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Four-dimensional symplectic cobordisms
containing three-handles

DAVID T GAY

We construct four-dimensional symplectic cobordisms between contact three-man-
ifolds generalizing an example of Eliashberg. One key feature is that any handlebody
decomposition of one of these cobordisms must involve three-handles. The other
key feature is that these cobordisms contain chains of symplectically embedded two-
spheres of square zero. This, together with standard gauge theory, is used to show
that any contact three-manifold of non-zero torsion (in the sense of Giroux) cannot be
strongly symplectically fillable. John Etnyre pointed out to the author that the same
argument together with compactness results for pseudo-holomorphic curves implies
that any contact three-manifold of non-zero torsion satisfies the Weinstein conjecture.
We also get examples of weakly symplectically fillable contact three-manifolds
which are (strongly) symplectically cobordant to overtwisted contact three-manifolds,
shedding new light on the structure of the set of contact three-manifolds equipped
with the strong symplectic cobordism partial order.

57R17, 53D35; 57M50, 53D20

1 Main Theorem

Eliashberg [8] showed that certain contact structures �n on T 3 , although weakly sym-
plectically fillable, are not strongly symplectically fillable (for n > 1), by constructing
a symplectic cobordism from .T 3; �n/ to the disjoint union of n copies of the standard
contact S3 . An interesting feature, then, is that this is a cobordism from a connected
contact 3–manifold to a disconnected contact 3–manifold and thus necessarily contains
a 3–handle. By contrast, most other constructions of symplectic cobordisms from
contact 3–manifolds to contact 3–manifolds (as in Etnyre and Honda [11]) are built out
of elementary 0–, 1– and 2–handle cobordisms as in Eliashberg [7] or Weinstein [25].
To this author’s knowledge there is no model for an elementary contact-to-contact
3–handle symplectic cobordism. Thus it would be interesting to isolate the 3–handle
from Eliashberg’s T 3 –to–S3 cobordisms and then generalize Eliashberg’s nonfilla-
bility results. We have not succeeded in usefully isolating the 3–handle but we have
localized the construction to a certain extent, with new and interesting consequences for
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nonfillability and for the cobordism relation in general. (For background on varieties
of fillability and known results, see Etnyre and Honda [10; 11].)

Given any real numbers a> b , let Ma;b D Œa; b��S1�S1 , with coordinates .t;x;y/,
and consider the contact structure �a;b D ker.cos.� t/dy C sin.� t/dx/. Given any
c > 0 let .Mc ; �c/D .M0;c ; �0;c/. Also, using “toric coordinates” .p; q/ on R2 with
p D r2=2 and q D � , and given any a > 0, let Ta be the solid torus S1 � fp � ag

(with ˛ the S1 –coordinate), and let �a D ker.cos.�p/d˛C sin.�p/dq/.

Our main result is:

Theorem 1 For any k 2 N, with k > 1, there exists a smooth cobordism-with-
sides Xk from MkC1=2 to T1=2q T1=2 containing a chain of embedded 2–spheres
S1; : : : ;S2k�2 , with a symplectic form !k , satisfying the following properties:

� Each Si is symplectic and all intersections between Si ’s are positive.

� Si �Sj D 0 unless j � i D˙1, in which case Si �SiC1 DC1.

� There is a nowhere-zero Liouville vector field V defined in a neighborhood
of the bottom and sides, pointing in along the bottom and parallel to the sides,
inducing the contact structure �kC1=2 on the bottom MkC1=2 (i.e. �kC1=2 D

ker.{V !jMkC1=2
/).

� Along the top, the contact structure �1=2 on each copy of T1=2 is dominated
by !k (i.e. !k j�1=2

> 0), and agrees with ker.{V !jT1=2
/ on a neighborhood of

@T1=2 .

A nearly identical theorem could be stated producing a chain of (fewer) spheres of
self-intersection C1. The version above is slightly more convenient to state and prove
because a square (the moment map image of S2 �S2 ) is slightly easier to work with
in cartesian coordinates than a triangle (the moment map image of CP2 ). We have not
stated which curves on @MkC1=2 correspond to meridians in T1=2qT1=2 as we do
not need this information for our applications; if needed, this information is extractable
from the proof. Also, for the applications in this paper we only need the case k D 2;
presenting only this case would shorten the proof, but we believe that the general result
is interesting in its own right so we present it in full.

2 Corollaries

Before the proof, we discuss some corollaries. As a prerequisite we have:
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Definition 2 (Giroux [15; 16; 17]) Given an isotopy class C of tori in a contact
3–manifold .M; �/, the torsion of C is the largest integer n such that .M2n; �2n/ can
be contactomorphically embedded in .M; �/ as a neighborhood of a torus in C .

