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On the automorphism group of
generalized Baumslag–Solitar groups

GILBERT LEVITT

A generalized Baumslag–Solitar group (GBS group) is a finitely generated group G

which acts on a tree with all edge and vertex stabilizers infinite cyclic. We show that
Out.G/ either contains non-abelian free groups or is virtually nilpotent of class �2.
It has torsion only at finitely many primes.

One may decide algorithmically whether Out.G/ is virtually nilpotent or not. If it is,
one may decide whether it is virtually abelian, or finitely generated. The isomorphism
problem is solvable among GBS groups with Out.G/ virtually nilpotent.

If G is unimodular (virtually Fn�Z), then Out.G/ is commensurable with a semi-
direct product ZkÌOut.H / with H virtually free.

20F65; 20E08, 20F28

1 Introduction and statement of results

The groups BS.m; n/D ha; t j tamt�1 D ani were introduced by Baumslag–Solitar
[2] as very simple examples of non-Hopfian groups (a group G is non-Hopfian if there
exists a non-injective epimorphism from G to itself). It is now known that BS.m; n/

is Hopfian if and only if m D ˙1, or n D ˙1, or m; n have the same set of prime
divisors (Collins–Levin [7]). In particular, BS.2; 4/ is Hopfian while BS.2; 3/ is not.

Though it has exotic epimorphisms, BS.2; 3/ has very few automorphisms: its au-
tomorphism group is generated by inner automorphisms and the obvious involution
sending a to a�1 (Collins [6] and Gilbert et al [14]). On the other hand, BS.2; 4/

has an incredible number of automorphisms, as its automorphism group is not finitely
generated [7].

The reason behind this drastic difference is that, because 2 divides 4 but not 3, the
presentation of BS.2; 4/ is much more flexible than that of BS.2; 3/. By this we
mean, in particular, that BS.2; 4/ admits the infinite sequence of presentations .1p/

BS.2; 4/D ha; b; t j tbt�1
D b2; b2p

D a2
i
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obtained from the standard one by introducing a new generator b D t�pa2tp . It is
clear already from .1p/ that G D BS.2; 4/ has many automorphisms, as fixing b; t

and conjugating a by b defines an element of order 2p in Out.G/.

The presentations .1p/ express BS.2; 4/ as a generalized Baumslag–Solitar group,
or GBS group, or graph of Z’s, namely as the fundamental group of a finite graph
of groups � with all edge and vertex groups infinite cyclic. This is visualized as a
labelled graph, with the absolute value of the labels indicating the index of edge groups
in vertex groups (see Figure 1).

m n

1 2

2p

2

Figure 1: The labelled graphs associated to the standard presentation of
BS.m; n/ , and to .1p/ .

In this paper, we study automorphisms of GBS groups. See Forester [12; 13], Kropholler
[18], Levitt [21] and Whyte [34] for various algebraic and geometric properties of these
groups. As pointed out in [12], they are especially interesting in connection with JSJ
theory.

Before giving general results, let us review certain classes of GBS groups for which
more specific statements may be obtained. They are defined either by “local” conditions
on the labelled graph, or by “global” algebraic conditions on the group. In the rest of
this introduction, we always assume that G is not one of the elementary GBS groups:
Z, Z2 , and the Klein bottle group.

Algebraically rigid groups

As evidenced by the example of BS.2; 4/, the main difficulty with GBS groups is that
they may be represented by many different labelled graphs � . Sometimes, though, �
is essentially unique. By (Gilbert [14]) and (Pettet [30]), this algebraic rigidity holds
in particular when there is no divisibility relation in � : if p; q are labels near the
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same vertex, then p does not divide q (see Section 2 for a precise definition and a
characterization of algebraic rigidity).

Given � , let T be the associated Bass–Serre tree, which we call a GBS tree. Let
OutT .G/� Out.G/ be the subgroup leaving T invariant. Most elements of OutT .G/
may be viewed as “twists” (see Section 3). Algebraic rigidity implies OutT .G/ D
Out.G/, but in general OutT .G/ is smaller.

Theorem 1.1 Let G be a GBS group, represented by a labelled graph � , and let T

be the Bass–Serre tree. Define k as the first Betti number b of � if G has a non-trivial
center, as b� 1 if the center is trivial.

(1) The torsion-free rank of the abelianization of G is kC 1.

(2) The group OutT .G/ is virtually Zk .

(3) Up to commensurability within Out.G/, the subgroup OutT .G/ does not depend
on � .

Conversely, any subgroup of Out.G/ commensurable with a subgroup of OutT .G/ is
contained in OutT

0

.G/ for some GBS tree T 0 (Clay [5]).

For G DBS.m; n/, one has k D 0 if m¤ n, and k D 1 if mD n. For G DBS.2; 4/

with the presentation .1p/, the group OutT .G/ has order 2pC1 .

Corollary 1.2 If G is algebraically rigid, then Out.G/ is virtually Zk .

The converse is also true if G is not solvable (see Theorem 8.5).

Unimodular groups

A GBS group G is unimodular if xypx�1 D yq with y ¤ 1 implies jpj D jqj, or
equivalently if G is virtually Fn �Z (with Fn a free group of rank n). The group G

then has a normal infinite cyclic subgroup with virtually free quotient, and we show
the following theorem.

Theorem 1.3 If G is unimodular, there is a split exact sequence

f1g ! Zk
! Out0.G/! Out0.H /! f1g;

where k is as above, H is virtually free, and Out0 has finite index in Out.

Since Out.H / is VF (Krstić–Vogtmann [20]), we get the following Corollary.

Corollary 1.4 Out.G/ is virtually torsion-free and VF (it has a finite index subgroup
admitting a finite classifying space).
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Groups with no non-trivial integral modulus

Now consider groups G which do not contain a solvable Baumslag–Solitar group
BS.1; n/ with n� 2 (there is an equivalent characterization in terms of the modular
homomorphism �W G!Q� , see Section 2).

Given any GBS group G , the group Out.G/ acts on the space PD of all GBS trees
(see Section 5), with stabilizers virtually Zk by Theorem 1.1. Clay [4] proved that the
space PD is contractible (see also Guirardel–Levitt [16]) and Forester [13] proved that
the quotient is a finite complex if G does not contain BS.1; n/ with n� 2. This gives
the following Theorem.

Theorem 1.5 If G does not contain BS.1; n/ for n � 2, then Out.G/ is F1 (in
particular, it is finitely presented). If furthermore Out.G/ is virtually torsion-free, then
it is VF.

Arbitrary groups

Now let G be any GBS group.

Theorem 1.6 Either Out.G/ contains a nonabelian free group, or it is virtually nilpo-
tent of class � 2.

1 1

2 2

Figure 2: Out.G/ is virtually the integral Heisenberg group H3 .

A group is nilpotent of class � 2 if and only if every commutator is central. As an
example, let GDha; s; t j saD as; ta2D a2ti (see Figure 2). Then Out.G/ is virtually
the integral Heisenberg group H3 , with�

1 i j
0 1 k
0 0 1

�
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mapping .a; s; t/ to .a; sak ; tsiaj /.

Which possibility of Theorem 1.6 occurs may be explicitly decided from the divisibility
relations in any labelled graph � representing G . We have seen that Out.G/ is virtually
abelian if there is none. A key observation is that certain divisibility relations force the
existence of F2 inside Out.G/.

a b c

5 4 2 3

Figure 3: Out.G/ contains F2 .

As a basic example, consider G D ha; b; c j a5 D b4; b2 D c3i (see Figure 3). It is
the amalgam of G1 D hai with G2 D hb; ci over C D hb4i. The divisibility relation
2 j 4 at the middle vertex implies that C is central in G2 . For any g 2 G2 , we may
therefore define an automorphism 'g of G as being the identity on G1 and conjugation
by g on G2 . It is easy to show that the subgroup of Out.G/ generated by the 'g ’s is
isomorphic to hb; c j b2 D c3 D 1i, hence contains F2 .

To prove Theorem 1.6, we assume that Out.G/ does not contain F2 and we describe
which divisibility relations may occur (Section 6). In Section 7, we show that, though
the GBS tree T may not be Out.G/–invariant, some (non GBS) tree S obtained from
T by collapsing certain edges is. We then prove that OutS .G/ is virtually nilpotent.

1 2

n

2

Figure 4: Out.G/ is virtually an infinitely generated abelian group if n is
not a power of 2 .

For instance, let G D ha; b; t j tbt�1 D b2; bn D a2i with n not a power of 2 (see
Figure 4). In this case, S is obtained from T by collapsing edges projecting onto the
loop of � . The group Out.G/ is virtually abelian (but not finitely generated).

A special case of Theorem 1.6 is the following Theorem.
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Theorem 1.7 If no label of � equals 1, then Out.G/ contains F2 or is a finitely
generated virtually abelian group.

As a corollary of our analysis, we show the following Theorem.

Theorem 1.8 The isomorphism problem is solvable for GBS groups G such that
Out.G/ does not contain F2 .

The isomorphism problem for GBS groups is to decide whether two labelled graphs
define isomorphic groups. It is solvable for groups with no non-trivial integral modulus
[13] and 2–generated groups [21], but open in general.

We also show the following.

Theorem 1.9 The set of prime numbers p such that Out.G/ contains non-trivial
p–torsion is finite.

The paper is organized as follows. In Section 2, we review basic properties of GBS
groups, such as algebraic rigidity and the modular homomorphism �. We extend to
GBS groups a result of Fel 0 shtyn–Goncalves [10] about twisted conjugacy classes. In
Section 3, we study OutT .G/, proving Theorem 1.1 and Theorem 1.9. Section 4 is
devoted to unimodular groups, Section 5 to the action of Out.G/ on PD . Theorem
1.6 is proved in Section 6 and Section 7. In Section 8 we discuss several special cases
and the isomorphism problem. Section 9 contains open questions.

Acknowledgements

I am grateful to M Forester and M Clay for useful suggestions and help with the section
on open questions and to P Papasoglu for pointing out that Out.BS.2; 4// is not finitely
generated.

2 Basic facts about GBS groups

Labelled graphs

A GBS group G is the fundamental group of a finite graph of groups � whose vertex
and edge groups are all infinite cyclic. It is torsion-free. Topologically, G is the
fundamental group of a 2–complex consisting of annuli (corresponding to edges of � )
glued to circles (corresponding to vertices).
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We denote by b the first Betti number of the graph � . Note the distinction between
G D �1.�/ and the topological fundamental group � top

1
.�/' Fb .

If we choose generators for edge and vertex groups, the inclusion maps are multiplica-
tions by non-zero integers. An oriented edge e thus has a label �e 2Znf0g, describing
the inclusion of the edge group Ge into the vertex group Go.e/ at the origin of e . As
in [13], we visualize the graph of groups as a labelled graph � , with the label �e

pictured near the origin o.e/.

