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Pseudoholomorphic maps into
folded symplectic four-manifolds

JENS VON BERGMANN

Every oriented 4–manifold admits a stable folded symplectic structure, which in turn
determines a homotopy class of compatible almost complex structures that are discon-
tinuous across the folding hypersurface (“fold”) in a controlled fashion. We define
folded holomorphic maps, ie pseudoholomorphic maps that are discontinuous across
the fold. The boundary values on the fold are mediated by tunneling maps which
are punctured H–holomorphic maps into the folding hypersurface with prescribed
asymptotics on closed characteristics.

Our main result is that the linearized operator of this boundary value problem is
Fredholm, under the simplifying assumption that we have circle-invariant folds.

As examples we characterize the moduli space of maps into the folded elliptic fibration
EF .1/ and we construct examples of degree d rational maps into S4 . Moreover we
explicitly give the moduli space of degree 1 rational maps into S4 and show that it
possesses a natural compactification.

This aims to generalize the tools of holomorphic maps to all oriented 4–manifolds
by utilizing folded symplectic structures rather than other types of pre-symplectic
structures as initiated by Taubes in [24; 25; 27; 26].

32Q65, 58J32; 53C15, 57R17

1 Introduction

In his seminal 1985 paper [11], M Gromov showed how to extend tools of complex
geometry to the symplectic category. In the last decade this has led to a vibrant new field
based on the study of “pseudoholomorphic curves” in symplectic manifolds, yielding
many powerful results regarding invariants and the recognition of symplectic manifolds.

Unfortunately, these methods do not apply to all manifolds – many manifolds do
not admit symplectic forms. There are different possibilities to extend the theory
of pseudoholomorphic curves to a broader class of manifolds. One approach, being
pursued by C Taubes, begins with the observation that every compact oriented 4–
manifold with intersection form that is not negative definite admits a closed 2–form
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2 Jens von Bergmann

that degenerates along a disjoint union of circles. Taubes has made a detailed study of
the behavior of pseudoholomorphic curves approaching these circles [24; 25; 27; 26].

In [6] A Cannas da Silva, V Guillemin and C Woodward introduced the notion of folded
symplectic structures, which we describe in Section 1.1. Every orientable 4–manifold
admits a folded symplectic structure [5], and by results in Baykur [2] we may further
assume that the fold is stable (see Definition 1.4).

In this article we set up a boundary value problem for closed oriented folded symplectic
4–manifolds with circle-invariant folds.

The 4–sphere S4 with its canonical folded symplectic structure is of this form. We
compute the moduli space of folded holomorphic maps of degree 1 into S4 and give
examples of higher degree maps.

Folded holomorphic maps are discontinuous across the fold, a feature that is in stark
contrast to properties of pseudoholomorphic maps. We explain why this is natural and
also necessary in order to obtain a well-defined moduli space. The discontinuity is
controlled by tunneling maps which are the central objects of this theory. Intuitively,
folded holomorphic maps can be thought of “smoothings” of pseudoholomorphic maps
into each component of the complement of the folding hypersurface equipped with
degenerate structures as in Symplectic field theory [9] or in Ionel and Parker [16].

1.1 Folded symplectic manifolds

We begin by recalling some definitions and basic properties of folded symplectic
manifolds.

Definition 1.1 (Folded symplectic structure) Let X be a smooth 2n–dimensional
manifold. A folded symplectic structure ! is a closed 2–form such that !n is transverse
to 0 (so ZD .!n/�1.0/ is empty or a smooth codimension 1 hypersurface) and !n�1jZ

is nonvanishing. Z is called the fold.

The last condition means that the kernel E D ker.!/ of ! , which by transversality is a
real 2–plane bundle over Z , is transverse to T Z . This is equivalent to the requirement
that

LD ker.!jZ /� T Z

is a 1–dimensional foliation. L is called the characteristic foliation. Thus intrinsi-
cally, the fold of a folded symplectic manifold is indistinguishable from an orientable
hypersurface in a symplectic manifold.

Folded symplectic structures, like symplectic and contact structures, have a standard
local model.
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Pseudoholomorphic maps into folded symplectic four-manifolds 3

Theorem 1.2 For every folded symplectic form ! on a 2n–dimensional manifold,
there exist local coordinates near the fold such that ! has the form

x1 dx1 ^ dx2C dx3 ^ dx4C : : :C dx2n�1 ^ dx2n;

where the fold is locally given by fx1 D 0g.

More generally, in [6] it is proved that for any ˛ 2 �1.Z/ that does not vanish on
L, we can extend the inclusion i W Z ,! X of the fold to an orientation-preserving
diffeomorphism

�W .�"; "/�Z! U(1.1)

onto a tubular neighborhood U of the fold such that

��! D ��i�!C
1

2
d.r2��˛/(1.2)

where r is the coordinate function on .�"; "/ and � is the projection �.r; z/D z . By
possibly rescaling the volume form we assume for simplicity that r D det.!/ on U .

Definition 1.3 A morphism  W X1! X2 of folded symplectic manifolds .X1; !1/

and .X2; !2/ is a diffeomorphism satisfying

 �!2 D !1:

Such morphisms automatically take folds to folds.

A Cannas da Silva showed in [5] using an h-principle that every oriented 4–manifold
admits a folded symplectic structure. To define folded holomorphic maps we require a
special structure along the fold. I Baykur used folded Lefschetz pencils in [2] to show
that every oriented 4–manifold admits a “nicely folded Kähler structure”. In particular
this implies that we may assume the fold is of contact type; Equation (1.2) can be
refined to

��! D d
��1

2
r2
C 1

�
��˛

�
:(1.3)

Thus the following Definition, which allows for more general folds than contact type,
does not pose a serious restriction. We borrow from Hofer and Zehnder [14], Bourgeois,
Eliashberg, Hofer, Wysocki and Zehnder [4] and Eliashberg, Kim and Polterovich [10].

Definition 1.4 A folded symplectic manifold .X; !/ together with a choice of 1–form
˛ on the fold Z is called stable if

˛^! > 0 and ker.!jZ /� ker.d˛/:(1.4)
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4 Jens von Bergmann

Such a choice of 1–form ˛ defines an almost contact form .!; ˛/ on Z . In particular
˛ defines a section R of the line bundle L by the normalizing condition

˛.R/D 1:

The flow generated by R induces an R–action on Z preserving ! and ˛ . The kernel
of ˛ gives a symplectic subbundle .F D ker.˛/; !jF / over Z such that

TZ X DE˚F:(1.5)

A parametrized closed characteristic is an injective map xW S1!Z satisfying

dx.@� /D T �R; for some T 2 .0;1/:

A closed characteristic is an image of a parametrized closed characteristic and we
let R be the set of closed characteristics equipped with the disjoint union topology.
For each closed characteristic x 2 R, the corresponding constant T D Tx for a
parametrized closed characteristic representing it is called the minimal period. In the
case of circle-invariant folds (see Definition 1.6) we have that Tx D 1 for all x 2R.

Now choose a background metric g0 on X . To simplify future computations we assume
that in the Darboux chart (1.2),

��g0jU D dr ˝ dr C˛˝˛CgF

where gF is a metric on F that is compatible with !jZ . Mimicking the standard
procedure to generate a compatible triple on a symplectic manifold using the background
metric g0 , we obtain a folded triple .!;g;J / on X nZ satisfying the compatibility
conditions

J�! D !

g.u; v/D !.u;Jv/:

Near the fold the triple has the following “standard” form.

Lemma 1.5 The complex structure J jX˙nZ has one-sided limits J˙ on TZ X such
that the splitting (1.5) is J˙–invariant, JCjF D J�jF and JCjE D�J�jE .

Moreover, E and F extend to a transverse pair of J –invariant subbundles of TX over
a neighborhood U �X of Z , also denoted by E and F , such that

!E D det.!/�; gE D j det.!/jh; JE D sign.det.!// zJ(1.6)

where .�; h; zJ / is a smooth compatible triple on E with zJ@r DR on Z .
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Proof Define the g0–skew-endomorphism A of TX by !.u; v/D g0.Au; v/: This
exists and is unique since g0 is positive definite. Observe that over Z , AjE D 0

and AjF is nondegenerate. Since Z is compact there exists ı > 0 with j�j > ı

for all eigenvalues of AjF . Thus there exists a neighborhood U of Z such that
j�1j< ı=2< j�j over U , where ˙�1 are the smallest eigenvalues of A and ˙� are
the second smallest eigenvalues of A. Define E to be the 2–plane bundle over U

given by the real eigenspace spanned by ˙�1 and set F DE?g0 . Then for u 2E and
v 2 F we have AuD zu 2E and

!.u; v/D g0.Au; v/D g0.zu; v/D 0:

Therefore ! splits as !E ˚ !F . A also splits as A D AE ˚AF because the real
eigenspaces corresponding to different pairs of complex conjugate eigenvalues of a
skew-endomorphism are orthogonal. Since AF is nondegenerate, the usual polarization
procedure produces a canonical compatible triple there.

Recall that we assumed r D det.!/ on a neighborhood U of Z , where r is the
coordinate function from Equation (1.1). Since ! is folded symplectic, !E D r ��

for some nondegenerate positive 2–form � on E . Therefore AE D r � zAE , where
zAE D g�1

E
� is a nondegenerate skew-endomorphism of E . By polarization of zAE

we obtain a smooth compatible triple .�; h; zJ / on E , and using AE instead we get a
compatible triple .!E ;gE ;JE/ on E nEZ satisfying Equation (1.6).

By Equation (1.2), �jE D dr ^˛ on Z and thus zAE DR˝ dr � @r ˝˛ D zJ .

The complex structure zJ allows us to define a complement K of L in E by KD zJL,
so we can refine the splitting (1.5) over Z to

TZ X DK˚L˚F:(1.7)

Equations (1.6) show that J is discontinuous across the fold in the E directions.
However, on U we may define two smooth complex structures, denoted by J˙ , such
that J˙jX˙ D J by choosing J˙

E
D˙ zJ .

We define folded holomorphic maps for all stable folded symplectic 4–manifolds, but
at this stage most proofs rely on the following additional structure that we assume
along the fold.

Definition 1.6 A stable folded symplectic manifold has a circle-invariant fold (or
S1 –invariant fold) if the flow of the associated characteristic vector field defines a free
S1 –action on Z .
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6 Jens von Bergmann

Folded symplectic manifolds with S1 –invariant folds are especially easy to work
with. They also occur frequently. The standard folded symplectic structure on the
spheres (described in the next section) is of this type. Connected sums of symplectic
4–manifolds always have folded symplectic structures of this type [6]. More generally,
connected sum along symplectomorphic symplectic submanifolds of arbitrary codi-
mension with symplectomorphic normal bundles in symplectic 4–manifolds produces
folded symplectic structures with S1 –invariant folds. This can be seen by carefully
mimicking the symplectic connect sum construction in McCarthy and Wolfson [19] or
Ionel and Parker [17].