We will be a bit sloppy, and speak of the torsion of a torus, meaning the torsion of its
isotopy class.

Corollary 3 If a contact 3–manifold .M; �/ contains a torus of torsion greater than
or equal to 1 then .M; �/ is not symplectically fillable.

This was apparently a conjecture of Eliashberg’s. It should be noted that Ding and
Geiges [4] generalized Eliashberg’s result on nonfillability of contact structures on T 3

to contact structures on general T 2 bundles over S1 , and thus proved this corollary
in certain very special cases. Ghiggini [14] then proved this for certain Seifert fibred
3–manifolds, and most recently Lisca and Stipsicz [19] proved it for a larger class of
3–manifolds, characterized in terms of their Ozsvath–Szabo invariants.

Proof Note that a neighborhood of .Mk ; �k/ always contains .MkC�; �kC�/ for small
� > 0, and thus that a neighborhood of .M2; �2/ contains a copy of .M2C1=q; �2C1=q/

for large enough integer q . However, for any q 2Z, .M2C1=q; �2C1=q/ is contactomor-
phic to .M5=2; �5=2/ via a contactomorphism of the form .t; .x;y// 7! .f .t/;L.x;y//

where f is smooth and increasing and L is linear. Thus we now assume that .M; �/

contains .M5=2; �5=2/.

Suppose .M; �/ is the strongly convex boundary of a compact symplectic 4–manifold
.X; !/. Then we can attach the cobordism .X2; !2/ along .M5=2; �5=2/, attaching
a trivial cobordism made from the symplectization of � along the rest of M , to
produce a symplectic 4–manifold .X 0; !0/ with (weakly) convex boundary containing
a symplectic “hyperbolic pair” .S1;S2/, with S1 �S2DC1D jS1\S2j and S1 �S1D

S2 �S2 D 0.

Now cap off .X 0; !0/ with a concave filling (see Etnyre [10] or Eliashberg [9]) to get a
closed symplectic 4–manifold. Such a concave filling can always be constructed so that
bC

2
of the filling is positive. This is because, if we use the construction in [10], the first

step is to construct a cobordism up to a homology 3–sphere (Lemma 3.1 of [10]), at
which point the weakly convex boundary can be made into a strongly convex boundary
(Ohta and Ono [21]), which can then be capped off with a concave filling as in Gay [12],
in which one can explicitly see a surface of positive self-intersection. Thus we have a
closed symplectic 4–manifold with bC

2
> 1, containing a hyperbolic pair of spheres,

which is well-known to be impossible: Since the boundary of a neighborhood of a
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hyperbolic pair (with geometric intersection equal to algebraic intersection) is S3 ,
this means that the 4–manifold splits as a connected sum of two 4–manifolds each
with bC

2
� 1, which cannot happen because symplectic 4–manifolds have nontrival

Seiberg–Witten invariants (Tuabes [24]) while connected sums of 4–manifolds with
bC

2
� 1 have trivial Seiberg–Witten invariants (see [21], for example).

The next corollary and the proof presented here were explained to the author by John
Etnyre. Recall that the generalized Weinstein conjecture for a contact 3–manifold
.M; �/ states that any Reeb vector field for � has a closed orbit.

Corollary 4 (Etnyre) Any contact 3–manifold .M; �/ containing a torus of non-zero
torsion satisfies the Weinstein conjecture.

Note that this is already known to be true on a large class of non-zero torsion contact
3–manifolds as a result of the computations in Bourgeois and Colin [1].

Sketch of proof As in the preceding proof, we can construct a concave cap for
.M; �/, namely a symplectic 4–manifold .X; !/ with strongly concave boundary
.M; �/, containing a symplectic sphere S of square zero. Attaching the negative
symplectization of a particular contact form ˛ for � gives a noncompact manifold with
negative cylindrical end as in Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder [2].
The compactness results in [2] can be used to extend to this setting the techniques which
McDuff [20] used to understand closed symplectic 4–manifolds containing square zero
symplectic 2–spheres. This shows that, if R˛ has no closed orbits, then the moduli
space of J –holomorphic spheres homologous to S (for a suitable J ) is a compact
manifold, leading to a contradiction.

We can also reprove an old classic, although as the referee pointed out this does not
really constitute a new proof:

Corollary 5 (Eliashberg [6], Gromov [18]) Any weakly symplectically semifillable
contact 3–manifold .M; �/ is tight.

