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Extending homeomorphisms of the circle to
quasiconformal homeomorphisms of the disk

DAVID EPSTEIN

VLADIMIR MARKOVIC

We prove that it is not possible to extend, in a homomorphic fashion, each quasisym-
metric homeomorphism of the circle to a quasiconformal homeomorphism of the
disk.
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1 Introduction

Let QC be the group of quasiconformal homeomorphisms of the closed unit disk D2 in
C to itself and let QS be the group of quasisymmetric homeomorphisms. Restriction
to the boundary circle gives a surjective homomorphism qW QC! QS.

Our main theorem is related to some important problems in surface theory, as described
in this section,

1.1 Theorem (Stop Dreaming) There is no homomorphism EW QS! QC such that
the composite

QS
E

����! QC
q

����! QS

is the identity.

E stands for “Extend”. Note that we make no continuity assumptions about E.

The Dream Problem (named by Dennis Sullivan) was to construct the homomorphism
whose non-existence is proved by our theorem. The name indicates the general belief
that the existence of such a one-sided inverse is a fantasy and a delusion. It also indicates
a delightful, dreamlike situation, where all kinds of wonderful results in surface theory
are provable.

There are analogous problems for different classes of homeomorphisms, for example
diffeomorphisms, where the solution is also negative, and homeomorphisms, where the
solution is positive. At first contact, it may appear that homeomorphisms and diffeomor-
phisms are more natural objects than quasisymmetries. However, a homeomorphism of
a compact Riemann surface of genus greater than one lifts to a quasi-isometry of its
universal covering disk, and the boundary values of the lift define a quasisymmetry. For
this reason, our investigations may be regarded as part of mainstream low-dimensional
topology.

1.2 Methods The main new aspects of our proof are:

(1.2.1) We are able to use the Baire Category Theorem as a substitute for continuity
of the homomorphism E. This method may be applicable whenever one
considers a not necessarily continuous homomorphism from a domain group
with a complete left-invariant metric (or the structure of a locally compact
topological group), to a range group that is the union in some natural way of
a countable collection of subsets.
The use of the Baire Category Theorem as a substitute for continuity has been
used previously by Epstein in [5] and, later, by Epstein and Thurston in [7],
in a study of fibre bundles in a category theoretical context.
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(1.2.2) We undertake a study of not necessarily continuous one-parameter subgroups
of quasiconformal homeomorphisms of the disk or strip, where the action on
the boundary is of a specific nature. Surprisingly, it turns out that a priori
estimates can be proved, as in Section 4.
In fact an important part of our analysis would go through for a single home-
omorphism which is a quasi-isometry for the hyperbolic structure on the disk,
provided the action on the boundary is of the right kind. (But we do not try
to follow this direction in the current paper.) We construct geometric objects
that separate the disk, based on the dynamics of the cyclic group generated by
the homeomorphism, and use these to prove, for example, that there are no
unexpected fixed points. This would fail without the quasi-isometry condition.
We are able to gain geometric control on all iterates of our homeomorphism,
even though the quasi-isometry constants of the iterates blow up. Since every
quasiconformal homeomorphism is a quasi-isometry (see Theorem 13.6), the
same results hold for a single quasiconformal homeomorphism.
The behaviour of our homeomorphism on the boundary has important features
in common with the lifting to the universal covering disk of a pseudo-Anosov
homeomorphism of a surface. Since any homeomorphism of a compact
surface lifts to a quasi-isometry of the disk, our methods lead to new insights
into the mapping class group of a compact surface. Indeed, basing his work on
the ideas in this paper, and using some additional ingredients, Markovic [16]
has proved, in the case of closed surfaces S of genus 6 or more, that there is
no group of homeomorphisms G of S , such that the natural homomorphism
of G to the mapping class group is a surjective isomorphism. Markovic’s
student, Giblin, has proved the same result in genus 5 [11].

(1.2.3) Another central aspect of our work is a very carefully chosen conjugation
of the action of the affine group acting on R in the usual way, so that, after
conjugation, it acts on a finite interval. Outside the interval, we extend the
action by the identity. Mather in [18] was, we believe, the first to investigate
the conjugation of single diffeomorphisms to a finite interval. In [20], Plante
showed how to make the affine group act with support in a closed halfline.
Tsuboi in [22] showed how to conjugate the affine group with support in a finite
interval. In our paper, we demand considerably more than is available from
previous results, because we need to conjugate not only the affine group, but
also earthquakes and the squaring map to quasisymmetric homeomorphisms.
Neither the squaring map nor earthquakes are diffeomorphisms. Moreover, to
enable our proof to go through, we need to be able to make the quasisymmetry
constants of the conjugates of the affine transformations arbitrarily near those

Geometry & Topology, Volume 11 (2007)



520 D B A Epstein and V Markovic

of the identity map. It seems that even slight changes in the formula for the
conjugating diffeomorphism would spoil our proof, and we are fortunate to
have been able to find the correct formula, and that it is so simple and explicit.

Here are two problems that would have been solved in the affirmative if the Dream
Problem had a positive answer:

1.3 Problem Let S be a compact oriented surface, and let G be the group of
orientation preserving homeomorphisms of S . Let M be the mapping class group of
S , that is, G modulo isotopy, or, equivalently, G modulo homotopy. Is the natural
surjective homomorphism G!M split?

If the Dream Problem had a positive answer, one could argue as follows. If S is a
sphere or torus, then G!M is well-known to split. We therefore assume that S is an
oriented surface of genus at least two. Put a hyperbolic structure on S . The universal
cover of S is H2 , the hyperbolic plane. The fundamental group of S , �1.S/, acts
on H2 by covering translations which are isometries of the hyperbolic structure. A
homeomorphism of S lifts to a homeomorphism of H2 . The lifting is unique up to
composition with a covering transformation.

Although the representative of an element m 2M can be varied by an isotopy, the
lifting of the isotopy does not move points on S1 D @H2 . (There is a fixed bound on
the hyperbolic distance that the lifting of an isotopy can move any point.) Let L be the
group of all homeomorphisms of S1 which arise from lifting some representative of
some element of M . Then �1.S/, acting as a group of covering translations, is a normal
subgroup of L, with quotient equal to M . Since each element m 2M is represented
by the corresponding Teichmüller map of S , we can choose a quasiconformal lifting
to H2 . It follows that L consists of quasisymmetric homeomorphisms.

If the Dream Problem had a positive answer, such that each Möbius transformation of
the circle is extended to a Möbius transformation of the disk, we would be able to extend
elements of L so that L becomes a group of quasiconformal homeomorphisms of
H2 . Dividing by the covering translations, we would have a group of quasiconformal
homeomorphisms of S which is isomorphic to M . This would give the desired
splitting of G!M , and the image of the splitting would consist of quasiconformal
homeomorphisms.

As already stated, Markovic has shown [16] that such a splitting does not exist if the
genus is at least 6.

1.4 Problem Suppose we have a group G of quasisymmetric homeomorphisms of
S1 , and a constant k > 0, such that each element g 2 G has Teichmüller distance
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dT.g; Id/ < k . Is it then true that G is conjugate by a quasisymmetric homeomorphism
to a group of Möbius transformations?

A long chain of development led to the proof that such a group G is conjugate by a
homeomorphism to a group of Möbius transformations. We refer the reader to the
works of Tukia [24], Hinkkanen [12], Gabai [8] and Casson and Jungreis [3], and also
to the bibliographies in these papers. This work played a central role in the solution of
Thurston’s Geometrization Conjecture in the case of Seifert fibre bundles.

If a strong form of the Dream Problem were true, so that a bound on the quasisymmetric
constant implies a bound on the quasiconformal extension, then the problem could be
attacked by looking instead at a group of quasiconformal homeomorphisms of D2 with
uniformly bounded dilatation. In dimension two, the problem was solved by Sullivan in
[21] and by Tukia in [23]—they find a quasiconformal conjugacy. So the conjugacy by
a homeomorphism of S1 could then be improved to a conjugacy by a quasisymmetric
homeomorphism. This result was known in some cases, due to work of Hinkkanen in
[13].

Although the Dream Problem is proved incorrect in this paper, and no such splitting
exists, Markovic [17] has been able to make the improvement, proving the existence of
a quasisymmetric homeomorphism that conjugates G to a group of Möbius transfor-
mations.

1.5 Previous work Our study follows on a history of significant related results.
In [2], Beurling and Ahlfors studied quasisymmetric homeomorphisms, giving in
particular a formula for extending a quasisymmetric homeomorphism to a quasicon-
formal homeomorphism. This direction culminated in the frequently cited paper [4]
by Douady and Earle. They gave a formula for a continuous map EDEW QS! QC.
In fact the domain of their map consists of all homeomorphisms of the circle. The
group M of Möbius transformations preserving the unit disk is equal to the group
of Möbius transformations of the unit circle preserving the orientation of the circle.
The Douady–Earle extension has the property that it sends M , regarded as a group
of quasisymmetric homeomorphisms of the unit circle, to M , regarded as a group of
quasiconformal homeomorphisms of the unit disk, by the identity map. EDE is also
left and right equivariant for composition by such transformations. It is not, however, a
homomorphism between groups.

In [10], a clever argument by Ghys shows that there is no homomorphism EG from the
group of diffeomorphisms of the circle to the group of diffeomorphisms of the disk,
such that, for each diffeomorphism f of the circle, EG.f / extends f .

If, in some context, an extension homomorphism does exist, then any such extension
homomorphism can be changed using conjugation by a homeomorphism that is the

Geometry & Topology, Volume 11 (2007)



522 D B A Epstein and V Markovic

identity on the boundary circle. We call such extension homomorphisms equivalent.
One of the authors of this paper (Epstein) has shown that there are an uncountable
number of inequivalent continuous extension homomorphisms from the group of
homeomorphisms of the circle to the group of homeomorphisms of the unit disk. This
work is not yet published.

