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Blanchfield and Seifert algebra in high-dimensional
boundary link theory I: Algebraic K —theory

ANDREW RANICKI
DESMOND SHEIHAM

The classification of high-dimensional p©—component boundary links motivates de-
composition theorems for the algebraic K —groups of the group ring A[F},] and the
noncommutative Cohn localization £~! A[F,,], for any > 1 and an arbitrary ring 4,
with F, the free group on u generators and X the set of matrices over A[F,] which
become invertible over 4 under the augmentation A[F},] — A. Blanchfield A[F |-
modules and Seifert A—modules are abstract algebraic analogues of the exteriors
and Seifert surfaces of boundary links. Algebraic transversality for A[F,]-module
chain complexes is used to establish a long exact sequence relating the algebraic K-
groups of the Blanchfield and Seifert modules, and to obtain the decompositions of
K. (A[Fy)) and K«(Z~'A[F,]) subject to a stable flatness condition on ™1 A[F,]
for the higher K—groups.

19D50, 57Q45; 20E05

Desmond Sheiham died 25 March 2005.
This paper is dedicated to the memory of Paul Cohn and Jerry Levine.

Introduction

For any integer © = 1 let F, be the free group on u generators zy,z5,...,z,. The
classification theory of high-dimensional ;t—component boundary links involves ‘Seifert
Z-modules’ and ‘Blanchfield Z[F,]-modules’, corresponding to the algebraic invari-
ants obtained from p—component Seifert surfaces and the boundary link exterior. This
paper concerns the algebraic relationship between f.g. projective Seifert 4A-modules
and h.d. 1 Blanchfield A[F,]-modules for any ring A4, extending the work of Sheiham
[41]. Part I deals with the algebraic K —theory of the Seifert and Blanchfield modules.
Part IT will deal with the algebraic L—theory of the Seifert and Blanchfield forms, such
as arises in the computation of the cobordism groups of boundary links. The algebraic
K- and L—theory in the knot case ;- = 1 have already been done by Ranicki [34].
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Combinatorial transversality

Section 1 develops a combinatorial construction of fundamental domains for F, —covers
of CW complexes which will serve as a role model for the algebraic transversal-
ity of A[F},]-module chain complexes in the subsequent sections. The F,—covers
p: W—W of a space W are classified by the homotopy classes of maps

c: W—>BF,L=\/S1
"

with W = c*EF, the pullback to W of the universal cover EF, of BF,. Let

0 € BF,, be the point at which the circles S Lare joined, and choose points 1,2,..., €
BF,\{0}, one in each circle. If W is a compact manifold then ¢ is homotopic to a
map which is transverse regular at {1,2,..., u} C BF,, so that

V=c'qlL2,...,ph)=ViuVou...uV, CcW

is a disjoint union of y codimension—1 submanifolds V; = ¢~!({i}) C W (which may
be empty) and cutting W at V' there is obtained a fundamental domain U C W, a
compact manifold with boundary

w
U = [ |(iuzvi.
i=1
If W is connected and cx: w1 (W) — F is surjective then U is connected and
Vi, Va, ..., Vy are non-empty, and may be chosen to be connected. In the combinatorial
version of transversality it is only required that W be a finite C W complex, and W
may be replaced by a simple homotopy equivalent finite C W complex also denoted
by W, with disjoint subcomplexes Vi, V,,...,V, C W and a fundamental domain
U C W which is a finite subcomplex with a subcomplex

w
W =| |ViuzVv)cU. Vi=Unz'U

i=1
such that
U gU = W, gUNhU =@ unless g~ 'h e {1,21,21_1,...,2“,2;1}.
geF,

Ranicki [35] developed combinatorial transversality at ¥ C X for maps of finite C W
complexes

W—)X:XIUYXZ
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Blanchfield and Seifert algebra 1763

with X, X7, X, Y connected and 71 (Y) — 71 (X1), 71 (Y) — m1(X>) injective. The
essential difference from [35] is that we are here using the Cayley tree EF, = G,
of F, rather than the Bass—Serre tree of the amalgamated free product given by the
Seifert—van Kampen Theorem

m1(X) = m1(X1) %5, (v) T1(X2)

for bookkeeping purposes. We show that W can be replaced by a simple homotopy
equivalent finite CW complex W with disjoint subcomplexes Vi, V,,...,V, C W,
such that the F,—cover W can be constructed from a fundamental domain finite
subcomplex U C W obtained by cutting W at V=V, uV,u...uVv, CcWw.

Algebraic transversality

Let A be an associative ring with 1. All 4A-modules will be understood to be left
A—modules, unless a right A—module structure is specified.

Section 2 develops an ‘algebraic transversality’ technique for cutting A[F,]-modules
along A-modules, which mimics the geometric transversality method of Section 1. In
Section 2 we shall prove:

Theorem A Every A[Fy]|-module chain complex E admits a ‘Mayer—Vietoris pre-
sentation’

0 & CcOF] L DiE) 0

i=1
with C®_ D A-module chain complexes, and f = (f1+21 -/ fljzu —fi)
defined using A—-module chain maps fl.+, i C® 5 D.IfE isafg. free A[F,]-
module chain complex then C @ D can be chosen to be f.g. free A—module chain
complexes, with D C E and f;*, f7: CD = Dnz7'D — D givenby f;*(x) =x,
Ji(x)=zx.

Remark For yu = 1 Theorem A was first proved by Waldhausen [47], being the
chain complex version of the Higman linearization trick for matrices with entries in the
Laurent polynomial extension A[F;] = A[z,z~!]. The algebraic transversality theory
of [47] applies to chain complexes over the group rings A[G; *g G,] of injective
amalgamated free products G *p G,, using the Bass—Serre theory of groups acting
on trees. In principle, Theorem A for u = 2 could be proved by applying [47] to the
successive free products in

FM:FI*F[L—I :Fl*(Fl*F;L—Z):"':Fl*(Fl*(Fl*"'*(Fl)))
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1764 Andrew Ranicki and Desmond Sheiham

but this would be quite awkward in practice. In view of both the geometric motivation
and the algebraic applications it is better to prove Theorem A (as will be done in Section
2) using the Cayley tree of F), with respect to the generator set {z1,22,...,Zy}.

Boundary links

A p—component link is a (locally flat, oriented) embedding
e | st csmt2
w

Every link admits a Seifert surface V"1 C S"*2 a codimension-1 submanifold with
boundary
v =¢(]|s") < sm+2.
w

By definition, £ is a w—component boundary link if there exists a u—component Seifert
surface
Vil = viuva UL uV, C ST

The exterior of a link £ is the (n+2)—dimensional manifold with boundary
(Wn+2’ aw) — (Cl(Sn+2 _ (ﬁ(l_l Sn) % Dz)),E(l_l Sn) % Sl)
w w

In particular, a knot S” C S"*2 is a 1-component boundary link.

The trivial u—component boundary link

to: | |7 csm*?
w
is defined by the connected sum of © copies of the trivial knot
S" (Sn % D2) U (Dn-H % Sl) — Sﬂ+2,
so that
lo: S"C#S”“:S”“:( S”xDZ)UW
w5 N ’
U w
has Seifert surface and exterior
VO — |_|Dn+1’ WO — #(Dn+1 X Sl) C Sn+2.
m I

The exterior Wy has the homotopy type of \/,, S! VvV - ST with (W) = F.
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We shall make much use of the fact that the universal cover of BF, =\/,, St is the
contractible space with free F, —action defined by the Cayley tree EF, = Gy of Fy,
with vertices g € F,, and edges (g,gz;) (g € Fy, 1 <i < ). The cellular chain
complex C(EF,) = C(G,) is the standard 1-dimensional f.g. free Z[F,]-module
resolution of Z

w
d
0—— C1(G) =P Z[Fu] — Co(Gu) = Z[Fy] —=7 — 0.,
i=1
the Mayer—Vietoris presentation with d = (z; —1 z2—1 ... z, —1).

The exterior W of an n—dimensional link £: | | S " C §"*2 is homotopy equivalent
to the complement S”*2\((|_|, $™), so that

Ho (W) = H,(S"T2\L([ ] S"
(smve(Lts))
_ H"+2—*(S"+2, z(|_| S)) — i (|_| S”) (% #£0,n+2)
w W
by Alexander duality. The homology groups Hs« (W), Hx(Wy) are thus the same:

Z ifr=0
Pz ifr=1
m

0 otherwise.

The homotopy groups 7« (W), m«(Wy) are in general not the same, on account of
linking. By Smythe [43] and Gutierrez [22] £ is a boundary link if and only if there exists
a surjection 71 (W) — 71 (Wy) = F,, sending the meridians iy, my, ..., my: S C
W around the pu components £1,£5,...,£4,: S" C S"t2 of £ to the generators
Z1,22,...,zy € F,. We shall only be considering boundary links £ with a particular
choice of such a surjection 7;(W) — F,, the F,—links of Cappell and Shaneson
[9]. For any such £ there exists a map c¢: W — W, which induces a surjection
cx: w1 (W) — w1 (Wp) and isomorphisms cx: Hyx(W) = Hy.(Wy). Let W= C*Wo be
the pullback F,—cover of W, with a f.g. free Z[F,]-module cellular chain complex
C (W) An F —equlvarlant lift & W — Wy of ¢ induces a Z[F]-module chain map

: C(W) — C(WO) and a Z-module chain equivalence c: C(W) — C(Wp). A pu—
component Seifert surface V =V uV,u...uVv, CS "+2 for { has a neighbourhood
V x[=1,1]C §"*2, with V =V x {0}. The F, —cover W can be constructed from
F,, copies of S"t2\V, glued together using the inclusions fi+, S Vi— Snt2\y
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1766 Andrew Ranicki and Desmond Sheiham

defined by
]/;-i(vi) = (vi, ) eV x[-1,1] C gn+2

It follows that C (W) has a f.g. free Z[F,]-module Mayer—Vietoris presentation

uw
0 @CONF] L= CSAVIE] — C(F) —0

i=1

with = ftz—f~=(Far—f7 .. fitzu—S0).
Seifert and Blanchfield modules

There are four fundamental notions in our abstract version for any ring A of the Seifert
and Blanchfield modules of ©—component boundary links:

(i) A Seifert A—module is a triple
(P,e,{m;}) = ( A—module, endomorphism, {7m;})

where {m;: P — P} is a system of idempotents expressing P as a u—fold direct
sum, with

T P=P1@P2€B"'@PM—>P§
(x1,x2,...,x)—(0,...,0,x;,0,...,0).

Let Seiso(A) be the category of Seifert A—modules. A Seifert 4—module
(P, e,{m;}) is f.g. projective if P is a f.g. projective A—module. Let Sei(A) C
Seiso(A) be the full subcategory of the f.g. projective Seifert 4A—modules.

(ii) A Blanchfield A[F,]-module M is an A[F,]-module such that

Tor*A[F“](A, M) =0,
regarding A as a right A[F,]-module via the augmentation map
€ A[Fy]— A; zi— 1.

Let Blaxo(A) be the category of Blanchfield A[Fy]-modules. In Section 3.2
Blanchfield A[F,]-modules will be identified with the Fj—link modules in
the sense of Sheiham [41], that is A[F]-modules M which admit an A[F,]-
module presentation

04>P[FM]$ OlF) ] — M —0
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Blanchfield and Seifert algebra 1767

(iii)

(iv)

for A-modules P, Q with the augmentation €(d): P — Q an A-module
isomorphism. Thus Blax(A) is just the F},—link module category Flkoo(A) of
[41]. A Blanchfield A[F},]-module M has homological dimension 1 (or h.d. 1
for short) if it has a 1-dimensional f.g. projective A[F,]-module resolution

0 KdL M 0

with (necessarily) €(d) = 1 ®d: A ®4(r,] K > A ®4F,] L an A-module
isomorphism. Let Bla(A) C Blax(A) be the full subcategory of the h.d. 1
Blanchfield A[F}]-modules. Let Flk(A) C Bla(A) be the full subcategory
of the h.d. 1 Blanchfield modules M which admit a 1-dimensional induced
f.g. projective A[F,]-module resolution

0 PF] % Q[F ] — M ——0

with P, Q f.g. projective A—modules. As in [41] the objects of Flk(A) will be
called h.d. 1 Fy—link modules.

The covering of a Seifert A-module (P, e, {n;}) is the Blanchfield A[F,]-
module

B(P,e, {m}) = coker(1 —e +ez: P[F,]— P[F.])

w
with z = ) m;z;: P[F,] — P[Fy], defining functors

i=1
Boo: Seisg(A) — Blaxs(A), B: Sei(A) — Flk(A).
A Seifert A—module (P, e, {m;}) is primitive if B(P,e,{m;}) =0. Let
Primoo(A) = ker(Boo: Seino(A) = Blaso(A))

be the full subcategory of Seiso(A) with objects the primitive Seifert 4—modules,
and let

Prim(A) = ker(B: Sei(A) — Fik(A)) C Sei(A)

be the full subcategory of Sei(A) with objects the primitive f.g. projective Seifert
A-modules.

Simple boundary links

The motivational examples of f.g. projective Seifert Z—modules and h.d. 1 F},—link
Z[F,]-modules come from the (2¢g—1)—dimensional ;t—component boundary links
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1768 Andrew Ranicki and Desmond Sheiham

e, s 241 < §24+1 which are simple, meaning that the exterior W has homotopy
groups
F, ifr=1
(W) = g .
0 if2<r<g-1,

so that the universal cover W is (¢g—1)—connected. These conditions are equivalent
to the existence of a yu—component Seifert surface V =V UV, U---UV,, with each
component V; (¢—1)—connected:

(Vi) =0 (1<i<p, 1sr<g-1).
The homology of the Seifert surface defines a f.g. projective (actually f.g. free) Seifert
Z-module (P, e, {m;}), with

" %
7 =00 001008 - ®0: P=PH,Vi) > P=H,(V)

i=1 i=1
and

n
e=(t o D P=H(V) =D Hy (Vi) —

i=1

Hy(S*tN\V)=H1(V)=Hy(V)= P
the endomorphism induced by the inclusions fi+: V; — S24+1\V identifying
Hy(S>TTI\V) = H(V)

by Alexander duality and H9(V) = H, (V) by Poincaré duality. The covering of
(P,e,{m}) is the h.d. 1 Fy-link Z[F}]-module

B(P.e. {ni}) = Hy(W)
defined by the homology of the F),—cover W of the exterior W . The f.g. projective

Seifert Z-module (P, e, {m;}) is primitive if and only if Hq(ﬁ/) = 0; for g = 2 this
is the case if and only if £ is unlinked (Gutierrez [22]).

Blanchfield = Seifert/primitive

Section 3 uses algebraic transversality to prove that every h.d. 1 F},—link module
M is isomorphic to the covering B(P, e, {m;}) of a f.g. projective Seifert A-module
(P,e,{m}), and that morphisms of h.d. 1 F,-link modules can be expressed as
fractions of morphisms of f.g. projective Seifert 4—modules.

The algebraic relation between Seifert A—modules and Blanchfield A[F,]-modules
for A = Z was first investigated systematically in the knot case p = 1, by Levine [25;
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26] and Trotter [46], and for the link case p = 1 by Farber [13; 14] and Sheiham [41].
In particular, [41] expressed the Blanchfield module category Blaoo(A4) = Flkoo(A)
as the quotient of the Seifert A-module category Seiso(A) by the primitive Seifert
A-module subcategory Primso(A), as we now recall.

Let A be an abelian category. By definition, a Serre subcategory C C A is a non-empty
full subcategory such that for every exact sequence in .4

0O->M —->M-—->M"'"—-0

M is an object in C if and only if M’, M" are objects in C. Gabriel [17] defined the
quotient abelian category .A4/C with the same objects as .4 but different morphisms: if
M, N are objects in A then

— 1 / "
Hom 4/c(M,N) = lilz)lHomA(M ,N™)
with the direct limit taken over all the exact sequences in A
0O->M ->M->M"->50,0>N >N->N">0

with M"” N’ objects in C. The canonical functor F: A — A/C; A — A sends
each object C in C to F(C) = 0, and has the universal property that for any exact
functor G: A — B such that G(C) = 0 for all objects in C there exists a unique functor
G: A/C— B suchthat G F = G . In particular, if B is an exact category and G: A— B
is an exact functor then the full subcategory C C A with objects C such that G(C) =0
is a Serre subcategory, and there is induced a functor G: A/C — B; A — G(A) such
that G = GF.

By definition, a category is small if the class of morphisms is a set. In order to avoid
set-theoretic difficulties we shall only be dealing with categories which are essentially
small, ie equivalent to a small category.

Let A be an essentially small category, and let ¥ be a set of morphisms in A, e.g.
the morphisms of a subcategory. A category of fractions ™! A is a category with a
universally X —inverting functor F: A — X ~! A, meaning that:

(i) F sends each f € X to an isomorphism F(f) in X7 A,

(ii) for any functor G: A — B which sends each f € ¥ to an isomorphism G( f)
there exists a unique functor G: ¥~ ! A — B such that GF = G.

An essentially small category of fractions ¥ 7! A exists, with the same objects as A,
and such a category is unique up to isomorphism (Gabriel and Zisman [18], Borceux
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1770 Andrew Ranicki and Desmond Sheiham

[7, 5.2.2]). For example, if A is an abelian category and C C A is a Serre subcategory,
then
A/lC=3"14

is a category of fractions inverting the set ¥ of morphisms f in A with ker( /) and
coker( f) in C.

An A[F,]-module M is Blanchfield if and only if the A-module morphism
w
y: @M — M; (my,my,...,my) Z(zi— m;
% i=1

is an isomorphism, called the Sato isomorphism (after [37], the case A = Z). As in
Sheiham [41], for any Blanchfield A[F},]-module M use the A-module morphisms

pi: @M—>M; (my,my,...,my) v~ m;,

’ u
a):@M—>M; (ml,mz,...,mﬂ)HZmi,
w i=1

mi=ypiy 't M —> M,
e= a)y_lz M—-M
to define a Seifert A-module U(M) = (M, e, {n;}).

The categories Primeo(A), Seiso(A) are abelian, while Blas,(A) is in general only
exact. The covering functor Beo: Seing(A) — Blas(A) was shown in [41, 5.2] to
be exact, so that Primec(A) C Seiso(A) is a Serre subcategory. Thus if E is the
set of morphisms f in Seix(A) such that B(f') is an isomorphism in Blas(A4), or
equivalently ker( /) and coker( /) are in Primoo(A), then

Seiso(A)/Primes(A) = B Seios(A).
The induced exact functor Beo: Seioo(A)/Primeo(A) — Blaso(A) is such that

B
Boo: Seing(A) — Seioo(A)/Primoo(A) —> Blaoso(A)

and has the universal property of inverting E,. The functor B, was shown to be an
equivalence in [41, 5.15] using the fact that the functor

Uso: Blaso(A) = Seing(A); M — U(M)
is right adjoint to B: for any Seifert A—module V there is a natural isomorphism

Homgpy,. (4)(B(V), M) = Homg,;_4)(V,U(M)).
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The functor Uy is fully faithful, allowing Blas,(A) to be regarded as a full subcategory
of Seiso(A). By [41, 5.15] Uy induces a functor

Uso: Blaso(A) — Sein(A)/Primeo(A)
which is an equivalence inverse to Bso. Thus up to equivalence
Seioo(A)/Primeo(A) = B Seino(A) = Blaoso(A).
The categories Prim(A), Sei(A), Flk(A), Bla(A) are exact but not in general abelian.
Asin [41] let Sei(A)/Primoo(A) C Seino(A)/Primeo(A) be the full subcategory with
objects in Sei(A). The equivalence
Boo: Seiso(A)/Primeo(A) ——> Blaso(A)

was shown in [41, 5.17] to restrict to an equivalence of exact sequences

B: Sei(A)/Primeo(A) ——> Flk(A)
with

B: Sei(A) — Sei(A)/Primoo(4) —2= Flk(A).

