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Criticality for the Gehring link problem
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In 1974, Gehring posed the problem of minimizing the length of two linked curves
separated by unit distance. This constraint can be viewed as a measure of thickness
for links, and the ratio of length over thickness as the ropelength. In this paper we
refine Gehring’s problem to deal with links in a fixed link-homotopy class: we prove
ropelength minimizers exist and introduce a theory of ropelength criticality.

Our balance criterion is a set of necessary and sufficient conditions for criticality,
based on a strengthened, infinite-dimensional version (Theorem 5.4) of the Kuhn–
Tucker theorem. We use this to prove that every critical link is C 1 with finite
total curvature. The balance criterion also allows us to explicitly describe critical
configurations (and presumed minimizers) for many links including the Borromean
rings. We also exhibit a surprising critical configuration for two clasped ropes:
near their tips the curvature is unbounded and a small gap appears between the two
components. These examples reveal the depth and richness hidden in Gehring’s
problem and our natural extension.

57M25; 49Q10, 53A04

1 Introduction

Suppose that A and B are disjoint linked Jordan curves in R3

which lie at a distance 1 from each other.
Show that the length of A is at least 2� .

—Fred Gehring, 1974

Gehring’s problem, which appeared in a conference proceedings [7], was soon solved
by Marvin Ortel. Because Ortel’s elegant solution was never published, we reproduce
it here with his permission: Fix any point a 2 A; the cone on A from a is a disk
spanning A. Since A and B are linked, B meets this disk at some point b 2B , lying
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on a chord of A. Because Dist.A; b/� 1, projecting A to the unit sphere S around b

does not increase its length. The projection is a closed curve joining two antipodal
points on S , and so has length at least 2� . (Further proofs and generalizations to
linked spheres in higher dimensions were published by Edelstein and Schwarz [11],
Osserman [28] and Gage [12; 13].)

The unique minimizing configuration for Gehring’s problem is a Hopf link consisting of
two congruent circles in perpendicular planes, each passing through the other’s center.
This leads to a natural question: what are the length-minimizing shapes of other link
types when the different components stay unit distance apart? This constraint prevents
different components from crossing each other, but we cannot expect to fix the link
type exactly. Instead, the natural setting for this problem is Milnor’s notion of link
homotopy: two links are link-homotopic if one can be deformed into the other while
keeping different components disjoint. Clearly one link can be deformed into another
while keeping all components at unit distance if and only if they are link homotopic.

We will define the link-thickness of a link to be the minimum distance between different
components. The problem we consider is then to minimize length in a link-homotopy
class, subject to the constraint of fixed link-thickness. Equivalently, we could minimize
the link-ropelength of the link, meaning the quotient of length over thickness.

In [4], we found length-minimizing links under a similar constraint: that a normal tube
of diameter one around the link stay embedded. It is easy to see that the examples
constructed there (like the one in Figure 4) are also global minima (in their respective
link-homotopy classes) for the Gehring problem. The focus of this paper will be on crit-
ical configurations. Our main result is a balance criterion (Theorem 6.1, Corollary 6.3),
which states that a link is link-ropelength critical if and only if the tension force in
the curve is balanced by a system of compressive forces between pairs of points on
different components of L realizing the minimum distance.

This balance criterion is based mainly on an improved, infinite-dimensional version
(Theorem 5.4) of the Kuhn–Tucker theorem on constrained optimization, which is
essentially a very general method of Lagrange multipliers. The other key technical
element is a careful application of Clarke’s differentiation theorem for min-functions
(Theorem 3.1).

The direct method shows that there is a (rectifiable) minimizer for link-ropelength in
each link-homotopy class. An interesting problem is to determine the regularity of
these minimizers or other critical points. The previously known minimizers were C 1;1

but not C 2 . Our balance criterion allows us to prove that all link-ropelength-critical
curves are C 1 with finite total curvature (Proposition 6.5).
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We next consider generalized links, which may include open components with con-
strained endpoints, or which avoid fixed obstacles. After extending our balance criterion
and existence results to this setting, we analyze the problem of the simple clasp. A
clasp consists of two linked arcs whose endpoints are constrained to parallel planes
(as in Figure 10). A generalization to clasps of different opening angles provides
a model for the strands of rope in a woven cloth or net. The balance criterion lets
us construct explicit critical configurations (Theorem 9.5) of these generalized links;
we conjecture they are the length-minimizers subject to the constraint that the arcs
remain at unit distance from each other. Our critical clasp has a number of surprising
features, including a point of infinite curvature and a small gap (at the center of the
clasp) between the tubes around the two components. This configuration is C 1;2=3 and
may represent the worst regularity of any critical curve.

We end by constructing a ropelength-critical configuration (and presumed minimizer)
for the Borromean rings. In all the other known critical configurations for closed links,
each component is a convex plane curve built from straight segments and arcs of circles.
In our Borromean rings, the components are still planar, but are nonconvex and are
built from different pieces including parts of a clasp curve. In a sense, this is the first
nontrivial example of a ropelength-critical link.

Our methods will have a number of other applications. In particular, we have used
them to describe critical configurations for the “standard” ropelength problem for knots
and links: minimize the length of a C 1 link subject to the constraint that the normal
neighborhood of unit diameter remains embedded. We will publish these results in a
sequel [2] to the current paper. We can also consider minimization not of length but
of other objective functions like elastic bending energy, again subject to a thickness
constraint. Analogs of our balance criterion may be useful in describing other flexible
mechanisms, such as thick surfaces.

We note that von der Mosel and Schuricht [33] have used a similar approach (via
Clarke’s theorem and a functional-analytic version of Lagrange multipliers) to derive
necessary, but not sufficient, conditions for criticality for the ropelength functional
of [4]. We will treat the same functional in our forthcoming sequel [2] and will offer a
comparison of the two methods there. We also note that Starostin has given [34] an
independent derivation of the tight clasp of Section 9, though he does not prove that it
is critical.
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2 Link-thickness for closed links

In order to reformulate Gehring’s problem, we first establish some basic terminology.
Remember that a compact, oriented 1–manifold-with-boundary M is a finite union of
components, each of which is homeomorphic to a circle S1 or an interval Œ0; 1�.

Definition A parametrized curve is a mapping from a compact, oriented 1–manifold-
with-boundary M to R3 . Two parametrized curves are equivalent if they differ by an
orientation-preserving reparametrization (thatis, by composition with an orientation-
preserving self-homeomorphism of M ). A curve L in R3 is an equivalence class of
parametrized curves. We say L is closed when each component of its domain M is a
circle, that is, when its boundary @L is empty.

Even though our curves may have self-intersections, we will usually refer to points on
the curve as if they were simply points of its image in R3 . The meaning should be
clear from context.

The length Len.L/ of any curve L is defined to be the supremal length of all polygons
inscribed in L. A curve has finite length, or is rectifiable, if and only if it has a Lipschitz
(that is, C 0;1 ) parametrization. One such parametrization is then by arclength s . Any
rectifiable curve has a well-defined unit tangent vector T D dL=ds almost everywhere.

Definition The link-thickness LThi.L/ of a curve L is the minimum distance between
points on different components of L. This is the supremal " for which the ."=2/–
neighborhoods of the components of L are disjoint.

For now, we will consider only the case of closed curves, where each component is
a circle. (We will deal with generalized links—with endpoint constraints—later in
Section 8.) So suppose we start with a closed curve L and we want to minimize length
under the constraint that the link-thickness remains at least one. Since we can rescale
any link to have LThi� 1, this problem is the same as minimizing (link-) ropelength,
the quotient of length by link-thickness.

The thickness constraint naturally prevents different components from passing through
each other, but does not prevent any given component from changing its knot type
through self-intersections. This is the setting for Milnor’s work on link homotopy:

Definition A link is a closed curve with disjoint components. The link-homotopy class
of a link L, denoted ŒŒL��, is the set of curves homotopic to L through configurations
that keep different components of L disjoint.
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Note that, for our purposes, configurations of L where some components have self-
intersections are still considered to be links, and are included in ŒŒL��.

For two-component links, Milnor [25] showed that linking number is the only link-
homotopy invariant. For links of many components, the topological situation is more
complicated, but a complete classification of links up to link homotopy was provided
by Habegger and Lin [16]. We will prove in Section 6 that in every link-homotopy class
there is a curve minimizing ropelength. We show these minimizers are always C 1 ,
though our examples suggest that they may not always have bounded curvature.

3 The derivative of link-thickness

We want to define critical configurations of L subject to the thickness constraint
LThi.L/ � 1. Because LThi is defined as the minimum of a collection of distances
between points on different components, the equation LThi� 1 acts like a collection
of many constraints. To make this notion precise, we will apply a theorem of Clarke to
compute the derivative of LThi as we vary the curve L.

Given any curve L, let L.2/ be the compact set of all unordered pairs fx;yg of points
on distinct components of L. The link-thickness of L is simply the minimum over L.2/

of the distance function Distfx;yg WD jy �xj.

We often want to consider a continuous deformation Lt of a curve L: fixing any
parametrization f of L, that means a continuous family ft of parametrized curves
with f0 D f . (When we reparametrize L, we apply the same reparametrization to Lt

at all times t .) We assume that Lt is C 1 in t ; the initial velocity of Lt will then be
given by some (continuous, R3 –valued) vector field � along L. We let VF.L/ denote
the space of all such vector fields. Formally, these are sections of the bundle f �T R3

pulled back from the tangent bundle of R3 by the parametrization f of L. Identifying
any tangent space to R3 with R3 itself, this is simply a map from the domain M to R3 .
Again, when we reparametrize a curve L, we apply the same reparametrization to any
vector field � .

Consider a curve L with LThi.L/ > 0. If Lt is a continuous deformation of L, with
initial velocity given by some � 2 VF.L/, then for each pair fx;yg 2L.2/ , we clearly
have

ı�Distfx;yg WD
d
dt
jy �xj

ˇ̌̌
tD0
D
h�y � �x;y �xi

jy �xj
:

(Even if L is not embedded, the condition LThi.L/ > 0 implies x and y cannot
coincide in R3 , so this formula is always meaningful.)

Geometry & Topology, Volume 10 (2006)
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A function like LThi, defined as the minimum of a compact family of smooth functions,
is sometimes called a min-function. Clarke’s differentiation theorem for min-functions
says that—just as in the case when the compact family is finite—the derivative of
a min-function is the smallest derivative of those smooth functions that achieve the
minimum. More precisely, specializing [6, Theorem 2.1] to the case we need, we have:

Theorem 3.1 (Clarke) Suppose for some compact space K and some " > 0, we
have a family of C 1 functions fk W .�"; "/!R , for k 2K . Suppose further that fk.t/

and f 0
k
.t/ are lower semicontinuous on K � .�"; "/. Let f .t/ WD mink2K fk.t/.

Then f has one-sided derivatives, and

df
dtC

ˇ̌̌
tD0
D min

k2K0

f 0k.0/;

where K0 WD fk 2K W fk.0/D f .0/g is the set of k for which the minimum in the
definition of f is achieved when t D 0.

To apply this theorem to thickness, suppose we have a variation Lt of the curve L,
and let � 2 VF.L/ be its initial velocity. The link-thickness LThi.L/ is written as a
minimum over K DL.2/ of the pairwise distance. Clarke’s theorem picks out those
pairs achieving the minimum: K0 is the set of pairs achieving the minimum distance
LThi.L/.

In rigidity theory, the vertices of a tensegrity framework are joined by bars whose
length is fixed, cables whose length can shrink but not grow, and struts whose length
can grow but not shrink (compare Roth and Whiteley [31]). Thus, we borrow the term
“strut” to describe the pairs in K0 :

Definition An unordered pair of points fx;yg on different components of L is a strut
if jy �xj D LThi.L/. The space of all struts of L is denoted Strut.L/�L.2/ .

Struts correspond to points of contact between tubes around the different components
of L. Our balance criterion will show how the segment xy can be viewed as carrying
a force pushing outward on its endpoints.

Applying Clarke’s theorem to link-thickness, we get:

Corollary 3.2 For any curve L, and any variation vector field � 2 VF.L/, the (one-
sided) first variation of link-thickness is

ıC
�

LThi.L/D min
Strut.L/

ı�Distfx;yg:
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Note that ı�Distfx;yg is a continuous function of x and y , and for any fixed fx;yg
is a linear function of the variation � , being the derivative of a smooth function.

Therefore we can collect these into a linear operator AS D ıDist from VF.L/ to the
space C.Strut.L// of continuous functions on struts, defined by

.AS�/.fx;yg/ WD ı�Distfx;yg D
1

jy �xj
h�y � �x;y �xi:

Borrowing again from rigidity theory, where the analogous A is called the rigidity
matrix, we will call AS the rigidity operator for link-thickness.

The corollary above can be rephrased to conclude that a variation � decreases LThi.L/
to first order if and only if AS� takes at least one negative value on Strut.L/.

Note that, while the corollary says that link-thickness has a directional derivative
ıC
�

LThi in each direction � , the operator ıC
�

LThi is not linear in � . For instance,
when one component of a link is between two others, it is easy to have both ıC

�
LThi< 0

and ıC
��

LThi<0. We write the superscript C to emphasize that these are only one-sided
derivatives. There is, however, a form of superlinearity:

Corollary 3.3 For any curve L and any �; � 2 VF.L/, we have

ıC
�C�

LThi.L/� ıC
�

LThi.L/C ıC� LThi.L/:

Proof This follows immediately from the linearity of AS and the general fact that
min.f Cg/�minf Cmin g . We have

min AS.�C �/fx;yg Dmin.AS�CAS�/fx;yg

� min AS�fx;ygCmin AS�fx;yg;

where the minima are taken over all fx;yg 2 Strut.L/.

We will be interested in the adjoint A�S of the rigidity operator, so we first consider the
dual function spaces. By the Riesz representation theorem, we know that C �.Strut/ is
the space of signed Radon measures on the space Strut.L/ of struts. Similarly VF�.L/
is the space of what we will call forces along L, namely vector-valued Radon measures
on L.

The adjoint operator A�S now associates to any measure � on struts a force A�S�

along L. Geometrically, each pair fx;yg acts along the chord xy , outward at each of
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its endpoints. In formulas,Z
L

� dA�S�D

Z
Strut

AS� d�

D

Z
x2L

Z
y2L

D
�y ;

y �x

jy �xj

E
d�.x;y/;

where we have lifted � to a symmetric measure �.x;y/ on ordered pairs. Physically,
we think of � as giving the strengths of compressive forces within the struts, and A�S
as the operation that integrates these strut forces to give a net force along the curve L.