A pair "D .e; xe/ of opposite edges is a non-oriented edge. It carries two labels, one
near either endpoint o.e/; o.xe/, and we say that " (or e ) is a .�e; �xe/–edge. An edge
is a loop if its endpoints are equal, a segment if they are distinct.

The group G associated to a labelled graph � may be presented as follows. Choose a
maximal subtree �0�� . There is one generator xv for each vertex v , and one generator
t" for each non-oriented edge " not in �0 . Each non-oriented edge "D .e; xe/ of �
contributes one relation. If " is contained in �0 , the relation is .xo.e//

�.e/D .xo.xe//
�.xe/ .

If " is not in �0 , the relation is te.xo.e//
�.e/t�1

e D .xo.xe//
�.xe/ .

Replacing the chosen generator of a vertex group Gv by its inverse changes the sign of
all labels near v . Replacing an edge group generator changes the sign of both labels
carried by the edge. These changes are admissible sign changes. Labelled graphs will
always be considered up to admissible sign changes.

When we focus on a particular edge, we always use admissible sign changes to make it
a .p; q/–segment with p; q > 0, or a .p; q/–loop with 1� p � jqj.

A .1; q/–loop is an ascending loop. It is a strict ascending loop if jqj> 1; note that G

then contains a solvable Baumslag–Solitar group BS.1; q/. A .p; q/–loop with p j q

is a pseudo-ascending loop.

GBS trees

Let G be the fundamental group of a labelled graph � . The associated Bass–Serre tree
is a locally finite G–tree T with all edge and vertex stabilizers infinite cyclic. Such
G –trees will be called GBS trees. Two trees are considered to be the same if there is a
G –equivariant isomorphism between them.

We always assume that the action is minimal: there is no proper G –invariant subtree.
In terms of � , this is equivalent to saying that the label near every terminal vertex is
bigger than 1. We also assume that actions are without inversions.

Given a GBS tree T , one obtains a labelled graph � D T=G , with the labelling
well-defined up to admissible sign changes [13, Remark 2.3]. This graph of groups is
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marked: there is an isomorphism from its fundamental group to G , well-defined up to
composition with an inner automorphism. The valence of a vertex v 2 T is the sum of
the absolute values of the labels near its image in � .

GBS trees T and marked labelled graphs � are thus equivalent concepts. We will
work with both. We usually use the same letter v (resp. e ) for a vertex (resp. edge) of
T and its image in � . When we need to distinguish, we write xv for the image of v in
� . We denote vertex stabilizers (vertex groups) by Gv , edge stabilizers (edge groups)
by Ge .

Collapses and algebraic rigidity

Collapsing an edge e of � (or equivalently a G –orbit of edges of T ) yields a new tree
S , which usually is not a GBS tree. It is a GBS tree if and only if e is a segment and at
least one of the labels �e , �xe equals 1. Such an edge will be called a collapsible edge.

In the proof of Theorem 1.6, we will collapse .2; 2/–edges and .1; q/–loops; these
are not collapsible edges. We usually denote by ‚ the collapsed graph of groups, by
� W T ! S the collapse map. The image of a vertex v 2 T is denoted by �.v/, or
sometimes just v . The stabilizer of �.v/ in S contains the cyclic group Gv , we call it
Hv (it will often be a solvable Baumslag–Solitar group). We use the same letter for a
non-collapsed edge of T and its image in S . It has the same stabilizer in both trees.

Collapsing a collapsible edge is called an elementary collapse. The reverse move is
an elementary expansion. Labels near o.e/ get multiplied by �xe when we collapse an
edge e with �e D 1 (see Figure 5).

λ λ

λ

p

q

� 1 r

s

p

q

�r

�s

Figure 5: Elementary collapse.

The graph � , or the tree T , is reduced (in the sense of Forester [11]) if there is no
collapsible edge. In terms of trees, T is reduced if and only if any edge e D vw

satisfying Ge DGv has its endpoints in the same G –orbit. Any tree may be reduced by
applying a finite sequence of elementary collapses (the reduction is not always unique).

A reduced GBS tree T is rigid if it is the only reduced GBS tree (up to equivariant
isomorphism). Building on work from Forester [11], Gilbert et al [14], Guirardel [15]
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1

�1

2 2 3 �3

5 5

7 3 2

5

�3

5

Figure 6: A labelled graph representing an algebraically rigid group.

and Pettet [30], it is shown in Levitt [23] that, if G is not solvable, T is rigid if and only
if � satisfies the following condition (see Figure 6): if e; f are distinct oriented edges
of � with the same origin v , and the label of f near v divides that of e , then either
e D xf is a .p;˙p/–loop with p � 2, or v has valence 3 and bounds a .1;˙1/–loop.

In particular, T is rigid whenever there is no divisibility relation in � (recall that a
divisibility relation is a relation p j q between two labels at the same vertex).

When there is a rigid GBS tree, we say that G is algebraically rigid. In this case, there
is only one reduced marked labelled graph representing G . See Mosher–Sageev–Whyte
[28] and Whyte [34] for quasi-isometric rigidity of GBS groups.

Non-elementary groups

We say that G is elementary if T may be chosen to be a point or a line. As vertices
of T then have valence at most 2, there are only four possibilities for � : a point, a
.1; 1/–loop, a .1;�1/–loop, a .2; 2/–segment. The corresponding groups are Z, Z2 ,
and the Klein bottle group hx; t j txt�1D x�1i D ha; b j a2D b2i, with Out.G/ equal
to Z=2Z, GL.2;Z/, and Z=2Z�Z=2Z respectively.

Though non-elementary, the solvable groups BS.1; n/ are special. For jnj > 1, the
group Out.BS.1; n// is virtually Zr�1 , where r is the number of prime divisors of n

[6]. More generally, see [6; 7; 14] for a presentation of Out.BS.m; n//.

From now on, we consider only non-elementary groups. Here are a few simple properties
(compare Forester [12]).

From the action of G on T , it is easy to see that a non-elementary GBS group either
is a solvable Baumslag–Solitar group BS.1; n/ (if it fixes an end of T ), or contains
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non-abelian free groups (if the action on T is irreducible). In particular, G always
has exponential growth. A finitely generated subgroup of G is free (if it acts freely on
T ) or is a GBS group. A non-elementary GBS group is one-ended, coherent and has
cohomological dimension 2 (Forester [12], Kropholler [18]).

Any GBS group maps onto Z (the presentation of G given earlier has more genera-
tors than relators). GBS groups are therefore locally indicable, hence orderable (see
Rhemtulla–Rolfsen [33]). Using the fact that ha; b j ap D bqi is bi-orderable only if
jpj or jqj equals 1, one shows that the only bi-orderable GBS groups are Fn �Z and
BS.1; n/ for n� 1.

Elliptic elements

Two subgroups H;K of G are commensurable if H \K has finite index in both H

and K . Two elements g; h are commensurable if hgi and hhi are commensurable,
equivalently if there is a relation gp D hq with p; q non-zero integers. The commen-
surator of g is the subgroup Comm.g/ consisting of all x 2 G such that xgx�1 is
commensurable to g .

Given any G –tree T , an element g 2G , or a subgroup H , is elliptic if it fixes a point.
If g is not elliptic, it is hyperbolic: there is an invariant axis, on which g acts as a
translation by some positive integer `.g/. Conjugate or commensurable elements have
the same type (elliptic or hyperbolic). A relation gapg�1D aq with jpj ¤ jqj implies
that a is elliptic, because its translation length satisfies jpj`.a/D jqj`.a/.

Lemma 2.1 (Forester [11]) Let T be a GBS tree, with G non-elementary. Any two
non-trivial elliptic elements g;g0 are commensurable. An element g 2 G is elliptic if
and only if its commensurator equals G .

Proof If g;g0 fix vertices v; v0 , one shows that they are commensurable by induction
on the distance between v and v0 . If g is hyperbolic, its axis is Comm.g/–invariant,
so Comm.g/¤G because G is not elementary.

Corollary 2.2 The set of elliptic elements depends only on G , not on the GBS tree
T . It is invariant under automorphisms of G .

As any two GBS trees have the same elliptic subgroups, Forester’s deformation theorem
[11] yields the following.

Corollary 2.3 Let G be a non-elementary GBS group. Any two GBS trees are related
(among GBS trees) by a finite sequence of elementary expansions and collapses.
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The quotient G=Gell of G by the subgroup generated by all elliptic elements may be
identified with the (topological) fundamental group � top

1
.�/ of the graph � (this is a

general property of graphs of groups). All labelled graphs representing G thus have
the same first Betti number, denoted by b .

All homomorphisms from G to a free group with non-abelian image factor through
the quotient map � W G!G=Gell ' Fb (because in a free group the commensurator of
any non-trivial element is cyclic). Since G always maps onto Z, the maximum rank of
a free quotient of G is max.b; 1/.

The modular homomorphism �

Let G be a non-elementary GBS group. The set E consisting of all non-trivial elliptic
elements is stable under conjugation, elements of E have infinite order, and any two
elements of E are commensurable. These properties yield a homomorphism � from
G to the multiplicative group of non-zero rationals Q� , defined as follows.

Given g 2 G , choose any a 2 E . There is a relation gapg�1 D aq , with p; q non-
zero, and we define �.g/ D p

q
. As pointed out in (Kropholler [19]), it is easily

checked that this is independent of the choices made (a and the relation), and defines a
homomorphism. We call �.g/ the modulus of g . Note that � ı ˛ D � if ˛ is any
automorphism of G , because E is ˛–invariant.

Let H be a finite index subgroup of G . Any GBS G–tree is also a GBS H –tree, so
H is a GBS group. The modular homomorphism of H is the restriction of that of G .

Every elliptic element has modulus 1, so � factors through the free group G=Gell'Fb .
In particular, � is trivial when � is a tree. If � is a labelled graph representing G , one
has G=Gell'�

top
1
.�/ and the modulus may be computed as follows (see Bass–Kulkarni

[1] and Forester [13]): if  2 � top
1
.�/ is represented by an edge-loop .e1; : : : ; em/, its

modulus is simply
mY

jD1

�ej

�xej

:

We denote by M the image of �. It is a subgroup of .Q�;�/. If GDBS.m; n/, then
M is generated by m

n
. If G is represented by the labelled graph of Figure 6, then M

is generated by �1 and �3
2

.

Remark Here is another way of viewing the modular homomorphism �. Let T be a
GBS tree, and Gv a vertex stabilizer. Since Gv is commensurable to all its conjugates,
the action of G on itself by conjugation induces a homomorphism � from G to the
abstract commensurator of Gv , which is canonically isomorphic to Q� (from this point
of view, it might be better to define �.g/ as q

p
rather than p

q
).
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Lemma 2.4 Let rD p
q

be a non-zero rational number, written in lowest terms. Assume
r ¤˙1.

