
Geometry & Topology 10 (2006) 2117–2171 2117

Zero dimensional Donaldson–Thomas
invariants of threefolds

JUN LI

Using a homotopy approach, we prove in this paper a conjecture of Maulik, Nekrasov,
Okounkov and Pandharipande on the dimension zero Donaldson–Thomas invariants
of all smooth complex threefolds.

14D20; 14J60

0 Introduction

Ever since the pioneer work of Donaldson and Thomas on Yang–Mills theory over
Calabi–Yau threefolds [5; 13], people have been searching for their roles in the study
of Calabi–Yau geometry and their relations with other branches of mathematics. The
recent results and conjectures of Maulik, Nekrasov, Okounkov and Pandharipande [10;
11] that relate the invariants of the moduli of ideal sheaves of curves on a Calabi–Yau
manifold to its Gromov–Witten invariants constitute major progress in this direction.
This paper will address one of their conjectures on invariants associated to Hilbert
scheme of points.

To begin with, we let .X;H / be a smooth projective threefold over complex numbers
C. For any integer r � 0, a line bundle I 2 Pic.X / and two classes c2 2H 4.X;Z/

and c3 2H 6.X;Z/, we form the moduli space

MH
X .r; I; c2; c3/

of H –stable sheaves of OX –modules E satisfying

rkE D r; det E D I; c2.E/D c2 and c3.E/D c3:

Back in the seventies, Maruyama [9] proved that such moduli spaces are quasi-projective,
and become projective in case the quaduple .r; I; c2; c3/ is relatively prime. Later,
Mukai [12] showed that the first order deformations of any sheaf E in these moduli
spaces are given by the traceless part of the extension group Ext1.E ; E/; the obstructions
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to deforming E lie in the traceless part of Ext2.E ; E/ (see also Artamkin [1]). In case
X is a Calabi–Yau threefold and E is stable, the traceless part

Ext3.E ; E/0 D Ext0.E ; E/_0 D 0

Ext2.E ; E/0 D Ext1.E ; E/_0 :while

Hence the moduli space MH
X
.r; I; c2; c3/ admits a perfect-obstruction theory as defined

by Li and Tian [7] and Behrend and Fantechi [4]; when it is projective, it carries a
virtual dimension zero cycle

ŒMH
X .r; I; c2; c3/�

vir
2H0

�
MH

X .r; I; c2; c3/;Z
�
:

Its degree is the invariant originally defined and studied by Donaldson and Thomas [5].
Following [10; 11], we shall call them Donaldson–Thomas invariants of the Calabi–Yau
manifold X .

One special class of such moduli space studied extensively in [10; 11] is when r D 1

and I DOX . Because X is smooth and E is stable, it must be torsion free, and be a
subsheaf of its double dual E__ŠOX ; hence it becomes an ideal sheaf of a subscheme
Z �X . Following the notation of [10; 11], after picking a curve class ˇ and an integer
n, we denote by

IX .ˇ; n/

the Hilbert scheme of one dimensional subschemes Z � X satisfying ŒZ� D ˇ

and �.OZ / D n. A simple argument shows that IX .ˇ; n/ is the moduli space
MX .0; I; ˇ; c3/ with c3 the third Chern class of any ideal sheaf of Z�X in IX .ˇ; n/.
One special feature of the moduli of rank one torsion free sheaves is that they admit
perfect-obstruction theory for all smooth projective threefolds.

Following [10; 11], for Calabi–Yau threefold X and curve ˇ one forms the generating
function

DTX ;ˇ.q/D
X

n

degŒIX .ˇ; n/�
virqn:

In case X is any smooth threefold, since the Hilbert schemes IX .0; n/ have virtual
dimensions zero, one defines DTX ;ˇ.q/ according to the same formula and call it the
dimensional zero Donaldson–Thomas series as well. Of the several conjectures on
DTX ;ˇ.q/ proposed in [10; 11], one is about the dimension zero Donaldson–Thomas
invariants DTX ;0.q/. Let M.q/ be the three dimensional partition function

M.q/D
Y

n

1

.1� qn/n

and c3.TX ˝KX / be the third Chern class, viewed as the Chern number, of TX ˝KX .
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Conjecture 0.1 [10; 11] For any smooth projective threefold X , the dimension zero
Donaldson–Thomas series DTX ;0.q/ has the form

DTX ;0.q/DM.�q/c3.TX˝KX /:

In this paper, we shall prove this conjecture for all compact smooth complex threefolds.

Theorem 0.2 The zero-dimensional Donaldson–Thomas series DTX ;0.q/ for any
compact smooth complex threefold X are of the form

DTX ;0.q/DM.�q/c3.TX˝KX /:

We remark that this conjecture was independently proved for the class of Calabi–Yau
threefolds based on different method by Behrend and Fantechi [3], and for projective
threefolds by Levine and Pandharipande [6].

We now briefly outline the proof of this theorem. Clearly, in case X is a disjoint union
of two smooth proper threefolds X1 and X2 , then

IX .0; n/D
a

n1Cn2Dn

IX1
.0; n1/� IX2

.0; n2/:

Since the deformation of the ideal sheaf of the union Z1[Z1 �X1[X2 is the direct
product of the deformation of Z1 �X1 and the deformation of Z2 �X2 , we have

ŒIX .0; n/�
vir
D

a
n1Cn2Dn

ŒIX1
.0; n1/�

vir
� ŒIX2

.0; n2/�
vir:

Therefore
DTX ;0.q/DDTX1;0.q/ �DTX2;0.q/:

Put differently, the correspondence that sends any threefold to its zero-dimensional
Donaldson–Thomas series defines a homomorphism from the additive semigroup

PC D
˚
All smooth projective threefolds

	
=iso

to the multiplicative semigroup of infinite series ZŒŒq��.

A distant cousin of complex manifolds are so called weakly complex manifolds, which
by definition are smooth compact real manifolds M (possibly with smooth boundaries)
together with C–vector bundle structures on the stabilizations1 of their tangent bundles
TM .

1Here as usual a stabilization of TM is a direct sum of TM with some trivial bundle Rm on M ;
together with the identity TM ˚Rm D .TM ˚Rm/˚R2 with the last R2 is given the obvious complex
structure R2 Š C .
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The equivalence classes of weakly complex manifolds (without boundaries) modulo the
relations Œ@W �D 0 forms a group, called the complex cobordism group �C , under the
addition ŒM1�C ŒM2�D ŒM1

`
M2�. It is a classical result that �C˝Z Q is generated

by all possible products of projective spaces Pn . As a consequence, the six (real)
dimensional complex cobordism group �C

6
is generated by

Y1 D P3; Y2 D P2
�P1 and Y3 D .P1/3:

The crucial step in proving Theorem 0.2 is to establish

Proposition 0.3 There are universal polynomials

f0; f1; f2; � � �

in Chern numbers of smooth complex threefolds so that for any smooth projective
threefold X its zero-dimensional Donaldson–Thomas series are of the form

DTX ;0.q/D
X

n

fn.X /q
n:

Because any complex threefold X is C–cobordant to m1

m
Y1C

m2

m
Y2C

m3

m
Y3 for some

integers ni , knowing the Proposition, and that cobordant weakly complex manifolds
have identical Chern numbers,X

n

fn.mX /qn
D

X
n

fn.m1Y1Cm2Y2Cm3Y3/q
n:

By the definition, the left hand side is

DTmX ;0.q/DDTX ;0.q/
m

while the right hand side is

DTm1Y1Cm2Y2Cm3Y3;0.q/DDTY1;0.q/
m1 �DTY2;0.q/

m2 �DTY3;0.q/
m3 :

Because Yi are toric threefolds, their Donaldson–Thomas series are known [10; 11] to
have the form

DTYi ;0.q/DM.�q/c3.TYi
˝KYi

/:

Put together, and adding that

m c3.TX ˝KX /D

3X
iD1

mi c3.TYi
˝KYi

/;

we obtain

DTX ;0.q/
m
DM.�q/

P3
iD1 mi c3.TYi

˝KYi
/
DM.�q/m c3.TX˝KX /:
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Finally, because both DTX ;0.q/ and M.�q/ are power series with integer coefficients
and constant coefficient one,

DTX ;0.q/DM.�q/c3.TX˝KX /:

This would prove the theorem.

As to the proof of the Proposition, we shall first construct a collection of approximations
X Œ�� of X Œn� indexed by partitions of Œn�Df1; � � � ; ng. To each X Œ�� , we shall construct
its virtual cycle and prove that its degree can be approximated by the degree of the
virtual cycle of X Œ�� of � <� , with errors expressible in terms of a universal expression
of the Chern numbers of X . Thus by induction, we prove that the degree of the virtual
cycle of X Œn� can also be expressed universally in terms of the Chern numbers of X ,
thus proving the Proposition and the Theorem.

During the early stage of this work, K Behrend developed a theory of micro-local
analysis for a symmetric obstruction theory [2]; later, jointly with B Fantechi they
proved Conjecture 0.1 for Calabi–Yau threefolds [3]. Toward the end of finalizing this
paper, the author was kindly informed by R Pandharipande that he and M Levine have
proved the same conjecture using algebraic K–theory [6].

The author also like to take this opportunity to thank Weiping Li for his valuable
comments.

0.1 Terminology

We shall work with the category of analytic functions in this paper. Thus for any
reduced quasi-projective scheme W , we shall work with and denote by OW the sheaf
of analytic functions on W ; we shall use ordinary open subsets of the W unless
otherwise stated.

To distinguish from that of analytic spaces, we shall reserve the words schemes and
morphisms to mean algebraic schemes and algebraic morphisms, though viewed as
objects in analytic category.

Often, we shall work with open subsets of quasi-projective schemes. We shall endow
such sets with their reduced induced analytic structures and work with their sheaves of
analytic functions. We shall call such space either analytic spaces or analytic schemes.
Accordingly, whenever we say two analytic spaces isomorphic we mean that they are
isomorphic as analytic spaces.

In this paper, we reserve the word smooth to mean the smoothness in C1–category.
Thus a smooth function is a C1–function and a smooth map is a C1–map.
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There is one case in which we need to keep non-reduced scheme structures. It is the
case of flat U –families of zero-subschemes Z � U �Y with U an analytic space and
Y an open subset of a smooth varieties. In this case, Z is defined by the ideal sheaf
IZ � OU�Y ; the structure sheaf of Z is the quotient OU�Y =IZ ; we say that Z is
flat over U if OZ is flat over OU .

1 Hilbert schemes of ˛–points

The purpose of this section is to construct the filtered approximation of IX .0; n/ by
Hilbert schemes of ˛–points.

For convenience, we let
X Œn�
D IX .0; n/red

be the Hilbert scheme IX .0; n/ with the reduced scheme structure.

1.1 The Definition

We begin with a finite set ƒ of order jƒj; it could be the set of n integers Œn� D
f1; � � � ; ng or a subset of Œn�. For such ƒ we follow the convention

Xƒ
D f.xa/a2ƒ j xa 2X g:

In case jƒj D n, we define

X .ƒ/
DX .n/

D SnX and X Œƒ�
DX Œn�:

Using the Hilbert–Chow morphism hcW X Œƒ�!X .ƒ/ , we define

X ŒŒƒ��
DX Œƒ�

�X .ƒ/ Xƒ
I

it comes with a tautological projection X ŒŒƒ�� ! Xƒ . Obviously, according to this
definition a closed point of X ŒŒƒ�� is a pair of a 0–scheme � 2 X Œƒ� and a point
.xa/a2ƒ 2Xƒ such that hc.�/D

P
xa .

We next look at the set Pƒ of all partitions of, or equivalence relations on, the set ƒ.
In case ˛ 2 Pƒ has k equivalence classes ˛1; � � � ; ˛k , we write

(1) ˛ D .˛1; � � � ; ˛k/:

It has two distinguished elements: one is ƒ that is the partition with a single equivalence
class ƒ; the other is 0ƒ that is the partition whose equivalence classes are all single
element sets. The set Pƒ has a partial ordering “�” defined by

“˛ � ˇ”” “a�ˇ b) a�˛ b”:
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In case ˛ D .˛1; � � � ; ˛k/, then ˛ � ˇ if and only if ˇ is finer than ˛ , or that ˇ can
be written as

ˇ D .ˇ11; � � � ; ˇ1l1
; � � � ; ˇk1; � � � ; ˇklk

/ so that ˛i D[
li

jD1
ˇij :

Under this partial ordering, the element ˛^ˇ , which is defined by

“a�˛^ˇ b”” “a�˛ b and a�ˇ b”;

or equivalently for ˇD .ˇ1; � � � ; ˇl/ it is ˛^ˇD .˛1\ˇ1; � � � ; ˛k\ˇl/, is the largest
element among all that are less than or equal to both ˛ and ˇ . Following this rule, 0ƒ
is the smallest element and ƒ is the largest element in Pƒ .

For ˛ 2 Pƒ , we let X ŒŒ˛�� be (reduced) Hilbert scheme of ˛–points in X . Let ˛
be as in (1). Because each ˛i is a set, we can form X ˛i , X .˛i / , X Œ˛i � and X ŒŒ˛i ��

respectively. We then define

X .˛/
D

kY
iD1

X .˛i /; X Œ˛�
D

kY
iD1

X Œ˛i �; X ŒŒ˛��
D

kY
iD1

X ŒŒ˛i ��I

they fit into the Cartesian product:

X ŒŒ˛�� ����! X Œ˛�??y ??yhc

Xƒ S˛
����! X .˛/

We shall call points in X ŒŒ˛�� ˛–zero-subschemes and call X ŒŒ˛�� the Hilbert scheme of
˛–points.

The space X ŒŒ˛�� coincides with X ŒŒˇ�� over a large open subset of each. For instance,
both X ŒŒ0ƒ�� D Xƒ and X ŒŒƒ�� contains as their open subsets the set of n D jƒj

distinct ordered points in X . It is when distinct simple points specialize to points
with multiplicities the space X ŒŒ0ƒ�� becomes different from X ŒŒƒ�� : for the former
they remain as simple points by allowing multiple simple points to occupy identical
positions in X ; for the later fat points with non-reduced scheme structures emerge.
This way, the collection

fX ŒŒˇ��
j ˇ 2 Pƒg

forms an increasingly finer approximation of X ŒŒƒ�� .

Though the notion of X ŒŒ˛�� seems artificial at first, it proves to be useful in keeping
tracking of the difference among all X ŒŒ˛�� . Lastly, in case ƒD Œn�, we shall follow the
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convention

Xƒ
DX n; X .ƒ/

DX .n/; X Œƒ�
DX Œn�; X ŒŒƒ��

DX ŒŒn��:

1.2 The relative case

We can generalize the notion of Hilbert scheme of ˛–points to that of smooth families
of varieties. Let

� W Y �! T

be a smooth family of quasi-projective varieties. For any integer l , we let IY=T .0; l/

be the relative Hilbert scheme of length l 0–subschemes of fibers of Y=T . It is the fine
moduli scheme representing the functor parameterizing all flat S –families of length l

0–schemes Z � Y �T S . As before, we let

Y Œl� D IY=T .0; l/red

be IY=T .0; l/ with the reduced scheme structure. The moduli Y Œl� is a scheme over
T with a universal family. In case for an open U � T with Y �T U D Y0 �U , then
canonically

Y Œl� �T U � Y
Œl�
0
�U:

As before, for any ˛ 2Pƒ we let Y ƒ , Y .˛/ , Y Œ˛� and Y ŒŒ˛�� be the Cartesian products
presented before with X replaced by Y and with products replaced by fiber products
over the base scheme T . Again in case Y �T U D Y0 �U ,

Y ŒŒ˛�� �T U � Y
ŒŒ˛��
0
�U:

The three cases we shall apply this construction is for the trivial fiber bundle pr1W X �

X ! X , for the total space of the tangent bundle TX !X and for the total space of
the universal quotient bundle Q of a Grassmannian Gr DGr.N; 3/ of quotients C3

of CN . We shall come back to this in detail later.

1.3 Partial equivalences

As mentioned before, the collection Y ŒŒˇ�� forms an increasingly finer approximation of
Y ŒŒƒ�� . It is the purpose of this subsection to make this precise.