1.6 The future In Problem 1.3 we showed that a positive solution to the Dream
Problem would have solved the problem of realizing the mapping class group of a
compact surface by a group of homeomorphisms. The techniques used in our negative
solution can be used to provide a negative solution of the mapping class group problem.
The problem remains open for closed surfaces of genus 2, 3, 4 and 5, and for punctured
surfaces of any genus (with exceptions a sphere with 1, 2, 3 or 4 punctures and a torus
with one puncture). Further development of these methods is likely to lead to a solution
in most of the outstanding problems.

The closed surface of genus 2 seems not to be treatable by these means. The mapping
class group for a surface of genus 2 is known to have somewhat different properties
from the higher genus cases. For example the centre of the mapping class group for
genus 2 is non-trivial, and the action of the group on Teichmüller space is not faithful.

This problem was solved in the affirmative by Kerckhoff in [14] for finite subgroups of
the mapping class group, where a complex structure is proved to exist on the compact
surface, together with an appropriate finite group of automorphisms of the complex
structure. In [19, Chapter 4], Morita showed that the whole mapping class group cannot
be realized as a group of diffeomorphisms, provided the genus is at least five.

Here is another problem of interest. Is it true that any extension homomorphism

EW Homeo.S1/! Homeo.D2/

is continuous when both domain and range groups are provided with the compact–open
topology, or, equivalently, the topology of uniform convergence. Each member of Ep-
stein’s uncountable collection of inequivalent extension homomorphisms is continuous.

In [10], Ghys also showed that no extension homomorphism exists in higher dimensions,
in the case of diffeomorphisms. Analogously, one can define QSn�1 to be the group
of all homeomorphisms of Sn�1 obtained by restricting quasiconformal homeomor-
phisms of the unit disk Dn . Another problem is to show that there is no extension
homomorphism EnW QSn�1! QCn .
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2 Outline of the proof

Here we give a highly simplified overview of our proof. We hope this will help readers
to follow the complex logical path. Unfortunately, part of the path, which we originally
hoped would turn out to be obstruction free, turns out to involve crawling through some
thorny thickets. We will not mention the thickets in this overview, though they may be
only too evident when we present the gory detail. Readers following closely should
emerge relatively unscathed. Those striking out on their own should beware of easily
overlooked pitfalls.

One way to use this overview is to flip back and forth between the overview and the
detailed proof. We think this may be easier than confining oneself to either one or the
other.

(2.1.1) In many situations where continuity is not assumed, the Baire Category
Theorem can provide a partial substitute. The first application of the Baire
Category Theorem is made in Proposition 3.6 and Proposition 3.9.

(2.1.2) In Corollary 3.10 and Corollary 3.11, we show that an arbitrary non-contin-
uous homomorphism EW QS! QC satisfying the hypotheses of Theorem 1.1
does in fact possess some important properties reminiscent of continuity—a
result that we found quite surprising when we discovered it. This is one of
the most useful technical results proved in this paper.

(2.1.3) The next task is to carry out what we call strip analysis. The essential feature
is the use of quasiconformality to control the dynamics of certain subgroups
of QC on the interior of the unit disk, in terms of the behaviour on the
boundary. This is possible, even though the quasiconformal constants of
iterated maps will in general go to infinity. For this reason, we believe that
this kind of approach might be of interest in other problems.
Let S be the infinite horizontal open strip in C, with lower edge the x–axis
and height � , and let U2 be the open upper halfplane. We have the conformal
isomorphisms expW S ! U2 and the Cayley transform U2! D2 . We use
these conformal isomorphisms to conjugate the homomorphism EW QS!QC

of Theorem 1.1 to a homomorphism ES W QS.@S/! QC.S/ from the group
of quasisymmetric homeomorphisms of the boundary @S of the strip to the
group QC.S/ of quasiconformal homeomorphisms of the strip. There is an
important one-parameter group V W RC! QC.S/, a homomorphism from
the positive reals to the group of quasiconformal homeomorphisms of the
strip. We define V .t/.x;y/D .tx;y/ if x � 0 and V .t/.x;y/D .x;y/ if
x � 0. As a matter of notation, we will not use V W RC! QC.S/ in the rest
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of the paper. But we will consistently use the notation vW RC! QS.@S/,
for the restriction of V to @S . We compare V with the (not necessarily
continuous) one-parameter group given by t 7! ES .v.t/ 2 QC.S/. The two
groups act identically on @S . On S , quasiconformality forces the two groups
to act in a very similar way, even though the actions are not identical.

(2.1.4) We construct a family f`tgt>0 (see Definition 4.8) of subspaces of S which
provide an important tool for our investigation. For a given t >0, the subspace
`t is connected, has compact closure and null interior. The subspaces fill
up the righthand side of S , without gaps. Although these subspaces are not
known to be curves, we think of them as providing a foliation of the righthand
side of S . We have `t\@SDft; t C i�g. An important feature of this family
of subsets is that it is defined dynamically, using iterated mappings from the
one-parameter subgroup t 7!ES .V .t//. We deduce an important equivariance
principle: for each s > 0 and each t > 0, ES .V .t/j@S/.`s/D `st .
Every additional fact that one can prove about the `t make the proof of the
main result, Theorem 1.1, easier: a particularly important aspect is the control
we gain over the shape of `t with respect to the hyperbolic metric on S (see
(4.16.2)).

(2.1.5) A key result (Theorem 5.1) is that
S

t>0 f`tg is contained in the fixed point set
of the group E.G/, where G is the subgroup of QS.@S/ of quasisymmetric
homeomorphisms supported on @S \ fx � 0g. This difficult result takes
several sections to prove. We provide an overview of its proof at the end of
Section 5.

(2.1.6) Given an interval Œa; b�� S1 , we define D.a; b/ to be the fixed point set of
the image under E of the group of all quasisymmetric homeomorphisms with
support in the complement of .a; b/. We define B.a; b/ to be the frontier
of D.a; b/. We define F.x/ to be the intersection of all the D.a; b/ with
x 2 .a; b/.

(2.1.7) The sets D.a; b/, B.a; b/ or F.x/ are all defined canonically, and therefore,
for each f 2 QS,

E.f /.D.a; b/DD.f .a/; f .b//;

E.f /.B.a; b/D B.f .a/; f .b// and

E.f /.F.x//D F.f .x//:

(2.1.8) The proof separates into two cases: either F.x/D fxg or F.x/¤ fxg. If
F.x/¤ fxg, we obtain a contradiction to what we know about strip analysis,
as outlined in (2.1.3).
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(2.1.9) If F.x/ D fxg, then we can prove that EW QS ! QC is continuous in a
certain non-standard sense (see Theorem 10.1). The proof uses the Riemann
Mapping Theorem and (2.1.2) to prove the version of continuity required.
This discussion requires a carefully controlled limiting argument.

(2.1.10) The next step involves hard analysis, mostly analysis for real-valued functions
of real variables. We work in U2 , the upper halfplane. The key idea here is
the introduction of a very special diffeomorphism  ıW R! .�1; 1/, given by
an explicit formula. The formula is not easy to find. Moreover, the probable
result of any change in the formula would be to make the necessary proofs
extremely difficult, if not impossible, to carry out convincingly. Using this
explicit diffeomorphism, we are able to conjugate many quasisymmetric
homeomorphisms of R to convert them into quasisymmetric homeomor-
phisms with compact support. In particular, all affine homeomorphisms
of R can be so conjugated. The same applies to earthquakes—these are
homeomorphisms RaW R! R, with a> 0, defined by Ra.t/D at if t � 0

and by Ra.t/D t if t � 0. It also applies to the squaring map S W R! R

given by S.t/D t2 if t � 0 and by S.t/D�t2 if t � 0.

(2.1.11) By changing scale, and using other tricks, we are able to make the conjugates
of the affine maps arbitrarily near the identity in terms of quasisymmetric
constants. Using the non-standard version of continuity of E referred to in
(2.1.9), we deduce that, after applying E to the conjugates of affine maps,
we obtain quasiconformal homeomorphisms with bounded dilatation.

(2.1.12) An important result, due independently to Sullivan in [21] and to Tukia in
[23], states that a group of quasiconformal homeomorphisms of the disk,
with uniformly bounded dilatations, is conjugate to a group of Möbius trans-
formations. A limiting process applied to the results of (2.1.11), together
with the Sullivan–Tukia result just stated, allows us to change E to a related
homomorphism bE having the following property. Let a> 0 and b 2 R. Let
Fa;bW C! C be defined by F.z/D azC b . Then bE.Fa;bjR/D Fa;bjU

2 .

(2.1.13) In Theorem 12.12 we compute and give a precise formula for bE.Ra/. This
step depends crucially on Theorem 5.1, referred to in (2.1.5). We are then
able to compute a precise formula for bE.S/, where S W R!R is the squaring
map, given by S.x/D x2 if x � 0 and by S.x/D�x2 if x � 0.

(2.1.14) The precise formula for bE.S/ shows that it is not quasiconformal. This
contradiction completes the proof of Theorem 1.1.
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3 Metrics, topological groups and completeness

Let u be a quasiconformal homeomorphism of an open subset of the plane. We denote
by K.u/ the (almost everywhere or L1 ) supremum of the pointwise dilatations of u.

3.1 Definition Given two quasiconformal homeomorphisms, f and g of the open
unit disk D2 onto itself, we define the Teichmüller metric dT.f;g/D log

�
K.f �1g/

�
.

This definition is due to Ahlfors (see [1]), who invented the concept.

Quasiconformal homeomorphisms that differ from each other by right translation by a
Möbius transformation are at zero Teichmüller distance apart. So this is a pseudometric
on QC, rather than a metric, but we will nonetheless call it a metric. The Teichmüller
metric is invariant under left composition with a quasiconformal homeomorphism.

