Then, given three forms �1; �2; �3 with �i > �j for i > j the formula

q.�1; �3/D q.�2; �3/ ı q.�1; �2/

follows from the corresponding property for the monotonicity homomorphisms (see
Theorem 4.29 above).

Step 2 Next, we claim that q.�0; c�0/ is an isomorphism for any U –basic form
�0 and any c 2 .0; 1/. Note that if � 2 F.U; �0/ then c� 2 F.U; c�0/. Look at
commutative diagram (62): First, pass to the direct limit as � 2 F.U; �0/. Then
consider the inverse limit as a! 0. The horizontal arrows become the identity maps,
so the vertical and the diagonal arrows of the diagram coincide in the double limit.
Note that the vertical arrows correspond to the homomorphism q.�0; c�0/. The claim
follows from the fact that the diagonal arrow c� in the diagram is an isomorphism for
all a and �.

Step 3 Now for any two forms �; �0 such that �0 > � we have for a sufficiently small
constant c > 0:

1

c
� > �0 > � > c�0;

and hence we have

q.�0; �/ ı q.
1

c
�; �0/D q.

1

c
�; �/
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and
q.�; c�0/ ı q.�0; �/D q.�0; c�0/ ;

which implies that q.�0; �/ is an isomorphism. Finally for any two U –basic forms �0

and �1 choose a U –basic form � such that � < �0 and � < �1 and put

q.�0; �1/D q.�1; �/
�1 ı q.�0; �/ :

It is straightforward to check that the definition is independent of � and satisfies the
required functoriality condition.

Therefore, from now on we can omit the U –basic form � from the notation and write

CH.U /D CH.U j�/:
The monotonicity homomorphism for contact homology of forms induces an inclusion
homomorphism in.U 0;U /W CH.U 0/ ! CH.U / for admissible domains U;U 0 with
U 0 � U . Indeed, we can choose dominating sequences of forms f�kg for U and f�0

k
g

for U 0 so that �0
k
� �k . The monotonicity maps monk W CH.0I"/.�0

k
/! CH.0I"/.�k/

induce the inclusion homomorphism in the double limit when k!1 and "! 0.

On the other hand, according to Lemma 4.44 a contactomorphism ˆ 2 G induces an
isomorphism ˆ]W CH.U /! CH.ˆ.U //.

It is easy to see that contact homology CH.U / of admissible domains, inclusion
morphisms in.U 0;U / and induced isomorphisms ˆ] satisfy conditions (5)-(8) of
Section 1.8 of the introduction. We summarize this in the following theorem in the
language of category theory. In order to avoid cumbersome formulations we will
assume that compactly supported contactomorphisms of V induce grading-preserving
morphisms of contact homology. This happens, for instance, when M is simply
connected, when dim M � 4 and M is Weinstein, or when dim M � 6. In the
latter two cases we have, maybe after a perturbation of the Liouville structure, that
codim.Core.M // � 2, and hence every free homotopy class of loops in M has a
representative outside an arbitrarily large compact subset.

Theorem 4.47 Assume that either M is simply connected, or dim M � 4 and M

is Weinstein, or dim M � 6. Consider a category whose objects are admissible open
domains of V and morphisms correspond to inclusions. Then the correspondence
U ! CH.U / is a G–functor of this category to the category of IM –graded vector
spaces over Z2 , where G is the group of compactly supported contactomorphisms of
V and IM is the grading set of the Liouville manifold .M; !/.
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Since fiberwise starshaped domains are admissible, we recover results stated in the
beginning of Section 1.8 of the introduction.

In the remaining cases, eg, when M is a non-contractible Liouville surface, the same
result holds true if either we replace the group G by its identity component, or restrict
ourselves to contact homology in the class of contractible loops. In the general case
the categorical formulation is more clumsy and is omitted.

The next theorem and its corollary is not used in the sequel, but we present them for
the completeness of the picture.

Theorem 4.48 Let U be an admissible domain, and ˆ 2 G a contactomorphism
which admits an isotopy ˆt connecting ˆ1 Dˆ with ˆ0 D 1 such that Suppˆt � U

for all t 2 Œ0; 1�. Then for any admissible sub-domain U 0 � U the following diagram
commutes:

(64) CH.U 0/
ˆt

]

��

in // CH.U /

CH.ˆt .U
0//

int

88qqqqqqqqqq

where inD in.U 0;U / and int D in.ˆt .U 0/;U /.

Proof We can choose dominating sequences of forms �k for U and �0
k

for U 0 such
that for all t 2 Œ0; 1� we have ˆt��0k � �k . Then according to Proposition 4.42 we have
a commutative diagram

CH.0;"/.�0
k
/

ˆt
]

��

�0 // CH.0;"/.�k/

CH.0;"/.ˆt��0k/

�t
77oooooooooooo

where �t Dmon.ˆt��0k ; �k/ is the monotonicity homomorphism. Passing to the double
limit when k!1 and "! 0 we get the diagram (64).

Taking U 0 D U in this theorem, we get the following result.

Corollary 4.49 Assume that a contactomorphism ˆ 2 G is isotopic to the identity
through contactomorphisms supported in an admissible domain U . Then the induced
isomorphism ˆ]W CH.U /! CH.U / is the identity map.
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5 Calculations with contact homology

Here we complete the proof of several “hard” results stated in Section 1. First of all
we express contact homology of the prequantization of a symplectic domain in terms
of its filtrated symplectic homology, see Theorem 5.3 and Proposition 5.6 below which
together form a slightly more explicit version of Theorem 1.27. Our approach is based
on generalized Floer homology theory developed in Section 4. We apply this result to
calculations with contact homology. In particular, we prove Theorems 1.28 and 1.29 on
contact homology of prequantizations of ellipsoids and balls in R2n . Furthermore, we
study contact homology of prequantizations of unit ball bundles of closed manifolds
in terms of cohomology of free loop spaces. As a result, we prove Theorem 1.18 on
orderability of spaces of contact elements.

5.1 Contact homology of split domains

Let .M 2n; !;L/ be a Liouville manifold with the Liouville form ˛ D iL! . We
will work on the manifold V D M � S1 , write t .mod1/ for the coordinate on
S1 D R=Z, and orient V by the volume form .�!/n ^ dt . Consider the contact
structure � D Ker.dt � ˛/ on V . Recall that the notion of contact characteristic
foliation of a hypersurface in a contact manifold was defined in Section 1.3.

Definition 5.1 A hypersurface † with smooth boundary in a contact manifold is called
non-resonant if it is transversal to the contact structure and the contact characteristic
foliation of † has no closed orbits.

Example 5.2 Let P � R2n be any starshaped hypersurface. Then the hypersurface
yP D P �S1 is non-resonant if and only if the symplectic characteristic foliation on P

(equipped with the natural orientation) has no closed orbits  with
R


˛ D 1. With the

notation of Section 4.12.2 this condition means that �1 … spec.P /.

Theorem 5.3 Let U � M be an open domain with compact closure and smooth
starshaped boundary P D @U . Suppose that the hypersurface P �S1 is non-resonant.
Then there exists a grading-preserving isomorphism

‰U W CH.U �S1/! SH.�1I�1/.U / :

Note that both contact and symplectic homologies in this theorem are graded by the
grading set IM of the Liouville manifold .M; !/.
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Proof Recall that we have the canonical decomposition M D SP tCore.M / (see
formula (2) of Section 1.5). Consider the contact form ˇ D ˛jTP on P and fix the
identification SPDP�RC associated to ˇ (see Section 1.3 above). We use coordinates
.x;u/ 2 P �RC on SP and extend u by 0 to Core.M /. With this notation we have
U D fu< 1g.

Step I From contact to Floer homology

Denote by H the set of continuous Hamiltonians H W M! .0;C1/ with the following
properties:

� On SP D P � .0IC1/ the Hamiltonian H is a piecewise smooth function of
one variable u, that is H DH.u/;

� H.u/� c for u2 .0; a/ and H.u/� 1 for u� b , where c> 0 and 0<a< b< 1

are some constants depending on H ;

� At each smooth point u 2 .0;C1/,
(65) H.u/�uH 0.u/ > 0 ;

where H 0 stands for the derivative of H . Note that the expression in the left
hand side of this inequality can be interpreted as the vertical coordinate of the
intersection point between the tangent line to graph.H / and the vertical axis;

� H � c on Core.M /DM nSP .

Given H 2H as above, define a function �H W RC! RC by

�H .u/D u

H.u/
:

One readily checks that �H is a homeomorphism of RC whose inverse can be written
as � xH for some function xH 2 H . Moreover, �H is a diffeomorphism when H is
smooth. Define a map ˆH W V ! V as follows: put ˆH .x;u; t/D .x; �H .u/; t/ on
P � .0;C1/�S1 and extend it by .z; t/! .L� log cz; t/ to Core.M /�S1 . Again,
ˆH is a homeomorphism of V with ˆ�1

H
Dˆ xH and ˆH is a diffeomorphism when

H is smooth.