(1) r 2M if and only if the equation xypx�1 D yq has a solution with y ¤ 1.

(2) If r 2 Z, then r 2 M if and only if G contains a subgroup isomorphic to
BS.1; r/.

Proof If p
q
2M , the equation xynpx�1 D ynq has a non-trivial solution for some

n 2 Z, so xypx�1 D yq has a non-trivial solution. Conversely, if jpj ¤ jqj and
xypx�1 D yq has a non-trivial solution, then y must be elliptic and therefore p

q
D

�.x/ 2M . We have proved .1/.

If xyr x�1 D y with y ¤ 1 and r an integer different from �1; 0; 1, then H D hx;yi

is a solvable GBS group, and �.x/ D r , so H ' BS.1; r/ (one may also show
H ' BS.1; r/ by arguing that the only torsion-free proper quotient of BS.1; r/ is
Z).

Remarks

� The values ˙1 are special. If G is represented by a labelled tree � containing a
.2; 2/–edge, then xyx�1 D y�1 has a non-trivial solution because G contains
a Klein bottle group, but �1 …M because � is a tree. Conversely, 1 always
belong to M , but BS.1; n/ does not contain Z2 D BS.1; 1/ for jnj> 1.

� It is probably not true that G always contains BS.p; q/ if p
q
¤˙1 is a modulus.

� Using �, it is easy to show that the isomorphism type of BS.m; n/ determines
m and n (normalized by 1�m� jnj) see Moldavanskiı̆ [27]. In most cases, m

and n are determined by m=n (given by �) and jm�nj (given by abelianizing).
To obtain m from the isomorphism type of BS.m;m/, observe that the quotient
of BS.m;m/ by its center is Z�Z=mZ.

We say that G has trivial modulus if M D f1g (we often write this as �D 1). It is
unimodular if M �f1;�1g, equivalently if xypx�1Dyq with y¤1 implies pD˙q .
As in [13], we say that G has no non-trivial integral modulus if M \Z�f1;�1g. This
is equivalent to saying that G contains no solvable Baumslag–Solitar group BS.1; n/

with n� 2 (we may take n> 0 because BS.1;�n/ contains BS.1; n2/).

Unimodular groups

Proposition 2.5 Let G be a non-elementary GBS group. The center Z.G/ of G is
infinite cyclic if G has trivial modulus, trivial otherwise. It acts as the identity on any
GBS tree.
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Proof Let T be any GBS tree (recall that T is always assumed to be minimal). If a

is central (more generally, if hai is normal), it is elliptic, as otherwise its axis would be
a G –invariant line. The fixed point set of a is a G –invariant subtree, so equals T by
minimality. This shows that Z.G/ is contained in the kernel of the action (elements
acting on T as the identity). In particular, it is trivial or cyclic.

If �.g/¤ 1 and a 2 E , there is a relation gapg�1 D aq with p ¤ q , so a cannot be
central. This shows that Z.G/ is trivial if G does not have trivial modulus. If � is
trivial, choose any finite generating system si for G , and a 2 E . For each i , there is a
relation sia

ni s�1
i D ani with ni ¤ 0. It follows that some power of a is central.

Proposition 2.6 Let G be a non-elementary GBS group. The following are equivalent:

(1) G is unimodular.

(2) G contains a normal infinite cyclic subgroup Z .

(3) G has a finite index subgroup isomorphic to Fn �Z for some n> 1.

The quotient of G by any normal infinite cyclic subgroup Z is virtually free.

Proof Suppose G is unimodular. The kernel of � has index 1 or 2, and has trivial
modulus. Its center is infinite cyclic and characteristic in G , so (1) implies (2).

Suppose Z is infinite cyclic and normal. Let T be any GBS tree. As in the proof of
Proposition 2.5, one shows that Z is contained in the kernel of the action. The quotient
G=Z acts on T with finite stabilizers, so is virtually free. This easily implies that G

is virtually Fn �Z.

If G is virtually Fn � Z, its modulus is trivial on a finite index subgroup, so M is
finite, hence contained in f1;�1g.

Remarks

� Let T be a GBS tree. If G is unimodular, we have seen that Z.ker.�// is
contained in the kernel of the action on T . Conversely, if the action has a
non-trivial kernel K , then G is unimodular (because K is normal and cyclic),
and furthermore K DZ.ker.�//. To see this, simply note that, if a generates
K , one has gag�1 D a˙1 for any g 2G , so a commutes with ker.�/.

� Two non-solvable GBS groups are quasi-isometric if and only if they are both
unimodular or both non-unimodular [34]. Any torsion-free group quasi-isometric
to Fn �Z with n> 1 is a unimodular GBS group [28].
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Twisted conjugacy classes

Let ˛W G ! G be an endomorphism. Two elements g;g0 2 G are ˛–conjugate if
there exists h such that g0 D hg˛.h/�1 . The number of ˛–conjugacy classes is the
Reidemeister number of ˛ , denoted by R.˛/. It is relevant for fixed point theory (see
Fel’shtyn–Goncalves [10]).

Proposition 2.7 Let ˛W G!G be an endomorphism of a non-elementary GBS group.
If one of the following conditions holds, then R.˛/ is infinite:

(1) ˛ is surjective.

(2) ˛ is injective and G is not unimodular.

(3) G D BS.m; n/ with jmj ¤ jnj, and the image of ˛ is not cyclic.

This generalizes results of [10] about Baumslag–Solitar groups.

Proof First suppose that G is unimodular and ˛ is surjective. The group G is
residually finite (because it is virtually Fn �Z), hence Hopfian. We therefore assume
that ˛ is an automorphism. The subgroup Z D Z.ker.�// is characteristic, so ˛
induces an automorphism ˇ on the virtually free group G=Z . As G=Z is a non-
elementary (word) hyperbolic group, R.ˇ/ is infinite (Levitt–Lustig [24], Fel’shtyn
[9]). This implies that R.˛/ is infinite.

From now on, we assume that G is not unimodular. If ˛ is an automorphism, we know
that � ı ˛ D �, so ˛–conjugate elements of G have the same modulus. As M is
infinite, we get R.˛/ infinite. This argument works in the general case, but we have to
prove � ı˛ D� for endomorphisms satisfying (1), (2), or (3).

We first claim that ˛ does not factor through � W G!G=Gell ' Fb . This is clear if (2)
or (3) holds. If a surjective ˛ factors as �ı� , then � ı� is a non-injective epimorphism
from Fb to itself, a contradiction because free groups are Hopfian.

We can now show � ı˛ D�. Since ˛ does not factor through � , there is an elliptic
a with ˛.a/ ¤ 1. As G is not unimodular, there is a relation g0amg�1

0
D an with

jmj ¤ jnj. From ˛.g0/˛.a/
m˛.g0/

�1 D ˛.a/n , we deduce that ˛.a/ is elliptic. Thus
˛.a/ is a non-trivial elliptic element, and may be used to compute �. Given any g , we
have a relation gapg�1 D aq . We then write ˛.g/˛.a/p˛.g/�1 D ˛.a/q , showing
that g and ˛.g/ have the same modulus p

q
.

Geometry & Topology, Volume 11 (2007)



On the automorphism group of generalized Baumslag–Solitar groups 487

3 The automorphism group of a GBS tree

General facts

Let G be any finitely generated group. As above, we consider G –trees up to equivariant
isomorphism. There is a natural action of Out.G/ on the set of G–trees, given by
precomposing an action of G on T with an automorphism of G (composing with an
inner automorphism does not change the tree).

Given T , we denote by OutT .G/ � Out.G/ its stabilizer: ˆ is in OutT .G/ if and
only if T , with the action of G twisted by ˆ, is equivariantly isomorphic to T with
the original action. When T is irreducible, this is equivalent to saying that the length
function ` satisfies ` ıˆD `.

We recall results of Levitt [22] about OutT .G/. We assume that T is minimal and is
not a line (but there is no condition on edge and vertex stabilizers in this subsection).
The quotient graph of groups is denoted by � , its vertex set by V .

There is a natural homomorphism from OutT .G/ to the symmetry group of � (viewed
as a graph with no additional structure). The kernel is a finite index subgroup OutT0 .G/,
and there is a homomorphism �W OutT0 .G/!

Q
v2V Out.Gv/. All automorphisms of

Gv which occur in the image of � preserve the set of conjugacy classes of incident
edge groups.

The kernel of � is generated by the group of twists T .T / together with automorphisms
called bitwists (bitwists belong to T .T / when vertex groups are abelian). The group
T .T /, which we also denote by T .�/, will play an important role in the sequel. Before
defining it, we mention that, when edge groups are cyclic, there is a further finite index
subgroup OutT1 .G/ � OutT0 .G/ with OutT1 .G/\ ker � D T .T /. It will be used in
Section 7.

To define T .T /, we first consider an oriented edge e of � , with origin o.e/D v . Let
Ge , Gv be the corresponding edge and vertex groups, with Ge identified to its image
in Gv . We denote by ZGv

.Ge/ the centralizer of Ge in Gv .

Given z 2 ZGv
.Ge/, we define the twist D.z/ 2 Out.G/ by z around e as follows

(see [22] for details). If e is separating, it expresses G as an amalgam GDG1�Ge
G2 .

Then D.z/ is defined as the identity on G1 , and conjugation by z on G2 . If e does
not separate, G is an HNN–extension and D.z/ maps the stable letter t to zt (keeping
the base group fixed).

The group of twists T .T /, or T .�/, is the subgroup of Out.G/ generated by all twists.
As twists around distinct edges commute, T .�/ is a quotient of

Q
ZGo.e/

.Ge/, the
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product being taken over all oriented edges of � . [22, Proposition 3.1] says that only
two types of relations are needed to obtain a presentation of T .�/.

For each pair of opposite edges .e; xe/, there are edge relations associated to elements
z in the center Z.Ge/ (twisting by z near the origin of e defines the same outer
automorphism as twisting by z�1 near the origin of xe ). For each vertex v , there
are vertex relations associated to elements z 2Z.Gv/ (twisting by z simultaneously
around all edges with origin v defines an inner automorphism).

Remark 3.1 Let e�� be a segment such that both adjacent vertex groups are abelian.
Using the vertex relations, one sees that T .�/ is generated by the groups ZGo.f /

.Gf /

with f ¤ e; xe . Collapsing e yields a new graph of groups whose group of twists
contains T .�/.

Our main tool for finding free groups F2 in Out.G/ will be the following Lemma.

Lemma 3.2 Let � be a minimal graph of groups, with fundamental group G . Let e

be an edge with origin v , and let Ge , Gv be the corresponding groups. The subgroup
T .�/� Out.G/ maps onto ZGv

.Ge/=hZ.Gv/;Z.Ge/i.

We denote by hZ.Gv/;Z.Ge/i the (obviously normal) subgroup generated by the
centers of Gv and Ge .