4 First variation of length and finite total curvature

The objective functional we consider in this paper is simply the length Len.L/ of a
curve. Since our curves might not be smooth, we need to carefully examine the first
variation of length.

Let L be a rectifiable curve parametrized by arclength s , with unit tangent vector T .
Suppose Lt is a variation of L under which the motion of each point x 2L is smooth
in time with initial velocity �x , and � 2 VF.L/ is a Lipschitz function of arclength.
Then the standard first-variation calculation shows that

ı�Len.L/ WD
d
dt

Len.Lt /
ˇ̌̌
tD0
D

Z
L

hT; � 0i ds;

where � 0 D d�=ds is the arclength derivative, defined almost everywhere along L.

If L is smooth enough, we can integrate this by parts to get

ı�Len.L/D�
Z

L

hT 0; �i ds�
X

x2@L

h˙T; �i:

(In the boundary term, the sign is chosen to make ˙T point inward at x .) In fact, not
much smoothness is required: as long as T is a function of bounded variation, we can
interpret T 0 as a measure, and the formula holds in a sense we will now explore.

Following Milnor [24], we recall that the total curvature of a polygon is just the sum
of its (exterior) turning angles, and we define the total curvature of any curve to be
the supremal total curvature over all inscribed polygons. A rectifiable curve L has
finite total curvature if and only if the unit tangent vector T DL0.s/ is a function of
bounded variation. Sometimes the space of all such curves is called W 1;BV or BV1 ,
but we will call it FTC. (See Sullivan [36] for a survey of results on FTC curves.)

Geometry & Topology, Volume 10 (2006)
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If L 2 FTC, it follows that at every point of L there are well-defined left and right
tangent vectors T˙ ; these are equal and opposite except at countably many points, the
corners of L. (See, for instance, Royden [32, Sect. 5.2].)

If L is FTC, its tangent T has a distributional derivative K with respect to arclength:
a force (an R3 –valued Radon measure) along L that we call the curvature force.

The curvature force has an atom (a point mass or Dirac delta) at each corner x 2L, with
Kfxg D TC.x/CT�.x/. On a C 2 arc of L, the curvature force is KD dT D �N ds

and this is absolutely continuous with respect to the arclength or Hausdorff measure
ds DH1 .

When L has boundary, we choose to include in K an atom at each endpoint of L, with
mass 1 and pointing in the inward tangent direction. This means we need no boundary
terms in the formula ı�Len.L/D�

R
L

˝
�; dKi.

We say that a vector field � along L is smooth if �s is a smooth function of arclength.
(The arclength parametrization of any rectifiable curve is essentially unique, so this
makes sense.) The set of all smooth vector fields will be denoted VF1.L/.

The first variation ıLen.L/ can be viewed as a linear functional on smooth vector fields
� 2 VF1.L/. As such a distribution, it has order zero, by definition, if ı�Len.L/DR

LhT; �
0i ds is bounded by C supL j�j for some constant C . This happens exactly

when we can perform the integration by parts.

We collect these results as:

Lemma 4.1 Given any rectifiable curve L, the following conditions are equivalent:

(a) L is FTC.

(b) The first variation ıLen.L/ has distributional order zero.

(c) There exists a curvature force measure K along L such that ı�Len.L/ D
�
R

Lh�; dKi.

An FTC curve L is C 1 exactly when it has no corners, that is, when K has no atoms
(except at the endpoints). It is furthermore C 1;1 when T is Lipschitz, or equivalently
when K is absolutely continuous (with respect to arclength) and has bounded Radon–
Nikodym derivative dK=dH1 D �N . In previous work on ropelength (for example
[4; 14]), the thickness measure had an upper bound for curvature built in, meaning
that any curve of positive thickness was automatically C 1;1 . This is not true for the
link-thickness, so we do not expect the same regularity results to hold here.
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5 Constrained criticality and the Kuhn–Tucker theorem

We will review constrained minimization problems in a finite setting, before generalizing
to the setting we will need for our ropelength problems. Suppose we want to minimize
a C 1 function f W Rn! R inside the admissible region defined by a finite collection
of C 1 inequality constraints gi � 0. A constraint gi is active at p 2 Rn if gi.p/D 0.

Definition We say that p is a constrained critical point for minimizing f if, for any
tangent vector v at p with Dvf < 0, we have Dvgi < 0 for some active gi . That is, p

is critical if there is no direction v 2 Rn that reduces f to first order while preserving
all constraints to first order.

Note that the criticality conditions for minimizing f and �f are quite different; in
particular local maxima for f are rarely critical points for minimizing f , while local
minima for f usually—though not always—are.

Example 5.1 Suppose we minimize f .x; z/ WD x on the halfplane x � 0 in R2 ,
subject to

g1 WD .x
2
� 1/3� z � 0; g2 WD z � 0:

The admissible region has an outward-pointing cusp, shown in Figure 1. The tip of this
cusp, at p D .1; 0/, is the global minimum of f over the admissible region, but it is
not critical: the directional derivatives in the direction v D .�1; 0/ are Dvf D�1 but
Dvgi D 0.

To deduce that a local minimum of f is critical according to our definition, an addi-
tional regularity hypothesis will be required. However, critical points can be exactly
characterized by a Lagrange multiplier theorem (compare [17]):

Theorem 5.2 (Modified Kuhn–Tucker Theorem) A point p is constrained-critical
for minimizing f if and only if the gradient rf is a positive linear combination of the
gradients rgj of the constraints gj active at p .

The geometric intuition behind this theorem is easy to understand: Only the active
constraints matter, and being inequality constraints they can only act positively. If
there were some component of �rf not canceled by the rgj , that would give an
admissible direction to move which decreases f .

Unlike in the classical Kuhn–Tucker theorem, we do not need additional regularity
hypotheses on the point p , which may surprise those familiar with optimization theory.
The explanation is that we are interested in critical points, while the classical theorem
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g2 D 0

g1 D 0

p x

z

Figure 1: In this illustration of Example 5.1, the admissible region for the two
constraints g1D .x

2�1/3�z�0 and g2Dz�0 is shaded. The Mangasarian–
Fromovitz constraint qualification fails at the cusp point p D .1; 0/ because
rg1 and rg2 are equal and opposite there.

deals with minima of f . And as we saw above, not every minimum of f is critical. But
just as in the classical theory, criticality will be guaranteed if we add the hypothesis that
the Mangasarian–Fromovitz constraint qualification [20] holds for a local minimum.

Definition A point p is constraint-qualified (in the sense of Mangasarian and Fro-
movitz) if there is a direction v such that for all constraints gj active at p we have
Dvgj > 0.

We note that this condition fails at the point p D .1; 0/ in Example 5.1 above, which
was minimal but not critical.

Proposition 5.3 If p is a local minimum for f when constrained by fgi � 0g, and p

is constraint-qualified, then p is constrained-critical for minimizing f .

We have omitted proofs of the theorem and proposition above because they are standard
and are also special cases of our infinite-dimensional generalizations below.

5.1 A generalized Kuhn–Tucker theorem

Note that in Theorem 5.2, the functions f and gi might as well be replaced by linear
functions—their differentials at p . We view this as the linear-algebraic core of the
Kuhn–Tucker theorem.

We will now derive an infinite-dimensional version, where the linear functional f
is defined on an arbitrary vector space X , and the finite family of constraints gi is
replaced by a family Ay , where y ranges over some compact space Y .

Geometry & Topology, Volume 10 (2006)



2066 Cantarella, Fu, Kusner, Sullivan and Wrinkle

While our theorem does not mention optimization directly, it will be the engine that
drives all of the optimization theorems of this paper.

As usual, we let C.Y / be the Banach space of continuous functions on Y with the sup
norm k � k, and let P � C.Y / be the closed positive orthant consisting of nonnegative
functions. Then the dual space C �.Y / consists of all signed Radon measures on Y ,
and P� � C �.Y / is the cone of positive measures.

Note that any function z 2 C.Y / can be decomposed into positive and negative parts:
z D zC� z� with z˙ 2 P . Then we have kz�k D Dist.z;P /.

Theorem 5.4 Let X be any vector space and Y be a compact topological space. For
any linear functional f on X and any linear map AW X ! C.Y /, the following are
equivalent:

(a) There exists " > 0 such that k.A�/�k � " for all � 2X with f .�/D�1.

(b) There exists a positive Radon measure � 2 P� such that f .�/D �.A�/ for all
� 2X .

This theorem is comparable to the generalized Kuhn–Tucker theorem of Luenberger
[19, page 249]. His theorem, restated to apply to the linear Gateaux differentials (f
and A) of the original objective and constraint functions on X , says:

Theorem 5.5 (Luenberger) Let X and Z be vector spaces, with a norm given on Z ,
and let P �Z be a closed convex cone with nonempty interior. Let f W X ! R be a
linear functional and AW X !Z be a linear map. Assume that whenever A� 2 P we
have f .�/� 0, and that A� lies in the interior of P for some � 2X . Then there exists
� 2 P� such that f .�/D �.A�/ for all � 2X .

While our version applies only to the case Z D C.Y /, our hypotheses (a) on f and A

are somewhat weaker than those imposed by Luenberger—they are necessary as well
as sufficient for (b) the existence of �.

To understand our overall strategy, consider the linear map .f;A/W X ! R�C.Y /.
As we will see below, (a) implies that the image of .f;A/ avoids the interior of the
orthant R� �P .

To gain some intuition, let us specialize to the case where X D Rm . We can rephrase
(b) to say that some vector in the kernel of the adjoint map .f;A/� is in R� � P .
When Y has finite cardinality n, we put the standard Euclidean inner product on
R�C.Y /Š RnC1 , and identify this space with its dual. Then the kernel of .f;A/�

and the image of .f;A/ are orthogonal complements in RnC1 . The standard Farkas
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alternative (see Figure 2) says that, given any closed orthant in RnC1 , it must intersect
one out of any pair of orthogonal complements. Our argument in the general case,
when Y might be infinite and X infinite dimensional, will be guided by this intuition.

O

I?

I O

I?

I

Figure 2: One version of the Farkas alternative states that, given any closed
orthant O in a inner product space, it must intersect at least one out of any
pair of orthogonal complements I and I? .

Proof of Theorem 5.4 One direction is easy: suppose we have a positive Radon
measure � so that for each � 2X ,

f .�/D

Z
Y

A� d�:

For any � 2X with f .�/D�1, write z WDA� 2 C.Y /. We have
R

z d�D�1, and
since � is a positive measure, we can replace the function z with its negative part to
conclude that

R
z� d�� 1. Furthermore � has finite mass mass.�/ WD

R
d� <1 by

the Riesz theorem. Therefore

Dist.z;P /D kz�k � 1=mass.�/ > 0:

This completes the proof that (b) implies (a).

To prove the converse, first give R�C.Y / the Euclidean combination of the sup norms
on R and C.Y /:

k.a;g/k D
p

a2Ckgk2:

Now consider the orthant O WD Œ�1;1/�P . Our hypothesis (a) implies that there
is positive distance between O and the image I WD .f;A/.X / of the linear map
.f;A/. Take sequences

�
f .�i/;A�i

�
in I and .ti ; zi/ in O , whose pairwise distance

approaches Dist.I;O/. That is, setting

vi WD
�
ti �f .�i/; zi �A�i

�
we have kvik! Dist.I;O/.
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We first claim that we can assume that vi 2 R� �P . Certainly we can assume the
equality zi D .A�i/

C , since this positive part of the function A�i realizes the distance
kzi �A�ik D k.A�i/

�k D Dist.A�i ;P /. Then zi �A�i D �.A�i/
� 2 P . Similarly,

Dist
�
f .�i/; Œ�1;1/

�
is �1� f .�i/ if this is positive (and is zero otherwise), so we

may assume ti Dmin.�1; f .�i//. Thus ti � f .�i/, so ti �f .�i/� 0. This proves the
first claim.

We now have a geometric problem: from Figure 2 we see there is a special case where
both the image of .f;A/ and its orthogonal complement lie on the boundary of R��P .
If this happens, then the closure xI intersects either the subspace R� f0g or f0g �P .
The second case does not trouble us, but the first would cause us problems later; we
now show that our assumption (a) rules it out. To do so, we think about the setup above
geometrically: if xI intersects R� f0g, then we expect that ti �f .�i/! 0.

Thus our second claim is that we can assume the ti � f .�i/ are uniformly negative.
If not, limf .�i/� �1, so without loss of generality, we can rescale �i down so that
f .�i/D�1. That means .�1;A�i/ 2 I . By hypothesis (a) we know

di WD Dist
�
.�1;A�i/; O

�
D Dist.A�i ; P /� "

for some fixed " > 0. Since we are using the Euclidean combination of the norms on R

and C.Y /, the distance from any rescaling by k of .�1;A�i/ to O is given by the
Euclidean distance from .�k; kkA��i k/ to .�1; 0/. And we can use plane geometry
to see that rescaling by 1� "2 brings us closer to O :

Dist
�
.1� "2/.�1;A�i/; O

�
D di

q
1� 2"2C "4.1C 1=d2

i /� di

p
1� "2C "4:

We can always assume that "<1, so the constant
p

1� "2C "4 is less than 1. Therefore

Dist.I;O/ � lim Dist
�
.1� "2/.�1;A�i/; O

�
< lim Dist

�
.�1;A�i/; O

�
D Dist.I;O/:

This contradiction proves the second claim.

We have proved that the vi are in R� � P . Using the Hahn–Banach theorem, for
each i we can find a linear functional .ci ; �i/2R�C �.Y / that vanishes on I , satisfies
.ci ; �i/.vi/D 1, and has norm

.ci ; �i/



D 1=Dist
�
vi C I; .0; 0/

�
:

Because the R–components of vi are uniformly negative, so are the ci .

Geometry & Topology, Volume 10 (2006)



Criticality for the Gehring link problem 2069

Using Alaoglu’s theorem, the .ci ; �i/ have a subsequence converging in the weak�

topology to a limit functional .c; �/; we have c < 0 and its norm is bounded above by
1= lim Dist.vi ;�I/D 1=Dist.I;O/.

Setting � WD �=jcj 2C �.Y /, we claim this will be the Radon measure in statement (b).
By construction, .�1; �/ vanishes on I , meaning that for � 2X , we have

�f .�/C

Z
Y

A� d�D 0:

(Notice that we have used the additional geometric information that I does not approach
R� f0g in an essential way; if it did, then c would vanish, and we could not rescale �
by 1=jcj to obtain the equation above.)

It remains only to show that � is positive. In an inner product space, this would be
obvious: each �i would be positive (since it was dual to a positive zi �A�i ), and �
would be a limit of positive measures. But our �i were constructed implicitly by the
Hahn–Banach theorem, and so might include negative pieces. We now address this
problem.