We begin with comparing Y ŒŒƒ�� with Y ŒŒ˛�� for an ˛ D .˛1; � � � ; ˛k/. By definition, a
point in Y ŒŒ˛i �� consists of

.�i ; .xa/a2˛i
/ 2 Y Œ˛i � �T Y ˛i

subject to the constraint hc.�i/ D
P

a2˛i
xa . In case the support of �i is disjoint

from that of �j , then �i [ �j is naturally a zero-subscheme in Y of length j˛i [ j̨ j;
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the pair .�i [ �j ; .xa/a2˛i[ j̨
/ thus is a point in Y ŒŒ˛i[ j̨ �� . Applying this to all pairs

1� i < j � k , we see that �
[

k
iD1�i ; .xa/a2ƒ

�
2 Y ŒŒƒ��

if and only if the supports hc.�i/ are mutually disjoint.

In general, for ˛ < ˇ D .ˇ1; � � � ; ˇl/ and 1� j � l , the pair�
[˛i� ǰ

�i ; .xa/a2 ǰ

�
2 Y ŒŒ ǰ ��

if and only if the supports fhc.�i/ j ˛i � ǰ g are mutually disjoint. This leads to the
definition

Definition 1.1 For ˛ < ˇ we define �.˛;ˇ/ be the set

fx 2 Y ƒ j xa D xb for at least one pair a; b 2ƒ so that a�ˇ b but a 6�˛ b gI

for general ˛¤ ˇ we define �.˛;ˇ/D�.˛;˛^ˇ/[�.ˇ;˛^ˇ/ ; we define the discrepancy
between Y ŒŒ˛�� and Y ŒŒˇ�� be

�
ŒŒ˛��

.˛;ˇ/
, Y ŒŒ˛�� �Y ƒ �.˛;ˇ/:

We define Y
ŒŒ˛��

.˛;ˇ/
D Y ŒŒ˛����

ŒŒ˛��

.˛;ˇ/
:

Lemma 1.2 Given any pair ˛; ˇ 2 Pƒ , we have a functorial isomorphism

Y
ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
:

Here by functorial isomorphisms we mean those that are induced by the universal
property of the respective moduli spaces.

Proof of Lemma 1.2 We first prove the case ˛ D ƒ. Let ˇ D .ˇ1; � � � ; ˇl/ 2 Pƒ
with mi D jˇi j; let S D Y

ŒŒƒ��

.ƒ;ˇ/
; and let .W; '/ be the tautological family of S . By

definition, 'W S! Y ƒ is the tautological map and W is a flat S –family of length jƒj
zero-subschemes in Y whose Hilbert–Chow map hcW W S ! Y .ƒ/ coincide with the
composite of ' and Y ƒ! Y .ƒ/ .

Similarly, a T –morphism S ! Y ŒŒˇ�� is classified by a collection

(2)
�
W1; � � � ;Wl I'1; � � � ; 'l

�
Geometry & Topology, Volume 10 (2006)
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of S –families Wi � Y �T S in X Œˇi � and 'i W S ! Y ˇi so that the Hilbert–Chow
morphism hcWi

W S !X Œˇi � (of the family Wi ) makes the diagram

(3)
S

.�W1
;��� ;�Wl

/

���������! X Œˇ�

.'1;��� ;'l /

??y ??y
Y ƒ ���������! Y .ˇ/

commutative.

To proceed, we shall show that we can split the family .W; '/ into a family as in (2).
For each a2ƒ, we denote by 'aW S!Ya the a-th component of ' , by �'a

�Y �T S

the graph of 'a and by �ˇi
the union [a2ˇi

�'a
. By the definition of Y

ŒŒƒ��

.ƒ;ˇ/
, the set

�ˇ1
; � � � ; �ˇl

are mutually disjoint closed subsets of Y �S ; hence are open and closed
subsets of � D[a2ƒ�'a

.

On the other hand, the closed subscheme �W W ,! Y �T S is set-theoretically identical
to � ; hence Wi D �

�1.�ˇi
/ are mutually disjoint open and closed subsets of W , which

therefore inherit scheme structures from W so that W D
`l

iD1Wi . In particular, they
are close subschemes of Y �T S , flat and finite over S . Finally, because the fibers of
Wi over general closed points in S have length mi , by the flatness, Wi is a family of
length mi zero-subschemes in Y .

Now, because the sets �ˇi
are mutually disjoint, the associated classifying morphisms

�Wi
W S �! Y Œˇi � and 'i D

Y
a2ˇi

'aW S �! Y ˇi

satisfies the commutative diagram (3). Therefore, each pair .Wi ; 'i/ associates to a
canonical morphism

�i W S �! Y Œˇi � �Y .ˇi / Y ˇi D Y ŒŒˇi ��:

Put them together, we obtain a morphism

�D .�1; � � � ; �l/W S �! Y ŒŒˇ1�� �T � � � �T Y ŒŒˇl �� D Y ŒŒˇ��

whose image is contained in Y
ŒŒˇ��

.ˇ;ƒ/
. This way, we have constructed an induced

morphism
�W S D Y

ŒŒƒ��

.ƒ;ˇ/
�! Y

ŒŒˇ��

.ˇ;ƒ/
:

To complete the proof of this special case, we need to construct a morphism

�W Y
ŒŒˇ��

.ˇ;ƒ/
�! S D Y

ŒŒƒ��

.ƒ;ˇ/
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that is the inverse of �. But this is straight forward and shall be omitted. This proves
the lemma for the case ˛ Dƒ.

For the general case ˛D .˛1; � � � ; ˛k/ 2Pƒ , the ˛^ˇ consists of equivalence classes
˛i \ ǰ , each of order mij . Obviously,

˛i ^ˇ , .˛i ^ˇ1; � � � ; ˛i ^ˇl/ 2 P˛i
:

Hence we can apply the proven case of this lemma to conclude

Y
ŒŒ˛i^ˇ��

.˛i^ˇ;˛i /
Š Y

ŒŒ˛i ��

.˛i ;˛i^ˇ/
:

Therefore, because Y ŒŒˇ�� D
Qk

T Y ŒŒˇi �� , one checks easily that:

Y
ŒŒ˛��

.˛;˛^ˇ/
D

kY
iD1

Y
ŒŒ˛i ��

.˛i ;˛i^ˇ/
Š

kY
iD1

Y
ŒŒ˛i^ˇ��

.˛i^ˇ;˛i /

D

kY
iD1

� lY
jD1

Y ŒŒ˛i^ ǰ ��
�
�Y ˛i

�
Y ˛i ��.˛i ;˛i^ˇ/

�
D

�Y
i;j

Y ŒŒ˛i^ ǰ ��
�
�Y ƒ

�
Y ƒ��.˛;˛^ˇ/

�
For the same reason,

Y
ŒŒˇ��

.ˇ;˛^ˇ/
Š

�Y
i;j

Y ŒŒ˛i^ ǰ ��
�
�Y ƒ

�
Y ƒ��.ˇ;˛^ˇ/

�
:

Because �.˛;ˇ/ D�.˛;˛^ˇ/[�.ˇ;˛^ˇ/ , we obtain

Y
ŒŒ˛��

.˛;ˇ/
D Y

ŒŒ˛��

.˛;˛^ˇ/
�Y ƒ

�
Y ƒ��.˛;ˇ/

�
Š Y

ŒŒˇ��

.ˇ;˛^ˇ/
�Y ƒ

�
Y ƒ��.˛;ˇ/

�
D Y

ŒŒˇ��

.˛;ˇ/
:

This proves the Lemma.

1.4 Universal families under partial equivalence

Let .˛; ˇ/ and ˛ ^ ˇ D .˛1 \ ˇ1; � � � ; ˛k \ ˇl/ be as in the proof of the previous
lemma; let

.Wij ; 'ij W i D 1; � � � ; k; j D 1; � � � ; l/

be the universal family of Y ŒŒ˛^ˇ�� . Under the partial equivalence Y
ŒŒ˛��

.˛;˛^ˇ/
Š Y

ŒŒ˛^ˇ��

.˛^ˇ;˛/
,

the restriction of Wij to Y
ŒŒ˛^ˇ��

.˛^ˇ;˛/
:

Wi1 �Y ŒŒ˛^ˇ�� Y
ŒŒ˛^ˇ��

.˛^ˇ;˛/
; � � � ;Wil �Y ŒŒ˛^ˇ�� Y

ŒŒ˛^ˇ��

.˛^ˇ;˛/
;
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are families of zero-schemes of Y over Y
ŒŒ˛��

.˛^ˇ;˛/
. Following the previous proof, these

families, viewed as subschemes in Y �T Y
ŒŒ˛^ˇ��

.˛^ˇ;˛/
, are mutually disjoint. Hence their

union � la
jD1

Wij

�
�Y ŒŒ˛^ˇ�� Y

ŒŒ˛^ˇ��

.˛^ˇ;˛/

forms a flat family of zero schemes in Y of length j˛i j over Y
ŒŒ˛^ˇ��

.˛^ˇ;˛/
.

Corollary 1.3 Let .Zi ; 'i I i D 1; � � � ; k/ be the universal family of Y ŒŒ˛�� . Then for
each i , � la

jD1

Wij

�
�Y ŒŒ˛^ˇ�� Y

ŒŒ˛^ˇ��

.˛^ˇ;˛/
DD Zi �Y ŒŒ˛�� Y

ŒŒ˛��

.˛;˛^ˇ/

as families of relative zero-subschemes in Y=T .

1.5 Hilbert scheme of centered ˛-points

In order to parameterize family of slices in Y ŒŒ˛�� , we need the notion of Hilbert scheme
of centered ˛–points.

Let � W Y ! T be the total space of a rank three vector bundle, viewed as a smooth
family of affine schemes isomorphic to A3 . We let

$ W Y ƒ �! V; .xa/a2ƒ 2 Y ƒt 7�!
1

jƒj

X
a

xa 2 Yt

be the fiberwise averaging morphism and let

$ ŒŒ˛��
W Y ŒŒ˛�� ��! Y

be its composition with the tautological Y ŒŒ˛��! Y ƒ . We define the relative Hilbert
scheme of centered ˛–points be the preimage of the zero section 0Y of Y under $ ŒŒ˛�� :

(4) Y
ŒŒ˛��
0
D Y ŒŒ˛�� �Y 0Y :

Intuitively, Y
ŒŒ˛��
0

consists of ˛–zero-subschemes whose center of support lie in the
zero section of Y .

For any pair ˛; ˇ 2 Pƒ , we define

Y
ŒŒ˛��

0;.˛;ˇ/
D Y

ŒŒ˛��
0
\Y

ŒŒ˛��

.˛;ˇ/
:
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The partial equivalence for Y ŒŒ˛�� carries over to

(5) Y
ŒŒ˛��

0;.˛;ˇ/
D Y

ŒŒˇ��

0;.ˇ;˛/

1.6 Outline of the proof

We now explain briefly the strategy to prove the main Proposition. First, because X ŒŒn��

is finite over X Œn� , the degree of its virtual cycle is a fraction of that of X Œn� . To study
the former, we first make sense of the virtual cycles ŒX ŒŒ˛���vir for all partitions ˛ of Œn�;
we then construct explicitly their cycle representatives D˛ as cycles in X n . Using the
isomorphism X

ŒŒ˛��

.˛;ˇ/
ŠX

ŒŒˇ��

.ˇ;˛/
, we can choose D˛ and Dˇ so that their difference lies

entirely in a small tubular neighborhood of �.˛;ˇ/ � X n . Repeating this procedure,
we show that the desired degree deg DŒn� is a linear combination of deg D˛ plus a
discrepancy term which we denote by ıŒn� . Using induction on n, to prove the main
proposition we only need to show that ıŒn� only depend on the Chern numbers of X .

To prove the last statement, we shall find a cycle representative of ıŒn� that is entirely
contained in a small (tubular) neighborhood of the top diagonal

Xƒ
� D f.x; � � � ;x/ j x 2X g �X n:

Once we know this, we shall find a small (tubular) neighborhood U �X ŒŒƒ�� of

(6) X
ŒŒn��
�
DX ŒŒn��

�X n X n
�

and a fibration

� W U �!X

whose homotopy type is determined by one of its fiber ��1.x/ and the tangent bundle
TX . Since the homotopy type of the fiber ��1.x/ is universal (independent of threefold
X ), the discrepancy ıŒn� thus only depend on the homotopy type of TX . This will
lead to a proof that ıŒn� , and thus degŒX ŒŒn���vir , depends only on a universal expression
in Chern numbers of X .

2 Top diagonal of the Hilbert scheme of ˛–points

In this section, we shall give a smooth parameterization of the normal slices to the top
diagonal in the Hilbert scheme X ŒŒ˛�� . Before doing this, we shall comment on the
terminology on stratified spaces and their smooth functions.
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2.1 Stratifications of singular spaces

Since we primarily are interested in (reduced) quasi-projective schemes and their open
subsets, we shall confine ourselves to their stratifications and functions.

For quasi-projective W , we shall only consider stratifications by Zariski locally closed
smooth subvarieties. It is known that every quasi-projective scheme admits such
stratifications. In case we are given a finite collection R of Zariski closed subsets
of W , we can find stratifications S of W subordinating to R in the sense that each
R 2R is a union of strata in S . To find a canonical such stratification, we can take
the smallest such stratification2 among those subordinating to R. In case in addition
we are given a morphism of schemes � W C !W , we can find a stratification S 0 of
C and a stratification S of W so that S is subordinating to R and � W C !W is a
stratified map. Again, among all such pairs of stratifications there is one that is the
smallest; we call such pair the standard stratification of C !W subordinating to R.

The collection R usually arises from the singular loci of a sheaf E of OW –modules.
To such sheaf E we associate a collection inductively by letting R0 DW and letting
Ri �Ri�1 be the non-locally free locus of the sheaf of ORi�1

–modules E�OW
ORi�1

.
We shall call fRig the loci of non-locally freeness of E .

We next look at the standard stratification of Y ŒŒ˛�� for a smooth family over a smooth
T . Obviously, in case U � T is a Zariski open so that Y �T U D Y0 �U , then strata
of the standard stratification of Y ŒŒ˛���T U are of the form S �U for S strata of Y

ŒŒ˛��
0

.
In case Y=T is the total space of a rank three vector bundle, then Y0 D A3 and we
know that all strata of Y

ŒŒ˛��
0

are invariant under the symmetry group of Y0 . This proves

Lemma 2.1 Let Y=T be a smooth Zariski fiber bundle. Then the standard stratifica-
tion of Y ŒŒ˛�� restricts to the standard stratification of .Yt /

ŒŒ˛�� D .Y ŒŒ˛��/t .

Another property of the standard stratification of X ŒŒ˛�� is as follows.

Lemma 2.2 Let Ua �X and Ub �X be two analytic open subset that are biholomor-
phic to each other, say via f W Ua �! Ub . Then pulling back via f � of the universal
family I of X ŒŒ˛�� over U

ŒŒ˛��

b
, X ŒŒ˛�� �Xƒ Uƒ

a defines a map

F W U ŒŒ˛��

b
�! U ŒŒ˛��

a

that is an isomorphism of (standardly) stratified spaces. This construction also applies
to smooth family of quasi-projective varieties over a smooth base.

2Two stratifications S1 � S2 if each strata in S1 is the union of strata in S2 .
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Here we say a continuous map f W Z1!Z2 between two stratified spaces preserves
stratifications if every stratum of Z1 is the preimage of a stratum of Z2 . We say f
is a smooth isomorphism of stratified spaces if f �1 exists and both f and f �1 are
smooth and preserve stratifications of Z1 and Z2 .

Proof Let ˛ D .˛1; � � � ; ˛k/. Because U
ŒŒ˛��
a is canonically isomorphic toY

U ˛i �
U
.˛/
a

U Œ˛i �
a ;

to prove the lemma it suffices to show that for every n the Hilbert scheme of n–points
IUa

.0; n/Š IUb
.0; n/ canonically under the map induced by f . But this follows from

the universal property of Hilbert schemes.

2.2 Smooth functions on stratified spaces

We now define the notion of smooth functions on a stratified space.