Proof Divide T .�/ by (the image of) all factors ZGo.f /
.Gf / for f ¤ e (including

f D xe ). The only relations which remain are those involving ZGv
.Ge/, namely edge

relations associated to .e; xe/ and vertex relations associated to v . The quotient is
precisely ZGv

.Ge/=hZ.Gv/;Z.Ge/i.

The group of twists of a GBS tree

Now let G be a non-elementary GBS group. We consider the action of Out.G/ on the
set of GBS trees. The corresponding action on the set of marked graphs is by changing
the marking. If T is rigid, then OutT .G/D Out.G/.

The group of twists T .T / is a finitely generated abelian group. The presentation
recalled above may be rephrased as follows (we use additive notation).

Given an oriented edge e of � , there is one generator De . If e is separating, De is
the identity on G1 , and conjugation by xv on G2 (with xv the generator of the vertex
group at v D o.e/, and G D G1 �Ge

G2 as above). If e does not separate, choose a
maximal tree �0 not containing e . In the corresponding presentation of G , define De

as mapping te to xo.e/te and keeping all other generators fixed.
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In terms of these generators De , the relations are the following. For each pair of
opposite edges .e; xe/, there is an edge relation �eDe C �xeDxe D 0, implied by the
relation .xo.e//

�.e/D .xo.xe//
�.xe/ or te.xo.e//

�.e/t�1
e D .xo.xe//

�.xe/ . For each vertex v ,
there is a vertex relation

P
e2Ev

De D 0, with Ev the set of edges with origin v .

Remark Recall that G is in a natural way the fundamental group of a 2-complex
consisting of annuli glued to circles. One can consider the subgroup DT .�/ of T .�/
generated by Dehn twists supported in the annuli. It is easy to see that it has finite index.
One may also show T .�/ D DT .� 0/, where � 0 is a (non reduced) graph obtained
from � by elementary expansions.

Recall that b is the first Betti number of any labelled graph � representing G .

Proposition 3.3 Let G be a non-elementary GBS group. Define k as b if G has
trivial modulus, b� 1 if not.

(1) The torsion-free rank rk.Gab/ of the abelianization Gab is kC 1.

(2) Let � be any labelled graph representing G . The torsion-free rank of the abelian
group T .�/ is k .

(3) If �0 � � is a maximal subtree, the twists De around the edges of � n �0

generate a finite index subgroup of T .�/.

Proof Killing all elliptic elements produces an epimorphism � W G!Fb (see Section
2), so rk.Gab/ � b . If � is non-trivial, any elliptic element a satisfies a relation
gapg�1 D aq with p ¤ q , so is mapped trivially to torsion-free abelian groups. This
shows rk.Gab/D b in this case.

If � is trivial, fix � and �0 . It follows from the presentation of G given earlier that Gab

is the direct sum of Zb with the abelian group G0 defined by the following presentation:
there is one generator xv for each vertex of � , and one relation �exo.e/ D �xexo.xe/ for
each pair of opposite edges .e; xe/. We show that G0 maps non-trivially to Z. It is easy
to map the generators xv to Z in such a way that relations associated to edges in �0

are satisfied. Using the formula

�. /D

mY
jD1

�ej

�xej

(see Section 2), one sees that the remaining relations are automatically satisfied. We
get rk.Gab/D bC 1.
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Assertion (2) follows immediately from Proposition 2.5 and the exact sequence

0!Z.G/! Z�C�! Z2�
! T ! 0

given by [22, Proposition 3.1], where � (resp. � ) is the number of vertices (resp. edges)
of � (we are grateful to M Clay for suggesting this short argument).

Assertion (3) follows from the presentation of T .�/ in terms of the generators De .
If we add the relations De DDxe D 0 for e … �0 , the quotient is the group of twists
associated to the labelled graph �0 , so is finite by Assertion (2).

Remark 3.4 One may decide whether a given De has finite or infinite order. View
� as a map defined on � top

1
.�/. If e does not separate, the order of De is finite if

and only if G has non-trivial modulus, but every curve not containing e has trivial
modulus. If e separates, the order is infinite if and only if each component of � n feg
contains a curve with non-trivial modulus.

The groups T .T / associated to different GBS trees are abstractly commensurable by
Proposition 3.3. We show that they are commensurable as subgroups of Out.G/.

Proposition 3.5 If T;T 0 are two GBS trees, then T .T / and T .T 0/ are commensu-
rable subgroups of Out.G/.

Proof By Corollary 2.3, it suffices to show that T .T 0/ is commensurable with T .T /
if T 0 is obtained from T by an elementary collapse. Consider the corresponding graphs
�; � 0 . Let e D vw � � be the collapsed edge. We assume �e D 1, and we denote �xe
by �, so Gv has index � in Gw .

Let F be the set of oriented edges of � other than e; xe . The group T .T / is the
subgroup of Out.G/ generated by the twists Df , f 2 F (see Remark 3.1). Similarly,
T .T 0/ D hD0

f
j f 2 Fi, as F may be viewed as the set of oriented edges of � 0 .

Moreover, we have Df D D0
f

if the origin of f is not v , and Df D �D0
f

if it is
because the collapse replaces the vertex group Gv of � by the larger group Gw . This
shows that T .T 0/ contains T .T / as a subgroup of finite index.

Remark 3.6 The index of T .T / in T .T 0/ divides a power of the label �. This will
be used in the proof of Theorem 3.12.
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Applications

We apply the preceding results to the study of OutT .G/, using the following fact.

Proposition 3.7 (Levitt [22]) T .T / has finite index in OutT .G/.

This follows from [22, Theorem 1.6], as edge and vertex groups have finite outer
automorphism groups. More precisely, let us show the following Proposition.

Proposition 3.8 Given G , the index of T .T / in OutT .G/ is uniformly bounded
(independently of T ).

Proof Consider the chain of subgroups T .T /� ker � � OutT0 .G/� OutT .G/ men-
tioned at the beginning of this section. We check that each group has uniformly bounded
index in the next.

The index of OutT0 .G/ in OutT .G/ is bounded by the order of the symmetry group
of � . The number of edges of � is not always uniformly bounded, but the first Betti
number is fixed, and there is a uniform bound for the number d of terminal vertices
(because adding the relations xvD 1, for v non-terminal, maps G onto the free product
of d non-trivial finite cyclic groups). This is enough to bound the symmetry group.

The map � describes how automorphisms act on vertex groups. Since these groups are
all commensurable, and isomorphic to Z, the image of � has order at most 2, so ker �
has index at most 2 in OutT0 .G/. Finally, ker � is generated by T .T / together with
bitwists. As vertex groups are abelian, bitwists belong to T .T /, so T .T /D ker � .

If T is rigid, then OutT .G/D Out.G/. We get the following Theorem.

Theorem 3.9 If G is algebraically rigid, then Out.G/ contains Zk as a subgroup of
finite index.

In general, we have the following Theorem.

Theorem 3.10 Up to commensurability, the subgroup OutT .G/ of Out.G/ does not
depend on T . It contains Zk with finite index.

Another proof of the first assertion (and therefore of Proposition 3.5, but not of Remark
3.6) is given in Section 5. Also note the following related result.

Theorem 3.11 (Clay [5]) Any subgroup of Out.G/ commensurable with a subgroup
of OutT .G/ is contained in OutT

0

.G/ for some GBS tree T 0 .
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We now prove the following Theorem.

Theorem 3.12 The set of prime numbers p such that Out.G/ contains non-trivial
p–torsion is finite.

Proof As any torsion element of Out.G/ is contained in some OutT .G/ by [5], and
the index of T .T / in OutT .G/ is uniformly bounded by Proposition 3.8, it suffices to
control torsion in groups of twists.

First note that the set of prime numbers dividing a label of � does not depend on � , as
it does not change during an elementary collapse. Call it P . If T and T 0 are related by
an elementary collapse, Remark 3.6 shows that T .T / and T .T 0/ have torsion at the
same primes, except possibly those in P . This implies that only finitely many primes
may appear in the torsion of a group of twists: those in P , and those in the torsion of
T .T0/ for some fixed T0 .

We have seen that Out.BS.2; 4// contains arbitrarily large 2–torsion.

The proof of Theorem 3.12 also shows the following Corollary.

Corollary 3.13 If p is a prime number such that Out.G/ contains p–torsion of arbi-
trarily large order, then p divides at least one label of each labelled graph representing
G .

We do not know whether p must divide some integral modulus.

4 Unimodular groups

Let � be a labelled graph representing a non-elementary unimodular group G , and
T the associated Bass–Serre tree. We denote by GC the kernel of �W G ! f˙1g

(positive elements). All elliptic elements are positive. Let Z be the center of GC . We
know that it is cyclic, characteristic in G , and acts as the identity on T .

We fix a non-trivial ı 2Z . If �D 1 we may take ı to be a generator ı0 , but the study
of Out.G/ when �¤ 1 will require ı to be .ı0/4 . Note that any generator of an edge
or vertex group is a root of ı .

Let Z0 be the cyclic group generated by ı . There is an exact sequence f1g !Z0!

G ! H ! f1g with H virtually free. The group H is the fundamental group of a
graph of groups with the same underlying graph. Vertex and edge groups are finite
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cyclic groups, the order being the index of hıi in the original group. We denote by xg
the image of g 2G in H .

Since Z0 is characteristic in G , there are natural homomorphisms Aut.G/! Aut.H /

and Out.G/! Out.H /. The basic example is Out.Fn �Z/, which contains the semi-
direct product Zn Ì Out.Fn/ with index 2 (the factor Zn should be thought of as
Hom.Fn;Z/). But the following examples illustrate a few of the subtleties involved
when trying to lift automorphisms from H to G .

Examples

� Let G be ha; b j a3 D b3i and H be hxa; xb j xa3 D xb3 D 1i. The automorphism
of H mapping xa to xa�1 and xb to xb does not lift to G .

� G is BS.3; 3/Dha; t j ta3t�1Da3i and H is hxa;xt j xa3D1i. The automorphism
fixing xa and sending xt to xt xa has order 3, but all its lifts have infinite order.

� G is BS.2;�2/D ha; t j ta2t�1D a�2i and H is hxa;xt j xa2D 1i. Conjugation
by xa in H has lifts of order 2, such as a 7! a; t 7! ata, or a 7! a�1; t 7! ata�1 ,
but no lift of order 2 is inner.

Let HC be the image of GC in H . If �¤ 1, it has index 2 (because ı is positive).
There are only finitely many conjugacy classes of torsion elements in H (they all come
from vertex groups). All torsion elements of H belong to HC , but a conjugacy class
in H may split into two classes in HC .

We shall now define a homomorphism � W G! Isom.R/ (it is similar to the homomor-
phism G0! Z constructed in the proof of Proposition 3.3). We fix a maximal tree
�0 � � . Recall the presentation of G with generators xv; t" and relations of the form
xm
v D xn

w or t"x
m
v t�1
" D xn

w .