In [1, Chapter 1], Ahlfors shows that the Teichmüller distance between two quasicon-
formal homeomorphisms f and g of D2 can be interpreted as a hyperbolic distance.
One takes the Beltrami differentials �f and �g of f and g . These are L1 functions
D2 ! D2 � C. If D2 is given the Poincaré metric, then it can be regarded as the
hyperbolic plane and we can take the uniform (in the L1 sense) distance between the
two functions �f and �g . We obtain precisely the Teichmüller distance.

Given three points of the boundary circle, we can take the subgroup QC3 of QC

consisting of quasiconformal homeomorphisms that fix each of the three points. The
Teichmüller metric is a true metric, when restricted to such a subgroup.

3.2 Definition We can also define the Teichmüller (pseudo)metric on QS. This
metric is obtained by varying over all extensions to the unit disk, and minimizing the
Teichmüller distance on the disk.

Again the Teichmüller metric is a left invariant pseudometric on QS, but not a metric.
When we restrict to a subgroup consisting of quasisymmetric homeomorphisms that
fix the same three points, we obtain a true metric.

The following result is stated by Gardiner and Sullivan in [9].

3.3 Lemma Let QC3 be the group of quasiconformal homeomorphisms of the disk
that fix 1, �1 and �i . Then QC3 is not a topological group with respect to the Teich-
müller metric. The same applies to QS3 , the group of quasisymmetric homeomorphisms
of the circle that fix 1, �1 and �i . Although left translation is an isometry, there is, for
each of these groups, an element f such that right translation by f is not continuous
at the identity element.

Geometry & Topology, Volume 11 (2007)



Extending homeomorphisms of the circle 527

Proof We will work on the infinite horizontal strip S of height 1 with lower edge the
x–axis, restricting attention, for the most part, to quasisymmetric or quasiconformal
homeomorphisms that are the identity for x � 0. Let gnW S ! S be defined by
gn.x;y/D .x;y/ for x�0 and gn.x;y/D

� .2nC1/x
2n

;y
�

for x>0. Then dT.gn; Id/D
log
�

2nC1
2n

�
which converges to zero as n tends to infinity. Let Hn be the halfdisk with

centre .n; 0/ and with radius 1=n. We choose f W S ! S so that f .Hn/ D Hn , so
that f is supported on

S
n>3 Hn , and so that, for each n, the dilatation K.f jHn/D 2.

We compute dT.f;gnf /D dT.Id; f �1gnf /. Now f �1gnf jHn D gnf jHn and

2DK.f jHn/�K.g�1
n /:K.gnf jHn/�

2nC 1

2n
:K.gnf jHn/:

Therefore

K.f �1gnf /�K.f �1gnf jHn/DK.gnf jHn/�
4n

2nC 1
> 1:5

and so dT.f
�1gnf; Id/ > log.1:5/. This deals with Lemma 3.3 in the case of quasi-

conformal homeomorphisms.

To prove the result for quasisymmetric homeomorphisms, we use gnj@S as above, and
a quasisymmetric homeomorphism hW S1! S1 with support in

S
n>3 Hn\ @S and

such that h.Hn \ S1/ D Hn \ S1 . We further choose h so that, for any extension
fnW S ! S of hjHn \ @S , K.fn/ � 2. This will be true if, for example, h is the
identity immediately to the left of .n; 0/ on the x–axis, and expands by a suitable factor
immediately to the right of .n; 0/. We have inequalities that are analogous to those
of the previous paragraph, and these show that dT.h

�1 ı
�
gnjS

1
�
ıh; Id/ > log.1:5/,

giving a contradiction as before.

3.4 Lemma QC3 and QS3 are complete with respect to the Teichmüller metric.

Proof This is standard. The proof goes as follows. Let .gn/n2N be a Cauchy sequence
in QC3 . We need only prove that some subsequence T -converges. The sequence has
uniformly bounded dilatation. By Theorem 13.3, if we go to a subsequence, we may
assume without loss of generality that our sequence converges uniformly on compact
subsets. A crucial point is that it cannot converge to a point, because three points on the
boundary are fixed. So the sequence converges to a quasiconformal homeomorphism,
g , whose dilatation has the same bound.

Given � > 0, there is an N > 0, such that, for n;m�N , dT.gn;gm/� � . Letting n

tend to infinity, we find that dT.g;gm/� � .
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In addition to the Teichmüller metric, we use the uniform metric du on QC and QS.
Note that the uniform metric is right invariant and not left invariant. With respect to the
uniform metric, QC and QS are topological groups, but are not complete. With respect
to dT , QC3 and QS3 are complete, but not topological groups—see Lemma 3.3. The
following lemma is standard and we omit the proof—see Section 13.

3.5 Lemma The identity maps .QC3; dT/! .QC3; du/ and .QS3; dT/! .QS3; du/

are continuous.

The following result is a consequence of the Baire Category Theorem that is crucial
for our proof.

3.6 Proposition Let EW QS! QC be the fixed homomorphism of Theorem 1.1 (that
we are trying to show does not exist). Let G � QS3 be any subgroup that is closed
with respect to the Teichmüller metric. Then there is an �0 > 0, a k0 > 1 and a dense
subset Q of the dT -�0 –ball centred at the identity in QS, such that, if g 2 Q, then
dT.E.g/; Id/� k0 .

Note that in the above statement, we can always take a smaller �0 and a larger k0 .

Proof We set
Xn D fg 2GjdT.E.g/; Id/� ng :

Then G D
S

n Xn D
S

n Xn . By the Baire Category Theorem, for some n the T -
interior W of Xn in G is non-empty. We choose w 2W \Xn : then dT.E.w/; Id/� n.
Therefore Id 2w�1:W and w�1:W is the T -interior of w�1:Xn in G . It follows that
we can find �0 > 0, such that the �0 -dT –neighbourhood of the identity in G has a
dense subset consisting of elements g 2w�1:.W \Xn/. For any such gDw�1u, we
have

dT.E.g/; IdT/� dT

�
E.w�1u/;E.w�1/

�
C dT.E.w

�1/; IdT/� 2n;

since dT is left-invariant. We set k0 D 2n.

The remainder of this section consists of more refined consequences of the Baire
Category Theorem. Some readers may like to skip these until they are required in
later proofs. Controlling the Teichmüller distance from the identity has no effect when
dealing with a group of Möbius transformations. We need a version of Proposition 3.6
that works well when considering the group Conf of orientation preserving isometries of
the Poincaré disk D2 . This group is conjugated to PSL.2;R/ by the Cayley transform
between U2 the upper halfplane and D2 , the unit disk.
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3.7 Definition We use the Levi–Civita connection on the unit tangent bundle T1.D
2/

to the hyperbolic plane. The tangent space at a point u 2 T1.D
2/ is the direct sum

of the space of horizontal vectors at u and the tangent space at u to the fibres of
� W T1.D

2/!D2 . The space of horizontal vectors at u is sent by � isomorphically to
the tangent space of D2 at �.u/. Each of the direct summands has a canonical inner
product, and so we obtain a canonical Riemannian metric on T1.D

2/.

A diffeomorphism from the unit tangent bundle to the space of triples is defined as
follows. Given a unit vector u at x 2D2 , let v be the unit orthogonal vector at x , such
that .u; v/ gives the standard orientation on D2 . Let p; r 2 S1 be the points such that
pr is the directed hyperbolic geodesic through x with tangent vector v . Let q 2S1 be
the point such that xq is the geodesic ray with tangent u. The image of u is defined
to be the triple .p; q; r/.

We have a diffeomorphism from Conf to the unit tangent bundle given by fixing some
unit vector u0 , and then sending g to gu0 .

3.8 Proposition The metric of Definition 3.7 is complete, and closed bounded subsets
are compact. Using the diffeomorphisms of Definition 3.7, the metrics induced on
Conf and on the space of triples of distinct points of S1 are complete and their closed
bounded subsets are compact. The metric on Conf is left invariant, and the topology is
the same as the topology of uniform convergence on maps from D2 to itself.

Proof Since � W T1.D
2/! D2 reduces Riemannian distances, it is easy to see that a

Cauchy sequence in the unit tangent bundle must converge. A closed bounded subset X

of the unit tangent bundle projects to the closed bounded subset �.X / of the hyperbolic
plane. Now �.X / is bounded and therefore has compact closure. So ��1.�.X // is
contained in a compact set. It follows that X is compact.

The other statements are obvious.

3.9 Proposition Let G be any closed connected subgroup of Conf and let EG W G!

QC be any homomorphism such that, for each g 2G , EG.g/jS
1 D g . We give G the

metric of Definition 3.7. Then for each �0 > 0, there is a k0 > 0 and a dense subset Q

of the �0 –ball centred at the identity in G , such that, if g 2Q, then dT.E.g/; Id/� k0 .

Proof We proceed in the same way as in the proof of Proposition 3.6, except that we
use the metric of Definition 3.7 on G . We use the Teichmüller metric on QC as before.
This proves the statement for some small �0 . It can be extended to a large value of �0

by covering the large closed ball with a finite number of small open balls.
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3.10 Corollary There is a k0 > 0 with the following properties. Let F � S1 be a
finite subset, let C be the set of three possible directions of movement of a point on
the circle—counter-clockwise, clockwise and fixed—and let ˛W F ! C . Given � > 0,
there is a quasisymmetric hW S1! S1 with the following properties:

(3.10.1) We have du.E.h/; Id/ < � .

(3.10.2) We have dT.E.h/; Id/ < k0 .

(3.10.3) For each x 2 F , h moves x in the direction ˛.x/.

Proof We may assume that the distance between any two points of F is at least 3� .
Without loss of generality we may assume that, for at least three elements x 2 F ,
˛.x/ is fixed. We make a particular choice of which three fixed points to use in the
discussion. We work in the groups QS3 and QC3 fixing the points of this particular
triple. We apply Proposition 3.6, and this gives our constant k0 .

We construct gi inductively, obtaining a sequence .gi/i2N in QS3 , converging uni-
formly to the identity map of the circle, with the following properties:

(3.10.4) There is a constant k0 > 0, such that, for each i , dT.E.gi/; Id/ < k0 .