Definition 2.3 Let Z be a topological space equipped with a stratification S . A
smooth function f W Z! C is a continuous function whose restriction to each stratum
is smooth.

We let W be an analytic space and let E be a sheaf of OW –modules. We let S be a
standard stratification subordinating to the loci of the non-locally freeness of E . To
such stratification, we denote by AS the sheaf of smooth functions on W , and define
the sheaf of smooth sections of E be

AS.E/D E ˝OW
AS :

Because AS has partition of unity, whenever 0! E2 ! E ! E1 ! 0 is an exact
sequence of sheaves of OW –modules, then both

AS.E2/ �!AS.E/ �!AS.E1/ �! 0

and
�
�
AS.E2/

�
�! �

�
AS.E/

�
�! �

�
AS.E1/

�
�! 0

are exact.

As usual, for any subset B �W and sheaf of OW –modules E , the space of smooth
sections of E over B is the limit

�.B;AS.E//D lim
B�U

�.U;AS.E//
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taken over all open subsets U containing B . Thus each s in �.B;AS.E/ is a smooth
section defined on some open U containing B . Further, in case zs 2 �.B0;AS.E// is
a section over a larger subset B0 � B , we say s0 extends s if there is an open U � B

so that both s and s0 are defined over U and sjU � s0jU . Following this convention,
the restriction homomorphism

�.B0;AS.E//! �.B;AS.E//

is surjective for any pair of sets B � B0 with B closed in B0 ,

2.3 Normal slices to the diagonal in X � X

We begin with constructing an isomorphism of a tubular neighborhood U of �.X /�
X �X with a tubular neighborhood V of the zero section 0X � TX . This map will
be a smooth isomorphism of analytic fiber bundle U=X and V=X in the sense that for
each x 2X the fiber Ux and Vx are isomorphic as analytic spaces. Here U=X is via
the first projection pr1W U �X �X �!X .

Since Vx � TxX , it has a distinguished point 0 2 Vx and T0Vx � TxX canonically;
likewise, Ux is a neighborhood of x 2 X , which has its distinguished point x 2 Ux

and isomorphism TxUx � TxX .

Lemma 2.4 We can find a smooth isomorphism

'W U ��! V

of a tubular neighborhood U of �.X / � X �X and a tubular neighborhood V of
0X � TX , both considered as vector bundles over X , such that

(1) restricting to each fiber Ux the map 'x D 'jUx
W Ux! Vx is a biholomorphism,

(2) 'x.x/D 0 and that d'x W TxUx! T0Vx is the identity map.

Proof First, after identifying TxV Š V in the standard way for the threefold V DA3

we can define such ' globally:

�W V �V �! T V I V �V 3 .x; v/ 7�! v�x 2 TxV:

Hence for any open Ua � X that admits an open embedding Ua � V , the map �
restricting to

U˛ D ��1.TUa
V /\ .Ua �Ua/�X �X

is a local version of the map required by the lemma; we denote such �jU˛ by

(7) 'aW Ua �X �X �! TX:
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We next pick an open covering fUag of X with embedding Ua � V and a partition of
unity

P
�a � 1 subordinate to the covering Ua ; we form

U , f.x;y/ 2X �X j .x;y/ 2 Ua whenever x 2 Supp.�˛/g:

Because Supp.�˛/, which is the closure of �˛ ¤ 0, is compact and is contained in Ua ,
U is open and contains the diagonal �.X /�X �X . Over U , we define

'.x;y/D
X
˛

�a.x/'a.x;y/ 2 TX:

We let � W U!X be the projection induced by the second projection pr2W X �X!X .
Clearly, restricting to each fiber Ux D �

�1.x/,

'x.�/D '.x; �/W Ux! TxX

is analytic. Further, because 'a.x;x/D0 and dy'a.x;y/jyDxD id whenever �a.x/¤

0, we have 'x.x/ D 0 and d'x W TxUx ! T0Vx is the identity map. Therefore, by
replacing U by a sufficiently small tubular neighborhood U 0 of �.X /�X �X and
let V 0 D '.U 0/, the restriction '0 , 'jU 0 becomes the desired map.

2.4 Induced map on Hilbert schemes

The map ' induces a smooth map from the relative Hilbert scheme U ŒŒ˛�� to V ŒŒ˛�� as
fiber bundles over X .

We begin with the definition of U ŒŒ˛�� and V ŒŒ˛�� . First, by letting Y D TX be the vector
bundle over T DX , we can apply the previous discussion to form the relative Hilbert
scheme of ˛–points .TX /ŒŒ˛�� . Let .TX /ŒŒ˛��! .TX /ƒ be the tautological map; let
Vƒ be the product of jƒj–copies of V over X indexed by ƒ, which is an open subset
of .TX /ƒ . We define V ŒŒ˛�� , called the relative Hilbert scheme of ˛–points in V=X ,
be an open subset of .TX /ŒŒ˛�� defined via the Cartesian product (to the left below)

(8)

V ŒŒ˛�� ����! .TX /ŒŒ˛��??y ??y
Vƒ

|ƒ
����! .TX /ƒ

U ŒŒ˛�� ����! X �X ŒŒ˛��??y ??y
Uƒ

�ƒ
����! X �Xƒ

Similarly we form the relative Hilbert scheme U ŒŒ˛�� of ˛–points of U=X as an open
subset of X �X ŒŒ˛�� defined by the square (to the right above). Both U ŒŒ˛�� and U Œ˛�
are analytic spaces over X via the first projection of X �X ŒŒ˛�� and X �Xƒ .

Because for each closed x 2X , the fiber 'x W Ux!Vx is an isomorphism, restricting to
fibers over x the universal families of U ŒŒ˛�� and V ŒŒ˛�� induces a canonical isomorphism
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'
ŒŒ˛��
x W U ŒŒ˛��x �! V ŒŒ˛��x from U ŒŒ˛��x D U ŒŒ˛�� �X x to V ŒŒ˛��x D V ŒŒ˛�� �X x . We define

(9) 'ŒŒ˛��W U ŒŒ˛�� �! V ŒŒ˛��

be 'ŒŒ˛��x when restricting to U ŒŒ˛��x .

Lemma 2.5 The map 'ŒŒ˛�� is a smooth isomorphism of the analytic fiber bundles
U ŒŒ˛�� and V ŒŒ˛�� as stratified spaces. Namely, 'ŒŒ˛�� preserves the standard stratifications
of V ŒŒ˛�� and U ŒŒ˛�� and

.'ŒŒ˛��/�1
�
AV ŒŒ˛��

�
DAU ŒŒ˛�� :

Further, restricting to fibers over each x , 'ŒŒ˛�� induces isomorphism of analytic spaces
U ŒŒ˛��x and V ŒŒ˛��x .

Proof The proof is a tautology after applying the universal property of the moduli
spaces U ŒŒ˛�� and V ŒŒ˛�� . First, because 'W U!V is a smooth isomorphism that preserves
the analytic structures of the fibers, pulling back the universal family of V ŒŒ˛�� via '
forms a continuous family of relative ˛–schemes of the fiber bundle U=X , thus defines
a continuous map

 ŒŒ˛��W V ŒŒ˛�� �! U ŒŒ˛��:
Now, let S � V ŒŒ˛�� be any stratum of the standard stratification of V ŒŒ˛�� . Because
its (standard) stratification is induced from that of .TX /ŒŒ˛�� , the stratum S is the
restriction of a stratum zS of .TX /ŒŒ˛�� . By Lemma 2.1, for an x 2 T the intersection
zS \ .TX /

ŒŒ˛��
x is a stratum of .TxX /ŒŒ˛�� . Hence Sx D S \V ŒŒ˛��x is a stratum of V ŒŒ˛��x .

Then because  ŒŒ˛��x W V ŒŒ˛��x ! U ŒŒ˛��x is an analytic isomorphism, S 0x D  
ŒŒ˛��
x .Sx/ must

be a stratum of U ŒŒ˛��x . Similar to the case TX=X , S 0x is the intersection with U ŒŒ˛��x of
a single stratum zS 0 of X �X ŒŒ˛�� . Let S 0 D zS 0\U ŒŒ˛�� . Applying Lemma 2.2, we see
immediately that

 ŒŒ˛��.S/D S 0:

Thus  ŒŒ˛�� preserves the stratifications.

On top of this, because restricting to S the pull back of the universal family is a smooth
family of relative ˛–subschemes,  ŒŒ˛��jS is a smooth map from S to  ŒŒ˛��.S/. This
proves that  ŒŒ˛�� is a smooth stratified map.

Similarly, applying the same argument to '�1W V! U , we obtain the map 'ŒŒ˛�� that
is also a smooth stratified map. Then the composition

 ŒŒ˛�� ı'ŒŒ˛��W U ŒŒ˛�� �! U ŒŒ˛��

must be the identity map since it is induced by the identity ' ı'�1 D id. For the same
reason, 'ŒŒ˛�� ı ŒŒ˛�� D id as well. This proves that both 'ŒŒ˛�� and  ŒŒ˛�� are smooth
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isomorphisms of stratified spaces. Lastly, because  ŒŒ˛�� preserves fibers over x , it
defines a smooth map from V ŒŒ˛�� to U ŒŒ˛�� as smooth fiber bundles over X .

The last statement is true because restricting to fibers over x 2X , both 'ŒŒ˛�� and  ŒŒ˛��

are analytic isomorphisms. This proves the Lemma.

2.5 Top diagonal and its normal slices

We define the top diagonal X
ŒŒ˛��
�
�X ŒŒ˛�� be

X
ŒŒ˛��
�
DXƒ

� �Xƒ X ŒŒ˛�� where Xƒ
� D f.x; � � � ;x/ 2Xƒ

j x 2X g:

Because Xƒ
�
ŠX , the top diagonal is fibred over X :

(10) X
ŒŒ˛��
�
��! X:

The purpose of this subsection is to find an open neighborhood U of X
ŒŒ˛��
�
� X ŒŒ˛��

and a fiber bundle map U !X extending the map (10).

We let .TX /
ŒŒ˛��
0

be the relative Hilbert scheme of centered ˛–points of the fiber bundle
TX=X . Because V ŒŒ˛�� is an open subbundle of .TX /ŒŒ˛�� , we define the relative Hilbert
scheme of centered ˛–points of V=X be

V ŒŒ˛��
0
D V ŒŒ˛��\ .TX /

ŒŒ˛��
0
:

There is another way to define this space. Let .TX /ƒ
0
D .TX /ƒ�TX 0TX and let Vƒ

0

be the intersection Vƒ\.TX /ƒ
0

. Then V ŒŒ˛��
0

and Vƒ
0

fit into the following commutative
Cartesian squares

(11)

V ŒŒ˛��
0
����! V ŒŒ˛��

 ŒŒ˛��

����! U ŒŒ˛��
| ŒŒ˛��

����! X ŒŒ˛�� �X
pr1
����! X ŒŒ˛��??y ??y ??y ??y ??y

Vƒ
0
����! Vƒ

 ƒ
����! Uƒ

|ƒ
����! Xƒ �X

pr1
����! Xƒ

in which the  ƒ , |ƒ and | ŒŒ˛�� are the obvious maps induced by  and by | W U !
X �X . We let ‰˛W V ŒŒ˛��0

!X ŒŒ˛�� be the composite of the arrows in the top line.

Lemma 2.6 After shrinking V if necessary, the image set

U ŒŒ˛�� ,‰˛
�
V ŒŒ˛��

0

�
�X ŒŒ˛��
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is an open neighborhood of X
ŒŒ˛��
�
�X ŒŒ˛�� . Further, after endowing U with the induced

stratification through the inclusion U ŒŒ˛�� �X ŒŒ˛�� , the induced map

‰˛W V ŒŒ˛��0
��! U ŒŒ˛��

becomes a smooth isomorphism of stratified spaces.

Proof Because each square in the above diagram is a Cartesian product square, to
prove that ‰˛

�
V ŒŒ˛��

0

�
is open in X ŒŒ˛�� it suffices to show that the image of Vƒ

0
in Xƒ

under the composite of the bottom line is open in Xƒ .

We let hW Vƒ
0
! Xƒ be the composite of the bottom line in the above diagram. We

first prove that the differential

dh.�/W T�Vƒ0 ��! Th.�/X
ƒ

is an isomorphism at each � in the zero section 0.TX /ƒ � .TX /ƒ .

Let � 2 0.TX /ƒ be a point over x 2 X . Since .TxX /ƒ
0

intersects 0.TX /ƒ transversal
at � , the tangent space T�Vƒ0 is a direct sum of T�.TxX /ƒ

0
and T�0.TX /ƒ . Clearly,

the images d h
�
T�.TxX /ƒ

0

�
and d h

�
T�0.TX /ƒ

�
are

f.va/a2Pƒ 2 .TxX /ƒ j
X

va D 0g and f.v; � � � ; v/ 2 .TxX /ƒ j v 2 TxX g

respectively. Thus d h is an isomorphism at � 2 0.TX /ƒ � Vƒ0 and thus h is a
diffeomorphism near 0.TX /ƒ � Vƒ0 . In particular, if we shrink V if necessary, h

becomes a diffeomorphism from Vƒ
0

to the image h
�
Vƒ

0

�
, an open neighborhood of

Xƒ
�
�Xƒ .

It follows then that U ŒŒ˛��D‰˛
�
V ŒŒ˛��

0

�
is an open neighborhood of X

ŒŒ˛��
�
�X ŒŒ˛�� and the

induced map ‰˛ is continuous and is one–one and onto. We endow U ŒŒ˛��D‰˛
�
V ŒŒ˛��

0

�
the stratification induced from that of X ŒŒ˛�� .

We now prove that ‰˛ is a smooth isomorphism of stratified spaces. We first prove
that ‰˛ preserves the stratifications. Indeed, because all but the furthest left arrow in
the top line of the above diagram preserves stratifications, to prove the claim we only
need to show that the inclusion V ŒŒ˛��

0
� V ŒŒ˛�� preserves stratifications, which follows

from that the inclusion .TX /
ŒŒ˛��
0
! .TX /ŒŒ˛�� preserves stratifications. For the later,

because .TX /
ŒŒ˛��
0
D .TX /ŒŒ˛�� �TX 0.TX /ƒ with $ W .TX /ŒŒ˛�� ! TX the fiberwise

averaging morphism, we only need to prove that the restriction of $ to each stratum
S � .TX /ŒŒ˛��

$ jS W S ��! TX
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is a submersion. But this is clear since the stratum S is induced by a stratum S0 of
.TxX /ŒŒ˛�� , as shown in Lemma 2.1, and the stratum S0 is invariant under the translation
group of TxX . Therefore $ jS is a submersion.

Once we know that ‰˛W V ŒŒ˛��0
! X ŒŒ˛�� preserves stratifications, the fact that each

squares above is a Cartesian product shows immediately that it is smooth, and its
restriction to each stratum is a diffeomorphism onto its image. Hence, ‰˛ is a smooth
isomorphism of stratified spaces.

From the definition, .TX /
ŒŒ˛��
0
� .TX /ŒŒ˛�� is a subscheme, hence V ŒŒ˛��

0
� V ŒŒ˛�� is an

analytic subscheme. Therefore, restricting to fibers U ŒŒ˛��
0;x

of U ŒŒ˛��
0

over x 2X the map
ˆ is analytic.

Before we close this subsection, we shall comment on the partial equivalence of V ŒŒ˛��
0

and of U ŒŒ˛�� . For this, we define

V ŒŒ˛��
0;.˛;ˇ/

D V ŒŒ˛��
0
\ .TX /

ŒŒ˛��

0;.˛;ˇ/
and U

ŒŒ˛��

.˛;ˇ/
D U ŒŒ˛��

\X
ŒŒ˛��

.˛;ˇ/
:

Lemma 2.7 Let ‰˛W V ŒŒ˛��0
! U ŒŒ˛�� be the smooth isomorphism constructed before.

Then ‰˛
�
V ŒŒ˛��

0;.˛;ˇ/

�
D U

ŒŒ˛��

.˛;ˇ/
and the partial equivalence of V ŒŒ˛��

0
and of U ŒŒ˛�� are

compatible under ‰˛ .