To define � , send ı to x 7! x C 1, send xv to x 7! x C 1=nv if ı D x
nv
v , send t"

to x 7!�.t"/x , and check that the relations are satisfied. This � is not canonical (it
depends on the choice of �0 ); it is uniquely defined on elliptic elements once ı has
been chosen.

The image of � in Isom.R/ is infinite cyclic if �D 1, infinite dihedral if �¤ 1. Its
kernel contains no non-trivial elliptic element. The coefficient of x in �.g/ is �.g/,
and �.gcg�1/D �.c/�.g/ if c is positive (in particular if c is elliptic).

The map � induces a map x� from H to a finite group F (the quotient of the image of
� by x 7! xC 1). The group F is cyclic if �D 1, dihedral if �¤ 1.

Definition We define the finite index subgroup Aut0.H / � Aut.H / as the set of
automorphisms x̨ such that:
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(1) x̨.HC/DHC .

(2) x̨ acts trivially on the set of HC–conjugacy classes of torsion elements.

(3) x� ı x̨ D x� .

Lemma 4.1 Let x̨ 2 Aut0.H /. There exists a unique lift ˛ 2 Aut.G/ such that
� ı˛ D � . It satisfies ˛.ı/D ı .

Proof Uniqueness is easy: ˛.g/ is determined up to a power of ı , and that power is
determined by applying � .

We define ˛ on the generators of G . In H , the element xxv has finite order and therefore
is mapped by x̨ to xgvxxvxg�1

v for some xgv 2HC . We define ˛.xv/D gvxvg
�1
v , where

gv 2GC is any lift of xgv . Note that �.˛.xv//D �.xv/ because xv and gv are positive.
If xm

v D xn
w is a relation, then ˛.xv/m˛.xw/�n is 1 because it is killed both in H

and by � . Note that ˛.ı/D ˛.xnv
v /D gvx

nv
v g�1

v D ı .

Now consider a generator t" , and a lift u" of x̨.xt"/. Since x� ı x̨ D x� , the elements t"
and u" have the same image in F , so �.t"u�1

" / is translation by an integer n" . We
define ˛.t"/ as ın"u" , so that �.˛.t"//D �.t"/. Given a relation t"x

m
v t�1
" D xn

w , the
relation ˛.t"/˛.xv/m˛.t"/�1 D ˛.xw/

n holds modulo ı . It also holds when we apply
� , so it holds in G .

We have constructed an endomorphism of G fixing ı and inducing x̨ , and this forces
it to be an automorphism.

Let Aut0.G/ � Aut.G/ be the finite index subgroup consisting of automorphisms
fixing ı and mapping into Aut0.H /. We know that the map 'W Aut0.G/! Aut0.H /

is onto and has a section. We consider its kernel.

Lemma 4.2 The kernel N of 'W Aut0.G/! Aut0.H / is isomorphic to Zb . It is
generated by twists by ı around the edges of � n�0 .

Recall that b is the first Betti number of � .

Remark It is a general fact that, whenever Z �G is characteristic, the kernel of the
map Aut.G/! Aut.Z/�Aut.G=Z/ is abelian (Raptis–Varsos [32, Proposition 2.5]).
To see this, take ˛1; ˛2 in the kernel. Write ˛1.g/ D z1g and ˛2.g/ D gz2 (with
z1; z2 2Z , depending on g ), and deduce ˛1˛2.g/D ˛2˛1.g/D z1gz2 (one can also
prove that z1 must be in the center of G )
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Proof Suppose ˛ 2N . We have ˛.ı/D ı . If x is a root of ı , we have ˛.x/D xıp

and ı D xq , so that ı D ˛.xq/D ııpq and p D 0. Therefore ˛ fixes every elliptic
element. Furthermore ˛.t"/D ın" t" for some n" 2 Z, so ˛ is a product of powers of
twists by ı . Conversely, each choice of integers n" determines an automorphism fixing
all elliptic elements and belonging to N .

We have proved the following Theorem.

Theorem 4.3 If G is non-elementary and unimodular, there is a split exact sequence

f1g ! Zb
! Aut0.G/

'
! Aut0.H /! f1g;

where H is virtually free and Aut0 has finite index in Aut.

We shall now show the following.

Theorem 4.4 If G is non-elementary and unimodular, there is a split exact sequence

f1g ! Zk
! Out0.G/

 
! Out0.H /! f1g;

where H is virtually free and Out0 has finite index in Out.

See Proposition 3.3 for the definition and properties of k .

Since Out.H / is VF [20], this implies the following Corollary.

Corollary 4.5 Out.G/ and Aut.G/ are virtually torsion-free and VF (they have finite
index subgroups with finite classifying spaces).

Proof of Theorem 4.4 We denote by Out0 the image of Aut0 in Out (note that Aut0
does not contain all inner automorphisms if � ¤ 1), and by yN the image of N in
Out.G/. Let  W Out0.G/! Out0.H / be the natural map. Note that yN is contained
in ker , and has torsion-free rank k by Lemma 4.2 and Assertion (3) of Proposition
3.3. We shall show ker D yN ' Zk . We write ig for conjugation by g .

First assume �D 1. Then k D b , and yN ' Zb because it has torsion-free rank b and
is a quotient of N ' Zb . Since the image of � is abelian, every conjugation ig in G

satisfies � ı ig D � , and Lemma 4.1 lifts ih 2 Aut0.H / to ig , where g is any lift of h.
Thus  has a section.

There remains to show ker � yN . If ˛ 2 Aut0.G/ represents an element of ker ,
its image x̨ in Aut0.H / is conjugation by some h 2H . Lift ih to ig 2 Aut0.G/, and
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consider i�1
g ˛ . It belongs to N , and has the same image as ˛ in Out.G/. This implies

ker D yN .

Now suppose �¤ 1. In this case we have to choose ıD .ı0/4 , where ı0 is a generator
of Z (the center of GC ). We first show that ker D yN . The argument is the same as
before, but we have to prove that ih has a lift ig 2 Aut0.G/ (we will see that Lemma
4.1 lifts inner automorphisms to inner automorphisms, but we cannot claim it at this
point). Since x� ı x̨ D x� , the image x�.h/ is central in F . Our choice of ı ensures
that the center of F has order 2 (it is generated by the image of x 7! xC 1=2). In
particular, h is positive. If g 2G is a lift of h, it commutes with ı and therefore ig
belongs to Aut0.G/.

We now prove yN ' Zb�1 . Recall that yN has torsion-free rank b� 1.

Consider the twist D by ıD .ı0/4 around the edges " of � n�0 such that �.t"/D�1

(it fixes the generators xv , and maps t" to t" if �.t"/D 1, to ıt" if �.t"/D�1). Note
that D is conjugation by .ı0/2 . Indeed, the t" ’s with modulus 1, and the xv ’s, are
fixed by D and commute with ı0 , whereas .ı0/4t" D .ı0/

2t".ı0/
�2 if t"ıt

�1
" D ı

�1 .
Since D belongs to a basis of N (see Lemma 4.2), the image yN of N in Out.G/ is
isomorphic to Zb�1 .

Finally, we show that Lemma 4.1 lifts inner automorphisms to inner automorphisms
(and therefore  has a section).

Suppose ih belongs to Aut0.H /. Then x�.h/ is central in F , and therefore x�.h2/ is
trivial. If g 2G is a lift of h2 , then �.g/ is an integral translation and we can redefine
g (multiplying it by a power of ı ) so that �.g/ is trivial. Then �.gug�1/D �.u/ for
every u 2G , showing that Lemma 4.1 lifts conjugation by h2 to conjugation by g in
G . Now consider the lift ˛ of ih given by Lemma 4.1. It satisfies ˛2 D ig , and its
image in Out.G/ belongs to ker . Since ker D yN is torsion-free, we conclude that
˛ is inner.

5 The deformation space

Let G be a non-elementary GBS group. In this section, we work with metric GBS
trees: T is a metric tree, and G acts by isometries. Metric trees are considered up to
G –equivariant isometry.

Let D be the space of metric GBS trees, and PD its projectivization (obtained by
identifying two trees if they differ by rescaling the metric). We call PD the (canonical)
projectivized deformation space of G .
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Choosing a G–invariant metric on a given simplicial tree amounts to assigning a
positive length to each edge of � D T=G . This makes PD into a complex. An open
simplex is the set of trees with a given underlying simplicial tree, a closed simplex is
the set of GBS trees that may be obtained from trees in an open simplex by elementary
collapses (closed simplices have “faces at infinity”, as the length of a non-collapsible
edge is not allowed to be 0). Every closed simplex contains reduced trees.

The group Out.G/ acts on PD . There is a bijection between the set of orbits of
open simplices and the set of (unmarked) labelled graphs representing G (up to
admissible sign changes). Standard techniques show that PD has a natural Out.G/–
equivariant deformation retraction onto a simplicial complex (see Culler–Vogtmann [8]
and McCullough–Miller [26]).

GBS trees are locally finite. This implies that the complex PD is locally finite. Indeed,
closed simplices containing T consist of simplicial trees obtained from T by expansion
moves. Performing such moves on T amounts to blowing up each vertex v of T into
a subtree. Since v has finite valence, there are only finitely many ways of expanding
(not taking the metric into account). As remarked by M Clay, this local finiteness gives
another proof of the first assertion of Theorem 3.10.

In general, there are several ways to define a topology on spaces of trees (equivariant
Gromov–Hausdorff topology, axes topology, weak topology), but because of local
finiteness they all coincide on PD (see the discussion in Guirardel–Levitt [16; 17]).
Clay [4] proved that PD is contractible (see also [16]). By Theorem 3.10, stabilizers
for the action of Out.G/ on PD are virtually Zk .

This is summed up by the following Proposition.

Proposition 5.1 Out.G/ acts on the locally finite, contractible, complex PD with
stabilizers virtually Zk .

If G is algebraically rigid, the unique reduced GBS tree belongs to every closed simplex,
PD is a finite complex, and the action of Out.G/ on PD has a fixed point. If G is not
algebraically rigid, we will show that OutT .G/ always has infinite index in Out.G/
(see Theorem 8.5). All Out.G/–orbits are therefore infinite.

Under suitable hypotheses, we now show that PD is “small” and we deduce information
on Out.G/.

Groups with no non-trivial integral modulus

Suppose that G has no integral modulus other than ˙1 (equivalently, G does not
contain a solvable Baumslag–Solitar group BS.1; n/ with n> 1). In this case, there
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are only finitely many Out.G/–orbits of simplices consisting of reduced trees [13,
Theorem 8.2], and therefore Out.G/ acts on the complex PD with only finitely many
orbits. This implies the following Theorem.

Theorem 5.2 Let G be a non-elementary GBS group with no integral modulus other
than ˙1.

(1) Out.G/ is F1 (it has a K.�; 1/ with finitely many cells in every dimension).