S1 –invariant folds have a special structure, as described in Lemma 1.7 below. We will
use this lemma repeatedly in later sections. Whenever we work with S1 –invariant
folds we assume that the background metric g0 was chosen to be S1 –invariant on the
fold, resulting in an S1 –invariant compatible triple there.

Lemma 1.7 In the case of an S1 –invariant fold, Z is an S1 D R=Z bundle over a
symplectic manifold .V; !V / with projection �V W Z! V such that

(1) !Z D �
�
V
!V

(2) there exists an !V compatible almost complex structure JV on V such that
d�V jF is .J;JV / linear.

Moreover, the 1–form ˛ may be chosen such that

d˛ D C �!Z ; C D c1.Z/= vol.V /(1.8)

where c1 is the first Chern class of the circle bundle Z! V and vol.V / is taken with
respect to !V .

Proof Since the S1 –action on Z is free we can exhibit Z as an S1 bundle

�V W Z! V

over a closed .2n� 2/–dimensional manifold V . The kernel of ! coincides with the
vertical subspace and LR! D 0, so ! is S1 –invariant. Thus there exists a 2–form !V

on V such that ! D ��
V
!V . One readily checks that !V is nondegenerate and closed.

Because ker.d�V / is transverse to F ,

d�V jF .z/W F ! T�V .z/S

is an isomorphism for each z 2Z . Since the complex structure J on F is invariant
under the S1 –action, this map induces a complex structure JV on V so that d�V jF

is .J;JV / linear.
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Pseudoholomorphic maps into folded symplectic four-manifolds 7

To see Equation (1.8) let ˛0 be a connection 1–form on Z , ie ˛0 is invariant under
the S1 –action and satisfies ˛0.R/D 1. Then �Rd˛0 D LR˛0 D 0, so d˛0 D �

�
V
!0

is the pullback of a 2–form !0 on V which is just the curvature of the connection ˛0

and therefore represents c1.Z/.

Since !V is a volume form on V there exists a constant c 2 R withZ
V

.c !V �!0/D 0;

so .c !V � z!/ D dˇ for some 1–form ˇ on V . With the gauge transformation
˛ D ˛0C�

�
V
ˇ we still have ˛.R/D 1, and

d˛ D d˛0C�
�
V dˇ D ��V !0C�

�
V .c!V �!0/D c ��V !V D c !Z :

Henceforth we assume that all folded symplectic manifolds in question are compact,
connected, 4–dimensional and have stable folds. If we additionally assume the folds to
be circle-invariant, we assume that the 1–form ˛ is chosen to satisfy Equation (1.8).

2 Motivating example

To motivate what follows we will investigate possibilities to define pseudoholomorphic
maps into S4 with canonical folded symplectic structure as defined below. One
overruling principle is that we want to obtain well-behaved moduli spaces of such maps.
More precisely we are looking for a notion of pseudoholomorphic maps into folded
symplectic manifolds such that the linearized equations at a solution give rise to a
Fredholm operator and that the solutions are stable under perturbations of the structures
involved.

Recall that S4 does not admit any symplectic form nor a continuous almost complex
structure. Nor does S4 admit the pre-symplectic structure used by Taubes. Therefore the
answer to the question how to generalize pseudoholomorphic maps to this setting is far
from obvious. We let ourselves be guided by the folded symplectic structure ! . Since
! is nondegenerate on X nZ , the usual procedure to construct a compatible triple will
yield an almost complex structure J there. Then it is clear what a pseudoholomorphic
map from a Riemann surface .†; j / into X nZ is, namely a map with .j ;J /–linear
differential. Since the fold Z separates X into X˙ this means that maps from a
connected domain into X nZ will have image in only one side XC or X� of the fold.
The question then is how to allow maps to “cross the fold”, ie have image on both sides
of the fold.
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8 Jens von Bergmann

One way to do this is to choose an almost complex structure on X nZ that degenerates
along Z in a way that X˙ has “cylindrical ends” in the sense of Symplectic field
theory [9]. This then reduces to the problem of holomorphic curves relative to closed
characteristics as discussed in [16], [9] and [4]. In effect this is treating the two sides
X˙ as separate manifolds with boundary.

We try and find the analogue of holomorphic curves with nondegenerate almost complex
structure for folded symplectic manifold, while being guided by the hope that these
will limit to the relative curves discussed above as we degenerate the almost complex
structure. To do this we define a circle-invariant folded symplectic structure on S4

together with a compatible almost complex structure as in Lemma 1.5.

View S4 as the unit sphere in R5 . Then we have

� the restriction of the coordinate projection …W R5 D R�R4! R4 to S4 , and

� the stereographic projections �˙W S4 n .˙1; 0; 0; 0; 0/! R4 .

  

 

 

  

 
 

��.x/

….x/

�C

�C.x/

…

x

��

R

S4

.R4; !/

S3

Figure 1: Folded structures on S4

Let !0 and J0 be the standard symplectic and complex structures on R4 . Then
! D …�. 1

�
!0/ is a folded symplectic form. The orientation induced by the folded

symplectic form agrees (disagrees) with the canonical orientation on S4 on the upper
(lower) hemisphere S4

C (S4
� ), the fold Z D S3 is the intersection of S4 with the

equatorial plane f.x0;x1;x2;x3;x4/ j x0 D 0g. Choose the 1–form ˛ on Z D S3
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Pseudoholomorphic maps into folded symplectic four-manifolds 9

to be the canonical contact structure on S3 , ie ˛ is the restriction of the canonical
1–form

˛ D
1

2�
.x1dx2�x2dx1Cx3dx4�x4dx3/

to S3 . Thus d˛ D !Z .

With the almost complex structure J defined as J jS4
˙
D ��
˙

J0 and the symmetric
bilinear form g.u; v/D !.u;Jv/ we obtain a folded compatible triple .J; !;g/ on
S4 . Note that all structures are invariant under the S1 D R=Z–action on Z given by
the characteristic flow, ie t � .z; w/D .e2�i tz; e2�i tw/.

The map

� W S4
! S4; .x0;x1;x2;x3;x4/ 7! .�x0;x1;x2;x3;x4/(2.9)

is a biholomorphic involution on S4 exchanging the upper and lower hemisphere and
fixing the fold.

The bundle F D ker.˛/ is given by the contact planes of the fold S3 , and E is spanned
by the characteristic direction given by the vertical subspaces of the Hopf fibration and
the “radial” direction.

Any nontrivial J –holomorphic map from a Riemann surface .†; j / has to cross the
fold, since each side is biholomorphic to B4 � C2 which is contractible and therefore
does not admit nontrivial holomorphic curves by their energy minimizing property.
Suppose for simplicity that the preimage of the fold is a closed 1–dimensional separating
submanifold � on the domain †, cutting it into two parts †C mapping into S4

C and
†� mapping into S4

� .

Investigating the orientations on the transverse bundle E near the fold reveals that
it is impossible to have holomorphic maps of class C 1 (or even C 0 ) into S4 that
cross the fold (see also Remark 3.12). To remedy this one may look at curves that are
holomorphic on †C , antiholomorphic on †� and continuous across the fold. Here
we face the problem that too many curves exists. For example, any holomorphic map
from the upper hemisphere of S2 into S4

C with boundary on the fold can be completed
by an antiholomorphic map from the lower hemisphere into S4

� simply by reflection
through the equator on domain and target, ie using the antiholomorphic involution of
the hemispheres of S2 and the holomorphic involution � on S4 . Thus there exist an
infinite-dimensional space of solutions in this case.

The reason for this is revealed by studying this as a boundary value problem. The
condition of “continuous images” does not give rise to elliptic boundary conditions
and therefore cannot lead to a Fredholm problem.
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One possible remedy is to impose additional constraints to cut down the solutions
to a finite-dimensional space. But there is no evident way of doing this so that the
structure of the solution space is stable under perturbations and that allows for sufficient
interaction between the two sides of the fold.

Another approach is to allow discontinuous images. We think of this as holomorphic
curves that leave the fold at a location that is different from where they enter, the
relation between these is given by a tunneling map in the fold. This way we define a
Fredholm problem for discontinuous pseudoholomorphic maps into folded symplectic
manifolds. Roughly speaking, a folded holomorphic map consists of
� a domain .†; j / with 1–dimensional submanifold � separating † into †C and
†�

� J –holomorphic maps uCW .†C; �/! .XC;Z/ and u�W .†�; �/! .X�;Z/

� a pair of tunneling maps in Z connecting uC.�/ to a closed characteristic and
then continuing on to connect to u�.�/.

 

   

 

 

†�
�

.†; j /

uC

†C

u�

XC
X�

tunneling
maps

.X; !;J /

Figure 2: The map tunnels through the fold, exiting the fold at a location that
is different from where it entered.

We will make this precise in the following sections. In order to convince the reader
that it is natural to consider discontinuous maps in the context of folded symplectic
manifolds we will first give a trivial example.

Consider the complex elliptic fibration X D E.1/ and let T ,! E.1/ be a regular
fiber. Perturb the almost complex structure J so that a neighborhood X� of T is
biholomorphic to X� D D � T with a product complex structure, where D is the
closed unit disk in C with the canonical complex structure and T D f0g �T with its
original complex structure. Set XC DE.1/ nX� .

After choosing z0 2 S1 we define for z 2 S1 the element xz 2 S1 by reflection through
z0 , ie z � xz D z0 . Using the two self-maps of the boundary Z D @X˙ D S1 �T

�.z; w/D .z; w/ and �F .z; w/D .xz; w/;
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we construct the manifolds

E.1/DXC t�X� and EF .1/DXC t�F
SX�

with almost complex structure inherited from each piece. With a little more care we can
ensure that EF .1/ comes equipped with a folded symplectic structure, independent of
the choice of z0 .

Consider the biholomorphism

‰W E.1/ nZ!EF .1/ nZ

given by the identity map on each piece, XC and X� .

This setup suggest the following definition for folded holomorphic maps into the folded
symplectic manifolds EF .1/. Let � be a separating submanifold in a Riemann surface
†, separating † into two pieces †C and †� .

Definition 2.1 A folded holomorphic map consists of a pair of maps .uC;u�/ such
that

u˙W †˙!X˙ and u˙ D‰ ıuj†˙

for some J –holomorphic uW †!E.1/.

Note that there is an S1 ambiguity in the gluing map �F , so there is really an S1

family of these folded holomorphic maps. It is clear from the definition that this will
yield a well-defined moduli space, although the maps are necessarily discontinuous.

  X�

XC E.1/

‰

X�

XC EF .1/

Figure 3: Folded holomorphic maps in EF .1/

In the following we will show how to define folded holomorphic maps into stable
folded symplectic manifolds that reduce to Definition 2.1 in the case of EF .1/.