Put �H WD dt�˛
H

and �H WD xHdt � ˛ . The key property of ˆH is given by the
following

Lemma 5.4 ˆ�
H
�H D �H for every smooth H 2H .
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We deduce from the lemma that for every � 2 .0; 1/
(66) CH.0I�/.�H /D CH.0I�/.�H /D GFH.0I�/.V; .�H //D FH.0;�/. xH /;

where the right equality follows from Proposition 4.37. Furthermore, these identifica-
tions preserve the grading since the diffeomorphism ˆH is isotopic to the identity. Note
that �H is a contact form corresponding to the contact structure � . Hence equation (66)
links together contact homology and Hamiltonian Floer homology. Let us emphasize
that the main purpose of generalized Floer homology theory developed in Section 4
is to justify this link. Eventually, this link will enable us to complete the proof of the
theorem.

Proof of Lemma 5.4 Clearly it suffices to verify the statement of the lemma on
SP �S1 . Recall that with respect to the splitting SP D P � .0;C1/ the Liouville
form ˛ can be written as uˇ where ˇ D ˛jTP . Put v D �H .u/ and observe that

dt �uˇ

H.u/
D dt

H.� xH .v//
� vˇ :

On the other hand,
� xH .v/

H.� xH .v//
D v;

which yields

(67) H.� xH .v//D
� xH .v/
v
D 1

xH .v/
:

Therefore,
dt �uˇ

H.u/
D xH .v/dt � vˇ;

as required.

One readily checks that the transform H ! xH is continuous in the uniform topology
and anti-monotone:

(68) H1 �H2) xH1 � xH2 :

Moreover, this transform preserves the class of piecewise linear functions from H . We
will work out this property for the following special class of functions. For 0<a<b<1

and c > 1 consider a piecewise linear function Fa;b;c 2H which equals c on .0; a/,
equals 1 on .b;C1/ and which is linear on Œa; b� (see Figure 1). A straightforward
calculation shows that

(69) xFa;b;c D Fa=c;b;1=c :
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�

�

� ��
0 a b 1

1

c

Fa;b;c

Figure 1

For 0 < � < � < 1 and � < 0 let us consider a piecewise linear function G�;�;�
which equals � on Œ0; ��, equals 0 on Œ�;C1� and which is linear on Œ�; ��. With
this notation

(70) xFa;b;c � 1DGa=c;b;�1C1=c ;

see Figure 2.

� �

� �

0 a=c b 1

�1C 1
c

Ga=c;b;�1C1=c

Figure 2

Note that Ga=c;b;�1C1=c is a non-positive Hamiltonian supported in U . Such Hamil-
tonians appear in the definition of symplectic homology of U presented in Section
4.12.2 . A troubling point, of course, is that the function Ga=c;b;�1C1=c is not smooth.
We are going to take care of this right now.

Step II A smoothing procedure
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In what follows we are going to work with Floer homology of Hamiltonians G�;�;� ,
which is understood as Floer homology of a smooth function which approximates
G�;�;� in the uniform topology. A careful choice of the smooth approximations will
enable us to perform precise homological calculations. Let us explain the details of the
approximation procedure we use.

Let L WD PT R2 be the projectivization of the tangent bundle of the plane R2 . Define
the set of generalized tangent lines T�;�;� � L to graph.G�;�;�/ as follows:

T�;�;� D f.l; .u;G�;�;�.u//g
so that

� l is the usual tangent line for u … f�; �g;
� l lies above graph.G�;�;�/ for uD � ;
� l lies below graph.G�;�;�/ for uD �.

The Euclidean metric on R2 gives rise to a natural metric on L. The proof of the next
elementary lemma is straightforward.

Lemma 5.5 For a small enough ı > 0 there exists a smooth function H DH�;�;� on
Œ0;C1/ with the following properties (see Figure 3 ):

� H.0/D � , H 0.0/D 0;
� H.u/D 0 for all u� 1;
� H.u/ < 0;H 0.u/ > 0;H.u/�uH 0.u/ < 0 for all u 2 .0; 1/;
� The tangent bundle T .graph.H //, considered as a subset of L, lies in the ı–

neighborhood of T�;�;� .

Moreover, the ı–approximation H�;�;� can be chosen to depend continuously on the
parameters �; �; �; ı .

Step III Homological calculations

Take � > 0 small enough. Choose a; b; c; ı depending on � so that a and b are
sufficiently close to 1, c is large enough and ı is small enough. We assume that

(71) � >
2

c
:

Let H be a ı–approximation of Ga=c;b;�1C1=c , as in Lemma 5.5. The goal of this
Step is to establish the following formula:

(72) FH.�1I�1C�/.H /D FH.�1;�1C�/.H /D SH.�1I�1C�/.U / :
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� �

�
0 1

H�;�;��

� ��
� �

Figure 3

To start with, let us recall (see equation (20) above) that the Hamiltonian vector field
of the Hamiltonian H D H.u/ is given by H 0.u/R on SP D P � .0;C1/ and it
vanishes outside this domain, where R stands for the Reeb vector field of ˇ . Hence
its 1–periodic orbits are either the fixed points lying in M n .P � .0; 1//, or the pairs
.;u/ where u2 .0; 1/ and  is a closed orbit of the Reeb field R of period H 0.u/. In
the latter case �H 0.u/ 2 spec.P /. The symplectic action of an orbit corresponding to
a fixed point is simply the value of the Hamiltonian at this point. The symplectic action
of an orbit of the type .;u/ equals H.u/�uH 0.u/. Recall that this quantity can be
interpreted as the vertical coordinate of the intersection point between the tangent line
to graph.H / and the vertical axis.

Since P �S1 is assumed to be non-resonant, there exists � > 0 such that

(73) spec.P /\ .�1� �;�1C �/D∅:

Our next claim is that the actions of all 1–periodic orbits of H are greater than �1.
Indeed, look at Figure 2. The claim will readily follow from the fact that any line from
Ta=c;b;�1C1=c intersects the vertical axis above �1. Clearly, it suffices to check this
for the line which passes through .b; 0/ and .a=c;�1C 1=c/. Calculating, we get that
it intersects the vertical axis at a point .0;y/ with

y D�bc � b

bc � a
:

Since a< b we have y > �1 as required, and the claim follows.

The claim yields
FH.�1;�1C�/.H /D FH.�1;�1C�/.H /;

which proves the left equality in formula (72). To show that

FH.�1;�1C�/.H /D SH.�1;�1C�/.U /
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it suffices to produce a monotone homotopy H .s/; s � 0; such that H .0/ D H , the
family H .s/ is dominating with respect to “anti-natural” order � on F , and, crucially,
for every s the point �1C � does not lie in the action spectrum of H .s/ (see Lemma
4.39).

To construct H .s/ , we start with a monotone homotopy G.s/ D G�.s/;�.s/;�.s/ , s � 0;

of the function G.0/DGa=c;b;�1C1=c through a dominating family, see Figure 4. Next,
we take H .s/ as a smooth ı.s/–approximation of G.s/ provided by Lemma 5.5 with
ı.s/ small enough.

�

0

�1C 1
c

a=c

�1C �
2

�1C 3�
2

b 1

`

G.0/

� � �

FORBIDDEN
INTERVAL

MONOTONE
HOMOTOPY
G.s/; s ! C1

Figure 4

We claim that for all s no line l 2 T�.s/;�.s/;�.s/ whose slope lies in �spec.P / can pass
through the “forbidden interval” Œ�1C �=2;�1C 3�=2� of the vertical axis. Indeed,
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any l 2 T�.s/;�.s/;�.s/ passing through the “forbidden interval” has the slope close to
1. In particular, this slope lies in .1� � I 1C �/ for � small enough and b sufficiently
close to 1. The claim follows from condition (73). Hence we completed the proof of
formula (72).

The end of the proof

Denote yU D U � S1 . Recall that the form dt � ˛ is yU –basic, see Lemma 4.45
above. Consider a smooth approximation of the function Fa;b;c (see Step I) given by
Ka;b;c DHa=c;b;�1C1=c C 1 (here the bar stands for the transform described in Step I).
Using formulas (66) and (72) we get that

lim�!
�2F. yU ;dt�˛/

CH.0;�/.�/D lim
c!C1
a;b!1

CH.0;�/.�Ka;b;c
/

D lim
c!C1
a;b!1

FH.0I�/.Ha=c;b;�1C1=c C 1/

D lim
c!C1
a;b!1

FH.�1;�1C�/.Ha=c;b;�1C1=c/D SH.�1;�1C�/.U / ;

where the limits are understood as direct limits. Finally, we pass to the inverse limit
and see that

CH. yU /D lim �
"!0

lim�!
�2F. yU ;dt�˛/

CH.0;�/.�/D

lim �
"!0

SH.�1;�1C�/.U /D SH.�1;�1/.U / :

In the last equality we use that

SH.�1;�1C�/.U /D SH.�1;�1/.U /

since �1 … spec.P /. This completes the proof.