From the construction of Seioo(A)/Primoo(A) a morphism in Sei(A4)/Primoc(A)
may involve objects in Seiso(A) which are not in Sei(A), so that the equivalence B
cannot be used to relate the algebraic K —theories of Sei(A) and Flk(A).

A category of fractions X! A has a left calculus of fractions if:
(i) (1: A— A) € ¥ for every object A in A,
(i) if (s: 44— B),(t: B>C)eX then (ts: A—>C)e X,

(iii) forany f: A— B in Aand s: A — D in X there exist g: D — C in A and
t: B—Cin ¥ suchthattf =gs: A — C,

(iv) forany f,g: A— B in A and s: D — A in ¥ with fs = gs: D — B there
exists (1: B—>C)e X withtf =tg: A— C.

It then follows that a morphism A4 — B in £~ ! A can be regarded as an equivalence
class s~! f of pairs (f: A — C,s: B — C) of morphisms in A with s € £, where
(f,s) ~ (f',s’) if there exist morphisms g: C — D, g’: C'—> Din A

with (gs=g's: B—>D)eXandgf =g'f': A— D
so that

s =@ @) =@ =5 A>BinTA
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Let E be the set of morphisms f in Sei(A) such that B(f) is an isomorphism in
Flk(A), or equivalently such that ker( /) and coker( f) are in Primoo(A4). In Section
3 we shall prove:

Theorem B (i) The category of fractions E~1Sei(A) has a left calculus of frac-
tions, and the covering functor B: Sei(A) — Flk(A) induces an equivalence of exact
categories

B: E71Sei(A) == Fik(A).

(ii) The h.d. 1 Blanchfield A[F,]-module category Bla(A) is the idempotent comple-
tion of the h.d. 1 F, —link module category Flk(A).

The key step in the proof of Theorem B (i) is the use of the algebraic transversality
Theorem A to verify that for any h.d. 1 F},—link module M the Seifert A—module
U(M) is a direct limit of morphisms in E.

Primitive = near-projection

Section 4 gives an intrinsic characterization of the primitive f.g. projective Seifert
A-modules (P, e, {m;}) as generalized near-projections.

An endomorphism e: P — P of an A-module P is nilpotent if e = 0 for some
N =0.

An endomorphism e: P — P is a near-projection if e(1 —e): P — P is nilpotent
(Liick and Ranicki [28]).

In Section 4 we shall prove:

Theorem C A f.g. projective Seitert A—module (P, e,{r;}) is primitive if and only
if it can be expressed as

N feTt ot N 3
(P.e {m}) = (P ®P ,(e_+ e__),{n,- } & i })
and the 2 —component Seifert A—module
ettt et

(P, e, )= (P+ ® P, (e_+ l—e__) , {n;“}@{n;})

is such that e'z": P'[F,,] — P’'[F5,] is nilpotent, with F,, the free group on 2u
/ /

generators zy, ...z, .
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For ;© = 1 the condition for a f.g. projective Seifert A-module (P, e, {m;}) to be
primitive is just that e be a near-projection. For © = 1 Theorem C is just the result
of Bass, Heller and Swan [5] that | —e + ez: P[z,z7 '] — P[z,z7!]isan A[z,z71]-
module isomorphism if and only if e is a near-projection, if and only if (P,e) =
(P, et )@ (P ,e ") withett: PT — Pt and 1 —e~~: P~ — P~ nilpotent.

Algebraic K —theory

Section 5 obtains results on the algebraic K—theory of A[F,], Prim(A), Sei(A),
Flk(A) and Bla(A), using the algebraic K -theory noncommutative localization exact
sequences of Schofield [39] and Neeman—Ranicki [30; 31].

The class group Ko(€) of an exact category £ is the Grothendieck group with one
generator [M ] for each object M in £, and one relation [K]—[L]+ [M] = 0 for each
exact sequence in £

0—-K—L—->M-—0.

The algebraic K—groups K, (&) are defined by Quillen [32] for # > 1 and by Schlichting
[38] for n < —1. Write

Primy (4) = Ky (Prim(A)), Seix(A) = Ky (Sei(A)),
Blay(4) = Kx(Bla(A)), Flk.(4) = Ky (FIk(A)),

noting that Bla, (A4) = Flk,(A4) for n # 0.

Theorem D (i) The algebraic K —groups of A[F,] split as

Ka(A[F]) = Ku(4) & D) Kaer (4) @ Prim.cy ().
uw

(i) The sequence of functors
. . B
Prim(A) — Sei(A) —— Bla(A)
induces a long exact sequence of algebraic K —groups

-+« — Primy,(A) — Sei,(A) B, Bla,(A4) — Prim,_1(A) —> ---

with
im(B: Seig(A4) — Blag(A4)) = Flkg(A4) € Blag(4).
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(iii)) The exact sequence in (ii) splits as a direct sum of exact sequences

o D Kn(A) > D Kn(A) > B Ky (A) > @ Koy (4) > -+
21 1% 1% 2u
-+« — Prim, (A4) — Sein(A) — Blay(A4) — Prim,_1(A) — -+ .

For © =1 Prim(A) is the exact category of f.g. projective A—modules P with a
near-projection e: P — P, which is equivalent to the product Nil(A4) x Nil(A) of two
copies of the exact category Nil(A) of f.g. projective A-modules P with a nilpotent
endomorphism e: P — P, and

Primy4(A4) = K« (Prim(A)) = Nil4(A4) @ Nils(A),
Nili (4) = K+(Nil(4)) = K+ (4) ® Nil4(A),
Prim(A) = Nil«(4) & Nil.(4).

Thus for u =1 Theorem D (i) is just the splitting theorem of Bass, Heller and Swan
[5], [4] for K;(A[z,z~!]) and its generalization to the higher K —groups

Ky« (A[z, Z_l]) = Ks(A) D Kyx_1(A) ® ﬁ*—l (A& ﬁ*—l (A4).
Theorem D (ii)—(iii) is new even in the case © = 1.

Let 71 A[F,] be the noncommutative Cohn (ie universal) localization of A[F)]
inverting the set X of the morphisms of f.g. projective A[F,]-modules which induce
isomorphisms of f.g. projective A—modules under the augmentation € : A[F,] — A.
The exact category H(A[F], ) of h.d. 1 X—torsion A[F}]-modules is such that

H(A[F,). ) = Bla(A), K«(H(A[Fy], X)) = Blax(4).
Theorem E (i) The localization exact sequence
Ki(A[Fu)) —> Ki{(S7' A[FL)) > Ko(H(A[Fy. £)) — Ko(A[Fp]) — -+

splits as a direct sum of the exact sequences
0
Ki(A)® D Ko(A) > Ki(4) — DK_1(4) > Ko(A) @D K_1(4) — -+,
Iz w I3
Primg(A4) — Seig(A4) — Blag(A4) — Prim_; (4) — --- .

(i) If S~ A[F,] is stably flat (ie if Toral "} (S—1A[F,], S~V A[F,]) = 0 for + > 1)
the exact sequences and the splitting in (i) extend to the left, involving the algebraic
K —groups K, forn =2, with

K+(STVA[F,]) = Ki(A) @ Sei o1 (A).
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For i =1 Sei(A) is the exact category End(A) of f.g. projective A-modules P with
an endomorphism e: P — P, and

Seix(4) = K+(End(A)) = Endy(A4) = K+(4) ® Endy(A).
The special case of Theorem E (i)
Ki(27'4lz.27") = K1 (4) @ Endo(4)
is the splitting theorem of Ranicki [33, 10.21].

We are grateful to Pere Ara, Warren Dicks, Marco Schlichting and the referee for helpful
comments on the preprint version of the paper, which have led to various improvements.
In particular, it was Pere Ara who pointed out that the Blanchfield A[F,]-module
category Blaxo(A) is the same as the F, —link module category Flkoo(A) of [41].

1 Combinatorial transversality for F,—-covers
For u>=1let F,, = (zy,z2,...,zu) be the free group with generators zy,z3,...,2zy.

1.1 F,—covers

Definition 1.1 An F, —cover of a space W is a regular covering p: W — W with
group of covering translations F, .

A classifying space BF, for F,—covers is a connected space such that

F, ifj=1
7i(BF,)=1{ "
7 (BEw) {0 if j = 2.
The universal cover of BFy, is an Fy, —cover
pu: EF, = BF, — BF,

with E'F, a contractible space with a free F, —action.

Proposition 1.2 (i) Given an F,, —cover p: W — W anda map f:V — W there
is defined a pullback square

- [
% W
f*p P
v / w
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with - ~ ~
V=f*W={(.y)eVxW|fx)=py)eW]

[ VoViyex, VoW () ey
such that f*p: V — V is the pullback F, —cover.

(i) The Fy—covers p: W — W ofa space W are classified by the homotopy classes
of maps ¢: W — BF, with

W = c*EF, = {(x.7) € W x EF, | c(x) =[] € BF,},
P, ¥) = ¢ pul, y) = x.

For a connected space W the homotopy classes of maps ¢: W — BF,, are in one-one

~

correspondence with the morphisms cx: mw1(W) — Fy ; the connected Fy—covers W
correspond to surjections cx: w1 (W) — Fy,.

Proof Standard. O

1.2 The Cayley tree G,

We shall be working with the following explicit constructions of BF,, and EF,, as
well as the Cayley tree of F,:

Definition 1.3 The Cayley tree G, is the tree with vertex set
0
G =F,
and edge set

GV ={(g.gz)geFu 1<i<p} cGPxGYO.

N Eh D | (Lz) | g
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Define a transitive F —action on G,
FuxGy— Gy, (g,x) = gx
with quotient the one-point union of u circles

Gu/Fu=BF,=\/S".
"
Let

"
Iy = Jlej . ef1cR*
i=1
with

e =(0,...,0,1,0,...,0), ¢ =(0,...,0,—1,0,...,0) € R¥,
le; e 1=1(0,...,0,£,0,...,0)| -1 <7 <1} CRM.

Thus 1, is the one-point union of p copies of the interval [—1, 1] C R, identifying the
u copies of 0 € [—1, 1].

We regard BF,, as the quotient space of [,
BFy =Iu/{ef ~ef [1<i<spy=\/S",
w

the one-point union of 4 copies of the circle S! =[—1,1]/(—1 ~ 1) in which the
copies of [0] € S are identified, with

ei =lej1= ey ]1# 0] € BF,
a point in the i’ h circle. The universal cover EF w of BF), is
EF, = (FMXIM)/{(g,e?_)N(gzi,ei_)|g€ Fu.1<i<py,
a contractible space with a free Fj,—action
FyxEF,— EF,; (g,(h,x)) = (gh,Xx)
and covering projection
pu: EFy — BFy; [g,x]— [x].
Define an F),—equivariant homeomorphism Gy —=. EF by sending the vertex
g e Gl(,f)) = F, to the point (g,0) € EF,, and the edge (g, gz;) € Gl(Ll) to the line

segment
{(g,Ze;r)|0$t$ 1YU{(gzi.te; ) |0<t <1} C EF,
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with endpoints (g,0), (gz;,0) € EF,. The projection G, — G,/ F), can thus be
identified with the universal cover p,: EF, — BF},.

1.3 Fundamental domains

Definition 1.4 A fundamental domain of an F,—cover p: W — W is a closed
subspace U C W such that

() FuU = W, or equivalently p(U) =W,
(b) forany g,he Fy

gVi ifg=hz
qUnny =MV ite=h
gU ifg=h

o) otherwise

with V; =U Nz 'U.

Geometry € Topology, Volume 10 (2006)



Blanchfield and Seifert algebra 1779

Thus U C W is sufficiently large for the translates gU C w (g € Fy) to cover w,

but sufficiently small for the overlaps gU N AU to be non-empty only if g~ 'h =1 or

zj orzl-_l.

Example 1.5 (i) The subspace (1,1,) C EF, is a fundamental domain of the
universal cover p,: EF, — BF,,.
(i) Let G;L be the barycentric subdivision of the Cayley tree G, the tree with
(GL)W =1{(h.(g.820) | h = g or gzi} € (G}) @ x (G]).

The F,—equivariant homeomorphism G, = G| =~ EF,, sends the vertex (g, gz;) €
(G;L)(O) to (g.e;") € EF,,. The subgraph U, C G, defined by

UL = (13U 20} UG D)

1 o
UL =40, (L2 VLG G D)

is the fundamental domain of the cover G,, — G,/ F}, correspondingto (1,1,) C EF),
under the G, —equivariant homeomorphism G, = EF),.

zj_1
(Cra)
z;! (Z,-:I, |1 (1" Zi) zZ;
(1,z)
zj

Proposition 1.6 (i) Given an Fy—cover p: W — W and a map [V — W let
f*p: V= f*W —V be the pullback Fy —cover. If U C W is a fundamental domain
of p then

AU ={(x,p)|xeV,pelU, f(x)=p(y)eW}CV
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is a fundamental domain of f™*p

(i) Every Fy—cover p: W — W has fundamental domains.

Proof (i) By construction.

(i1) Apply (i), using the fundamental domain U, C G,’L = EF, for the cover
pu: EFy, — EF,/F, = BF,

given by Example 1.5, noting that
p=c*pu W =c*EF, > W

is the pullback of the universal Fy,—cover p,: EF, — BF, along a classifying map

c: W— BFy,
w
!
w

The inverse image of U, C EF),

EF,

Pu

BF,

U=c"'Uy)cW

is a fundamental domain of c: W —W. O

1.4 Combinatorial transversality

If p: W — W is an F,—cover of a space W with an additional structure such as
a manifold or finite CW complex, we should like to have fundamental domains
U C W with the additional structure. For manifolds this is achieved by choosing a
classifying map ¢: W — BF,, transverse at {ej,ez,...,eu} C BF, —see Example
1.11 below for a more detailed discussion. For a finite CW complex W we shall
develop a combinatorial version of transversality, constructing finite subcomplexes
X C X(00) of the Borel construction X (c0) = W x F,, Gy, such that the projection
f(00): W(o0) — W restricts to a s1mple homotopy equivalence f: X — W such that
the pullback F,, —cover X = f *W — X has a fundamental domain U C X which is
a finite subcomplex.

Proposition 1.7 For any F,, —cover p: W — W let F w act diagonally on W x Gu

Fux (W xGy) = (W xGp); (g, (x, ) (gx, gy).
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(i) The map
is the projection of a fibration
b4
Gy —X —W

with contractible point inverses; for each x € W there is defined a homeomorphism

Gu =7 p(x); g =[x, gl
In particular, 7 is a homotopy equivalence.
(i1) The pullback F, —cover of X

T*p: Y:p*W:WxGuaXzﬁ/xFuGu

has fundamental domain W x U C X = W x Gy, with U C Gy, any fundamental
domain.
Proof Standard. ad
Definition 1.8 (i) An Fy—splitting (X,Y, Z, h) of a space W is a homeomorphism
h: X — W from a space with a decomposition

X=Yx [—1, 1] UYX{—I,I} Z

with Y =Y, UY,U...1Y), the disjoint union of spaces Y7, Y5, ..., Y, and ¥ x[—1, 1]
attached to Z along maps

o Yix{=1} = Z, al.+: Yi x{l} > Z.
(ii) An Fy—splitting (X, Y, Z, h) of a connected space W is connected if each of
Y1,Y,,....Y,, Z is non-empty and connected.
Proposition 1.9 Let W be a space with an F,, —splitting (X, Y, Z, h).
(i) The F, —splitting determines an F, —cover p: W — W with
W = (Fux (Y x[-1,1]U Z))/ ~,
(g yi. 1)~ (zig.o; (yin 1)),
(g yi.—D~(g,0; (yi,—1)) (g€ Fuyietil<i<p),
pi W —W; (g.x) — [h(x)].
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The subspace
©
Z'= 1Y x[0. 1)U 1. 2)u| @ Yix[-1.0) c W

i=1
is a fundamental domain of p: W—Ww.
(ii) If there exists a homeomorphism ¢: Z' — Z such that

¢(1,2i,0) =a; (yi,—1), ¢(zi,3i,0) = (i, 1) (i€ Vi, 1<i<p)
the identification space
W' = (FuxZ)/(g.o; () ~ Gig.o;" ()
is such that there is defined a homeomorphism
(L.g): W — W' (g.5) = (g.4(x))

so that
Pr=p0, )" W > W (g,x) = pp~" (x)
is an Fy—cover of W which is isomorphic to p: W — W, with fundamental domain

(1L,¢)(Z)=(,Z) W'

(iii) The fundamental group of a connected space W with a connected Fy —splitting
(X, Y, Z, h) is an amalgamated free product

(W) = m(Z) * Fu/{oi (g)zi = zio (g1) | gi € m(Yi), 1 <i < b

The surjection (W) — F, is induced by a map c: W — BF, sending h(Y; x{0}) C
W to {e;} C BFy. The surjection (W) — F,, classifies the connected F, —cover
p: W — W in(i).

Proof (i) and (ii) follow by construction.
(iii) follows from the Seifert—van Kampen theorem and obstruction theory. a
Example 1.10 Define an F), —splitting (H,,,{1,2,...,u}, Iy, ) of BF, by
Hy={1,2,...,u} x[-1,1] U(i,l)nejr,(i,—l)-ei— Iy,
(i,t)—>[(1—1/2)e]] foro<r<1
S Hy— BFyu; (i,t) = [(1+1/2)e;] for —1<t<0

ur>u/2 foruel,
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with
f@,0)=e;, f(i.1)=e/2, f(i.—1)=¢; /2.
The corresponding Fy —cover of BF), is the universal Fy,—cover BF w=Gy— BF,,

with fundamental domain 7, = (1, /) C Gy . Note that f(I,) = Jy, with J, C I
the homeomorphic copy of /,, defined by

Ju=10,...,0,£,0,...,00 e, | —1/2<t<1/2}.
A subspace Y C X is collared if the inclusion i: ¥ — X extends to an embedding

j: Y x[0,1] = X, with i(y) = j(y,0) € X for y € Y. In particular, dZ C Z is
collared, for any manifold with boundary (Z,07).