Note that the pieces uC and u� of a folded holomorphic map into EF .1/ have
boundary values in

�Z
D f.uCj� ;u�j� /g D graph.‰/ 2Map.�;Z/�Map.�;Z/
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We call �Z the folded diagonal. The above definitions work in the case where the
fold Z has the structure of a trivial S1 –bundle with the characteristic foliation being
vertical. To define folded holomorphic maps into more general folded symplectic
manifolds we need to generalize the folded diagonal so that it continues to give elliptic
boundary conditions for the maps uC and u� .

3 Folded holomorphic maps

We define folded holomorphic maps and lay the functional analytic foundation for the
later sections. We start by describing the domains of folded holomorphic maps, then
we set up the Sobolev spaces and lastly we set up the PDE.

3.1 Folded domains

We define the domains of folded holomorphic maps. Due to the additional structure
needed for the tunneling maps this is more involved than one might at first expect.

Definition 3.1 (Folded domain) A smooth folded domain D consists of

(i) closed Riemann surfaces .†0; j0;p0/ and .†1; j1; fpg/ of genus g0 and g1

with p0 D fp1; : : :png �†0

(ii) continuous functions �i W †i! R so that with

†Ci D �
�1
i Œ0;1/ and †�i D �

�1
i .�1; 0�

their restrictions �˙i D �i j†˙
i

extend to smooth functions on †i with zeros of
at most finite order along �i D �

�1
i .0/ D .�˙i /

�1.0/ with matching order of
vanishing at each point of �i , i D 0; 1

(iii) p 2†�
1

(iv) a function gW †C
0
! R and a diffeomorphism  W †C

0
! †C

1
satisfying the

conditions

 �j1 D j0 and  ��1 D eg�0:(3.10)

We set p˙
0
D p0\†

˙
0

to be the marked points contained in †˙
0

. The zero sets �0 and
�1 are called the domain folds. The map  gives an identification of �0 and �1 , so
we will refer to the domain folds simply by � . To simplify notation we set

†˙ D†
˙
0 ; S D†�1 ;

PS D S n fpg:
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†C

pC
1

pC
2

pCnC

�

.†0; j0;p˙/

†�

p�
1

p�
2

p�n� †C

�

.†1; j1;p/

p

S

Figure 4: Folded domains

When no confusion can occur we will drop the subscripts on ji and �i .

The purpose of the functions �0 and �1 is to give possible locations of the domain fold
� , but we are not interested at the specific values of �i away from their zero sets.

Definition 3.2 The group

G DMap.†1;R/�DiffC.†0;p0/�DiffC.†1; fpg/(3.11)

is called the gauge group.

Lemma 3.3 The gauge group G acts on the space of folded domains in the following
way. Given .f; �0; �1/ 2 G the folded domain transforms according to

ji 7! ��i ji D d��1
i ı ji ı d�i ;

�0 7! �0 ı�0; �1 7! ef �1 ı�1;

p0 7! ��0 .p0/; p 7! ��1 .p/;

 7! ��1
1 ı ı�0;

g 7! g ı�0C .�
�1
1 ı ı�0/

�f:

Remark 3.4 (1) The sets p˙
0

are disjoint unless some of the marked points lie on
�0 .

(2) Let be yS the oriented blowup of PS as in [4, Section 4.3], ie yS is a compact
surface with boundary where yS n PS consists of the circle .TpS n 0/=R>0 . Here
R>0 D .0;1/.
We define the associated 2–dimensional C 0 –cycles with boundary z†˙ by gluing
†C to yS to get z†CD y†1 or by gluing †� to �yS to get z†� , where the gluing
is done along � . z†C is a smooth Riemann surface, whereas the same only holds
for z†� in the case that the domain fold � is a manifold.
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14 Jens von Bergmann

(3) Since the order of vanishing of �˙ D �0j†˙ at each point of � is the same we
may define the “gap-function”

aW � ! .0;1/

at a point z 2 � by choosing a path  W Œ�1; 1� ! † with  .Œ0; 1�/ 2 †C ,
 .Œ�1; 0�/ 2†� and  .0/D z and setting

a.z/D lim
t!0

�� ı  .jt j/

�C ı  .�jt j/
:(3.12)

Note that this is independent of the choice of path  . At a generic point z 2 �

where �˙.z/ vanish to first order we have

a.z/D
d��.z/

d�C.z/
;(3.13)

where the quotient of forms is to be understood as being taken after evaluating
on an arbitrary normal vector to � . This is well defined since d�˙ are collinear
at z as they vanish along the direction of � .

3.2 Sobolev spaces of maps

To proceed we need to give a precise definition of the Sobolev spaces we use. We
work with the nondegenerate metric zg that, with the notation of Lemma 1.5, leaves
the splitting T U DE˚F –invariant, equals g on F and � on E in a neighborhood
U 0 � xU 0 � U of the fold and equals g outside of U so that J˙ is antisymmetric with
respect to zg . In particular

zg D dr ˝ dr C˛˝˛CgF and gZ D zgjZ D ˛˝˛CgF(3.14)

on U 0 and Z , respectively.

Consider a folded domain D as in Definition 3.1. We follow the definitions from
Booß-Bavnbek and Wojciechowski [3] for Sobolev spaces on manifolds with boundary.

Definition 3.5 Fix a Riemannian metric in the conformal class of j on †0 and
positive integers k;p with kp > 2. Let U˙ �†0 be open subsets properly containing
†˙ and that are of the same homotopy type as †˙ . Then let W k;p.†˙;X˙/ be
the Banach manifold consisting of maps f W †˙!X˙ that are restrictions of maps
zf W U˙!X of class W k;p to †˙ that send the domain fold � into Z .
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W k;p.†˙;X˙/ is a smooth separable Banach manifold modeled locally at a map
u˙ 2W k;p.†˙;X˙/ on the spacen

� 2W k;p.u�˙TX /
ˇ̌̌
�j� 2W k� 1

p
;p.u˙j

�
�T Z/

o
:

Next we define the Banach manifolds of maps from punctured surfaces into Z . We
follow largely the traditional treatment found in Schwarz [22], Hofer, Wysocki and
Zehnder [13] or Dragnev [7], except that we avoid using the auxiliary R–factor in the
“symplectization” as it does not add any information.

For a closed Riemann surface † with finitely many punctures fpkg and P†D†n fpkg

we let W k;p
loc . P†;Z/ be the space of maps from P† to Z that, in local coordinates, are

in W k;p
loc .R2;R3/.

For a Riemann surface † with boundary and finitely many punctures we assume
that †�†0 for some open Riemann surface †0 of the same homotopy type and we
let W k;p

loc . P†;Z/ be the space of maps from P† to Z that are restrictions of maps in
W k;p

loc . P†0;Z/.

Let .†; j ; fpkg/ be a Riemann surface (possibly with boundary) with conformal
structure j and punctures fpkg. Set P†D† n fpkg. For r 2 R define the half-infinite
cylinder

Cr D Œr;1/�S1

with coordinates s 2 Œr;1/, t 2 S1 D R=Z complex structure j with j @s D @t and
volume form dvolD ds ^ dt . Set C D C0 . Then at each puncture pk we have local
conformal coordinates �k W C ! P†.

Fix a constant ı > 0. Since we will be only interested in ı close to zero we assume
throughout that ı is bounded by some constant M .

Definition 3.6 (Asymptotic energy) We say a map v 2W k;p
loc .C;Z/ with kp � 2

has finite asymptotic energy with respect to a fixed closed characteristic and multiplicity
k 2 Z if there exists a parametrization x 2R of the closed characteristic so that

Er .v/D

Z
Cr

.d.v.s; t/;x.kt//2Cjdv� k dxj2/eıs dvol<1;(3.15)

where d measures the distance in Z with respect to gZ .

This definition requires maps with finite asymptotic energy to converge to the closed
characteristics exponentially fast at the punctures.
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16 Jens von Bergmann

In the end we are interested in H–holomorphic maps (see Definition 4.1) from punctured
Riemann surfaces. When restricted to half-infinite cylinders C adjacent to a puncture
the maps are actually J –holomorphic and solutions considered in the standard theory
(eg [12] or [4]) have finite asymptotic energy as defined above.

Definition 3.7 Let W k;p
ı .C;Z/ be the space of finite asymptotic energy W k;p

loc .C;Z/

maps with respect to a fixed closed characteristic. Similarly, let W k;p
ı . P†;Z/ be

the space of W k;p
loc . P†;Z/ maps that are in W k;p

ı .C;Z/ in some local conformal
coordinates at each puncture with respect to fixed closed characteristics.

Definition 3.8 For v 2W k;p
ı .C;Z/ let W k;p

ı .C; v�T Z/ to be the space of sections
� 2 W k;p

loc .C; v�T Z/ that have finite asymptotic energy, ie such that there exists a
constant T 0 2 R so that

Er .�/D

Z
Cr

�
j� �T 0R/j2Cjr�j2

�
eıs dvol<1;(3.16)

where r is the pullback of the Levi-Civita connection.

Analogously, for v 2W k;p
ı . P†;Z/ we define W k;p

ı . P†; v�T Z/ to be the space of sec-
tions � 2W k;p

loc . P†; v�T Z/ that are in W k;p
ı .C; v�T Z/ in local conformal coordinates

at each puncture.

With these definitions W k;p
ı . P†;Z/ is a separable Banach manifold, modeled locally

at a map v 2W k;p
ı . P†;Z/ on a neighborhood of the zero section in W k;p

ı . P†; v�T Z/.
For details we refer the reader to Dragnev [7] and Schwarz [22].

3.3 Folded maps and folded holomorphic maps

Definition 3.9 (Space of folded map) Fix a positive integer k and p2R with kp>2,
nonnegative integers g0; g1; n and relative homology classes A˙ 2H2.X˙;RIZ/.
Then a folded map .uC;u�/ with respect to A˙ consists of

(i) a folded domain

(ii) u˙ 2W k;p.†˙;X˙/

such that there exist maps v˙ 2W
k;p

ı
. PS ;Z/ with

u�˙ det.!/D �; u˙j� D v˙j� and Œu˙ t� v˙�DA˙:(3.17)
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Figure 5: Folded (holomorphic) maps

Definition 3.10 (Folded holomorphic map) A folded map .uC;u�/ is called folded
holomorphic if x@J u˙ D 0 and .uC;u�/j� 2�Z , where the folded diagonal �Z is
defined in Definition 4.7.

The key to defining folded holomorphic maps lies in the definition of the “matching
condition”. It is specified by the subspace

�Z
�Map.�;Z/�Map.�;Z/;

called the folded diagonal. Intuitively, we view �Z as a scattering function that takes
boundary conditions of “incoming” holomorphic curves on the “C” side and transforms
them into boundary conditions for “outgoing” holomorphic curves on the “�” side.
To make sense out of this we don’t need to define this scattering function for every
element of Map.�;Z/ but it suffices to define it on the maps that are possible boundary
conditions of holomorphic maps. The precise definition of the folded diagonal �Z is
rather involved and we postpone it until Section 4.1.