Proof Suppose that .M; �/ is overtwisted but weakly symplectically semifillable. Let
.X; !/ be a weak symplectic semi-filling of .M; �/. Cap off all the other components
of @X as in [10] or [9]. Now apply Lemma 3.1 of either [10] or Stipsicz [22] to attach a
cobordism to .X; !/ to arrive at a homology 3–sphere contact boundary .M 0; � 0/ and
then use [21] to make sure the new 4–manifold is in fact a strong filling of .M 0; � 0/.
The Legendrian surgeries involved in Lemma 3.1 of [10] can be arranged so as to
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avoid an overtwisted disk in .M; �/, and the perturbations of the symplectic structure
in [21] do not change the contact structure, so we can assume that .M 0; � 0/ is again
overtwisted, but now with a strong symplectic filling.

An overtwisted contact 3–manifold has isotopy classes of tori of torsion greater than
0 (in fact of arbitrarily large torsion). This is because, if we perform arbitrarily
many full Lutz twists along a transverse knot in .M 0; � 0/, we produce a contact
structure which is isotopic to � 0 , using the fact (see Geiges [13]) that full Lutz twists
do not change homotopy classes of contact structures and the fact (Eliashberg [5]) that
homotopic, overtwisted contact structures are isotopic. Therefore .M 0; � 0/ contains a
copy of .T5=2; �5=2/, which contains a copy of .M2; �2/. Corollary 3 then yields our
contradiction.

To motivate our last corollary we recall the main results of [11]. There is a natural partial
order � on the set C of closed (possibly disconnected, possibly empty) positive contact
3–manifolds: .M0; �0/� .M1; �1/ if there exists a compact (possibly disconnected)
cobordism X from M0 to M1 equipped with a symplectic form ! and a Liouville
vector field V defined on a neighborhood of M0 [M1 , pointing in along M0 and
out along M1 , such that �i D ker.{V !jMi

/. (This is what we mean by a “strong
symplectic cobordism” and a basic fact is that this relation is reflexive and transitive
but not symmetric.) Etnyre and Honda [11] showed the following two facts:

� .M; �/�∅ for every contact 3–manifold .M; �/.

� For every connected overtwisted contact 3–manifold .Mo; �o/ and for any other
connected contact 3–manifold .M; �/, we have .Mo; �o/� .M; �/.

The connectedness assumption in the second point is related to the absence of models
for symplectic 3–handles. Of course 3–handles are involved in any cobordism to ∅,
as in the first point, but those 3–handles are really upside down 1–handles, in the sense
that, as elementary cobordisms, if we make the concave end the bottom and the convex
end the top, then they are 1–handles.

Now it is reasonable to introduce an equivalence relation on C , whereby A � B if
A� B and B �A. Then the partial order � descends to C=�, and one can begin the
study of .C;�/ with the study of .C=�;�/. The above results together with the fact that
overtwisted contact structures are not fillable mean that there are at least two distinct
elements in C=�, namely Œ∅� (precisely the strongly symplectically fillable contact
3–manifolds), and the equivalence class containing all connected overtwisted contact 3–
manifolds, which we will call O1 . In addition we have that, for every connected A2 C ,
O1 � ŒA�� Œ∅�. It is also immediate that, if Oi is the equivalence class containing all
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contact 3–manifolds with i components each of which is overtwisted, then Oi �Oi�1 ,
and that, for any contact 3–manifold A with i components, Oi � ŒA�� Œ∅�. Thus we
have the following natural questions:

� Is Oi DOi�1 ?

� Are there any tight contact 3–manifolds in O1 ?

We answer both questions affirmatively:

Corollary 6 For every contact 3–manifold .M; �/ containing a torus T of torsion
greater than 1, there is a strong symplectic cobordism from .M; �/ to an overtwisted
contact 3–manifold .M 0; � 0/. If T is separating and M is connected then M 0 will
have two components, on each of which � 0 is overtwisted.

This answers the first question affirmatively because, as noted in the proof of Corollary
5, overtwisted contact 3–manifolds contain tori of arbitrarily large torsion, which
are separating because they are boundaries of solid tori. This answers the second
question affirmatively because Giroux [15; 16; 17] and Colin [3] have constructed
many examples of weakly fillable, and hence tight, contact 3–manifolds with arbitrarily
large torsion. Thus we know the minimal and maximal elements, O D O1 and Œ∅�,
respectively, in .C=�;�/, and we are left with the obvious question:

Question 7 Are there any elements in C=� other than O and Œ∅�?

As far as we know, this remains open, but the obvious candidates are equivalence
classes of tight but not weakly fillable contact 3–manifolds and of contact 3–manifolds
containing tori of torsion exactly 1.