We can decompose each �i into its positive and negative parts �i D �
C
i � �

�
i , with

mass.�i/Dmass.�Ci /Cmass.��i /. In order to show � is positive, we will prove that
lim mass.�Ci /D lim mass.�i/. By construction, we know that

1D .ci ; �i/.vi/D ci.ti �f .�i//C

Z
Y

zi �A�i d�i :

Since zi �A�i 2 P , we haveZ
Y

zi �A�i d�i �

Z
Y

zi �A�i d�Ci �


zi �A�i



mass.�Ci /:

Using Cauchy–Schwarz, and the two equations above, we get

1�


vi



qjci j
2C .mass.�Ci //

2:

Now kvik converges to Dist.I;O/, so we find lim k.ci ; �
C
i /k � 1=Dist.I;O/. But

the limit of k.ci ; �i/k (which cannot be smaller) equals 1=Dist.I;O/. Therefore,
lim mass.�Ci /D lim mass.�i/, completing the proof.

To apply Theorem 5.4 to optimization problems, we will let X be the space of vari-
ations � of our given configuration and Y be the set of active constraints. Then we
let f .�/ and A�.y/ be the directional derivatives of the objective function and of the
constraint y 2 Y .
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In this context, a configuration satisfying condition (a) of Theorem 5.4 is called strongly
critical, and one satisfying (b) is balanced. The theorem then says that a configuration
is strongly critical if and only if it is balanced.

Note that our strong criticality is indeed stronger than a simple criticality condition,
which would say that whenever f .�/D�1 we have Dist.A�;P / > 0, or equivalently
that no � has f .�/ < 0 but A� 2 P .

Example 5.6 With X D R2 and Y D Œ0; 1�, we can set f .x1;x2/D x1 and

A.x1;x2/.y/D 2x1

p
y �y2Cx2y

to give an example that is critical, but not strongly critical (and thus not balanced).

However, when Y is a finite set (with the discrete topology), strong criticality is
equivalent to criticality. For suppose whenever f .�/D�1 we have Dist.A�;P / > 0,
but there is no uniform lower bound " > 0 on this distance. For each y 2 Y , we know
that A�.y/ is a linear functional on � . Since there are only finitely many y , the graph
of miny2Y A�.y/ describes a polyhedron in X �R. Since the supremum over � 2X

is finite (we know it is nonpositive), it is achieved (at some � corresponding to a vertex
of this polyhedron). But for any � , the value is negative, so this supremum must be
negative.

This allows us to recover the finite-dimensional Kuhn–Tucker theorem: let X be the
tangent space to Rn at p , let Y be the finite set of active constraints at p , and let f
and A be the directional derivatives of the objective function and the active constraints.
Because Y is finite, (a) is equivalent to the definition of constrained criticality above,
and we obtain Theorem 5.2.

6 The balance criterion for the Gehring problem

We now have all the tools we need to develop a balance criterion characterizing critical
configurations for the link-ropelength problem. We start with definitions of criticality,
guided by our version of Kuhn–Tucker.

Definition Suppose L is a rectifiable link with LThi.L/D � , and consider the Gehring
problem of minimizing length subject to the constraint LThi� � . We say that L is:

� a local minimum for link-ropelength if for all L0 sufficiently C 0 –close to L

with LThi.L0/� � we have Len.L0/� Len.L/.

� critical if for all � 2 VF1.L/ with ı�Len.L/ < 0 we have ıC
�

LThi.L/ < 0.
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� strongly critical if there exists some " > 0 such that for all � 2 VF1.L/ with
ı�Len.L/D�1, we have ıC

�
LThi.L/� �".

With these definitions, we can now apply our Kuhn–Tucker theorem to the Gehring
problem.

Theorem 6.1 (Balance Criterion) A link L is strongly critical for length when
constrained by link-thickness if and only if there exists a positive Radon measure � on
Strut.L/ such that, for every smooth vector field � along L, we have

ı�Len.L/D
Z

Strut.L/
AS� d�;

where AS D ıDist is the rigidity operator.

Proof We will apply Theorem 5.4 with X WD VF1.L/ and Y WD Strut.L/, letting
f WD ıLen.L/ be the derivative of length and A WD AS be the rigidity operator. We
have

k.AS�/
�
k D �min

Strut
ı�Distfx;yg

(when this is nonnegative). By Corollary 3.2, the right-hand side is �ıC
�

LThi.L/, so
that condition (a) from Theorem 5.4 is exactly strong criticality.

6.1 Smoothness of critical curves

It is unclear, a priori, how much regularity one should expect for ropelength-critical
curves in the Gehring problem. But we can use the balance criterion to deduce imme-
diately that they must have finite total curvature.

Corollary 6.2 If a link L is strongly critical for the Gehring problem, then L is FTC.

Proof The theorem tells us that L can be balanced:

ı�Len.L/D
Z

Strut.L/
AS� d�:

But the right-hand side is a distribution of order zero on � , sinceZ
Strut.L/

AS� d��mass.�/ sup
L

j�j:

Therefore, by Lemma 4.1, L 2 FTC.
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We can now rewrite the conclusion of our balance criterion in terms of the curvature
force K on L and the adjoint A�S of the rigidity operator.

Corollary 6.3 A link L is strongly critical for link-ropelength if and only if it has
finite total curvature and there exists a positive Radon measure � on Strut.L/ such that

A�S.�/D�K

as forces along L.

Proof The theorem guarantees that for all smooth � , we have

ı�Len.L/D
Z

Strut.L/
AS� d�:

By the corollary, L is FTC, so the left-hand side can be rewritten as �
R

Lh�; dKi.
Approximating any continuous vector field uniformly by smooth ones, we find that

�

Z
L

h�; dKi D
Z

Strut.L/
AS� d�

for all � 2 VF.L/, or in other words, �KDA�S.�/.

We get an immediate and useful geometric corollary to this balance criterion.

Corollary 6.4 Suppose L is critical for link-ropelength, and E �L is a subset with
nonzero net (vector) curvature 0¤K.E/ 2 R3 . Then there must be at least one strut
fe;xg with e 2 E and x … E , and K.E/ is in the convex cone generated by the
directions x� e of all such struts.

Proof First note that struts from E to E contribute no net force. By the balance
criterion, we have K.E/D�A�S�.E/, and the latter is a (positive) weighted sum of
vectors x� e .

We note that this corollary is the analogue for link-ropelength of von der Mosel and
Schuricht’s “Characterization of Ideal Knots” [33, Theorem 1].

We next find that critical links are C 1 as well as FTC:

Proposition 6.5 If L is strongly critical for link-ropelength, then L is C 1 .
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Proof We already know that L has finite total curvature; it is C 1 precisely when
it has no corners, that is, when the curvature force K has no atoms. If T˙ are the
right and left tangent vectors to L at x , then K.fxg/D TCCT� . When K.fxg/¤ 0,
Corollary 6.4 says there is at least one strut fx;yg with hy �x;K.fxg/i> 0. That is,

hy �x;TCiC hy �x;T�i> 0;

so we must have hy �x;TCi> 0 or hy �x;T�i> 0. (See Figure 3.) In either case
it follows that there exist points on L near x that are closer to y than x is, which
contradicts the hypothesis that fx;yg was a strut. This completes the proof.

T�

K.fxg/

TC

L
x

Figure 3: This curve L has a corner at x with left and right tangent vec-
tors T� and TC , whose sum is the curvature force K.fxg/ there. If L is to
balance, there must be a strut fx;yg with y in the open hemisphere (shown in
light gray) of vectors with positive inner product with K.fxg/ . But for any y

outside the normal cone (shown in dark gray), there are points near x on L

that are closer to y than x is. Thus our fx;yg cannot be a local minimum
of the self-distance function. This contradiction proves that a critical curve
cannot have a corner.

The example of the tight clasp in Section 9 shows that critical links need not be C 1;1 —
their curvature need not be bounded—but so far this is the worst behavior we can
display. We conjecture that the curvature measure is always absolutely continuous with
respect to arclength.

6.2 Constraint qualification in the sense of Mangasarian–Fromovitz

Corollary 6.3 will be the basic model for balance criteria for generalized links, and
for links constrained by other thickness functionals [2]. In some cases, including the
link-ropelength for closed links we are treating now, we can improve on this form of
the criterion by replacing strong criticality with criticality. This is our next goal.
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In Section 5, we defined a regular or constraint-qualified point for a finite set of
constraints g1; : : : ;gn : such a point has some variation direction v such that Dvgi > 0

for all the active gi . By Corollary 3.2, the corresponding idea for a link L in the
Gehring problem is the existence of a vector field � for which ıC

�
LThi.L/ > 0. But

this is automatic: dilating L increases LThi to first order.

This regularity for our problem allows us to prove that local minima are critical and
that critical points are strongly critical.

Proposition 6.6 A link L is critical for the link-ropelength problem if and only if it is
strongly critical. If L is a local minimum, then L is critical.

Proof Suppose L is a local minimum but not critical. Then for some � 2 VF1.L/
we have ı�Len.L/ < 0 but ıC

�
LThi.L/ � 0. Then for small enough t > 0, the link

LC t� has less length than L. This contradicts minimality unless ı� LThi.L/D 0 and
thickness has decreased (but not to first order). But in this case, we can instead use
the rescaled deformation .LThi.LC t�//�1.LC t�/, for which LThi� 1. For small
t > 0 these again have less length than L, contradicting minimality.

Strong criticality always implies criticality. Conversely, suppose a closed link L

is critical but not strongly critical. Then there exists a sequence �i 2 VF.L/ with
ı�i

Len.L/D�1 and ıC
�i

LThi.L/! 0. Let � be the vector field along L induced by
dilation, scaled so that ı�Len.L/ < 1. Then we observe that ı�C�i

Len.L/ < 0 for
all i . The superlinearity of Corollary 3.3 shows that

lim ıC
�C�i

LThi� ıC� LThi> 0:

But then for some i , we must have

ı�C�i
Len.L/ < 0 and ıC

�C�i
LThi.L/ > 0;

contradicting the criticality of L.

Thus for closed links, a minimizer (or more generally any critical point) for the link-
ropelength problem is strongly critical, and hence by Corollary 6.3 its curvature force is
balanced by some strut force A�S�. However, in our generalized ropelength problems,
with endpoint constraints and obstacles, constraint qualification will not always hold.
Then we will have to be careful about the distinction between criticality and strong
criticality.
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6.3 Existence of minimizers

We now show that each link-homotopy class contains a globally length-minimizing
curve with LThi� 1.

Proposition 6.7 In a given link-homotopy class ŒŒL��, among all curves with link-
thickness at least 1, there is some L0 of minimum length.

Proof We may rescale the initial L so that LThi.L/ � 2. Thus if the C 0 distance
between L and a link L0 is less than 1=2 then the straight-line homotopy between
them is a link homotopy, and LThi.L0/ � 1. Taking L0 to be a standard smoothing
of L (for instance, its convolution with a smooth bump function), it follows that ŒŒL��
contains a C1 link.

In particular, the set of rectifiable links in ŒŒL�� with link-thickness at least 1 is nonempty.
Let L1;L2; : : : be a sequence of such links with lengths tending to the infimal length `
in this class. By the Arzela–Ascoli theorem, taking a subsequence we may assume
that the Li converge in C 0 to a limit L0 . Since LThi is continuous with respect to
the C 0 topology, and length is lower semicontinuous, it follows that LThi.L0/ � 1

and Len.L0/� `. By the remarks of the last paragraph, L0 is link homotopic to Li

for large i , and therefore L0 2 ŒŒL��. Thus Len.L0/ D ` and L0 is the required
minimizer.

Since C1 links are tame, the argument above also shows the following:

Proposition 6.8 There are no wild link-homotopy types with finitely many compo-
nents.

(This was originally observed by Milnor [25].) Thus in the work to come, we need
only to consider tame links.

7 Examples of critical links

7.1 The known length-minimizing links

In [4], we showed that if one component of a link is linked to k others then its length
is at least a certain constant Pk . Although our theorem was written for the original
ropelength problem, the proof is valid for the Gehring problem as well. Whenever a
link can be realized with each component having length Pk , that configuration is thus a
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length-minimizer not only when constrained by thickness but also when constrained by
link-thickness. (These are still the only examples known to be ropelength-minimizers.)

To any link L we can associate a graph: the vertices are the components of L, and the
edges record which pairs are nontrivially linked. For any tree T with n edges, there is
a unique link H.T / that is a connect sum of n Hopf links and whose associated graph
is T .

For many trees T with vertices of sufficiently low degree, we can realize ŒŒH.T /��
explicitly with each component having exactly its minimum possible length Pk . Even
some slightly more complicated links, like the example in Figure 4, whose graph is not
a tree, can be realized in this way. The distance between any two linked components

Figure 4: This link of six components is a global minimizer for the link-
ropelength problem. Each component is a convex plane curve that minimizes
its length given the number of other components it links.

is exactly 1. Each component in one of these minimizers is a convex plane curve
built from circular arcs of radius 1 and straight segments. It is an outer parallel (at
distance 1=2) to a shortest curve surrounding n disjoint unit-diameter disks in the plane.
(See Figure 5.)

Consider the n–star Tn , the tree with a central vertex incident to all n edges. For n� 5,
the construction above produces a link-ropelength-critical configuration of H.Tn/

that is known to be minimizing. We will examine the case n D 2 in detail, in light
of our balance criterion, and then indicate how to produce link-ropelength-critical
configurations for all n.

Example 7.1 The link H.T2/ is the simple chain of three components, shown in
Figure 6. In the ropelength minimizer, the two end components are circles C1 and C2 ,
while the middle component is a stadium curve S . The centers of the circular arcs in S

are points ci 2 Ci , while the center of each Ci is a point si 2 S . The struts are exactly
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Figure 5: Here we see perimeter-minimizing enclosures of nD 1 , 2 , 3 and 4

unit-diameter disks in the plane. The components in the known minimizing
links are outer parallels to such curves at distance 1=2 . When n D 4 , the
minimizer does not have a unique shape; instead there is a one-parameter
family of minimizers. In the last shape on the lower left, there is one additional
isolated strut, but it carries no force in the balancing measure.

where different components are at distance 1. There is a strut from each point along
each circular arc to the center of that arc (from Ci to si and from S to ci ). There is
also one further strut fc1; c2g.

Since we know that this configuration is length-minimizing when constrained by link-
thickness, these struts, by Corollary 6.3 and Proposition 6.6, must support a balancing
measure �. Conversely, exhibiting such a measure will re-prove that this configuration
is critical for the link-ropelength problem, though to re-prove it is a local minimum
would require some second-order theory. We now provide such a measure, which will
be a useful comparison of the results of this paper against the results of [4].