Lemma 3.11 The gauge group G defined in Definition 3.2 acts on the space of folded
holomorphic maps by precomposition of u˙ by the element in DiffC.†0/, on v˙ by
the element in DiffC.†1/ and acts on the folded domain as in Lemma 3.3.

Proof The action preserves solutions to the holomorphic map equation and the condi-
tion that �0 D u�

˙
det.!/, since �0 and u˙ are acted on by precomposition with the

same diffeomorphism. Moreover it preserves the identification of the domain folds �0

and �1 as for p 2 � ,

u0˙.p/D u˙ ı�0.p/D v˙ ı ı�0.p/D v
0
˙ ı�

�1
1 ı ı�0.p/D v

0
˙ ı 

0.p/:
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18 Jens von Bergmann

So this action preserves the set of folded holomorphic maps as long as it preserves the
folded diagonal. We will postpone this part of the proof until Remark 4.8.

We make an important observation about the orientations of maps along the fold.

Remark 3.12 Let p 2 � be a point where � vanishes transversely and let � 2 Tp†

be an outward normal vector to � at p , ie j� 2 Tp� and d�˙.�/ < 0. Recall the
notation from Lemma 1.5. Remembering that �˙ D u�

˙
det.!/ and J˙@r D˙R and

thus dr D˙˛ ıJ˙ we have

u�˙˛.j�/D ˛.du˙j�/D ˛ ıJ˙.du˙�/D˙dr.du˙.�//D˙d.det.!//.du˙.�//

D˙d�˙.�/;

so the values of u�
˙
˛ on tangent vectors have opposite sign.

This shows that at a point p 2 � where �˙ vanish transversely, the gap-function a

from Equation (3.12) can be expressed in terms of u˙ using Equation (3.13) as

a.p/D�
u��˛.p/

u�C˛.p/
;(3.18)

where the fraction is to be understood as evaluated on an arbitrary element of Tp†

such that the denominator does not vanish. This is well defined since u�
˙
˛ are collinear

at p .

This turns out to be a crucial observation in showing that the folded diagonal poses an
elliptic boundary condition and that therefore the linearized operator is Fredholm.

4 Tunneling maps

Throughout this section we assume that the function �˙ vanishes transversely, so the
domain fold � is a manifold.

Tunneling maps give the matching conditions for pseudoholomorphic maps into X˙ ,
add homological data to the maps, and ensure that families of folded holomorphic
maps have bounded energy. They are central in proving regularity of solutions and
they guarantee that the linearized operator is Fredholm. In this section we define all
relevant structures and discuss their properties.

Geometry & Topology, Volume 11 (2007)



Pseudoholomorphic maps into folded symplectic four-manifolds 19

4.1 Definition of tunneling maps and the folded diagonal

Tunneling maps are maps into the fold Z that connect the images of the folded maps into
XC and X� . All tunneling maps will have domains . PS ; j / of the form .†�

1
n fpg; j1/

with boundary @S D � .

Tunneling maps satisfy an equation that depends only on the CR structure .Z;F;J /
on the fold Z and the 1–form ˛ . First we need the following generalization of the
holomorphic map equation.

Definition 4.1 (H–Holomorphic map) A map vW PS !Z is called H–holomorphic
if

x@F
J v D

1

2
.�F dvCJ �F dv j /D 0(4.19)

d.v�˛ ı j /D 0:(4.20)

H–holomorphic maps can alternatively viewed as families of J –holomorphic maps
into the complex cylinder (“symplectization”) over Z parametrized by

Hn.S; j /D f� 2�
1.S/ j d�D 0; d��D 0 and �.j�/D 0 for all � 2 T @Sg:

Hn is naturally isomorphic to H 1.S;R/ as a vector space and consists of smooth
1–forms [8]. In [1], Abbas, Cieliebak and Hofer called maps from punctured surfaces
without boundary satisfying this condition “generalized holomorphic”.

Definition 4.2 (Tunneling map) Fix k;p > 0 such that kp > 4. A tunneling map is
a H–holomorphic map of class W k;p

ı . PS ;Z/.

The choice kp > 4 is made for convenience so that tunneling maps have a priori
continuous derivatives on the boundary. On the interior they are smooth by elliptic
regularity. In Theorem 6.2 we show that tunneling maps that give boundary values for
folded holomorphic maps are also smooth on the boundary.

We make a simple, but essential observation about tunneling maps.

Lemma 4.3 Let v be a tunneling map. Then the periods of v�˛ ı j vanish in a
neighborhood of the puncture.

Proof Fix local conformal coordinates C D Œ0;1/ � S1 at the puncture as in
Definition 3.7. Since v�˛ ı j is closed, the value ofZ

frg�S1

v�˛ ı j D

Z
frg�S1

v�˛.@s/ dt
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does not depend on r . Observing that Ar D .r; r C 1/�S1 has unit area and using
Equation (3.15) we computeˇ̌̌̌Z

frg�S1

v�˛ ı j

ˇ̌̌̌
�

Z
Ar

jv�˛.@s/j dvol� e�ır=2
�Z

Ar

eısjv�˛.@s/j
2 dvol

� 1
2

� e�ır=2
p

E0.v/;

showing that the periods of v�˛ ı j are arbitrarily small and therefore vanish.

Tunneling maps are very well-behaved. They satisfy an elliptic system of PDEs and
are therefore smooth on the interior of PS . Given elliptic boundary conditions their
linearized operator is Fredholm for almost all choices of weight ı by arguments of [22]
and [18, Theorem 6.3]. They have nice limits at the punctures, namely they converge
to a closed characteristic exponentially fast as explained below. Thus they extend to
continuous maps from the oriented blowup of the domain. We will blur the distinction
between a tunneling map and its continuous extension to the oriented blowup.

To understand how tunneling maps approach a parametrized closed characteristic
let vW C D Œ0;1/ � S1 ! Z be the restriction of a tunneling map to a conformal
neighborhood of a puncture and assume that v approaches a parametrized closed
characteristic x with minimal period T > 0 and multiplicity k 2 Z, ie

lim
s!1

v.s; t/D xk.t/D x.k t/D �kT t .x.0//

where � is the characteristic flow. In light of Lemma 4.3, v�˛ ıj is exact and thus this
restriction is J –holomorphic. Therefore the asymptotic convergence results of [12] and
[4] carry over verbatim for tunneling maps. In particular they apply to the transverse
approach to a closed characteristic by studying the map in a tubular neighborhood of
the closed characteristic x . Let

�W x�F !Z; �.�/D expx.�/.�.�//

be a local diffeomorphism of a neighborhood of the zero section of x�F onto a tubular
neighborhood of the image of x in Z . Using this we define the family of sections

�.s/D ��1.v.s; �//

for s large enough. Since v.s; t/ approaches xk.t/ exponentially fast,

jj�.s/jj2 D

Z
S1

!.J�.s/.t/; �.s/.t// dt
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approaches 0 exponentially fast. To understand this approach we view � as a family of
sections of x�

k
F for s big enough, and consider the renormalized family of sections

�.s/D �.s/=jj�.s/jj:

Since � satisfies a differential equation, so does � , and in the limit as s!1, �.s/
approaches a section �0 of the k –fold cover x�

k
F of x�F that is an eigenvector of the

asymptotic operator

A1W W
1;2.x�kF /�L2.x�kF /!L2.x�kF /; A1.�/D�kT JLR�(4.21)

corresponding to an eigenvalue smaller or equal to �ı=2, where ı is the weight from
the asymptotic energy (3.15). For details we refer the reader to [12], [4] and [1].

Remark 4.4 Note that the asymptotic energy (3.15) is invariant under diffeomorphisms
of the domain, so the gauge group G from Definition 3.2 acts on the space of tunneling
maps by precomposition.

Tunneling maps connect boundary values of J –holomorphic maps in X˙ to closed
characteristics. Given a map �W � !Z that is a boundary value of a J –holomorphic
map into XC or X� , we can ask whether there exists a tunneling map vW PS!Z with
vj� D � . In the circle-invariant case existence of such a map is equivalent to existence
of a J –holomorphic map zvW S ! V to the base of the S1 –bundle V with boundary
on �V � . Since domain and target are 2–dimensional, this question is well understood
if the image of � under the projection �V is sufficiently nice and only depends on
topological data. Any such map lifts to a unique H–holomorphic map in each relative
homotopy class of lifts by the same arguments as in Remark 4.6.

4.2 Conjugate tunneling maps

To get a scattering function of incoming boundary values from a map uC into XC to
outgoing boundary values of a map u� into X� , we need to define a relation between
tunneling maps vC connecting to uC and v� connecting to u� .

We clarify some notation used in this section. For a tunneling map v and an asymptotic
marker m2 .TpS n0/=R>0 in boundary yS n PS of the oriented blowup yS of PS we have
that v.m/ has image on some closed characteristic x 2R. Given a parametrization
x.t/W S1!Z of the closed characteristic, it inherits the group structure from S1DR=Z

via x.s/Cx.t/D x.sC t/.

Definition 4.5 (Conjugate tunneling map) Two tunneling maps vC and v� with
domain . PS ; j / that are asymptotic to the same closed characteristic x 2R are called
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conjugate with respect to a parametrization x.t/ of the closed characteristic if there
exists a function �W S ! .0;1/ with �j� � 1 such that

v�C! D � v
�
�! on PS(4.22)

�D v�C˛ ı j C v��˛ ı j D 0 on T�(4.23)

vC.m/C v�.m/D x.0/ for all m 2 yS n PS :(4.24)

Equation (4.22) implies that v˙ have transverse approach to eigenvectors corresponding
to the same eigenvalue of the asymptotic operator (4.21). If the eigenvalue is not simple
we also demand that vC and v� have transverse approach to the same eigenvector.

Let

QD fq 2 S j v˙ fails to be an immersion at qg:(4.25)

In the case of S1 –invariant folds we further demand that the order of vanishing of the
1–form � defined in (4.23) is no less than the one of �F dv˙ at each point q 2Q.

Remark 4.6 If vC and v� are conjugate, then their projections zv˙ D �V ı v˙ to
the base V agree by Equation (4.22) and the requirement that v˙ have transverse
approach to the same eigenvector of the asymptotic operator. To see this look at the
projections zv˙ D �V v˙ . By Equation (4.22) their differentials satisfy dzvC D z� � zdv�
on S for some nowhere vanishing holomorphic function z�W S!C. Since the function
� in Equation (4.22) equals 1 on � we conclude that z�j� W � ! S1 takes values in the
unit circle. Since z� has degree 0 we conclude that z� is constant. v˙ approach the
same closed characteristic, so zvC.p/D zv�.p/. The requirement that the transverse
components converge to the same eigenvector of the asymptotic operator simply means
that dzvC.p/D dzv�.p/, so z�.p/D 1. Thus z�D 1 and zvC D zv� .

