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Virtually Haken fillings and semi-bundles

DARYL COOPER

GENEVIEVE S WALSH

Suppose that M is a fibered three-manifold whose fiber is a surface of positive genus
with one boundary component. Assume that M is not a semi-bundle. We show that
infinitely many fillings of M along @M are virtually Haken. It follows that infinitely
many Dehn-surgeries of any non-trivial knot in the three-sphere are virtually Haken.

57M10; 57M25

1 Introduction

In this paper manifold will always mean a compact, connected, orientable, possibly
bounded, three-manifold. A bundle means a manifold which fibers over the circle. A
semi-bundle is a manifold which is the union of two twisted I –bundles (over connected
surfaces) whose intersection is the corresponding @I –bundle. An irreducible, @–
irreducible manifold that contains a properly embedded incompressible surface is
called Haken. A manifold is virtually Haken if has a finite cover that is Haken.

Waldhausen’s virtually Haken conjecture is that every irreducible closed manifold with
infinite fundamental group is virtually Haken. It was shown by Cooper and Long
[1] that most Dehn-fillings of an atoroidal Haken manifold with torus boundary are
virtually Haken provided the manifold is not a bundle.

Theorem 1 Suppose that M is a bundle with fiber a compact surface F and that F

has exactly one boundary component. Also suppose that M is not a semi-bundle and
not S1 �D2: Then infinitely many Dehn-fillings of M along @M are virtually Haken.

Corollary 2 Let k be a knot in a homology three-sphere N: Suppose that N �k is
irreducible and that k does not bound a disk in N: Then infinitely many Dehn-surgeries
along k are virtually Haken.

The main idea is to construct a surface of invariant slope (see Section 3) in a particular
finite cover of M: Such surfaces are studied in arbitrary covers using representation
theory in a sequel [2]. While writing this paper we noticed that Thurston’s theory
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of bundles extends to semi-bundles, and in particular there are manifolds which are
semi-bundles in infinitely many ways. We discuss this in the next section.

We thank the referee for several helpful comments. The first author was partially
supported by NSF grant DMS-0405963.

2 Bundles and semi-bundles

Various authors have studied semi-bundles, in particular Hempel and Jaco [6] and Zulli
[10; 11]. Suppose a manifold has a regular cover which is a surface bundle. We wish to
know when a particular fibration in the cover corresponds to a bundle or semi-bundle
structure on the quotient. The following has the same flavor as some results of Hass [5].

Theorem 3 Let M be a compact, connected, orientable, irreducible three-manifold,
pW �M ! M a finite regular cover, and G the group of covering automorphisms.
Suppose that � W �M ! S1 is a fibration of �M over the circle. Suppose that the cyclic
subgroup V of H 1. �M IZ/ generated by Œ�� is invariant under the action of G: Then
one of the following occurs:

(1) The action of G on V is trivial. Then M also fibers over the circle. Moreover
there is a fibering of M which is covered by a fibering of �M that is isotopic to
the original fibering.

(2) The action of G on V is non-trivial. Then M is a semi-bundle. Moreover there
is a semi-fibering of M which is covered by a fibering of �M that is isotopic to
the original fibering.

Proof Define N D kerŒ�� W �1
�M ! �1S1�: Since � is a fibration N is finitely

generated. If N is cyclic then the fiber is a disc or annulus. In these cases the result is
easy. Thus we may assume N is not cyclic. Because V is G –invariant, it follows that
N is a normal subgroup of �1M and QD �1M=N is infinite. Using [6, Theorem 3]
it follows that M is a bundle or semi-bundle (depending on case 1 or 2) with fiber a
compact surface F and N has finite index in �1F: The pull-back of this (semi)fibration
of M gives a fibration of �M in the cohomology class of � and is therefore isotopic to
the given fibration.

Suppose that G Š .Z2/
n acts on a real vector space V and let X D Hom.G;C/

denote the set of characters on G: Then X ŠHom.G;Z2/: For each � 2X there is a
G –invariant generalized �–eigenspace

V� D f v 2 V W 8g 2G g � v D �.g/v g:
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Then V is the direct sum of these subspaces V�:

Suppose that M is an atoroidal irreducible manifold with boundary consisting of
incompressible tori. According to Thurston there is a finite collection (possibly empty),
C D fC1; � � � ;Ckg; called fibered faces. Each fibered face is the interior of a certain
top-dimensional face of the unit ball of the Thurston norm on H2.M; @M IR/: It is an
open convex set with the property that fibrations of M correspond to rational points in
the projectivized space P.[iCi/� P .H2.M; @M IR// :

Let G DH1.M IZ=2/: The regular cover �Ms of M with covering group G is called
the Z2 –universal cover. Let DD fD1; � � � ;Dlg be the fibered faces for this cover. For
each � 2 H 1.M IZ2/ there is an �–eigenspace H2;� of H2. �Ms; @ �MsIR/: For each
1� i � l and � 2H 1.M IZ2/ we call Si;� DDi \H2;� a semi-fibered face if it is not
empty. It is the interior of a compact convex polyhedron whose interior is in the interior
of some fibered face for �Ms: Let Si be the union of the Si;� where � is non-trivial.