Example 1.11 Use the F), —splitting (Hy,{1,2,...,u}, Iy, f) of BF, given by
Example 1.10 to identify

BF‘L = HIL = {1, 2, ey /,L} X [—1, 1] U{l,Z,...,,u}X{—l,l} I,u-

If p: X > Xisan F, w—cover of a manifold X it is possible to choose a classifying
map
c: X —> BFM = {1, 2, v ,,bL} X [—1, 1] U{I,Z,...,M}X{—l,l} I’u

which is transverse regular at {ey,es,...,e,} C BF,, with the inverse images of
e; = (i,0) € BF, disjoint framed codimension—1 submanifolds

Yi=c ' e)cX (I<i<p).
Cutting X along
Y:c_l{el,ez,...,eu}:Yl uY,u...u¥Y, cXx
there is obtained an F), —splitting (X, Y, Z,id.) of X, so that
X =Y x[-1,1]JUyx-1,11 Z

with ¥ =Y x {0} C X a framed codimension—1 submanifold, and Z = ¢~!(1,) C X
a codimension—0 submanifold with

o Yix{l} > Z, o:Yix{-1}>Z
components of the inclusion of the boundary 0Z =Y x{—1,1} C Z. Since 0Z C Z

is collared the fundamental domain of the Fy,—cover X =c*G,

w
Z'=1.Yx[0.1Du1. 20Ul J@ Yix[-1.0)c X

i=1
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is such that there exists a homeomorphism ¢: Z' — Z with

¢(1, i, 0) =aj (yi.—1), ¢z, yi.0) = (i, 1) (yi€Yi,1<i<p).

Thus by Proposition 1.9 (ii) p: X > Xis isomorphic to the F,—cover p’: X 'S X
with ~
X = (FuxZ)/(g.0; () ~ (zig. o (n0)).
1. _
P=p,9)7" X = X; (g,x) = pp~! (x).
If X and X are connected it is possible to choose ¢ such that each ¥; = p~!(e;) is

connected, with
P+ =pY, Z)s: m(X) — F.

Definition 1.12 (i) A homotopy F, —splitting (X,Y, Z,h) of a space W is a ho-
motopy equivalence h: X — W from a space with an Fy—splitting (X, Y, Z, 1), so
that

X =Y x[-11]JUyxy1,n Z, Y=Y UY,U...UY,.
(ii) A homotopy F, —splitting (X, Y, Z, h) of a finite CW complex W is simple if
X is afinite CW complex, Y1, Y>,...,Y,, Z C X are subcomplexes and i: W — X
is a simple homotopy equivalence.

Example 1.13 Any finite CW complex W with an F,—cover W — W admits
simple homotopy F,—splittings (X, Y, Z,h) : embed W C S N (N large) with closed
regular neighbourhood (X, dX) and apply the manifold transversality of Example 1.11
to the F),—cover Xo~W->W~X.

Working as in Ranicki [35] we shall now develop a combinatorial transversality con-
struction of simple homotopy £, —splittings of W using finite subcomplexes of the
Borel construction (Proposition 1.7) W x g, G, as follows.

Definition 1.14 The canonical homotopy Fy,—splitting (X (00), Y (00), Z(00), h(o0))
of a space W with an Fj,—cover p: W — W is given by

X (00) = Y(00) X [~1, I]Uy(co)x{—1,1} Z(0)

with
a(oo);r: Y(00); = W — Z(00) = W x Iy; x— (z,-x,e;r),

a(00);: Y(00); = W — Z(00) = W x Iy x> (x.¢)),
h(c0): X(00) = W; (x,y) — p(x).
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The map /(o) is a homotopy equivalence since it is the composite

h(oo) = 10 f+ X(00) > Wxp, Gy —Z= W

of the homeomorphism
(x.i, ) > (x,(1—1/2)ej7)  for0<r<1
f: X(oo)—>ﬁ//><pu Gus y(x,i, 1) > (zix, (1 +1/2)e;) for —1<t<0
(x,u) > (x,u/2) foruel,
and the homotopy equivalence
T X:WXFMGMHW

given by Proposition 1.7. For every y € G, there is a unique g € Fj, such that
gy € I,L\{e;r,e;,...,e;}, so that either gy = lel.+ with 0 <7 <1, 0r gy = te;
with 0 <7 <1, and

Ll WXFM Gy — X(00) :
(gx.i,2(1—1)) if gy =te;f with1/2<t <1
[x,y]—~ (zl._lgx,i,Z(t— 1)) ifgy=te; withl/2<r<1
(gx,gy) if2gyel, (ieif —1/2<t<1/2).
PropoAs,ition 1.15 Given a space W with F, —cover p: W — W and a subspace
VW let
X(V)=Y(V)x[-11]Uygyxi-1,13 Z(V) € X (c0)
with
a(MFY(WV)i=VNz7lV—Z(V)=V x Iy x> (zix,el),
a(V)7:Y(V)i=VNnz7'V>Z(V)=VxI; x> (x.¢),
and set
h(V) = h(co)|: X(V) = W: (x.1) = p(x).
(i) ForanyxeV
hV) ™ (p(x)) = {(x, ») € W xp, G|y € Gu(V, x)}
= {x}x Gu(V,x) S X(V) C X(c0) = W xF, Gy
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with G, (V,x) € G, the subgraph defined by
G,L(V,x)(o) ={geFulgxeV}c G,(LO) =F,,
G,L(V,x)(l) ={(i,g)|gx,gzixeV}C G,(Ll) ={1,2,...,u} x Fy.
(ii) The image of h(V) is
h(VYX(V) =p(V)S W,
so that h(V') is surjective if and only if p(V) = W, if and only if UgGFM gV = w.

Proof By construction. |

In particular, if V = W then
(X(V).Y(V), Z(V),h(V)) = (X(00), Y (c0), Z(00), h(c0))
and (V): X(V) = X(c0) — W is a homotopy equivalence (since it has contractible

point inverses).

Theorem 1.16 (Combinatorial transversality) Let W be a connected finite CW
complex with a connected F,—cover p: W — W . The canonical homotopy F, —
splitting (X (00), Y (00), Z(0), h(c0)) of W is a union

(X(00), Y(00), Z(00), h(00)) = | J(X(V), Y(V), Z(V), h(V))
v}
of simple homotopy F —splittings (XLV), Y(V),Z(V),h(V)) of W, with {V} a
collection of finite subcomplexes V C W such that
r=w. | Jv=w.
{3
In particular, there exist simple homotopy F —splittings of W .

Proof Let
w=|Jp°ul Jp"u...ul JD"
be the given cell structure of W, with skeleta
w® = Jp°ul Jp'u...ul JD".

The characteristic maps D" — W of the r —cells restrict to embeddings D" \S" "1 c W
on the interiors, and as a set W is the disjoint union of the interiors

w=| | p%ul J(d"\s%u...ul J>"\s" .
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Choose a lift of each r—cell D" in W to an r—cell D' in W, so that

=) Jegd'u | JeD'u...u | | JgD".

geF, geF, geF,

Write ¢: S” — W) for the attaching maps of the (r+1)—cells in W, and let ¢ ST —
W) be the attaching maps of the chosen lifted (r+1)—cells in W . For any subtree

T, € Gy there exists a sequence of subtrees 7, € G, for r =n—1,n—2,...,0 such
that
(S WDy U gD (*)
8gr GT,.(O)
The sequence T = (T, Ty—1, ..., Ty) determines a subcomplex
=0 ~1
U Usgd'u |J UaD u...u |J JeD"cw
goeT” g1T” gnel,”

such that p(V(T)) = W. The map h(V(T)): X(V{(T)) — W constructed in Propo-
sition 1.15 is surjective, with contractible point inverses

hVAT) N (p(x) = Gu(V,x) =T, (p(x) e D'\S""' C W),

so that it is a homotopy equivalence and (X (V(T)), Y(V(T)), Z(V(T)), h(V{(T)))
is a homotopy F,—splitting of W . For the maximal sequence 7" = (G, Gy, ..., Gyu)
V(T)= W and we have the canonical homotopy F—splitting (X (00), Y (00), Z(c0),
h(oo)) of W. Any finite subtree 7, C G, can be used to start a sequence 7 =
(Ty, Ty—1, ..., Ty) of finite subtrees T, C G, satistying (%), since for each r =
n,n—1,...,1 the r—cells D" — W are attached to a finite subcomplex of the
(r—1)— skeleton W=D For a sequence T of finite subtrees (X (V(T)), Y(V(T)),
Z(V(T)),h(V(T))) is a simple homotopy F, —splitting of W . Finally, note that G,
is a union of finite subtrees 7, C G, so that (Fy, Fy, ..., F},) is a union of sequences
T =Ty, Ty—1,...,Tp) of finite subtrees 7, C G, satisfying (), with corresponding
expressions

W:UV(T)
(X(00), Y(00), Z(00), h(oo))—U(X(V D, Y(VAT)), Z(V(T)), h(V(T))).

This completes the proof. O
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2 Algebraic transversality for A[F,]-module complexes

Algebraic transversality for A[F,]-module chain complexes is modelled on the combi-
natorial transversality for F, —covers of Section 1. The procedure replaces matrices
with entries in A[F),] by (in general larger) matrices with entries of the linear type

"
ai +Zaz,.z,- € A[Fy] (ai.az,...,az;, € A).
i=1

Algebraic transversality can be traced back to the work of Higman, Bass—Heller—Swan,
Stallings, Casson and Waldhausen on the algebraic K—theory of polynomial extensions
and more general amalgamated free products. See of Ranicki [33, Chapter 7] for a
treatment of algebraic transversality in the case u = 1 when A[F,] = A[z,z71] is the
Laurent polynomial extension of A4.

Definition 2.1 Given an A—-module P and a set F let
P[F]= P xP
xeF

be the direct sum of copies x P of P, consisting of the formal 4A-linear combinations
> xax (ax € P) with {x € F|ay # 0} finite.

xeF

In particular, if F is a semigroup with 1 then A[F] is a ring.

We shall be particularly concerned with the case of a free group F' = F), or the free

semigroup F /j' on [ generators Zi,Z,...,Zy. Thus F /j' C Fy consists of all the
products z?ll 2?22 ...z;’k" with 71,15, ..., ng = 0. The rings A[F,], A[F,] are free
products

AlFu) = Alzy. 27 Toa Alza. 25 Ta g Alzp ',
A[F; ] = Alz1] %4 Alz2] 54 - %4 Alzp).

For any ring morphism k: A — B induction and restriction define functors
ki: {A-modules} — { B—modules}; L+— kil = B®y L,
k': { B-modules} — {A-modules}; M > k'M =M

such that k; is left adjoint to k', with a natural isomorphism

HornA(L,k!M) — Homp(kiL, M); f+ (b® x> bf(x)).
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Definition 2.2 An A[F]-module is induced if it is of the form
P[F|=kP=A[F|®4 P

for an A-module P, with k: A — A[F] the inclusion.

Proposition 2.3 Let P, Q be A—modules.

(i) There is defined a natural isomorphism of additive groups

Homy (P, Q[F]) — Homyp)(P[F1. Q[F): [+ (D vy D /(&)

yeF yeF

(ii) There is defined a natural injection of additive groups

Hom(P, Q)[F]— Homy(P, Q[F]); Y xfur>(y > Y xfx(»).

xeF xeF

(iii) If P is a f.g. projective A—module the injection in (ii) is also a surjection, so
that the composite with the isomorphism in (i) is a natural isomorphism allowing the
identification

Homy (P, Q)[F] = Homyp|(P[F], Q[F]).
Proof (i) This is just the adjointness of ky and k', with k: A — A[F] the inclusion.
(i) Obvious.

(iii) It is sufficient to consider the case P = A. O

Definition 2.4 Let P be an A—-module which is given as a pu—fold direct sum
P:Pl GBPZ@"'@PM
with idempotents w;: P — P; — P.

(i) Define the A[F]-module endomorphism

z1 0 -+ 0
u 0 zp -~ 0
z=) mz=|. . . . |:PIFI=PF]I® P[F]®- & Pu[F]
P Dot
0 0 - z

—> P[F]= P|[F]® P,[F]®---® P,[F].
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For F = F, this is an automorphism, with inverse

;b0 e 0

» u . 0 22—1 e 0
=Y mzt = L | PlEu = PIFA@ PAFU] @@ PulF]

P Do

o 0 --- 2;1

—> P[Fy]= P\[Fu)® Pr[Fu]® - @ Pu[Ful
(i) Given a collection of A—module morphisms
e ={e; e Homy(P;, Q)|1<i<pu}
define the A[F]-module morphism

“w
ez =Zemz,~=(elzl €2Zy - eILZUv): P[F]:PI[F]®P2[F]®@PM[F]_)Q[F]

i=1
(iii) An A[F]-module morphism f: P[F]|— Q[F] is linear if
R R T A Ok
P[F] = Pi[F]® P,[F]&--- & Pu[F] — Q[F]

for some A-module morphisms f, f=: P; — Q.

Definition 2.5 (i) A Mayer—Vietoris presentation of an A[F]-module E is an exact
sequence of the type

0— > é CO[F] / D[F] E 0

i=1

with C®, D A-modules and f = fz— f~ alinear A[F]-module morphism.

(ii) A Mayer-Vietoris presentation of an A[F]-module morphism ¢: E — E’ is a
morphism of Mayer—Vietoris presentations

0 —> é CO[F] f D[F] E 0

i=1

l@g(") h ¢
w . !
0 — @ C'I[F] A D'[F]—= E/ — 0

i=1
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where g@®: €@ — "D and h: D — D’ A-module morphisms.

(iii) A Mayer-Vietoris presentation of an A[F]-module chain complex E is an exact
sequence as in (i), with C @ D A-module chain complexes and f+i: C @ D
A-module chain maps. Similarly for an A[F]-module chain map ¢: E — E’, with a
morphism of exact sequences as in (ii) in which g, i are A-module chain maps.

(iv) A Mayer—Vietoris presentation of a finite induced f.g. projective A[F,]-module
chain complex FE is finite if C @ D are finite f.g. projective A—module chain com-
plexes.

Example 2.6 Let X be the CW complex
X=Z/{x~,3i(x)|xeYi+,1$i $/L}
which is obtained from a CW complex Z and disjoint collared subcomplexes
YL Y Yy Y Y, CcZ

using cellular homeomorphisms f;: Yl.Jr — Y, as identifications. As in Definition 1.8

there is an F, —splitting (X, Y, Z, h), where ¥ = Y1+ U Y2+ u...u Ylj' and

+ _ .
o = 1nclus1onYi+ cz

o = (inclusionylfcz)ﬁii Y; = Yi+ - Z.

:Y,~=Yi+—>Z,

The cellular free Z[F,]-module chain complex C (f ) of the F,—cover X of X given
by Proposition 1.9 (i) has a Mayer—Vietoris presentation

0 —— C(V)[Fu] —%= C(Z)[Fy] C(X) 0

with C(Y)® = C(Y;), C(Z) free Z-module chain complexes, and « =Tz —a~ a
linear Z[F]-module chain map. If Z is a finite CW complex the Mayer—Vietoris
presentation is finite.

We shall construct Mayer—Vietoris presentations of free A[F,]-module chain com-
plexes using the Cayley tree G, (Definition 1.3) and the subtree G;J[ C Gy, correspond-
ing to Ff C Fy.

Definition 2.7 (i) Let G,/ C G, be the subtree with

GHO=FF (GHY ={(g.gz)lge FF.1<i<u}.
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(ii) For any subtree T C G, and i =1,2,...,u let ey C T be the set of edges
of type (g, gz;) with g € Fy, such that

w
O =16,
and let =
TH=TNnG; CT.

(iii) For F = F, (resp. F,l)let G = Gy (resp. G,1).

We shall only be considering subtrees 7' C G containing the vertex 1 € G ©
Proposition 2.8 Given an A-module P let E = P[F] be the induced A[F]-module,
regarded as a O—dimensional A[F]-module chain complex.

(i) For any subtree T € G there is defined a Mayer—Vietoris presentation of E

wo
E(T): 0 —— @ CO[F] S D[F]—=E ——>0

i=1
with . .
D=P[T®], cD=p mzi—lD — P[TGD]C E,

i C® 5 D xprsxp, [T CO = Dy xp s zixp.

(i) The Mayer-Vietoris presentations E{T) are such that

E(TNTY=E(T)NE(T"Y, E(TUT'Y=E(T)+ E(T"Y (T.T'CG).
If P is f.g. projective and T is finite then C Y| D are f.g. projective A—modules.
(iii) Given a morphism of induced A[F]-modules

¢: E = P[F]— E' = P'[F]
and a subtree T € G let ¢ T < G be the smallest subtree such that
¢(P) S PpTO1C E.

For any subtree T" C G such that ¢.T C T' there is defined a morphism of Mayer—
Vietoris presentations
“ ; f
E(T): 0—— @ CO[F D[F] E 0

i=1

l@g(") h ¢
T 0— & COLR L DR — o

i=1
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with .
gD =¢:cD>5c'? p=¢: DD
If Pisat.g. A-module and T C G is finite, then so is ¢+T C G .

Proof By construction. a

Example 2.9 The Mayer—Vietoris presentation of £ associated to the minimal subtree
T={1}CGis

0 0 P[F] E 0.

Definition 2.10 The canonical Mayer-Vietoris presentation of an A[F]-module chain
complex E with each E, = P,[F] an induced A[F]-module

E{o0) : 0 — é CO[F) L DIF|—=E —>0

i=1

is the Mayer—Vietoris presentation with E, (oo) = E,(T) the Mayer—Vietoris presen-
tation of E, associated to the maximal subtree 7'= G C G, where

fHi=id, fT=z:CO=K'E->D=KE
with k: A — A[F] the inclusion.

Remark 2.11 (i) The canonical Mayer—Vietoris presentation can be written in terms
of induction and restriction

E{o0) : OHEBkzk!EfHk!k’EHEHo
“w
with
I @k!k!E—>k3k!E; Xi®yrXxizi®y—x;i®zjy (x;j€ A[F],y € E),
w
kk'E—E; x®y—xy (xeA[F],yckE).

(i1) The canonical Mayer—Vietoris presentation for F = Fj, is the algebraic analogue

of the canonical homotopy F,—splitting of a space W with an Fj, —cover W in
Definition 1.14.

Theorem 2.12 (Algebraic transversality for chain complexes) Let E be an n—
dimensional A[F]-module chain complex

d, d
E: En —> E,_4 E| — > E,
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with each E, = P,[F] induced from an A-module P, .
(i) For any sequence T = (Ty, Ty,—1, ..., Ty) of subtrees T, C G such that
d)«(Ty) STy (r=nn—1,...,1) ()

there is defined a Mayer—Vietoris presentation

oo -
@ cOF 22 pr E 0

i=1

E(T): 0

with
E{(T), =E.{T;) (0<r<n), E(T)CE{x).