Thus there exists an S1 –valued function

gW PS ! S1 with v�.z/D g.z/� vC.z/;

where � denotes the S1 –action on Z given by the characteristic flow. Equation (4.24)
implies that vC and v� have opposite multiplicities at the punctures and the degree of
g at the puncture is �2d if d is the degree of vC at the puncture.

The function g satisfies dg D v��˛� v
�
C˛ so

d�dg D �d.dg ı j /D �d.v��˛ ı j � v�C˛ ı j /D 0;

dg ı j D�2v�˛ ı j on T @S;

where we used Equations (4.20) and (4.23). Therefore g is a harmonic S1 –valued
function with prescribed asymptotics satisfying von Neumann boundary conditions.
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This determines g uniquely up to H 1.S IZ/ and an overall constant. Equation (4.24)
fixes the overall constant, leaving us with a discrete set of choices. By Remark 3.12
we conclude that only a finite number, bounded by a constant only depending on d ,
of values for the periods of dg can appear as boundary values for J –holomorphic
maps into X˙ , at least for generic domains .S; j /. To see this fix a set of generators
of Hn.S IZ/ and consider their effect on v� and consequently the gap-function from
Equation (3.18).

In the circle-invariant case the zeros of �F dv˙ automatically agree. Thus the dimen-
sion of the space of conjugate tunneling maps jumps as the tunneling maps acquire
points q 2 Q. To deal with this nongeneric situation we introduced the additional
restriction on the order of vanishing of � along Q.

We adopt the convention that for folded maps .uC;u�/ and tunneling maps .vC; v�/
their restrictions to � are denoted by a hat, ie

yu˙ D u˙j� and yv˙ D v˙j� :

We are now prepared for the main definition.

Definition 4.7 (Folded diagonal) The folded diagonal is the subset in the product
Map.�;Z/�Map.�;Z/ defined by

�Z
D f.yvC; yv�/ j .vC; v�/ are conjugate tunneling mapsg :

Remark 4.8 Note that the folded diagonal is invariant under the action of the gauge
group G . Indeed, if .vC; v�; j / is a conjugate pair of tunneling maps, and �1W †1!†1

is a diffeomorphism, then .��
1
vC; �

�
1
v�; �

�
1

j / is also a pair of conjugate tunneling
maps with domain .��

1
PS ; ��

1
j1/. This concludes the proof of Lemma 3.11.

5 Properties of the folded diagonal

In this section we study the properties of the folded diagonal by looking at its deforma-
tion space. In short, we find that the deformations of the folded diagonal at a pair of
conjugate tunneling maps restricted to � .yvC; yv�/ is given by the graph of a function
from sections of yv�CT Z to sections of yv��T Z , which we will describe.

We only consider the case of S1 –invariant folds. They have the advantage that the
H–holomorphic map equations are linear and upper triangular, which simplifies the
proofs. Moreover, in the S1 –invariant case most of the proofs are constructive which
provides further intuitive insight into the properties of folded holomorphic maps.
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First we give the linearization of the equation for tunneling maps. As in the definition
of the space of maps, we use a metric contact connection. There are many choices
for such connections; see Nicolaescu [21]. In the circle-invariant case a choice that
is particularly convenient is the Levi-Civita connection r of the metric gZ . One
easily checks that r is contact metric, ie r˛ D r! D 0. The reason for this is
that the associated canonical complex structure on the symplectization is integrable.
Consequently we also have rRDrJ Dr�F D 0.

Lemma 5.1 At a solution .v; j /, the linearizations of equations (4.19) and (4.20) are

DF
.v;j/.�; h/D �Fr

0;1�C
1

2
J �F dv hD 0(5.26)

DL
.v;j/.�; h/D d

�
d.˛.�// ı j C v�.��d˛/ ı j C v�˛ ı h

�
D 0(5.27)

r
0;1
D

1

2
fr CJr ı j g :where

Proof Let vt be a family of tunneling maps with complex structures jt , �D d
dt

ˇ̌
tD0

vt

and hD d
dt

ˇ̌
tD0

j . Then

DF
.v;j/.�; h/D

d

dt

ˇ̌̌̌
tD0

1

2
�F fdvt CJ dvt jtg

D
1

2
�F frtdvt CJrt .dvt / ı j CJ dv hgtD0

D �F r
0;1�C

1

2
J �F dv h:

For the second equation we compute

d

dt

ˇ̌̌̌
tD0

v�t ˛ıjt D .v
�L�˛/ıj Cv�˛ıhD d.˛.�//ıj Cv�.��d˛/ıj Cv

�˛ıh:

So the system of PDEs (5.26) and (5.27) is upper triangular with respect to the splitting
T Z DL˚F . This greatly simplifies computations and the construction of examples.

Definition 4.5 allows us to define useful bundle homomorphisms.

Definition 5.2 Let vC and v� be conjugate tunneling maps. Then define the .JC;J�/–
linear vector bundle isomorphisms

AF
W v�CF ! v��F; AF D .�F dv�/ ı .�F dvC/

�1

AE
W v�CE! v��E AE.�1@r C �2R/D �1@r � �2R:

The isomorphism AF is well defined at the zeros of �F dvC by Equation (4.22).
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By the vanishing condition on � along Q that we imposed in the case of circle-invariant
folds at the end of Definition 4.5 we may define the linear map

f W v�CF ! R; f D � ı .�F dv�1
C /:(5.28)

Remark 5.3 In the following we will assume that, unless ˛ is closed, at each point
q 2Q the map

.rf /.q/W Fv˙.q/! T �q S(5.29)

is surjective and that the order of vanishing of �F dv˙ is no greater than 1.

This assumption holds generically. The projection of v˙ to the base V of the S1 –
bundle Z is holomorphic, so given elliptic boundary conditions, the stratum with zeros
of order � 2 has codimension at least 2. The condition that, given �F v˙ , rf not
vanish holds for generic boundary conditions.

Lemma 5.4 Let .�C; h/ and .��; h/ be deformations of the conjugate tunneling maps
vC and v� The linearizations of the equations for conjugate tunneling maps (4.22)
through (4.24) are

�F �C D �F ��(5.30)

d Œ˛.�C/C˛.��/� ı j D � ı j h�
�
v�C.��Cd˛/C v��.���d˛/

�
ı j on T�(5.31)

˛.�C/.p/C˛.��/.p/D 0:(5.32)

Proof This follows immediately from the definitions and Remark 4.6.

We need the following technical lemmas.

Lemma 5.5 Let .†; �; j ;uC;u�/ be a folded holomorphic map with conjugate tun-
neling maps . PS ; j ; vC; v�/. Then for � 2 T�S D T�†,

�.�/D v�C˛.j�/C v
�
�˛.j�/D u�C˛.j�/Cu��˛.j�/:(5.33)

Proof The first equality is just the definition of � in Equation (4.23). Recall that
yu˙ D yv˙ and both du˙ and �F dv˙ are .j ;J˙/–linear. Therefore

�F du˙ D �F dv˙ over �:

For � 2 T� we have

u�˙˛.�/D v
�
˙˛.�/; u�˙˛.j�/D 0; v�C˛.j�/D�v

�
�˛.j�/;

where the second equation holds since �E du˙ is J˙–linear and �K du˙jT� D 0 and
the last equation is just Equation (4.23). Equation (5.33) follows.
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Lemma 5.6 Let v be a tunneling map, � a section of TS vanishing at the puncture,
and h a deformation of complex structure j such that

r
0;1�C

1

2
j hD 0:

Then

d.v�˛.j�//� d.v�˛.�// ı j D .��v
�d˛/ ı j C v�˛ ı h(5.34)

and consequently, if vC and v� are conjugate tunneling maps,

d Œ�.�/�C d Œ�.j�/� ı j D .��Œv
�
Cd˛C v��d˛�/ ı j �� ı j h:(5.35)

Proof Near some point z 2 PS , let X be a section of TS with rX.z/D 0.

d.v�˛.�// ı j .X /D LjX .v
�˛.�//

D LjX .v
�˛/.�/C v�˛.rjX �/

D L�.v�˛.jX //C v�d˛.jX; �/C v�˛.jrX �� h.X //

D L�.v�˛ ı j /.X /� v�d˛.�; jX /� v�˛ ı h.X /

D Œd.v�˛.j�//� .��v
�d˛/ ı j � v�˛ ı h�.X /:

Lemma 5.7 Let .vC; v�; j / be a pair of conjugate tunneling maps and, � a section of
v�CT Z and h a deformation of complex structure j such that

DF
.vC;j/

.�; h/D 0:

Then, with �D �F � ,

(5.36) d Œf .�/�C d Œf .J�/� ı j D Œv�C.��d˛/C v��.�AF .�/d˛/� ı j �� ı j h:

Proof Note that f is a smooth function, so it suffices to show this on the dense subset
RS D PS nQ� PS . On RS we may write �D �F dvC.�/.

Note that on RS ,

DF
.vC;j/

.�; h/D 0 if and only if r
0;1�C

1

2
j hD 0:

Using Lemma 5.6 and the fact that �Rd˛ D 0,

d Œf .�/�C d Œf .J�/� ı j D d Œ�.�/�C d Œ�.j�/� ı j

D .��Œv
�
Cd˛C v��d˛�/ ı j �� ı j h

D Œv�C.��d˛/C v��.�AF .�/d˛/� ı j �� ı j h;

so Equation (5.36) holds on RS and by smoothness of f it holds on PS .
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5.1 Deformations of the folded diagonal

Using the results of the previous section we describe the deformations of the folded
diagonal. We show that they are given by the graph of a pseudodifferential operator
BZ W �.yu�CT Z/! �.yu��T Z/.

Theorem 5.8 Given conjugate tunneling maps .vC; v�; j /, a section y� of yv�CT Z .
Then there exists an extension �C of y� to v�CT Z a section �� of v��T Z and a
deformation h of the complex structure j so that .�˙; h/ satisfy Equations (5.26)
and (5.27) and .�C; ��; h/ satisfies Equations (5.30) through (5.32) and preserving the
vanishing condition on � along the set of nonimmersion points Q as given at the end
of Definition 4.5.

Moreover the restriction ��j� is uniquely determined by y� .

Proof We split this argument into the two cases when ˛ is closed and when ˛ is not
closed.

If ˛ is not closed, recall the Equation (5.28) defining the function f W v�
˙

F ! R. Let
gW S ! R be the unique harmonic function vanishing at the puncture and satisfying
von Neumann boundary conditions

dg ı j D d Œf .�F
y�/� on T�:(5.37)

Let � be any extension of y� to PS that vanishes in a neighborhood of the puncture,
satisfies

.rf /.�F �/D dg ı j on Q(5.38)

and �Fr
0;1� D 0 in a neighborhood of Q. This is well-defined by the assumption

that f jQW Fv.Q/! T �
Q

S is surjective (see Remark 5.3).