(2) There is a bound for the cohomological dimension of torsion-free subgroups of
Out.G/.

(3) If Out.G/ is virtually torsion-free, it has a finite index subgroup with a finite
classifying space.

(4) Out.G/ contains only finitely many conjugacy classes of finite subgroups.

Proof The first three assertions follow from Proposition 5.1 by standard techniques.
Unfortunately, we do not know whether Out.G/ must be virtually torsion-free when
G is not unimodular. Assertion (4) follows from Theorem 3.10 and Theorem 3.11:
Any finite subgroup is contained in some OutT .G/, and it is well-known that there are
finitely many conjugacy classes of finite subgroups in a group which is virtually Zk (a
proof appears in Levitt [22]).

Groups with no strict ascending loop

It is shown in [16] that, if no reduced labelled graph contains a strict ascending
loop, there is an Out.G/–equivariant deformation retraction from PD onto a finite-
dimensional subcomplex. This implies the following Theorem.

Theorem 5.3 If no reduced labelled graph representing G contains a strict ascending
loop, there is a bound for the cohomological dimension of torsion-free subgroups of
Out.G/.

6 Free subgroups in Out.G /

Let � be a labelled graph. Recall that we consider it up to admissible sign changes. In
particular, when we focus on an edge, we will always assume that it is a .p; q/–segment
with p; q � 1 (� 2 if � is reduced), or a .p; q/–loop with 1 � p � jqj. Recall that
a strict ascending loop is a .1; q/–loop with jqj � 2. A pseudo-ascending loop is a
.p; q/–loop with p j q .
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q p q

�q

Figure 7: Slide move.

If e; f are distinct oriented edges with the same origin v , and the label �f of f at v
divides the label �e of e , one may slide e across f , replacing its label by �e

�f
� xf (see

Figure 7); both e and f may be loops, but they have to be distinct geometric edges
(f ¤ xe ). See [13] for details about slide moves. The important thing for us here is that
performing a slide move on a labelled graph gives another labelled graph representing
the same group G (only the GBS tree changes).

An edge f is a slid edge if some other edge may slide across f or xf (we usually
think of slid edges as non-oriented edges). For example, any .1; q/–loop is a slid edge
if � contains more than one edge (ie if G is not solvable).

The goal of this section is to prove the following result (see Figure 8, where the numbers
within parentheses refer to the assertions of the theorem).

Theorem 6.1 Let � be a reduced labelled graph representing G . Suppose that Out.G/
does not contain F2 . Then:

(1) A slid edge is either a .2; 2/–segment or a .1; q/–loop.

(2) Slid edges are disjoint.

(3) A pseudo-ascending loop is a .p;˙p/–loop or a .1; q/–loop.

(4) If v is the basepoint of a .1; q/–loop with jqj � 2, then no other label at v
divides a power of q .

(5) If v is the basepoint of a .1; q/–loop with jqj � 2, and r; s are two labels at v
not carried by the loop, then s does not divide any rqn .

(6) Let vw be a .2; 2/–segment. Let r be a label at v , and s a label at w (other
than those carried by vw ). If r j s and s is even, then r D s and the labels are
carried by the same non-oriented edge.

We prove Theorem 6.1 in several steps. Our two main tools will be slide moves and
Lemma 3.2.
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Figure 8: If � contains one of these graphs, Out.G/ contains F2 .

Slid segments are .2 ; 2/–segments

Let f be a slid .p; q/–segment with p; q � 2. Consider the graph of groups ‚
obtained by collapsing f . It has a vertex group Hv isomorphic to ha; b j ap D bqi.
Let e be an edge of � that may slide across f , viewed as an edge of ‚. Its group
Ge is generated by a power of ap , so is central in Hv . By Lemma 3.2, the group
T .‚/� Out.G/ maps onto

J DZHv
.Ge/=hZ.Hv/;Z.Ge/i D ha; b j a

p
D bq

D 1i:

If .p; q/¤ .2; 2/, the group J contains F2 , so Out.G/ contains F2 .

Remark 6.2 For future reference, note that T .‚/ contains T .�/ by Remark 3.1,
and furthermore the image of T .�/ in J is finite. To see this, recall that T .�/ is
generated by the groups ZGo.f 0/

.Gf 0/ with f 0 ¤ f; xf (Remark 3.1). All these groups
have trivial image in J , except ZGo.e/

.Ge/ whose image is finite.
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Slid loops are .1; q/–loops

We assume that e slides across a .p; q/–loop f with 2 � p � jqj, and we show
that Out.G/ contains F2 . If jqj � 3, we create a slid .p; q/–segment by performing
an expansion move (replacing the loop by a .p; q/–segment and a .1; 1/–segment),
and we apply the previous argument (which is valid even if the labelled graph is not
reduced). If f is a .2;˙2/–loop, we collapse it and we apply Lemma 3.2. We now
have Hv D ha; t j ta

2t�1D a˙2i, and He is generated by a power of a2 . The quotient
ZHv

.Ge/=hZ.Hv/;Z.Ge/i is isomorphic to Z�Z=2Z, so contains F2 .

Pseudo-ascending loops are .p;˙p/–loops or .1; q/–loops

This amounts to showing that � cannot contain an .r; rs/–loop with r � 2 and jsj � 2.
If it does, write G D G1 �hai G2 , with G1 D ha; t j ta

r t�1 D arsi. By [7], there
exist two automorphisms of G1 fixing a and generating a free subgroup of rank 2
in Out.G1/ (in the notation of [7], set ˛r D '0 D � D 1 to see that the subgroup of
Out.G1/ generated by ˛ and 2 maps onto Z=rZ�Z=s2Z). Extend the automorphisms
by the identity on G2 and check that they generate F2 � Out.G/.

Here is another argument, valid when r or jsj is bigger than 2: perform an expansion
and a slide to obtain a graph with a slid .r; s/–segment.

Slid edges are disjoint

We argue by way of contradiction. There are several cases to consider (they are pictured
from right to left on the top half of Figure 8). First suppose that v belongs to a slid
.2; 2/–segment f and a .1; q/–loop f 0 . If q is even, one may slide f 0 across f and
then collapse f 0 . This creates a .2; 2q/–loop, a contradiction. If q is odd, some other
edge may slide across f . Sliding f around f 0 makes f a slid .2; 2q/–segment, a
contradiction if jqj> 1. If q D˙1, collapse both f and f 0 and apply Lemma 3.2.

Now suppose v belongs to a .1; q/–loop f and a .1; r/–loop f 0 . If jqj � 2, sliding f 0

around f makes it a .q; r/–loop, and then sliding xf 0 twice makes it a .q; q2r/–loop. If
jqjD jr jD 1, we may write G as an amalgam G1�haiG2 , with G2Dha; t; t

0 j tat�1D

a˙1; t 0at 0�1 D a˙1i. It is easy to embed F2 into Out.G/ by using automorphisms of
G2 fixing a.

Finally, suppose that .2; 2/–segments f and f 0 have a vertex v in common. We may
assume that their other endpoints are distinct, as otherwise sliding f across f 0 would
create a slid .2;˙2/–loop.
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The fundamental group of the subgraph of groups f [f 0 is J Dha; b; c ja2Db2D c2i.
Consider the following automorphisms ˛; ˇ of J : ˛ fixes a and b and conjugates c

by ba, while ˇ fixes b; c and conjugates a by bc . They extend to automorphisms
of G (they are twists in the graph of groups obtained from � by collapsing f 0 and
f respectively). We claim that ˛; ˇ generate a free nonabelian subgroup of Out.J /
(hence also of Out.G/ because J is its own normalizer).

Indeed, consider xJ ' Z=2Z �Z=2Z �Z=2Z obtained by adding the relation a2 D 1.
Let JC � xJ be the subgroup of index 2 consisting of elements of even length. It is
free with basis fxaxb; xbxcg. With respect to this basis, ˛ acts on the abelianization of JC

as the matrix
�

1 2
0 1

�
, ˇ acts as

�
1 0
2 1

�
, and inner automorphisms of xJ act as ˙Id. It

follows that there is no non-trivial relation between ˛ and ˇ in Out.J /.

Labels near a .1; q/–loop

Let v be the basepoint of a .1; q/–loop. We already know that no other label r at v
equals 1 or divides q (it would be carried by a slid edge). Suppose that r divides some
qn . Let ` be a prime divisor of r . Expand v so as to create a .1; `/–segment, and
collapse the .1; q

`
/–edge (see Figure 9). The new labelled graph is isomorphic to � ,

except that r has been divided by ` and other indices at v have been multiplied by q
`

.
Repeat this operation until r divides q , a case already ruled out.

ℓ
ℓ

ℓ ℓ

q 1

r r 0

q=`
1

r=` r 0

` 1 q

r=`

1

r 0q=`

Figure 9: Replacing r by r=` .

Now let r; s be labels at v carried by edges e; f , with s j rqn . If f ¤ xe , we can
make e a slid edge by sliding it n times across the loop. If f D xe , we can create an
.s; rqnC1/–loop, contradicting (3).

Labels near a .2 ; 2/–segment

Let vw be a .2; 2/–segment. We already know that all other labels at v and w are
bigger than 2 in absolute value. Furthermore, if r; s are labels at the same vertex (v or
w ), and r j s , then r D˙s and they are carried by a loop. Assertion (5) of the theorem
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follows: since s is even, one can perform a slide across vw so that s becomes a label
at v .

7 Groups with Out.G / 6� F2

In this section, we complete the proof of Theorem 1.6 by showing the following.

Theorem 7.1 If a non-elementary GBS group G is represented by a reduced labelled
graph � satisfying the conclusions of Theorem 6.1, then Out.G/ is virtually nilpotent
of class at most 2.

The theorem is true if G is a solvable Baumslag–Solitar group [6], so we rule out this
case. As we wish to study the whole automorphism group of G , it is important in this
proof to think of � as a marked graph. As usual, we denote by T its Bass–Serre tree.

In general, there are many graphs representing G , and the first step in the proof of
Theorem 7.1 will be to show that collapsing the slid edges of � yields a marked graph
of groups ‚ and a (non GBS) tree S which are canonical (they do not depend on � ).
In the language of [11], we first show that all possible trees S belong to the same
deformation space, and then using [23] that there is only one reduced tree in that space.
In particular Out.G/D OutS .G/, and we shall conclude the proof of Theorem 7.1 by
showing that OutS .G/ is virtually nilpotent.

We know that the slid edges of � are disjoint, and are either .2; 2/–segments or
.1; q/–loops. Define ‚ and S by collapsing them.

Consider edge and vertex groups of ‚. Edge groups are cyclic. Non-cyclic vertex
groups are Klein bottle groups ha; b j a2D b2i arising from collapsed .2; 2/–segments,
and solvable Baumslag–Solitar groups BS.1; q/ D ha; t j tat�1 D aqi arising from
collapsed .1; q/–loops. Note two special cases: Z2 if q D 1, a Klein bottle group if
q D�1.