Proof This is obvious and will be omitted.

2.6 Universal family of Hilbert schemes of centered ˛–points

We let Q!Gr be the total space of the universal quotient rank three vector bundle
over the Grassmannian Gr D Gr.CN ;C3/ and let �W QŒŒ˛��

0
! Gr be the associated

relative Hilbert scheme of centered ˛–points. Let

gW X ��! Gr

be a smooth map so that TX Š g�Q as smooth vector bundles. To such g , we define
the pull back

g�Q
ŒŒ˛��
0
DQ

ŒŒ˛��
0
�Gr X D

a
x2X

��1.g.x//�Q
ŒŒ˛��
0
�X:

Further, the universal family of Q
ŒŒ˛��
0

pulls back under g to a continuous family of
relative centered ˛–points of TX=X , thus defines a continuous map over X

(12) g˛W g
�Q

ŒŒ˛��
0
��! .TX /

ŒŒ˛��
0
:
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Lemma 2.8 This map is a smooth isomorphism of fiber bundles over X . Further, its
restriction to each fiber is an analytic isomorphism and preserves the partial equivalences
of Q

ŒŒ˛��
0

and of .TX /
ŒŒ˛��
0

.

3 Obstruction sheaves

Our next step is to investigate the obstruction theory of the relative Hilbert scheme of
˛–points of a smooth family Y=T . Because Y ƒ ! Y .˛/ is not étale, the defining
square

Y ŒŒ˛�� ����! Y Œ˛�??y ??y
Y ƒ ����! Y .˛/

does not allow us to lift the obstruction theory of Y Œ˛� to that of Y ŒŒ˛�� . Our solution
is to take the pull-back of the obstruction sheaf and the normal cone of Y Œ˛� as the
obstruction sheaf and normal cone of Y ŒŒ˛�� . To force Y ŒŒ˛��! Y Œ˛� flat, we shall view
Y ƒ! Y .˛/ , and hence Y ŒŒ˛��! Y Œ˛� , as a morphism between stacks.

We will investigate the obstruction sheaves in this section, deferring normal cones to
the next section. We begin with a brief account of the relevant extension sheaves.

3.1 A brief account of extensions sheaves

Let Y=T be a smooth family of quasi-projective threefolds over a smooth variety
T ; let S be any scheme over T and Z be a flat S –family of 0–subschemes in
YS D Y �T S ; and let pS W YS ! S be the projection. Our first goal is to prove a
canonical isomorphism relating the traceless part of the relative extension sheaf of the
ideal sheaf IZ of Z � YS with the high direct image sheaf of an extension sheaf.

Lemma 3.1 Let the notation be as before, then we have canonical isomorphism

Ext2pS

�
IZ ; IZ

�
0
Š pS� Ext3OYS

.OZ ; IZ /:

Proof We begin with the defining exact sequence

0 �! IZ �!OYS
�!OZ �! 0

and its associated long exact sequence of relative extension sheaves

�! Ext2pS
.OYS

; IZ /
�2
�! Ext2pS

.IZ ; IZ / �! Ext3pS
.OZ ; IZ / �!
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(13) �! Ext3pS
.OYS

; IZ /
�3
�! Ext3pS

.IZ ; IZ / �! 0:

Because OYS
is locally free and Z is a flat family of zero-subschemes YS ,

ExtkpS
.OYS

; IZ /DRkpS�IZ DRkpS�OYS
; k � 2:

On the other hand, it follows from the definition that RkpS�OYS
is a subsheaf of

ExtkpS
.IZ ; IZ / and the composite

(14) RkpS�OYS

�
�! ExtkpS

.IZ ; IZ /
tr
�!RkpS�OYS

is multiplying by 1, which is the rank of IZ . Thus RkpS�OYS
is the trace part of

ExtkpS
.IZ ; IZ /, and the traceless part

(15) Ext2pS
.IZ ; IZ /0 Š Ext3pS

.OZ ; IZ /

canonically.

To complete the proof of the lemma, we shall apply the local to global spectral sequence.
First because the extension sheaf Exti.OZ ; IZ / is zero away from Z and Z! S has
relative dimension 0,

RkpS� Ext3�k.OZ ; IZ /D 0

except when k D 0. Hence the spectral sequence

R�pS� Ext�.OZ ; IZ /) Ext�pS
.OZ ; IZ /

degenerates to
Ext3pS

�
OZ ; IZ

�
0
Š pS� Ext3.OZ ; IZ /:

This proves the Lemma.

The relative extension sheaves satisfy the base change property. Let �W S 0! S be a
morphism and Z0 DZ �S S 0 be the subscheme of YS 0 D YS �S S 0 , then

(16) Ext2pS0

�
IZ 0 ; IZ 0

�
0
Š �� Ext2pS

�
IZ ; IZ

�
0

and such isomorphisms are compatible with S 00! S 0! S .

To prove the base change property, we will apply the Lemma and prove the base change
property of

pS� Ext3.OZ ; IZ /:

Because dim Y=T D 3 and OZ is flat over S , the later admits a length three locally
free resolution as a sheaf of OYS

–modules. Then because tensoring this resolution by
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OS 0 provides a locally free resolution of OZ 0 , applying the definition of extension
sheaves we readily see that

(17) Ext3OYS0
.OZ 0 ; IZ 0/Š Ext3OYS

.OZ ; IZ /˝OS
OS 0 :

Because the first sheaf if a finite sheaf of OS 0 –modules,

pS 0� Ext3OYS0
.OZ 0 ; IZ 0/D Ext3OYS0

.OZ 0 ; IZ 0/

when the later is viewed as sheaf of OS 0 –modules. Thus by viewing the other Ext3

sheaf as a sheaf of OS –modules, the identity is exactly the base change property (16).

Corollary 3.2 Let Z � YS be as in the previous lemma. Suppose further that
Z DZ1[Z2 is a union of two disjoint flat S –families of 0–subschemes. Then

Ext2pS

�
IZ ; IZ

�
0
Š Ext2pS

�
IZ1

; IZ1

�
0
˚ Ext2pS

�
IZ2

; IZ2

�
0

canonically.

Proof This is true because

Ext2pS

�
IZ ; IZ

�
0
Š pS� Ext3.OZ ; IZ /Š

2M
iD1

pS� Ext3.OZi
; IZi

/:

3.2 Obstruction sheaves of Hilbert scheme of points

For a smooth family of quasi-projective threefolds over a smooth base T , the relative
Hilbert scheme IY=T .0; n/ is a quasi-project fine moduli scheme with universal family

Z � Y �T IY=T .0; n/I

its obstruction theory as moduli of stable sheaves with fixed determinants is perfect
with obstruction sheaf the traceless part of the relative extension sheaf under the second
projection of Y �T IY=T .0; n/:

ObIY=T .0;n/ D Ext2pr2
.IZ ; IZ/0:

For Y Œn� , which is IY=T .0; n/ endowed with the reduced scheme structure, we shall
take the pull back of the obstruction sheaf of IY=T .0; n/ under the inclusion Y Œn�!

IY=T .0; n/ as its obstruction sheaf. By the base change property just proved, it can
also be expressed as the traceless part of the relative extension sheaf of the universal
ideal sheaf of Y Œn� .

Now let ˛ D .˛1; � � � ; ˛k/ be any element in Pƒ as before; let .Z1; � � � ;Zk/ be the
universal family of Y Œ˛� , each is a flat family of length j˛i j zero-subschemes in Y=T
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over Y Œ˛� ; we let IZi
be the ideal sheaf of Zi �Y �T Y Œ˛� . Because Y Œ˛�D

Q
T Y Œ˛i � ,

we define the obstruction sheaf of Y Œ˛� be the direct sum of the pull back of that of
Y Œ˛i � , which by Corollary 3.2 is of the form

Ob
Œ˛�
Y
D

kM
iD1

Ext2pr2

�
IZi

; IZi

�
0
:

As to Y ŒŒ˛�� , we shall take the pull-back ��˛ObŒ˛� (of the tautological �˛W Y ŒŒ˛��!Y Œ˛� )
as its obstruction sheaf. For the same reason, they can be defined using relative extension
sheaves. Let .W1; � � � ;Wk/ with Wi � Y �T Y ŒŒ˛�� be part of the universal family of
Y ŒŒ˛�� ; each Wi is the pull back of Zi under Y ŒŒ˛��! Y Œ˛� ; let IWi

be the ideal sheaf
of Wi � Y �T Y ŒŒ˛�� . The obstruction sheaf of Y ŒŒ˛�� is

Ob
ŒŒ˛��
Y
�

kM
iD1

Ext2pr2
.IWi

; IWi
/0:

3.3 Comparing obstruction sheaves under equivalences

Our next task is to compare the sheaves Ob
ŒŒ˛��
Y

with Ob
ŒŒˇ��
Y

over the partial equivalence

Y
ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
.

Lemma 3.3 Under the partial equivalence Y
ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
, the restriction to Y

ŒŒ˛��

.˛;ˇ/
of

the obstruction sheaf Ob
ŒŒ˛��
Y

is canonically isomorphic to the restriction to Y
ŒŒˇ��

.ˇ;˛/
of

Ob
ŒŒˇ��
Y

.

Proof We first show that the Lemma can be reduced to the case where ˛ � ˇ . Indeed,
because Y

ŒŒ˛��

.˛;ˇ/
ŠY

ŒŒˇ��

.ˇ;˛/
is induced by Y

ŒŒ˛��

.˛;ˇ/
�Y

ŒŒ˛��

.˛;˛^ˇ/
ŠY

ŒŒ˛^ˇ��

.˛^ˇ;˛/
, should the lemma

hold for ˛ � ˇ , we would have

Ob
ŒŒ˛��
Y
j
Y
ŒŒ˛��

.˛;˛^ˇ/

ŠOb
ŒŒ˛^ˇ��
Y

j
Y
ŒŒ˛^ˇ��

.˛^ˇ;˛/

;

which would imply

Ob
ŒŒ˛��
Y
j
Y
ŒŒ˛��

.˛;ˇ/

ŠOb
ŒŒ˛^ˇ��
Y

j
Y
ŒŒ˛��

.˛;ˇ/
DY

ŒŒˇ��

.ˇ;˛/

ŠOb
ŒŒˇ��
Y
j
Y
ŒŒˇ��

.ˇ;˛/

:

For the case ˛ � ˇ , by induction we only need to consider the case where

˛ D .˛1; � � � ; ˛k/� ˇ D .ˇ1; � � � ; ˇkC1/:

For simplicity we assume ˛i D ˇi for i < k and ˛k D ˇk [ˇkC1 .
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Now let .Wi ; 'i/1�i�k , with Wi � Y �T Y
ŒŒ˛��

.˛;ˇ/
be the universal family of Y ŒŒ˛�� over

Y
ŒŒ˛��

.˛;ˇ/
; let . zWi ; z'i/

kC1
iD1

be the universal family of Y ŒŒˇ�� over Y
ŒŒˇ��

.ˇ;˛/
. Because ˛i D ˇi

for i < k , Wi Š
zWi after identifying Y

ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
. On the other hand, by Corollary

1.3 the supports of zWk and zWkC1 are disjoint closed subsets of Y �T Y
ŒŒˇ��

.ˇ;˛/
; and

their union form a flat family of zero-subschemes satisfying zWk [
zWkC1 DWk .

As for the obstruction sheaves Ob
ŒŒ˛��
Y

and Ob
ŒŒˇ��
Y

, by definition,

Ob
ŒŒ˛��
Y
j
Y
ŒŒ˛��

.˛;ˇ/

D

kM
iD1

Ext2pr2

�
IWi

; IWi

�
0

Ob
ŒŒˇ��
Y
j
Y
ŒŒˇ��

.ˇ;˛/

D

kC1M
iD1

Ext2pr2

�
I zWi

; I zWi

�
0
:and

Hence to prove the lemma we only need to check that

Ext2pr2

�
IWk

; IWk

�
0
Š Ext2pr2

�
I zWk

; I zWk

�
0
˚ Ext2pr2

�
I zWkC1

; I zWkC1

�
0
:

But this is exactly what was proved in the last subsection.

3.4 Obstruction sheaves under smooth isomorphism

We next move to the obstruction sheaves of various moduli spaces of interests. We
continue to denote by X a smooth complex threefold.

Let IZi
be the the ideal sheaves of Z1; � � � ;Zk � U

ŒŒ˛��
0
�X U , which are part of

the universal family of X ŒŒ˛�� ; let �1 be the first projection of X ŒŒ˛�� �X . Then the
obstruction sheaf of X ŒŒ˛�� is

(18) Ob
ŒŒ˛��
X
D

kM
iD1

Ext2�1

�
IZi

; IZi

�
0
Š

kM
iD1

�1� Ext2
�
OZi

; IZi

�
Similarly, the obstruction sheaf of V ŒŒ˛��

0
is defined to be the relative extension sheaf

(19) Ob
ŒŒ˛��
V0
D

kM
iD1

Ext2�1

�
IWi

; IWi

�
0
Š

kM
iD1

�1� Ext2
�
OWi

; IWi

�
in which IWi

are ideal sheaves of the subschemes W1 � � � ;Wk � V
ŒŒ˛��
0
�X V that are

part of the universal family of V ŒŒ˛��
0

; that �1 is the first projection of V ŒŒ˛��
0
�X V .
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These obstruction sheaves are related in the obvious way. First, we let

A1 DAX ŒŒ˛���X=X ŒŒ˛�� and A2 DAV ŒŒ˛��
0
�XV=V ŒŒ˛��0

respectively be the sheaf of smooth functions on X ŒŒ˛�� �X and V ŒŒ˛��
0
�X V that are

analytic along fibers of X ŒŒ˛���X=X ŒŒ˛�� and V ŒŒ˛��
0
�X V=V ŒŒ˛��0

. Because ‰˛ of Lemma
2.6 is induced by the universal family and because the tautological map

hD .‰˛;p2 ı /W V ŒŒ˛��0
�X V �!X ŒŒ˛��

�X;

where p2 ı W V!X is the composite of  W V!X �X with the second projection
of X �X , maps fibers to fibers and is analytic along fibers,

(20) h�
�
IZi
˝A1

�
Š IWi

˝A2:

Here the tensor products are over the sheaves OX ŒŒ˛���X and OV ŒŒ˛��
0
�XV

. On the other
hand, by the property of relative extension sheaf, the tensor product

Ob
ŒŒ˛��
V0
˝AV ŒŒ˛��

0

Š

kM
iD1

�1�

�
Ext3A2

.IWi
; IWi

/˝A2

�

Š

kM
iD1

�1� Ext3A2

�
IWi
˝A2; IWi

˝A2

�
:

Here the extension sheaf Ext3A2
.�; �/ is defined using locally free resolution of locally

free sheaves of A2 –modules.

Because of the isomorphism (20), the last term in the above isomorphisms is canonically
isomorphic to

Š

kM
iD1

�1�

�
Ext3A2

�
h�.IZi

˝A1/; h
�.IZi

˝A1/
��

Š

kM
iD1

�1�

�
Ext3A1

�
OZi
˝A1; IZi

˝A1

�
Š ‰�˛

�
Ob

ŒŒ˛��
X
˝AX ŒŒ˛��

�
:

This proves that

(21) ‰�˛

�
Ob

ŒŒ˛��
X
˝AX ŒŒ˛��

�
ŠOb

ŒŒ˛��
V0
˝AV ŒŒ˛��

0

:
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4 Representing Virtual Cycles

We will begin this section with a quick review of the construction of the virtual cycle of
a scheme with perfect obstruction theory. For more details of this construction, please
consult Behrend and Fantechi [4] or Li and Tian [7].

4.1 Virtual cycles via Gysin map

For the moment, we assume W is a quasi-project scheme with a perfect obstruction
theory and obstruction sheaf Ob . Following [4; 7], the virtual cycle of W is constructed
via

(1) finding a vector bundle V on W and a surjective sheaf homomorphism3 V!
Ob ; then the obstruction theory of W provides us a unique cone cycle4 C � V

of codimension rkV ;

(2) defining the virtual cycle ŒW �vir D 0�
V
ŒC � via the Gysin homomorphism

0�V W H
BM
� .V;Z/!H�.W;Z/:

Since every subvariety of V defines a class in the Borel–Moore homology group,
0�

V
ŒC � is well-defined.