Theorem 4 With the above notation there is a bijection between isotopy classes of
semi-fiberings of M and rational points in P.[iSi/:

Proof A semi-fibration of M gives such a rational point by considering the induced
fibration on �Ms: The converse follows from Theorem 3. We leave it as an exercise to
check uniqueness up to isotopy.

We believe that all points in P.[iSi/ correspond to isotopy classes of non-transversally-
orientable, transversally-measured, product-covered 2–dimensional foliations of M:

This is true for rational points and therefore holds on a dense open set (using the fact
that the set of non-degenerate twisted 1–forms is open). However, since we have no
use for this fact, we have not tried very hard to prove it.

Definition A manifold is a sesqui-bundle if it is both a bundle and a semi-bundle.

An example is the torus bundle M with monodromy �Id. This is the quotient of
Euclidean three-space by the group G2 (Wolf [8, Theorem 3.5.5]). M has infinitely
many semi-fibrations with generic fiber a torus and two Klein-bottle fibers. In addition,
M is a bundle thus a sesqui-bundle.

A hyperbolic example may be obtained from M as follows. Let C be a 1–submanifold
in M which is a small C 1 –perturbation of a finite set of disjoint, immersed, closed
geodesics in M chosen so that:

(1) No two components of C cobound an annulus and no component bounds a
Mobius strip.
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(2) C intersects every flat torus and flat Klein bottle.

(3) Each component of C is transverse to both a chosen fibration and semi-fibration.

Let N be M with a regular neighborhood of C removed. Then the interior of N

admits a complete hyperbolic metric. By (3) it is a sesqui-bundle. This answers a
question of Zulli who asked in [11] if there are non-Seifert 3–manifolds which are
sesqui-bundles.

3 Virtually Haken fillings

The following is well-known, but we include it here for ease of reference.

Lemma 5 Suppose M is Seifert fibered and has one boundary component . Then one
of the following holds:

(1) M is D2 �S1 or a twisted I –bundle over the Klein bottle.

(2) Infinitely many Dehn-fillings are virtually Haken.

Proof The base orbifold Q has one boundary component and no corners. If �orbQ> 0

then Q is a disc with at most one cone point thus M DD2 �S1: If �orbQD 0 then
Q is a Mobius band or a disc with two cone points labeled 2 and in either case Q

has a 2–fold orbifold-cover that is an annulus A: But then M is 2–fold covered by a
circle bundle over A: Since M is orientable it follows that this bundle is S1 �A and
hence M is a twisted I –bundle over the Klein bottle.

Finally, if �orb.Q/ < 0 then all but one filling of M is Seifert fibered. There are
infinitely many fillings of M which give a Seifert fibered space, P; with base orbifold
Q0 and �orb.Q0/ < 0: There is an orbifold-covering of Q0 which is a closed surface of
negative Euler characteristic. The induced covering of P contains an essential vertical
torus and is therefore virtually Haken.

Definitions A slope on a torus T is the isotopy class of an essential simple closed
curve on T: We say that a slope lifts to a covering of T if it is represented by a loop
which lifts. The following is immediate:

Lemma 6 Suppose �T ! T is a finite covering. Then the following are equivalent:

(1) Some slope on T lifts to �T :
(2) The covering is finite cyclic.
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(3) Infinitely many slopes on T lift to �T :
The distance, �.˛; ˇ/; between slopes ˛; ˇ on T is the minimum number of intersec-
tion points between representative loops. If ˛ is a slope on a torus boundary component
of M then M.˛/ denotes the manifold obtained by Dehn-filling M using ˛: A surface
S in a manifold M is essential if it is compact, connected, orientable, incompressible,
properly-embedded, and not boundary-parallel. Let M be a manifold with boundary
a torus and ˛ � @M a slope. Suppose that N is a finite cover of M: An essential
surface S �N has invariant slope ˛ if @S ¤ � and every component of @S projects
to a loop homotopic to a non-zero multiple of ˛: We call a finite cover pW N !M

a @–cover if there is an integer d > 0 and a homomorphism � W �1.@M /! Zd such
that for every boundary component T of N we have p�.�1T /D ker �: The existence
of � ensures each component of @N is the same cyclic cover of @M:

The following lemma reduces the proof of the main theorem to constructing an essential
non-fiber surface of invariant slope in a @-cover of M:

Lemma 7 Suppose that M is a compact, connected, orientable irreducible 3–manifold
with one torus boundary component. Suppose that there is a @–cover N of M and
an essential non-separating surface S �N of invariant slope. Assume that S is not a
fiber of a fibration of N: Then M has infinitely many virtually-Haken Dehn-fillings.