Proposition 5.6 The isomorphism ‰U W CH.U�S1/DSH.�1;�1/.U / constructed in
Theorem 5.3 is functorial in the following sense. Consider two starshaped domains U1�
U2 �M with smooth non-resonant boundaries. Let I W CH.U1�S1/! CH.U2�S1/

and {W SH.�1I�1/.U1/! SH.�1;�1/.U2/ be the inclusion homomorphisms in contact
and symplectic homologies. Then

(74) ‰U2
ı I D { ı‰U1

:

Proof Let us re-examine the isomorphism between CH.�H / and FH. xH / given by
formula (66) in Step I of the proof of Theorem 5.3. Consider the following manifolds:
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� the symplectization SV D V �RC of .V; �/ equipped with the Liouville form
…D s.dt �˛/;

� the manifold V �R endowed with the 1–form …0 D sdt �˛ .

Define an embedding AW SV ! V �R by the formula

F.z; t; s/D .Llog s.z/; t; s/; where .z; t/ 2 V DM �S1; s 2 RC :

Note that A�…0 D…. Furthermore, on the subset

P �RC �S1 �RC � SV

the map A takes the form

.x;u; t; s/ 7! .x; su; t; s/:

Therefore, given a Hamiltonian H 2H , the graph of the contact form �H WD 1
H
.dt�˛/,

viewed as a section of the symplectization SV !V , is mapped by A to the hypersurface
fs D xH .u/g � V �R. Indeed, this is equivalent to the identity

xH
�

u

H.u/

�
D 1

H.u/
;

which is dual to (67).

Given two Hamiltonians H1 > H2 from H , we observe that the domain Y � SV

between the graphs of the forms �H2
and �H1

is mapped by A to the domain Y 0�V �R

between the graphs of Hamiltonians xH2 and xH1 . But the domains Y and Y 0 correspond
to directed cobordisms which are used in Sections 4.13 and 4.12 in order to define the
monotonicity maps in contact and Floer homology theories. Hence, the isomorphism
between CH.�H / and FH. xH / is functorial with respect to the monotonicity morphisms.
It is straightforward to check that this functorial correspondence survives all the limits
in the construction of ‰U .

5.2 Ellipsoids and balls

Note All symplectic and contact homology in this section are Z–graded (see Remark
4.10 above).

Proof of Theorem 1.28 Here we calculate the contact homology of the domain
yE.N;R/DE.N;R/�S1 � Cn �S1 , where E.N;R/ is the ellipsoid

(75) E.N;R/ WD f�jz1j2C �

N

nX
iD2

jzi j2 <Rg; N 2 N;
1

R
… N :
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Note that P WD @E.N;R/ is a convex hypersurface in Cn . The action spectrum of
P equals �RN, hence the condition 1

R
… N is exactly the non-resonant condition.

Therefore one can apply Theorem 5.3. Together with an obvious rescaling it yields

(76) CH�. yE.N;R//D SH
.�1;�1/� .E.N;R//D SH

.�1;� 1
R
/

� .E.N; 1//:

Next we calculate symplectic homology SH
.�1;� 1

R
/

� .E.N; 1// (see [23] for a calcu-
lation of another version of symplectic homology for ellipsoids). Define a piecewise
linear function

Fa;c W Œ0IC1/! R; a 2 .0; 1/; c < 0

as follows: Fa;c�0 on Œa;C1/, Fa;c.0/D c and Fa;c is linear on Œ0; a�. We consider
Fa;c.u/ as a Hamiltonian on Cn with

uD �jz1j2C �

N

nX
iD2

jzi j2 :

In order to deal with Floer homology of Fa;c we approximate it by a smooth func-
tion, exactly as in Step II of the proof of Theorem 5.3 above. We leave the details
of the approximation argument to the reader. In what follows Ta;c stands for the
set of generalized tangent lines to graphFa;c which consists of the following points
.l; .u;Fa;c.u// 2 PT R2 :

� l is the usual tangent line when u¤ a;

� l lies above graph.Fa;c/ when uD a.

We claim that

(77) SH
.�1;� 1

R
/

� .E.N; 1//D FH
.�1;� 1

R
/

� .Fa;� 1
R
�ı/

provided a is sufficiently close to 1 and ı is small enough. Indeed, consider a monotone
homotopy of Fa;� 1

R
�ı through a dominating family of functions Fa.s/;c.s/; s � 0 (see

Figure 5) and note that no line from Ta.s/;c.s/ which passes through a ı
2

–neighborhood
of �1=R on the vertical axis has an integral slope. The claim follows from Lemma
4.39.

Finally, note that the only 1–periodic orbit of Fa;� 1
R
�ı with action �� 1

R
corresponds

to the fixed point at uD 0. In the neighborhood of this point,

Fa;� 1
R
�ı.z/D constC�

h 1

R

i
jz1j2C�

h 1

NR

i nX
iD2

jzi j2C�H.z/;
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0 1�

MONOTONE
HOMOTOPY
Fa.s/;c.s/; s ! C1

�

�.mC 1/

a

Fa;� 1
R
� ı

�m

� 1
R

� 1
R
� ı �

Figure 5

where H.z/DPn
iD1 ci jzi j2 with ci 2 .0; 1/. Therefore, according to our convention

(see Section 4.4.1), the Conley-Zehnder index of our fixed point equals

k.N;R/D�2
h 1

R

i
� 2.n� 1/

h 1

NR

i
:

We conclude that SH
.�1;�1=R/
i .E.N; 1// equals Z2 for i D k.N;R/ and vanishes

otherwise. The theorem follows now from equation (76).
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Proof of Theorem 1.29 Assume that

1

k
<R1 <R2 <

1

k � 1

for some k 2N. Using the functoriality equation (74) we see that it suffices to show that
the inclusion B2n.R1/ ,!B2n.R2/ induces an isomorphism of symplectic homologies

SH.�1I�1/.B2n.R1//! SH.�1I�1/.B2n.R2//:

Consider the family of balls Bs WD B2n.s/, s 2 ŒR1;R2�. The desired statement
follows from the fact that �1 … spec.Bs/D�sN for all s 2 ŒR1;R2� in view of our
assumptions on R1 and R2 .

5.3 Cotangent bundles and free loop spaces

Note All symplectic and contact homology in this section are Z–graded (see Remark
4.11 above). All singular (co)homology are with Z2 –coefficients.

Let X be a closed manifold, and let T �X be the cotangent bundle of X with the
standard symplectic form ! D d˛ where ˛ D pdq . Consider the contact manifold
.V D T �X �S1; � DKer.˛�dt//. Choose a Riemannian metric on X and set Ur D
fjpj< rg. Thus Ur is the ball bundle associated with T �X . Denote yUr DUr�S1�V .
Write ƒ for the length spectrum of the metric. Note that the hypersurface @ yUr is non
resonant if and only if r�1 …ƒ. For the sake of brevity, will shall call such values of
r non-resonant.

Let us denote by LX the free loop space of X , by S W LX ! R the action functional

S. /D 1

2

1Z
0

kd
dt
k2dt ;

and by LaX the set fS � ag � LX . We will use below the following theorem due to
J. Weber [47] which is based on earlier works [45; 1; 43].

Theorem 5.7 For each non-resonant r > 0 there exists an isomorphism

(78) Lr W SH.�1;�1/.Ur /!H�.L
1

2r 2 X / :

Geometry & Topology, Volume 10 (2006)



1722 Yakov Eliashberg, Sang Seon Kim and Leonid Polterovich

Furthermore, if 0< r < r 0 are non-resonant, the following diagram commutes:

SH.�1;�1/.Ur /
Lr //

I

��

H�.L
1

2r 2 X /

j�

��

SH.�1;�1/.Ur 0/
Lr 0 //

H�.L
1

2.r 0/2 X /

where I and j � are respective inclusion homomorphisms.

Theorem 5.3 then implies:

Corollary 5.8 For each non-resonant r > 0 there exists an isomorphism

(79) yLr W CH. yUr /!H�.L
1

2r 2 X /

such that if r < r 0 the following diagram commutes

CH. yUr /
Lr //

I

��

H�.L
1

2r 2 X /

j�

��

CH. yUr 0/
Lr 0//

H�.L
1

2.r 0/2 X / :

Proof of Theorem 1.18

Observe that every finite covering X ! X 0 lifts to a finite covering PCT �X !
PCT �X 0 which is a local contactomorphism. Thus a positive contractible loop in
Cont 0.PCT �X 0/ lifts to a positive contractible loop in Cont 0.PCT �X /. Therefore
if PCT �X 0 is non-orderable then PCT �X is non-orderable as well. Hence, the case
when �1.X / is finite can be reduced to the case when X is simply connected.

Consider natural morphisms

�aW H�.LX /!H�.LaX / ;

�E;aW H�.LEX /!H�.LaX / ; E > a ;

and denote by ˇ.a/ and ˇ.E; a/ the dimensions of their images, respectively. Note
that all these functions are non-decreasing in a and non-increasing in E .