Before we move on, a few comments are in order.

Usually, the Gysin map is defined as a homomorphism between Chow groups. For
us, we shall use the Borel–Moore homology group and use intersecting with smooth
sections to define this homomorphism.

The cone cycle C � V is unique in the following sense. To each closed w 2W , we
let yw be the formal completion of W along w and fix an embedding

yw � T
y, Spec kŒŒTwW _��

that is consistent with the tangent space at their only closed points. We let O D

Ob˝OW
k.w/ be the obstruction space to deforming w in W . Then the Kuranishi

map of the obstruction theory provides a canonical embedding of the normal cone
C yw yT to yw in yT :

C yw yT � yw�O;

3In this paper, whenever we use a Roman alphabet, say V , to denote a vector bundle, we will use its
counter part V to denote the sheaf of regular sections OW .V / .

4A cycle is a finite union
P

miDi of subvarieties Di with integer coefficients mi ; it is a cone cycle
if all Di are cones in V .
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where the later is viewed as a vector bundle over yw . The uniqueness of C asserts that
there is a vector bundle homomorphism

�wW V �W yw ��! O � yw

extending the homomorphism V jw!O induced by V!Ob such that

(22) ��C yw yT D C \ .V �W yw/;

Lastly, the resulting cycle 0�
V
ŒC � 2A�W is independent of the choice of V!Ob .

As we will see in the later part of this paper, it will be useful to eliminate the dependence
of constructing ŒW �vir on the choice of V!Ob . To achieve this, we will use smooth
sections of Ob to define the cycle ŒW �vir .

Before we do that, we shall first recall the notion of pseudo-cycles.

4.2 Pseudo-Cycles

In this work, we shall use pseudo-cycles to represent homology classes in a stratifiable
space.

Let ‚ �W be a triangulable closed subset of a stratified space W . We shall fix a
Riemannian metric5 on W and denote by ‚� the �–tubular neighborhood ‚ in W .

Definition 4.1 A .‚; �/–relative d –dimensional pseudo-chain is a pair .f;†/ of a
smooth, oriented d –dimensional manifold with smooth boundary @† and a continuous
map f W †!W such that f is smooth over †�f �1.‚�/.

We denote the Z–linear span of all such pseudo-chains by PC hd .W /‚ with �–
implicitly understood.

We define an equivalence relation Š on PC hd .W /‚ as follows. For notation brevity,
we shall use Œf �pc to denote the pseudo-cycle .f;†/ with † implicitly understood.
We call two such chains Œf1�pc and Œf1�pc equivalent if there are open subsets Ai �†i

and orientation preserving diffeomorphism �W A1!A2 so that †i �Ai � f
�1

i .‚�/

for i D 1 and 2, and f2 ı �jA1
D f1jA1

; we define Œf1 [ f2�pc Š Œf1�pc C Œf2�pc

with the union Œf1 [ f2�pc be the map †1 [†2 ! W induced by f1 and f2 ; we
define Œ�f �pc Š�Œf �pc with Œ�f �pc be f W †�!W and †� the space † with the
opposite orientation. The equivalence relation Š generates an ideal in the Abelian
group PC hd .W /‚ .

5We can embed W in a smooth space and use the induced Riemannian metric on the ambient space.
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There is an obvious boundary homomorphism

@W PC hd .W /‚ ��! PC hd�1.W /‚

that sends any Œf �pc to Œ@f �pc with @f is the restriction of f to @†. The kernel of
its induced homomorphism is defined to be the space of pseudo-cycles relative to ‚:

PCyd .E/‚ , kerf@W PC hd .W /‚ �! PC hd�1.W /‚=Šg:

The proof of the following lemma is standard.

Lemma 4.2 Suppose dimR‚�d�2 and suppose the �–tubular neighborhood ‚� is a
deformation retract to ‚. Then every .‚; �/–relative pseudo-cycle Œf �pc 2Pcyd .W /‚
defines canonically a homology class Œf � 2Hd .W;Z/.

One version of pseudo-cycle we shall repeatedly use is the following:

Remark 4.3 Any pair .B; ‚/ of a closed subset B � W and a stratifiable closed
‚�W such that B�‚ is a smooth, oriented d –dimensional manifold and dimR‚�

d � 2 is a .‚; �/–relative pseudo-cycle for all � > 0.

This can be seen as follows. For any � > 0, we pick an open O � B \‚�=2 so
that †DB �O is a smooth manifold with smooth boundary. Then the identity map
f W †! B �W is a .‚; �/–relative pseudo-cycle.

In case W is stratifiable, which is the case when W is an open subset of a quasi-
projective scheme, ‚� deformation retract to ‚ for all sufficiently small � . Because
dimR‚ � d � 2, for all sufficiently small � these .‚; �/–relative pseudo cycles all
represent the same homology class in Hd .W;Z/. Because of this, in the future we will
call B a ‚–relative pseudo-cycle and will denote by ŒB� 2 Hd .W;Z/ the resulting
homology class. In case ‚ is the singular locus of B , we shall call B a pseudo-cycle
directly with ‚D Bsing implicitly understood.

4.3 Cycle representatives via smooth sections of sheaves

We now investigate how to intersect with smooth sections to define the Gysin homo-
morphism of a cone cycle in a vector bundle over W .

Let C be a pure C–dimension r algebraic cone cycle in a vector bundle � W V !W ;

C D
X

miCi

its irreducible components decomposition. We pick a stratification S of W and a
stratification S 0 of [iCi so that the induced map [iCi!W is a stratified map. Also,
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to each stratum S 0 2 S 0 with S D �.S 0/ its image stratum, we shall denote by VS

the restriction to S of V ; for a smooth section s 2 AS.V /, we denote its graph by
�s � V .

Definition 4.4 A smooth section s 2AS.V / is said to intersect transversally with C

if every stratum S 0 �[iCi , which is a smooth subset in VS , intersects transversally
with �s \VS inside VS .

By embedding W in a projective space and extending V , we can apply the standard
Sard’s transversality theorem to conclude that the set of smooth sections that intersect
transversally with C is dense in the space of all smooth sections.

Let s be a section that intersects transversally with C . We claim that the intersection
�s\C is a pseudo-cycle. Indeed, let Si �Ci be the open stratum of Ci ; then Si �Ci

is smooth, open and Zariski dense; therefore, dimR Ci �Si � dimR Ci � 2. Suppose
dim Ci D d (for all i ) and rkV D r . Then �s \Si is a smooth, oriented manifold of
real dimension 2d � 2r ; its complement �s \ .Ci �Si/ has real dimension at most
2d � 2r � 2. According to Remark 4.3, by taking

‚D[i�s \ .Ci �Si/;

the set �s \Ci becomes a 2d � 2r –dimensional pseudo-cycle (relative to ‚). We
denote this pseudo-cycle by .�s \Ci/pc and denote its image pseudo-cycle under the
projection � W V !W by ��.�s \Ci/pc . Finally, by linearity,

.�s \C /pc D

X
i

.�s \Ci/pc and ��.�s \C /pc D

X
i

��.�s \Ci/pc :

It is immediate to check that its associated homology class given by Lemma 4.2 is the
Gysin homomorphism image of ŒC �

0�V ŒC �D Œ��.�s \C /pc � 2H2d�2r .W;Z/:

We now apply this technique to construct the virtual cycle ŒW �vir , assuming that W is
quasi-projective with a perfect obstruction theory and the obstruction sheaf Ob . As we
mentioned, we first pick a locally free sheaf V and a quotient sheaf homomorphism
V!Ob , thus obtaining a cone C �V given by the obstruction theory of W . We then
pick the standard pair of stratification S 0 of C and S of W that respects the morphism
C !W and the loci of non-locally freeness of Ob . Then as was argued, we can find a
section s 2AS.V / that intersects transversally with C . The virtual fundamental cycle
ŒW �vir , which is 0�

V
ŒC �, is the homology class given by the pseudo-cycle

ŒW �vir
D 0�V ŒC �D Œ��.C \�s/pc � 2H�.W;Z/:
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We next show that such pseudo-cycle can be constructed using the image section
� 2AS.Ob/ of s under the homomorphism AS.V /!AS.Ob/. To this end, we need
first to recover the pseudo-cycle ��.�s \C /pc using the smooth section � 2AS.Ob/.
Suppose V 0!Ob is a surjective homomorphism and t 2AS.V 0/ is a lift of � under
AS.V 0/!AS.Ob/, which exists by the exact sequence at the end of subsection 2.2.
We claim that t intersects transversally with the virtual normal cone C 0 � V 0 and

(23) ��.�s \C /pc D �
0
�.�t \C 0/pc

as pseudo-cycles in W .

We first prove the case where V 0 D V and t 2 AS.V / is another lifting of � . We
first show that as sets �.�s \ C / D � 0.�t \ C 0/. For this, we consider the section
s� t 2AS.V / and its induced fiberwise translation

`s�t W V ! V I x 2 Vw 7�! xC s.w/� t.w/ 2 Vw:

Because of [7], the fiber C \ Vw of the cone over w is translation invariant under
vectors in

Kw D kerfVw!Objwg:

Therefore `s�t W V ! V maps C to C . But on the other hand, `s�t maps �t to �s ,
hence `s�t .�t \C /D �s \C , which proves (23).

It remains to show that t intersects C transversally and the induced orientation on
�.�s\C / coincides with that of �.�t\C /. First, because the stratification S respects
the non-locally freeness of Ob , the restriction Ob˝OW

OS is locally free. Hence the
collection fKw j w 2 Sg forms a subbundle of VS . By the translation invariance of
C \Vw under Kw and by the minimality of the stratification S 0 , S 0\Vw is invariant
under the translations by vectors in Kw ; hence S 0 D `s�t .S

0/.

On the other hand, since the map `s�t W VS ! VS is a smooth diffeomorphism, �t

intersects transversally with S 0 if and only if its image `s�t .�t / D �s intersects
transversally with `s�t .S

0/DS 0 , which is true by our choice of s . Hence �t intersects
transversally with S 0 . In particular, `s�t .�t\C /D�s\C and hence ��.�t\C /pcD

��.�s \C /pc .

Next we consider the general situation where V 0!Ob is an arbitrary quotient sheaf
homomorphism by a locally free sheaf. We claim that by picking a lifting t 2AS.V 0/
of � 2AS.Ob/, we obtain the identical cycle representatives of ŒW �vir . Indeed, by our
previous discussion, we only need to consider the case that V is a quotient sheaf of V 0
and V 0!Ob is the composite of

V 0 ��! V ��! Ob:
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In this case, the cone cycle C 0 � V 0 is merely the pull back of C � V via the
induced vector bundle homomorphism 'W V 0! V . Now let t 0 2AS.V 0/ be a lifting
of s 2AS.V/, and let � 0W V 0!W be the projection. Then because C 0 D '�C ,

� 0�
�
�t \'

�C
�
pc
D � 0�

�
�t 0 \'

�C
�
pc
D ��

�
�s \C

�
pc

as pseudo cycles. This shows that the pseudo-cycle representative �
�
�s\C

�
of ŒW �vir

only depends on the section � 2AS.Ob/.

This way, those sections � 2 AS.Ob/ whose lifts intersect transversally with the
normal cone provide us pseudo-cycle representatives of the virtual cycle ŒW �vir . In the
following, we shall denote such representative by D.�/pc .

In the remainder of this paper, for a scheme W with obstruction sheaf Ob , we shall
fix a locally free sheaf OW .V / that surjects onto Ob with C the virtual normal cone
in V of the obstruction theory of W . We say that a smooth section � 2 AS.Ob/ is
a good section if it has a lift s 2AS.V / that intersects transversally with C . By the
previous construction, the image ��.�s\C /pc defines a closed pseudo-cycle D.�/pc .

We summarize this subsection in the following Proposition.

Proposition 4.5 Let the notation be as before. Then any good section � 2 AS.Ob/

defines a pseudo-cycle D.�/ in W whose associated homology class is the virtual
cycle ŒW �vir in H�.W;Z/.

4.4 Virtual cycle of Hilbert schemes of ˛–points

We shall employ smooth sections to construct cycle representatives of the virtual cycles
of Y ŒŒ˛�� for a smooth family of quasi-projective threefolds Y=T over a smooth base
T . But before we do that, we shall first define how cycles are pulled back by the
tautological map Y ŒŒ˛��! Y Œ˛� .

We begin with defining the ˛–multiplicity of the symmetrization morphism

S˛W Y
ƒ
�! Y .˛/:

Let x 2 Y ƒ be any element. We define the multiplicity m˛.x/ be the number of
permutations of ƒ that fix x and leave ˛ invariant. Namely,

m˛.x/D #f� 2 Symm.ƒ/ j �.˛/D ˛; �.x/D xg:
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It is easy to see that all elements in .S˛/�1S˛.x/ have identical ˛–multiplicities; their
summations satisfies6

(24)
X

y2.S˛/�1S˛.x/

m˛.y/D ˛!:

For any z 2 Y ŒŒ˛�� lies over x 2 Y ƒ , we define its ˛–multiplicity m˛.z/Dm˛.x/.

Because the virtual normal cone is constructed based on the obstruction theory of the
Hilbert scheme of points IY=T .0; n/, we need to work with the tautological morphism

'˛W Y
ŒŒ˛��
��! IY=T .0; ˛/

IY=T .0; ˛/D IY=T .0;m1/�T � � � �T IY=T .0;mk/; where mi D j˛i j:with

We let F be a vector bundle on IY=T .0; ˛/ and let C �F be a cycle, which is a linear
combination of subvarieties of F . We let E be the pull back vector bundle '�˛F on
Y ŒŒ˛�� ; let �˛W E! F and �˛W E! Y ŒŒ˛�� be the obvious projections.

Definition 4.6 For any subvariety D � E we define the ˛–multiplicity m˛.D/ of
D be the ˛–multiplicity of the general point of the image �˛.D/ � Y ŒŒ˛�� . For any
subvariety C � F and irreducible decomposition ��1

˛ .C /D[r
iD1

Di , we define the
pull-back

��˛C D

rX
iD1

m˛.Di/Di :

We define the pull back of any cycle by extension via linearity.

The identity (24) implies that for any cycle C in F

�˛��
�
˛C D ˛! C:

The virtual cycle of Y ŒŒ˛�� will be defined as the Gysin map image of the pull back
virtual normal cone given by the obstruction theory of IY=T .0; ˛/. Let F˛ be a locally
free sheaf on IY=T .0; ˛/ that makes the obstruction sheaf of IY=T .0; ˛/ its quotient
sheaf. Then the obstruction theory of IY=T .0; ˛/ provides us a cone cycle C˛ 2A�F˛
in the vector bundle F˛ associated to E˛ . We let E˛ be the pull back vector bundle
over Y ŒŒ˛�� ; let �˛W E˛! F˛ be the projection, and let

C˛ D �
�C˛

be the pull back cycle in E˛ defined in Definition 4.6. Since the pull back of the
obstruction sheaf of IY=T .0; ˛/ is canonically isomorphic to the obstruction sheaf of

6We define ˛!D ˛1! � � �˛k ! .
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Y ŒŒ˛�� , the sheaf E˛ DO.E˛/ has the obstruction sheaf Ob
ŒŒ˛��
Y

of Y ŒŒ˛�� as its quotient
sheaf. By abuse of notation, we will call the cycle C˛ 2A�E˛ the virtual cone of the
obstruction theory of Y ŒŒ˛�� .

Definition 4.7 We define the virtual fundamental class

ŒY ŒŒ˛���vir
D 0�E˛

�
C˛
�
2H�.Y

ŒŒ˛��;Z/:

Since the push-forward of ŒY ŒŒ˛���vir under Y ŒŒ˛��! IY=T .0; ˛/ is ˛! times the virtual
fundamental cycle ŒIY=T .0; ˛/�

vir , it is independent of the choice of E˛ , thus is well-
defined.