(3.10.5) For each i and each x 2 F , d.gi.x/;x/ < � and d.g�1
i .x/;x/ < � .

(3.10.6) For each i and each x 2 F , the points x;g�1
iC1

.x/;g�1
i .x/ occur in the

order ˛.x/.

(3.10.7) Applying giC1 , we see that giC1.x/;x;giC1g�1
i .x/ occur in order ˛.x/.

(3.10.8) Going to a subsequence, we may assume, by Theorem 13.2 and Theorem
13.3, that the sequence .E.gi//i2N converges uniformly to a quasiconformal
homeomorphism of the disk.

The sequence
�
E.giC1/E.gi/

�1
�
i2N

converges uniformly to the identity and we can
choose hD giC1g�1

i for a suitably large value of i .

The proof of the next result is similar to that of Corollary 3.10, but is easier. Recall
from Proposition 3.8 that the uniform metric on G below is topologically equivalent to
the metric of Definition 3.7.

3.11 Corollary There is a k0 > 0 with the following property. Let G be a closed
connected subgroup of Conf, let � > 0, and suppose that x 2 S1 is not a fixed point
for G . Let ˛.x/ be clockwise or counter-clockwise. Then there exists h 2G with the
following properties:

(3.11.1) We have du.E.h/; Id/ < � .

(3.11.2) We have dT.E.h/; Id/ < k0 .

(3.11.3) h moves x in the direction ˛.x/.
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4 An important one-parameter group

Let S be the horizontal strip S D .�1;1/� .0; �/ of height � . We use a strip of
this height so that the euclidean and hyperbolic metrics agree on the central horizontal
geodesic y D �=2. In fact, at a point .x;y/ 2 S , infinitesimal distances satisfy
dhyp D deuc= sin.y/. It follows that, for any two points u; v 2 S ,

(4.0.a) dhyp.u; v/� deuc.u; v/:

In order to define quasisymmetric homeomorphisms on the boundary of S in S2 , we use
any conformal isomorphism S!D2 to conjugate the situation to S1 , where we apply
the usual definition. Let h be a quasisymmetric homeomorphism of @S [fC1;�1g,
according to this definition. Suppose further that h preserves each component of @S .
By definition, this extends to a quasiconformal homeomorphism of S . By repeated
reflection in the horizontal sides of the strip, we obtain a quasiconformal homeomor-
phism of the upper halfplane. It follows that the restriction of h to either component
of @S is quasisymmetric in the usual sense of quasisymmetric homeomorphisms of
R. However, it is not true that if f W @S ! @S preserves each component of @S and
is quasisymmetric in the classical sense on each component separately, then it can
necessarily be extended to a quasiconformal homeomorphism of S .

4.1 Definition Let r > 0. We define v.r/W @S ! @S by v.r/.x; t/D .x; t/ if t D 0

or t D � and x � 0, and by v.r/.x; t/D .rx; t/ if t D 0 or t D � and x � 0.

Now v.r/ extends by the obvious formulas to a quasiconformal homeomorphism of
S , and so v.r/ is quasisymmetric. We obtain a homomorphism vW RC! QS, from
the strictly positive real numbers to the group of quasisymmetric homeomorphisms of
@S , which is continuous if QS is given the Teichmüller metric.

The way we are proving Theorem 1.1 is by contradiction. We make the hypothesis that
we have a (possibly discontinuous) homomorphism EW QS!QC which is a one-sided
inverse of qW QC! QS, and show that this eventually leads to a contradiction.

4.2 A less restrictive hypothesis In this section we use a much less restrictive
hypothesis, namely that there is an extension homomorphism ES W v.RC/! QC. The
image of v , fv.r/gr2RC

, is a continuous 1–parameter subgroup of QS. The image
of this 1–parameter subgroup under ES is a not necessarily continuous 1–parameter
subgroup of QC. Although the stronger hypothesis made during the overall proof is
self-contradictory, the weaker hypothesis made here is easy to satisfy, and there are
many ways to do so.
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4.3 Lemma Let K be the maximum dilatation of ES .v.2//. Then there exist L> 0

and n0 , depending only on K and not on ES , with the following property. For
each n 2 Z, let Rn � S be the open rectangle with vertical edges of length � and
x–coordinates 2n˙L. Then, for all n� n0 ,

RnC1 � ES .v.2// .Rn/ :

Proof By Theorem 13.6, ES .v.2// is a .K; �/–quasi-isometry, for some � > 0

depending only on K . It follows that there is an L > 0, depending only on K ,
such that, for any x1 > 0, ES .v.2//.fx1g � .0; �// is contained in the hyperbolic L–
neighbourhood (and therefore in the euclidean L–neighbourhood) of f2x1g � .0; �/.

To understand the rest of the proof, it may be helpful to look at Figure 4.3.i. Choose
n0 so that, for n� n0 , 2n > 4L. This will ensure that Figure 4.3.i shows the relative
positions of the various components of the diagram correctly. We denote the left and
right vertical boundaries of Rn by �n and �n respectively. Taking x1 D 2n�L (so
that x1 > 0) in the last sentence of the previous paragraph, we see that every point of
ES .v.2//.�n/ is to the left of �nC1 . It also follows that every point of ES .v.2//.�n/

is to the right of �nC1 . The required result follows.

2n�L 2nCL 2nC1� 3L

2nC1�L 2nC1CL

2nC1C 3L

Figure 4.3.i: This picture illustrates the proof of Lemma 4.3. All the numbers
shown are x–coordinates associated with the vertical straight lines shown.
The lefthand gray region is Rn . The black region is RnC1 . The two gray
regions on either side of RnC1 show the extent of ES .v.2//.Rn/ .

4.4 Definition We choose L, n0 and Rn as in the statement of Lemma 4.3. We
define

`D
\

n�n0

ES .v.2/
�n/.Rn/D S \

\
n�n0

ES .v.2/
�n/

�
Rn

�
:

4.5 Lemma The subspace ` is a closed subspace of S . S n ` has exactly two
components, UC extending to C1 and U� to �1. UC and U� are simply connected
open subsets of R2 . The closure ` in R2 is compact and connected. It meets each
component of @S in exactly one point: @S \ `D f1; 1C i�g.
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Proof We start by working with the decreasing sequence ES .v.2//
�n.Rn/ of closed

disks. The intersection of these closed disks with @S is immediately seen to be the
two-point set f1; 1C i�g. Since the complement of each of each of these closed disks
in S has exactly two components, one going to C1 and the other to �1, it is easy to
see that the same is true for their intersection. (Any compact curve in S n ` is disjoint
from all except a finite number of these disks.)

` is connected because the intersection of a decreasing family of compact connected
subsets is connected. UC and U� are each components of the complement in S2 of
a closed connected subset, and are therefore open and simply connected. The results
stated in the lemma all follow.

4.6 Lemma Let k > 1. Then ES .v.k//.`/ lies entirely to the right of `. (More
rigorously, it lies entirely in the component of S n ` which goes to C1.) If r > s > 0,
then ES .v.r//.`/ lies entirely to the right of ES .v.s//.`/. As r tends to infinity,
ES .v.r//.`/ converges to C1.

Proof There is a number Lk > 0, such that, for any x > 0, ES .v.k// maps the
vertical geodesic joining x to xC i� into the euclidean Lk –neighbourhood of the
vertical geodesic from kx to kxC i� .

Let n0 be as in Lemma 4.3. We choose m large enough so that m � n0 , ensuring
that ES .v.2/

m/.`/�Rm , and large enough so that 2mCL< k.2m�L/�Lk . This
inequality says that the righthand side �m of Rm is to the left of ES .v.k//.Rm/.
Therefore ES .v.2/

m/.`/ is to the left of ES .v.k//ES .v.2/
m/.`/.

Applying ES .v.2/
m/�1 to the terms in the final sentence of the previous paragraph,

we obtain the first statement of Lemma 4.6. To obtain the second statement, we write
k D r=s and apply ES .v.s// to the first statement. To prove the third statement, notice
that ES .v.2

m//.`/ lies to the right of x D 2m �L, which is the left edge of Rm .
Using the second statement, we see that, if r > 2m , then ES .v.r//.`/ lies to the right
of x D 2m�L.

4.7 Corollary The interior of ` is empty.

Proof Lemma 4.6 shows that the various translates of ` under the group ES .v.RC//

are disjoint closed subsets of S . If ` had a non-empty interior, then we would have an
uncountable set of disjoint open subsets of S , and this is impossible.

By Lemma 4.5, S n `D UC[U� , where UC and U� are defined in the statement of
Lemma 4.5. By Corollary 4.7, S D UC[U� . Let WC be the interior of S \UC in
S and let W� be the interior of S \U� . Then UC �WC and U� �W� .
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4.8 Definition We define `1DSn.WC[W�/ and, for each r >0, `rDES .v.r//.`1/.

4.9 Lemma

(4.9.1) WC and W� are connected.

(4.9.2) W�\WC D∅.

(4.9.3) `1 D S \WC\W� D S \UC\U� � `. Later we will show that `D `1 ,
but this seems to be difficult to prove at the moment.

(4.9.4) WC is equal to the interior of S \WC in S and similarly for W� .

(4.9.5) S \WC DWC[ `1 and S \W� DW�[ `1 .

Proof To see that WC is connected, note that any component of WC not containing
UC must be contained in `. This would contradict Corollary 4.7.

We set W DW�\WC . We argue that W D∅ by contradiction. For suppose W ¤∅.
Then W \UC¤∅. Since this is a non-empty open subset of W� , W \UC\U�¤∅.
But this contradicts UC\U� D∅.