Then we may set

hD 2.�F dvC/
�1.J�Fr

0;1�/

which is j –antilinear, and consequently DF
.vC;j/

.�; h/D 0. Now let �W S ! R be the
unique solution to the Dirichlet problem

d.d� ı j /D�d
�
d.˛.�// ı j C v�C.��d˛/ ı j C v�C˛ ı h

�
;

�j� D 0:
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Then �C D �C � �R satisfies

DF
.vC;j/

.�C; h/DDF
.vC;j/

.�; h/D 0;

DL
.vC;h/

.�C; h/DDL
.vC;j/

.�; h/C d.d� ı j /D 0;

�Cj� D y�:

Now define the section �� of v��T Z by

�� DAF .�F �C/� .f .J�F �C/C˛.�C/Cg/R:(5.39)

DF
.v�;j/

.��; h/DDF
.vC;j/

.�C; h/D 0Then

DL
.v�;j/

.��; h/D d
�
d Œ˛.��/� ı j C v��.���d˛/ ı j C v��˛ ı h

�
and

D d
�
� d Œf .J�F �C/C˛.�C/Cg� ı j C v��.���d˛/ ı j

�� ı j h� v�C˛ ı h
�

D d
�
� d Œf .J�F �C/� ı j C v�C.��Cd˛/ ı j C v��.���d˛/ ı j

�� ı j h
�

D d Œd.f .�F �C//�

D 0

where we used Equation (5.36) in the second-to-last step.

Now we need to show that .�C; ��; h/ is a deformation of conjugate tunneling maps.
By construction �F �� DAF .�F �C/, verifying Equation (5.30). For Equation (5.31)
we compute on T� ,

d Œ˛.�C/C˛.��/� ı j D�d Œf .J�F �C/Cg� ı j

D�d Œf .J�F �C/� ı j � dg ı j

D d Œf .�F �C/�� dg ı j � Œv�C.��Cd˛/C v��.���d˛/� ı j

C� ı j h

D d Œf .�F
y�/�� dg ı j � Œv�C.��Cd˛/C v��.���d˛/� ı j

C� ı j h

D � ı j h� Œv�C.��Cd˛/C v��.���d˛/� ı j

where we used Equations (5.36) and (5.37). For Equation (5.32) we compute

˛.�C/.p/C˛.��/.p/D f .J�F �C.p//Cg.p/D f .J�F �.p//D 0:
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We are left to verify that the condition on the order of vanishing of � along Q is
preserved. Linearizing �F dv˙jQ D 0 gives

�Fr��F dv˙C�Fr.�F �˙/D 0 at all q 2Q

where � is the deformation of q . Note that �Fr�.�F dv˙/D �Fr.�F dv˙.�// at
q , so we conclude that

�Fr .�F .dv˙.�/C �˙//D 0 at all q 2Q:(5.40)

Linearizing the condition that � vanishes on Q gives

(5.41) r��C Œv�C.��Cd˛/C v��.���d˛/� ı j C d Œ˛.�C/C˛.��/� ı j �� ı j hD 0:

Using Equation (5.36) we see that

Œv�C.��Cd˛/C v��.���d˛/� ı j C d Œ˛.�C/C˛.��/� ı j �� ı j h

D Œv�C.��Cd˛/C v��.���d˛/� ı j � d Œf .J�F �˙/� ı j � dg ı j �� ı j h

D d Œf .�F �˙/�� dg ı j:

Using that r��D d.�.�//D d Œf .dv˙.�//� on Q we see that on Q,

r��C d Œf .�F �˙/�� dg ı j Dr .f Œ�F .�˙C dv˙.�//�/� dg ı j

D .rf / .�F Œ�˙C dv˙.�/�/� dg ı j

D .rf /.�F �˙/� dg ı j

D 0

where we used Equation (5.40) in the third last step and Equation (5.38) in the last step.
Combining this with the previous computation verifies Equation (5.41).

This establishes existence. To see uniqueness, suppose that .� 0C; h
0/ also satisfies

D.vC;j/.�
0
C; h

0/D 0 and � 0Cj� D y� . Then .� 00 D �C� � 0C; h
00 D h� h0/ satisfies

D.� 00; h00/D 0; � 00j� D 0:

The above argument shows that given .�C; h/ there is a unique pair .��; h/ satisfying
Equations (5.26) and (5.27) so that .�C; ��; h; �/ satisfy Equations (5.30) through
(5.32). In order that the condition on the vanishing of � is preserved we need that, with
the above notation, f .J�F �C/D dg ı j on Q. Thus we conclude that

�F �
00
D 0 on Q;

so there exists a vector field � on S vanishing on � so that �F �
00 D �F dvC.�/.

Since �F dvC is .j ;J / linear and rJ D 0 we conclude that r0;1�C 1
2
j h00D 0. The
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function �00 D ˛.� 00� dvC.�// vanishes on � and satisfies

d.d�00 ı j /D 0;

so �00 D 0 and � 00 D dvC.�/. Thus .�C; h/ and .� 0C; h
0/ differ by an infinitesimal

gauge transformation �. By Remark 4.8 this gauge ambiguity preserves the conjugacy
condition and does not change the boundary values �˙j� .

Now consider the case when d˛D 0. In this case Z is a trivial S1 –bundle over V and
the two Equations (5.26) and (5.27) decouple and we may solve each one separately.
This implies that v�C˛C v

�
�˛ � 0, so � � 0. As before, for given boundary values

y� 2 �.yv�CT Z/ there exist extensions �C to sections of v�CT Z and deformation h of
complex structure j so that Equations (5.26) and (5.27) are satisfied. Then

�� DAF .�F �C/�˛.�C/R

is the unique section of v��T Z satisfying Equations (5.26), (5.27) and (5.30) through
(5.32). But ��j� only depends on �Cj� , so all possible choices of �C lead to the same
boundary values y�� D ��j� , concluding the proof of the theorem.

Definition 5.9 Given conjugate tunneling maps .vC; v�/, let d�Z be the space of
deformations of conjugate tunneling maps, restricted to � , ie

d�Z
D f.y�C; y��/ 2 �.yv

�
CT Z˚ yv��T Z/ j there exist �˙ 2 �.v�˙T Z/; h 2 TjJ .S/

with �˙j� D y�˙ satisfying D.v˙;j/
.�˙; h/D 0; Equations (5.30), (5.31)

and (5.32), and the vanishing condition on � along Q:g

By Definition 3.9, we identify � D �0 D �1 and therefore we may identify yv�
˙

T Z

with yu�
˙

T Z , when .uC;u�/ is a folded map with tunneling maps .vC; v�/. Thus we
may also view space of deformations of folded diagonal d�Z as a subset of

�.yu�CT Z˚ yu��T Z/� �.yu�CTX ˚ yu��TX /:

Note that if .y�C; y��/ 2 d�Z , and �2TIdDiff.†1; �/ is an infinitesimal gauge transfor-
mation tangent to the domain fold � , then also .y�CC duC.�/; y��C du�.�// 2 d�Z .
This defines an action

TIdDiff.†; �/� d�Z
! d�Z :(5.42)

It will prove convenient to extend the definition of deformations of folded diagonal
to sections of yu�CTX ˚ yu��TX in such a way that the action (5.42) extends to all
infinitesimal gauge transformations TIdDiff.†/ of the map domain, including the ones
that move the domain fold. This will greatly simplify taking the quotient by the gauge
action later. The following definitions and lemmas facilitate this.
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Definition 5.10 Let .uC;u�/ be a folded holomorphic map with conjugate tunneling
maps .vC; v�/.

Let H˙ D u�
˙

TX and set yH˙ DH˙j� . We define the subbundles of yH˙

F˙ D yu
�
˙F and E˙ D yu

�
˙E:

Recall the .JC;J�/–linear operators AF W FC! F� and AE W EC!E� defined in
Definition 5.2. Let

zQW �.E�/! �.v��E/

be the operator so that for �K ; �LW �!R we have that �1@rC�2 RD zQ.�K@rC�
LR/

satisfies

d�1 ı j C d�2 2 Hn.S/

�1j� D �
K

�2.p/D 0:

Define the maps

DW �.E�/! �.E�/; D.�K
� @r C �

L
�R/D �K

� @r � �
L
�R

QW �.E�/! �.E�/; Q.�/D zQ.�/j�

C W �.EC/! �.E�/; C D�D ıQ ıAE

fCW FC!EC; fC.�/D f .�/˝ @r �f .J�/˝R:

Note that D is J� antilinear and fC is JC linear.

Lemma 5.11 C is a pseudodifferential operator of order zero with principal symbol

c.s; �/D�.Id� iJ�/�K AE�:(5.43)

Proof We claim that Q is a pseudodifferential operator of order zero with principal
symbol

q.s; �/D
1

2
.IdC iJ�/.�CD�/D .IdC iJ�/�K �:

To see this we note that Q can be written as

QD P CD ı .1�P /

where P is the Calderón projector onto the space of Cauchy data of the elliptic
operator zQ. Then recall that � has the opposite orientation from @S , so the principal
symbol p of P is just the projection p D 1

2
.IdC iJ�/ onto the J� antiholomorphic

subspace of E� . For a detailed discussion of this see Seeley [23] or Booß-Bavnbek

Geometry & Topology, Volume 11 (2007)



32 Jens von Bergmann

and Wojciechowski [3] in the case of Cauchy–Riemann operators, and see Nicolaescu
[20, Section 6.2] for the family version, interpreting Q as a family of Cauchy–Riemann
operators with parameter space Hn.S/.

Thus using the principal symbol q , we have

c D�D ı q ıAE
D�D.IdC iJ�/�K AE

D�.Id� iJ�/D�K AE

D�.Id� iJ�/�K AE :

Definition 5.12 Let .†; �; j ;uC;u�/ be a folded holomorphic map. Using the split-
ting yH˙ D F˙˚E˙ we define the linear map on sections

BW �. yHC/! �. yH�/

B.�F
˚ �E/DAF .�F /˚AE.�E

�fC.�
F //CC..1� a/�E

�fC.�
F //(5.44)

where a is the gap-function from Equation (3.12).

Lemma 5.13 The deformations of the folded diagonal are given by the graph of the
operator B defined in (5.44), restricted to yu�CT Z , ie

d�Z
D graph.Bjyu�

C
T Z /:

Proof For y� 2 �.yu�CT Z/,

B.y�/DAF Œ�F
y��CAE Œ�E

y� �fC.�F
y�/�CC Œ.1� a/�E

y� �fC.�F
y�/�

DAF Œ�F
y��� Œ˛.y�/Cf .J�F

y�/�R�f .�F
y�/@r CD ıQŒf .�F

y�/@r �

DAF Œ�F
y��� Œ˛.y�/Cf .J�F

y�/�R��LQŒf .�F
y�/@r �:

Then Q.f .�F �/@r / is exactly the function g from Equation (5.37) from the proof of
Theorem 5.8, so B.y�/ equals ��j� from Equation (5.39).