To get an explicit cycle representative, we can take a good section �˛ of E˛ that
intersects the cone C˛ transversally to form a pseudo-cycle

D.�˛/D �˛.��˛ \C˛/pc 2 PCy�.Y
ŒŒ˛��/:

As was shown before, the cycle D.�˛/ only depend on the image section s˛ 2

AS.Ob
ŒŒ˛��
Y
/ of �˛ . Hence to eliminate the dependence on E˛ , we shall denote D.�˛/

by D.s˛/. We have
ŒD.s˛/�D ŒY

ŒŒ˛���vir
2H�.Y

ŒŒ˛��;Z/:

5 Approximation of Virtual cycles

Because the partial equivalence Y
ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
is functorial, we expect that the

obstruction sheaves, the virtual normal cones, and the cycle representatives of the
virtual cycles of Y ŒŒ˛�� and Y ŒŒˇ�� are identical over Y

ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
. It is the purpose

of this section to show that this is the case.

5.1 Cones under equivalence

Our immediate task is to compare the sheaves Ob
ŒŒ˛��
Y

with Ob
ŒŒˇ��
Y

and compare their
respective virtual normal cones. Since for different ˛ and ˇ , the mentioned partial equiv-
alence follows from the equivalence Y

ŒŒ˛��

.˛;˛^ˇ/
Š Y

ŒŒ˛^ˇ��

.˛^ˇ;˛/
and Y

ŒŒˇ��

.ˇ;˛^ˇ/
Š Y

ŒŒ˛^ˇ��

.˛^ˇ;ˇ/
,

for our purpose we only need to investigate the case where ˛ > ˇ .

We first set up the notation. Let ˛ > ˇ be any pair. In this section we will fix once and
for all an indexing

˛ D .˛1; � � � ; ˛k/ and ˇ D .ˇ11; � � � ; ˇ1l1
; � � � ; ˇk1; � � �ˇklk

/

so that ˇi1[ � � � [ˇili
D ˛i . Since ˛ > ˇ , such indexing exists.
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We let zZ1; � � � ; zZk be subschemes of Y
ŒŒ˛��

.˛;ˇ/
�T Y that are part of the universal family

of Y ŒŒ˛�� over Y
ŒŒ˛��

.˛;ˇ/
; we let zW11; � � � ; zWklk

be subschemes of Y
ŒŒˇ��

.ˇ;˛/
�T Y that are

part of the universal family of Y ŒŒˇ�� over Y
ŒŒˇ��

.ˇ;˛/
.

The partial equivalence Y
ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
induces a rational map from IY=T .0; ˇ/ to

IY=T .0; ˛/. Let

%˛W Y
ŒŒ˛��

.˛;ˇ/
��! IY=T .0; ˛/

be the tautological morphism that is induced by the families .Z1; � � � ;Zk/; we let
U
ˇ

.˛;ˇ/
� IY=T .0; ˛/ be the image subset of this map, which is open. Because of this,

we shall endow it with the induced scheme structure (usually non-reduced) from that
of IY=T .0; ˛/. For ˇ , we have the similarly defined

%ˇW Y
ŒŒˇ��

.ˇ;˛/
��! IY=T .0; ˇ/

induced by the families Wij . We then endow the open subset U
ˇ

.ˇ;˛/
D Im.%ˇ/ with

the induced scheme structure from that of IY=T .0; ˇ/.

More to that, for any z� 2 U
ˇ

.ˇ;˛/
over t 2 T that is the image of an � 2 Y

ŒŒˇ��

.ˇ;˛/
, the

associated (indexed) zero-subschemes �11; � � � ; �1l1
; � � � ; �klk

� Yt for each 1� i � k

have that the collection �i1; � � � �ili
is mutually disjoint. Hence we can assign

�i D �i1[ � � � [ �ili
;

thus obtaining a zero-subscheme in IY=T .0; j˛i j/ and the tuple

.�1; � � � ; �k/ 2 IY=T .0; ˛/:

It is easy to see that this correspondence defines a one–one onto map from U
ˇ

.ˇ;˛/
to

U ˛
.˛;ˇ/

.

The proof given in subSection 1.3 immediately shows that

Lemma 5.1 The induced map

‡˛ˇW U
ˇ

.ˇ;˛/
��! U ˛

.˛;ˇ/

is an étale morphism between two schemes; it commutes with the maps %˛ , the map
%ˇ and the partial equivalence Y

ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
. Further, the obstruction sheaves ObŒŒ˛��

of IY=T .0; ˛/ are isomorphic under pull back by U
ˇ

.ˇ;˛/
:

‡�˛ˇOb
ŒŒˇ��
Y
ŠOb

ŒŒ˛��
Y
jY ˛
.˛;ˇ/

:
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The virtual normal cones are also identical under this isomorphism. We pick a locally
free sheaf E˛ on U ˛

.˛;ˇ/
that makes Ob

Œ˛�
Y

its quotient sheaf (over U ˛
.˛;ˇ/

). Then

Eˇ D ‡�˛ˇE˛ is a locally free sheaf over U
ˇ

.ˇ;˛/
that makes Ob

Œˇ�
Y

its quotient sheaf.
Then the perfect-obstruction theory provides us the virtual normal cone C˛ �E˛ and
the normal cone Cˇ �Eˇ .

Lemma 5.2 Under the induced flat morphism �˛ˇW Eˇ!E˛ , the cycles

��˛ˇC˛ D Cˇ:

Proof This follows from the uniqueness assertion on cones (22) and the following
invariance result.

Lemma 5.3 Let U �X be an open subset and let � � U be a zero subscheme. Then
the obstruction spaces to deforming � in U and in X are canonically isomorphic.
Further, under this isomorphism of obstruction spaces, the obstructions to deforming �
in U and in X are identical.

Proof First the to obstruction spaces are traceless extension groups

Ext2X .I� ; I�/0 and Ext2U .I� ; I�/0:

They are isomorphic because

Ext2X .I� ; I�/0 ŠH 0
�
Ext3OX

.O� ; I�/
�
DH 0

�
Ext3OU

.O� ; I�/
�
Š Ext2U .I� ; I�/0:

As to the obstruction theory, say using locally free resolutions of I� and using Cěch
cohomology representative of the obstruction classes, one checks directly that the
obstruction to deforming � in X gets mapped to the obstruction class to deforming �
in U under the canonical homomorphism

Ext2X .I� ; I�/0 ��! Ext2U .I� ; I�/0:

But because this arrow is an isomorphism, the two obstruction classes must be identical.

5.2 Some further notations

From now on, for any ˛ we fix a locally free sheaf E˛ over IY=T .0; ˛/ that makes
its quotient sheaf the obstruction sheaf ObŒ˛� of IY=T .0; ˛/; we let C˛ �E˛ be the
associated virtual normal cone. Because Y Œ˛� is IY=T .0; ˛/ with reduced scheme
structure, we can view E˛ as a vector bundle over Y Œ˛� and view C˛ as a cone cycle
in A�E˛ .
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For the Hilbert scheme of ˛–points Y ŒŒ˛�� , its obstruction sheaf Ob
ŒŒ˛��
Y

is canoni-
cally isomorphic to the pull back sheaf ��˛ObŒ˛� � IY=T .0; ˛/ under the tautological
morphism

�˛W Y
ŒŒ˛��
! Y Œ˛�:

Thus by taking zE˛ D ��˛E˛ , the obstruction sheaf Ob
ŒŒ˛��
Y

naturally becomes a quotient
sheaf of zE˛ .

We let zE˛!E˛ be the tautological projection, viewed as a stack flat morphism

zE˛ DE˛ �Y .˛/ Y ˛ ��! Eƒ:

The normal cone zC˛ � zE˛ is then defined to be the stack flat pull back of C˛ as
specified in Definition 4.6.

For stratifications of zC˛ and Y ŒŒ˛�� , we shall take the standard pair of stratifications that
respects the morphism zC˛! Y ŒŒ˛�� and the loci of non-locally freeness of the sheaf
Ob

ŒŒ˛��
Y

.

Definition 5.4 We say that a smooth section s˛ �A.Ob
ŒŒ˛��
Y
/ intersects transversally

with its normal cone if one (thus all) of its lifts �˛ 2 A. zE˛/ intersects transversally
with the cone zC˛ .

Following the discussion in subSection 4.3, we can find sections of A.Ob
ŒŒ˛��
Y
/ that

intersect the normal cone transversally. For such s˛ , we shall denote by D.s˛/� Y ŒŒ˛��

the pseudo-cycle that is the image in Y ŒŒ˛�� under zE˛! Y ŒŒ˛�� of intersecting a lift of
s˛ with zC˛ � zE˛ .

Now let s˛ 2A.Ob
ŒŒ˛��
Y
/ be a section that intersects transversally with the normal cone.

Because Ob
ŒŒ˛��
Y
j
Y
ŒŒ˛��

.˛;ˇ/

ŠOb
ŒŒˇ��
Y
j
Y
ŒŒˇ��

.ˇ;˛/

canonically, we can view s˛jˇ D s˛jY ŒŒ˛��
.˛;ˇ/

as a

section of Ob
ŒŒˇ��
Y

over Y
ŒŒˇ��

.ˇ;˛/
. Because of Lemma 5.1 and 5.2, s˛jˇ is a smooth section

of Ob
ŒŒˇ��
Y

and intersects transversally with the normal cone of Y ŒŒˇ�� .

5.3 Compatible cycle representatives

To compare the cycles ŒY ŒŒ˛���vir , in this section we shall carefully pick smooth sections
s˛ so that for any pair ˛ and ˇ the cycle representatives D.s˛/ are D.sˇ/ are identical
over most part of the intersection Y

ŒŒ˛��

.˛;ˇ/
Š Y

ŒŒˇ��

.ˇ;˛/
.

To this end, we form the strict ˛–diagonal

�˛ D fx 2 Y ƒ j a�˛ b) xa D xbgI
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they are closed; for different ˛ and ˇ , �˛ \�ˇ D�˛_ˇ 7. Next we fix a sufficiently
small c > 0 and pick a function "W Pƒ ! .0; c/ whose values on any ordered pair
˛ > ˇ obey ".˛/ >R".ˇ/ for a sufficiently large R. After fixing a Riemannian metric
on Y , we then form the "–neighborhoods of �˛ � Y ƒ :

�˛;" D fx 2 Y ƒ j dist.x; �˛/ < ".˛/g:

For any ˇ � ˛ , we form

�˛ˇ;" D
[

˛�
�ˇ

�
;" and Q˛
ˇ;" D�ˇ;"�

[
˛�
>ˇ

�˛
;":

Note that Q˛
ˇ;"

are closed subsets of �ˇ;" .

We have the following intersection property of these sets.

Lemma 5.5 For any pair ˇ1; ˇ2 � ˛ satisfying �ˇ1;" \Q˛
ˇ2;"
¤ ∅, necessarily

ˇ2 � ˇ1 .

Proof Because c is sufficiently small, whenever ��;"\��;" ¤∅, necessarily ��\
�� ¤∅. Then because ��\�� D��_� , because �� intersects �� perpendicularly,
and because ".�_ �/ > R

2
".�/C R

2
".�/,

��;"\��;" ���_�;":

Now suppose ˇ2�ˇ1 , then ˇ1_ˇ2>ˇ2 ; therefore we have �ˇ1;"\�ˇ2;"��ˇ1_ˇ2;"

and Q˛
ˇ2;"
��˛

ˇ2;"
��˛

ˇ1_ˇ2;"
. Combined, we have

∅¤�ˇ1;"\Q˛
ˇ2;"
��ˇ1_ˇ2;"\

�
�ˇ2;"��ˇ1_ˇ2;"

�
D∅:

This proves ˇ2 � ˇ1 .

An immediate corollary of this is that �˛
ˇ;"
D
`
˛�
�ˇ Q˛


;" forms a partition (a
disjoint union) of �˛

ˇ;"
. By choosing ˇD 0ƒ , it also shows that fQ˛

ˇ;"
j ˇ � ˛g forms

a partition of Y ƒ .

Moving to Y ŒŒ˛�� , we form

N ˛
ˇ;" D �

�1
˛

�
N ˛
ˇ;"

�
and Q˛ˇ;" , ��1

˛

�
Q˛
ˇ;"

�
� Y ŒŒ˛��;

in which we continue to denote by �˛W Y ŒŒ˛�� �! Y ƒ the projection. The collection
fQ˛

ˇ;"
j ˇ � ˛g forms a partition of Y ŒŒ˛�� .

7˛_ˇ is the smallest element among all that are larger than or equal to both ˛ and ˇ .
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Lemma 5.6 For sufficiently small c , we can find a collection of sections s˛ 2

AS.ObŒŒ˛��/ that satisfy the properties

(i) each s˛ intersects transversally with the normal cone of Ob
ŒŒ˛��
Y

;

(ii) for any ˇ < ˛ , the sections s˛ and sˇ coincide over Q˛
ˇ;"

.

The requirement (ii) is understood as follows. To each ˇ < ˛ , because Q˛
ˇ;"

is disjoint

from ��1
˛ .�
 / for all ˛ � 
 > ˇ , it lies inside Y

ŒŒ˛��

.˛;ˇ/
. Thus restricting to Q˛

ˇ;"
both

s˛ and sˇ are sections of the same sheaf, and hence can be said to equal.

Proof We prove the lemma by induction. Because the space Y ŒŒ˛�� is a disjoint union
of Q˛

ˇ;"
, we will construct s˛ by specifying its values along each of the above subsets

according to (ii) and then showing that the resulting section can be extended to satisfy
(i).

We now construct the section s˛ by induction. Suppose we have already constructed sˇ
for all ˇ <˛ that satisfy the properties (i)–(ii). Along the partition Y ŒŒ˛��D

`
ˇ�˛Q˛ˇ;" ,

we shall follow the rule (ii) to define

s˛jˇ D sˇjQ˛
.ˇ;˛/
2 �.Q˛ˇ;";AS.Ob

ŒŒ˛��
Y
/

be the restriction to Q˛
ˇ;"

of sˇ . Inductively, this will define

s˛ 2 �
�
Y ŒŒ˛���N ˛

˛;";AS.Ob
ŒŒ˛��
Y
/
�

after checking that the collection s˛jˇ forms a smooth section over Y ŒŒ˛���N ˛
˛;" .

We now prove that it is so. First, because Y ŒŒ˛���N ˛
˛;" is a disjoint union of fQ˛

ˇ;"
j

ˇ < ˛g, each z 2 Y ŒŒ˛���N ˛
˛;" must lie in a Q˛

ˇ;"
for a unique ˇ < ˛ . In case z is an

interior point of Q˛
ˇ;"

, then s˛ coincide with sˇ near z ; by induction hypothesis, s˛

satisfies the requirement (i) and (ii) near z . In case z is not an interior point of Q˛
ˇ;"

,
since N ˛


;" is open, by Lemma 5.5 this is possible only when z lies in the closure
cl
�
Q˛
ˇ0;"

�
for some ˇ0 > ˇ . There are two possibilities: one is when ˇ0 D ˛ , in which

case nothing to prove. The other is when ˇ0 < ˛ . Since s˛ is defined via sˇ on Q˛
ˇ;"

and via sˇ0 on Q˛
ˇ0;"

, to check the continuity of s˛ , we need to compare the germ of

sˇ and of sˇ0 near z . In this case, Q˛
ˇ0;"
� Y

ŒŒ˛��

.˛;ˇ/
, thus can be considered lies in Y ŒŒˇ

0�� ;

as to Q˛
ˇ;"

, Q˛
ˇ;"
\Y ŒŒˇ

0�� DQˇ
0

ˇ;"
. Hence by induction hypothesis, sˇ0 is an extension

of sˇ , Thus s˛ is well-defined near z , and thus is smooth near z .

Once we know that s˛ is smooth over Y ŒŒ˛���N ˛
˛;" , which is closed in Y ŒŒ˛�� , we can

extend it to a good smooth section of Ob
ŒŒ˛��
Y

over Y ŒŒ˛�� , which completes the proof of
the Lemma.
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From now on, we fix such a collection fs˛g˛2Pƒ and form their associated pseudo-cycle
representatives D.s˛/.

5.4 Approximation of the virtual cycles

In this subsection, we shall investigate how pseudo-cycles D.s˛/ are related by looking
at their images in Y ƒ .