We will prove (4.9.3) by showing that

`1 � S \UC\U� � S \WC\W� � `1:

Given p 2 `1 , we claim that p 2 UC\U� . For suppose p … UC . Let N � S be an
open neighbourhood of p , disjoint from UC . Then N �U� and so p 2N �W� . But
this contradicts the definition of `1 , which proves that `1 � UC\U� . The inclusion
UC\U� �WC\W� is obvious. Suppose now p 2 S \WC\W� . Since WC does
not meet W� , it does not meet W� . So p …WC . Similarly p …W� . It follows that
p 2 `1 . We also have

U�\UC � S n .UC[U�/D @S [ `:

This completes the proof of (4.9.3).

To prove (4.9.4), note that, for any closed subset Y in any topological space,

int
�

int.Y /
�
D int .Y / :

In particular, we can apply this to Y D U , where U is equal to UC or to U� . Finally,
(4.9.5) follows from (4.9.3).

4.10 Lemma
S

r>1 `r is dense in WC .
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Proof Lemma 4.6 shows that
S

r>1 `r �WC . The last sentence of the same statement
shows that, for each x 2 WC , there is some r > 0 such that x is to the left of `r .S

r>1 `r is dense in WC , for otherwise a component of WC n
S

r>1 `r would be
an open connected subset with an uncountable set of disjoint translates under the
homeomorphisms fES .v.r//gr>1 .

We next prove several results, all stemming originally from the Baire category theorem,
that help us to operate almost as though the homomorphism ES were continuous.

4.11 Lemma Let V D ES .v.RC//� QC and let V be its closure in the group of all
homeomorphisms of S with the topology of uniform convergence on compact subsets.
Then V is an abelian group. For each u2V there is an r > 0, such that, for each s > 0,
we have u.`s/D `sr .

Proof We use the standard fact that the group of all homeomorphisms with the
topology of uniform convergence on compact sets is a topological group. It is then
clear that V is an abelian group.

Let .ri/i2N be a sequence of positive real numbers, such that there is a limit u D

limi!1 ES .v.ri// (limits computed using uniform convergence on compact subsets
of S ). By considering the effect on @S , we see that .ri/i2N has a limit, which we
denote by r , and that uj@S D v.r/. Composing with v.1=r/, we may assume that
uj@S D Id@S and that .ri/i2N converges to 1.

We next show that u.W�/ � W� . For suppose not. Then u.W�/ \WC ¤ ∅ and
so u.W�/\WC ¤ ∅. Let U � S \U � WC \ u.W�/ where U is an open ball.
By Lemma 4.10, there is an s > 1 such that `s meets U . Now S \ u�1.U / �W�
and .ES .v.1=ri///i2N converges to u�1 in the topology of uniform convergence on
compact subsets. Therefore, for sufficiently large i , ES .v.1=ri//.U \ `s/ � W� .
This implies that s=ri < 1. Letting i tend to infinity, we find that s � 1 which is a
contradiction.

Applying similar reasoning one sees that u�1.W�/�W� , and therefore u.W�/DW� .
Then u.W�/DW� , and so u.`1/D `1 . For each s > 0, u commutes with ES .v.s//

and so u.`s/D `s .

4.12 Lemma For each r > 1, there exists kr � 1 and Qr � RC , such that Qr is
dense in and is contained in Œ1=r; r �, r; 1=r 2Qr , and, for each s 2Qr , the maximal
dilatation of ES .v.s// is at most kr .
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Proof The proof of Proposition 3.6 shows that the result is true when r > 1 is near
enough to 1. We extend to all values of r by taking Qr DQn

s and kr D .ks/
n , where

n is a large integer and s D n
p

r is near to 1.

4.13 Lemma Let .t.i//i2N be a sequence of real numbers converging to 1. Then we
can find a sequence .Ei/i2N with the following properties:

(4.13.1) For each i , Ei is a quasiconformal homeomorphism of S . We have
dT .Ei ; Id/� 2 log.k2/, where k2 � 1 is the constant of Lemma 4.12.

(4.13.2) The restriction of Ei to @S is equal to v.t.i//.

(4.13.3) Each Ei is the uniform limit of a sequence of the form
�
ES .v.ti;j //

�
j2N

,
where

�
ti;j
�
j2N

converges to t.i/.

(4.13.4) For each s > 0, Ei.`s/D `t.i/s .

(4.13.5) Some subsequence of .Ei/i2N converges to the identity in the uniform
metric on the space of homeomorphisms S ! S . (The uniform metric is
defined using the spherical metric on S � S2 .)

Proof We apply Lemma 4.12 to prove (4.13.3), (4.13.1) and (4.13.2). We actually
prove dT.Ei ; Id/� log.k2/ at this point, but we will have to replace this by 2 log.k2/

in a moment. Then (4.13.4) follows from Lemma 4.11.

To prove (4.13.5), note that, by Theorem 13.3, we can choose a subsequence of .Ei/i2N

with quasiconformal limit u, with dT.u; Id/� log.k2/. By Lemma 4.11, for each r ,
u.`r /D `r . We then replace Ei by u�1Ei . It is easy to check each of the conditions
in the statement for this new sequence.

4.14 Lemma WC D
S

r>1 `r .

Proof Let x 2WC . From x we obtain two sets of positive real numbers, namely the
set of r > 0 such that `r is strictly to the left of x and the set of r > 0 such that `r is
strictly to the right of x . The first set is non-empty since it contains r D 1. The second
set is non-empty by the final sentence of the statement of Lemma 4.6. The two sets are
disjoint intervals, and the two intervals must abut with at most one point between them.
So there is a t > 0, such that the lefthand interval has the form .0; t/ or .0; t � and the
righthand interval has the form .t;1/ or Œt;1/, where t � 1.

We assume that x is to the right of `t and deduce a contradiction. Let p be a path
from x to C1 in S n`t and let �D d.p; `t /. Then � > 0. Let .r.i//i2N be a strictly
increasing sequence in Q2 (see Lemma 4.12), with limit 1. By Theorem 13.3, we
may assume that .ES .r.i///i2N converges uniformly on compact subsets of S to a
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k2 –quasiconformal homeomorphism uW S ! S . Then uj@S D Id. For large enough
i , u ıES .v.1=r.i/// moves points in `t a distance less than � . In particular, the path
p is disjoint from

u .ES .v.1=r.i///.`t //D u.`t=r.i//D `t=r.i/:

The final equality follows from Lemma 4.11. Therefore x is to the right of `t=r.i/ .
But t=r.i/ > t , so this contradicts the definition of t .

Similarly if x is to the left of `t , we choose .r.i//i2N to be a strictly decreasing
sequence in Q2 with limit 1. This time t=r.i/ < t and we find that x is to the left of
t=r.i/ for large enough i , obtaining another contradiction.

It follows that x 2 `t , as required.

4.15 Lemma There is only one closed subset of `1 that separates S , namely `1

itself.

Proof Let U be a connected open subset of S meeting `1 . By (4.9.3), U meets
W�\WC . So W�[U [WC is connected.

The next lemma is the basic a priori estimate in this paper.

4.16 Proposition

(4.16.1) Let K > 1 be greater than the maximal dilatation of ES .v.2//. There is a
number W0 , depending only on K and not on ES , such that `1 is contained
in the rectangle in S of height � and width 2W0 , centred at 1C i�=2.

(4.16.2) Let k2 > 1 be the constant of Lemma 4.12. Let r0 > 0. Then there exists a
number W > 0, depending only on k2 and on r0 and not on ES , such that,
for r � r0 , each `r is contained in the rectangle in S of height � and width
2W , centred at r C i�=2.

We will apply these results in a situation where ES changes, while K and k2 are
unchanged. The statements are in their current form, in order to ensure that W0 and
W will not need to be changed when ES is changed.

Proof We will prove (4.16.2) only. The proof of (4.16.1) is the same, but simpler—
k2 must be replaced by K throughout. By Theorem 13.6, every k –quasiconformal
homeomorphism is a .k; �.k//–quasi-isometry, where �.k/ is a known function of k .
We have an L2 > 0, depending only on k2 , with the following property. Let  be
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an arbitrary hyperbolic geodesic, with endpoints C and � . Then every .k2; �.k2//–
quasi-isometry f of S sends  into the L2 –neighbourhood of the hyperbolic geodesic
joining f .C/ to f .�/. This holds in particular when r 2Q2 (see Lemma 4.12 for
the definition of Q2 ) and f D ES .v.r//.

Let n0 and L be as in Lemma 4.3. Let n � n0 . By Definition 4.4, `2n is contained
in the rectangle Rn of height � and width 2L, centred at 2nC i�=2. We now prove
Proposition 4.16 with r � r0 D 2n0 and W DLCL2 . We have already dealt with the
cases when r is a power of 2. So we may assume that, for some n� n0 , 2n< r < 2nC1 .
Now let 2n < s < r < t < 2nC1 , with s; t 2 2n:Q2 and n� n0 . We know that `s and
`t are contained in rectangles in S of height � and width 2W , centred at sC i�=2

and tC i�=2 respectively. Letting s tend to r from below and t tend to r from above,
Lemma 4.6 shows that `r is contained in a rectangle of height � and width 2W .

Finally, let r0> 0 satisfy 2n� r0< 2nC1 , where n is an integer which may be negative.
We may reduce to the previous case by applying an appropriate power of ES .v.2//.
The maximal dilatation is therefore bounded by an appropriate power of k2 . As before,
we have a quasi-isometry whose constants are bounded in terms of n and n0 . The
general result therefore follows.

We can now prove the following result.

4.17 Lemma We have `D `1 . UCDWC and U�DW� are open, simply connected
subspaces of R2 .

Proof We show that ` D `1 by contradiction. We already know from (4.9.3) that
`1 � `. If `1 ¤ `, we have `r \ ` ¤ ∅ for some r ¤ 1. Applying E.v.s// for a
large value of s , we contradict (4.16.2) and Definition 4.4. The simple connectedness
statement follows from Lemma 4.5.

4.18 Definition It is convenient to denote
S

r>0 `r by �C and
S

r>0 `r by b�C .