Except for ci , each point x along the component Ci is part of a unique strut fx; sig.
The measure assigned to struts in this “wheel” must exactly balance the curvature force
dK D N ds.x/ along Ci . Because the wheel forms a complete circle, at the center
points si , the incoming forces from these struts cancel one another, leaving no net
force.

The situation on the stadium curve is slightly more complex. The struts from the
semicircles of S to the points ci again balance dKDN ds.x/, now for x along the
semicircles. Unlike the previous situation, however, these measures have a resultant
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s1

C1 C2

s2S

c1 c2

S

C1 C2

Figure 6: This simple chain is known to be a minimizer for the link-
ropelength problem, so by the balance criterion, its curvature force must
be balanced by some measure on the struts. At the top, we see how the
curvature forces along the circular components Ci are balanced by the struts
coming into the centers si . They produce no net force on either center si . At
the bottom, we see how the curvature forces along the semicircles of S are
balanced by struts to their centers ci . The resulting net inward force on the ci

is balanced by an atomic measure on the one remaining strut fc1; c2g .

inward force of magnitude 2 at ci , directed parallel to the straight segments in the sta-
dium curve. To balance these forces, the measure � must have an atom of magnitude 2

at the one remaining strut fc1; c2g.

The measure � we have described does balance the curvature force everywhere along
the link, and thus demonstrates that the link is critical for link-ropelength.

It is worth emphasizing the fact that the inner strut fc1; c2g bears an atom of �. This
stresses the point that in our Kuhn–Tucker theorem and the resulting balance criterion
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we are required to view the Lagrange multiplier � as a Radon measure in the dual
space C �.Strut.L//, rather than as a density function on struts.

Although ropelength-minimizing, Example 7.1 is not rigid, in the sense that the com-
ponents Ci can be pivoted around the points ci to be centered at any points si on the
semicircles of S .

A stronger form of nonuniqueness is exhibited by the minimizing configurations [4] of
the five-component link H.T4/, with one component linked to all four others. Here
the central component does not even have a uniquely determined shape. Instead there
is a one-parameter family of minimizing shapes, corresponding to the deformation seen
in Figure 5 for nD 4. Again, each of the minimizers can be balanced. (As we have
proven, the existence of the balancing measure � is equivalent to strong criticality for
the ropelength problem, but it does not imply that the critical point is isolated.)

For n > 5, we expect that similar configurations of H.Tn/, like the one shown in
Figure 7 for nD 6, are again minimizing. Our balance criterion lets us show they are
at least critical:

L0

P

Figure 7: This configuration of H.T6/ is critical for the link-ropelength
problem. It is also presumably the minimizer, even though it does not
minimize the length of the long component L0 alone. That component
is the outer parallel at distance 1 to a convex planar polygon P . Each other
component Li is a unit circle passing through a vertex of P and lying in a
perpendicular plane. We have drawn the unit-diameter disks around these
vertices, where the thick tubes around the Li intersect the plane inside L0 .
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Proposition 7.2 Suppose P is a convex planar n–gon with unit-length sides and
turning angles in Œ0; 2�=3�. Let L0 be the outer parallel at distance 1 from P , and
let L1; : : : ;Ln be unit circles, perpendicular to the plane of P , passing through the
vertices of P , and centered at points on L0 . Then the link LDL0[L1[ � � � [Ln is
a configuration of H.Tn/ with link-thickness 1 that is critical for link-ropelength.

Proof As in the simple chain, each circle Li focuses a wheel of struts to its center
point on L0 , and a measure assigning force ds to these struts balances the curvature
force on each circle while exerting no net force on L0 .

Let ci be the vertex of P on Li , and let 2˛i be the turning angle of P there. The
condition ˛i � �=3 exactly suffices to know that no two vertices (and thus no two Li )
are at distance less than 1 from each other, confirming that LThi.L/D 1. The curve L0

includes an arc of the unit circle around ci ; from this arc of length 2˛i a fan of struts
converge to ci . To balance the curvature force on L0 , these struts again have measure
equal to ds , giving a net inward force of 2 sin˛i on ci . The remaining, isolated struts
of L connect successive ci along the edges of P . Unit atoms of compressive force
on these isolated struts produce exactly the outward forces 2 sin˛i at ci needed to
balance the inward forces from L0 .

By Corollary 6.3, the existence of this balancing measure on the struts proves that L is
critical.

For n� 5, we know these configurations for H.Tn/ are ropelength minimizers. For
n> 5, the component L0 , having length nC 2� , is longer than it needs to be: at the
expense of lengthening some other components, it could be shortened to length Pn ,
which, asymptotically, is much smaller, being O.

p
n/. However, calculations we

have done suggest that the tradeoff is not worthwhile and so the critical configuration
described above is probably the global minimum for ropelength.

The examples given in Proposition 7.2—critical configurations and presumed min-
imizers for H.Tn/—are quite interesting. The shape of L0 is free to move in an
.n� 3/–parameter family; each other component is free to pivot (about its vertex of P

and along one of the arcs of L0 ), giving an additional n parameters for the shape of
the whole link L. We also note that these examples are tight links that are not packed
tightly: Consider the thick (unit diameter) tube around one of these configurations.
As n increases, it occupies an ever smaller fraction of the volume of its convex hull.
This should be compared with experiments of Millett and Rawdon [23] on this volume
fraction.

Although we have stated Proposition 7.2 above only for stars Tn , the same balancing
works for the links H.T / based on other trees T . Each component linked to n others
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should have the shape of L0 above. We note, however, that critical links built in this
way are not always minimizers.

Example 7.3 Consider the tree Tn;m with nCm vertices, including one of valence n

connected to another of valence m. The link H.Tn;m/ then has two long components,
L0 and L1 , linked to each other and to n�1 and m�1 short components, respectively.
For large enough n and m, we can construct two thick versions of H.Tn;m/, called
the A and B configurations, as follows.

For the A configuration, we follow Proposition 7.2 to build L0 and L1 as outer
parallels to convex planar n- and m–gons P0 and P1 in perpendicular planes. If
nD 2k , then we let P0 take the shape of a .k�1/�1 rectangle capped with equilateral
triangles on both short sides; if nD 2kC 1, we omit one triangle. (The precise shape
is unimportant, but we need at least one sharp angle on each polygon.) Further, we
choose the tip of such a triangle as the vertex of P0 corresponding to L1 (and as the
vertex of P1 corresponding to L0 ). Then it is straightforward to check that the other
components stay sufficiently far from each other for this A configuration to indeed
have LThiD 1; its total length .2� C 1/.nCm/.

However, when n and m are large enough, we can save two units of length as follows.
Construct a tight configuration of H.Tn�1/ as in Proposition 7.2, using a regular
polygon. (Again, the precise shape is not important, but here we need a large hole
in the middle of the polygon.) This configuration, and indeed the unit-diameter thick
tubes around its components, is contained in a round solid torus Un of minor radius 3=2

and major radius 1C 1=.2 sin �=n�1/. Then construct the analogous configuration
of H.Tm�1/ contained in a solid torus Um . Finally, place these two pieces in space so
that Un and Um form a (loose) Hopf link. (This is possible as long as the major radii
are at least 3, corresponding to n;m� 14.) The resulting link is the B configuration
of H.Tn;m/. Because the large Hopf link is loose, there are no struts from H.Tn�1/

to H.Tm�1/. Since each of these pieces is balanced, so is the B configuration
of H.Tn;m/.

If, as we believe, these B configurations are the ropelength minimizers, then they are
the first ones known in which certain pairs of linked components are not in contact. (We
note that the same must be true for the n–component Hopf links for large n, since their
minimum ropelength [3] is O.n

3=2/. There, however, no explicit candidate minimizer
is known. And our B configuration here has the additional property that certain linked
pairs are not even connected by chains of touching components.)

In all of the examples H.T / discussed above, each component is a convex plane
curve built from straight segments and arcs of unit circles. The proven minimizers are
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minimizers in their isotopy class for the original ropelength problem [4], as well as
minimizers in their link-homotopy class for link-ropelength. In fact, in [2] we will
consider a family of thicknesses with varying stiffness. Each of these thicknesses is
characterized by a stiffness �, meaning a lower bound on the diameter of curvature for
a unit-thickness curve. Our H.T / are ropelength-minimizers for the whole family, as
long as the stiffness � does not exceed 2, when circular arcs of larger diameter would
be needed. We will also develop an analog of our balance criterion for these other
ropelength problems, and will see that all the H.T / discussed above (including those
that are not minimizers) are critical for all formulations of ropelength where �� 2.

7.2 Local minima for ropelength

We do not attempt in the paper to discuss second-order behavior of ropelength near a
critical point—in particular we have no way yet to distinguish between local minima
and saddle points for this problem. Of course, the known minimizers must be local
minima, and it is also easy to give critical configurations which are not local minima,
as in Example 7.4 below.

Many researchers have used numerical simulations of the ordinary ropelength problem
to look for nontrivial local minima for knots, in particular for the unknot. Such configu-
rations have been termed Gordian unknots since they can be untangled topologically but
not physically. Pieransky et al [29] have numerically simulated a reasonable candidate
for a Gordian unknot, but we are very far from being able to prove its existence.

In Example 7.3 we gave two distinct critical configurations for H.Tn;m/, and we expect
that this will lead to the provable existence of two distinct local minima. In particular,
our investigations lead us to predict that one cannot move from the A configuration of
length .2� C 1/.nCm/ to the suspected global minimum B without first increasing
ropelength. This shows there must be a second local minimum; we expect, however,
that this is not A but instead a third configuration of intermediate length.

This connects back to Alexander Nabutovsky’s original work on ropelength in higher
dimensions and codimensions [27]. He showed using recursive function theory that,
in those higher dimensions, a ropelength constraint often introduces new components
into the moduli space of unknotted hyperspheres; in particular there are infinitely many
local minima for ropelength. While for two-spheres in R3 or for circles in R2 there
are presumably no such minima, we do expect there must be infinitely many Gordian
unknots in R3 . Our two critical configurations of H.Tn;m/ are perhaps a first step
toward proving this.
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7.3 Elastic tension energies

All of the links presented above are critical or minimizing for the sum of the lengths
of their components. This is a beautiful functional, but it is physically somewhat
unrealistic: elastic ropes should minimize a quadratic functional of the formX

i

ai

�
Len.Li/� `i

�2
;

where ai > 0 is the elasticity and `i the rest length of the i –th component. Criti-
cality for this functional is equivalent to that for

P
ti Len.Li/ where the tension ti

is ti D 2ai.Len.Li/� `i/. Assuming these tensions are nonnegative (that is, that no
component’s length is less than its rest length) our balance criterion extends immediately
to handle this case: the strut force A�S.�/ must balance the tension-weighted curvature
force

P
tiKi .

In the known minimizing links, such as the simple chain, each component separately
achieves its minimal possible length. Thus these examples also minimize all elastic
energies with nonnegative tensions ti � 0.

This behavior, however, seems rather exceptional. The examples in Proposition 7.2 do
not minimize all such functionals. In particular, if the tension in the long component is
large enough, it will shrink to length O.

p
k/ while some of the shorter components

gain length.

Also in the Borromean rings, if the three components have different tensions, the
configuration we describe below (Section 10) would no longer be critical. Similarly,
clasps (Section 9) in which the two ropes have different tensions again have new critical
configurations. In [37] we describe in detail the shapes of these asymmetric clasp
curves, as well as their appearance in more complicated clasp-like links even when
tensions are equal. (Note that link-thickness was called Gehring thickness there, as in
early drafts of this paper.)

7.4 Nonembedded critical links

To illustrate the differences between the Gehring problem and the original ropelength
problem, we now give some examples of a different flavor: critical configurations that
are nonembedded and thus have infinite ropelength in the original sense.

Any knot is of course link-homotopic to the unknot. The link-ropelength minimizer
degenerates to a point (of length zero). The same happens for any component of an
arbitrary link that is link-homotopically split from the rest of the link.
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Milnor showed that, up to link homotopy, links of two components are classified by
their linking number [25].

Example 7.4 When the linking number is zero, the components split, and the link-
ropelength minimizer degenerates to have length zero. We can, however, also describe
another critical configuration for this unlink: one component degenerates to a point p

while the second is a unit circle centered at p . This is clearly an unstable critical point:
obvious deformations can decrease the ropelength to second order.

The case of linking number 1 is close to Gehring’s original problem: the minimizer
is the same Hopf link built from round circles. (This case fits in the class H.Tn/

considered above.) For larger linking number, we can use Corollary 6.3 to exhibit many
critical configurations as follows:

Example 7.5 For linking number mn there is a critical configuration Lm;n consisting
of the minimizing Hopf link with one component covered m times and the other covered
n times. Its total length is thus 2�.mC n/. There are other critical configurations,
sometimes shorter. For example, each component can be a figure-eight built from two
tangent circles. Figure 8 shows a configuration like this with total length 2�.mCn/ and
linking number mn�m1n1 . The best configurations we know for linking number 17,
for instance, use .m; n/D .6; 3/ or .4; 5/. Assuming configurations like these are the
minimizers for two-component links, they give examples where the set of minimizers
is disconnected (since we can interchange the two components, or reorder the way one
component covers its figure-eight).

m1 m2

n2 n1

Figure 8: In this configuration of two curves from Example 7.5, each circle
is covered mi or ni times, as labeled. If m D m1Cm2 and nD n1C n2 ,
then the curve has total length 2�.mC n/ , and linking number mn�m1n1 .
It is constrained-critical, though often not minimal, for the Gehring problem
in the link-homotopy class defined by its linking number.
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None of these configurations is embedded, so they are not critical points for the original
ropelength problem: as expected, the extra freedom in the Gehring problem sometimes
allows for shorter solutions. As a further example, consider the .2; 4/–torus link, with
linking number 2. We have computed the presumed ropelength-minimizer numerically,
as in [35]. The results are shown in Figure 9; this solution is longer than the covered
Hopf link L2;1 (the presumed link-ropelength-minimizer) and is not even critical for
the Gehring problem.

Figure 9: This picture shows a numerically computed minimizer for the
original ropelength problem on the .2; 4/–torus link. Because it has a strut
between two points on the same component (shown center, where the darker
tube contacts itself) that carries nonzero force, it is not balanced for the
Gehring problem considered here. It is longer than L2;1 , the Hopf link
with one component doubly covered, which we conjecture is the minimizer
for link-ropelength in this link-homotopy type. Notice that both of these
configurations break the symmetry between the components of the link, so we
expect to also find a (longer) critical configuration where the two components
are congruent.