(i) Ifthe A—modules P, are t.g. projective then for any finite subtree T, G there
exists a sequence T = (Ty,, Ty—1, ..., Ty) of finite subtrees T, C G satisfying (), so
that E(T) is a finite Mayer—Vietoris presentation of E. Thus

E(oo) = J E(T)
T

with the union taken over all such sequences T . In particular, E admits a finite
Mayer—Vietoris presentation.

Proof By repeated applications of Proposition 2.8, with the sequences T' = (T}, Ty—1,
..., Tp) the chain complex analogues of the sequences used to construct the homotopy

F, —splittings of CW complexes in the proof of Theorem 1.16. |

This completes the proof of Theorem A of the Introduction.

3 Blanchfield and Seifert modules

3.1 The Magnus-Fox embedding

This section obtains some technical results on the Magnus—Fox embedding which
we shall need to characterize Blanchfield A[F,]-modules, and to approximate h.d. 1
F,,—link modules by f.g. projective Seifert A—modules.

Let A{xy,x2,...,xy)) be the ring of A—coefficient formal power series in non-
commuting indeterminates X1, X3, ..., Xy, . The Magnus—Fox embedding is defined
by

i A[Fu]— A[Fp) = A((x1. %2, ....x0): zj > 1+ x;.
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See the paper of Ara and Dicks [1] for a recent account of the Magnus—Fox embedding,
including the relationship with noncommutative Cohn localization.

The augmentations €(zj) = 1, €(x;) = 0 give rise to a commutative triangle of rings

i

A[Fy) A[F,)
X 7
A
Proposition 3.1 (i) For projective M] —modules K, L the augmentation map
€: Hom 7, (f(\, Z) — Homy (4 ® 4TF] IE’A®A[/FM] f,), f>1ef

is surjective.

(il) A morphism f :K— L of projective EF\M] —modules is an isomorphism if and
only if the A—-module morphism

1®f: A®A["FM]K—>A®A[’FM]L
is an isomorphism.

(iii) A morphism f: K — L of projective A[F,]-modules induces an m] —module
isomorphism

1® f A[F[,L] ®A[Fu] K — A[FM] ®A[Fu] L
if and only if the A—module morphism
1® f: A®4F ) K > A®uF, 1 L

is an isomorphism.

Proof (i) By additivity this reduces to the special case K=L= A[Fy], which is

—_—

just the fact that €: A[F,] — A is surjective.

(i) It suffices to prove that if 1 ® f is an A-module isomorphism then f is an

—

A[F]-module isomorphism.

Consider first the special case when K. L are free m] —modules, say m]k ,
A[F, M]Z for some sets k,£. The augmentation map

€: Hom —— (m]k,mf) —>HomA(Ak,A€); f1ef
A[Fy]
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has a canonical splitting. If 1 ® f is an isomorphism then all the entries in the matrix
of the A[F},]-module morphism

g=1-(1& 7"/ A[F ) — A[F.)f

have constant term 0, so that | —g = (1 ® f )1 f is an M] —module isomorphism
with inverse

_ k
I-—g) '=1+g+g>+& +g*+-: A[F I — A[F,] |

and f: 1e f)(l — g) is an isomorphism.

For the general prOJectlve case apply (i) to lift (1 ® f )~! to an A[F M]—module
morphlsm ¢: L — K. Choose a projective A[F M]—module J suchthat J® K@ L is
a free A[ F,,]-module, and apply the special case to the A[F ]-module morphism

1@(0 e) JoRelsJeokael.

/0
(iii)) This is a special case of (ii). O
For j =1,2,..., let y; be a formal square root of z;, so that (yj)2 =zj. Let

Fu(y) be the free group generated by yi, ys,..., yu, so that F,, C F,(y) is the
free subgroup generated by zy,z2,...,z,. We can identify G,(Ll’j ) with the subset
F,yj C Fyu(y): the edge (g,gzj) € G,(Ll’j) (g € F,,) is identified with the element
gy; ' € Fu(y).

Lemma 3.2 If T C G is a finite subtree then

w
ATO1= A1} @ (EB AT D)y - yj)) C A[Fy]. (*)
j=1

Proof If w € T/ then certainly w(yj_1 —Jj) € A[T©]. Let us check linear
independence of the generators on the right hand side of (x). Assuming the contrary,
let

ar+ ) agg(yi'—yj) =0€A[F]

gyj'eU

be a non-trivial relation with U ¢ 71 non-empty and minimal. We reach a contradic-
tion by observing that if g( yj)_1 € U is a word of maximal length (in reduced form)
then ag = 0.
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We must also show that every v € 7O js an element of the right-hand side of (x).
Indeed there is a (unique) path in the tree from 1 to v defined by a sequence of edges
wi, Wa,..., Wy, € T and we have

n
v=1+ Z wi()’j_(,!) —Vi@)ni € A[Fy]
i=1

if the signs 1; € {&1} are chosen appropriately and j (i) is such that w; € T(-/@) ¢

Proposition 3.3 For any finite subset S C F), the inclusion i|: A[S]— A/[—I*?] is a
split A—module injection.

Proof Since every finite S is contained in the vertex set of some finite tree we may

assume that S = T for some finite subtree T C Gy . We proceed by induction on
7.

If the tree 7' has only one vertex then 7 = {1} with i(1) =1 € m] and

u 2
A[F,) = Al @ P AlFulxi = Ao @D A[Fu](1—-2]) (%)
i=1 i=1

—

for any n € {£1}, and i|: A[{1}] = A[F}] is a split injection.

Suppose now that |7©| = 2. Let vy € T be a leaf, ie a vertex to which only one
edge is incident. Let T\{vo} denote the tree obtained by removing the vertex vy and
the incident edge. By the inductive hypothesis, i |: A[T©\{vo}] — M] is a split
injection; we denote the image by P.

Since vq is incident to precisely one edge then vy = wy yZ for unique n € {£1},
ke{l,...,n} and wy € T4 Now for every j we have T(l’j)yj_" C TO\{w,}.
Thus

N o )
Tt = yj) =TEDy 1=y
= 70Dy (1= Dy € (TO\fwoh (1 = ]
It follows from (%) that i (A[T(]) is a direct summand of
"
Ai (vy) @ @ P(1—z])
j=1

and hence, by the following Lemma 3.4, a direct summand of M] |
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—

Lemma 3.4 Suppose P is an A—module which is a direct summand of A[F]. If
6 € A[F,] is an element such that €(6) =1 € A and n=1 or —1 then

w
A0 [P PU-z]) | C A[F,]
j=1

is again a direct summand.

Proof We may write A/[F\u] = P & Q for some A-module Q. Let n =1 or —1.
Now it follows easily from (xx) that

A[F,] = A0 @ (é A[F,](1 —2}7))

J=1

w w
= A6 @ (EB P(1—z]’.7)) ® (EB Q(l—zj’?))

J=1 J=1

which completes the proof. |
3.2 Blanchfield modules
Definition 3.5 (i) A Blanchfield A[F,]-module M is an A[Fy]-module such that

TorAFud (4, M) = o.

(ii) (Sheiham [41]) An Fy—link module M is an A[F,]-module which has a 1—
dimensional induced A[F),]-module resolution

with P an A-module and d an A[F,]-module morphism such that the augmentation
A-module morphism €(d): P — P is an isomorphism.

As before, let k: A — A[F,] be the inclusion.

Proposition 3.6 The following conditions on an A[F,]-module M are equivalent:

(i) M is a Blanchfield module,
(i) M is an F,, —link module,
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(iii) the A-module morphism

w
VM @k!M —k'M; (my,ma,....,my) Z(Zi —Dm;
w i=1

is an isomorphism.

Proof The canonical Mayer—Vietoris presentation (Definition 2.10) of any A[F]-
module M is defined by

0 — @ kik'M d—>lqk!M — M —0

n
with
d: @Mkyk!M —Skk'M; xiQy > xiziQy—x; ®zjy (xi€ AlFyl,y e M),
k!k!M=k!M[Fu]—>M; XQ@yr>xy (xeAlFu.yeM),

such that d has augmentation A-module morphism

e(d)=—ym: Pk'M > k'M.
w

Regarded as a right A[F,]-module A4 has a 1-dimensional f.g. free resolution

& arg BT gipg ey 0,

i=1

so that for any A[F}]-module M

A®y[F,] M = coker(ypy) ifn=0,

Torg Fnd(4, M) = {ker(yar) ifn=1,
0 ifn=2.
The equivalences (i) <= (ii) <= (iii) are now clear. O

Definition 3.7 (i) Let Blax(A) be the category of Blanchfield A[F)]-modules,
and let Bla(A) C Blax(A) be the full subcategory of the h.d. 1 Blanchfield A[F},]—

modules. (In view of Proposition 3.6 Blas(A) is the same as the F},—link module
category Flkoo(A) of Sheiham [41]).

(ii) Let FIk(A) C Bla(A) be the full subcategory of the h.d. 1 Blanchfield A[F]-
modules M such that there exists a 1-dimensional induced A[F},]-module resolution
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with P af.g. projective A—module.

Example 3.8 (i) For a principal ideal domain A4
Ko(A[Fu]) = Ko(4) =

(see Bass [3]) so that

Bla(A) = Flk(A).
(ii) A finitely presented Blanchfield Z[F,]-module is a ‘type L’ Z[Fy]-module in
the sense of Sato [37].

(iii) Given a u—component boundary link £: | |, S" C S "2 let c: W — W, be a
Z-homology equivalence from the exterior W to the exterior Wy of the trivial -
component boundary link £o: | |, $" C S™*2 with F, w—equivariant lift ¢: W — W,
to the F, —covers. The homology groups H, (W) H*+1( W — Wo) are Blanch-
field Z[F},]-modules of homological dimension < 2. Each H, (W) has a Z—contracti-
ble f.g. free Z[F,]-module resolution of the type

0— ZIFu )" — ZIF, )" — ZIF, )" — H, (W) =0 (0<r<n+1)

with a, — b, + ¢, =0, and H (W) /Z-torsion is an h.d. 1 F, —link module (Levine
[26, 3.5] for u = 1, Sato [37, 3.1] and Duval [12, 4.1] for u = 2). See Example
3.13 below for the construction of an (n4-1)-dimensional chain complex C in Sei(Z)
such that the coverlng B(C) is an (n+1)—dimensional chain complex in Filk(Z) with
H.(B(C)) = Hy(W).

The following Proposition 3.9 characterizes Blanchfield A[F,]-modules in terms of
A[F]-modules K such that

F
Tor "4 (4, K) = 0.

If K is a flat A[Fy]-module then Torf[F“](B, K) = 0 for any right A[F},]-module
B, and in particular B = 4. If K = P[F,] is induced from an A-module P then

A[F,]

Tor] " “!(A, P[Fy]) = Tor{'(4, P) = 0.

Proposition 3.9 (i) If M is an A[F,]-module with a resolution

0 KdL M 0

such that
Tor Xl (4, K) = Tor! (4, 1) = 0
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(e.g. the canonical Mayer—Vietoris presentation of Definition 2.10) then M is Blanch-
field if and only if the A-module morphism 1 ® d: A ® 4f,) K — A ® 41,1 L is an
isomorphism.

(i) A morphism d: K — L of projective A[F,]-modules is injective and M =
coker(d) is a Blanchfield A[Fy]-module if and only if the A-module morphism
1®d: A®4F,] K = A®(F,) L is an isomorphism.

Proof (i) It follows from Proposition 3.6 and the commutative diagram with exact
rows and columns

0 0
A[F,] M YK
Tor] " “/(A4, K) =0 ©® K K AR uF ) K ——0
i=1
i@d d 1®d
K YL
Tor! P4, Ly =0 — B L L A®qiF,) L 0
i=1
w
i=1

that M is Blanchfield if and only if 1 ® d is an isomorphism.

(ii) If d is injective and M is Blanchfield then 1 ® d is an isomorphism by (ii), since
projective A[Fy,]-modules are flat. Conversely, if 1 ® d: A ®4(r,] K - A ®4(F,] L
is an isomorphism then 1 ® d: IEF\M] Q4F, 1 K — EF\M] ®4(F, L is/an\isomorphism
by Proposition 3.1 (iii), and it follows from the injectivity of K — A[Fu) ®4F, K,
L — A[F,]®4(F,] L and the commutative diagram

d L

I

—

&
A[Fu)® 4iF, ) K — A[Fu]l® 4iF, L
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that d: K — L is injective. |

The idempotent completion P(E) of an additive category £ is the additive category
with objects pairs (M, p = p%: M — M) defined by projections p of objects M
in £, and morphisms f: (M, p) — (N, q) defined by morphisms f: M — N in
E such that gfp = f: M — N. As usual, £ is idempotent complete if the functor
E—P(); M — (M,1) is an equivalence, or equivalently if for every idempotent
p = p* M — M in & there exists a direct sum decomposition M = P @ Q with

p=((1) 8) T M=PQ0—>M=P& Q.

For any exact category & there exists a full embedding £ C A in an abelian category .4
(Gabriel-Quillen), and the idempotent completion P (&) is equivalent to the full exact
subcategory of A with objects im(p) for objects (M, p) in P(E). For &€ = Flk(A) C
A = Blas,(A) we have that P(Flk(A)) C Blaso(A). In fact, we have:

Proposition 3.10 (i) The exact categories Prim(A), Sei(A), Bla(A) are idempotent
complete.
(ii) The idempotent completion of Filk(A) is equivalent to Bla(A)
P(Flk(A)) ~ Bla(A).

Proof (i) The exact categories Prim(A), Sei(A), Bla(A) are closed under direct
summands.
(ii) For any f.g. projective A[F,]-modules K, L the augmentation map

e: Homy(p, (K, L) — Homy (A ®4(F,] K, A®4F,L); d > 1®d

is surjective, by the following argument: choose f.g. projective A[F,]-modules K', L’
such that
K@K =A[F,f, Lo L' = A[F,]*

for some k, £ = 0, and note that the augmentation map
e: Homy(p, (K ® K', L & L') = Homy(p, ) (A[Ful*, A[Fu]")

— Homy (A ®(F,] (K ® K'), A®4ir,) (L & L)) = Homy (4%, 4%)
is surjective. Given an h.d. 1 Blanchfield A[F,]-module M with a f.g. projective

A[Fy]-module resolution

0 K L M 0

Geometry € Topology, Volume 10 (2006)



Blanchfield and Seifert algebra 1803

we know from Proposition 3.9 (i) that 1 ® d: A ® 4iF,) K > A ®4[F,) L is an A~
module isomorphism. By Proposition 3.1 (i) it is possible to lift (1 ® d)~! to an
A[F]-module morphism e: L — K, so that by Proposition 3.9 (i) e is an injection
with

N = coker(e)
an h.d. 1 Blanchfield A[F,]-module. Let J be a f.g. projective A[F,]-module such
that J @ K @ L is f.g. free, say A[F,]". The A[F,]-module morphism

f:l@(g (e))  J®KDL=AF,)">J®K®L=A[F,]"

is such that 1 ® f: A™ — A™ is an isomorphism, so that coker(f) = M @ N is an
h.d. 1 Fj—link module. The functor

Flk(A) — Bla(4); M — M
is a full embedding such that every object in Bla(A) is a direct summand of an object in

Flk(A), so that Bla(A) is (equivalent to) the idempotent completion P(Flk(A)). O

3.3 Seifert modules

Let O be the complete quiver which has p vertices and w? arrows, one arrow between
each ordered pair of vertices. The path ring is given by

Ou="1Zlel*Z[my, 7, ... .70 | mimj = 8ijmi, Y b i = 1]

where m;em; corresponds to the unique path of length 1 from the i th vertex to the
Jj th vertex. An A—-module P together with a ring morphism p: Q, — End4(P) is
essentially the same as a triple (P, e, {m;}) with e: P — P an endomorphism, and
{m;j: P — P} acomplete system of x idempotents. (Such representations of Q,, were
first considered by Farber [14] for particular A4.)

Definition 3.11 (i) A Seifert A—module (P,e,{m;}) is an A-module P together
with an endomorphism e: P — P, and a system {m;: P — P} of idempotents express-
ing P as a pu—fold direct sum, with

i P=Pi®P,®---®Py— P; (x1,x2,....,x4) = (0,...,0,x;,0,...,0).
(i) A morphism of Seifert A-modules
g (Pe{mi}) — (P e’ {n}})
is an A-module morphism such that

ge=¢'g, gni=mnjg: P— P'.
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The conditions gm; = 7;g are equivalent to g preserving the direct sum decompositions,
so that

g1 0 0
0 &2 0
g=|0 0 0 P=P &P, ® &P, >P =P ®P& &P,
o . 0
0 0 ... gu

with g;: P; — P].

(iii) The Seifert A—module category Seis(A) has objects Seifert A—modules and
morphisms as in (ii). Let Sei(A) C Seix(A4) be the full subcategory of the Seifert
A-modules (P, e, {m;}) with P f.g. projective.

3.4 The covering functor B

Seifert modules determine F),—link modules by:

Definition 3.12 (i) The covering of a Seifert A—module (P, e, {m;}) is the Fy—link
module
B(P,e, {m}) = coker(1 —e +ez: P[F,]— P[Fy.])

with Mayer—Vietoris presentation
s d
OH @ PI[FM]HP[FM]HB(Pve?{nl})ﬁov
i=1

where d = 1—e +ez.
(i) The covering of a Seifert A—module morphism g: (P, e, {m;}) — (P, ', {n}})
is the Fj, —link module morphism

B(g) B(Pve’ {T[i}) - B(P/’e,’ {711/})’ X = g(X)
resolved by

0 — P[Fu] —%~ P[F,] — B(P, e, {m}) —— 0

N

0 — P'[Fy] — P'[Fy]— B(P'.¢' {n]}) —=0

withd=1—ce+ez,d =1—¢'+¢'z.
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Example 3.13 Let ¢: | |, S"CS "+2 be a p—component boundary link with exterior
W, so that there exists a Z-homology equivalence c: W — W, to the exterior Wy of
the trivial u—component boundary link £¢: |_] wS'CS n+2 The (n42)—dimensional
f.g. free Z[Fy]-module chain complex

C(W)=C@ C(W) - C(Wp))at1

is Z—contractible. For any u—component Seifert surface V =V uV,u...uV, CS nt+2
for £ there exists a degree 1 map V — V, to the u—component Seifert surface
Vo=1Ll, D"t §"F2 for £,. Let

)7
C(Vi) =C(C(Vy) = C(D" ))uyr, C(V)=) C(V).

i=1

The map V — S"*2\V pushing V off itself in the positive normal direction combines
with chain level Alexander duality to induce a Z—module chain map

e: C(V) = C(S"PA\V, [, {pt}) =~ CO)" T,

so that there is defined an (n+1)—dimensional chain complex (C(V),e,{m;}) in
Sei(Z). The covering B(C(V), e, {m;}) is an (n+1)—dimensional chain complex in
Flk(Z), with the projection

Cl—e+ez: C(V)[Fu]— C(V)[F,]) = C(W)
— B(C(V), e, {m}) = coker(1 —e 4+ ez: C(V)[F,]— C(V)[F,)

a homology equivalence.