We let d be the real dimension of T ; let D.s˛/ be the d –dimensional pseudo-cycles
constructed relative to a set z‚˛ �Y ŒŒ˛�� of dimension � d�2. We take ‚�Y ƒ be the
union of the images under the projection �˛W Y ŒŒ˛��! Y ƒ of all z‚˛ : ‚D[˛�˛.z‚˛/.
Then to a sufficiently small � > 0 independent of c , we pick zf˛W †˛ ! Y ŒŒ˛�� a
representative of D.s˛/ as d –dimensional pseudo-cycle relative to .��1

˛ .‚/; �/. The
composition f˛ D �˛ ı zf˛ defines a .‚; �/–relative pseudo-cycle, which we denote
by Œf˛ �pc .

We now relate different pseudo-cycles Œf˛ �pc by forming inductively

(25) ı˛ D Œf˛ �pc �

X
ˇ<˛

ıˇ 2 Cycd .Y
ƒ/‚:

We have the following vanishing result:

Lemma 5.7 The pseudo-chain ı˛ \ .Y ƒ��˛;2c/ is equivalent to 0.

Proof What we need to show is that to any z 2 Y ƒ � .�˛;2c [‚�/ we can find a
sufficiently small ball Br .z/ centered at z so that ı˛ \Br .z/ as a pseudo-cycle is
equivalent to zero.

We now prove this by induction. For ˛ D 0ƒ , there is nothing to prove. Now let
˛ 2 Pƒ be any element so that this holds true for all ˇ < ˛ . Let x 2 Y ƒ be any point
away from �˛;2c [‚� and let ˇ < ˛ be so that

(26) x 2Q˛
ˇ;":

We first claim that for sufficiently small r , ı
 \ Br .x/ � 0 for all ˇ 6� 
 < ˛ .
Suppose not, then by induction hypothesis, x 2�
;2c . Since c is sufficiently small
and ".ˇ1/ > R".ˇ2/ for any ˇ1 > ˇ2 , we have �ˇ;" \�
;" � �ˇ_
;" , and hence
�.z/2�ˇ_
;" . Because we have assumed that ˇ 6� 
 , we must have ˇ_
 >ˇ , which
implies that �ˇ_
;"\Q˛

ˇ;"
D∅, contradicting to x 2Q˛

ˇ;"
and in �ˇ^
;" .

Because of this, when we intersects ı˛ with Br .x/, for sufficiently small r (25) tells
us that

ı˛ \Br .x/D Œf˛ �pc \Br .x/�
X

�ˇ

ı
 \Br .x/:
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On the other hand by definition

ıˇ \Br .x/D Œfˇ �pc \Br .x/�
X

<ˇ

ı
 \Br .x/:

Hence if we can show that Œf˛ �pc \Br .x/D Œfˇ �pc \Br .x/, the above two identities
will force ı˛ \Br .x/D 0, exactly what we intend to prove.

For this we argue as follows: let z 2D.s˛/\ �
�1
˛ .Br .x//. Because of (26), x 2�ˇ;"

and x 62 [ˇ<
�˛�
 ; thus z must lie in Y
ŒŒ˛��

.˛;ˇ/
and thus also in Y

ŒŒˇ��

.ˇ;˛/
. Hence (ii) of

lemma 5.6 implies that

D.s˛/\ �
�1
˛ .Br .x//DD.sˇ/\ �

�1
ˇ .Br .x//:

For the same reason, the above identity holds in case x 2 D.sˇ/. This proves the
lemma.

5.5 Truncated discrepancy cycles

Because ı˛ is equivalent to zero away from �˛;2c , we can truncate it by intersecting
it with the closed subset �˛;e with a general 2c < e < 3c : ıe

˛ D ı˛\�˛;e . It can also
be defined inductively by

ıe
˛ � Œf˛ �pc \�˛;e �

X
ˇ<˛

ıe
ˇ;

where the intersection Œf˛ �pc \�˛;e can be replaced by any pseudo-chain f˛j†e
˛

with †e
˛ D f

�1
˛ .�˛;e/�O for an open O such that †e

˛ has smooth boundary and
f˛.O/�‚" . By Sards theorem, for general e the set f �1

˛ .�˛;e/ has smooth boundary
away from f �1

˛ .‚"/. Thus we can choose e that works for all ˛ .

Lemma 5.8 With such choice of e and pseudo-chain representative Œf˛ �pc \�˛;e ,
the inductively defined pseudo chain ıe

˛ is a pseudo-cycle relative to .‚; �/.

Proof This follows directly from Lemma 5.7 and the definition of pseudo-cycle.

In case ˛ has more than one equivalence class, the cycle ı˛ is equivalent to the product
of ı˛i

. More precise, by viewing each ˛i as a set, we can form the spaces Y ˛i and the
pseudo-cycles ıˇi

for ˇi 2 P˛i
. We continue to denote by ˛i the top partition in P˛i

.

Lemma 5.9 We can choose representatives ı˛i
and ı˛ so that under the identity

Y ƒ D
Qk

T Y ˛i as pseudo-cycles ı˛ Š
Qk

iD1 ı˛i
.
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Proof For each ˛i , we form the cycle representatives D.
 /� Y ŒŒ
 �� and the discrep-
ancy cycles ı
 by picking a collection of sections fs
 j 
 2 P˛i

g provided by the
previous lemma. For each ˇ � ˛ in Pƒ , we write ˇ as .ˇ11; � � �ˇklk

/ and form
ˇi D .ˇi1; � � � ; ˇili

/, each is a partition in P˛i
. Then

Y ŒŒˇ�� D Y ŒŒˇ1�� � � � � �Y ŒŒˇk �� and Ob
ŒŒˇ��
Y
D ��1Ob

ŒŒˇ1��
Y
˚ � � �˚��kOb

ŒŒˇk ��
Y

with �i the i -th projection of Y ŒŒ˛�� to Y ŒŒ˛i �� . Further, the sections sˇ1
; � � � ; sˇk

provides us a section
sˇ D �

�
1 sˇ1
˚ � � �˚��k sˇk

with associated pseudo-cycle

(27) D.sˇ/DD.sˇ1
/� � � � �D.sˇk

/:

We claim that using such decomposition, the discrepancy pseudo-cycles

(28) ıˇ Š ıˇ1
� � � � � ıˇk

:

Indeed, when ˇ D 0ƒ , then the identity reduces to

D.sˇ/D
Y
a2ƒ

D.s1fag/;

which is (27). Now suppose the identity holds for all 
 < ˇ . Then

kY
iD1

D.sˇi
/D

kY
iD1

� X
ˇij�ˇi

ıˇij

�
D

X
.
1;��� ;
k/2Pˇ1

�����Pˇk

ı
1
� � � � � ı
k

D

X

<ˇ

ı
 C ı1ˇ1
� � � � � ı1ˇk

:

The desired identity (28) then follows from D.sˇ/D
P

<ˇ ı
 C ıˇ and the identity

(27). This proves the Lemma.

By choosing a general e as before, the truncated discrepancy cycle also satisfies the
product formula (28) with ı� replaced by its truncated version ıe

� .

6 Proof of the Main theorem

The proof of the theorem now is fairly straightforward. We first apply the previous
construction to Y D X and to the set ƒ D Œn� of integers from 1 to n to relate the
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degree of the virtual cycle

degŒIX .0; n/�
vir
D

1

n!
degŒX ŒŒn���vir:

(Here we follow the convention X ŒŒn�� DX ŒŒƒ�� .)

The right hand side can be expressed as the degree of an explicit zero-cycle. For this
we pick a smooth section sŒn� of the obstruction sheaf Ob

ŒŒn��
X

of X ŒŒn�� that intersects
transversally with the normal cone. Because the virtual dimension of IX .0; n/ is zero,
the resulting pseudo-cycle D.sŒn�/ in X ŒŒn�� is a zero-cycle, satisfying

degŒX ŒŒn���vir
D degŒD.sŒn�/�:

To proceed, we shall relate it to the degrees of the discrepancy cycles ı˛ . For a
sufficiently small � and c and for all ˛ 2 Pƒ we choose sections s˛ of Ob

ŒŒ˛��
X

according to Lemma 5.6. We let D.s˛/ in X ŒŒ˛�� be the associated zero-cycle derived by
intersecting the normal cone by s˛ . However, because each ı˛ is a zero-cycle, Lemma
5.7 shows that it is entirely contained in the �–tubular neighborhood of X n

�
� X n .

Further, their degrees
degŒD.sŒn�/�D

X
˛2Pƒ

deg ı˛:

Thus to prove that degŒIX .0; n/�
vir is expressible in terms of a universal polynomial in

Chern numbers of X we only need to show that the same hold for all deg ı˛ , which
then follows from that of deg ıŒn� by the product formula in Lemma 5.9. This way,
we are reduced to show that deg ıŒn� is expressible by a universal expression in Chern
numbers of X .

Our next step is to use the construction of the diffeomorphism of a neighborhood of
0TX � TX with a neighborhood of the diagonal �.X /�X �X to transfer the cycle
ıŒn� to the tangent bundle TX .

We let U �X �X be the tubular neighborhood of �.X /�X �X , let V �TX be the
tubular neighborhood of 0TX � TX and let  W V! U be the smooth isomorphism
provided by Lemma 2.4. The map  induces a smooth isomorphism

(29) ‰˛W V ŒŒ˛��0
��! U ŒŒ˛��

�X ŒŒ˛��

onto an open neighborhood of X
ŒŒ˛��
�
� X ŒŒ˛�� (see Lemma 2.6). Because U ŒŒ˛�� is an

open neighborhood of X
ŒŒ˛��
�

, by choosing c sufficiently small, Lemma 5.7 tells us that
the cycle ıŒn� lies entirely in U ŒŒn�� . Thus the degrees of

ıŒn�;V D‰
�
Œn�.ıŒn�/
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is identical to that of ıŒn� .

The cycle ıŒn�;V can also be constructed using the universal family over the Grassman-
nian of quotients CN ! C3 . Let Q!Gr be the total space of the universal quotient
bundle and let QŒŒ˛�� (resp. Q

ŒŒ˛��
0

) be the relative Hilbert scheme of ˛–points (resp.

centered ˛–points) of Q=Gr . To each Q
ŒŒ˛��
0

we form its obstruction sheaf Ob
ŒŒ˛��
Q

;

we pick a locally free sheaf E˛ making Ob
ŒŒ˛��
Q

its quotient sheaf; we let E˛ be the
associated vector bundle and let D˛ �E˛ be the associated normal cone.

We then pick a smooth section t˛ of E˛ for all ˛ so that the collection ft˛g˛2Pƒ
satisfies the conclusion of Lemma 2.4. The sections t˛ provide us the pseudo-cycle
D.t˛/ in Q

ŒŒ˛��
0

relative to a subset z‚˛ of dimension at most 2 dim Gr � 8. According

to (25), the images under the projections �˛W Q
ŒŒ˛��
0
!Qn

0
of the pseudo-cycles D.t˛/

form the discrepancy pseudo-cycle ıŒn�;Q �Qn
0

relative to .‚; �/, the set ‚ which is
the union of all �˛.z‚˛/ and for � which is sufficiently small.

The cycle ıŒn�;Q defines a codimension six homology class in Gr . Indeed, by Lemma
5.7, the pseudo-cycle is zero outside the 2c–tubular neighborhood in Qn

0
of the top

diagonal Qn
�
\Qn

0
. Because the top diagonal Qn

�
consists of points .�; � � � ; �/, they

are centered only if � D 0. Thus the top diagonal is the zero section of Qn
0
=Gr ; thus is

compact. Therefore, ıŒn�;Q is a compact pseudo-cycle, thus defines a homology class

ŒıŒn�;Q 2HdimR Gr�6.Q
n
0;Z/ŠHdimR Gr�6.Gr;Z/:

We shall relate the cycle ıŒn�;Q with ıŒn� in X n by picking a smooth map gW X !Gr

so that as smooth vector bundle g�QDTX . Without loss of generality, we can choose
N to be sufficiently large and choose g to be an embedding. Obviously, g induces a
smooth isomorphism (compare to (12))

(30) gnW Q
n
0 �Gr X Š .TX /n0:

We have the following compatibility result.

Lemma 6.1 We can choose g and sections s˛ so that Qn
0
�Gr X intersects transver-

sally with ıŒn�;Q and the intersection

g�n.ıŒn�;Q/, ıŒn�;Q\
�
Qn

0 �Gr X
�
;

considered as a cycle in .TX /n
0

via the isomorphism (30), is identical to the cycle ıŒn�;V
via the inclusion Vn

0
� .TX /n

0
.

Geometry & Topology, Volume 10 (2006)



2162 Jun Li

Once the lemma is proved, then we can use the constructed sections s˛ to form the
cycle ıŒn� in X n to conclude

deg ıŒn� D deg ıŒn�;V D deg g�n.ıŒn�;Q/D deg
�
ŒıŒn�;Q�

P:D:
\g�.ŒX �/

�
;

where ŒıŒn�;Q�P:D: is the Poincare dual of the homology class ŒıŒn�;Q� 2 H6.Gr;Z/.
Because H�.Gr;Z/ is generated by ui 2H 2i.Gr;Z/,

ŒıŒn�;Q�
P:D:
D Pn.u1;u2;u3/ 2H 6.Gr;Z/

expressible in a polynomial in ui . On the other hand, using the embedding Gr.N; 3/�

Gr.N C 1; 3/ and the proof that will follow, we see immediately that this polynomial
Pn is independent of the choice of N ; thus is universal in n.

Finally, because g�n.ui/D ci.X /,

ŒıŒn�;Q�
P:D:
\g�.ŒX �/D pn.c1.X /; c2.X /; c3.X //\ ŒX �

is a universal expression in the Chern numbers of X . This proves the main theorem.

We shall divide the proof of Lemma 6.1 into two steps: one is to compare the intersection
g�n.ıŒn�;Q/ with a similarly constructed cycle ıŒn�;TX on .TX /n

0
; the other is to compare

the later with the pull back of ıŒn� using the map Vn
0
!X n . Since the proofs of both are

similar, we shall provide the details of the first while indicating the necessary changes
required for the second.

We begin with a quick account of the moduli of A3 . We let V DA3 and let V
ŒŒ˛��

0
!V n

0

be the tautological map from the Hilbert scheme of centered ˛–points to V n
0

that
was constructed in section 1 with Y replaced by V . Because GL.3/ acts on V , it
acts on V ŒŒ˛�� and V n . Further these actions leave the projection V ŒŒ˛�� ! V n and
the averaging map V n! V invariant, thus the space V

ŒŒ˛��
0
D V ŒŒ˛�� �V 0 is GL.3/–

invariant. Not only that, its obstruction sheaf Ob
ŒŒ˛��
V

and its obstruction theory are all
naturally GL.3/–linearized.

Because GL.3/ is reductive, we can find a GL.3/–linearized locally free sheaf F˛
on V

ŒŒ˛��
0

that makes Ob
ŒŒ˛��
V

its GL.3/–equivariant quotient sheaf

(31) F˛ ��! Ob
ŒŒ˛��
V
:

We let F˛ be its associated vector bundle and let D˛ � F˛ be the associated normal
cone. Then each D˛;i in the irreducible decomposition

D˛ D

X
i

m˛;iD˛;i
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is a GL.3/–invariant cone-like subvariety of F˛ .

We next fix a standard stratification of [iD˛;i ! V
ŒŒ˛��

0
subordinating to the loci of

the non-locally freeness of the sheaf Ob
ŒŒ˛��
V

. To each D˛;i , we let S˛;i �D˛;i be its

open stratum and let T˛;i � V
ŒŒ˛��

0
be the image of S˛;i , which is a stratum of V

ŒŒ˛��
0

.

Because D˛;i ! F˛! V
ŒŒ˛��

0
are GL.3/–equivariant, every stratum, including S˛;i ,

are GL.3/–invariant.