It is useful to think of BS.1; q/, for jqj � 2, as the subgroup of the affine group of
R generated by aW x 7! x C 1 and t W x 7! qx . It consists of all maps of the form
x 7! q˛x C ˇ with ˛ 2 Z and ˇ 2 Z

�
1
jqj

�
. One deduces, for instance, that powers

ai ; aj are conjugate if and only if i
j

is a power of q . The element ar has an s–root if
and only if s divides some rqn ; the root is then unique.

Lemma 7.2 The set of vertex stabilizers of S does not depend on the marked graph
� . In particular, it is Out.G/–invariant.
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Proof By Corollary 2.2, it suffices to show that the vertex stabilizers of S are de-
termined by the elliptic subgroups of T . This will be done using the tree T , but the
description of vertex stabilizers will involve only the algebraic structure of the set of
elliptic subgroups.

Let v be a vertex of T , and v its projection in � . We denote by � W T ! S the
collapse map. We want to understand the stabilizer Hv of �.v/ in S . It is also the
stabilizer of the subtree ��1.�.v//� T .

If no strict ascending loop is attached at v , the stabilizer Gv of v is a maximal elliptic
subgroup of T . Conversely every maximal elliptic subgroup arises in this way. If
a .1; q/–loop with jqj � 2 is attached at v , there is no maximal elliptic subgroup
containing Gv ; if T 0 is another GBS tree, then Gv is not necessarily a vertex stabilizer
of T 0 (see [13]).

We first determine the group Hv containing a maximal elliptic subgroup Gv .

Consider the normalizer N.Gv/. If it is Z2 or a Klein bottle group, then v bounds a
.1;˙1/–loop and Hv D N.Gv/. Otherwise, N.Gv/D Gv . Let a be a generator of
Gv . Then Hv is the centralizer Z.a2/ if v bounds a slid .2; 2/–edge, Gv if not.

To decide which (in terms of Gv only), first observe that v bounds a .2; 2/–edge (slid
or not) if and only if Z.a2/ is a Klein bottle group. Assuming it is, consider (as in
[16]) the set of groups of the form Z.a2/\K , where K is an elliptic subgroup of
T not contained in Z.a2/. It is easy to see that the edge is slid if and only if some
maximal element of this set (ordered by inclusion) is contained in ha2i.

Now suppose that a .1; q/–loop with jqj � 2 is attached at v . Then Hv D ha; t j

tat�1 D aqi, where a is a generator of Gv .

Condition (4) of Theorem 6.1 implies that �.v/ is the only point of S fixed by a` if `
divides a power of q : stabilizers of edges adjacent to �.v/ in S are conjugate in Hv

to har i, where r does not divide any qn ; since a` is not conjugate (in Hv ) to a power
of such an ar , it cannot fix an edge.

As in [13], say that an elliptic subgroup K of T is vertical if any elliptic subgroup
K0 containing K is contained in a conjugate of K . For the action of Hv on T , the
subgroup ha`i is vertical if and only if ` divides a power of q . We show that the same
result holds for the action of G on T .

Suppose that ` divides a power of q . If K0 � ha`i is elliptic (in T , hence also in S ),
then �.v/ is the only point of S fixed by K0 , so K0 fixes a point w 2��1.�.v//� T .
The stabilizer of w is conjugate to hai in Hv , and hai is contained in a conjugate of
ha`i because ` is a power of q . Thus K0 is contained in a conjugate of ha`i, and
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ha`i is vertical as required. Conversely, if ha`i is vertical, then it contains a conjugate
ghaig�1 with g 2G . Since �.v/ is the only point of S fixed by a, we have g 2Hv

and we deduce that ` divides a power of q .

We now conclude the proof, by characterizing the vertex stabilizer Hv of S containing
a vertical subgroup K�G which is not maximal elliptic. We know that K is generated
by a` , where a generates a vertex stabilizer Gv , a .1; q/–loop with jqj � 2 is attached
to v , and ` divides a power of q . In particular, K fixes a unique point �.v/ 2 S .

The stabilizer Hv of �.v/ is isomorphic to BS.1; q/. The set of elements of Hv which
are elliptic in T is an abelian subgroup (isomorphic to Z

�
1
jqj

�
), so gKg�1 commutes

with K if g 2Hv . Conversely, if gKg�1 commutes with K , then g 2Hv because
�.v/ is the only fixed point of K in S . We may now characterize Hv (independently
of T ) as the set of g 2G such that gKg�1 commutes with K .

Lemma 7.3 The G –tree S does not depend on � . In particular, OutS .G/DOut.G/.

Proof We apply the main result of [23]. Since S is reduced (no inclusion Ge ,!Hv

is onto), it suffices to check that the following holds. Let e and f be oriented edges of
S with the same origin such that Gf �Ge ; if e; f do not belong to the same G –orbit,
then e; xf are in the same orbit and Ge DGf .

Let v;w be the origins of e and f in T . Let e0 , f0 be the projections in � , and r; s

the corresponding labels. We distinguish several cases.

First assume v D w in � . If no collapsing takes place at v , or if v bounds a .1;˙1/–
loop, then Gf �Ge implies that r divides s . This is possible only if e0 and f0 are
opposite edges forming a .p;˙p/–loop.

Now suppose that v bounds a .1; q/–loop with jqj � 2. Write the corresponding vertex
stabilizer Hv of S as ha; t j tat�1D aqi. Then hasi is conjugate in Hv to a subgroup
of har i, so there exists n such that s

nr
is a power of q . This contradicts Assertion (5)

of Theorem 6.1, so this case cannot occur.

Finally, suppose that vw is a slid .2; 2/–edge. The stabilizer of �.v/ in S is then
Hv D ha; b j a

2 D b2i. The subgroups Ge and Gf of Hv are generated by conjugates
of powers of a or b . Distinct powers of a (resp. b ) are not conjugate in Hv , while ai

is conjugate to bj only when i and j are equal and even. In particular, r divides s .
If e0 and f0 have the same origin (v or w ), we conclude as in the first case. If not,
then s must be even and we use Assertion (6) of Theorem 6.1.

We may now study Out.G/D OutS .G/ using the results of [22] recalled in Section 3.
In particular, � has a restriction �1W OutS1 .G/!

Q
u2W Out.Hu/ with OutS1 .G/ of
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finite index in Out.G/ and ker �1 D T .S/ (we denote by W the vertex set of ‚, and
by Hu the vertex group of u 2W ).

We first show that T .S/ is virtually abelian. It is generated by centralizers of edge
groups in vertex groups Hu . If Hu is Z or Z2 , the centralizer is of course Hu . If
Hu DBS.1; q/ with jqj � 2, the centralizer is an infinitely generated abelian group
isomorphic to Z

�
1
jqj

�
. If Hu is a Klein bottle group, the centralizer is Z2 if u comes

from a .1;�1/–loop, Z if u comes from a slid .2; 2/–segment and the edge group is
not central, the whole of Hu if the edge group is central. Since a Klein bottle group is
virtually abelian, so is T .S/.

Remark 7.4 Relations in the presentation of T .S/ come from centers of edge and
vertex groups of ‚. Since these centers are f1g, Z, or Z2 , the group T .S/ is finitely
generated if and only if � contains no strict ascending loop.

Now fix a vertex u of ‚, and define Pu � Out.Hu/ by projecting the image of �1 . If
Hu is Z or a Klein bottle group, Pu is finite because Out.Hu/ is finite. We claim that
Pu is finite also when Hu is BS.1; q/ with jqj � 2.

Write Hu D ha; t j tat�1 D aqi. The vertex u is obtained by collapsing a .1; q/–loop
fu of � . Denote its basepoint by v . Since G is assumed not to be solvable, we may
consider an edge group har i, where r is a label near v not carried by fu . Its image
by an automorphism ˛ 2Pu is also an edge group, so ˛.har i/ is conjugate to hasi for
some label s (possibly equal to r ). But ar has an s–th root only if s divides some
rqn , so r D s by Assertion (5) of Theorem 6.1. By uniqueness of roots, ˛ maps a to
a conjugate of a˙1 . Only finitely many outer automorphisms of Hu have this property
[6], so Pu is indeed finite.

The group Pu is infinite only when u comes from collapsing a .1; 1/–loop fu . In this
case, Hu D ha; t j tat�1 D ai. As above, a must be mapped to a conjugate of a˙1 , so
Pu contains with index at most 2 the group generated by the automorphism Dfu

fixing
a and mapping t to at . We view Dfu

as an automorphism of G (extend it by the
identity). It is a twist relative to � , but not to ‚ (Remark 3.1 does not apply here, as
fu is not a segment; in general, none of the groups T .S/, T .T / contains the other).

This analysis shows that T .S/ and the automorphisms Dfu
associated to .1; 1/–loops

of � generate a finite index subgroup of Out.G/. We replace T .S/ by an abelian
subgroup T0.S/ of finite index, and we complete the proof of Theorem 7.1 by showing
that the subgroup generated by T0.S/ and the automorphisms Dfu

is virtually nilpotent
of class � 2: every commutator is central.
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Non-commutativity only comes from the fact that Dfu
may fail to commute with

D.z/, when z 2Hu and D.z/ is a twist of ‚ around an edge e with origin u. Write
Hu D ha; t j tat�1 D ai. The group Ge is generated by a power of a.

Recall that Dfu
fixes a and maps t to at . In particular, D.z/ commutes with Dfu

if z is a power of a (both automorphisms belong to T .T /). The interesting case is
when z D t (geometrically, u carries a 2-torus T 2 , e carries an annulus attached to a
meridian of T 2 , Dfu

is a Dehn twist in T 2 around a meridian, and D.t/ drags the
annulus around T 2 along the longitude). But conjugating D.t/ by Dfu

gives D.ta/,
so the commutator of D.t/ and Dfu

is D.a/, a central element. This easily implies
that every commutator is central, completing the proof of Theorem 7.1.

8 Further results

Nilpotent vs abelian

Corollary 8.1 If G is represented by a reduced labelled graph with no .1; 1/–loop,
then Out.G/ contains F2 or is virtually abelian.

This follows immediately from the proof of Theorem 7.1. More generally, if Out.G/
does not contain F2 , it is virtually abelian if and only if every commutator D.a/ as in
the last paragraph of the proof has finite order. This happens in particular when the
basepoint of every .1; 1/–loop has valence 3. See Remark 3.4 for a more complete
discussion.

Finite generation

Here is a general fact.

Proposition 8.2 Let � be a labelled graph representing a GBS group G . If � contains
a strict ascending loop, but G is not a solvable Baumslag–Solitar group, then Out.G/
has an infinitely generated abelian subgroup.