The covering construction defines a functor of exact categories
Boo: Seing(A) = Blax(A); (P,e,{m;}) — B(P,e,{m;})
which restricts to a functor B: Sei(A) — Flk(A).

Definition 3.14 A morphism f in Seiso(A4) is a B—isomorphism if B(f) is an
isomorphism in Blass(A4). Let Es denote the set of B—isomorphisms in Seixo(A),
and let E denote the set of B—isomorphisms in Sei(4).

3.5 Blanchfield/Seifert algebraic transversality

We shall now use the algebraic transversality of Section 2 to establish that every h.d. 1
Fy—link module M is isomorphic to the covering B(P, e, {m;}) of a f.g. projective
Seifert A—module (P, e, {m;}), uniquely up to morphisms in E.
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We refer to Sheiham [41] for the proof that Beo: Seico(A) — Flkoo(A) induces an
equivalence of exact categories Boo: EgolSeioo (A) ~ Flkoo(A). Algebraic transver-
sality will be used to prove that the universal localization Sei(A4) — E~!Sei(A) has a
calculus of fractions, and that the covering functor B: Sei(A) — Flk(A) induces an
equivalence of exact categories B: E~1Sei(A4) ~ Flk(A).

Given an Fj —link module M let U(M) = (M, epr, {m;}) be the Seifert A—module
defined in [41] — the definition is recalled in the Introduction of this paper, along with
the fact proved in [41] that B, is a left adjoint of

Uso: Blaso(A) — Seio(A): M v U(M).

The natural isomorphism of the adjointness

Homygy,, ) (B(Q, /. {pi}), M) —=> Homsip () ((Q. f{pi}), UM));
g > adj(g) =U(gh
is defined for any Seifert A-module (Q, f, {pi}), with

h: Q C Q[Fu]— UB(Q. f.{pi})

the restriction of the canonical surjection Q[F,] — B(Q, f,{pi}). If M ish.d. 1 and
(0O, f,{pi}) is f.g. projective the natural isomorphism can be written as

Homzy(4)(B(Q, f.{pi}), M) = Homs,;,4)((Q. f.{pi}), U(M))
but note that in general U(M) is not a f.g. projective Seifert 4—-module.

The following result establishes that for an h.d. 1 F,—link module M the Seifert
A-module U(M) is the direct limit of a directed system of f.g. projective Seifert A—

~

modules (P, e, {m;}) and morphisms in E, with isomorphisms B(P,e,{m;}) = M .

Theorem 3.15 (Blanchfield/Seifert algebraic transversality) Let M be anh.d. 1 F),—
link module, with a 1-dimensional induced f.g. projective A[F,]-module resolution

OHP[FM]gP[FM]HMHO

such that €(d): P — P is an A—-module isomorphism.

(i) Let I be the set of ordered pairs T = (Ty, T}) of subtrees Ty, T} < G, such
that d,(Ty) € Ty. The set I is partially ordered by inclusion, with maximal element

Toax= | J T =(Gu.Gp) € Ino.
Tels
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There is defined a directed system of Seifert A—modules (P{(T),e(T),{m;(T)}) and
morphisms in E
(T, T'): (P(T), e(T), Ami(T)}) — (P(T"), e(T") Ami(T")}) (T ST’ € loo)
with direct limit
li_II)l (P(T), e{T) Ami(T)}) = (P{Tmax)» €{Tmax) 17i (Tmax)}) = U(M).
Tels
For any T = (Ty,Ty) € Iso the morphism ¢{(T, Tiax): (P{T),e{(T),{mi{T)}) —
U(M) is the adjoint ¢(T, Thax) = adj(¢(T)) of an isomorphism in Flk(A)
o(T): B(P(T).e(T) Ani(T)}) — M
such that for any T C T' € I« there is defined a commutative triangle of isomorphisms

in Flkoo(A)

B(op(T, T’
B(P(T),e(T) {mi(T)}) %

¢(T) o(T")

~ ~

B(P(T"),e(T") Ami(T")})

In particular, ¢{T, Thyax) € E o -

(i) Let I C I be the subset of the ordered pairs T = (Ty, T}) of finite subtrees
To. Ty C Gy such that dxTy C Ty. For T € I (P(T),e(T),{ni(T)}) is a f.g. projec-
tive Seifert A-module, and

lim (P(T'), e(T), {mi(T')}) = UM)
Tel

with (T, TV e E (T ST €1).

(iii) For any f.g. projective Seitert A—module (Q, f,{p;}) every morphism
g: B(Q, fi{pi}) > M

in Flk(A) factors as

B(g(T)) B(P(T).e(T). {m;(T)}) @ M

g: B(Q’f’{pl})

for some T € I, with g(T): (Q, f,{pi}) = (P(T),e(T),{w;i(T)}) a morphism in
Sei(A).
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Proof (i) The induced f.g. projective A[F,]-module chain complex
d
E: Ey = P[Fy] —— E¢ = P[F,]

is such that Ho(E) =M, H;(E)=0. By Theorem 2.12 for any subtree 77 C G there
exists a subtree d«(77) S G such that for any subtree Ty € G, with d«(T7) S Ty
E admits a Mayer—Vietoris presentation

ffz—f

E(T1): 0 @Cl(i)[Fu]—l>D1[Fu] Ey 0

idc dp d

fofz—fy
2= 0 Do[Fu] E, 0

with ¢V =P[T"V]. D;j=P[T”] € Ej=P[F,] (j=0.1).
and de =@, d: @ ,cP > @, c?, dp=d|: D, — Dy.
The A-modules defined by
P(T) = coker(d|: ) - c?),
P(T) = coker(dc) = @', Pi(T),
Q(T) = coker(dp)

fit into a commutative diagram of A[F},]-modules with exact rows and columns

0 0 0
Ko ) ey
0 @ C,’[Ful —— D[Fy] P[Fy] 0
i=1
de dp d
Ko fo =1y
0 D CO1F] 2 Dy[F,] P[F,] 0
i=1
ftz—f—
0 P(T)[F,] O(T)[Ful M 0
0 0 0
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with f+, f~: P(T) — Q(T) the A—module morphisms induced by

foh fo ?=1C(§l) — Do.
It follows from Torf[F“](A, M)=0that f*— f~: P(T)— Q(T) is an A-module
isomorphism. The Seifert A—module (P(T), e(T),{w;(T)}) defined by

AT)=(fT =) fT P(T)— P(T). mi(T): P(T)— Pi(T) — P(T)

is such that P(T')[F,] = Q(T)[F,] — M induces the isomorphism of Blanchfield
A[F]-modules ¢(T'): B(P(T),e(T),{m;i(T)}) = M adjoint to the natural map
(P(T>’8<T>v {7T,'(T>}) - U(M) (In particular, (P(Tmax)v e<Tmax>’ {”i(Tmax)}) =
U(M) and ¢(Tmax): BU(M) = M is the natural isomorphism ¥ps defined in [41,
5.10].) For T € T’ € I the B—-isomorphism ¢(7,T’) is induced by the inclusion
TCT'.

(ii) The augmentation of the A[Fy]-module morphism d: P[Fy] — P[Fy] is an
A-module isomorphism €(d): P — P, so that the induced A[F,]-module morphism

d: ﬁF\u] — P[F},] is an isomorphism, by Proposition 3.1. For any 7" = (T, T1) € 1
the inclusion P[Tl(o)] — P[F}] is a split A—module injection by Proposition 3.3.
Let s: P[F,) - P [Tl(o)] be a splitting A—-module surjection. The anticlockwise

composition of the morphisms (inverting d ) in the diagram

S

T

D, = P[19] — PIF.] — P[F,]

dp=d|| ld E/E

Do = P[T"] — PIFu] — P[F,]

defines an A-module surjection P|T, 0(0)] — P[T 1(0)] splitting d|: P[T 1(0)] — P[TO(O)] .
Thus d| is a split injection of f.g. projective A—modules and P(T) = coker(d|) is a
f.g. projective A—module.

(iii) The morphism g: B(Q, f,{pi}) = M in Flk(A) has a canonical resolution

1— z
0 O[F,] f+/ O[Fy] B(Q, f.ipi})) —=0
adj(g) adj(g) lg
0 P(Tax)[Ful P(Tax) [ Ful M 0
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with
adj(g): (Q. f.{pi}) = (P(Tmax), €(Tmax), {7i (Tmax)}) = U(M)
the adjoint morphism in Seix(A4). Since Q is f.g. projective there exists 7" € I such
that
im(g: B(Q, /. {pi}) > M) Sim(B(P(T),e(T) {mi(T)}) > M)
with a lift of g to an A-module morphism g{(7"): Q — P(T) which preserves the
direct sum structures. The diagram of A—modules and morphisms

) SN
/ / g{l) (% g<T)\\\
£ ) Ty |8
\\ #(T) o(T) /
N ) /

UM) UM)

commutes except possibly in (x), and (%) commutes if and only if
g(T): (Q. f.{pi}) = (P(T).e(T). {mi(T)})
is a morphism of Seifert 4—-modules. Since Q is f.g. projective and the composite

g(T)f—e(T)g(T) (T)

0 P(T)

U(M) = lim P(T")

is O there exists 77 € I such that 7 C T and the composite

g(T) f—e(T)g(T)

g(T") [ —e(T")g(T"): Q P(T) — P(T’)

is 0, so that
g(T"): (O, f-Api}) = (P(T"), e(T"), {mi(T")})

is a morphism of Seifert A-modules as required (except that 7’ has to be called 7). O

Definition 3.16 Let M = B(P,e,{n;}) for a f.g. projective Seifert A—module
(P,e, {mi}).
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(i) Forany T € I let
s(T): (P.e {mi}) — (P(T),e(T), {mi(T)})
be the B—isomorphism determined by the inclusion P = P[{1}] C P[T 0(0)].
(i1) For T = Tpax € oo write
s = ${(Tmax): (P, e,{7i}) = (P(Tmax), €{Tmax), {7i (Tmax)}) = U(M).
This is the B-isomorphism adjoint of 1: M — M, such that

s(T) o(T)

SM: (P’e’{ni}) (P<T>’e’{7ri})

forany 7 € I.

U(M)

Putting everything together:
Theorem 3.17 (i) Every h.d. 1 F, —link module M is isomorphic to the covering
B(P,e,{m;}) of at.g. projective Seifert A—module (P,e,{m;}).

(i) For any f.g. projective Seifert A—modules (P, e, {r;}), (Q, f,{pi}) every mor-
phism g: B(Q, f.{pi}) — B(P,e,{m;}) in Flk(A) is of the form g = B(s)~! B(¢)
for some morphisms

s: (Poe{mi}) — (P An]}). 11 (Q. fidpi}) — (P ¢’ An]})

in Sei(A) with s € E .

(i) If u: (Q, f,{pi}) = (P,e,{m;}) is a morphism of f.g. projective Seifert A—
modules such that B(u) = 0 there exists an element v: (P, e, {n;}) — (P', ¢’ {7]})
in & such that vu = 0.

~

(iv) The localization E~'Sei(A) has a left calculus of fractions, and the covering
construction defines an equivalence of exact categories

B: 8718ei(A) —Z> FIk(A): (P,e, {mi}) > B(P,e,{mi}).

Proof (i) By Theorem 3.15 (i)—(ii) M is isomorphic to B(P(T),e(T),{mi(T)})
for any 7" € I, e.g. for the minimal element T, = (d«{1},{1}) € I.

(i) By Theorem 3.15 (iii) the adjoint of g factors in Seix(A4) as

adj(g)

Q. ftpi}) UB(P. e.{m})
h (¢ (7))
(P(T).e(T). (mi(T)})
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for some 7" € I. The morphisms in Sei(A) defined by
s=s(T): (P.e{mi}) > (P, e/ {m}) = (P(T), e(T) {mi(T)})
t=g(T): (Q. f{pi}) = (P'.e' A{mj}) = (P(T).e(T). {mi(T)})
are such that s is a B—isomorphism (ie s € ) and g = B(s)"' B(¢).
(iii) Let M = B(P,e,{m;}). We have a commutative diagram in Seix(A4)

di(B =0
0. fitpry) — 4B U(M)

\ Af
(P’ e, {7'[1'})

Since Q is f.g. projective there exists 7' € I such that

v=s(T): (P.e.{mi}) = (P(T),e(T). {mi(T)})

is a B—isomorphism in Sei(A4) (ie v € E) with vu = 0.

(iv) Immediate from (i)—(iii). O

This completes the proof of Theorem B of the Introduction.

4 Primitive Seifert modules

This section is devoted to the kernel of the covering functor B: Sei(A4) — Flk(A).
Following the terminology of Sheiham [41]:

Definition 4.1 (i) A Seifert A-module (P, e, {m;}) is primitive if
B(P,e,{mi})=0
or equivalently 1 —e +ez: P[F,] — P[F,] is an A[F,]-module isomorphism.

(i) Let Prim(A) C Sei(A) be the full subcategory with objects the primitive f.g. pro-
jective Seifert A—modules.

We shall now obtain an intrinsic characterization of the objects in Prim(A4), generalizing
the results for u = 1 recalled below.

Definition 4.2 (Liick and Ranicki [28, Section 5]) A near-projection (P, e) is an A—
module P together with an endomorphism e € End4(P) such that e(1 —e) € End4(P)
is nilpotent.

Geometry € Topology, Volume 10 (2006)



Blanchfield and Seifert algebra 1813

Proposition 4.3 (Bass, Heller and Swan [5], Liick and Ranicki [28])
(1) A linear morphism of induced f.g. projective A[z]-modules
Jo+ fiz: Plz] > QlZ]
is an isomorphism if and only if fy + f1: P — Q is an isomorphism and
e=(fo+ /) fi: P> P
is nilpotent.
(ii) A linear morphism of induced f.g. projective A[z,z~']-modules
fo+ fiz: Plz,27 '] —> Qlz,27]
is an isomorphism if and only if fo + fi1: P — Q is an isomorphism and
e=(fo+ /M) fir P—>P
is a near-projection.
(iii) Suppose that (P, e) is a near-projection, or equivalently that
l—e+ze: Plz,z7']|— P[z,z71]
is an Az, z~']-module automorphism. If N = 0 is so large that (e(1 —e))N =0 then
Nyrd—-e)V: P> P
is an A—module automorphism, and the endomorphism
ew = (eN +( —e)N)_leN: P—P
is a projection, with e, (1 —ey) = 0. The submodules of P

Pt=(-ex)(P)=(1—-e)N(P)={xeP|(1—e+ez)"le(x) e P[]}

P =ey,(P)=eN(P)={xeP|(l—e+ezx) '(1—e)(x) ez 'Plz7']}

are such that
(P,e)= (P+, e+) @ (P ,e7)
withe™: P* — PT and 1 —e™: P~ — P~ nilpotent.

Definition 4.4 A f.g. projective Seifert A-module (P, e, {m;}) is strongly nilpotent if
the A[F ;‘ ]-module endomorphism

uw
ez = Zemzi: P[F;-“ — P[Flf]

i=1
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is nilpotent, ie (ez)V =0 for some N > 1.

The condition for strong nilpotence is equivalent to the A[F,]-module endomorphism

w
ez = Zemz,': P[F,]— P[F.]
i=1

being nilpotent.

Expressed as a representation of the complete quiver Q,, , a Seifert module (P, p: Oy —
Endy4 P) is strongly nilpotent if and only if there exists N = 1 such that p(p) = 0 for
every path p € Q, of length > N.

Proposition 4.5 The following conditions on a f.g. projective Seifert A—module
(P,e,{m;}) are equivalent:
(i) (P,e,{m;}) is strongly nilpotent,
(ii) the A[F lj' ]-module endomorphism
| —ez: P[F;[]— P[F,]
is an automorphism,
(iii) the A[F lj' ]-module endomorphism
l—e+ez: P[F]1— P[F,]

is an automorphism.

Proof (i) = (ii) If (ez) =0 then 1 —ez has inverse
(I—ex) ' =14ez+(e2)>+---+ (ez)N!
€ HomA[F,j](P[F;:F]’ P[Flf]) = Homy (P, P)[Fl‘f].
(il)) = (i) The inverse of 1 — ez is of the form
(1—ez) ! = Z filiz...ikZZlZ,’-lzz---Z?kki P[FJ]—)P[F:]
1<iy,d0,..0s ik <p
ny,na,...,n =0
ny+ny+---+n <N
for some N = 1. We have the identity
(1—ez) '—(Q+ez+(e2)2+--+(e2)V 1) = (1 —ez) " (ex)V

€ HomA[F;r](P[FJ], P[Flj']) = Homy (P, P)[Flj']
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in which the left hand side is a sum of monomials in zilzl'.’; .. .z;’kf‘ of degree n; +
ny + -+ np < N and the right hand side is a sum of monomials of degree = N .
Both sides of the identity are thus O,
(ex)N =0: P[F;']— P[F/]

and (P, e, {m;}) is strongly nilpotent.
(il)) <= (iii)) Immediate from the identity

l—e+ez=1—e(l—z): P[F]— P[F;]
and the change of variables z; — 1 —z;. O

Definition 4.6 A p—component Seifert A—module (P, e, {m;}) is a near-projection
if it can be expressed as

+t -

(peemh = (Pror (0 ) o)

and the 2u—component Seifert 4—module

ettt _et—

(P e n')= (P*@P‘, (e_+ 1—e——) , {n,*}@{nf})
is strongly nilpotent.

Lemma 4.7 For a near-projection (P, e,{r;}) the pairs (P,e), (P,e’) are near-
projections.

Proof We have a decomposition P = P+ @ P~ with respect to which e’ is strongly
nilpotent. Now

ettt et [1—ett —et—
e(l—e)= ot o ot l—e—

(et — (et —etmet ettt fet(1—e )
T et ettt —emTem —em et 4 e (1—e7)

(et — (et —etmet _ettet— fet—(1—e )
T et ettt —emTemt ettt (1) —(1—e)? )"

, et t| —et-
e =
et l—e™~
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denotes a strongly nilpotent representation of the complete quiver Q,, on 2u vertices.
In the following illustration p = 1:

CoeD

Now each entry in the 2 x 24 matrix e(l1 — e¢) above is (the image of) a linear
combination of paths of length at least one in the quiver. Hence each entry of (e(1—e))™Y
is the image of a sum of paths of length at least N . It follows that (e(1 —e))Y =0
for some N > 1.

The pair (P, ¢’) is a near-projection since ¢’: P — P is nilpotent. O
For p = 1 there is no difference between a near-projection (P, e, {r;}) and a near-
projection (P, e). For ;=2 anear-projection (P, e, {m;}) has (P, e) a near-projection

(Lemma 4.7) but the splitting (P,e) = (P+,e*)@® (P~,e™) given by Proposition 4.3
does not in general extend to a direct sum decomposition of Seifert A—modules

(P.e{m}) =P et {nh @ (P e {n]}).

This is illustrated by the following example.