Proof We first remark that the particular case that concerns us in this paper is that M

is a bundle with boundary and thus M is irreducible. Since M is irreducible at most
3 fillings give reducible manifolds (Gordon and Luecke [4]). A cover of an irreducible
manifold is irreducible (Meeks and Yau [7]). Therefore it suffices to show there are
infinitely many fillings of M which have a finite cover containing an essential surface.

If M contains an essential torus then this torus remains incompressible for infinitely
many Dehn-fillings by Culler–Gordon–Luecke–Shalen [3, Theorem 2.4.2]. If M is
Seifert fibered then by Lemma 5 either the result holds or M DS1�D2 or is a twisted
I –bundle over the Klein bottle. The latter two possibilities do not contain a surface S

as in the hypotheses. By Thurston’s hyperbolization theorem we are reduced to case
that M is hyperbolic.

Since pW N !M is a @–cover there is d > 0 such that every component of @N is a
d –fold cover of @M: Let k be a positive integer coprime to d: Let pk W

�Nk!N be the
k –fold cyclic cover dual to S: We claim that there is a homomorphism �k W �1M!Zkd

such that every slope in ker �k lifts to every component of @�Nk :

Assuming this, the filling M. / of M is covered by a filling, �Nk. /; of �Nk if and
only if the slope  � @M lifts to each component of @�Nk : Since S is non-separating,
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by Wu [9, Theorem 5.7], there is K > 0 such that if k �K then there is an essential
closed surface Fk �

�Nk obtained by Freedman tubing two lifts of S: We choose such
k coprime to d: By [9, Theorem 5.3], there is a finite set of slopes ˇ1; � � � ; ˇn on @M
and L> 0 so that if  � @M is a slope and �.; ˇi/�L for all i then the projection
of Fk into M. / is �1 –injective. Assuming the claim, there are infinitely many slopes
 2 ker �k satisfying these inequalities. For such  the cover �Nk. /!M. / contains
the essential surface Fk :

It only remains to prove the claim. Let T be a component of @N and ˇ � T be the
slope given by S \ T: Let �T be a component of @�Nk which covers T: The cover
pk jW

�T ! T is cyclic of degree k 0 some divisor of k (depending only on jS \T j).
Also ˇ lifts to this cover. Suppose that a slope  � @M lifts to a slope � � T: It
follows that � lifts to �T if k 0 divides �.� ; ˇ/: If this condition is satisfied by some
lift, � ; of  then, since S has invariant slope and N !M is a @–cover, it is satisfied
by every such lift.

Let �T ! T be the k 0–fold cyclic cover dual to ˇ: Since k 0 and d are coprime the
composite of this cover and the cyclic d –fold cover T ! @M is a cyclic cover of
degree dk 0: By Lemma 6 there are infinitely many slopes on @M which lift to �T :
Every slope on @M which lifts to �T also lifts to every component of @�Nk : This proves
the claim.

Proof of Theorem 1 We attempt to construct S and N as in Lemma 7. The action
of the monodromy on H1.F IZ2/ has some finite order m: Therefore there is a finite
cyclic m–fold cover W !M such that W is a bundle with fiber F and the action of
the monodromy for W on H1.F IZ2/ is trivial. We then have

H 1.W IZ2/ŠH 1.F IZ2/˚H 1.S1
IZ2/:

Since F has boundary and F ¤D2 we may choose a non-zero element � D .b; 0/ 2
H 1.F IZ2/˚H 1.S1IZ2/: This determines a two-fold cover �W of W: Since F has
one boundary component, � vanishes on H1.@W IZ2/; and since W has one boundary
component, �W has exactly two boundary components T1 and T2: The action of the
covering involution, �; swaps these tori. In particular �W !M is a @–cover.

