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Correction to ‘New topologically slice knots’

STEFAN FRIEDL

PETER TEICHNER

In Figure 1.5 of [1] we gave an incorrect example for Theorem 1.3. In this note we
present a correct example.

57M25

We first recall the satellite construction for knots. Let K;C be knots. Let A� S3 nK

be a curve, unknotted in S3 . Then S3n�A is a solid torus. Now let  W@.�A/!@.�C /

be a diffeomorphism which sends a meridian of A to a longitude of C , and a longitude
of A to a meridian of C . The space

.S3
n �A/[ .S

3
n �C /

is a 3-sphere and the image of K is denoted by S D S.K;C;A/. We say S is
the satellite knot with companion C , orbit K and axis A. Note that by doing this
construction we replaced a tubular neighborhood of C by a knot in a solid torus, namely
K � S3 n �A.

We now consider the knot K in Figure 1. Note that K is the knot 61 . K clearly

K

Figure 1: The knot K

bounds an immersed band; pushing this band into D4 we can resolve the singularities
to get a smooth slice disk D for K .
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It follows from [1, Proposition 7.4] that if A�S3nK is a curve such that ŒA� represents
an element in kerf�1.S

3 nK/! �1.D
4 nD/g, then S.K;C;A/ is topologically slice.

We recall that �1.D
4 nD/ is isomorphic to the semi–direct product

ha; c j aca�1
D c2
i Š Z Ë ZŒ1=2�:

Here the generator a of Z acts on the normal subgroup ZŒ1=2� via multiplication by
2. In [1, Figure 1.5] we proposed a curve A and claimed that it represents the trivial
element in �1.D

4 nD/Š Z Ë ZŒ1=2�. Unfortunately we miscalculated the image of A

in Z Ë ZŒ1=2�. In fact this A represents a non–trivial element in �1.D
4 nD/. Hence

the curve A of [1, Figure 1.5] does not give an example for [1, Proposition 7.4]. We
now present a correct example.

Perhaps the first example of a pair K;A which satisfies the above conditions which
comes to mind is to take K;A which form a slice link K[A. But it is easy to see that
the null–concordance from K[A to a trivial link K0[A0 induces a concordance of
S.K;C;A/ to S.K0;C;A0/. But clearly S.K0;C;A0/ is the trivial link. This shows
that in this case S.K;C;A/ is slice. We therefore have to find examples of K;A such
that K[A is not slice.

Now let A be the simple closed curve of Figure 2. Since D\S3 DK we can resolve

K

A

Figure 2: The knot K and the curve A

the crossings of A using a homotopy in S3 nK �D4 nD . We get a curve without
crossings which is a meridian for the band. Now we push this curve into D4 ‘beyond
D ’ and then we can contract this curve. This shows that A is null–homotopic in
D4 nD . A straightforward calculation shows that the Alexander polynomial of the link
K[A is non–trivial, hence the link K[A is not slice by Kawauchi [2].
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Finally we point out that by untwisting A (and therefore twisting K ) as in Figure 3
we get a diagram of K in a ‘planar’ torus. Wrapping this torus around a knot C gives
immediately a diagram for S.K;C;A/. For example if we take C to be the figure-8

Figure 3: Untwisting A .

knot we get the diagram in Figure 4 with 26 crossings.

Figure 4: Satellite knot of the figure-8 knot.

We point out that in general if C has a diagram with crossing number c and writhe w ,
then S.K;C;A/ has clearly a diagram of crossing number 4cC 2jwj C 10. This is
significantly lower than the crossing number for the (incorrect) example of A given
in [1, Figure 1.5] and will hopefully put our examples within reach of Rasmussen’s
s–invariant.
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