For links of more than two components, linking numbers do not suffice to distinguish
link-homotopy types; we must also consider Milnor’s �–invariants [25; 16]. For
instance, the Borromean rings, with no nonzero linking numbers, belong to a nontrivial
link-homotopy class because they have �–invariant equal to 1.

Numerical experiments performed with Brakke’s Evolver (compare [35]) suggest that
the minimizing Borromean rings for the link-ropelength problem should consist of three
congruent curves in perpendicular planes. In [4], we described such a configuration built
from circular arcs of radius 1. Unfortunately, Corollary 6.3 shows this configuration
is not even critical for length when constrained by link-thickness. In Section 10, the
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culmination of our paper, we will explicitly describe a very similar configuration of the
Borromean rings, which we prove is critical and believe is the minimizer.

However, in order to solve for these Borromean rings, we must first consider a simpler
interaction between two ropes: the clasp that occurs when one rope is pulled over
another. Describing this will require a notion of generalized links.

8 Generalized link classes

Although some of our definitions have applied to arbitrary curves, so far we have been
treating only ordinary (closed) links. We now want to consider generalized problems
involving curves with endpoints. To get meaningful link classes in this setting, we must
include constraints for the endpoints and obstacles for the link.

Definition A generalized link L is a curve L (with disjoint components L1; : : : ;LN )
together with obstacles and endpoint constraints. In particular, each endpoint x 2 @L

is constrained to stay on some affine subspace Mx �R3 , which can have dimension 0,
1 or 2. Furthermore, there is a finite collection of obstacles for each component Li of
the link. Each obstacle

fp 2 R3
W gij .p/ < 0g

is given by a C 1 function gij with 0 as a regular value. By calling them obstacles, we
mean that Li is constrained to stay in the region where minj gij � 0.

While we could allow even more general endpoint and obstacle constraints, this version
fits nicely with our overall setup, and allows for all the specific examples we have in
mind.

Definition Suppose LD
S

i Li is a generalized link, with obstacles gij and endpoint
constraints Mx . Then its link-homotopy class ŒŒL�� is the set of all links L0 that are
link-homotopic to L through links where each component avoids its obstacles and
maintains its endpoint constraints. (As before, in a link homotopy, each component
of L can intersect itself but not the others.)

This definition is comparable to our previous definition for closed links (Section 2);
as in the discussion at the end of Section 6, we may restrict our attention to tame link
classes.

Given a generalized link L, only variations preserving the endpoint constraints should
be allowed. A vector field � 2 VF.L/ is said to be compatible with the constraints if
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it is tangent to Mx at each endpoint x 2 @L. We write VFc.L/ for the space of all
compatible vector fields.

Given a set of obstacles gij < 0 and a link LD
S

Li , we write

O.L/ WDmin
i;j

min
x2Li

gij .x/:

Then L avoids the obstacles gij if and only if O.L/ � 0. We define the wall struts
of L by

Wallij .L/ WDLi \fgij D 0g; Wall.L/ WD
G
i;j

Wallij .L/:

This incorporates those parts of L on the boundary of the obstacle, but is not strictly
speaking a subset of L since one point x 2Li might be in several of the Wallij . When
O.L/D 0, by Clarke’s Theorem 3.1 we have

ıC
�

O.L/Dmin
i;j

min
x2Wallij .L/

h< �x;rgij i:

Again, we collect the various derivatives appearing on the right-hand side into a rigidity
operator AWW VFc.L/! C.Wall.L// on wall struts, given by

AW�.x/ WD h�x;rgij i

when x 2Wallij . Its adjoint A�W is then

(8–1)
Z

L

� dA�W.�/D

Z
Wall.L/

AW� d�D
X
i;j

Z
x2Wallij .L/

h�x;rgij i d�.x/:

We also have corresponding definitions for locally minimal, strongly critical, and critical
configurations of L:

Definition We say that a generalized link L is a local minimum for length when
constrained by LThi if we have Len.L0/ � Len.L/, for all sufficiently C 0 –close
links L0 with the same obstacle and endpoint constraints and with LThi.L0/�LThi.L/.
We say L is strongly critical (respectively, is critical) for minimizing length when
constrained by LThi if there is " > 0 such that for all compatible smooth � with
ı� LenD�1, the quantity

min
�
ıC
�

LThi.L/; ıC
�

O.L/
�

is at most �" (respectively, is negative).
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As in our discussion of Kuhn–Tucker at the beginning of Section 5, these notions
will be equivalent only under a regularity assumption corresponding to the constraint
qualification of Mangasarian and Fromovitz [20]:

Definition A generalized link L is LThi–regular if there is a thickening field, meaning
a smooth compatible � for which ıC� LThi.L/ > 0 and ıC� O.L/ > 0.

Note that, while we require � to strictly increase LThi and to move away from the
obstacles, both to first order, there is no corresponding requirement for the endpoint
constraints, since they are linear equality constraints instead of nonlinear inequality
constraints.

We can now prove a generalization of Proposition 6.6:

Proposition 8.1 If a generalized link L is a LThi–regular local minimum when
constrained by LThi, then L is critical. Also, if L is LThi–regular and critical when
constrained by LThi, then it is strongly critical.

Proof The regularity of L means there exists a thickening field � 2VFc.L/. We may
assume ı�Len.L/� 0 for otherwise L is neither minimal nor critical; we then scale �
so that ı�Len.L/ < 1.

Suppose that L is a local minimum but not critical. Then for some compatible vector
field � we have ı�Len.L/ < 0 while ıC

�
LThi.L/ � 0 and ıC

�
O.L/ � 0. For small

t > 0, consider the links Lt DLC t.�C ��/. Then

dLen.Lt /

dtC

ˇ̌̌
tD0
D ı�Len.L/C �ı�Len.L/:

We choose 0 < � < �ı�Len.L/=ı�Len.L/, so this derivative is negative at time 0.
Thus for small t , the Lt have length less than Len.L/, contradicting minimality if
they obey our constraints. But

d LThi.Lt /

dtC

ˇ̌̌
tD0

> 0;
dO.Lt /

dtC

ˇ̌̌
tD0

> 0;

and the endpoint constraints are linear, so the links Lt meet all our constraints for
small t > 0.

Now suppose that L is critical without being strongly critical. Then there exists a
sequence of compatible vector fields �i 2 VFc.L/ with ı�i

Len.L/ D �1 but with
either ıC

�i
LThi.L/! 0 or ıC

�i
O.L/! 0. Then we observe that ı�C�i

Len.L/ < 0 for
all i , while by Corollary 3.3 either

lim ıC
�C�i

LThi� ıC� LThi> 0
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or lim ıC
�C�i

O � ıC� O > 0:

Taking i large enough that one of these quantities is positive, we get a contradiction to
the criticality of L.

So far, this development has paralleled that of Section 6; we now diverge from our
previous course. Earlier, we saw that every closed link is LThi–regular: rescaling
always provides a thickening field. In the generalized setting, this is no longer the case.
Thus minimality no longer implies criticality.

Example 8.2 To give a specific example, rotate the constraints of Example 5.1 around
the z–axis to give obstacles g1 D .x

2 C y2 � 1/3 � z < 0 and g2 D z < 0 for an
unknot L. The unit circle in the xy –plane is on the boundary of both obstacles, and
is clearly the minimum-length configuration in its homotopy class. However, it is not
critical: shrinking it toward the origin will reduce its length to first order; the constraint
g1 � 0 is now violated, but not to first order.

Further, criticality and strong criticality may be different: if we allowed infinitely many
obstacles, we could construct critical, but not strongly critical links by following the
lead of Example 5.6. (If we do not allow infinitely many obstacles, then an open
question remains: is strong criticality a stronger assertion than criticality?)

Example 8.3 To justify our emphasis on strong criticality (rather than restricting our
attention to regular, critical links) we also note that it is easy to construct strongly critical
links that are not regular; simply take L to be the unit circle in the xy–plane, with
constraints g1.x;y; z/D x2Cy2� 1 (so the excluded region is the infinite cylinder
around the z–axis) and g2 D�g1 . This link is trapped on the cylinder g1 D 0D g2 ,
so it has no thickening field. On the other hand, it is clearly strongly critical.

Now we are ready to extend our balance theorem to the generalized setting. We will
accommodate the endpoint constraints by restricting our attention to compatible vector
fields. Our other constraints are then Dist � 1 on L.2/ and gij � 0 along Li . The
set Y of active constraints then consists of the struts together with the wall struts.

Theorem 8.4 A generalized link L is strongly critical for link-ropelength if and only
if there is a positive Radon measure � on Strut.L/tWall.L/, such that

�KD .AS˚AW/
��

as linear functionals on VFc.L/. This means that �K and .AS ˚AW/
�� agree as

forces along L except at endpoints x 2 @L, where they may differ by an atomic force
in a direction normal to Mx .
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Proof This is again a straightforward application of our Theorem 5.4, using

X D VFc.L/; Y D Strut.L/tWall.L/; f D ı Len; ADAS˚AW:

Remark 8.5 Remember that K has been defined to include an inward-pointing atom
at each endpoint x 2 @L. We can ignore these, however, when applying this theorem,
as long as the link L meets each endpoint constraint Mx normally. We know of no
examples of critical links where this is not the case.

The regularity described in Corollary 6.2 and Proposition 6.5 carries over to generalized
links:

Proposition 8.6 If the generalized link L is strongly critical for link-ropelength,
then L is FTC and C 1 .

Proof The proof follows that of Corollary 6.2 and Proposition 6.5. From equa-
tion (8–1), we find that A�W� has distributional order zero just like A�S�, so L 2 FTC
follows immediately from the balance criterion of Theorem 8.4.

Now suppose L is not C 1 but instead has some corner x with Kfxg ¤ 0. By
Theorem 8.4, this curvature force is balanced by struts and wall struts. So there is at
least one strut or wall strut acting on x in a direction with negative inner product with
Kfxg. In the case of a strut fx;yg, we refer again to Figure 3: some points near x

along L would be nearer to the endpoint y . But similarly, in the case of a wall strut,
we have hK;rgij i< 0, but this means that some points near x along L violate this
obstacle constraint. In either case, we get the desired contradiction.

To understand the interplay between struts and wall struts, we now offer a simple
example of a generalized link L with nonempty boundary which is balanced, needing
nonzero force on the wall struts.

Example 8.7 Cut the simple chain of Figure 6 by parallel planes through s1 and s2

with normal vector c1� c2 , and let L be the part of the chain lying between the two
planes. This generalized link includes two semicircles with endpoints normal to the
planes, and also the inner stadium curve, which is tangent to the planes at s1 and s2 .
We let the planes bound an obstacle, forcing L to stay between the planes, and we use
them also as endpoint constraints. Then L is balanced: though the semicircles now
exert a net outward force on s1 and s2 , this is balanced by wall struts at these points.
And the internal balance for the stadium curve remains the same.
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9 The tight clasp

The tight configurations of Section 7 were the simplest closed links we could imagine:
the Hopf link, and various connect sums of Hopf links in which each component is still
a convex plane curve. But there is an even simpler interaction between two ropes, the
clasp formed when one rope is pulled taut over another, as at the junctions of a woven
net, or when a bucket is lifted from a well by passing a rope through its rope handle.
We can model a single clasp as a generalized link with endpoint constraints.

To define the simple clasp, fix two parallel planes P and zP at least 2 units apart. Then
take two unknotted arcs 
 and z
 that lie between the planes, with the endpoints of 

constrained to lie in P and those of z
 in zP . Let the halfspace bounded by P that
does not include zP be an obstacle for the component z
 , and vice versa, and select the
isotopy class of such links shown in Figure 10. This is the class where closing each arc
in the plane of its endpoints would produce a Hopf link.

Figure 10: The simple clasp has two components, one attached at both ends
to the ceiling and the other to the floor, linked with one another as shown.
The configuration shown, with each component consisting of a semicircle
joined to two straight segments, is neither critical nor minimal.

It is natural to assume that the minimizing configuration for this problem would
consist of semicircular arcs passing through each others’ centers, together with straight
segments joining the semicircles to the constraint planes, much like the Hopf chain of
Example 7.1. But this naive clasp is not balanced: each semicircle focuses its curvature
force on the tip of the other, and there is no way to balance these forces (as the isolated
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strut carrying an atom of compressive force did in the Hopf chain). The naive clasp is
thus not minimizing, though we will see it is very close: the critical configuration we
construct here is only half a percent shorter.

Example 9.1 Suppose the horizontal planes P and zP in the definition of the simple
clasp are taken instead to be only one unit apart. Consider the configuration where the
curves 
 and z
 are semicircles in perpendicular vertical planes. The curvature of each
semicircle can be balanced by uniform strut tension, transmitting a net vertical force to
the tip of the other semicircle. That vertical force can be balanced by a wall strut at
each tip. Therefore, this configuration is critical for link-ropelength.

In the case of interest, where P and zP are far apart and there are no wall struts to
balance the tips, we must look harder for a solution. We will now construct critical
configurations, constrained by the link-thickness LThi, for the simple clasp problem
and for a family of related problems where the ends of the ropes are pulled outward as
in Figure 11. These solutions minimize length under natural symmetry assumptions,
and we believe they are the global minimizers even without imposed symmetry. Below
in Section 10, we will construct a critical configuration of the Borromean rings that
contains portions of these clasp curves. Thus, a thorough understanding of these
generalized links will aid us in understanding that more complicated closed link.

9.1 Symmetry conditions and a convenient parametrization

We describe configurations of the clasp where the two components are congruent plane
curves, lying in planes perpendicular to each other and to the constraint planes. To
fix these symmetries in coordinates, let the constraints be the planes z D˙C , and let
the component 
 lie in the xz–plane while z
 lies in the yz–plane. The clasp has
mirror symmetry across each of these planes (preserving each component). It also has
a symmetry interchanging the two components, which we denote p 7! zp , given by
fourfold rotation about the z–axis together with reflection across the xy –plane. These
symmetries generate a point group of order eight in O.3/ whose Conway–Thurston
orbifold notation [9; 10] is 2�2. Algebraically it is isomorphic to D4 .

The argument we present below to derive the critical clasps for the Gehring problem
can easily be extended to show these are the unique critical configurations among
curves with this 2�2 symmetry. We omit the details, however, because we know of no
way to show that the overall minimizers must have this symmetry. If one could prove
this, it would then follow that our clasps are the minimizers.