Proof of Corollary 6 By the hypotheses, .M; �/ contains a copy of .M9=2; �9=2/.
We can find real numbers a; b with 0 < a < b < 9=2 so that .M0;a; �0;a/ contains
a copy of .M1; �1/ in its interior, .Ma;b; �a;b/ contains a copy of .M2; �2/ in its
interior, and .Mb;9=2; �b;9=2/ contains a copy of .M1; �1/ in its interior. Attach the
cobordism .X2; !2/ from Theorem 1 to the .M2; �2/ inside .Ma;b; �a;b/ (extending
by the symplectization of � on the rest of .M; �/). The contact 3–manifold .M 0; � 0/

on the top of the cobordism is then obtained from .M; �/ by removing the .M2; �2/

and replacing with two solid tori. Thus the two remaining copies of .M1; �1/ each end
up bounding solid tori, so that the solid tori each contain overtwisted meridinal disks.
It is clear that if C is separating, then M 0 will be disconnected.
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3 Proof of Theorem 1

This proof uses the technique of seeing 4–dimensional symplectic topology through
2–dimensional pictures in moment map images and their generalizations, especially as
developed by Symington [23], where a leisurely introduction may be found.

Eliashberg’s cobordism in [8] is an n–fold cyclic cover of the complement of a neigh-
borhood of a Lagrangian torus in B4 equipped with the standard symplectic form. The
standard moment map on R4 has image equal to the first quadrant in R2 , and this map
restricted to B4 has image equal to a right-angled triangle with vertices at .0; 0/, .1; 0/
and .0; 1/. Removing a disk from the interior of this triangle corresponds to removing
a neighborhood of a Lagrangian torus from B4 , and then the n–fold cyclic cover in
question corresponds to the n–fold cyclic cover of this punctured right-angled triangle.
It is this picture that led the author to the following construction:

Consider the standard moment map �W S2 �S2! R2 for the standard torus action,
translated and rescaled so that �.S2 � S2/ D Œ�1; 1� � Œ�1; 1�, and let ! be the
corresponding symplectic form on S2 � S2 . Recall that the preimage of a point in
the interior of the square Œ�1; 1�� Œ�1; 1� is a Lagrangian torus, that the preimage of
a point in the interior of an edge is a circle, that the preimage of a vertex is a point,
that the preimage of an entire edge is a symplectic sphere of self-intersection 0, and
that the oriented intersection of two of these spheres (covering two adjacent edges)
is C1. Let � be the complement in Œ�1; 1�� Œ�1; 1� of the open disk of radius 1=4

centered at .0; 0/ and let X D ��1.�/. In other words, X is the complement of an
open neighborhood of a Lagrangian torus in S2�S2 . We will use coordinates .p1;p2/

on R2 ; recall that these are paired with angular coordinates .q1; q2/ on S2 �S2 so
that ! D dp1 ^ dq1C dp2 ^ dq2 .

Now let z� be the infinite cyclic cover of � (with covering map pW z� ! � ) and
let . zX ; z!/ be the corresponding infinite cyclic cover of .X; !/ (with covering map
� W zX ! X ), so that the natural moment map � ı� for zX factors through a locally
toric fibration z�W zX ! z� .

Our cobordism .Xk ; !k/ will be a subset of . zX ; z!/ which is the preimage via z� of a
subset �k of z� . We describe �k in the next few paragraphs. (See Figure 1.)

Consider the following six points in � :

� a is the intersection of the circle of radius 1=4 centered at .0; 0/ and the line
segment from .0; 0/ to .�1=2; 1=4/.

� b D .�1=2; 1=4/

� c D .�1=2;�1/
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Figure 1: The six points in � used to construct �k (primes on labels indicate
the case when k is odd)

� If k is even then d D .�1;�1=2/, otherwise d D .1; 1=2/.

� If k is even then e D .1=2;�1=2/, otherwise e D .�1=2; 1=2/.

� If k is even then f is the intersection of the circle of radius 1=4 centered
at .0; 0/ and the line segment from .0; 0/ to .1=2;�1=2/, otherwise f is the
intersection of the same circle and the line segment from .0; 0/ to .�1=2; 1=2/.

We will want to work with lifts of these points in z� , to which end we establish the
following conventions: If we use polar coordinates .r; �/ on � , where � 2 R=2�Z,
then we can naturally lift to coordinates .r; z�/ on z� , where z� 2 R. Then, for any
point p 2 � and any integer i , pi 2

z� will denote the unique lift of p such that
z�.pi/ 2 Œ2� i; 2�.i C 1//. Also, when we speak of straight line segments in z� , we
mean arcs that project to straight line segments in � .