Using B we extend the definition of the folded diagonal to a subset of the space of
sections of yu�CTX ˚ yu��TX in the obvious way:

Definition 5.14 The space of extended deformations d�X of the folded diagonal is

d�X
D graph.B/:

The following result motivates the definition of B and d�X .

Lemma 5.15 The space of extended deformations d�X of the folded diagonal is
invariant under the full infinitesimal gauge group of † (not just the subgroup that
preserves � as a set).
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Proof Let � be a section of T�S D T�†. Then

f .�F duC.�//D f .�F dvC.�//D �.�/;

.1� a/�K duC.�/D .1� a/u�C˛.j�/@r D u�C˛.j�/Cu��˛.j�/D �.�/@r

C Œ.1� a/�E duC.�/�fC.�F duC.�//�D C.0/D 0:and

Then we have

B.duC.�//DAF .�F duC.�//CAE Œ�E duC.�/�fC.�F duC.�//�

DAF .�F dvC.�//CAE Œ.u�C˛.j�/��.�//@rC.u
�
C˛.�/C�.j�//R�

D �F dv�.�/C .u
�
C˛.j�/��.�//@r � .u

�
C˛.�/C�.j�//R

D �F du�.�/�u��˛.j�/@r Cu��˛.�/R

D �F du�.�/C�E du�.�/

D du�.�/:

6 Fredholm theory for folded holomorphic maps

Now we come to the result that justifies the definitions and lemmas pertaining to
tunneling maps. We show that they give elliptic boundary values.

Let .uC;u�; j / be a folded holomorphic map with domain fold � �†.

Theorem 6.1 Assume that the map .uC;u�/ is transverse to the fold, so � is a
manifold. Then the map

RW �. yHC/˚�. yH�/! �. yH�/; �C˚ �� 7! ���B.�C/(6.45)

poses elliptic boundary conditions for the folded holomorphic map .uC;u�; j /, ie
the principal symbol r of R restricted to the range of the principal symbol p of the
Calderón projector P for the complexified Cauchy–Riemann operator DuC �Du� on
HC˝C�H�˝C

r jrange.p/! yH�˝C

is an isomorphism.

Proof Note that the principal symbol r is given by r.u; v/D v� b.u/, where b is
the principal symbol of B .
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Let yH C
˙
D yH˙˝C denote the complexification of yH˙ and let yH 0

˙
( yH 00
˙

) denote the
.i;J˙/–linear (antilinear) subspace of yH C

˙
. Recall that � D @†C D �@†� inherits

the orientation from †C . Then

pW yH C
C˚

yH C
� !

yH 0C˚
yH 00�

p.v; w/D
1

2
.Id� iJC/˚

1

2
.IdC iJ�/

is the projection onto the .i;JC˚�J�/ linear subspace.

Note that c D 1
2
.Id� iJ�/c equals its projection onto E0 . Evaluating c on an element

w 2E0C gives

c.w/D�.Id� iJ�/�K AE.w/D�AE Œ.Id� iJC/�Kw�

D�AE Œ�Kw��L.iJCw/�D�AE .�KwC�Lw/

D�AEw:

With the notation from Definition 5.12 and w D wF ˚wE 2 F 0C˚E0C ,

b.w/DAF .wF /CAE.wE
�fC.w

F //C c
�
.1� a/wE

�fC.w
F /
�

DAF .wF /CAE
�
wE
�fC.w

F /� .1� a/wE
CfC.w

F /
�

DAF .wF /C a AE.wE/:

Now suppose that .w; z/ 2 range.p/D yH 0C˚ yH
00
� and r.w; z/D 0. Then necessarily

wF D 0 and wE D 0 as a > 0, and therefore also z D 0. We conclude that r is an
isomorphism.

Now standard theory shows that the linearized operator is Fredholm. For this next
theorem we fix the complex structure on the domain † D †0 , and let ƒ0;1

˙
be the

j –antilinear part of T �†˙ .

Theorem 6.2 For any s � 1, the operator

Ds
BW H

s.†C;HC/�H s.†�;H�/!

H s�1.†C; ƒ
0;1
C ˝HC/�H s�1.†�; ƒ

0;1
� ˝H�/�H s� 1

2 .@†�; yH�/

.�C; ��/ 7!
�
DuC�C;Du���;R.

y�C; y��/
�

(6.46)

is Fredholm with real Fredholm index

index.Ds
B/D �.HC;FC/C�.H�;F�/C 2�.†/
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where F˙ DK˚�F du˙.T�/ are totally real subbundles and � is the Maslov index.

The kernel of Ds
B

is independent of choice of s � 1 and consists only of smooth
solutions.

The Fredholm and smoothness properties is a direct application of the following
theorems from Hörmander [15] that we state for the convenience of the reader. The
same results can also be deduced from Theorems 19.1 and 20.8 of Booß-Bavnbek and
Wojciechowski [3].

Theorem 6.3 [15, Theorem 20.1.2] If the boundary problem (6.45) is elliptic and
s � 1, then (6.46) is a Fredholm operator.

Theorem 6.4 [15, Theorem 20.1.8] If the boundary problem (6.45) is elliptic, then
the kernel of the Fredholm operator (6.46) is in C1.†C;HC/�C1.†�;H�/, and
the range is the orthogonal space of a finite-dimensional subspace of

C1.†C; ƒ
0;1
C ˝HC/�C1.†�; ƒ

0;1
� ˝H�/�C1.@†�; yH�/:

Thus the index is independent of s . It is also independent of the lower order terms in
Du˙ and R, and is stable under arbitrary small perturbations of the coefficients.

Proof of Theorem 6.2 The Fredholm properties and smoothness hold by Theorem 6.3
and Theorem 6.4 above. To see the index formula, define the homotopy of boundary
conditions

Bt .�
F
˚ �E/DAF .�F /C AE.�E

�fC.�
F //C t �C

�
.1� a/�E

�fC.�
F /
�
:

Following the arguments as in the proof of Theorem 6.1 we see that the symbol bt of
Bt satisfies on w D wE CwF 2E0C˚F 0C ,

bt .w/DAF .wF /CAE Œ.wE
�fC.w

F /�� t AE Œ.1� a/wE
�fC.w

F /�

DAF .wF /CAE Œ.1C at � t/wE
� .1� t/fC.w

F /�:

Thus if bt .w/D 0, then wF D 0 and .1Cat � t/AE.wE/D 0. Using that a> 0 we
see that 1C at � t > 0 for t 2 Œ0; 1� and we conclude that wE D 0 for all t 2 Œ0; 1�.
Thus each member in this family gives elliptic boundary conditions.

B0 is the .JC;J�/–linear bundle isomorphism with

B0.K/DK; B0.�F duC.T�//D �F du�.T�/;

so B0.FC/D F� .
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Then graph.B0/ has the same Maslov index as .FC;F�/, as can be seen by the
homotopy of totally real subspaces

ƒt D f.uC .1� t/JCv;B0Œ.1� t �JCt/..1� t/uCJCv/�/ j u; v 2 FCg

satisfying ƒ0 D graph.B0/ and ƒ1 D .FC;B0.FC//D .FC;F�/:

In conclusion we have that the index for the boundary value problem given by B DB1

is the same as the one for B0 , which in turn can be computed by .FC;F�/.

To visualize the construction and the results up to here consider the following. As seen
in Section 2, the diagonal in Map.�;Z/�Map.�;Z/ does not yield elliptic boundary
conditions. In the language of Nicolaescu [20] we may say that given holomorphic
maps .uC;u�/ with uCj� D u�j� , the subspace

f.I.y�C/; y��/ 2L2.�; yu��TX /�L2.�; yu��TX / j there are �˙ 2 ker.Du˙/; �˙j� D
y�˙g

where I W L2.�; yu�CTX /!L2.�; yu��TX / is the obvious identification, is not a Fred-
holm pair. But the folded diagonal gives elliptic boundary conditions, or given a folded
holomorphic map .uC;u�/ the subspace

f.B.y�C/; y��/ 2L2.�; yu��TX /�L2.�; yu��TX / j there are �˙ 2 ker.Du˙/; �˙j� D �˙g

is a Fredholm pair.

 

  

L2.�;u�CTZ X / L2.�;u��TZ X /

ker DuC

ker Du�

B.ker DuC/

BW L2.�;u�CTZ X /!L2.�;u��TZ X /

Figure 6: The map B induces a Fredholm pair.

To obtain nice compactifications it is important to first allow for variation in the choice
of parametrization of the closed characteristic. This will induce an S1 –action on the
space of solutions, corresponding to the different choices of parametrization. We refer
to the quotient by the S1 –action as the reduced moduli space.
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Remark 6.5 We can generalize Theorem 6.2 by incorporating variations of the folded
domain and the choice of parametrization of the closed characteristic. Here are some
brief comments on how this can be done.

The first step is allowing variations in j0 and �0 , modulo Diff C.†0/. Note that �0

is determined by the map by Equation (3.17). Since the folded diagonal is invariant
under the gauge action of DiffC.†0/, Theorem 6.2 holds in this case with the index
raised by the dimension of Teichmüller space �3�.†0/.

Next consider variations in �1 , j1 ,  and g , modulo the action of the remaining factors
of the gauge group DiffC.†1/�Map.†1;R/. First, for fixed domain location of the
domain fold �1 , the space of holomorphic diffeomorphisms  �1W †C

0
!†C

1
sending

�0 to �1 (with j0 fixed and j1 varying) has dimension 2�.†C
1
/C .1� 3/�.†C

1
/D 0.

Thus variations in  and j1 on †C
1

do not change the dimension count.

Finally, note that g is determined by choice of �1 and  by Equation (3.10), and
that the deformations of complex structure j1 on S are fixed by the tunneling map.
Thus the freedom left in choosing �1 , j1 ,  , g is exactly given by the remaining part
DiffC.†1/�Map.†1;R/ of the gauge group G . Changing the parametrization of the
closed characteristic raises the index by 1. In conclusion, when varying the folded
domain and the parametrization of the closed characteristic, and taking the quotient by
the gauge group, the index is

�.uC;KC/C�.u�;K�/C .2� 3/�.†/C 1:(6.47)

6.1 Homological data

A folded map .uC;u�/ together with a pair of conjugate tunneling maps .vC; v�/
gives rise to two relative homology classes

A˙ 2H2.X
˙;RIZ/ and A˙ D .u˙ t� v˙/�Œz†˙�:

Since the map gluing the tunneling domain yS to †C (†� ) is orientation-preserving
(reversing), and the !–energies of the tunneling maps agree by Definition 4.5, we
obtain the energy identities

E!.uC/CE!.vC/D ! �AC D const

E!.u�/�E!.v�/D ! �A� D const

E!.uC/CE!.u�/D ! � .ACCA�/D const:

Therefore the space of folded holomorphic maps breaks up into components labeled by
the relative homology classes A˙ , and the sum of the !–energies of the maps uC and
u� is constant in families.
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7 Examples of folded holomorphic maps

We give examples of folded holomorphic maps in two special cases.