Our symmetry assumptions mean that the clasp is described by the shape of half of the
component 
 , from its tip along the z–axis into the x > 0 half-plane and up to the
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plane P . This consists of a curved arc near the tip joined to a straight segment near P .
Since the curved arc is strictly convex, we can parametrize it by the angle ' made by
its tangent vector above the horizontal, as in Figure 12. In fact, we will use the sine
of this angle, uD sin' , as our parameter. Thus in the simple clasp, for u 2 Œ0; 1� we
write


 .˙u/D .˙x.u/; 0; z.u//;

z
 .˙u/D .0;˙x.u/;�z.u//:

Elementary calculations show the following:

Lemma 9.2 For a convex curve 
 in the xz–plane, parameterized by the sine u of its
direction ' 2 Œ��

2
; �

2
�, the arclength s satisfies

ds D sec' dx D csc' dz D
du

�
p

1�u2
;

where the curvature � is given by

� D
d'
ds
D

du

dx
:

For the simple clasp described above, each component turns a total of 180ı , meaning
that u ranges from �1, through 0 at the tip, to 1. We can also consider more general
clasp problems where the four ends of rope are not vertical (being attached to horizontal
planes) but instead are pulled out at some angle (being attached to tilted planes).

Given 0� � � 1, we define the � –clasp to be a problem like the simple clasp where
the arc 
 starts at uD�� and then turns through angle 2 arcsin � to reach uD � . Our
critical � –clasps have the same 2�2 symmetry as the simple clasp. To put the � –clasp
into our framework of generalized links, we constrain the four endpoints to four planes,
each making angle arcsin � with the vertical, as in Figure 11. The complement of the
wedge formed by the planes containing the endpoints of each arc acts as an obstacle for
the other arc. The simple clasp is the � –clasp with � D 1, where the wedges degenerate
to halfspaces.

9.2 Struts between perpendicular planes

Whenever two curves in perpendicular planes are connected by a strut, elementary
trigonometry gives us first order information about the curves at both endpoints. We
state a general lemma, which we will use here for the clasp and again for the Borromean
rings.
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arcsin �

Figure 11: In this variant of the simple clasp problem, the endpoints of the
two ropes are constrained to lie in four planes whose normals make angle
arcsin � with the horizontal. The parameter uD sin' ranges from �� to �
along each arc, as shown at the end of the top right arc. If extended, the four
planes shown would form the sides of a tetrahedron. Each arc is constrained
to lie in the wedge formed by the planes containing the endpoints of the other
arc.

Let P1 and P2 be two planes meeting perpendicularly along a line `, and let 
i � Pi

be two components of a link. At a point pi 2 
i , we write xi for the distance from pi

to `, and ui for the cosine of the angle between ` and the line tangent to 
i at pi .
These quantities generalize the x and u of Lemma 9.2 above.

Lemma 9.3 Let 
1 and 
2 be two components of a link L, lying in perpendicular
planes. Suppose there is a strut fp1;p2g of length 1 connecting these components.
Then in the notation of the previous paragraph we have 0� xi � ui � 1, and any two
of the numbers x1;x2;u1;u2 determine the other two, according to the formulas

x2
i D 1�

x2
j

u2
j

D
u2

i .1�u2
j /

1�u2
i u2

j

;

u2
i D

1�x2
j =u

2
j

1�x2
j

D
x2

i

1�x2
j

;

where j ¤ i .

Proof Picking cartesian coordinates such that ` is the z–axis and Pi are coordinate
planes, we find the strut difference vector p1�p2 is .x1;x2; �z/, for some number �z .
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Since this strut has length 1 and is perpendicular to each 
i , we have

�z2
Cx2

1 Cx2
2 D 1; �z D xi

uip
1�u2

i

:

Simple algebraic manipulations, eliminating �z , lead to the equations given.

Note that the condition xi � ui is exactly the condition that the unit normal circle
around pi intersects Pj ; the two points of intersection are mirror images (across Pi ),
with the same xj and uj values. Also note that we don’t need to have 
i � Pi in the
lemma; it suffices that 
i be tangent to Pi at pi .

Whenever we have a pair of curves in perpendicular planes, which stay a constant
distance 1 apart, we can apply this lemma everywhere along the curves. Each curve 
i

is determined as the intersection of the plane Pi with the unit-radius tube around the
other curve 
j . This will be the situation for the clasp.

9.3 The balancing equations for the clasp

By Theorem 8.4, in a critical clasp the curvature force along 
 must be balanced by
struts to z
 . In particular, almost every point (indeed, since the set of struts is closed,
every point) 
 .u/ along the curved arc of 
 must have a strut to some point z
 .u�/.
Then by symmetry we actually have what we call 2–to–2 contact: there are struts
from 
 .˙u/ to z
 .˙u�/. Here the two points z
 .˙u�/ must be the intersection of the
unit normal circle around 
 .u/ with the yz–plane, implying that u� 2 Œ0; 1� is uniquely
determined for each u. We will refer to 
 .u/ and z
 .u�/ as conjugate points on the
� –clasp. Lemma 9.3 applies to any pair of conjugate points, with u1 D u, u2 D u�

and xi D x.ui/.

Lemma 9.4 Suppose 
 is a plane curve, symmetric across a line ` in the plane.
Consider the net curvature force of a mirror image pair of infinitesimal arcs of 
 . This
acts in the direction of the line `, with magnitude 2jduj. Here the function u is defined
along 
 as the cosine of the angle  between ` and the tangent line to 
 .

Proof One infinitesimal arc has net curvature force �N ds D N d . When this
is added to the mirror image force, only the component along ` survives. We get
magnitude 2j sin d j D 2jduj.

Suppose now we have a symmetric configuration of the clasp where the curved arcs of
the two components stay a constant distance 1 apart. By symmetry we get the 2–to–2

strut pattern described above. Assuming the straight ends of each component meet the
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constraint planes perpendicularly, our balance criterion Theorem 8.4 says that strong
criticality is equivalent to the statement that the net vertical curvature force exerted
by the arcs at 
 .˙u/ balances that of the conjugate arcs at z
 .˙u�/. That is, using
Lemma 9.4, for a critical clasp we must have jduj D jdu�j, meaning that either u�u�

or uCu� is constant.

If u � u� were constant, by symmetry it would be zero, and our equations would
describe a pair of half-ellipses, with horizontal major axis

p
2 and vertical minor

axis 1. On these curves, corresponding points 
 .u/ and z
 .u/ are always at distance 1

from each other, but these are maxima for the distance between components, rather
than minima. This configuration has LThi < 1, and is not LThi–critical: the pairs
f
 .u/; z
 .u/g are not struts.

Instead we must have that uC u� is constant. To find the constant, note that on the
� –clasp, the tip of 
 (at uD 0) is joined by a strut to the end of z
 (at u� D � ); thus
uC u� D � . This equation holds when 0 � u;u� � � ; to allow for negative values
(parametrizing the whole clasp curve) we write

jujC ju�j D �:

We can now give an explicit description of our critical � –clasp:

Theorem 9.5 Let � 2 Œ0; 1�, and let 
 D 
� be the curve in the xz–plane given
parametrically for u 2 Œ��; � � by

x D x� .u/ WD
u
p

1� .� � juj/2p
1�u2.� � juj/2

;

z D z� .u/ WD

Z
dz

dx
dx D

Z
u

p
1�u2

du

�� .u/
;

�� .u/ WD

q�
1�u2.� � juj/2

�3�
1� .� � juj/2

�
1� .� � juj/2C .� � juj/juj.1�u2/

where

and the constant of integration for z is chosen so that

z.0/C z.�/D�
p

1� �2:

Then the union of 
 with its image z
 under the symmetry group 2�2 described above
is a � –clasp that is strongly critical for link-ropelength. The curvature of 
 is �� .u/
above, and the total length of the curved part of 
 isZ �

��

du

�� .u/
p

1�u2
:
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Proof The proposition follows from the foregoing discussion, after substituting u� D

� � juj into the equations of Lemma 9.3, and using Lemma 9.2. To get the constant of
integration for z , we note that the strut from 
 .0/ to z
 .�/ has height given (as in the
proof of Lemma 9.3) by

�z D
p

1�x� .0/
2�x� .�/

2 D
p

1� 0� �2:

Although the formulas we have given for z� .u/ and for arclength both involve hyperel-
liptic integrals not expressible in closed form, it is straightforward to integrate them
numerically; we have plotted our critical configuration of the simple (� D 1) clasp in
Figure 12.

x

z

'


 .0/

z
 .0/ 
 .1/

Figure 12: This is an accurate plot of the critical simple clasp 
 given by
Theorem 9.5. Here uD sin' ranges from �1 to 1 over the curved portion
of 
 . The tip z
 .0/ of the other component is shown above 
 on the z–axis,
along with the (dotted) circular cross-section of the tube of unit diameter
around z
 . The curved dotted lines extending down from the sides of this
cross-section are the lines of contact between the shaded tube around 
 and
the front half of the tube around z
 . Symmetric lines of contact extend behind
the shaded tube, realizing the 2–to–2 contact pattern we have described.
Finally, we see a small gap between the tubes, explored in more detail in
Figure 14.
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As we mentioned in the introduction, Starostin has given [34] an independent derivation
(using a form of balancing for smooth curves) of these same � –clasp configurations
(as well as the family of stiff clasps we will consider in [2]). Starostin does not prove
that these configurations are critical for link-ropelength.

9.4 The geometry of the tight clasp

We now examine the curvature and other geometric features of the critical clasps for
the Gehring problem that were given in Theorem 9.5. Each component of the critical
� –clasp is a C 1 join of four analytic pieces: a straight segment, then 
 Œ��; 0�, then

 Œ0; � �, and finally another straight segment. Where the curved arcs join the straight
segments at u D ˙� , the curvature �.u/ approaches 1; at these points, our critical
clasp agrees to second order with the naively expected circular arcs.

The maximum curvature �.0/D 1=
p

1� �2 occurs at the tip. For � < 1, this is finite,
and our � –clasp is C 1;1 . But for � D 1, the curvature blows up (like jsj�1=3 ) at the
tip. In Figure 13 we plot the curvature �.u/ for this simple clasp. The curve is C 1;2=3

(and is also in the Sobolev space W 2;3�" for all " > 0) but has no higher regularity.

In Proposition 6.5, we proved that critical curves for link-ropelength are C 1 . It would
be interesting to find out whether all such critical curves are C 1;2=3 ; perhaps the simple
clasp exhibits the worst possible behavior.

In Example 7.5, we saw critical curves constrained by link-thickness which fail to have
positive thickness in the ordinary sense of [4] because one component is nonembedded.
The simple clasp fails to have positive thickness for a different reason: its curvature
is unbounded. In [2] we will consider a family of thickness measures with a variable
stiffness parameter �. In these measures, a unit-thickness curve has curvature bounded
above by 2=�. For any nonzero �, it follows that the critical simple clasp must be
different from the tight clasp here for the Gehring problem, and must instead include
an arc of this maximum allowed curvature.

One of the most interesting features of the clasp is the gap between the two components
of the clasp. The distance between the tips of 
 and z
 is z.�/ � z.0/C

p
1� �2

(written in this way to be independent of the constant of integration for z ). This is
an increasing function of � , close to 1 when � is small, but increasing to 1:05639

at � D 1. Thus, in the simple clasp, the gap between the thick tubes around the two
components at their tips is almost 6% of their diameter.

These thick tubes contact each other at the midpoints of the struts. Topologically, the
set of struts forms a loop. Their midpoints form a loop in space with four vertical
cusps—the line of contact of the two tubes—as seen in Figure 12 and Figure 14.
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s
0:5 1 1:5

�

1

2

3

Figure 13: The graph shows the curvature � of the tight 1–clasp as a function
of arclength. The curvature blows up at the tip: this curve is only C 1;2=3 .
The unit-diameter thick tube around the curve forms a cusp near the tip, when
the curvature exceeds 2 . From the tip, curvature decreases rapidly to its
minimum, and then increases again to the limiting value of � D 1 at the
end. Thus the clasp curve, at its end, agrees to second order with the naively
expected unit circle around the tip of the other component, as is suggested in
Figure 12. (For � D 1 , as illustrated here, the curves agree even to third
order.)

Alternatively, we can plot the loop of struts as pairs of arclength coordinates on the
two components, as in Figure 15. The solid tubes divide the rest of the ambient space
into two regions: one infinite component around the outside of the clasp, and one small
chamber sitting in the gap between the tips, shown in Figure 14. To give a sense of
scale, the gap chamber has a substantial surface area of about 1:10, equal to the area of
a section of tube of length more than 1=3. However, the chamber is very thin, resulting
in a volume of only 0:01425.

9.5 Length comparison with the naive clasp

Earlier, we described the naive circular configuration for the simple clasp. Similarly, in
what we call the naive � –clasp, each component is built from straight segments (normal
to the constraint planes) and a unit-radius arc (of angle 2 arcsin � and centered at the
tip of the other component). As we saw for � D 1, this configuration is not critical:
there is no way to balance the forces concentrated on the tips, unlike in Example 7.1
and Example 9.1, which had extra struts.
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Figure 14: We see three views of the gap chamber between the two tubes in
the tight clasp with � D 1 . On the left, we see an exploded view with the two
tubes and the gap chamber floating between them. In the medium closeup in
the center, we see the chamber in place between the (now transparent) tubes.
On the right, we see an extreme closeup of the center of the gap chamber. Its
height at the center (about 0:05639) is the distance between the tubes at the
tips of the clasp. The grid in the center and right pictures is a square grid
projected from the xy –plane. On the right, we see a tiny ridge running from
left to right along the surface of the chamber; this is a cusp formed by the
folding of the tube surface that happens when the curvature of the clasp rises
above 2 (compare Figure 13). We do not know whether this gap chamber
forms in clasps of physical rope; it would be very interesting to find out.

�` 0 `

Figure 15: The graph shows the strut set for the tight 1–clasp, where each
strut is plotted according to the arclength of its ends on the two components of
the clasp (measured from the tip s D 0 to the shoulders at s D `� 1:58944).
There is a closed loop of struts, with four cusps at the tips and shoulders of the
clasp arcs. We hope this explicit strut set will help in verifying the accuracy
of numerically computed strut sets for ropelength minimizers, such as those
in [5].
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Our critical � –clasps (which we expect are the global minima for length) are indeed
slightly shorter than the naive configurations. The total length of a clasp depends, of
course, on the position of the bounding planes. Thus to compare the lengths of the
naive clasp and our critical clasp in a meaningful way, we introduce the notion of
excess length. The infimal possible length of a � –clasp with no thickness constraint
is easily seen to be four times the inradius of the bounding tetrahedron. (In the case
� D 1 this is twice the thickness of the bounding slab.) The excess length of any given
clasp is the amount by which its length exceeds this value.