Lemma 5.9 Assume that X is simply connected, or that �1.X / has infinite number
of conjugacy classes. Then

(i) ˇ.a/ !
a!11 I
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(ii) For every a> 0 there exists E.a/ such that ˇ.E; a/D ˇ.a/ for all E �E.a/.

The proof is presented at the end of this section.

We continue the proof of Theorem 1.18. According to our covering argument we can
assume that X is either simply connected, or �1.X / has infinitely many conjugacy
classes.

In view of Lemma 5.9(i) one can choose an arbitrarily small r such that ˇ.a/ jumps
when crossing b D 1

2r2 , that is for any sufficiently small ı1; ı2 > 0 we have

(80) ˇ.b� ı1/ < ˇ.bC ı2/:
We can assume that b � ı1 and b C ı2 are non-resonant. In what follows we fix
" > 0; r; ı1 and ı2 assuming that they are as small as needed. Put E D 1=.2"2/,
r� D 1=

p
2.bC ı2/ and rC D 1=

p
2.b� ı1/.

According to Theorem 1.19, a contractible positive loop of contactomorphisms on
PCT �X allows us to construct a contact squeezing of the domain yUrC into yUr� .
Moreover, this squeezing can be done in the class of fiberwise starshaped domains,
and hence it can be performed via a contact isotopy which fixes pointwise a small
neighborhood yU" of the zero section. In other words, there exists a contact isotopy
ˆt W V ! V; t 2 Œ0; 1�; such that ˆ0 D 1, ˆt � 1 on yU" for all t and

ˆ1.Closure. yUrC//� yUr� :

Note that the inclusion homomorphism

I W CH. yU"/! CH. yUr�/

splits as a composition

CH. yU"/! CH.ˆ1. yUrC//! CH. yUr�/;

and hence

dim Image
�
CH. yU"/! CH.ˆ1. yUrC//

�
� dim Image

�
CH. yU"/! CH. yUr�/

�
:

But

(81) Image
�
CH. yU"/! CH.ˆ1. yUrC//

�
' Image

�
CH. yU"/! CH. yUrC/

�
:

According to the commutative diagram in Corollary 5.8 this yields that

ˇ.E; b� ı1/� ˇ.E; bC ı2/ :
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Note that E can be taken arbitrarily large, and hence Lemma 5.9(ii) yields

ˇ.b� ı1/� ˇ.bC ı2/
in contradiction with inequality (80). This contradiction proves the theorem.

Remark 5.10 Note that if �1.X / has infinitely many conjugacy classes it is sufficient
to use only 0–dimensional cohomology. The jump points of the function ˇ.a/ have in
this case a transparent geometric meaning: they correspond to `.˛/2=2 where ˛ runs
over all non-trivial free homotopy classes of loops on X (that is non-trivial conjugacy
classes in �1.X / ) and `.˛/ is the minimal length of closed geodesic in ˛ .

Proof of Lemma 5.9 The case when �1.X / has infinitely many conjugacy classes is
obvious already on the level of 0–dimensional cohomology. To deal with the simply
connected case let us recall some facts from the theory of free loop spaces:

(I) The space H�.LX / has infinite dimension. Let us emphasize that we are dealing
here with Z2 coefficients. This is proved in [20].

(II) H�.LX / is the inverse limit of H�.LEX / as E!1 (see eg [47]).

First we prove statement (i) of the lemma. It is more convenient to work here with
homology instead of cohomology. Any homology class ˛2H�.LX / can be represented
by a cycle contained in LaX for some finite a. Thus the number

A.˛/D inffa j ˛ 2 Image.��a /g ;
where ��a stands for the natural morphism

H�.LaX /!H�.LX / ;

is well defined for every ˛ 2 H�.LX /. Since ��a factors through H�.LbX / for all
b > a we have that ˛ 2 Image.��

b
/ provided b > A.˛/. Take any N > 0. Using (I),

choose N linearly independent cycles ˛1; :::; ˛N 2H�.LX /. It follows that

ˇ.a/D dim H�.LaX /�N

provided a>maxi A.˛i/. Thus

ˇ.a/ !
a!11

as required.

Let us prove statement (ii) of the lemma. Put

ˇ.1; a/D lim
E!1ˇ.E; a/ :
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The limit exists since ˇ.E; a/ is a non-increasing function of E . Observe that
ˇ.E; a/� ˇ.a/ for all sufficiently large E , and therefore

(82) ˇ.1; a/� ˇ.a/:
For every c > 0, H�.LcX / is a finite-dimensional space over Z2 , since LcX has
homotopy type of a finite C W –complex. Thus the family of decreasing subspaces
Image.�E;c/ stabilizes to a subspace Fc � H�.LcX / when E ! 1.5 Clearly,
dim Fa D ˇ.1; a/. Note that �p;q sends Fp onto Fq for p > q . Consider the
following commutative diagram:

lim �FE //

��

Fa

��
lim �H�LEX // H�LaX

Here the vertical arrows are natural inclusions and the horizontal arrows are natural
projections. The upper horizontal arrow is surjective, while the inverse limit in the
south-west corner equals H�.LX / by (II). Thus ˇ.a/� ˇ.1; a/, and so in view of
inequality (82) we have ˇ.a/D ˇ.1; a/. Since ˇ.E; a/ is an integer, we conclude
that the function ˇ.E; a/ equals ˇ.a/ for a sufficiently large E . This completes the
proof of (ii).

6 Discussion and further directions

Here we touch miscellaneous topics related to geometry of contact domains and
transformations. We discuss (non)-squeezing of contact domains from the viewpoint of
quantum mechanics. Then we speculate on links between orderability and fillability of
contact manifolds. Finally, we introduce a canonical semigroup associated to a contact
manifold. This semigroup carries footprints of a partial order even when the manifold
is non-orderable.

6.1 Contact non-squeezing at the quantum scale

We start with a brief (and standard) discussion of quasi-classical approximation in
quantum mechanics. Consider the Cauchy problem for the Schrödinger equation

(83) i„@ 
@t
D�1

2
„2� CW .q/ 

5This is called the Mittag-Leffler condition in homological algebra.
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which describes the quantum motion of a mass 1 particle on Rn in the presence of
a potential force F D �@W

@q
. Here „ is the Planck constant. Assume that the initial

complex-valued wave function is given in the form

 0.q/D �
1
2

0
.q/eiF0.q/=„ :

Here �0 is the probability density of the particle position in Rn and F0W Rn! S1
„ is

the phase which takes values in the circle S1
„ D R=.2�„Z/.

Quasi-classical approximation gives the following recipe for an approximate solution
of the Cauchy problem which involves contact geometry and dynamics: Consider the
contact manifold .V„ D R2n � S1

„ ; �/ where � D Ker.du� pdq/. Consider the lift
ft W V„! V„ of the Hamiltonian flow on R2n describing the classical motion of our
particle. The flow ft , which is given by the system8̂<̂

:
Pq D p

Pp D�@W
@q

PuD 1
2
p2�W .q/

preserves the contact structure � .

Given a function KW Rn! S1
„ and a probability density �.q/dq on Rn , consider a

Legendrian submanifold

L.K/D fuDK.q; 0/;p D @K.q; 0/

@q
g � V

equipped with the density �.�/ WD ��.�.q/dq/ where � W V !Rn stands for the natural
projection. For t small enough, the image ft .L.F0// can be written as L.Ft / and
the density ft��.�0/ can be written as �.�t /. The main outcome of this construction
is as follows. The wave function

 t .q/D �
1
2

t .q/e
iFt .q/=„

is an approximate solution of the Schrödinger equation (83) in the following sense: it
satisfies the Schrödinger equation up to higher order terms in „.

The above discussion suggests that it is worth studying contact geometry and dynamics
on the manifold .V„; �/ keeping track of the value of the Planck constant „. In what
follows we reexamine our (non)-squeezing results from this viewpoint. Put hD 2�„
and for a domain U � R2n define its prequantization as yU„ D U �S1

„ . Next note that
the map

ˆW V ! V„; .p; q; t/! .
p

hp;
p

hq; h.t C 1

2
p � q//
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establishes a contactomorphism between .V; �/ and .V„; �/. Furthermore, given a
domain U � R2n ,

ˆ. yU /D . yp
h �U /„ :

Therefore, after a rescaling, our squeezing and non-squeezing results presented in Sec-
tions 1.1 and 1.2 extend to the contact manifold .V„; �/. In particular, prequantization
of balls B2n.R/ of sub-quantum size R < h in the classical phase space gives rise
to squeezable domains yB2n

„ .R/ in V„ . One can say that on the sub-quantum scale,
symplectic rigidity is lost after prequantization. On the other hand, rigidity of balls in
the classical phase space persists after prequantization provided the size of the ball is an
integer multiple of h: yB2n.mh/ cannot be squeezed into itself. It would be interesting
to explore whether this geometric phenomenon has some physical meaning.