7.1 Folded holomorphic maps into folded E.1/

We come back to the example of E.1/ from Section 2 and show that Definition 2.1
and Definition 3.10 coincide.

Note that in this case d˛ D 0 so Equations (4.22) and (4.23) decouple. After fixing a
closed characteristic with parametrizations x�0

.�/D .e2� i.���0/; z0/ it is straightfor-
ward to verify that the folded diagonal is given by the graph of the family of functions

ˆ�0
W S1
�T 2

! S1
�T 2; ˆ�0

.e2�i.�0C�/; z/D .e2�i.�0��/; z/:

Note that the space of folded holomorphic maps of degree d carries a free S1 –action
given by the choice of �0 2 S1 D R=1

2
Z since �0 and ˆ�0

D ˆ�0C
1
2

. We interpret
this as the different choices in gluing the folded symplectic E.1/.

This reproduces Definition 2.1.

7.2 Folded holomorphic rational degree 1 curves in S 4

We explicitly characterize the moduli space of folded holomorphic degree 1 rational
curves by utilizing the symmetries of the folded symplectic and complex structure
on S4 defined in Section 2. Essentially these curves come from pseudoholomorphic
curves in P2 .

Recall that the cylinder over S3 (“symplectization”) with its standard R–invariant
structure is biholomorphic to C2 n f0g via

ˆW R�S3
! C2

n f0g; .t; z/ 7! e2tz:

For the rest of this section we fix homogeneous coordinates Œx W y W z� on P2 and
a corresponding embedding C2 � P2 , .z; w/ 7! Œx W w W 1�, whose complement is
denoted by P1

1 . Using this we can view finite asymptotic energy pseudoholomorphic
maps in R � S3 as maps in P2 . Conversely, pseudoholomorphic maps in P2 that
have no components that lie entirely in P1

1 [ f0g can be viewed as (punctured)
pseudoholomorphic maps into R�S3 by restriction. A straightforward calculation
reveals that punctured finite asymptotic energy pseudoholomorphic maps into R�S3

extend over the punctures to pseudoholomorphic maps into P2 , and that conversely
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maps into R�S3 that are restrictions of pseudoholomorphic maps into P2 have finite
asymptotic energy.

Note that H2.B
4;RIZ/D S2

�Z

where the isomorphism is given by specifying the closed characteristic and the multi-
plicity. We fix the closed characteristic parametrized by the family

xm.�/D .m e2� i� ; 0/� S3; m 2 S1
D fz 2 C j jzj D 1g

and the degree d D 1.

  

 
S4
�

u0
�

u3
C

u2
C

u1
C

u0
C

u1
�

u2
� u3

�
Z D S3

S4
C

Figure 7: Several members of the moduli space of degree 1 maps into S4 .
The map .u0

�;u
0
C/ corresponds to the case cD 0 . The maps un

C loose energy
as they disappear into the fold whereas the maps un

� gain energy.

The open part of the moduli space is parametrized by c 2 DD fz 2 C j jzj < 1g and
m 2 S1 . Set

†C D fz 2 yC j jzj � 1g †� D fz 2 yC j jzj � 1g

S D fz 2 yC j jzj �

q
1� jcj2g PS D S n f1g
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where we work in S2 D yC D C [ f1g. The isomorphism  from †C to the set
†C

1
D fz 2 C j jzj �

p
1� jcj2g is given by z 7!

p
1� jcj2z . Then set

uC.z/D �C.

q
1� jcj2m z;m c/ u�.z/D ��.

q
1� jcj2m=z;m c=z2/

vC.z/D �S3.m z;m c/ v�.z/D �S3.m=z;m c=z2/:

We can parametrize this part of the moduli space, modulo reparametrizations of the
domain, by keeping track of one of the two intersection points, say .m

p
1� jcj2;mc/,

of uC and u� , which is in bijective correspondence with Z ny , where y is the closed
characteristic y D f.0; z/ j jzj D 1g 2R.

   

u3
C

u2
C

u1
C

u0
C u0

�

u1
�

u2
�

u3
�

v3
C

v2
C

v1
Cv0

C

Figure 8: Here we visualize the degree 1 maps as maps into C2 . We also
suspend the tunneling maps to (H–) holomorphic maps into C2 . The maps
u˙ have image in the unit ball, whereas vC has image outside the unit ball.
v� coincides with u� .

As the parameter c leaves all compact subsets of D, the domain †1 degenerate so that
PS DCnf0g is a sphere with two punctures, so v˙ form a “bubble” in the fold. The limit

maps as jcj ! 1 uC.z/D .0;m c/� S3 sink into the fold and become a point map
with image on the closed characteristic y . All energy is carried by u�.z/D .0; c=z

2/,
which differ by a reparametrization of the domain for different choices of jcj D 1. So
again we parametrize this portion of the moduli space, modulo reparametrizations of
the domain, by the corresponding intersection point .0;m c/ 2 y , noting that any fixed
choice of jcj D 1, while varying m, gives the same space of maps.

This shows that the moduli space of degree 1 rational maps has a natural compactification
to S3 . It carries a free S1 –action given by the choice of parametrization m of the

Geometry & Topology, Volume 11 (2007)



Pseudoholomorphic maps into folded symplectic four-manifolds 41

closed characteristic. The reduced moduli space, ie the quotient of the moduli space by
this action is naturally identified with S2 , with quotient map the Hopf map.

7.3 Degree d maps into S 4

We briefly indicate how to construct examples of degree d maps from a genus g folded
domain † into S4 . Start with a degree d curve wW †2! P2 that intersects the P1

at infinity at the closed characteristic x . Let †C D fz 2 † j jjw.z/jj � 1g in the
homogeneous coordinates on the complement of the P1 at infinity chosen above. Set
†� D† n†C and assume for now that †� is simply connected and �F dw ¤ 0 on
†� . Then, with S D†� and the puncture corresponding to the preimage of the P1 at
infinity we set

uC D �C ıwj†C and vC D �S3wj PS :

To obtain the corresponding maps v� and u� let �2 yS n PS correspond to the direction
given by the positive real line in C and let f W PS ! C be the unique holomorphic
function satisfying xm.=.f .p/// D �2vC.�/, where we use the group structure
induced by xm , and d Œ<.f /�D�2v�C˛ ı j on T� and set

u�.z/D ��.f .z/ �wj†�.z// and v� D �S3u�j PS :

It is more difficult to construct maps if †˙ is not simply connected. In this case it will
in general not be possible to find a holomorphic function f as above. However, on the
subspace of codimension b1.†�/ on which this is possible the above construction still
works.

To compute the dimension of the moduli space of degree d maps we compute the index
of the linearized operator (6.47) at one of the maps we constructed above that satisfies
�F du˙ ¤ 0 along the domain fold � .

Along each boundary component �i we homotope the boundary conditions F˙.z/

to R � zd˙
i � R � u�

˙
.C � C/. Since w was a degree d map into P2 we have that

d D
P

d˙i . Then

�.H˙;F˙/D
X

�.C�C;R � zd˙
i �R/D

X
�.C;R � zd˙

i /C�.C;R/D 2d:

Therefore

indexD �.HC;FC/C�.H�;F�/C .2� 3/�.†/C 1D 4d C 2g� 1:

Again, these spaces carry a free S1 –action corresponding to the choice m 2 S1 of
parametrization of the closed characteristic.
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8 Tunneling maps in symplectic manifolds

Here we want to briefly explain how tunneling maps come up in the usual symplectic
setting. From this point of view, tunneling maps appear as tools for studying J –
holomorphic curves relative to a codimension 1 hypersurface in a symplectic manifold.
We transfer our definitions to this case:

Let .X; !/ be a symplectic manifold and f W X !R a smooth function with transverse
zeros. Then ZDf �1.0/ is a smooth hypersurface, separating X into two parts labeled
XC and X� by the sign of f on them. Assume that there exists a 1–form ˛ on Z so
that Z together with ˛ and ! admits an S1 –invariant structure as in Definition 1.6.
Choose a compatible almost complex structure J on X that is S1 –invariant over Z .

Fix a folded domain as in Definition 3.1 and let u˙W †˙!X˙ be J –holomorphic
with � D u�f . Assume � vanishes transversely and � D ��1.0/ ¤ ∅, so � is a
smooth nonempty compact submanifold of †, separating †.

Now, just like in the folded symplectic case we may look for tunneling maps in
Z that connect the image of uj� to closed characteristics, ie an H–holomorphic
map vW PS ! Z with vj� D uj� . One might at first expect that tunneling maps
should be pseudoholomorphic instead of H–holomorphic, but note that the index for
pseudoholomorphic tunneling maps that are immersions is negative the first Betty
number of the domain �b1.S/.

As opposed to the folded symplectic case, the complex structures J˙ induced on TZ X

coming from XC and X� agree in the symplectic setting. Thus the argument in the
discussion of the sign of u�˛ in Remark 3.12 has to be modified. Therefore the folded
diagonal �Z does not pose Fredholm boundary conditions in the symplectic case as
becomes clear in the proof of Theorem 6.2.

To understand this better we take another look at tunneling maps in the folded symplectic
setting. Let .vC; v�/ be conjugate tunneling maps and consider the suspension zv˙
of tunneling maps v˙ into R�Z , where v˙ is a H–holomorphic map with respect
to J˙ . Assume for simplicity that S is a punctured disk, so the tunneling maps are
actually J˙–holomorphic. Then the Equation (4.23) of the definition of conjugate
tunneling maps can be rewritten in terms of the R–components aC and a� of the
corresponding tunneling maps. Then

zv�C˛ ı j C zv��˛ ı j D daC� da�

and using the fact that the R–component is only determined up to a constant, Equation
(4.23) says

aC D a� on �:
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Written in this way the equation carries over verbatim to the (nonfolded) symplectic
setting.

We can follow the above transformations backward and obtain the replacement of
Equation (4.23) for the symplectic setting:

v�C˛ ı j D v��˛ ı j on T�

for H–holomorphic maps v˙ .

But this, together with the remaining equations in Definition 4.5 implies that vC D v� .
Thus in the symplectic case, the analogue of the folded diagonal is the actual diagonal

�D f.yv; yv/ j yvW � !Zg �Map.�;Z/�Map.�;Z/:

Viewing this the other way, the folded diagonal �Z in the folded symplectic setting is
analogue of the actual diagonal � in the symplectic setting.

Acknowledgments I thank my adviser Thomas H Parker for his support, guidance
and helpful discussions.
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