Let nD dk=2e. The set �k �
z� is the compact subset of z� bounded by:

� the straight line segment A0 from a0 to b0 ,

� the straight line segment B0 from b0 to c0 ,

� the part C of the outer (right-angled, polygonal) boundary of z� going from c0

to dn ,

� the straight line segment Bn from dn to en ,

� the straight line segment An from en to fn , and
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� the part D of the inner (round) boundary of z� going from fn back to a0 .

This defines the set �k , and then our cobordism is Xk D z�
�1.�k/, with !k D z!jXk

.
The bottom boundary is z��1.D/, the sides are z��1.A0[An/, and the top boundary
is z��1.B0 [Bn/. The chain of symplectic spheres is the chain of preimages of the
straight line segments of length 2 in C . (Note that C starts and ends with segments
of length 3=2 and is otherwise composed of 2k � 2 segments each of length 2, each
meeting the next at a right angle, so that standard toric geometry shows that these
spheres satisfy all the advertised properties.) Standard toric geometry also shows that
z��1.D/ŠM1�p;kC3=2Cq , where 2�p D tan�1.1=2/ and 2�q D tan�1.1/, and that
z��1.B0/ and z��1.Bn/ are solid tori.

Symington [23] has observed that, if we pick any point P 2 R2 and let W be the
outward pointing radial vector field centered at P , then P lifts to a Liouville vector
field V in a toric symplectic 4–manifold .X; !/ via the moment map �W X ! R2 . If
E is an edge of the polygonal moment map image then V will be defined on ��1.E/ if
and only if V is tangent to E . (This can be seen by translating the moment map image
so that P D .0; 0/, in which case V D p1@p1

C p2@p2
. These specific coordinates

allow us also to read off the precise contact structure induced by V on any transverse
3–manifold.)

The Liouville vector field advertised in the theorem is then the lift of the radial vector
field on � centered at .0; 0/, i.e. V Dp1@p1

Cp2@p2
. This is transverse to z��1.D/ and

parallel to z��1.B0/ and z��1.Bn/. A direct calculation shows that the induced contact
structure on z��1.D/ŠM1�p;kC3=2Cq is precisely �1�p;kC3=2Cq . Because the angle
�.1� k/ determines the ray passing through .�1; 2/ and the angle �.kC 3=2C q/

determines the ray passing through .1;�1/, a linear transformation in the S1 � S1

factor shows that this is contactomorphic to .MkC1=2; �kC1=2/.

Now we construct contact structures �0 on z��1.B0/ and �n on z��1.Bn/ which are
dominated by !k and such that both .z��1.B0/; �0/ and .z��1.Bn/; �n/ are contacto-
morphic to .T1=2; �1=2/. To this end, we construct vector fields W0 and Wn along
p.B0/ and p.Bn/ in � as follows: Let W be the radial vector field centered at .0; 0/,
let U0 be the radial vector field centered at .3;�1/ and let Un be the radial vector field
centered at .�1; 3/ if n is even or at .1;�3/ if n is odd. Recall that p.B0/ is the line
segment from b to c . We describe W0 as we move from b to c . At the beginning, near
b , W0 is equal to W , and then in a short interval W0 monotonically interpolates from
W to U0 , and then W0 is equal to U0 on the rest of p.B0/. This can be done so that,
as we move from b to c , W0 is turning monotonically counterclockwise relative to the
.p1;p2/ coordinate system. Similarly, p.Bn/ is the line segment from e to d , and
Wn interpolates from W to Un so that Wn monotonically rotates counterclockwise as
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we move from e to d . Now lift W0 and Wn to vector fields V0 and Vk on Xk (as we
did for the radial vector fields in the preceding paragraph, except that now these are not
Liouville), and let �i D {Vi

!k jz��1.Bi /
, for i D 0 and n. Although Vi is not Liouville,

nevertheless �i will be contact simply because Wi is transverse to p.Bi/ and rotates
monotonically counterclockwise as we move along the length of p.Bi/. The fact that
�i is dominated by !k also follows from the transversality of Wi and p.Bi/.

As the referee pointed out, the construction above does yield a cobordism in the case
k D 1, which is topologically just a round 2–handle (a 2–handle and a 3–handle). It
is not clear what can be proved with such a cobordism, however, because it will not
contain a sphere of square 0.

Thanks The author would like to thank John Etnyre and Andras Stipsicz for helpful
comments on an initial version of this paper.
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