Note that the balls B2n.R/ are energy levels of the classical harmonic oscillator, while
the sequence fmhg is, in accordance to Planck’s hypothesis, the energy spectrum of
the quantized harmonic oscillator. (Planck’s hypothesis, which appeared at the early
stage of development of quantum mechanics, turned out to be non-precise and was
later on corrected in a more advanced model. Still, it gives a satisfactory approximation
to the energy spectrum.) It is unclear whether appearance of the sequence fmhg in the
context of (non)-squeezing is occasional or not. A possibility, which is still open, is
that yB2n

„ .R/ cannot be squeezed into itself for any R> h.

In [12; 13] de Gosson revised the classical notion of quantum cell in the phase space
R2n in terms of symplectic capacities. The following feature of de Gosson’s definition
is of interest in our context: for a quantum cell U , both c.U / and c.U / are of order
„. Interestingly enough, the same scale appears in our (non)-squeezing problem. To be
more precise, let us introduce the following notion which is natural when one studies
transition from squeezing to non-squeezing in families of domains. Fix a constant
D > 0 and consider the class „D of domains U � R2n with c.U / �D � c.U /. For
instance, all convex domains lie in „D for D D 4n2 (see [46],[11]). We say that a
domain U 2„D is critical if yU„ is negligible (that is yU„ can be contactly squeezed
into yB2n

„ .r/ for all r > 0), while y.2 �U /„ is not negligible. Theorem 1.7 yields that
c.U /� „ for every critical domain U .

6.2 Fillability and orderability

Conjecture 6.1 If a contact manifold .P2n�1; �/ admits a Weinstein filling W 2n

with Hn.W /¤ 0 then it is orderable.

This conjecture is supported by spaces of co-oriented contact manifolds, see Theorem
1.18 above. If this conjecture were true then together with Corollary 1.17 it would
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leave the orderability problem for Weinstein fillable contact manifolds open essentially
only in the 1–subcritical case, eg, for S2 �S1 with its tight contact structure.

Note that the real projective space P WD RP2n�1 with the standard contact structure,
which is orderable by Givental’s theorem (see [19]), is not Weinstein fillable for any
n> 2 (though it is symplectically fillable). Indeed, suppose that W is such a filling.
Then

H 2.W;P IZ2/DH2n�2.W IZ2/D 0

for 2n� 2> n, or n> 2. Looking at the cohomology long exact sequence

H 1.W;Z2/
r // H 1.P;Z2/

// H 2.W;P IZ2/D 0

we see that the map r is onto and hence there is a class a 2 H 1.W IZ2/ such that
bD r.a/ is the generator of H 1.P IZ2/. Hence, we have b2n�1¤ 0 which contradicts
to the fact that a2n�12H 2n�1.W IZ2/D0. It would be interesting to study orderability
of more general contact manifolds which are not Weinstein fillable. It seems likely
that the methods of the current paper extend to a more general case of symplectically
fillable contact manifolds.

The case n D 2 corresponds to the real projective 3–space RP3 which is contacto-
morphic to the space of co-oriented contact elements of S2 . It is orderable in view of
Theorem 1.18.

6.3 Contact diffeomorphisms and semigroups

6.3.1 Semigroups and orderability Let .P; �/ be a closed contact manifold. Denote
by G the group Cont0.P; �/ and by zG its universal cover. We will often identify
(paths of) contactomorphisms of P with the corresponding (paths of) RC–equivariant
symplectomorphisms of the symplectization SP .

Consider the set of positive paths

f D fftg; t 2 Œ0; 1� ; f0 D 1;

on G (that is the paths generated by positive contact Hamiltonians). We say that two
such paths f 0 and f 00 are equivalent if f 0

1
D f 00

1
and the paths are homotopic through

positive paths with fixed end points. Denote by
�!
G D�!G .P; �/ the set of equivalence

classes. 6 The operation
Œfftg� ı Œfgtg�D Œfftgtg� ;

6When necessary, we can assume without loss of generality that our paths are generated by 1–periodic
in time contact Hamiltonians, see Lemma 3.1.A in [19].
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where fftg and fgtg are positive paths, defines a semigroup structure on
�!
G . Note

that
�!
G comes along with the natural projections � W �!G ! zG and � W �!G ! G which

are morphisms of semigroups.

The (non)-orderability of .P; �/ can be recognized in terms of
�!
G and � as follows.

Denote by z1 2 zG the canonical lift of the identity. When .P; �/ is orderable, there
are no positive contractible loops on G and hence z1 does not belong to the image
of � . In contrast to this, when .P; �/ is not orderable the morphism � is surjective.
Indeed, in this case we have a positive contractible loop f�tg of contactomorphisms
with �0D �1D 1. Thus for every path of contactomorphisms f D fftg on G starting
at the identity, the path hD fft�

N
t g is positive for N large enough, and hence we get

an element Œh� 2 �!G with �.Œh�/D Œf � 2 zG .

6.3.2 Partial order for non-orderable manifolds Assume now that .P; �/ is non-
orderable. In this case �!

G 0 WD ��1.z1/��!G
is a subsemigroup. Its elements represent connected components of the space of positive
contractible loops on G based at 1.

Proposition 6.2 The center of
�!
G .P; �/ contains

�!
G 0.P; �/.

The proposition immediately follows from the formula:

(84) Œfftgtg�D Œfgtg
�1
1 ftg1g� ;

where fftg and fgtg, t 2 Œ0; 1�, are arbitrary positive paths with f0 D g0 D 1. To
prove this formula, define new paths

f 0t D
(

1 for t 2 Œ0; 1
2
�I

f2t�1 for t 2 Œ1
2
; 1�

and g0t D
(

g2t for t 2 Œ0I 1
2
�I

g1 for t 2 Œ1
2
; 1�

:

Note now that
f 0t g0t D g0tg�1

1 f 0t g1

for all t . Furthermore, fftg and ff 0t g (respectively, fgtg and fg0tg) are homotopic
with fixed end points such that all the intermediate paths except ff 0t g (respectively,
fg0tg) are smooth and positive. Observe that ff 0t g and fg0tg are piece-wise smooth and
non-negative. By an appropriate “smoothing of corners” argument, we correct this and
get the desired homotopy between fftgtg and fgtg

�1
1
ftg1g through smooth positive

paths, thus proving formula (84).

An interesting feature of the semigroup
�!
G 0 is given by the following proposition.
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Proposition 6.3 For every  2 �!G and � 2 �!G 0 there exists N 2N such that �N D
N .

Proof Assume that  is represented by a path fhtg generated by a contact Hamiltonian
H.z; t/ > 0 and � is represented by a loop f D fftg generated by the contact
Hamiltonian F.z; t/ > 0. Let f .s/ D ffs;tg, s 2 Œ0; 1�, be a homotopy of f D f .0/ to
the constant loop, and let Fs.z; t/ be the corresponding contact Hamiltonians. Choose
N large enough so that

Fs.ft;sy; t/CNH.y;N t/ > 0

for all s; t 2 Œ0; 1� and y 2 SP . Consider the homotopy of loops fft;s ı hN
t g which

joins ffth
N
t g and fhN

t g. The intermediate loops are generated by the Hamiltonians

Fs.z; t/CNH.f �1
s;t z;N t/

which are positive due to our choice of N . Thus �N D N as required.

Corollary 6.4 For every � 2 �!G 0 there exists N 2 N such that �NC1 D �N .

The corollary implies that for each � 2 �!G 0 the sequence f�N g, N !C1, stabilizes
to an element which we denote by � .

Corollary 6.5 For any ; � 2 �!G 0 we have  D � .

Indeed, according to Propositions 6.3, 6.2 and Corollary 6.4 we have

 D � D � D � :

Corollary 6.6 There exists a unique “stable" element in
�!
G 0 , denoted by �st , which

is equal to � for any � 2 �!G 0 . The element �st can be characterized by any of the
following properties:

� �st is the unique idempotent, �2
st D �st , in the semigroup

�!
G 0 ;

� �st is the zero element of
�!
G 0 , that is for any  2 �!G 0 we have

�st D �st D �st :

Thus we established that some power of every element in
�!
G 0 is equal to the zero

element. Such semigroups are called nilsemigroups.
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Example 6.7 Consider the semigroup
�!
G 0.S

2n�1/ associated with the standard con-
tact sphere, where n � 2. The stable element �st can be explicitly identified in this
case. Let � 2�!G 0 be the element represented by the positive contractible loop 'D f'tg
constructed in Theorem 3.6. We claim that � is an idempotent: �2 D � , and hence
� coincides with �st . To prove this recall that f'tg is generated by the Hamiltonian
ˆ.z; t/ with ˆ.z; t/ > �jzj2 (see equation (43) above). On the other hand, we have
seen in the proof of Theorem 1.11(ii) that there exists a homotopy '.s/ D f't;sg of
' D '.0/ to the constant loop '.1/ � 1 such that the Hamiltonians ˆs.z; t/ generating
the loops '.s/ satisfy ˆs.z; t/� ��jzj2 . Therefore,

(85) ˆ.z; t1/Cˆs.z; t2/ > 0

for all z 2 Cn n f0g, t1; t2 2 S1 and s 2 Œ0; 1�.
Let �� 2 �!G 0 be the element represented by the loop '� D f'�1

1�t
g. Consider the

homotopy of '�' to ' given by f'�1
1�t;s

'tg, where s 2 Œ0; 1�. The Hamiltonians of the
intermediate loops are given by

ˆs.'1�t;sz; 1� t/Cˆ.'1�t;sz; t/ :

These Hamiltonians are positive in view of (85), and therefore ��� D � .