Example 4.8 Let A be a field, and consider the 2—component Seifert 4A-module
(P,e,{m,my}) given by

S O O O
S O O O
S = O O
- O O O

In this case e: P — P is a projection, with e(1 —e) = 0. This f.g. projective Seifert
A-module has just one submodule

(F,E, {77[1’7?2}) < (P,e,{m,nz})

namely
P=e¢(P)={(0,x,0,y) € P|(x,y) € A*}.

It is not possible to decompose (P, e, {m1, m>}) as a direct sum, since (17, e, {7, m2})
is not a summand. Neither e nor 1 — e is nilpotent but

1 0 0 0 1 0 0 0\/1000
_ 0 1 22—1 0 _ 0 122—10 0210 0
I—etez=1 0 0o 1 ol o o 1 olloo1o
Zl—l 0 0 zZ 21—10 0 1 00 022
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and
0o 0 0 0\
0 022—10 -0
0 0 0 0

z1—=10 0 0

so 1 —e + ez is invertible. Moreover, (P, e, {m, m,}) is a near-projection, with
P1+=AEBO€BO@0, Pr=00A4000, P;:OEBOEBAEBO, P,y =00000 4

such that

:P=P o P ®PfOP, > P=P 0P ®P ®P;

-_ o O O
S O OO
S O = O
S O O O

is strongly nilpotent.
The main result of this section is:

Theorem 4.9 A f.g. projective Seifert A—module (P, e, {m;}) is primitive if and only
if it is a near-projection.

++ +-
Proof Suppose that (P, e, {n;}) is a near-projection, with ¢’ = (Z_+ l—e“)

strongly nilpotent. We have

l—e+ez =1—e(1-2)

_(l=ett(1—z) —eT(1-2)
N (—e_+(l—z) 1—6__(1—2))

_(l—eTT(1-2) etT=(1-z71 10
N (—e""(l—z) 1—(1—6’_—)(1—2_1)) (0 z)

++ - _
N O (T .
— (PT@®P7)[Fy)

It follows from the strong nilpotence of e’ that ¢’((1 —z) @ (1 —z~1)) is nilpotent,
and hence that

I—e(1-2) = (1—¢'(1-2)® (1—z""))(1®2): (PT @ PO)[Fu]— (P+ & P7)[Fy]
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is an isomorphism, so that B(P, e, {n;}) =0 and (P, e, {m;}) is primitive.

Conversely, suppose that (P, e, {m;}) is a primitive f.g. projective Seifert 4—module,
ie such that the A[F,]-module morphism

l—e+ez: P[Fy]— P[F,]

is an isomorphism. We shall use a variant (_;u of the Cayley tree G, (Definition 1.3)
to prove that 1 —e + ez: P[F,] — P[F}] is a near-projection. Define

GO =Fu GP={w. zw)|weFuie{l,2, .. u}
so that there is defined a right F, —action
(_}M x Fy — (_}M; (w, g) — wg.
Foreachi =1,2,..., u partition F as
Fy=FP uF, ufl}
with F/ lf o (resp. Fy, ’i) consisting of the reduced words in zy, z3, ..., z, which start

(resp. do not start) with z;. Removing the edge (w, z;w) disconnects C_iu, and the
complement is a disjoint union of trees

Gu—{(w, zjw)} = (_?:[(w, ziw) U Eg(w, Ziw)

with
aj(w,ziw)(o) = FHiw, (_?;(w,ziw)(o) =(F7'u{1)Hw.

In the diagram

_.//\\._
{..-—1p.}
;le.j Pj<
\/
lez
IP!*>P<T i}LZ,Pti_Z,'Pi:j
‘\\\/1’ Y Vi
l—eT

/‘\ _/‘\

we are placing the components of the range (resp. domain) P[F,] at the vertices
(resp. edges) of (_;M, with the 4-module wP at w € (_;,(LO), and the 4-module wP; at
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(w, zijw) € 5,()). An element

Xe€P[FJ]= > wP

(w,ziw)e(_?f})

is sent to
(1—e)(x) +ez(x) € P[Fu]= Y wP.
weG)
as indicated by the arrows in the diagram. For i = 1,2, ..., u define the A-modules

Pl.+={xeP,-|(1—e+ez)_lez(x)e Z wP},

weF[f’i
P = {xeP,~|(1—e+ez)_1(1—€)(x)‘EX:PJ'EB Z wP}'
J# weF;’i

An element xT € P; belongs to PI?L if and only if there exist elements y*(w) € P
(w e F:") such that

ez(x+)=(1—e+ez)( Z wy+(w))e Z wP. (%)

wEF,j_’i wEF/j_'i

There is one component y+(w) for each edge in (_;I(l, Zl')(l), and one equation for
each vertex in @:[(1, z)© . Similarly, an element x~ € P; belongs to P/ if and only

if there exist elements y; € P; (j #i)and y~(w) € P (w € F;’i) such that

((l—e)(x_),O)=(l—e—|—ez)(2yj+ Z wy_(w))ePEB Z wP. (x%)

J#i wEF;’i weF;’i

There is one component y; (j # i) or y~ (w) for each edge 6;(1,2,-)(1), and one
equation for each vertex in 6;(1, zi)(o). Fori =1,2,...,u partition

U —i _ gt i
Fr=F/Ur,™, F/ > =F "UF,

with Fg+jl consisting of the words w = ZI.E(;’ .. zfli‘ € Fy, with (ip,€0) = (i, +), ex =«,
and F,; ' consisting of the words w = zl.e(;’ .. .Zfli‘ € Fy with (ig,€0) #({, +), ek = .

Forany xT € Pl.“L and w € F;er’i we have that y(w) € PJ‘.", as given by all the terms

_’i

in (*) involving G T (w, z;w). Similarly, for any x~ € P;” and w € F;f we have

l —
that y~(w) € Pj‘.", as given by all the terms in (xx) involving G~ (w, z;w).
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Regarded as an 4A—module isomorphism 1—e+ez: P[F,] — P[F}] can be expressed
as

1—e+eZ =
ez| (l—e+tez)] 0 . |
((1_€)| 0 (I—e+ez)|) " Pi® Z ‘wP & ZP] 2] Z 'wP
weF; ! j#i weFy
—( X wr)e(re X ur)
weF weF, "

so that there is induced an 4 -module isomorphism

|:(le_z|e)|:|: P,~—>(coker((1—e+ez)|: Z wP — Z wP))

eFlj"" weF,‘[’i
<) (coker((l —e+ez)|: Z P ® Z wP — P& Z wP))
J#i weF;j weF;j
and
Pi=P" o P,
with

“ "
(I—eten)lez(PH Y > wPfe)d Y wp,

J=lyeFtti J=lyeF ti
Iz K

(1—e+ez) (l—e)(Pi)EZ Z wP; EBZ Z wP;.
j=1weF:_J j=1w€F;_J

For o, B € {£} let
Ba . B
?ﬁ .P?—% %

be the A-module morphisms such that

et et - n - n
e= 6’% e;_’i L P=) (PteP)—>P=) (PfaP).

Let
Ba, . B
vii (w): P — P;
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be the A-module morphisms such that

]=1 ++.i
—(1—€+€Z)_1€Z|: B weFu :Pj+
J’_
> 2wy (w)
/=1w€F;+J 1 P
J’_ —
YT ey X
j=1 weF'H"i j=1 weF +.i
& +
> > wV; (w)
_ J=lyepf—i _
—(l—etez) l(1—e) =], " . P;
SO wiw
J=lyeF; ~ i i
+ —
Y Y wreY ¥ un
J=1w€FJ7' J=1 wer,; ="

Composing with 1 —e + ez gives

(%)

Z( Yo w@ir—ef i) + Y wae vt (u)))

k=1 w€F++' weFﬁ+J
+ +
— 2B
wEFJ+J
w
— —+ ++
—¢}; z,~=Z( Z we; "V (w) + Z WIZKej ) Vi (w))
k=1 wEFJ+' weFﬁ+'
+ —
Pr— ) wPy.
weF T
)— Z( Z w(Sjx— e )”kz (w) + Z wzpe k TV (w))
k=1 "yeF =1 weF; T
- -
Py — ) wh,
weF,
w
— —+
im0 = (X w4 X waev )
k=1 "yeF =1 weF, '

P — Z wP; .

1

weF, '
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Comparing the coefficients of z; and 1 gives

et - Sjk—et:r e*}; |

_| i — J T+ (5. J —t (s .
ot = Z —emt | ki (z:) + o | Vki (zizg ) |
Ji k=1 ik ik

+ + -
P — P& P,
+-— M ++ +-—
—e.. 5'k—€. _ €.
Ji — J ik + ik ) —— =1y ).
- — = -+ v, D+ v () ]
(51"_61'1‘ ) ;; (( ik ) “ %)
P — P @ P}

Writing

++ - ++ (., o
("_+ ”__) = ( Vki (Z’_)l Vki (1)1 ): PteP > PteP,
v v v iz ) v ()

ettt  _pt— l—ett ot—\ [p++ -
B (e_+ l—e“) - ( —e~ Tt e“) (v_"' v“) '
Let QI’_ be the quiver with 2 vertices (i, &) 1<;<y and one edge (ig, €o) — (i1, €1)
for each pair of vertices with (ig, €g) # (i1, —€1). (The path ring is given by

we thus have

05 =
“w
Z[s]*Z[nfr,,...,Jrlf,nl_,...,n;|71f‘71]’.9 =5aﬂ5ijnf‘,2(ni+ +n;) = 1]
i=1

it}

where nf‘snf ((i,a) # (j,—pB)) corresponds to the unique path of length 1 from
(i,a) to (j,B).) In the illustration u = 2:

f\ A
-, .\\—’/7(.\3
eIy
G20
Regard a word w = z;0z;! ... z{* € F, as a path of length |w| =k in oL~

(io,€0) — (i1, €1) = -+ = (ik.€k)

€

and for k > 1 define an A—module morphism v(w): P;° — P.E1 I as follows. Define

0 l

[w] = [Zf(?zfll][zfl"zle] .. [Zie,f__ll Zf]f‘] eF,
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with
Ziy if (€0, €1) = (+, +)
o)< LR e = ()
) if(eo.€) = (=)
1 if (€9, €1) = (—, +).
For k =1 set

v(zy ) = vl (=) i)
and for k = 2 set

v(zf(?zfll flf‘) = v(zf:__llzf:) .. v(zfllzf;)v(zf(;’zfll).

[\N]

The identities

v(w) = vieo(w)): Pr* — Prk

may be verified by induction on k, since both sides satisfy the equations () and so

—(l—e+ez) lez| = Z wv(w): Pl.+—> Z wP,

weF,}H weF,}H
_(1_e+ez)_l(1_e)|zzv;;_+ Z U)V(U)): PI_QZPJEB Z wP.
J#i weF,:’i JF#i weF;’i

For a, B € {£} let F,’f‘x be the set of paths

(io,€0) = (i1, €1) = -+ — (ik.€k)

in Q,J[’_ with €9 = o, € = B. The A[F,]-module endomorphism

z ptt oyt
V= (0 (1)) (v—+ '3——) ((1) 291) H(PT @ POFul > (PT & P[Fy]

is such that forany N > 1

2 wv ¥ (w) > wy T (w)

NN weF,;H',Iw|=N weFIf_,IwI:N
)" =
> wyv™ Tt (w) > wy™ (w)
weF; 1 lw|l=N weF, ,lw|=N

(P& PO)[Ful— (PT & P7)[Fu].
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If N =1 is so large that

(1—e+ ez)_1 = Z aww: P[F,]— P[F,] (aw € Homy(Pj,, Pi,)),

weF, |w|<N
then for any word w € F, of length |w| =k > N
v(w) =0: P* — Pk

The 2p—component Seifert module

ror + — V++ l)+_ + —
(P,U,JT)I(P ®P ’(v_+ U__),{JTi @ m; })

is strongly nilpotent, with (v'z")N

! ! :
Z1sZ55 - and letting

=0, regarding F», as free group on 24 generators

!
Iy

2 0. 0

) 0 z; ... 0 ) )

z = . - . :P[FZM]%P[FML]'
0 0 . zéu

Define the 2pu—component Seifert module

P ah=(prPtep ett —et~ 4 -
( ,e,ﬂ)— @ ’ €_+ l—e__ ’{T[l @ﬂl} .

Applying the augmentation €: z; — 1 to the A[F,]-module morphisms

(1—e+ez)™!
- Z wv(w): P,'+[Fu] > P[F,] P[Fy].
weF[}"i
_ _ 1- (1—etez)™!
—(Zvﬁ + > wv(w)): PT[F,] —% P[F,] P[F,]
J#i wEF;’i
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shows that the components of ¢’ are given by linear combinations of paths of length
> 1

=

ett =— Z v(w): Pt - PT,
weF[LhL

et =— Z v(w): Pt — P~
weFJ_

—eTT =— Z v(w): P~ — P,
weF; T

l—e =-— Z v(w): P~ > P
weF;

The A[F,,]-module endomorphism e’z’": P'[F,,] — P’[F5,] is nilpotent, with
(e/z/)N — 0’

so that (P, e, ) is strongly nilpotent. |

This completes the proof of Theorem C of the Introduction.

S Algebraic K —theory

We shall obtain our results on the algebraic K —theory of A[F,] and Blanchfield and
Seifert modules using the Waldhausen [50] algebraic K —theory of categories with
cofibrations and weak equivalences, and the noncommutative localization algebraic
K —theory exact sequence of Neeman and Ranicki [30; 31].

5.1 The algebraic K —theory of exact categories

The higher algebraic K—groups K, (£) of an exact category £ are defined by Quillen
[32] to be the homotopy groups of a connective spectrum K (&)

ma(K(E)) = Kn(€) (n=0)

with Ko(€) the Grothendieck class group. The idempotent completion £ — P(E)
induces an injection K¢(€) — Ko(P(E)) and isomorphisms K, () — K,(P(E))
for n = 1, by the cofinality theorem of Grayson [21]. The lower K—groups K, (&)
(n < —1) are defined by Schlichting [38] (following on from the definitions of Karoubi
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and Pedersen—Weibel for the lower K —groups of filtered additive categories) to be the
lower homotopy groups of a nonconnective spectrum K7P(E) such that

T (KP(€)) = Kn(P(€)) (nel),
with K, (&) = K,(P(€)) for n # 0.

The algebraic K—groups of aring R are the algebraic K—groups of the idempotent
complete exact category £ = Proj(R) of f.g. projective R—modules

Kn(R) = Kn(Proj(R)) (n€2),

as defined for —oo < n < 1 in Bass [4], and for 2 < n < oo in Quillen [32]. The
nonconnective spectrum defined by K(R) = KP(Proj(R)) has homotopy groups
7x(K(R)) = K«(R).

A Waldhausen category (C, w) is a small category C with cofibrations together with
a subcategory w C C of weak equivalences satisfying the axioms of [50]. As usual,
there is defined a connective algebraic K —theory spectrum

K(C,w)=Q|lwS.|
with homotopy groups the algebraic K—theory groups
Kn(C,w) = mn(K(C,w)) (n=0).

A functor F: (C,w)— (C’, w’) of Waldhausen categories induces a long exact sequence
of algebraic K —groups

e K1 (F) — Kn(Cow) = Ky(Cow!) —= - —= Ko(F) — 0
with K,(F) =, (F: K(C,w) — K(C',w")) (n=0).

As in Thomason and Trobaugh [45, 1.9] we shall only be considering Waldhausen
categories (C,w) which are ‘complicial biWaldhausen’, so that in particular C is a
full subcategory of the category of chain complexes in an abelian category A, the
cofibrations are chain maps which are split injections in each degree, w contains the
quasi-isomorphisms ( = the chain maps inducing isomorphisms in homology), and
which in addition are closed under the formation of canonical homotopy pushouts and
pullbacks.

The homotopy (or derived) category [45, page 269] of a Waldhausen category (C, w)
is the category of fractions

D(C,w)=w"!C,

Geometry € Topology, Volume 10 (2006)



Blanchfield and Seifert algebra 1827

which is a triangulated category under the above hypotheses. The idempotent comple-
tion PD(C, w) is then also triangulated (Balmer and Schlichting [2]), and the class
groups Ko(D(C,w)), Ko(PD(C,w)) are defined, with Ko(D(C,w)) = Ko(C, w).
Schlichting [38] defined the lower K—groups K, (P D(C,w)) for n < —1 for Wald-
hausen categories as above, and constructed a nonconnective spectrum KP(C,w) with
homotopy groups

K,(C,w) forn>1
m(KP(C,w)) = KPp(C,w) = { Kog(PD(C,w)) forn=0
KP,(C,w) forn < —1.

A functor F: (C,w)— (C’, w’) of Waldhausen categories induces a long exact sequence
of algebraic K—-groups

o KPys1(F) — KPa(Cow) = KPu(C' ') —> KPu(F) — -
with KP,(F) = my(F: KP(C,w) — KP(C',w’)) (n € Z).

Given an exact category & let C?(€) be the category of bounded chain complexes
in £ and chain maps. An object C in C?(&) is acyclic (in the sense of Keller [24,
Chapter 11]) if each differential d: C, — C,_ factors as C, — Z, — C,_; with

0->2Z,41>C —-Z,—0

exact. A morphism f: C — D in C b (&) is a quasi-isomorphism if the mapping cone
C(f) is chain equivalent to an acyclic complex. If £ is fully embedded in an abelian
category .A with the embedding closed under extensions and the idempotent completion
P(€) is closed under taking kernels of surjections then a quasi-isomorphism is the same
as a chain map inducing isomorphisms in homology in the ambient abelian category A
[45, Appendix Al].

Let (Cb(€), we) be the Waldhausen category with cofibrations the chain maps which
are degreewise split injections, and wg C C?(€) the subcategory of quasi-isomorphisms.
The derived category

DP(€) = D(C (). we)

is the category of bounded chain complexes in £ and fractions of chain homotopy
classes of chain maps, with denominators quasi-isomorphisms. As usual, let K?(&)
be the category of bounded chain complexes in £ and chain homotopy classes of
chain maps, and let wKg C K?(€) be the subcategory of quasi-isomorphisms: the
localization

D’ (€)= (wKe) 'K (©)
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has both a left and a right calculus of fractions. The derived category DP(&) is
a triangulated category [45, 1.9.6]. Balmer and Schlichting [2, 2.12] prove that the
idempotent completion of the derived category is the derived category of the idempotent
completion

PD(€) = D*(P(€))
and the algebraic K—groups are such that
Ka(CP(E), we) = Ku(E) for n = 0 (Gillet [20])
KPu(CP(E), we) = Kn(P(E)) forneZ (Schlichting [38]).

By [45, 1.9.2] the Waldhausen category defined in the same way but with cofibrations the
chain maps which are degreewise admissible monomorphisms has the same algebraic
K —theory.
Definition 5.1 Let F: £ — D be a functor of exact categories.
(i) The algebraic K—groups KP«(E,D) are

KPu(€.D) = KPu(C(€.D). we,p) (n€2)

with (C?(&, D), w(e,py) C (Cb (&), we) the Waldhausen subcategory with C?(€, D) C
CP(€) the full subcategory with objects the bounded chain complexes C in £ which
are chain equivalent in D to acyclic complexes, and

wee.py = we NCP(E,D) C CP(€,D)
the subcategory of the quasi-isomorphisms.
(i) The algebraic I'K—groups of F are
TKy(F) = KPy(CP(E),wp) (ne2)

with wp C C2(€) the subcategory with morphisms the chain maps in € which become
quasi-isomorphisms in D, or equivalently such that the mapping cones are in C?(£, D).