For � D 1, the naive clasp has excess length 2� �2, since two unit semicircles replace
two straight segments of unit length. Numerical integration reveals the excess length
of our critical 1–clasp to be 4:262897 (accurate to the number of digits shown). It is
thus about 0:020288, or almost half a percent, shorter. In general, the excess length
of the naive � –clasp is 4 arcsin � � 2� , while the excess length of our critical � –clasp
equals the total length of the curved parts minus 2� times the inter-tip distance. The
maximum percentage savings, about 0:518%, occurs for � � sin.80ı/.

10 The Borromean rings

The original Gehring link problem was solved by the Hopf link made from a pair
of circles through each other’s centers. We have already generalized this to a three
component link in one way: the simple chain made from circles and stadium curves
of Section 7. But the simple chain is just a connect sum of Hopf links, and so
the minimizing configuration shares much of its geometry with the original Gehring
solution.

We now construct a proposed minimizer for a more interesting Gehring problem—the
Borromean rings (see Figure 16). Among the three prime six-crossing links of three
components, the Borromean rings form the one which is Brunnian, meaning that if
any one component is removed the remaining components are unlinked. Milnor’s �–
invariant classifies three-component Brunnian link-homotopy types, and the Borromean
rings are the first nontrivial example.

In this section, we describe (Theorem 10.2) a critical configuration B0 of the Bor-
romean rings, shown in Figure 16 and Figure 17. Numerical simulations with Brakke’s
Evolver [1] suggest that this configuration B0 is in fact the ropelength minimizer for the
Borromean rings. We will see below that the curvature of B0 stays below 1:534; this
means (as we show in [2]) that B0 is also a critical point for length when constrained by
the ordinary thickness measure of [4] instead of by link-thickness. In [4], we described
a similar configuration B2 of the Borromean rings, built entirely from arcs of unit
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Figure 16: Our critical configuration B0 of the Borromean rings, shown with
thick tubes of diameter 1 . This configuration is very slightly shorter than the
piecewise-circular version in [4]. As in that version, the core curve of this
tube has discontinuous curvature, for instance at the “jump point” where the
curve switches from convex to concave.

circles. Theorem 6.1 shows that B2 is not critical, and we compute that B0 is 0:08%
shorter.

10.1 Symmetry and convexity

Our configurations B0 and B2 of the Borromean rings are quite similar, and in particular
have the same symmetry and convexity properties, which we now define. The three
congruent components lie (respectively) in the three coordinate planes; reflection across
any one of these planes is a symmetry of the link preserving each component. A further
symmetry, which cyclically permutes the three components, is given by 120ı rotation
about the .1; 1; 1/ axis; we write this rotation as

p 7! zp 7! yp 7! p:

These symmetries generate the pyritohedral point group of order 24 in O.3/ whose
Conway–Thurston orbifold notation [9; 10] is 3�2. Algebraically it is isomorphic
to ˙A4 , and in cartesian coordinates it is most naturally seen as the wreath product
f˙1g oC3 .

Any symmetric configuration of the Borromean rings is the image under the pyritohedral
group of a single embedded arc in the closed positive quadrant of the xy–plane,
extending from a point I on the x–axis to a point T on the y–axis, as shown in
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Figure 17: Two further renderings of the critical configuration B0 for the
Borromean rings reveal more of the structure. The image on the left, showing
thin tubes of diameter 0:315 , viewed along an axis of threefold symmetry,
has been adopted as the logo of the International Mathematical Union. On
the right, in a still from the video [15], we see even thinner tubes inside
transparent thick tubes.

Figure 18. Conversely, given any such arc IT , its images under 3�2 will form a link
isotopic to the Borromean rings, as long as T and I are not at the same distance from
the origin. We will assume that jI j< jT j and will call I the intip while T is the tip.
To make the link C 1 , the arc IT must be C 1 and must meet the axes perpendicularly
at its endpoints.

The only other points of the link in this quadrant of the xy –plane are zI and yT ; they
will be important in the following discussion.

The arcs IT of interest to us consist of a small concave piece near the intip joined
to a large convex piece ending at the tip. That is, there is a jump point J 2 IT such
that the arc IJ is strictly concave, while JT is strictly convex. As in our discussion
of the clasp, we will parametrize IJ by the angle  (less than �

2
) that its tangent

vector makes to the right of the vertical, or by v D sin . Here v ranges from 0 at I

to some value � at J , which will be one of the fundamental parameters for the curves
we describe.

Along the convex arc JT we can still define v D sin , which now decreases from �

through 0 to �1. But we also use the angle 'D �
2
C , the angle above the horizontal

made by the tangent vector to JT . Since our curve is C 1 , we have '.T / D 0 and
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I

 
J

zI

�
M D

�p
1� �2; �

�

' D arcsin u

R
T

yT x

y

Figure 18: Any configuration B of the Borromean rings with 3� 2 symmetry
is generated by a planar arc IT . We consider arcs where IJ is concave
and JT is convex. The other points of B in this quadrant are the rotation
images zI and yT of I and T . In our configurations, there are points M

and R such that JR is part of the unit circle around zI , and M is the midpoint
between zI and yT . The four dotted lines are thus struts of length 1 . The
height difference from J to zI is � D sin .J / as delineated by the horizontal
dashed line, and the coordinates of M are given in terms of �D sin .M /D

� cos'.M / .

'.J /D �
2
Carcsin � . In the curves we describe, some initial subarc JR of JT is part

of the unit circle around zI ; we have '.R/� �
2

so that along RT we can also use the
parameter uD sin' .

Finally, to achieve a force balance we will find it necessary that some point M along
the circle JR has a strut to yT as well as to zI . This lets us transmit some force from
the large convex arc of one component to the smaller concave arc of another, indirectly
through the third component. In the xy –plane, we find that M is the midpoint of the
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segment zI yT , and thus if we set � WD sin .M /� � we have

zI D
�
2�; 0

�
; M D

�
�;
p

1� �2
�
; yT D

�
0; 2

p
1� �2

�
:

10.2 The configuration built from circular arcs

The configuration B2 we described in [4] is generated by an arc IT of this form.
In B2 , we have R D T , so that the entire convex arc JT is part of the unit circle
around zI . Furthermore, the concave arc IJ is also part of a unit circle, centered at yT .
This implies that M D J and � D � DW �2 . The value �2 is determined by the fact
that I and yT are at unit distance, meaning 2�2C 1D 2

p
1� �2

2
. As we computed

in [4], the total length of B2 is then 6� C 24 arcsin �2 � 29:0263.

This configuration is not balanced (and thus not critical) for link-ropelength. To balance
the curvature forces of the circular arcs, the fans of struts to their centers would have to
carry force proportional to arclength. But these struts would then concentrate outward
force on the tips and inward force on the intips; there are no further struts to balance
these forces. This is like the picture for the naive clasp—all the force is concentrated
on the tips. As for the clasp, the tips in the critical configuration will be further apart.

In [2], we introduce a family of thickness measures with variable stiffness. For stiff-
ness 2 (meaning that the curves cannot have osculating circles of diameter less than 2)
we will see that B2 is balanced and hence critical for ropelength. Because the circular
arcs have exactly the maximum allowed curvature, we will see that their curvature
force need not be balanced pointwise, but only in total. Outward strut force on their
midpoints (the tips and intips) can in a sense be spread out to balance the curvature all
along the arc. Because �2 ¤ 45ı , however, there is an imbalance of total curvature
forces between the convex and concave arcs. Thus our balancing measure will need an
atom of force on the special colinear struts f zI ;M g and fM; yT g; this transmits force
from yT through M to zI .

10.3 Configurations involving clasp arcs

To get a balanced configuration B0 of the Borromean rings, we have to replace the
concave circular arc IJ (and part of the convex arc) by a tight clasp arc. Suppose IJ

is part of a � –clasp for some � � � . We will now describe a configuration determined
by certain values of our three parameters

0� � � � � � � 1;

a particular curve of the class illustrated in Figure 18.
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First, the arc IJ is the piece v 2 Œ0; � � of the � –clasp, translated out along the x–axis
until its tip I is at .2�; 0; 0/. Next, JMR is an arc of the unit circle around zI , with
v.J /D � , v.M /D � and u.R/D � . Note that to get these arcs to match up at J , we
will need two conditions on our parameters � , � and � . Finally to define the remaining
arc RST , consider the image zI zJ zM of IJM , rotated into the yz–plane. Then RST

is conjugate to zI zJ zM in the sense of Lemma 9.3: it is the intersection of the unit-radius
tube around zI zJ zM with the xy –plane, with S defined to be the point conjugate to zJ .
Figure 19 shows the arc IT and its two rotated images, that is, the part of B0 lying in
the nonnegative orthant in space.

Lemma 10.1 For any fixed � , suppose the parameters 0� � � � � � satisfy the two
equations

0D 2��
p

1� �2C

Z uD�

uD0

u du

�� .u/
p

1�u2
;(10–1)

0D 1� .2�� �/2�
1� �2

1� �2.� � �/2
;(10–2)

where �� is the curvature of the clasp from Theorem 9.5. Then there is a C 1 and
piecewise analytic arc IJMRST as described in the last paragraph. Its images under
the symmetry group 3�2 form a configuration B.�; �; �/ of the Borromean rings with
link-thickness LThiD 1.

Proof As a point on the unit circle JR around zI , the jump point J has coordinates�p
1� �2; 2�� �; 0

�
:

As a point on the � –clasp IJ , its coordinates are�
2�C

Z �

0

u du

�� .u/
p

1�u2
; x� .�/; 0

�
:

Equating these, using

x2
� .�/D 1�

.1� �2/

1� �2.� � �/2

from Theorem 9.5, gives (10–1) and (10–2).

If these equations are satisfied, then the position of J is well-defined, and IJR is
a C 1 arc, meeting the x–axis perpendicularly. The arc RST is the conjugate of IJM

and thus is C 1 by Lemma 9.3. At T , the same lemma shows it meets the y–axis
perpendicularly. At R, the uD � base of the � –clasp agrees even to second order with
the unit circle.
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Figure 19: One octant of the critical Borromean rings B0 consists of three
rotated images of an arc IJMRT of the type shown in Figure 18. The
dotted lines are struts of length 1 connecting the labeled points. We now
describe all other struts to IT in this octant. Of course, all along the circular
arc JMR there are struts to its center zI . Also, between the marked struts
are several one-parameter families of struts, joining two arcs. The first family
joins the conjugate clasp arcs RS and zI zJ ; a second family connects ST

to the circular arc zJ zM . The other families are rotated images of these,
connecting JM to yS yT , and IJ to yR yS . The struts f yT ;M g and fM; zIg are
colinear. To balance IT , it is important to consider also the mirror-image
struts across the xy –plane. This figure is an accurate drawing of B0 , except
that we have exaggerated the separation between M and J : their actual
distance is smaller than the width of the lines used in the picture.

In this configuration, all the struts shown in Figure 19 have length 1. If the link-
thickness were less than 1, there would need to be some shorter strut in this positive
octant. But that strut would be governed by Lemma 9.3, and (rotating to assume one
endpoint is on IT ) its projection to the xy –plane would be normal to the arc IT ; the
figure makes it clear that no such strut exists.
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10.4 The balanced configuration

Finally, we wish to find the third condition on our parameters � , � and � , which will
ensure that B.�; �; �/ satisfies the balance criterion of Corollary 6.3.

For most of the struts, it is immediately clear what stress they need to have in a
balancing measure �: The struts from IJ to yR yS , and those from MR to zI and
from RT to zI zM must be stressed exactly enough to balance the curvature force of IJ

and of MRT . The conjugate clasp arcs IJ and RS exactly balance each other’s
curvature forces in this way.

The situation along the short circular arc JM is more complicated. The struts inward
to zI need to balance not only the curvature force of JM itself, but also the force
acting inward on JM from the struts from yS yT . Remember that the measure needed
on these last struts is determined by the curvature of yS yT ; this in turn determines the
measure needed on the inward struts from JM . We will write this down explicitly
below. The final condition on our parameters then comes from a balance of forces at zI ,
where a whole family of struts converges.

Note that this configuration B0 of the Borromean rings is the first known example of a
ropelength-critical configuration in which this sort of transmitted force appears. Struts
impinge on the arc JM from the direction opposite its own curvature, and transmit
their force through that arc. Without this force transmitted through the (very) short
arc JM , the relatively long convex piece yR yT would exert too much inward force
on the relatively short concave piece IJ . Instead, some of this inward force, when
transmitted through JM , becomes force outward on the concave piece zI zJ . This
transmitted force plays the same role in balancing B0 that the atomic force from yT
through M to zI played in balancing B2 for the stiff problem. But here our strut
measure is absolutely continuous, with no atoms.

To write down the final balancing condition at zI , we begin with an application of
Lemma 9.4: the total curvature force of JMR and its mirror image across the yz–plane
acts on zI downward in the y –direction, with magnitude

2
�
u.J /�u.R/

�
D 2

�p
1� �2� �

�
:

But the struts from JM carry extra transmitted force. To determine this, consider the
curvature force of an infinitesimal arc of yS yT and its mirror image across the xy –plane.
Parametrizing them as usual by u, Lemma 9.4 tells us the net force, exerted in the
negative x direction, is 2du. This horizontal force is exerted on an infinitesimal piece
of JM and its mirror image across the xz–plane. If we parametrize JM by vD sin ,
then remembering that the force on this arc acts perpendicular to the arc, we see that
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if its horizontal component is du, then its vertical component is v du=
p

1� v2 . This
force gets transmitted through to zI . Because of the symmetry across the yz–plane, of
course only the vertical component matters in the end. But this symmetry also doubles
that vertical force. (Four copies of the arc yS yT act on zI : the original, and reflections
across the xy - and yz–planes.) The resultant total transmitted force on zI is upward
with magnitude

2

Z ���

uD0

2v
p

1� v2
du:

Here the upper limit of integration is u.S/D � �v.J / because J and S are conjugate
points on the � –clasp. To make this integral explicit, we need to give the relation
between u and v ; this comes from Lemma 9.3. Along JM we have y–coordinate
2�� v , so the lemma gives

u2
D u.v/2 WD

1� .2�� v/2=v2

1� .2�� v/2
:

If one wanted, this could be solved to give v as the root of a quartic equation in �
and u. Note that uD 0 at v D � , as we expect for T and M . Plugging in uD � � �

and v D � (at S and J ) reproduces (10–2).

Summarizing, we can write the force-balancing condition at zI as

(10–3) 0D � �
p

1� �2C

Z vD�

vD�

2v
p

1� v2

du.v/

dv
dv

and so we have proved the following theorem.