Consider now the homotopy of '�' to '� given by f'�1
1�t
't;sg, where s 2 Œ0; 1�. The

Hamiltonians of the intermediate loops are given by

ˆ.'1�tz; 1� t/Cˆs.'1�tz; t/ :

Again, these Hamiltonians are positive in view of (85), and therefore ��� D �� . We
conclude that �� D � and hence

�2 D ��� D � ;
and the claim is proved.

Remark 6.8 No complete description of the semigroup
�!
G 0 is available even in the

simplest case when P is the three-dimensional sphere S3 equipped with the standard
contact structure. In fact, we do not know a single example when

�!
G 0 consists of more

than just the zero element �st .

The next proposition describes in more detail the structure of the semigroup
�!
G . Set

� D f 2 �!G W �st D  g :
Proposition 6.9 (i) � is a subgroup of

�!
G with the neutral element �st ;
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(ii) the restriction of the natural projection � W �!G ! zG to � is a group isomorphism;

(iii) for every x 2 �!G there exists N 2 N such that xN 2 � (and hence
�!
G is an

epigroup in the language of semigroup theory);

(iv) � is a two-sided ideal in
�!
G , that is for every x 2 �!G and  2 � we have

x; x 2 � .

Proof Clearly, � is closed under the semigroup multiplication. By the definition
of � , the element �st is its neutral element. Recall that the morphism � W �!G ! zG is
onto. Thus, given any x 2 � , we can choose y 2 �!G with �.y/D �.x/�1 . This yields
�.xy/D �.yx/D z1, and hence xy;yx 2 �!G 0 . Put y0 D y�st . Note that y0 2 � since
�2

st D �st . Recalling that �st is the zero element of
�!
G 0 , we get

xy0 D xy�st D �st; and y0x D y�stx D yx�st D �st :

Thus y0 is the inverse of x in � , and this proves Property (i). Taking into account
that x�st 2 � and �.x�st /D �.x/ for every x 2 �!G , we get that � j� is onto since �
is onto. Let us show that the kernel of the homorphism � j� is trivial. Indeed, take
any � 2 .� j�/�1 .z1/D � \�!G 0 . Then we have ��st D � by the definition of � and
��st D �st since �st is the zero element of

�!
G 0 . Hence, � D �st , and we get Property

(ii). Property (iii) follows from Proposition 6.3. Property (iv) is a straightforward
consequence of the definitions.

Let us introduce a new relation on the semigroup
�!
G . Given x;y 2 �!G we say that

x�
C

y whenever either x D y or x D zy for some z 2 �!G .

Proposition 6.10 The relation �
C

is

(i) reflexive and transitive;

(ii) trivial on � , ie, x�
C

y and y �
C

x for any x;y 2 � ;

(iii) satisfies the condition x�
C

y for any x 2 � and y 2 �!G n� ;

(iv) defines a genuine partial order on
�!
G n� .

Proof Property (i) is obvious. Property (ii) follows from the fact that � is a subgroup
of
�!
G . Take any x 2 � and y 2 �!G n� . Recall that y�st 2 � . Using Properties (i) and

(ii) we get
x�
C

y�st �C y ;

Geometry & Topology, Volume 10 (2006)



Geometry of contact transformations and domains 1733

which proves Property (iii). Let us check now that the relation �
C

is anti-symmetric on
�!
G n� . Suppose that x�

C
y and y �

C
x for some x;y 2�!G n� . Assume on the contrary

that x ¤ y . Then x D ay and y D bx for some a; b 2 �!G . Thus x D abx , and so
�.ab/D z1, which implies that � WD ab 2 �!G 0 . Multiplying the equation x D �x by
successive powers of � we have

x D �x D :::D �N x D �stx

provided N is large enough. We get a contradiction with our assumption x … � . Thus
the remaining possibility is x D y , and we proved Property (iv).

Since � is a two-sided ideal of
�!
G , we can consider the Rees quotient semigroup

�!
G =� .

By definition, this is a new semigroup on the set R D .�!G n �/[ f0g in which the
product of elements x;y 2R concides with their product xy in

�!
G if x;y;xy 2�!G n� ,

and equals 0 otherwise. Property 6.9(iii) yields that for every element r of R there
exists N 2N such that rN D 0. Proposition 6.10 implies that the relation �

C
on
�!
G n�

defines a genuine partial order on R, denoted in the same way, where we declare that
0�
C

r for every r 2R.

Proposition 6.11 The partial order �
C

on R is bi-invariant: if x�
C

y for some x;y 2R
then xc�

C
yc and cx�

C
cy for every c 2R.

Before proving the proposition let us make the following general remark. The group
G acts on

�!
G by conjugations, that is the action of an element g 2G is given by

Ag.Œfftg�/ WD Œfg�1ftgg� :

This action preserves point-wise the subsemigroup
�!
G 0 and leaves invariant the sub-

group � . Formula (84) above yields

(86) xy D y �A�.y/x DA�1
�.x/y �x

for all x;y 2 �!G .

Proof of Proposition 6.11 Assume that x;y 2R with x�
C

y . Suppose that x ¤ 0

(the case x D 0 is trivial). By definition, x D zy for some z 2 �!G . Given any c 2R
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we have xc D zyc and hence xc�
C

yc . Further, x D yw with wDA�.y/z in view of

formula (86). Applying this formula again, we get

cx D cyw DA�1
�.cy/w � cy

and hence cx�
C

cy .

6.3.3 Semigroup R and contact squeezing A priori, the set
�!
G n� might be empty

even for non-orderable contact manifolds (though we are not aware of such an example).
Interestingly enough, in order to prove that it is non-empty for the standard contact
sphere (see Proposition 6.13 below), we use the contact non-squeezing theorem. This
suggests that non-triviality of the partially ordered semigroup R is a “hard” aspect of
the “soft” non-orderability phenomenon.

Let us begin with a general setting. Recall that whenever .P; �/ is an ideal contact
boundary of a Liouville manifold .M; !;L/, Lemma 1.21 establishes a correspondence
between elements  2 �!G .P; �/ and fiberwise starshaped domains U. / �M �S1

up to contact isotopy. Generalizing the definition given in Section 1.2, we say that a
subset of M �S1 is negligible if it can be contactly squeezed into an arbitrarily small
neighborhood of Core.M /�S1 .

Proposition 6.12 For any  2 � the domain U. / is negligible.

Proof Take any positive time-independent contact Hamiltonian E on SP . The claim
can be equivalently expressed by saying that for any C > 0 the element  can be
generated by a 1–periodic Hamiltonian which is � C �E.z/. But by the definition of
� we have �st D  . The claim follows because �N

st D �st for all N 2 N and hence
 can be generated by a contact Hamiltonian which is � C �E.z/ with an arbitrarily
large C .

Let us apply this result to the case when .P; �/ is the standard contact sphere S2n�1 .
The following proposition shows that, despite the fact that the sphere is not orderable
for n� 2, the semigroup

R.S2n�1/D
��!

G n�
�
[f0g

contains a subset of cardinality continuum. Let �c 2 �!G , c > 0, be the element
represented by the path

z! e2� ictz

with t 2 Œ0; 1�.
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Proposition 6.13 �c 2 �!G n� for each c 2 .0; 1/.

Proof of Proposition 6.13 It follows from Theorem 1.2 that if c 2 .0; 1/ then the
domain U.�c/ D yB2n.1

c
/ cannot be squeezed into yB2n.1/. Then Proposition 6.12

yields �c 2 �!G n� . This completes the proof.

Furthermore, the partial order �
C

on R is non-trivial since �a�C �b for 1> a> b > 0.

6.4 Quantum product in contact homology and other useful tools

Let .P; �/ be an ideal contact boundary of a Liouville manifold .M; !;L/. Under
suitable assumptions on the first Chern class of .M; !/ (see Section 4 above) we have
a well defined contact homology theory for fiberwise starshaped domains in M �S1 .
Denote by CH. / the contact homology of the domain U. /. It would be interesting
to relate the correspondence  ! CH. / with the multiplication in

�!
G . For instance, it

sounds likely that there exists a natural pairing

CH.1/˝CH.2/! CH.12/

whose construction imitates the pair of pants product in Floer homology. This pairing
is a potentially useful tool for studying the semigroup

�!
G .P; �/.

It would be interesting to elaborate this idea in the case when .P; �/ is a prequantization
space of a closed symplectic manifold .N; �/. Write pW P ! N for the natural
projection, denote by et the natural circle action on P , and write ˇ for the connection
1–form on P whose kernel equals �.