4.19 Lemma �C is an open simply connected subset of S .

Proof By Lemma 4.14,

�C D
[
r>0

ES .v.r//.WC/:

As a union of open sets, �C is open. Each of the sets in the union is connected, and any
two of them intersect each other non-trivially. So the union is connected. In fact �C
is simply connected, because any compact subspace is contained in ES .v.r//.WC/,
for some r , and we know from Lemma 4.17 that WC is simply connected.
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4.20 Invariant information about `1 We now reinterpret what we have found
out, using the underlying hyperbolic metric. This will make it easier to transfer
our results from the strip S to the unit disk D2 or the upper halfplane U2 . Un-
der the conformal isomorphism expW S ! U2 the 4–tuple .i�;�1; 0;1/ is sent
to the 4–tuple .�1; 0; 1;1/ of R [ f1g with cross-ratio 2. Therefore under any
conformal isomorphism of S with U2 , the 4–tuple .i�;�1; 0;1/ is sent to a 4–
tuple .x1;x2;x3;x4/ of cross-ratio 2. There is a cyclic permutation � , such that
x�.1/ < x�.2/ < x�.3/ < x�.4/ � 1. While cyclic permutations do not preserve
cross-ratios in general, they do preserve cross-ratios equal to 2.

Conversely, fixing a cyclic permutation � and a 4–tuple .x1;x2;x3;x4/ of elements
of R[f1g with cross-ratio 2 and with x1 < x2 < x3 < x4 �1, we can define � D�
x��1.1/;x��1.2/;x��1.3/;x��1.4/

�
, thus specifying a unique conformal isomorphism

g� W S ! U2 such that g� .i�;�1; 0;1/D � .

A 4–tuple of distinct points in R[ f1g, with cross-ratio �.a; b; c; d/ D 2, can be
characterized in several different ways. Equivalent conditions are
1) �.a; b; c; d/D�.b; c; d; a/;
2) �.a; b; c; d/D�.a; d; c; b/;
3) the hyperbolic geodesic ac meets the hyperbolic geodesic bd orthogonally.
If we map U2 conformally to D2 , the cyclic permutation condition is translated to the
additional condition that the four points in the 4–tuple occur in counter-clockwise order
on the unit circle.

A description of the coordinates in S in hyperbolic terms is obtained by taking the
hyperbolic geodesic joining ˙1. Vertical geodesics are geodesics orthogonal to this
main geodesic. The euclidean distance apart of vertical geodesics is equal to their
hyperbolic distance from each other, so this assigns strip coordinates to all boundary
points, starting from 0 and i� . We can also assign strip coordinates to non-boundary
points. Such coordinates are induced on U2 [ f1g or on D2 by any conformal
isomorphism with S .

Suppose now that we have a conformal isomorphism g� W S ! D2 , corresponding to
the 4–tuple � D .a1; a2; a3; a4/ of distinct counter-clockwise ordered points of S1

with cross-ratio 2. The hyperbolic geodesics .a3; a1/ and .a2; a4/ meet orthogonally
at a point we call b0 . For t 2 R, let bt be the point on .a2; a4/ a signed hyperbolic
distance t towards a4 from b0 . For t 2R , let ˇt be the geodesic through bt orthogonal
to .a2; a4/

We have proved the following result.
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4.21 Lemma Let 2W0 be the width of the rectangle containing `1 , obtained from
(4.16.1). Then W0 depends only on the maximal dilatation K of ES .v.2// and not on
ES . The subspace g� .`1/ lies in the region between the geodesics ˇ1�W0

and ˇ1CW0
.

The geodesic ˇ1CW0
divides D2 into two components, one of which contains a4 in its

boundary. This component is contained in g�
�S

r>1 `r

�
� g� .�C/.

5 Support of an extended map

We now come to a key result (Theorem 5.1). Its proof is difficult and the route we
choose for the proof is not at all obvious. We state the result and start the proof. After
this start, we will, in this section, outline the way the proof proceeds, in the hope of
motivating it and making it easier to follow. The proof will be completed in Section 7.

We abandon the more general hypothesis of Paragraph 4.2 and return to the standard
hypothesis of Theorem 1.1, namely that there is an extension homomorphism EW QS!

QC.

In Paragraph 4.20, we showed how a counter-clockwise 4–tuple � of distinct points of
S1 , with cross-ratio 2, leads to a well-defined conformal isomorphism g� W S !D2 .
Then g� can be uniquely extended to the prime ends of S and D2 . The space of prime
ends of S is equal to @S [f�1;C1g, and the space of prime ends of D2 is equal to
S1 .

We obtain an extension homomorphism E� W QS.S/! QC.S/ by the formula

g� ıE� .g/ ıg�1
� D E

�
g� ıg ıg�1

�

�
:

(Note that g� on the right is really the restriction of g� to the boundary in S2 of S or
D2 .) We can now apply the results of Section 4, with ES equal to the restriction of E� .

In Definition 4.18 we defined �C , an open connected subset of S , and b�C , an open
connected subset of S . This construction can be carried out using E� in place of
ES , and the sets constructed then depend on � . We set �� D g� .�C/ and b�� D
g�
�b�C [ fC1g�. These two sets are open and simply connected subspaces of D2

and D2 respectively. We set K� D D2 n b�� . This is a compact subset of the closed
unit disk.

5.1 Theorem Let C � S1 be a closed subinterval. Then there is a closed subset
K � D2 such that K \ S1 D C , with the following property. Let  2 QS be any
quasisymmetric map with support in C . Then E. / has support in K . In fact we can
take K D

T
� K� , where � varies over all 4–tuples .c1; c2; c3; c4/ arranged clockwise

on S1 , with cross-ratio 2, such that c1 and c3 are endpoints of C , and c2 2 C .
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We need only show that, for each � and each r > 0, if  2 QS.S/ is supported in
g�1
� .C /D f�1g[ .@S \fx � 0g/, then E� . /j`r is the identity. From this point to

the end of this section, we fix � , and this allows us to drop the subscript � without
causing confusion. In this section we will use EW QS.S/! QC.S/ to denote the map
E� defined above, and �C to denote �� . Also in this section we reuse the symbol C ,
used in the statement of Theorem 5.1, to denote instead f�1g[.@S\fx � 0g/, where
it plays the same role. Let G be the group of all quasisymmetric homeomorphisms of
the boundary of S , with support in C .

5.2 Lemma Let s > r > 0. Then, as R tends to infinity, the euclidean distance
deuc

�
`rR; `sR

�
tends to infinity.

Proof From Proposition 4.16, `sR is contained in a rectangle in S of height � and
width 2W , centred at sRC i�=2. Similarly for `rR , but with the centre at rRC i�=2.
Moreover W is independent of R. Therefore

deuc.`rR; `sR/� .s� r/R� 2W:

5.3 Lemma For each `r (r > 0) and each  2G , E. /.`r /D `r .

Proof We fix  . If we can find one value of r > 0, such that E. /.`r /D `r , then
the same will be true for all values of r > 0, since  commutes with each v.s/. It
simplifies the argument slightly to work with a large value of r . We choose r large
enough so that any point p 2 `r has two orthogonal hyperbolic geodesics through it,
with all four endpoints in @S nC . We fix p and call the two geodesics 1 and 2 . The
situation is illustrated in Figure 5.3.i. Note that if p is near one of the two boundary
components of S , we may take one of the two geodesics with both endpoints in the
same component of @S .

p
1

2

�C
`r

Figure 5.3.i: This diagram illustrates the proof of Lemma 5.3. Two hyperbolic
geodesics 1 and 2 intersect orthogonally at p .

Now, for some k > 1, E. / is k –quasiconformal. It follows from Theorem 13.6 that
E. / is a .k; �.k//–quasi-isometry with respect to the hyperbolic metric on S , where
�.k/ is an explicit function of k > 1. Therefore there is a number L> 0, depending
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only on k , such that, for i D 1; 2, E. /.i/ is contained in an L–neighbourhood of
i . It follows that the hyperbolic distance d.E. /.p/;p/ is bounded by a constant
�1 . This constant is independent of p , provided p 2 `r and r is large enough. By the
final sentence of the statement of Lemma 4.6, we may assume that E. /.`r /��C .

We fix p 2 `r and define s by E. /.p/ 2 `s . We claim that s D r . For suppose
s ¤ r . Using Lemma 5.2, we choose R large enough so that deuc.`Rr ; `Rs/ > �1 .
Let q D E.v.R//.p/ 2 `Rr . Then E. /.q/D E.v.R//E. /.p/ 2 `sR . So

�1 � deuc.E. /.q/; q/� deuc.`Rs; `Rr / > �1;

which is a contradiction.

We are now in a position to outline the proof of Theorem 5.1. The complete proof
will be given later. Recall that we are denoting by G the group of all quasisymmetric
transformations of @S [fC1;�1g with support in C D .@S \fx � 0g[ f�1g.

We know from Lemma 5.3 that, for each g 2 G , E.g/ preserves `r . A seemingly
obvious approach to proving Theorem 5.1 is as follows. E is, in fact, equal to E� ,
depending on a 4–tuple � D .a1; a2; a3; a4/, with cross-ratio 2, where a1 and a3 are
the endpoints of C . This enables us to change a2 to any point in the interior of C .
Recall that the family f`r gr>0 converges to C1 as r tends to C1. Changing �
enables us to change f`r g to another ‘foliation’

˚
`0r
	

, converging to some point in RC .
Lemma 5.3 holds equally well on this new family. Therefore each  2 G preserves
each `r \ `

0
s . If this intersection is a point, it must be a fixed point for every element

of G .

Unfortunately, we do not know that the intersection is a point, only that it is a compact
subset of �C . There is no way to prove that this is a significant problem: the whole
situation occurs inside an argument by contradiction, and so no counter-example is
possible. However, we have worked long enough on this problem to be reasonably
confident that no simple approach exists along the lines just sketched. Instead of this
“obvious” but ineffective approach, we argue as follows.