The groups 'K« (F) are the algebraic K —theory analogues of the algebraic L —theory
groups ['x(F) of Cappell and Shaneson [8].

Theorem 5.2 Let F: £ — D be a functor of exact categories.
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(1) The algebraic K —groups fit into a commutative braid of exact sequences

KPu(E,D) KPu(€) KPy(D)

KPn+1(D) KPpy1(I'F) KPn-1(€,D)
with TF: (C?(&), wp) — (C®(D), wp) induced by F.
(i) IfTF: PD(Cb(E), wp) = PD(CP(D), wp) is an equivalence of categories then
KPy(T'F) =0, KPsxy1(F) = KP«(E,D), 'Ku(F)= KP«(D)

and the braid of (i) collapses to the exact sequence

F
-+ —— KPy41(D) —— KPy(E,D) —— KPy(£) —= KPy(D) —— ---

(ili) The hypothesis of (ii) is satisfied if F: £ — D = X ~'& is the canonical functor
to a category of fractions and D has a calculus of left fractions.

Proof (i) The cases n = 0 are a direct application of the version of the localization
theorem of [50, 1.6.4] stated in Theorem 2.3 and Lemma 2.5 of Neeman and Ranicki
[31], with

RE = D(CP(£,D), wee.py)) CS¢ = D(CP(E), we), S°/RE~ D(CP(E), wp),
R=(C°(€. D), wep). S=(CPE).we), T=Sr=(C0E). wp)

giving a fibration sequence of connective spectra
K(CP(&,D), we.py) — K(CP(E), we) — K(CP(E), wp).

The cases n < 0 follow from Theorems 2.4, 3.7 of [31] and Schlichting [38, Theorems
1,9], which give a fibration sequence of nonconnective spectra

KP(CP(E,D), we.py) — KP(CP(E), we) — KP(CP(E), wp).

(i1) This is a direct application of the Approximation Theorem of Waldhausen [50,
Theorem 1.6.7]: if F: (C,w) — (C’, w’) is a functor which induces an equivalence of
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the homotopy categories F: D(C,w) — D(C’, w’) then F: K(C,w) — K(C',w’) isa
homotopy equivalence inducing isomorphisms F: K4(C, w) == K« (C', w’). Similarly,
if F: PD(C,w) — PD(C’,w’) is an equivalence there are induced isomorphisms
F: KP«(C,w) = KP«(C',w’) ([38]).

(iii) Every object D in C?(D) is chain equivalent to F(E) for an object E in
C?(&), and the functors F: C?(&) — C®(D), F: D(C?(€), wp) — D(CP (D), wp)
are localizations. |

Definition 5.3 (i) Write the algebraic K—groups of the exact categories Prim(A4),
Sei(A), Bla(A), Flk(A) as

Primy (4) = K+ (Prim(A)), Seix(A) = Kx(Sei(A4)),
Bla,(4) = K+ (Bla(A)), Flky(4) = Ky (FIk(A)).

(ii)) Write the algebraic K—groups of the idempotent completion of the homotopy
category of (C?(Sei(A), Bla(A)), W(Sei(A),Bla(A))) aS

(Sei, Bla)(4) = KPx(C?(Sei(A), Bla(A)), Wsei(4),Bia(A)))-

Proposition 5.4 The covering functor B: Sei(A) — Bla(A) induces morphisms
B: Sei«(A) — Blax(A) which fit into a long exact sequence

-+ (Sei, Bla)y(4) —> Sein(A4) —2= Blay(4) —> (Sei, Bla),_;(4) —> -+
with
im(B: Seig(A4) — Blag(A4)) = Flkg(A4) C Blag(4).
Proof Apply Theorem 5.2 (iii) with
F: & =S8ei(A) > D = E"1Sei(A) ~ Flk(A),

noting that Sei(A) is idempotent complete (Proposition 3.10 (i)), that E~1Sei(4) ~
Flk(A) has aleft calculus of fractions by Theorem 3.17, and that Bla(A) ~ P (Flk(A))
(Proposition 3.10(ii)). O

In the next section it will be shown that the functor
Prim(A) — Cb(Sei(A), Bla(A)); (P,e,{mi}) > (---—>0—> (P, e, {mi}))

induces isomorphisms of algebraic K—groups Prim,(A) = (Sei, Bla)(4).
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5.2 The algebraic K -theory of noncommutative localizations

Given aring R let Mod(R) be the abelian category of R—modules, so that Proj(R) C
Mod(R) is an exact subcategory. Write the Waldhausen category of Proj(R) as

(CP(R), wr) = (CP(Proj(R)), wp(r))-

An object in C?(R) is a bounded chain complex C of f.g. projective R—modules; C is
acyclic if and only if Hyx(C)=0. A morphism f: C — D in C?(R) is a chain map;
f isin wg if and only if fix: H«(C) — Hy« (D) is an isomorphism. The algebraic
K —groups of R are given by

K+«(R) = K«(Proj(R)) = KP«(C(R), wg).
A ring morphism F: R — S induces a functor of abelian categories
F=S®pr—: Mod(R) > Mod(S); P—>SQ®prP

which restricts to an exact functor F: Proj(R) — Proj(S). There is also induced a
functor of Waldhausen categories

F: (CP(R), wg) — (CP(S), ws): C > S®rC.

The relative homotopy groups of F: K(R) — K(S) are the relative K—groups K (F)
in the long exact sequence

e Kp(R) — L Kp(S) — Kn(F) — Kpy_1(R) —> -+

Let R be a ring, and let 3 be a set of morphisms of f.g. projective R—modules. A
ring morphism R — T is X—inverting if each (s: P — Q) € X induces a T —module
isomorphism 1 ® s: T Qg P — T @ Q. By Cohn [10] there exists a universal
Y —inverting localization ring morphism

F:R—>S=3"'R

such that any ¥ —inverting ring morphism R — T has a unique factorization
R-T>5——>T

The category of fractions X~ ~!Proj(R) is equivalent to the full subcategory
Projr(S) € Proj(S)

with objects isomorphic to the f.g. projective S—modules ¥~! P = S ® g P induced
from f.g. projective R—modules P, and Proj(S) = P(Projg(S)) is the idempotent
completion.
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Definition 5.5 (i) For any ring morphism F: R — S write the Waldhausen categories
defined in Definition 5.1 as

(C* (Proj(R). Proj($)). w(prej(R),Prmi(s)) = (C” (R, S). w(r,5)).
(C*(Proj(R)). ws) = (C*(R). ws)
with corresponding nonconnective algebraic K—theory spectra
KP(CP(R, S), wr.s)) = K(R,S), KP(C*(R), ws) = TK(F)

and algebraic K-groups K«(R,S), TK«(F). An object in C?(R, S) is a bounded
chain complex C of f.g. projective R-modules such that Hx(S ®g C) = 0. A
morphism f: C — D in C?’(R,S) is a chain map; f is in w(g,s) if and only if
fx: Hx(C) — Hy(D) is an isomorphism. A morphism f: C — D in C?’(R) is in
wg ifandonly if 1 ® f: Hx(S ®gr C) = Hx(S ® g D) is an isomorphism.

(i) For an injective universal localization 7: R — S = X' R let H(R, %) be the
exact category of h.d. I X—torsion R—modules, ie the cokernels of injective morphisms
s: P — Q of f.g. projective R—modules which induce an .S —module isomorphism
1®s: SQR P —> SQpr QO (egif s € ).

(iii) (Neeman and Ranicki [30; 31]) A universal localization : R — S = X! R is
stably flat if
TorR(S,8)=0 (i =1).

In particular, a universal localization F: R — S is stably flat if S' has flat dimension
<1 as an R—module, ie if there exists a 1-dimensional flat R—module resolution

0—>F— Fy— S —0.
Proposition 5.6 (i) For any ring morphism F: R — S the functor
TF: (C°(R), ws) — (C°(S).ws); C+> SQrC

induces morphisms of algebraic K —groups I' F: 'K« (F) — K« (S) which fit into a
commutative braid of exact sequences

f

/’/“\/’”\

Kn(R,S) Kn(R) 'F Kn(S)
Kn+1 ('7:) LKy (F)
_— ~—a — T
Kn+1(S) Ky+1(T'F) Kyn—1(R,S)

\/\//

Geometry € Topology, Volume 10 (2006)



Blanchfield and Seifert algebra 1833

(i) For any universal localization F: R — S = X~ 'R
LKy (F) = Kn(S), Kn(F) = Ky—1(R,S), Kx(TF)=0 (n<1).
(iii) For a stably flat universal localization F: R — S = >~ IR
FK«(F) = K«(S), Kst1(F) = K«(R, S), K«(T'F) =0,

and there is induced a localization exact sequence in the algebraic K —groups

e K(R,S) —= Kn(R) L= Kp(S) —= Ky 1(R, §) —= -

(iv) For an injective universal localization F: R — S = X~ R there is defined an
equivalence of homotopy categories

D(C*(R.S). w(r,s)) ~ D(C’(H(R. D). wi(r,s))
inducing isomorphisms
K«(R,S) = K«(H(R,X)).

(v) For an injective stably flat universal localization F: R — S = X! R there is
defined a localization exact sequence in the algebraic K —groups

= Kp(H(R. %)) —= Kn(R) L= K(5~1R) — Kpy (H(R.5)) —> -

Proof (i) Immediate from Theorem 5.2 (i) and (ii) applied to F: C®(R) — C2(S).
(i1))—(v) See Neeman and Ranicki [30; 31]. O
5.3 Triangular matrix rings

We refer to Haghany and Varadarajan [23] for the general theory of modules over

triangular matrix rings, and to Schofield [39], Ranicki [36] and Sheiham [42] for
previous accounts of the universal localization of triangular matrix rings.

A, B
A=
(o A2)

be the triangular 2 x 2 matrix ring defined by rings Ay, A, and an (A, A,)-bimodule
B.

Proposition 5.7 Let
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(i) An A-module L = (L, L,, ) is defined by an A{-module L1, an A,-module
L, and an Ay—-module morphism A: B ® 4, L, — L. As an additive group L =

L ® L,, written (IL‘;), with

Ay B Ly L, . a; b X1 aix; + A0 ®x,)
(0 Az)X(Lz)_)(Lz)' ((0 az)’(xz))_)( azx; )

(i) An A-module morphism (fi, f2): (Ly, L3, A) — (LY, L}, 1') is defined by an
Ay —module morphism fi: Ly — L', and an A;—module morphism f5: L, — L,
such that the diagram

B®y, L, A L,
18 /| K
Bo L, 21
commutes.

(iii) An A-module L = (L1, L,,A) is f.g. projective if and only if A is injective,
coker(A) is a f.g. projective A;—module, and L, is a t.g. projective A, —module.

(iv) The projection
Proj(A) — Proj(A1) x Proj(A,); L = (Ly, Ly, A)— (coker(A), Ly)

induces isomorphisms

(v) Ifan A-module L = (L1, L,,)) is h.d. 1 then

(1) the 1-dimensional A{-module chain complex

K:-“;)O;)B@AZLZLLI

is such that there exists a quasi-isomorphism ( = homology equivalence) J — K
for a I-dimensional f.g. projective A;—module chain complex J, and

(2) L, isanh.d. 1 A,-module.

If B is a flat right A, —module the converse also holds: an A-module L is h.d. 1 if
and only if conditions 1. and 2. are satisfied.

(vi) The columns of A are t.g. projective A—modules

S1=1(41,0,0), S, = (B, 4,,1)
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with
S1S, =4, End(Sl) =Aq, El’ld(Sz) =A,.

The universal localization of A inverting a non-empty subset ¥ € Homy(S1, S») is a
morphism of 2 x 2 matrix rings

_ Al B —1 4 _ _ C C

with C the endomorphism ring of the induced f.g. projective £~ A-module
IS =27,
The composite of the functor
71 Mod(A) > Mod(E7 1 4); P> 'P=S"14Q4 P
and the Morita equivalence of categories
(CC)®g-14— : Mod(Z™'4) —=> Mod(C):
L=(L{,Ly,A) +— (CO)®x-14L
is the assembly functor

Mod(A) — Mod(C);
L=(Li,L),)— (CC)®s-14X'1L=(CC)®,4L

I1®A
:coker((Kgl) 1 CQu BRuy Ly > C Ry, L1 BC Ry, Lz)
with

kK:C®yq, B—>C; xQyrxy

the (C, A,)-bimodule morphism defined by multiplication in C, using the A, -module
morphism B — C. The assembly functor Proj(A) — Proj(C) induces the morphisms

Y71 Ky (A) = Ki(A1) @ K (A3) — K« (71 4) = K (C).

(vii) If B and C are flat A; —modules and C is a flat A, —module then the A-module
(&) has a 1-dimensional flat A-module resolution

B Aq B C
0—)(0)®A2C—>(0)®A1CEB(A2)®A2C—>(C)—>O
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sothat ' A = (&) @ (&) is stably flat. An h.d. I A—module L = (L1, Ly, A) is
¥ —torsion if and only if the C —module morphism

I1®A
(Kgl)IC®AIB®A2L2—>C®A1LIGBC®A2L2

is an isomorphism.

Proof (i) and (ii) Standard.

(iii) For any A-module L = (L, L, A) there is defined an exact sequence

Al
0 — (ker(A),0,0) = (B®4, L2, L3, 1) (*>) (L1, Ly, A) — (coker(A),0,0) — 0.

Now (A41,0,0) = (ff)l) and (B, A4,,1) = (fz) are f.g. projective A-modules, since

(4,.0,0)® (B, Az, 1) = (A1 © B. A, ((1’)) .

If ker(A) = 0 and coker(A) is a f.g. projective A;—module then (coker(A),0,0) =
(A1,0,0) ®4, coker(A) is a f.g. projective A—module. If L, is a f.g. projective
A,-module then

B
(B®u, Ly, Ly, 1) = (Az) ®ua, L2

is a f.g. projective 4—module. Thus if these two conditions are satisfied then the exact
sequence splits and L is a f.g. projective A—module.

Conversely, suppose that (L, Lo, A) is a f.g. projective A-module, so that there exists

an A-module (L, L’,,A") with an A-module isomorphism

(L1, Ly, M) ® (L7, Ly, )) = ((Al)k ® B, (4,)*, (‘1))) = Ak

for some k = 0. It follows from ker(A @A) = 0 that ker(A) = 0, and from coker(A &
1) 22 (A;)¥ that coker(}) is a f.g. projective A;—module. Also, L, & L/, =~ (A4,)k,
so that L, is a f.g. projective 4,-module.

(iv) The result that the inclusion and projection
i=A1xAy; —> A, j:A—> A1 xA,

induce inverse isomorphisms

I
K+(A1 x A2) = K4(A41) ® K+(42) —= Ki«(4)
Jx
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was first obtained by Berrick and Keating [6]. Here is a proof using Waldhausen
K —theory. It is immediate from ji =1 that

Every f.g. projective A-module L = (L, Ly, A: B®y4, L, — L) fits into a natural
short exact sequence of f.g. projective A—modules

A,
0= (B®4, Lo, La 1) L (L1, Ly ) — (coker(h),0) = 0.

The functors
Fi: Proj(A) — Proj(A); L~ A®4, A1 ®4 L = (coker(}),0),
Fy: Proj(A) — Proj(A); L A®y, A2®4 L =(B®y, Ls,L;,1)
fit into a cofibration sequence
Fy = ppjca) = F1,
and are such that
Fi: Ky(A) > Ky (Ag) > K«(4) (kK =1,2).

Now apply the additivity theorem for Quillen K—theory [50, Proposition 1.3.2 (4)] to
identify

ixjx = F1 + Fy = 1: Kx(A4) = Kx«(A),
so that iy, js« are inverse isomorphisms.

(v) If L=(Ly,L,,A)isanh.d. 1 A-module there exists a I-dimensional f.g. pro-
jective A—module resolution

(PI’PZ’f)M(QI’QZ’g)

so that coker( /), coker(g) are f.g. projective 4;-modules and P,, Q, are f.g. projec-
tive A,—modules. The 1-dimensional 4;-module chain complex

0

(L1, Ly, A)

0,

K: ...*>()*>B®A2L2*A>L1
and the 1-dimensional f.g. projective 4;-module chain complex

h
J: Ji = coker(f) —1 Jo = coker(g)

are related by a homology equivalence J — K. Furthermore, L, = coker(/;) is an
h.d. 1 A;—module. Thus both conditions 1. and 2. are satisfied.
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Conversely, suppose that B is a flat right A, —module and that L = (L1, L,,A) isan A—
module such that there exists a homology equivalence J — K with J a 1-dimensional
f.g. projective 4;-module chain complex and that L, is an h.d. 1 A,-module with a
1-dimensional f.g. projective A,-module resolution

0—> P, —>Qr,—>L,—0.

There is induced a short exact sequence of A{—modules

0> B®4, Pr>B®4, 02> BRy, Ly —0
and it follows from the 1-dimensional f.g. projective 4—module resolution of L

0= (B®u, P2, P2,1)®(J1,0,0) > (B®4, 02,02, 1)®(Jy,0,0) > L -0

that L is an h.d. 1 A-module.
(vi) and (vii) See [36, 2.2]. d
We shall actually be working with (u + 1) x (u+1)—matrix rings:

Definition 5.8 For any ring A and p > 1 define the triangular (@4 1) x (u+1)—matrix
ring
A ABPA ADA ... A A

0 4 o ... 0
Tyu(A) = 0 0 A ... 0
0 0 0 ... 4

The ring 7}, (A) is the A—coefficient path algebra of the quiver with vertices 0,1,..., u
and two arrows s;r,sl.—: i—0fori=1,2,...,n. A Ty(A)—module L=(L,-,fl.+, fl._)
consists of A—modules Lo, Lq,..., L, and A-module morphisms l.+, fi_: Li— Ly
(I<i<p).

Let So, S1,..., Sy be the Ty (4)—-modules defined by the columns of 7},(A4), so that
So=1(4,0,...,0;0,...,0),
Si=A464,0,...,0,4,0,...,0;0,...,0,id.,0,...,0) (1 <i<p).

It follows from

that each S; is a f.g. projective Tj(A4)—module. Let 0 = {s;r,si_} be the set of

f.g. projective T}, (A)—module morphisms

st =((10),0,...,0), sy =((01),0,...,0): Si > So (1 <i<p).
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Proposition 5.9 (i) The universal o —inverting localization of T, (A) is given by the
inclusion

F: Tu(A) — 0 ' Tu(A) = My 1(A[Fu)
with M, 1 1(A[F}]) the ring of all (0 + 1) x (u+1)—matrices with entries in A[Fy].
The universal localization F is both injective and stably flat.