For instance, think of the Hopf fibration S2n�1! CPn�1 as of the prequantization of
the complex projective space equipped with a suitable multiple of the Fubini-Study form.
Here the sphere is considered as the ideal contact boundary of Cn , and et .z/D e2� itz .

Returning to the general setting, take any path of Hamiltonian diffeomorphisms fhtg
on N representing an element zh in the universal cover zHam.N; �/ of the group of
Hamiltonian diffeomorphisms of .N; �/. We can lift it to a path of contactomorphisms
of .P; �/ in the following way. Let us normalize the Hamiltonian Ht on N generating
fhtg by requiring that Ht has zero mean with respect to the symplectic volume on N .
Look at the projection SP !P !N . Take the (time-dependent) contact Hamiltonian
on SP whose restriction to graph.ˇ/ � SP coincides with the lift of Ht . This
Hamiltonian generates a flow, say ft , which is a lift of the original Hamiltonian flow
ht . Note now that the path fectftg, t 2 Œ0; 1�, is positive for sufficiently large c and
hence we get a well defined element c 2�!G . Thus we can associate to zh2 zHam.N; �/
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a 1–parametric family of vector spaces CH.c/, where c is sufficiently large. It would
be interesting to establish a link between this family of vector spaces and Hamiltonian
Floer homology of zh.

It seems also useful to develop an equivariant version of the contact homology theory.
For instance, Z=2–equivariant contact homology for domains in R2n �S1 may help
recovering Givental’s result about the orderability of the standard contact structure on
RP2n�1 .

7 Appendix A: Proof of Lemma 4.17

The proof is divided into several steps.

Step 1 Note that F is a proper map. Denote by † the image of F . A point p 2† is
regular if † is a smooth submanifold of W in a neighborhood of p , otherwise p is
called singular. The Micallef-White theorem [38] states that locally a non-parametrized
J –holomorphic curve is C 1 –diffeomorphic to a usual holomorphic curve. Thus
singular points form a discrete subset Sing.†/ in V , and near a singular point p the
set †nfpg is a union of a finite number of punctured discs. This enables us to perform
normalization of † (eg see Chirka [7]). We get a Riemann surface z† together with a
proper holomorphic map � W z†!† such that � is a diffeomorphism outside a discrete
subset S � z† and �.S/ is exactly the set of singular points of †. Furthermore there
exists a proper lift zF W ‡ ! z† such that F D � ı zF .

We claim that the map zF is a diffeomorphism. To see this, denote by k and g the
number of ends and the genus of z†, respectively. Since C ¤ � we have k � 2.
Let d be the degree of zF and r the total number of singular points counted with the
multiplicites. By the Riemann-Hurwitz formula, where we use that ‡ is a cylinder, we
have

d.2g� 2C k/C r D 0 :

Since d � 1;g� 0; k � 2 and r � 0 we obtain that gD r D 0 and k D 2. In particular,
z† is a cylinder and, since r D 0, the map zF is a non-ramified covering. Taking into
account that the orbits C and � are simple, we conclude that d D 1, and hence zF
is a diffeomorphism. The claim is proved.

In view of this discussion we can assume that F itself is a diffeomorphism of ‡ n
Sing.F / onto † nSing.†/. Note that the Cauchy-Riemann equation (48) implies that
the vertical component ' of a J –holomorphic map is related to its V –component f
by the equation

(87) d' D f �� ı i

Geometry & Topology, Volume 10 (2006)



Geometry of contact transformations and domains 1737

where i is the complex structure on ‡ and � is the 1–form defining the framing of V .

Step 2 Let us denote by Crit.f / � ‡ the set of critical points of df . In view of
the Cauchy-Riemann equation, the image F.Crit.f // corresponds to the tangency
points of † with the J –holomorphic characteristic foliation of V . It follows from
the generalized similarity principle due to Hofer and Zehnder [32] that Crit.f / is a
discrete subset of ‡ . This yields that

(88) Closure.f .Crit.f ///� f .Crit.f //[ �[ C :

Step 3 Outside the set Crit.f / the map f is non-tangent to the characteristic foliation
of V , and in particular to the periodic orbits at infinity � [ C . Thus the (clearly,
open) set ‡ 0 D ‡ nf �1.�[ C/ is dense in ‡ .

Step 4 We claim that the injectivity points lying in ‡ 0 form an open subset. Indeed,
let z 2‡ 0 be an injectivity point. Assume on the contrary that there exists a sequence
fzj g ! z such that zj is not an injectivity point. Note that dzj

f ¤ 0 for large j

since dzf ¤ 0. Thus, after passing to a subsequence, we can assume that there exists
another sequence fwj g such that wj ¤ zj for all j and f .wj /D f .zj /. Since f is
injective in a small neighborhood of z the sequence fwj g does not have z as a limit
point. If it has another limit point, say w , we have f .z/D f .w/ which contradicts to
the fact that z is an injectivity point. Thus fwj g contains an unbounded subsequence.
Since f .z/D limf .wj / we conclude that f .z/ 2 �[ C in contradiction with the
definition of the set ‡ 0 .

Step 5 Put

‡0 D ‡ nf �1
�
f .Crit.f //[ �[ C

�
D ‡ 0 nf �1

�
f .Crit.f //

�
:

This set is open in view of inclusion (88). Let us check that it is dense in ‡ 0 (and
hence dense in ‡ ). Indeed, assume on the contrary that this is not the case. Then there
exists an open subset, say P � ‡ 0 , with f .P / � f .Crit.f //. But f .Crit.f // is a
countable subset of V (see Step 2) so df vanishes identically on P . Equation (87)
yields that d� D 0 on P as well. Thus dF D 0 on P , and by the unique continuation
argument the map F is constant, a contradiction.

Step 6 It suffices to show that injectivity points are dense in ‡0 . Take any point z2‡0 .
There exist neighborhoods D of z and U of f .z/ with the following properties.

� f .D/� U ;
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� U \ .�[ C/D∅;
� f jD is an embedding.

Let as analyze injective points in D . Notice first that in view of the boundary conditions
for f there exists a sufficiently large closed annulus A�‡ containing D and such
that U \ f .‡ nA/D ∅. Furthermore, every point in f �1.f .z// is non-critical for
df due to our definition of ‡0 . Thus, enlarging, if necessary, A and shrinking D

and U , we can achieve that f �1.U /\A is a union of a finite number of pairwise
disjoint open discs B1; :::;BN such that f jBj

is an embedding. One of these discs,
say B1 , contains D . Put B DBj with j � 2. We claim that D nf �1.f .D/\f .B//
is dense in D . Indeed, otherwise there exist open subsets D0 �D and B0 � B such
that f .D0/D f .B0/, and hence there is a a holomorphic diffeomorphism  W D0!B0
such that f jB0 ı D f jD0 . Equation (87) yields 'jB0 ı D 'jD0 C c where c 2 R is
a constant. If c D 0 we have F jD0 DF jB0 which contradicts Step 1 of the proof. Thus
c ¤ 0. Recall that the adjusted almost complex structure J on V D V �R is invariant
under the shift Tc W .y; s/! .y; sC c/ along the R–direction. Thus our conclusion
above can be reformulated as follows: the cylinder †D F.‡/ and Tc.†/ intersect
over an open subset. By the unique continuation argument, we have that †D Tc.†/.
Thus † D TNc.†/ for all N 2 Z. Taking N !˙1 and looking at the boundary
conditions, we get that � D C , which contradicts our assumption that the orbits at
infinity are distinct.

Thus we proved that every point z0 2 ‡0 has a neighborhood where injective points
are dense. This completes the proof.

8 Appendix B: The Olshanskii criterion and non-orderability
of S 3

In this Appendix we prove that the cone C in the Lie algebra of PU.2; 1/ induced
from the cone of non-negative contact Hamiltonians under the natural monomorphism
PU.2; 1/! Cont .S3/ does not generate a genuine partial order. For the proof we
apply Olshanskii’s criterion [39]. The text below is based in parts on the notes which
were kindly supplied to us by G Olshanskii. These notes contain a translation of this
criterion, which is formulated in [39] in the abstract language of Lie theory, into the
language of matrices. Below we present an exposition of Olshanskii’s criterion in the
context of PU.2; 1/.

Consider the form q.u; w/ on C3 given by

q.u; w/D u1 xw1Cu2 xw2�u3 xw3 :
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By definition, U.2; 1/ is the group of all C–linear transformations preserving q . In
particular, this group preserves the set

fu 2 C3 W q.u; xu/ < 0g :
Passing to the projectivization and setting z1 D u1=u3 and z2 D u2=u3 , we get that
the group PU.2; 1/ WD U.2; 1/=S1 acts by biholomorphic automorphisms of the ball

B4 WD fz 2 C 2 W jz1j2Cjz2j2 < 1g :
These automorphisms extend to diffeomorphisms of the boundary sphere S3 . They
obviously preserve the field of complex tangent lines to S3 , and, therefore, act by
contactomorphisms of the standard contact S3 .