Theorem 10.2 Suppose �D �0 , � D �0 and � D �0 satisfy the three equations (10–1),
(10–2) and (10–3). Then the configuration B0 D B.�0; �0; �0/ of the Borromean rings,
constructed as in Lemma 10.1, is strongly critical for link-ropelength.

It is easy to solve (10–1) for � , or (10–2) for � or � , or (10–3) for � , thereby eliminating
one of our three variables. Then we are left with two nonlinear integral equations in the
other two variables. While we have not proved formally that a solution to this system
exists, we have solved it numerically to high precision, both in Mathematica and using
MINPACK [26] and QUADPACK [30]. We obtain

�0 � 0:4074218; �0 � 0:4177486; �0 � 0:7561107;

where again we follow the standard convention that the error is less than ˙1 in the last
digit shown. There is nothing delicate about this solution, since our expressions vanish
to first order at this point. Numerically it is also clear that this solution is unique.
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Using these constants, we compute the length of our critical Borromean rings B0

as 29:0030. By comparison, the length of the piecewise circular Borromean rings B2

was 29:0263. Thus our critical configuration B0 beats the naive circular configura-
tion B2 by slightly less than one-tenth of one percent. For comparison, the best lower
bound known so far [4] for the length of the Borromean rings is 6� .

Figure 20 shows an arclength plot of the struts in the Borromean rings. In Figure 21 we
plot the curvature of the critical Borromean rings B0 as a function of arclength. Note
that it is discontinuous only at J and S . Each component in B0 is built of 14 analytic
pieces, joined in a C 1;1 fashion at the symmetric images of the points I , J , R and S .
The maximum curvature (at the intips I ) is .1� �2

0
/�

1=2 � 1:528. Therefore B0 is
also ropelength critical for the standard ropelength functional of [4], as we will show
in [2]. It is also critical for all the stiff ropelength functionals where the lower bound �
on the diameter of curvature is less than 2

p

1� �2
0
� 1:3.

We note that Starostin has described [34] a configuration BS of the Borromean rings
with ropelength intermediate between that of our B2 and B0 ; his configuration replaces
the arcs IJ and RT of B2 by clasp arcs, but does not incorporate the other features
of B0 . While BS can be balanced almost everywhere and Starostin appears to assume
that it is a critical configuration, in fact it is not balanced at the intips since it does not
satisfy the equivalent of (10–3). Thus by Corollary 6.3, BS is not critical.

11 Open problems and further directions

Our work in this paper has been motivated by a simple principle: that the ideas of
rigidity theory for finite frameworks of bars and struts can be extended to handle
mechanisms built from continuous curves of constraints and contacts. In the simple
case of links critical for link-ropelength, this method has already yielded some strong
results, such as our C 1 –regularity theorem, as well as some surprises like the tight
clasp and the critical Borromean rings. Furthermore we expect that these methods in
general, and our Kuhn–Tucker Theorem 5.4 in particular, will prove to be useful tools,
with applications to a number of outstanding problems in the geometry and topology
of curves and surfaces.

We have mentioned our forthcoming extension of these results [2] to the classical
ropelength problem, where the presence of curvature constraints and self-contacts
of the tube around individual components makes the situation considerably more
challenging. Our theory of generalized links and obstacles should also be applicable to
the study of packing problems for tubes and surfaces, as when thick rope is packed into
a box [18] (a problem of some interest in molecular biology [21; 22]), or when the gray
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TSRMJI

yT

yS

yR

yM

yJ

zM

zJ

zI

Figure 20: This picture shows a portion of the strut set of our Borromean
rings, plotted as pairs of arclength coordinates along components of the link.
The horizontal axis represents arclength along one quadrant of the horizontal
component, from I to T . On the vertical axis, we plot arclength along
quadrants of the other two components simultaneously. (This plot accurately
depicts the small arclength between M and J , in contrast to Figure 19 where
this distance is exaggerated.) The horizontal segment at the bottom shows
the struts from the circular arc JMR to zI ; it joins to arcs representing the
families of struts from RS to zI zJ and from ST to zJ zM . Symmetrically, the
struts to the third component are shown at the upper left: a vertical segment
for the circle yJ yR around I , and arcs for the struts from IJM to yR yS yT .
Remembering that this square plot should be reflected across all of its sides to
show the complete strut set, we can easily read off the number of struts coming
in to any point on the curve: two along IJ and RST , three along JM and
one along MR .

matter of the brain is folded and pressed against the skull. We should also mention that
while we have only considered minimizing length in this paper, our framework should
work equally well for other objective functionals, such as a general theory of elastic
rods with self-contact.
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Figure 21: The curvature � of the Borromean rings B0 , plotted as a function
of arclength s along one quarter of one component of this critical configura-
tion. The curvature has its maximum (about 1:533) at the intip I , at s D 0

in this plot, and then smoothly drops off to below 1 . (This first part could
have been plotted negatively, since this is the concave piece of B0 , but we
have chosen to show the unsigned � of a space curve.) After a jump at J ,
we have � � 1 along the circular arc JMR . Along the clasp arc RS , the
curvature drops smoothly from 1 and then rises slightly again, before jumping
up above 1 at S and then increasing to a local maximum at T .

A finite-dimensional duality theorem akin to our Kuhn–Tucker theorem is one key
step in the proof of the Unfolding Theorem of Connelly, Demaine and Rote [8]: Any
embedded, nonconvex planar polygon admits a motion that preserves all edge lengths
and strictly increases the distance between any two points on the polygon not already
joined by a straight line of polygon edges.

Our theory allows us to complete part of the proof of the (conjectured) generalization
to smooth plane curves. Whether our methods can be made strong enough to overcome
the formidable difficulties involved in proving a smooth unfolding theorem remains to
be seen.

There are several specific open questions suggested by our work above.
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Question What is the regularity of a critical curve for link-ropelength? Such curves
are at worst C 1 and at best C 1;2=3 .

While we have demonstrated critical configurations of the tight clasps and Borromean
rings, we have not attempted to prove that these configurations are minimal.

Question Are our tight clasps and Borromean rings length-minimal in their link-
homotopy types?

The Euclidean-cone methods of [4] seem to hold out some hope for reducing the clasp
problem to the case where both curves are planar, but we have not investigated this
line of attack.
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dimensional space groups, Beiträge Algebra Geom. 42 (2001) 475–507 MR1865535

[10] J H Conway, D A Smith, On quaternions and octonions: their geometry, arithmetic,
and symmetry, A K Peters Ltd., Natick, MA (2003) MR1957212

[11] M Edelstein, B Schwarz, On the length of linked curves, Israel J. Math. 23 (1976)
94–95 MR0397558

[12] M E Gage, A proof of Gehring’s linked spheres conjecture, Duke Math. J. 47 (1980)
615–620 MR587169

[13] M E Gage, On Gehring’s linked sphere problem, Amer. J. Math. 103 (1981) 437–443
MR618320

[14] O Gonzalez, J H Maddocks, F Schuricht, H von der Mosel, Global curvature and
self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equa-
tions 14 (2002) 29–68 MR1883599

[15] C Gunn, J M Sullivan, The Borromean rings: a new logo for the IMU, Five-minute
video available at http://torus.math.uiuc.edu/jms/Videos/imu/

[16] N Habegger, X-S Lin, The classification of links up to link-homotopy, J. Amer. Math.
Soc. 3 (1990) 389–419 MR1026062

[17] H W Kuhn, A W Tucker, Nonlinear programming, from: “Proceedings of the Second
Berkeley Symposium on Mathematical Statistics and Probability, 1950”, University of
California Press, Berkeley and Los Angeles (1951) 481–492 MR0047303

[18] R Kusner, On thickness and packing density for knots and links, from: “Physical
knots: knotting, linking, and folding geometric objects in R3 (Las Vegas, NV, 2001)”,
Contemp. Math. 304, Amer. Math. Soc., Providence, RI (2002) 175–180 MR1953339

[19] D G Luenberger, Optimization by vector space methods, John Wiley & Sons, New
York (1969) MR0238472

[20] O L Mangasarian, S Fromovitz, The Fritz John necessary optimality conditions in the
presence of equality and inequality constraints, J. Math. Anal. Appl. 17 (1967) 37–47
MR0207448

Geometry & Topology, Volume 10 (2006)

http://links.jstor.org/sici?sici=0002-9947(197504)205%3C247:GGAA%3E2.0.CO%3B2-D
http://www.ams.org/mathscinet-getitem?mr=0367131
http://www.ams.org/mathscinet-getitem?mr=0385074
http://dx.doi.org/10.1007/s00454-003-0006-7
http://dx.doi.org/10.1007/s00454-003-0006-7
http://www.ams.org/mathscinet-getitem?mr=2007962
http://www.ams.org/mathscinet-getitem?mr=1865535
http://www.ams.org/mathscinet-getitem?mr=1957212
http://www.ams.org/mathscinet-getitem?mr=0397558
http://projecteuclid.org/getRecord?id=euclid.dmj/1077314184
http://www.ams.org/mathscinet-getitem?mr=587169
http://links.jstor.org/sici?sici=0002-9327(198106)103:3%3C437:OGLSP%3E2.0.CO%3B2-D
http://www.ams.org/mathscinet-getitem?mr=618320
http://dx.doi.org/10.1007/s005260100089
http://dx.doi.org/10.1007/s005260100089
http://www.ams.org/mathscinet-getitem?mr=1883599
http://torus.math.uiuc.edu/jms/Videos/imu/
http://links.jstor.org/sici?sici=0894-0347(199004)3:2%3C389:TCOLUT%3E2.0.CO%3B2-C
http://www.ams.org/mathscinet-getitem?mr=1026062
http://www.ams.org/mathscinet-getitem?mr=0047303
http://www.ams.org/mathscinet-getitem?mr=1953339
http://www.ams.org/mathscinet-getitem?mr=0238472
http://dx.doi.org/10.1016/0022-247X(67)90163-1
http://dx.doi.org/10.1016/0022-247X(67)90163-1
http://www.ams.org/mathscinet-getitem?mr=0207448


Criticality for the Gehring link problem 2115

[21] A Maritan, C Micheletti, J Banavar, F Seno, Protein structures and optimal folding
from a geometric variational principle, Physical Review Letters 82 (1999) 3372–3375

[22] A Maritan, C Micheletti, A Trovato, J Banavar, Optimal shapes of compact strings,
Nature 406 (2000) 287–288

[23] K C Millett, E J Rawdon, Energy, ropelength, and other physical aspects of equilateral
knots, J. Comput. Phys. 186 (2003) 426–456 MR1973197

[24] J W Milnor, On the total curvature of knots, Ann. of Math. .2/ 52 (1950) 248–257
MR0037509

[25] J Milnor, Link groups, Ann. of Math. .2/ 59 (1954) 177–195 MR0071020
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Birkhäuser (to appear in 2007) arXiv:math.GT/0606007

[37] J M Sullivan, N C Wrinkle, Some ropelength-critical clasps, from: “Physical and
numerical models in knot theory”, Ser. Knots Everything 36, World Sci. Publ., Singapore
(2005) 565–580 MR2197958

JC, JHGF: Department of Mathematics, University of Georgia
Athens, GA 30602, USA

Department of Mathematics, University of Massachusetts
Amherst, MA 01003, USA

Geometry & Topology, Volume 10 (2006)

http://dx.doi.org/10.1016/S0021-9991(03)00026-3
http://dx.doi.org/10.1016/S0021-9991(03)00026-3
http://www.ams.org/mathscinet-getitem?mr=1973197
http://links.jstor.org/sici?sici=0003-486X(195009)2:52:2%3C248:OTTCOK%3E2.0.CO%3B2-R
http://www.ams.org/mathscinet-getitem?mr=0037509
http://links.jstor.org/sici?sici=0003-486X(195403)2:59:2%3C177:LG%3E2.0.CO%3B2-P
http://www.ams.org/mathscinet-getitem?mr=0071020
http://www.netlib.org/minpack/
http://www.ams.org/mathscinet-getitem?mr=1324407
http://www.ams.org/mathscinet-getitem?mr=0445408
http://arxiv.org/abs/physics/0103080
http://www.netlib.org/quadpack/
http://links.jstor.org/sici?sici=0002-9947(198106)265:2%3C419:TF%3E2.0.CO%3B2-U
http://www.ams.org/mathscinet-getitem?mr=610958
http://www.ams.org/mathscinet-getitem?mr=0151555
http://dx.doi.org/10.1007/s00526-003-0216-y
http://www.ams.org/mathscinet-getitem?mr=2033143
http://www.ams.org/mathscinet-getitem?mr=2040086
http://www.ams.org/mathscinet-getitem?mr=1953340
http://arxiv.org/abs/math.GT/0606007
http://www.ams.org/mathscinet-getitem?mr=2197958


2116 Cantarella, Fu, Kusner, Sullivan and Wrinkle

Institut für Mathematik, Technische Universität Berlin
DE–10623 Berlin, Germany

Department of Mathematics, Northeastern Illinois University
Chicago, IL 60625, USA

cantarel@math.uga.edu, fu@math.uga.edu, kusner@math.umass.edu,
sullivan@math.tu-berlin.de, N-Wrinkle@neiu.edu

Proposed: Yasha Eliashberg Received: 16 May 2005
Seconded: Joan Birman, Tobias Colding Revised: 10 October 2006

Geometry & Topology, Volume 10 (2006)

mailto:cantarel@math.uga.edu
mailto:fu@math.uga.edu
mailto:kusner@math.umass.edu
mailto:sullivan@math.tu-berlin.de
mailto:N-Wrinkle@neiu.edu

	1. Introduction
	2. Link-thickness for closed links
	3. The derivative of link-thickness
	4. First variation of length and finite total curvature
	5. Constrained criticality and the Kuhn--Tucker theorem
	5.1. A generalized Kuhn--Tucker theorem

	6. The balance criterion for the Gehring problem
	6.1. Smoothness of critical curves
	6.2. Constraint qualification in the sense of Mangasarian--Fromovitz
	6.3. Existence of minimizers

	7. Examples of critical links
	7.1. The known length-minimizing links
	7.2. Local minima for ropelength
	7.3. Elastic tension energies
	7.4. Nonembedded critical links

	8. Generalized link classes
	9. The tight clasp
	9.1. Symmetry conditions and a convenient parametrization
	9.2. Struts between perpendicular planes
	9.3. The balancing equations for the clasp
	9.4. The geometry of the tight clasp
	9.5. Length comparison with the naive clasp

	10. The Borromean rings
	10.1. Symmetry and convexity
	10.2. The configuration built from circular arcs
	10.3. Configurations involving clasp arcs
	10.4. The balanced configuration

	11. Open problems and further directions
	References