Let Fix.G/ � S be the set of points fixed by all elements of E.G/. We will prove
Theorem 5.1 by contradiction. So we are assuming that �C is not a subset of Fix.G/.
Fix.G/ is a closed subset of S containing @S \fx � 0g.

The idea of the proof is to find a component of S nFix.G/ whose closure does not meet
@S . (These statements are not to be taken too literally—detailed statements in the actual
proof are somewhat more convoluted.) We will show that any such component extends
in S to C1. Our various Baire category results enable us to find a quasisymmetric  ,
supported in .@S \fx � 0g/[fC1g, such that  .C1/ 2 RC and E. / is near the
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identity in the compact open topology. Since  commutes with every g 2G , we can
show that our component of S n Fix.G/ is invariant under  . Hence our component
extends to  .C1/ 2 RC . But we have shown that the closure of our component does
not meet @S , so this is a contradiction.

Our problem then is to show that there is a component of �C n Fix.G/ whose closure
does not meet @S . The key idea is to notice that, if each `r is a vertical interval of
length � , then this is not so hard to show (though still not trivial). The basic reason
that things are easier in this situation is that, by Lemma 5.3, we obtain an action of G

on the open vertical interval `r , and we can bring the order structure of the reals into
play. In particular, if we can find a compact G–invariant subset of the vertical open
interval `r , then its highest point is also G–invariant, and so is the lowest point. So,
with this special hypothesis, it is not too hard to find our component of �C nFix.G/
whose closure does not meet @S .

How do we get round the difficulty that the `r are not vertical intervals? The method is
to make a model of the action in which `r is vertical. We do this by using the Riemann
mapping of the simply connected open subset of S to the left of `r to the subset to the
left of S \fx D rg. There is one such Riemann mapping for each r > 0. We have to
combine this uncountable set of Riemann mappings into a coherent whole. We succeed
in doing this, using the Carathéodory Kernel Theorem, and this builds a model where
proofs are much easier to construct. Technical work has to be carried out, to pass back
and forth between, on the one hand, the actual situation of interest, and, on the other
hand, the model where the `r are vertical.

6 The model and its properties

We now explain how to build the model referred to at the end of Section 5.

6.1 Definition Given r > 0, we set Ur equal to the set of points of S to the left of
`r . Since @S [ `r is connected, we see that Ur is a simply connected open set. Let
Sr D S \fx < rg. We set fr W Ur ! Sr equal to the unique conformal isomorphism
fixing �1, r C i� and r .

6.2 Definition Let uW S ! S be any quasiconformal homeomorphism, preserving
the family f`r gr>0 . What we mean by this is that, for each r there is an s such that
u.`r / D `s , and, furthermore, the correspondence induced on RC is a monotonic
increasing homeomorphism of RC onto itself. We have come across two examples of
such u: by Lemma 5.3, we can take uD E.g/ for some g 2 G ; another possibility
is uD E.v.r// for some r > 0. By Theorem 13.1, u can be continuously extended
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to S . We set SC D S \ fx > 0g and bSC D S \ fx > 0g. We will define a map
F.u/WbSC !bSC . Suppose z D r C iy and u.`r / D `s . Let fr be defined as in
6.1. The map fsuf �1

r W Sr ! Ss is a quasiconformal homeomorphism sending r

to s , r C i� to s C i� and �1 to �1. By Theorem 13.1, this quasiconformal
homeomorphism can be continuously extended to a homeomorphism ur W Sr ! Ss .
We define F.u/.z/D ur .z/. F.u/ starts life as a not necessarily continuous map of
sets, but, in Proposition 6.4, we show that, for each such u, F.u/ is a homeomorphism.

6.3 Definition Let H be the group of all u as in Definition 6.2. It is easy to see
that F maps into the group of bijections, and that F W H ! Bijections

�bSC� is a
homomorphism of groups.

6.4 Proposition For each u preserving the family of sets f`r gr>0 as in Definition
6.2, F.u/WbSC !bSC is a homeomorphism.

Proof Since F.u/�1 D F.u�1/, it is sufficient to show that, for each u 2H , F.u/

is continuous. Let .zn/n2N be a sequence in bSC converging to a point z1 2bSC .
We must show that .F.u/.zn//n2N converges to F.u/.z1/. Since .zn/n2N is an
arbitrary convergent sequence, we need only prove this convergence statement for some
subsequence.

For 1 � n � 1, we define r.n/, yn and s.n/ by the equalities zn D r.n/C iyn

and u.r.n//D s.n/. Then the sequence .r.n//n2N converges to r.1/ and .s.n//n2N

converges to s.1/. By the Carathéodory Kernel Theorem,
�
fr.n/

�
n2N

converges to

fr.1/ uniformly on compact subsets of Ur.1/ . It follows that
�
f �1

r.n/

�
n2N

converges

to f �1
r.1/

uniformly on compact subsets of Sr.1/ . Similarly for
�
fs.n/

�
n2N

. It follows
that

�
ur.n/

�
n2N

converges to ur.1/ uniformly on compact subsets of Sr.1/ .

For r 2 R, we define �r W S ! S by �r .z/D zC r . Recall the definition of ur from
Definition 6.2. Since composition of maps in the compact-open topology is continuous,
we know that

(6.4.a) lim
n!1

�s.1/�s.n/ ıur.n/ ı �r.n/�r.1/ D ur.1/:

The convergence is uniform on compact subsets of Sr.1/ . But then, by Theorem 13.3,
we have convergence on Sr.1/ , uniform with respect to the spherical metric.

Writing z0n D zn� r.n/C r.1/, we have

jF.u/.zn/�F.u/.z1/j D jur.n/.zn/�ur.1/.z1/j(6.4.b)

� jur.n/.zn/�ur.1/.z
0
n/C s.1/� s.n/jC js.n/� s.1/j

Cjur.1/.z
0
n/�ur.1/.z1/j
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The first of these three summands is equal to

�s.1/�s.n/ur.n/�r.n/�r.1/.z
0
n/�ur.1/.z

0
n/

which converges to zero. The second term clearly tends to zero. The third term tends to
zero because ur.1/ is continuous and z0n converges to z1 . This proves our result.

In Proposition 6.4, we showed how to define a homomorphism of groups F W H !

Homeo.bSC /.

6.5 Lemma F W H ! Homeo.bSC / is a continuous homomorphism, in the following
sense. Let k � 1 and let Hk be the set of elements u 2 H such that the maximal
dilatation of u is at most k . Then F jHk is continuous with respect to the compact-open
topology.

Proof We fix 0< a< b and therefore the closed rectangle RD Œa; b�� Œ0; ���bSC .
Let R0 �bSC also be a closed rectangle of height � , whose interior in bSC contains
R. Let Y be the set of z 2 b�C such that z lies on or between `a and `b .

We will show that F.v/jR depends continuously on v in the compact-open topology.
The proof is by contradiction. So suppose we have a k�1, an �>0, a sequence .zn/n2N

in R and a sequence .vn/n2N in Hk converging to the identity uniformly on each
compact subset. We also suppose that, for each n� 1, d.zn;F.vn/.zn//� � We may
suppose that .zn/n2N converges to some point z1 2R. For each n with 1� n�1,
let zn D r.n/C iyn . Let F.vn/.zn/ D s.n/C iy0n . Then the sequence .r.n//n2N

converges to r.1/. Now .vn/n2N converges to the identity, F.vn/j@S D vnj@S , and
F.vn/ sends each vertical interval to a vertical interval. Therefore .s.n//n2N has the
same limit r.1/.

The k –quasiconformal homeomorphism fs.n/ ı vn ı f
�1

r.n/
W Sr.n/ ! Ss.n/ extends

continuously to a k –quasiconformal homeomorphism that we denote by wnW Sr.n/!

Ss.n/ . Arguing as in the proof of Proposition 6.4, we find that

lim
n!1

�s.1/�s.n/ ıwn ı �r.n/�r.1/ D Id :

Following (6.4.a), we see that convergence is uniform with respect to the spherical
metric on Sr.1/ . Following (6.4.b), we see that F.vn/.zn/ converges to z1 . This
contradiction proves our result.

6.6 Transferring prime ends between regions For each h2H , F.h/ preserves the
family of vertical intervals in bSC . Since actions on intervals are easier to understand
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than actions on open subsets of the plane, we are able to prove analogues, in the model,
of results we need for the various actions on S via the use of EW QS.S/! QC.S/.

In order to use the model results in the context we desire, we need to be able to transfer
readily between the situation of interest and the model. There is no conventional map
of sets in either direction: the connection is via prime ends, as explained in Definition
6.2. For this reason, we give details on the transfer of prime ends from one region to
another, in a general context.

Let U be any simply connected proper open subset of C and let f W U ! D2 be a
Riemann map, with inverse gW D2 ! U . Given a closed interval or point I � S1 ,
we define gŒI � to be the union of all impressions in S2 of each prime end of U that
corresponds under f to a prime end in I . Square brackets are used to remind the
reader that we are using notation in a specifically defined and non-standard manner.

Let ˛i be an open arc in D2 and suppose ˛i has two well-defined endpoints in S1 ,
neither of them in I . Let Ai be the open component of D2 n˛i whose closure contains
I . We assume that AiC1 �Ai and that

T
i Ai D I .

6.7 Lemma Let U , I , f , g and Ai be as in Paragraph 6.6. Then gŒI �D
T

i g.Ai/

and gŒI � is a compact, connected subset of the frontier of U in S2 .

Proof When I is a single point, the equality in the statement is just the definition
of the impression of a prime end. In general gŒI ��

T
i g.Ai/. To prove the reverse

inclusion, let z1 2
T

i g.Ai/. Let .zi/i2N be a sequence in U converging to z1 , such
that, for each i , zi 2 g.Ai/. We must prove that z1 lies in the impression of some
prime end corresponding to a prime end in I .