We identify the real Lie algebra g of PU.2; 1/ with su.2; 1/. It will be useful to
describe g explicitly . It consists of those traceless complex matrices A of the order
3� 3 which satisfy A�I C IAD 0, where

I D
0@ 1 0 0

0 1 0

0 0 �1

1A ;

and A� stands for the complex conjugate of the transposed matrix to A. Introduce the
following basis in g:

E1 D
0@ i 0 0

0 0 0

0 0 �i

1A ; E2 D
0@ 0 0 0

0 i 0

0 0 �i

1A ;

F D
0@ 0 1 0

�1 0 0

0 0 0

1A ; eF D
0@ 0 i 0

i 0 0

0 0 0

1A ;

G1 D
0@ 0 0 1

0 0 0

1 0 0

1A ; eG 1 D
0@ 0 0 i

0 0 0

�i 0 0

1A ;

G2 D
0@ 0 0 0

0 0 1

0 1 0

1A ; eG 2 D
0@ 0 0 0

0 0 i

0 �i 0

1A :

Consider a Cartan subalgebra hDSpanR.E1;E2/. Our next task is to describe explicitly
the cone C \ h. Let us introduce symplectic polar coordinates

�k D �jzk j2; 'k D 1

2�
Arg.zk/; k D 1; 2;
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in C2 . With this notation the standard contact form on S3 can be written as

ˇ D �1d'1C �2d'2 :

Note that the element E D aE1C bE2 2 h generates the flow

u 7!
0@ eiat 0 0

0 eibt 0

0 0 e�i.aCb/t

1Au

on C3 and, therefore, the flow

z 7!
�

ei.2aCb/t 0

0 ei.aC2b/t

�
z

on C2 . When restricted to S3 , the latter flow is generated by the vector field

X D 1

2�
.2aC b/

@

@'1

C 1

2�
.aC 2b/

@

@'2

:

By definition, E 2 C if and only if ˇ.X /� 0 everywhere on S3 , which means that
both coefficients 2aC b and 2bC a are non-negative. Summing up, we get

(89) C \ hD f.a; b/ W 2aC b � 0; aC 2b � 0g;
where .a; b/ are coordinates which correspond to the basis E1;E2 of h.

Denote by gC the complexified Lie algebra g˝C. In order to avoid the conflict of
notation, we denote by j the natural complex structure on gC , that is we set j x WDx˝i

Following the notation from [39], we put

hRe D jh� gC :

Theorem 8.1 [39] There exists a cone c0 � hRe with the following property: Given
any convex cone K � g which is invariant under the adjoint action, it defines a genuine
partial order on the universal cover of the Lie group if and only if

jK\ hRe �˙c0 :

In view of (89) we have to apply this theorem to the cone

(90) c D f.a; b/ W 2aC b � 0; aC 2b � 0g ;
where the .a; b/ coordinates on hRe correspond to the basis jE1; jE2 .

Next, we present Olshanskii’s algorithm which enables one to describe explicitly the
cone c0 appearing in Theorem 8.1 in terms of the structure theory of the Lie algebra g.
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Structure theory of su.2; 1/

We start with the explicit form of operators ad.E1/ and ad.E2/. In order to describe
these operators it will be convenient to introduce the matrix

J D
�

0 �1

1 0

�
and to consider the direct sum decomposition

gD SpanR.E1;E2/˚SpanR.F;
zF /˚SpanR.G1; zG1/˚SpanR.G2; zG2/ :

One readily calculates that ad.E1/ is given by the matrix

0˚J ˚ 2J ˚J ;

and ad.E2/ is given by the matrix

0˚ .�J /˚J ˚ 2J :

Up to a positive multiple, the Killing form Q restricted to hRe is given by the matrix�
2 1

1 2

�
in the basis .jE1; jE2/. The space hRe can be identified with the dual to h with the
help of the Killing form. Hence, we can assume that the roots of .gC; hC/ lie in hRe .
Diagonalizing operators ad.E1/ and ad.E2/ we calculate that in the above basis the
roots have the form

˙ D˙.1;�1/; ˙˛1 D˙.1; 0/; ˙˛2 D˙.0; 1/ :
The root system is of the type A2 , and one can declare ; ˛1; ˛2 to be positive roots.

Next, we have the Cartan decomposition g D t˚ p into the direct sum of the sub-
spaces formed by skew-Hermitian and Hermitian matrices respectively. Thus t D
SpanR.E1;E2;F; zF / and p D SpanR.G1; zG1;G2; zG2/. Recall that a root is called
non-compact if the corresponding eigenspace is contained in p˝C. It is easy to verify
that the positive non-compact roots are given by ˛1 and ˛2 . Denote by cmin the cone
in hRe generated by these roots:

(91) cmin D f.a; b/ W a� 0; b � 0g ;
where the .a; b/–coordinates on hRe correspond to the basis jE1; jE2 .

Note that the center � of the algebra t is generated by the vector E1CE2 . Furthermore,
the roots of the algebra tC with respect to the Cartan subalgebra hC are given by ˙ .
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Let W be the corresponding Weyl group which acts on hRe by the permutation of
coordinates in the basis .jE1; jE2/.

Construction of the cone c0

We work with the basis .jE1; jE2/ of hRe .

Step 1 Choose a maximal subsystem of positive non-compact pairwise orthogonal
roots. Since ˛1 and ˛2 form the angle �=3, we choose only one of them, say ˛1 .
Denote by H1 the vector of the form s˛1 with s > 0 so that

Q.˛1;H1/D 2 :

We calculate that H1 D .1; 0/.

Step 2 Choose the vector Z 2 j � such that Q.˛1;Z/DQ.˛2;Z/D 2. We calculate
that Z D .2=3; 2=3/. Put

H0 DZ �H1 D 1

3
� .�1; 2/ :

Step 3 Consider the cone c1 spanned by WH0[ cmin . Note that c1 is spanned by
vectors

1

3
� .�1; 2/ and

1

3
� .2;�1/ :

The cone c0 from Theorem 8.1 is defined as the cone whose dual with respect to the
form Q equals c1 :

c1 D fx 2 hRe W Q.x;y/� 0 8y 2 c0g :
One readily calculates that c0 D cmin , where cmin is given by inequalities (91).

The final step Recalling that the cone c D jC \ hRe is given by inequalities (90)
we get that c0 is strictly contained in c . Thus, by Theorem 8.1 the cone C does not
generate a genuine partial order.

Remark 8.2 Olshanskii’s method does not give rise to an explicit description of a
positive contractible loop of contactomorphisms which lies in PU.2; 1/� Cont .S3/.
However, imitating our construction in Section 3.5 above, we present here such a loop.
Let us identify PU.2; 1/ with the group of complex automorphisms of B4 . We define
a distinguished contactomorphism (cf Section 3.4 above) by the formula

b.z1; z2/D
�

cosh˛ � z1C 1

z1C cosh˛
;

sinh˛ � z2

z1C cosh˛

�
:
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Put etz WD e2�itz and

ft .z1; z2/D .e2�itz1; e
�2�itz2/;

as in Section 3.5 above. A lengthy but straightforward calculation shows that the
(obviously contractible) loop e�tf3tbetb

�1 (cf Theorem 3.6) is positive, provided that
˛ > 0 is small enough.

In order to reveal the geometry of the distinguished contactomorphism b , let us perform
the Cayley transform [42, Chapter 2.3]

ˆW B4!�; .z1; z2/ 7! i

1� z1

.z1C 1; z2/ ;

where
�D f.w1; w2/ 2 C2 W Im w1 > jw2j2g

is a multi-dimensional analogue of the upper half-plane. This transform is a biholomor-
phism between Closure.B4/ n f.1; 0/g and Closure.�/. Let � be the field of complex
tangent lines to @�. Put w1 D xC iy; w2 D uC iv . One readily shows that in the
coordinates .x;u; v/ the contact manifold .@�; �/ is simply R3 equipped with the
standard contact structure

Ker.dxC 2.udv� vdu// :

The map yb WDˆbˆ�1W �!� turns out to be a non-isotropic dilation

.w1; w2/ 7! .s2w1; sw2/;

where s !C1 as ˛ ! 0. Of course, the restriction of yb to the boundary has the
friendly form

.x;u; v/! .s2x; su; sv/ :

Remark 8.3 It is unclear to us whether the explicit analytic formula for the positive
contractible loop in PU.2; 1/ � Cont .S3/ presented above helps to simplify our
calculations in Section 3, namely to "extend" this loop to a nonnegative contractible
loop in stabilizations, and to calculate the sharp lower bound for the invariant �.�/
defined by formula (1).

Remark 8.4 Oshanskii’s paper [39] provides information on the orderability of very
general finite-dimensional simply-connected Lie groups in terms of the structure theory.
This subject was further developed in [29; 30]. It would be interesting to explore the
notions introduced in Section 6.3 in this context.
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