Our next step is to use (31) to build locally free sheaves on Q
ŒŒ˛��
0

and on .TX /
ŒŒ˛��
0

making their respective obstruction sheaves their quotient. For Q=Gr , we first cover
Gr by open Ua �Gr with vector bundle isomorphisms

(32) faW Q�Gr Ua
Š
��!V �Ua:

Then using the induced isomorphism

Q
ŒŒ˛��
0
�Gr Ua Š V

ŒŒ˛��
0
�Ua

and pV the first projection of the product on the right hand side, we can form the
induced

(33) E˛;a D p�VF˛ ��! pVOb
ŒŒ˛��
V
ŠOb

ŒŒ˛��
Q
j
Q
ŒŒ˛��

0
�Gr Ua

:

Over Uab D Ua\Ub , the isomorphisms

fba D fb ıf
�1

a W V �Uab ��! V �Uab

induce transition isomorphisms

f ˛baW E˛;ajQŒŒ˛��

0
�Gr Uab

��! E˛;bjQŒŒ˛��

0
�Gr Uab

:

Since fab satisfy the cocycle condition, f ˛
ab

also satisfy the cocycle condition. Hence

f ˛
ab

glue to form a locally free sheaf E˛ on Q
ŒŒ˛��
0

. Obviously, the quotient homomor-
phisms (33) glue to form a quotient homomorphism

E˛ �!Ob
ŒŒ˛��
Q
:

The normal cone of Ob
ŒŒ˛��
Q

takes a simple form in this setting. Let E˛ be the associated
vector bundle of E˛ . The cycles

D˛ �Ua D

X
i

m˛;iD˛;i �Ua 2 C�.F˛ �Ua/D C�.E˛jQŒŒ˛��

0
�Gr Ua

/
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glue together to form a cycle that is the normal cone C˛ �E˛ :

C˛ D
X

i

m˛;iC˛;i

with C˛;i the glued subvariety from D˛;i �Ua .

Similarly, for the vector bundle TX=X we can carry over the same procedure to form
a locally free sheaf zE˛ over .TX /

ŒŒ˛��
0

making the obstruction sheaf Ob
ŒŒ˛��
TX

its quotient
sheaf; the normal cone in the associate vector bundle zC˛ � zE˛ is also the similarly
induced cycle by D˛ � F˛ .

Now we look at the smooth map gW X ! Gr , which we assume to be an embedding,
and the smooth isomorphism

(34) g0W TX ŠQ�Gr X �Q:

We let
g˛W .TX /

ŒŒ˛��
0
��! Q

ŒŒ˛��
0

be the induced smooth map; we let A1 and A2 be the sheaves of smooth functions
of .TX /

ŒŒ˛��
0

and Q
ŒŒ˛��
0

respectively. We claim that there are smooth isomorphisms as
shown below that make the diagram commutative

(35)

g�˛
�
E˛˝A2

�
����! g�˛

�
Ob

ŒŒ˛��
Q
˝A2

�
Š

??y Š

??y
zE˛˝A1 ����! Ob

ŒŒ˛��
TX
˝A1:

Indeed, for any open Ua �X with trivialization TX jUa
Š V �Ua and open Ub �Gr

with trivialization QjUb
Š V �Ub and satisfying g.Ua/� Ub , the isomorphism g0

in (34) defines a smooth map hW Ua!GL.V / that makes the diagram commutative

Q�Gr X
g0
����! TX

Š

??y Š

??y
V �Ua

.h;1/
����! V �Ua

The family of automorphisms h then induce smooth diffeomorphism

V
ŒŒ˛��

0
�Ua

.h˛;1/
����! V

ŒŒ˛��
0
�Ua

Š

??y Š

??y
Q
ŒŒ˛��
0
�Gr Ua

Š
����! .TX /

ŒŒ˛��
0
�X Ua
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and isomorphisms of sheaves

h˛W E˛jQŒŒ˛��

0
�Gr Ua

Š F˛˝OUa
��!F˛˝OUa

Š zE˛j.TX /
ŒŒ˛��

0
�X Ua

;

where the first and the third isomorphisms are induced by the construction of E˛ and
zE˛ in (33) while the middle one is induced by h.

The homomorphisms h˛ for a covering of X patch together to form the left smooth
isomorphism in (35); it makes that diagram commutative.

This way, by lifting t˛ to a smooth section in E˛ , then pulling the lifted section back to
a smooth section of zE˛ , and finally pushing forward the new section to a section in the
obstruction sheaf Ob

ŒŒ˛��
TX

, we obtain a smooth section. Obviously, the resulting section
the original pull back zt˛ ; therefore, zt˛ is smooth. Likewise, because gW X !Gr is a
smooth embedding, because each stratum of C˛;i is submersive onto Gr , and because
as subsets

E˛jQŒŒ˛��

0
�Gr X

�D˛;i \
�
Q
ŒŒ˛��
0
�Gr X

�
D zD˛;i �

zE˛

under the isomorphism (35), we see immediately that a lift of zt˛ intersects transversally
with the cone cycle zC˛ if and only if Q

ŒŒ˛��
0
�Gr X intersects transversally with the

pseudo-cycle D.t˛/. But this is possible if we choose g general. Therefore, we can
choose g that makes all pull back sections zt˛ satisfy the first conclusion of Lemma
5.6. Since the collection t˛ satisfies the second conclusion of Lemma 5.6, so does the
collection zt˛ .

Apply the same argument to the standard embedding

GN W Gr.N; 3/ ��! Gr.N C 1; 3/

we see that we can choose sections t˛ ’s so that

ıŒn�;Gr.N;3/ D g�N .ıŒn�;Gr.NC1;3//

are stable under GN . Therefore, their homology classes

ŒıŒn�;Gr.N;3/� 2H6.Gr.N; 3/IZ/

is stable under inclusions.

It remains to use the sections zt˛ to get smooth sections s˛ of Ob
ŒŒ˛��
X

. First, because

V ŒŒ˛��
0

is an open subset of .TX /
ŒŒ˛��
0

, the section zt˛ restricts to a section of the obstruction

sheaf Ob
ŒŒ˛��
V of V ŒŒ˛��

0
. Without much confusion, we shall denote the restriction section

by zt˛ as well.
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Our next step is to take the induced sections zs˛ of Ob
ŒŒ˛��
X
jU ŒŒ˛�� under the smooth

isomorphisms
‰�˛Ob

ŒŒ˛��
X
ŠOb

ŒŒ˛��
V

covering the smooth isomorphism ˆ˛W V ŒŒ˛��0
! U ŒŒ˛�� � X ŒŒ˛�� in (29) and show that

they are smooth and satisfy the conclusion of Lemma 5.6.

We begin with more notations for X ŒŒ˛�� . We pick a locally free sheaf xE˛ on X ŒŒ˛��

making Ob
ŒŒ˛��
X

its quotient sheaf; we let xC˛ � xE˛ be their associated normal cones
with irreducible decomposition

xC˛ D
X
xm˛;i
xC˛;i :

Like before, we denote by xS˛;i � xC˛;i its open stratum and denote by xT˛;i � X ŒŒ˛��

the image of xS˛;i .

Differing from the case of Q=Gr , we shall work with the restriction of the obstruction
sheaf to xT˛;i . To this end, we let

xW˛;i DOb
ŒŒ˛��
X
˝O

X ŒŒ˛��
O xT˛;i I

let xW˛;i be the associated vector bundle and let

x�˛;i W xE˛j xT˛;i
��! xW˛;i

be the surjective homomorphism induced by xE˛!Ob
ŒŒ˛��
X

.

We shall do the same for .TX /
ŒŒ˛��
0

. We let W˛;i be the associated vector bundle of the
restriction sheaf

zW˛;i DOb
ŒŒ˛��
TX
˝O

.TX/
ŒŒ˛��
0

O zT˛;i ;

which is locally free over zT˛;i ; we let

z�˛;i W zE˛j zT˛;i
��! zW˛;i

be induced by zE˛!Ob
ŒŒ˛��
TX

.

Our next step is to show that possibly after re-indexing the i ’s we have

(36) ‰˛. xT˛;i \U ŒŒ˛��/D zT˛;i \V ŒŒ˛��0
I

and that under the canonical isomorphism ‰�˛
xW˛;i Š

zW˛;i we have

(37) ‰˛
�
z�˛;i. zD˛;i/

�
D x�˛;i. xD˛;i/ and m˛;i D xm˛;i :
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The proof is straightforward. Let x 2 X be any element and let 'x W Vx ! Ux � X

be the analytic open embedding provided by Lemma 2.4. By the construction of the
projection U ŒŒ˛��!X , its fiber over x is canonically isomorphic to

U ŒŒ˛��
�X n Un

x �TxX 0

in which the map Un
x ! TxX is the composite

$x W Un
x

Š
��!Vn

x

�
��!TxX n ave

��!TxX

with the averaging map. Combining the local isomorphism Lemma (Lemma 2.2), the
base change property of the obstruction sheaves (21), the invariance of the obstruction
theory (Lemma 5.3) and the invariance of normal cone (22), we see immediately that
to each stratum S of X ŒŒ˛�� , the induced map

S �X n .Ux/
n $x
��!TxX

is a submersion. This shows that the standard stratification of X ŒŒ˛�� induces the standard
stratification of .Ux/

ŒŒ˛���TxX 0. By using UxŠVx and the open inclusion Vx �TxX ,
the standard stratification of .TxX /

ŒŒ˛��
0

also induces the standard stratification of

.Ux/
ŒŒ˛�� �TxX 0. Therefore, the restrictions of the standard stratification of .TxX /

ŒŒ˛��
0

and of the standard stratification of X ŒŒ˛�� to V ŒŒ˛��
0
�X x coincide. Consequently, after

re-indexing xC˛;i , we will have (36).

Then by the base change property of the obstruction sheaves, we automatically have
canonical isomorphism

‰�˛
xW˛;i Š

zW˛;i I

applying the invariance results of the obstruction sheaf and of obstruction theory, we
get the identity (37).

Once we have these, we immediately see that the section zs˛ induced by the isomorphism

‰�˛.Ob
ŒŒ˛��
X
/ŠOb

ŒŒ˛��
TX
jV ŒŒ˛��

0

is a smooth section of Ob
ŒŒ˛��
X

over U ŒŒ˛�� ; that it intersects transversally with the normal

cone of Ob
ŒŒ˛��
X

and the collection fzs˛g satisfies the conclusions of Lemma 5.6 over
U ŒŒ˛�� .

To continue, we shall comment on the role of 0< c� 1 and 0< �� 1. In choosing
sections t˛ according to Lemma 5.6, we use the smallness of c to force the resulting
pseudo-cycle ıŒn�;Q to lie entirely in the 2c–tubular neighborhood of the zero section
of Qn

0
=Gr . As to � , after picking t˛ we use � to choose pseudo-cycle representatives
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of D.t˛/ to ensure that the resulting pseudo-cycle ıŒn�;Q represents a homology class
in H�.Gr;Z/.

After that, we pick a smooth embedding gW X !Gr to pull the sections t˛ back to
sections zt˛ in Ob

ŒŒ˛��
TX

. By choosing g in general position, we can be sure that the degree
of the discrepancy cycle ıŒn�;TX constructed using zt˛ coincides with the pull back
of ıŒn�;Q under the induced map .TX /n

0
!Qn

0
. This time because each D.zt˛/ is a

zero-dimensional pseudo-cycle, they are cycles automatically. Likewise, because ıŒn�;Q
lies in the 2c–tubular neighborhood of the zero section of Qn

0
=Gr , for c sufficiently

small, ıŒn�;TX lies entirely in Vn
0

.

The next step is to form the sections zs˛ of Ob
ŒŒ˛��
X

over U ŒŒ˛�� ; restrict them to a compact
subset KŒŒ˛�� � U ŒŒ˛�� and then extend the restrictions to all X ŒŒ˛�� so that the resulting
sections fs˛g satisfy the conclusion of Lemma 5.6. Now let �n � X n be the top
diagonal f.x; � � � ;x/ j x 2X g as before and let �n;3c be the 3c–tubular neighborhood
of �n in X n . Because c is sufficiently small, we can choose a compact K �X n so
that

�n;3c �K � Vn
0 �X n:

Thus if we choose KŒŒ˛�� DX ŒŒ˛���X n K , then the discrepancy cycle ıŒn� constructed
using D.s˛/ is entirely contained in �n;3c ; thus is contained in U ŒŒ˛�� ; thus coincide
with ‰Œn�.ıŒn�;TX /. Here the last statement holds because ıŒn�;TX � Vn

0
.

This completes the proof of Lemma 6.1.

7 The case of complex manifolds

To generalize this theorem to cover all compact, smooth three-dimensional complex
manifolds, we first need to define their Hilbert schemes of subschemes and their
Donalson–Thomas invariants. The technique developed in this work readily covers the
case of zero-dimensional invariants.

We now construct the Hilbert scheme of points for such complex manifolds X . We
shall achieve this goal indirectly by quoting the invariance results proved in this paper.
We first cover X by open subsets U˛ such that each is realized as an open subset of
A3 . By viewing U˛ as an open subset of A3 , we define the Hilbert scheme of n–points

IU˛ .0; n/� IA3.0; n/

be the open (analytic) subscheme of all � 2 IA3.0; n/ whose supports lie in U˛ . For
any pair U˛ and Uˇ , the Lemma 2.2 ensures that the open subscheme

IU˛ˇ .0; n/� IU˛ .0; n/

Geometry & Topology, Volume 10 (2006)



Zero dimensional Donaldson–Thomas invariants of threefolds 2169

is canonically isomorphic to the open subscheme

IU˛ˇ .0; n/� IUˇ .0; n/:

Thus the collection IU˛ .0; n/ glue to form an analytic scheme, the Hilbert scheme of
n points in X :

IX .0; n/:

The scheme IX .0; n/ comes with the usual obstruction sheaf, obstruction theory and
virtual normal cone. Because of the invariance results stated or proved in this paper, the
obstruction sheaves Ob˛ of IU˛ .0; n/ glue together to form the obstruction sheaf of
IX .0; n/. It can also be defined as the traceless relative extension sheaf of the universal
ideal sheaf of Z �X � IX .0; n/:

Ob D Ext2�2
.IZ ; IZ/0:

Over each open IU˛ .0; n/, we can find locally free sheaf E˛ making the obstruction
sheaf Ob˛ of IU˛ .0; n/ its quotient sheaf; we can also construct its associated normal
cone C˛ in the associated vector bundle E˛ . Using

C˛ �E˛ and E˛ �!Ob˛;

we can define the notion of smooth sections of Ob˛ and when smooth section s˛ of
Ob˛ intersects transversally with the normal come. Because such notion is consistent
when restricted to open subsets IU˛ˇ .0; n/, we can make sense of smooth sections of
Ob on IX .0; n/ and when it intersects transversally with the normal cone of Ob .

We then define the virtual cycle IX .0; n/ be the homology class

ŒD.s/� 2H0.IX .0; n/IZ/

represented by the pseudo-cycle D.s/ constructed by intersecting the graph of s with
the normal cone in Ob .

To show that the cycle ŒD.s/� is well-defined, namely it is independent of the choice of
s , we need to show that for different smooth sections s the cycles D.s/ are homotopy
equivalent. This is true because we can find a stratification of IX .0; n/ and of the cone
so that each stratum is the complement of finitely many closed analytic subvarieties in
a closed analytic variety.

Combined, this proves

Theorem 7.1 Let X be a compact, smooth three dimensional complex manifold.
Then the so constructed Hilbert scheme of points IX .0; n/ has a well-defined virtual
cycle

ŒIX .0; n/�
vir
2H0.IX .0; n/IZ/
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that is represented by the cycle D.s/ after intersecting a smooth section s transversally
with the normal cone in the obstruction sheaf Ob .

Once the virtual cycle is constructed, then the proof of this paper applies line to line to
IX .0; n/ to conclude that

degŒIX .0; n/�
vir

is expressible by the same universal expression in its Chern numbers as other projective
threefolds. Thus

Theorem 7.2 The identityX
n

degŒIX .0; n/�
virqn

DM.�q/c3.TX˝KX /

holds for all compact, smooth three dimensional complex manifolds.

The Hilbert scheme of ideal sheaves of curves for any complex manifold X can also
be defined. In case X has dimension three, one can also define its virtual cycle and its
Donaldson–Thomas series, along the lines of the work [8].
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