(i) The composite

f

Mod(T,,(4)) Mod(My 41 (ATFu)) —22% Mod(A[Fy))

sends a T}, (A)-module L = (L;, jl'.+, J;7) to the assembly A[F,]-module

w
M = coker((f1+zl—f1— oo Sz 1) D LilFu) — LO[FM]).

i=1

(iii) A Tu(A)-module L = (L;, f;*, f77) is f.g. projective if and only if Lo, ..., Ly
are f.g. projective A—modules and the A-module morphism

w
(f1+ fl_ f2+ fz_ f;j_ f;/,_) @Li@Li _)LO
i=1
is a split injection. The projection
Proj(Tu(4)) > [ | Proi(4): (Li. f;i*. /i) (Lo L1, La..... Ly)
u+1
induces isomorphisms in algebraic K —theory

K(Tu(4) = (P Kx(A).

n+1

(iv) AT,(A)-module L = (L,-,fl.+,fi_) ish.d. 1 o—torsionifandonlyif Ly, ..., L,
are f.g. projective A—modules and the A[F,]-module morphism

nw
(f1+Zl_f1_ f2+22_f2_ flj_zu_fl;):@lfi[FlL]_)LO[FlL]
i=1

is an isomorphism. A f.g. projective Seifert A—module (P, e, {m;}) is primitive if and
only if (P, P;, fi+, J;7) isan h.d. 1 o —torsion T, (A)—module. The functor

Prim(A) — H(Ty(A),0); (P,e {mi})— (P, P;,en;, (e — 1)m;)
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is an equivalence of exact categories, so that
Primy(A4) = K« (H(Ty(A), 0)).
The forgettul functor
Prim(A) — [ | Proj(A):
2p
prapr (O )t - P P=,... Pt P-

@ ) €_+ e__ 9{7[1 }®{T[l} |_>( bl 1 2> n u,)
(defined using Theorem 4.9) is split by
[ [ Proi(4) — Prim(4): (P}, Pr.....P . P)—~(PT®P™.0.{x; )@ {n; }).
2u
The reduced K —groups defined by

Prim . (4) = ker(Prim(4) > € K«(4))
2u

are such that

K«(H(Tu(4). 0) = Primy(4) = @) K«(4) ® Prims (4).
2pu

Proof The universal localization 0~ 17},(4) is the (u + 1) x (u+1)—matrix ring
M, +1(R) with R the endomorphism ring of the induced f.g. projective o 1T (A)-
module 0~ 1S, and there is defined an isomorphism

A[Fyl— R; zi — sl."r(si_)_l.

The remaining parts are given by Proposition 5.7, viewing the (x4 1) x (i 4+ 1) matrix
ring 7}, (A) as a triangular 2 X 2 matrix ring

T, (A) = (/f; fz)

with
A0 ...0
0A4...0
A=A, A,=|. . . . |. B=(A®A4 ... A8 4)
00...4
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such that
Mod(A4) = [ [ Mod(4).
w

An A;—module is justa pu—tuple (L, Ly, ..., Ly) of A—modules. By the 2x2 theory
a Ty (A)-module L justa (u+1)—tuple (Lo, Ly, ..., Ly) of A—modules, together
with A-module morphisms fi+, S Li — Lo (1 <i < p). Note that B is a flat
right A;—module, and that for an h.d. 1 o—torsion 7}, (A4)—-module L = (L;, fl."', 57
each L; (0 <i < pu)isaf.g. projective A—module, by the following argument. The
necessary and sufficient conditions of Proposition 5.7 (v) and (vii) for a 7}, (4)—module
L to be h.d. 1 o—torsion are:

(i) there exists a 1-dimensional f.g. projective 4A—module chain complex J: J; —
Jo with a homology equivalence

J1 Jo

K VAN L
@ Li®L ——— Ly,
i=1

(i) each L; (1 <i <p)isanh.d. 1 A-module,

(iii) the A[Fy]-module morphism

nw
(fitzi= /7)) @D LilFu] — Lol Ful

i=1

is an isomorphism.

If L satisfies these conditions there is defined a commutative diagram of 4-modules

K (—11) g an
0——=PL ——PLDL; DL ——0
i=1 i=1 i=1
gl(f,*—f,-) J/(f,* ) l
1
0 Ly Ly 0 0

with exact rows and with ( fl.+ — f;7) an isomorphism. There are defined A-module
isomorphisms

w
Jo®Lox Joo@PLi= Ji.
i=1
so thateach L; (0 <7 < p)is af.g. projective 4—module. |
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Example 5.10 The assembly of A[Fy]-modules is an algebraic analogue of the
geometric construction of an Fy—cover W of a space W from a fundamental domain
U C W. The subspaces

Vi=UNz'WU, zVi=zUNUCU (1<i<p)
are disjoint, with embeddings
fi+: Vi=U;x—x, fi:Vi=>Ux—zix (1<i<p),
and W can be constructed by glueing together F,, copies of U
W = (FuxU)/{(g. ;1)) ~ (g2 f () | g € Fuox € Vi1 i < i}

= |J gUwithUnz'U =V
geF,
Such a situation arises if W is a manifold with a surjection (W) — Fy, eg a
boundary link exterior. The surjection is induced by a map

¢: W BF,=\/58'
w

which is transverse regular at {1,2,...,u} C BF,. Cutting W open at the inverse
image codimension—1 submanifolds Vl =c~1({i}) C W there is obtained a fundamental
domain U C W for the pullback W = c¢*EF, to W of the universal cover EF,
of BF, . More generally, suppose that W is a finite CW complex with an F, —
cover W, and that U C W is a fundamental domain which is a subcomplex. The
embeddings f;", f Vi — U induce inclusions of the cellular f.g. free Z—module
chain complexes fl+, Jfi: C(Vi) » C(U). The f.g. projective T, (Z)—module chain
complex C = (C(U),C(V;), fi+, /;7) has assembly the cellular f.g. free Z[F,]-
module chain complex of w

W
coker ((fﬁzl — S S D) D CODIF] — C(U)[Ful) = C(W),

i=1
such that
_ %
C(W), = coker (( L sh ey - C(U),)[Fu].
i=1
Theorem 5.11 The algebraic K —groups of A[F,] split as

Ka(A[F]) = Ku(4) & @D Kuer (4) @ Prim.cy ().
uw
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Proof By Proposition 5.9 the universal localization
F: A[Fy] = 07 Ty (A) = My 41(A)

is injective and stably flat. The noncommutative localization exact sequence of Neeman
and Ranicki [30; 31]
+o > K1 (07 Tu(A)) — Kn(H(Tu(4).0)

— Kn(Tu(4)) —> Kn(0™ ' Ty(4)) — -+
is given by

c = Kyp1 (A[Fp)) > Primy (4) > @D Kn(A) > Kn(A[Fu]) — -+
u+1

with Prim,(4) — K,(T,(4)) = €@ K,(A) induced by
pt1

Prim(A) — [ | Proj(4); (P.e.{mi}) — (P, Py, Pa..... Py),
u+1
so that

Primy, (4) = @D Kn(A) & Prim,,(4) — @) Ka(A):
20 u+1

+ o= vt o + -5
(0] XXy Xy Xy, Xy, X)

w
— (Z(x;r+xl—_),xf+xl_,x;+x2_,...,x;'+x;).
i=1

This completes the proof. |

Definition 5.12 Let G: A[F,]— X! A[F,] be the universal localization inverting the
set X of morphisms of f.g. projective A[Fy]-modules which induce an isomorphism
of f.g. projective A—modules under the augmentation e: A[Fy,] — A;z; — 1.

Proposition 5.13 (i) The universal localization G: A[Fy] — SLA[F w] s injective.
The h.d. 1 X —torsion A[F,]-module category is

H(A[F,]. %) = Bla(A).

(i) The composite

GF: Tu(A) e Tyu(A) = My+1(A[FL) 9, T T (A) = My (S A[FL)
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is the universal localization inverting the set T of morphisms of f.g. projective T, (A)—
modules which become isomorphisms under the composite

€F: Tu(A) —L = 67T (A) = My (AIF]) — Myt (A).

(iii) A Ty(A)—module L = (Li,fl.+,fl._) ish.d. I t—torsionifandonlyif Ly, ..., L,
are f.g. projective A—modules and the A-module morphism

f=(f1+_f1_ f2+_f2_ fu+—f,:)3L1@L2@"'@Lu—>Lo

is an isomorphism, if and only if

w
(Poedmp) = (@ L AL £ )

i=1
is a f.g. projective Seifert A—module. The functor
Sei(A) - H(Ty(A),1); (P,e {mi}) — (P, Pi,em;, (e —1)m;)

is an equivalence of exact categories. The assembly of (L;, fi+, J;) is the covering
Blanchfield A[F,]-module of (P, e, {m;})

w
coker(( fra= 7 Sz £ @ LilFu — LO[F,L])
i=1

= coker (l —e+ze: P[Fy]— P[FM]) = B(P,e,{m;}),
so that up to equivalence
F=B: HTy(A),7) = Sei(A) - HM 4+1(A[Fyu]), v) = Bla(A).
(iv) The forgettul functor

Sei(4) > [ [ Proj(A): (P.e.{mi}) > (P1. Py..... Py)
w

is split by

"
[T Proi(4) = Prim(A); (Py. Pa..... Py) > (@ P;,0, {n,-})
nw i=1

The reduced K —groups defined by

Seiy(4) = ker(Sei*(A) - Pk (A))
“w
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are such that

K+ (H(Ty(A). 7)) = Seix(4) = (P Kx(4) & Sei(4).
n

Proof (i) The Magnus—Fox embedding A[F},] — A{(x1,...,xy)) is X—inverting,
so that there is a unique factorization

A[F,) — STYA[F,) — A{x1, X2, ... X)),

The identification H(A[Fy], X) = Bla(A) is a formality, as is the identification
Proj(A[Fu]) = P(Proj4(A[F,))) with Proj,(A[F,]) € Proj(A[Fy]) the full sub-
category with objects isomorphic to the f.g. projective A[F},]-modules P[F, ] induced
from f.g. projective A—modules P.

(ii)—-@v) By construction, working as in the proof of Proposition 5.9 (iv) to show that
if L=(L;, f;", f;7)isanh.d. 1 r—torsion 7, (A)-module then Lo, Ly, ..., L, are
f.g. projective A—modules. a

Theorem 5.14 (i) The algebraic K —groups of Prim(A), Sei(A) and Bla(A) fit into
a commutative braid of exact sequences

TS T T

Prim,,(A) E?l Kn(4) 'K,(9)
\ e N /
Sein(A4) R Kn(A[F))
o NE 7 .
TKut1(9) Bla,(4) Primy_; (A)

~_ 7 "~ 7

forn € Z, with G: A[F,] — X~ A[F,] the universal localization and

K (Tu(A) = €D K« (A),
u+1
K+(H(Tyu(4),0)) = (Sei, Bla)s(A) = Prims (4) = €D K (4) @ Prim.(4).
2u
K(H(Tu(4), 7)) = Seix (4) = ) K (4) @ Seix (4),

n
K+(H(A[F,]. £)) = Blas(4) = P K+—1(A4) @ Blax (4),

PKL(G) = Ku(A) @ Seta—1(4) (= Ku(S ™ ALF)) for < 1)

Geometry € Topology, Volume 10 (2006)



1846 Andrew Ranicki and Desmond Sheiham

The reduced K —groups fit into a long exact sequence
- — Prim, (4) — Sein(4) — Blan(4) — Prim,_; (4) > --- .
(i) IfG: A[F,)— Z~1A[F,] is stably flat then
TKu(G) = Kn(E7 A[Fy]) = Ku(4) ® Seiy— (4)

forallneZ.

Proof (i) Consider the commutative square of Waldhausen categories

(CO(Tyu(A)), wr, () (CO(Tu(A)), we—17, (1))

7| i

(CO (T A)), i1, (4) —m (€O Tu(A)), o7, 1)

Since F: Ty (A) - o~ 1T, (A) = M, w+1(A[Fy]) is stably flat there are defined equiv-
alences

(CO(Tu(A). wo—17,(4)) ~ €O Tl M) wo17, () ~ (CP(A[FL)). warF,)

which induce homotopy equivalences

12

KPC(Tu(4), w17, (4)) = KO Tu(4)) = K(A[Fy)).
Also, since 77! Ty (A) =M, (Z_IA[F,L]) the functor
(COTu(A)) w17, (4) = (€O Tu(A)). o7, ()
induces an equivalence of the homotopy categories
DCP(Tu(A)). we-17,(4)) ~ (€07 Tu(A). w7, ().

The composite of this equivalence and the Morita equivalence

D(CP (07 Tu(A), womi7, ) ~ DCP(A[FL)). ws—1 4F,)
induces a homotopy equivalence

KP(C (07 Tu(A)), w11, (4) = KPCP(A[FL), w1 45,7
=TK(G: A[F,]| — = 1A[F,)).
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Thus Propositions 5.6, 5.9 and 5.13 give a braid of Waldhausen categories

s N

Co(Tu(A),0). wr, (4).0)) (CO(Tu(A)). wr,(4)) (CP(A[FLD. Wx—1 4[F,])

N 7 N S

(CO(Tu(A). ). wer, (4),0)) (CP(A[F ). w41,

~, 7

(CP(A[F,]. D). Web (A[F,],E))

inducing a commutative braid of exact sequences

T T~ T

Kn(H(Ty(A4),0)) Kn(Ty(4)) FKn(9)
Kn(H(Ty(A4), 7)) Kn(A[F L))
I'Ky+1(9) Kyn(H(A[Fy], X)) Ky—1(H(Ty(A),0))

T~ 7 ~

Split off the reduced K—groups in

Primy(4) = @D K+ (4) ® Prim, (4),
P

Seix(4) = P K+(4) @ Seix(4)
w

from the long exact sequence
-++— Primy,(A4) — Sei,(A) — Bla,(A) — Prim,_;(A4) — ---
to define the reduced K—groups in

Bla,(4) = P K+—1(4) @ Blax(4)
W

and to obtain the long exact sequence
.o+ — Primu(A4) — Sein(A4) — Blay(A) — Prim,_;(A4) — ---

(i) This is a special case of Proposition 5.6 (ii). O
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This completes the proofs of Theorems D and E of the Introduction.

Remark 5.15 Unfortunately, we do not know if the universal localization ! A[F),]
is stably flat in general. See Dicks and Sontag [11], Farber and Vogel [16] for proofs
that 7! A[F,] is stably flat when A is a principal ideal domain, and Ara and Dicks
[1, Theorem 4.4] when A is a von Neumann regular ring or a commutative Bezout
domain.

Remark 5.16 Sheiham [40] computed
Ki(STMA[FL) = Ki(A) @ ex' (1)/C

with ex: 71 A[F,] — A the factorization of the augmentation map €: A[F,]— 4
and C € 651 (1) the subgroup generated by the commutators

(14 ab)(1 +ba)~! (a,b € 7Y A[F,), e(ab) = e(ba) = 0).
It follows from the splitting given by Theorem 5.14 (i)
Ky(271 A[Fu]) = K1 (4) @ Seio(4)
that there is defined an isomorphism
Seig(4) —> €5'(1)/C: (P.e.{m}) = D(1—e+ez: P[F,]— P[Fy))

with D the generalized Dieudonné noncommutative determinant of [40, 4.3].

Example 5.17 (i) The algebraic K—groups of Z[F}] are such that
Ki(Z[Fy)) = K+(D) & @ Kooy (D),
uw

Kn(Z{F)) = Kn(@) = {f o

by Stallings [44], Gersten [19], Bass [4, XII] and Waldhausen [49; 48], so that
FIk(Z) = Bla(Z),  Primy(Z) =0,
Kaq1 (ST ZIFu))/ Ks41(Z) = Seix(Z) = Flk4(Z) = Blax(2),

K+(H(Z|Fy). 2)) = P Ksm1 (@) © Sein(2),
w

Kn(H(Z[F,). %)) = Sein(Z)  (n <0).

(ii) Given a p—component boundary link £: |_] wWS"CS n+2 with exterior W and
given a p—component Seifert surface V =V, uV,u...uV, C S "2 for { let
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C (W) (C(V),e,{m;}) be the chain complexes defined in Example 3.13. Thus
C(W) is a ©717[F,]-acyclic (n+2)—dimensional f.g. free Z[F,]-module chain
complex, (C(V),e,{m;}) is an (n+1)—dimensional chain complex in Sei(Z), and
B(C(V),e, {71,}) is an (n+1)—d1mens1onal chain complex in Flk(Z) with a homology
equivalence C (W) — B(C(V), e, {r;}). The torsion

() = (T7'C(W))
n+1

= (CV)edm)) = Y () (Cr (Ve dmi)) = [C(W)]

r=0
€ K{(S7'Z[Fu))/ K1(Z) = Ko(H(Z[F,). £)) = Seio(Z) = Blag(2)

is an isotopy invariant of £, given by Sheiham [40] to be the generalized Dieudonné
determinant

n+1
(€)= Y (=)' D(1—e +ez: C(V)[Ful > Cr (V)[Fu)) € Seio(2) = e5'(1)/C
r=0

with ex: 717[F,] — Z and C C 651(1) as recalled in Remark 5.16. The Z[F,]-
modules Hr(W)/Z—torsion (0<r <n+1)arehd. 1 Fy-link modules, and

n+1
t(0) =Y (=)' D —e+ez: H,(V)[Fu]— Hr(V)[Fp))
r=0
n+1
= Z(—)r[H,(I/T/)/Z—torsion]
r=0
€ K\ (7' Z[Fu))/ K\(Z) = Ko(H (Z[Fy). £))

= Sei(2) = Blao(Z) = (7' Z[F.)* /{£1}.

For ;1 = 1 this is just the Reidemeister torsion of a knot £: S” C S”*2, which is the
alternating product of the Alexander polynomials

T(f) = nil (—=)det(l —e +ez: H,(V)[z,z7 = H,(V)[z,z"])
r=0
=S L (W) Z-torsion]
r_eoKl(E_IZ[Z, =)/ K1(2) = Ko(H(Z[z.z7'], £))
= Seig(Z) = Blag(Z) = Endo(2) = (27 Z[z. z7")* /{£1}

(Milnor [29], cf [33, Example 17.11]).
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(iii) The isotopy classes of simple @ —component boundary links £: |_| S 29-1 ¢
S24+1 for g > 3 are in one-one correspondence with the ‘/—equivalence classes of
Seifert matrices’ (Liang [27], generalizing the case i = 1 due to Levine [25]), and also
with the ° R—equivalence classes of (—)?—symmetric isometry structures of multiplicity
wu’ (Farber [15, 4.7]). For simple ¢ Hq(ﬁ/) is an h.d. 1 Fy-link module, and the
torsion

7(€) = (=)?[Hy(W)] € Seig(Z) = Flko(Z) = Blao(Z)

is just the K—theory part of these complete isotopy invariants for g = 3.
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