Proof Collapse the loop and apply Lemma 3.2 to an edge e with origin at the collapsed
vertex v (there is such an edge because G is not solvable). We have Hv DBS.1; q/

with jqj � 2, and ZHv
.Ge/ is infinitely generated abelian (it is isomorphic to Z

�
1
jqj

�
).

The center of Hv is trivial, and the center of Ge is cyclic. The subgroup of T .‚/
generated by ZHv

.Ge/ is isomorphic to Z
�

1
jqj

�
, or is an infinite abelian torsion group.
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From the proof of Theorem 7.1 we get this Corollary.

Corollary 8.3 Let � be a reduced labelled graph representing a non-solvable GBS
group G with Out.G/ virtually nilpotent. The group Out.G/ is finitely generated if
and only if � contains no strict ascending loop.

Proof We have seen that Out.G/ is generated by the union of T .S/ and a finite set,
so by virtual nilpotence Out.G/ is finitely generated if and only if T .S/ is finitely
generated. The corollary now follows from Remark 7.4.

Corollary 8.4 If no label of � equals 1, then Out.G/ contains F2 or is finitely
generated and virtually abelian.

In the virtually abelian case, the torsion-free rank may be computed from k and the
labels near the .2; 2/–edges.

Algebraic rigidity

Theorem 8.5 If the GBS group G is not a solvable Baumslag–Solitar group, the
following are equivalent:

(1) G is algebraically rigid (there is only one reduced GBS tree).

(2) The deformation space PD is a finite complex.

(3) Out.G/ is virtually Zk (with k defined in Proposition 3.3).

(4) Let � be any reduced labelled graph representing G . If e; f are distinct oriented
edges of � with the same origin v , and the label of f divides that of e , then
either e D xf is a .p;˙p/–loop with p � 2, or v has valence 3 and bounds a
.1;˙1/–loop.

Remarks

� If G is unimodular, .3/ , .4/ follows from Theorem 4.4 and (Pettet [29,
Corollary 5.14]).

� Suppose jnj � 2. Then BS.1; n/ is algebraically rigid if and only if jnj is prime
[23], while Out.BS.1; n// is virtually Zk (ie finite) if and only if jnj is a prime
power [6].
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Proof The equivalence .1/, .4/ is in [23], and .1/) .2/) .3/ follows from
Section 3 and Section 5. We prove .3/) .4/.

Suppose that Out.G/ is virtually Zk (equivalently, T .�/ has finite index in Out.G/).
Let e; f be adjacent edges with �f j�e . By Theorem 6.1 and Proposition 8.2, the edge
f must be a slid .2; 2/–segment or a .p;˙p/–loop.

It cannot be a segment because of Remark 6.2: after collapsing f , the group T .‚/�
Out.G/ would map onto the infinite dihedral group J D ha; b j a2 D b2 D 1i with the
image of T .�/ finite, a contradiction. To prove (4), there remains to show that the
basepoint of any .1;˙/–loop has valence 3.

Let f be a .1; "/–loop, with " D ˙1, let v be its basepoint, let e1; : : : ; en be the
oriented edges with origin v (other than f; xf ). We must show nD 1.

First consider the subgroup T0 of T D T .�/ generated by the twists Dei
and the

twists around edges with origin other than v . The group T is generated by T0 and
the twists Df , D xf . The only relations involving Df , D xf are Df C "D xf D 0 (edge
relation) and Df CD xf C

P
i Dei

D 0 (vertex relation). It follows that T0 has index
at most 2 in T if "D�1, that T is the direct sum of T0 and the infinite cyclic group
generated by Df if "D 1.

Now let ‚ be the graph of groups obtained by collapsing f , and consider T 0D T .‚/.
We will see that it is generated by T0 together with extra twists D0i around the edges ei

(note that edge group centralizers are bigger in ‚ than in � ). To describe D0i precisely,
we distinguish two cases.

If "D�1, the vertex group Hv of v in ‚ is a Klein bottle group ha; t j tat�1D a�1i.
Its center is ht2i. The edge groups Gei

are generated by powers of a. Their centralizer
in Hv is the free abelian group generated by a and t2 . In this case, D0i is the twist
by t2 around ei . The only relation involving D0i is the vertex relation

P
i D0i D 0, so

T 0 is the direct sum of T0 and Zn�1 . As T0 has index at most 2 in T , we must have
nD 1 since T has finite index in Out.G/.

If "D 1, we still have T 0 D T0˚Zn�1 (the vertex group Hv is Z2 D ha; ti, and D0i
is the twist by t ). There is a natural homomorphism from hT ; T 0i to Out.Hv/, given
by the action on Hv . The kernel contains T 0 , but its intersection with T is T0 (as Df
acts on Hv by fixing a and mapping t to at ). Since T has finite index in Out.G/,
hence in hT ; T 0i, we deduce that T0 D T \ T 0 has finite index in T 0 , so nD 1.

Combining with Proposition 3.3, we obtain this Corollary.

Corollary 8.6 Let � be a reduced labelled graph representing a group G . The group
Out.G/ is finite if and only if one of the following holds:
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(1) � is a tree with no divisibility relation.

(2) � is a graph with first Betti number 1, there is no divisibility relation, and G has
non-trivial modulus.

(3) � is obtained from a tree with no divisibility relation by attaching one .k;�k/–
loop. If k � 2, no other index at the attaching point is a multiple or a divisor of
k . If k D 1, the loop is attached at a terminal vertex.

On the isomorphism problem

Given a labelled graph � , it is easy to decide algorithmically whether the associated
GBS group G is elementary, solvable, unimodular. By Theorem 6.1 and Theorem 7.1,
we may decide whether Out.G/ contains F2 or is virtually nilpotent.

The isomorphism problem for GBS groups is the problem of deciding whether two
(reduced) labelled graphs represent isomorphic groups or not. It is solved for rigid
groups (obviously), for groups with no non-trivial integral modulus [13], and for
2–generated groups [21].

Theorem 8.7 The isomorphism problem is solvable for GBS groups such that Out.G/
does not contain a non-abelian free group.

Proof Let � be a reduced labelled graph representing G . We assume that Out.G/
does not contain F2 , so � satisfies all six conditions of Theorem 6.1.

We describe three ways of producing new labelled graphs representing G (besides
admissible sign changes). The first one changes the graph, the other two only change
the labels.

(1) Sliding an edge across a .2; 2/–segment: it changes the attaching point of an
edge (carrying an even label).

(2) If v is the basepoint of a .1; q/–loop, one may multiply or divide by q some
other label near v , by sliding the corresponding edge around the loop.

(3) If v is the basepoint of a .1; q/–loop, one may multiply or divide all other labels
near v by any number p dividing q , by performing an expansion at v followed
by a collapse (see Figure 10; this is called an induction move in [23]).

Consider the set G consisting of all labelled graphs which may be obtained from � by
combining these moves. They are reduced by condition (4) of Theorem 6.1 and it is
easy to decide whether a given labelled graph � 0 belongs to G . We now complete the
proof by showing that G contains all reduced graphs representing G .
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Figure 10: Induction move.

As above, consider the graph of groups ‚ and the Bass–Serre tree S obtained by
collapsing the slid edges of � . We have seen that S does not depend on the graph
� used to construct it (Lemma 7.3). It thus suffices to show that the various ways of
blowing up S into a GBS-tree differ by the moves mentioned above.

First consider a vertex group Hv obtained by collapsing a .2; 2/–edge. It is a Klein
bottle group ha; b j a2 D b2i. The generator of any adjacent edge group is conjugate
to some ai or bj . Distinct powers of a (resp. b ) are not conjugate in Hv , while ai

is conjugate to bj only when i and j are equal and even. It follows that all ways of
blowing up v differ by slides across the .2; 2/–edge.

Now consider a vertex group Hv D ha; t j tat�1D aqi obtained by collapsing a .1; q/–
loop of � . Let T 0 be another GBS-tree, associated to a labelled graph � 0 . As in the
proof of Lemma 7.2, we cannot say that a generates a vertex group of T 0 , only that
some ai , with i dividing a power of q , does.

Suppose for a moment i D 1. The generator of any edge group adjacent to v is
conjugate to a power of a. As am , an are conjugate in Hv only if m

n
is a power of q ,

the labelled graphs �; � 0 differ by moves of type (2) near the .1; q/–loop.

If i 6D1, it is a product of divisors of q , and � and � 0 differ by moves of types (2) and
(3).

Remark The same technique may be used when G is represented by a graph �
satisfying the six conditions of Theorem 6.1, but with arbitrary slid segments allowed
in condition (1) (not only .2; 2/–segments). Condition (6) must then be rephrased as
follows: Let vw be a .p; q/–edge. Let r be a label at v , and s a label at w . If q j s

and qr j sp , then qr D sp and the labels are carried by the same non-oriented edge.
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9 Open questions

Classification

The classification of GBS groups up to quasi-isometry is known (Farb–Mosher, Whyte).
In particular, all non-solvable non-unimodular GBS groups are quasi-isometric [34].
On the other hand, we already mentioned that the isomorphism problem (to decide
whether two labelled graphs define isomorphic groups) is solved in special cases but
open in general.

A related problem is whether there are only finitely many labelled graphs representing
a given G . The answer is yes when G is rigid, or has no non-trivial integral modulus
[13]. Another example is G D ha; b; c j a2 D b14; b2 D c2; tb3t�1 D c15i.

Nothing is known about the commensurability problem (to decide whether two la-
belled graphs define commensurable groups) for non-solvable non-unimodular GBS
groups. K Whyte claimed to the author that different Baumslag–Solitar groups are not
commensurable (private communication, 2002).

Automorphisms

When is Out.G/ finitely generated? Clay [3] has a geometric way of showing that
Out.BS.2; 4// is not (a result first proved in [7]). Given n, does there exist G such
that Out.G/ is of type Fn but not FnC1 ?

When is Out.G/ virtually torsion-free? It is when G is unimodular (Theorem 4.4), it
is not when G D BS.2; 4/. What if there is no non-trivial integral modulus? When
Out.G/ is virtually torsion-free, can one compute its virtual cohomological dimension?

A main result of the present paper is that Out.G/ contains F2 or is virtually nilpotent.
Does the Tits alternative hold in Out.G/? Can Out.G/ contain solvable subgroups
which are not virtually nilpotent?

Algebraic properties

A GBS group G is residually finite if and only if it is unimodular or solvable (this is an
unpublished result of D Wise, a proof will be included in [21]). When is G Hopfian?

In [21], we compute the minimum number of elements needed to generate G . Can one
compute the minimum number of relators? This question is related to the classification
of one-relator groups with non-trivial center. Such a group is a GBS group of a
special form (Pietrowski [31]), but it is not known which groups of that form are
one-relator groups. In particular (see McCool [25]): for which values of ˛; ˇ; ; ı; �; �
is ha; b; c; d j a˛ D bˇ; b D cı; c� D d�i a one-relator group?
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