We claim that there is an essential surface S in �W such that

��ŒS �D�ŒS �¤ 0 2H2. �W ; @ �W IZ/:
Using real coefficients, all cohomology groups have direct-sum decomposition into ˙1

eigenspaces for ��I thus H 1.@ �W IR/ D VC˚ V�: Since � swaps T1 and T2 then,
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with obvious notation, it swaps �1 with �2 and �1 with �2: If � D˙1 then V� has
basis f�1C ��2; �1C ��2g and thus has dimension 2: Let

K D Im
h
incl� W H 1. �W IR/!H 1.@ �W IR/i :

Decompose KDKC˚K�: We claim that dim.KC/Ddim.K�/D1: Since dim.K/D
2 the only other possibilities are that KC D VC or K� D V�: The intersection pairing
on @ �W is dual to the pairing on H 1.@ �W ;R/ given by < �; > D .� [ /\ Œ@ �W �:

This pairing vanishes on K: Since < �1C ��2; �1C ��2 > D 2< �1; �1 > D˙2;

the restriction of <;> to each of V˙ is non-degenerate. This contradicts K D V˙:

Choose a primitive class � 2 H 1. �W IZ/ with incl� � 2 K�: Let S be an essential
oriented surface in �W representing the class Poincaré dual to �: Then ��ŒS �D�ŒS �
as required.

The 1–manifold ˛i D Ti \ @S with the induced orientation is a 1–cycle in @ �W : Then
Œ@S �D Œ˛1�C Œ˛2�2H1.@ �W /: Since Ti is a torus all the components of ˛i are parallel.
Since �.T1/D T2 all components of @S project to isotopic loops in @W thus S has
invariant slope for the cover �W !M: This gives:

Case (i) If S is not the fiber of a fibration of �W then the result follows from Lemma 7.

Thus we are left with the case that S is the fiber of a fibration of �W : Let N be the
Z2 –universal covering of W: This is a regular covering and each component of @N is
a two-fold cover of @W: We claim that the composition of coverings N !W !M

is regular.

Recall that a subgroup H <G is characteristic if it is preserved by Aut.G/: The Z2 –
universal covering N !W corresponds to the characteristic subgroup �1N < �1W:

The cover W !M is cyclic and so �1W is normal in �1M: A characteristic subgroup
of a normal subgroup is normal. Hence �1N is also normal in �1M: This proves the
claim. It follows that N !M is a @–cover. A pre-image, �S ; of S in N is a fiber of
a fibration.

Case (ii) Suppose the one-dimensional vector space of H2.N; @N IR/ spanned by
Œ�S � is invariant under the group of covering transformations of N !M:

Then, by Theorem 3, M is semi-fibered which contradicts our hypothesis. This
completes case (ii). Therefore there is some covering transformation, � , such that
��Œ�S �¤˙Œ�S �:
Geometry & Topology, Volume 10 (2006)
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Because �S and ��S are fibers, they both meet every boundary component of N: Since
S has invariant slope for the cover N !M it follows that �S and ��S have the same
invariant slope for this cover.

Case (iii) Suppose S is a fiber and Œ@�S �¤˙��Œ@�S � 2 H1.@N /:

Given a boundary component of N , there are integers a and b such that the class
aŒ�S �C b � ��Œ�S � 2H2.N; @N / is non-zero and represented by an essential surface G

that misses this boundary component. Thus G is not a fiber of a fibration. Clearly G

has invariant slope. The result now follows from Lemma 7 applied to the surface G in
the @–cover N: This completes case (iii). The remaining case is:

Case (iv) S is a fiber and there is � 2 f˙1g with ��Œ@�S �D � � Œ@�S � 2 H1.@N /:

Consideration of the homology exact sequence for the pair .N; @N / shows x D

��Œ�S �� � � Œ�S � 2 H2.N; @N / is the image of some y 2 H2.N /: Using exactness of
the sequence again it follows that yC i�H2.@N / is not zero in H2.N /= i�H2.@N /.
Hence every filling of N produces a closed manifold with ˇ2 > 0: Infinitely many
slopes on @M lift to slopes on @N: The result follows. This completes the proof of
case (iv) and thus of the Theorem 1.

Proof of Corollary 2 Let �.K/ be an open tubular neighborhood of k: By hypothesis
the knot exterior M DN n�.K/ is irreducible. Every semibundle contains two disjoint
compact surfaces whose union is non-separating, thus the first Betti number with
mod-2 coefficients of a semi-bundle is at least 2: Because N is a homology sphere
H1.M IZ2/Š Z2; therefore M is not a semi-bundle. Since N is a homology sphere
it, and therefore M; are orientable.

If M is a bundle with fiber F then, since N is a homology sphere, F has exactly one
boundary component. Since k does not bound a disk in N it follows that M ¤D2�S1:

The result now follows from Theorem 1. If M contains a closed essential surface then
infinitely many fillings are Haken, [3, Theorem 2.4.2]. The remaining possibilities
are that M is hyperbolic and not a bundle, or else Seifert fibered. The hyperbolic
non-bundle case follows from [1].

This leaves the case that M is Seifert fibered. The manifold M is not a twisted
I –bundle over the Klein bottle because the latter has mod-2 Betti number 2. The result
now follows from Lemma 5.
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