Without loss of generality we may assume that .f .zi//i2N converges to some p0 2D2 .
We have f .zi/ 2Ai . Therefore p0 2 I . It follows that z1 lies in the impression of
the prime end in U corresponding to p0 .

Since each Ai is connected, so is g.Ai/. It follows that gŒI � � S2 is compact and
connected.

The following result is easy to prove.

6.8 Lemma We continue with the notation of Paragraph 6.6. Let .zi/i2N be a
sequence of points in S1 converging to a point z1 . Let V be any open neighbourhood
of the impression gŒfz1g� of the prime end of U . Then, for large enough i , gŒfzig��

V .
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6.9 Lemma Let I � Œr; r C i�� be a closed vertical subinterval, such that r … I . Let
fr W Ur ! Sr be as in Definition 6.1, and let gr D f

�1
r W Sr ! Ur . Then gr ŒI � does

not meet the x–axis. Similarly, if I does not contain r C i� , then gr ŒI � does not meet
the line y D � .

Proof We construct an open rectangle Ai � Sr in a .1= i/–neighbourhood of I , such
that I is contained in the closure of the righthand vertical edge of Ai , and such that I

is disjoint from the closure of the lower horizontal edge of Ai . We may assume that
the righthand endpoint of the lower edge of Ai corresponds under gr to a singleton
prime end of Ur . Then gr .Ai/\RD∅. The result follows from Lemma 6.7.

Recall that G is the group of all quasisymmetric homeomorphisms of @S[f�1;C1g
supported in .@S \fx � 0g/[f�1g. G acts on S via E. There is a second action on
S , using F W E.G/!Homeo.S/. We will sometimes use notation that leaves some of
this structure to be understood.

6.10 Lemma

(6.10.1) Each component of �C nFix.G/ meets each `r .

(6.10.2) Each component of SCnFix.F.G// meets each vertical interval fx D rgr>0 .

(6.10.3) Given s > 0, let U s D
S

r>s `r . Each component U of U s nFix.G/ meets
each `r with r > s . In particular, C1 is contained in the closure of U in
S2 .

Proof For the first statement, let U be any component. Then U is open. Each
element of V D E.v.RC// preserves the family f`r gr>0 , as does any element of V —
see Lemma 4.11. Also each element of V sends Fix.G/ to itself, since it commutes
with E.G/. Therefore any element of V that is sufficiently near to the identity preserves
U . Let J D fr W `r \U ¤∅g. Since U is connected, J is a connected subset of RC ,
hence an interval. Using Lemma 4.13, we deduce that J D .0;1/.

By Lemma 6.5, the same proof will work for the second statement.

To prove the third statement, let U be a component of U s n Fix.G/. Let J D

fr W `r \U ¤∅g. We use the same argument as above, but we restrict to elements of
V that move to the right on @S . If the element is sufficiently near the identity, then U

must be sent into itself. We deduce that J D .s0;1/ for some s0 with s0 � s . To see
that s < s0 leads to a contradiction, we use the same argument, but move to the left.

Geometry & Topology, Volume 11 (2007)



548 D B A Epstein and V Markovic

We are proving Theorem 5.1 by contradiction. It follows that we can find u 2 G ,
r > 0 and p0 2 `r , such that E.u/.p0/ ¤ p0 . Without loss of generality, we may
assume that p0 corresponds to a prime end of Ur with a singleton impression. Let
p D fr .p

0/D r C iy . Then F.E.u// does not fix p 2 S \fx D rg.

6.11 Lemma There is a minimal F.E.G//–invariant compact subinterval of the open
interval .r; r C i�/ containing p in its interior. The endpoints of this interval are fixed
points for the action of F.E.G//.

Proof We set I D Œp; r C i��. By Lemma 6.9, gŒI � is disjoint from the x–axis.

To find our F.E.G//–invariant compact interval, choose a quasisymmetric homeo-
morphism � of @S which takes C1 to r , such that � is supported in fx > r=2g.
Then � commutes with all element of G . If t is large, E.�/.`t / is a compact subset
Ap separating gr ŒI � from r in b�C . (To prove this, note that the last sentence in the
statement of Lemma 4.6 shows that f`r gr>0 converges to C1 as r converges to C1.
Therefore

n
E.�/.`t /

o
t>0

converges to �.C1/D r as t tends to C1.)

This implies that `r \Ap separates gŒI � from r in p̀ . The situation is shown in
Figure 6.11.i.

p0

r

�C

`r

Ap

Figure 6.11.i: This diagram illustrates the proof of Lemma 6.11. We show
the barrier Ap below the point p0 . The situation is more complicated than it
appears, because Ap \ `r is not necessarily a single point.

By Lemma 5.3, Ap is E.G/–invariant, and so `r \Ap is E.G/–invariant. Therefore
the non-empty subset of S \ fx D rg, corresponding to prime ends of Ur whose
impressions meet `r \ Ap , is F.E.G//–invariant. By Lemma 6.8, this subset is
compact. Since F.E.G// preserves order along .r; r C i�/, the highest point in this
compact subset is fixed by F.E.G//. We have chosen Ap so that this highest point is
below p . Ap therefore provides a barrier around r that prevents the F.E.G//–orbit of
p reaching r . A similar argument applies to find a barrier Bp around rC i:� . We now
choose mp as large as possible and Mp as small as possible so that mp < =.p/ <Mp

and such that r C i:mp and r C i:Mp are fixed points for F.E.G//. This gives our
claimed minimal compact F.E.G//–invariant interval containing p .
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The set of fixed points for F.E.G// acting on bSC is a closed subset containing
@S \fx � 0g, and its complement is open in C. Let W be the component of p in this
complement. Then W is open in C.

6.12 Lemma There are two continuous functions m;M W RC! .0; �/, such that, for
each x 2 RC , 0<m.x/ <M.x/ < � , and such that

W D fxC iy 2 S Wm.x/ < y <M.x/g :

Proof Since W is open, there is a ı >0, such that the interval .r�ı; rCı/�f=.p/g�
W . For each s 2 .r � ı; rC ı/, let I.s/ be the closure of the component of sC i:=.p/

in W \fx D sg. So I.s/ is a closed interval, and I.r/D Œr C i:mp; r C i:Mp �.

We claim that I.s/ depends continuously on s . We must show that, for an arbitrary se-
quence .si/i2N converging to r , there is a subsequence for which .I.si//i2N converges
to I.r/. We may suppose that the limit is some closed interval I1 . The openness of
W implies that I.r/� I1 .

We apply Lemma 4.13 with t.i/ D si=r , to obtain a sequence .Ei/i2N of quasi-
conformal homeomorphisms of S . Taking a subsequence, we may assume that the
.Ei/i2N converges uniformly to the identity on compact subsets of S . By Lemma
6.5, .F.Ei j�C//i2N also converges to the identity on compact subsets of S\fx > 0g.
Since Ei.`r /D `si

, it is easy to see that, for large enough i , F.Ei/.I.r//D I.si/. It
follows that I1 D I.r/, as required.

The lower endpoint of the interval Is , where s 2 .r �ı; rCı/, is therefore the graph of
a continuous function .r�ı; rCı/! .0; �/ and the same applies to the upper endpoint
of Is . Now choose .a; b/� .0;1/ to be a maximal open subinterval containing r , for
which we have continuous functions mW .a; b/! .0; �/ and M W .a; b/! .0; �/ that
1) extend the two functions just specified, and such that
2) each t C i:m.t/ and each t C i:M.t/ is a fixed point for all elements of F.G/,
while
3) t C i:y 2W for m.t/ < y <M.t/.
We claim that a D 0 and b D1. Suppose, for example, that a > 0. Let .a.i//i2N

decrease monotonically to a.

From Lemma 4.13, after replacing .a.i//i2N by a subsequence, we obtain a sequence
.Ei/i2N of homeomorphisms such that Ei.`a/D `a.i/ . For large i , Ei and therefore
(by Lemma 6.5) F.Ei/ are each near the identity. Since Ei and F.Ei/ commute with
E.G/ and F.E.G// respectively, the graph of m must be sent by F.Ei/ into the graph
of m, except perhaps near b , and similarly for M . This is illustrated in Figure 6.12.i.
Applying the inverse of F.Ei/, we see that the graphs of m and M can be extended

Geometry & Topology, Volume 11 (2007)



550 D B A Epstein and V Markovic

a

M

m

Figure 6.12.i: This diagram illustrates the middle part of the proof of Propo-
sition 7.1. We show the graphs of the two functions m and M . The image of
each graph under F.Ei/ is shown as a thicker line.

further to the left, contradicting the maximality of .a; b/. A similar proof applies to b .
This proves that aD 0 and b D1. It follows that W is the space enclosed between
two graphs.

This completes the work we need to do on the model. Please refer to the end of Section
5 to get an overview of where we are in the proof of Theorem 5.1.

7 Completion of the proof of Theorem 5.1

Having understood the model sufficiently well, in particular, having proved Lemma
6.12, we are now in a position to complete the proof of Theorem 5.1. Recall that we
are assuming that there is a point p0 2�C nFix.G/. As explained in the outline at the
end of Section 5, the proof goes via the next result.

7.1 Proposition At least one of the components of �C nFix.G/ has the property that
its frontier in b�C does not meet @S .

The proof of Proposition 7.1 will need a number of lemmas. The fact that a prime
end may have non-trivial impression complicates the proof. For example, the points
r C i:m.r/ and r C i:M.r/ in S (see Lemma 6.12) are fixed under F.G/. However,
the corresponding subsets of `r are not necessarily points, and there is no reason to
believe that they are fixed under G , nor that they contain points of Fix.G/.

Proof Now let X ��C be defined by

X D
[
r>0

gr Œr C i:m.r/; r C i:M.r/�;

where we are using the notation defined in Paragraph 6.6. Let H1 be the subgroup of
E.v.RC// preserving W . By Lemma 6.5, H1 includes a neighbourhood in E.v.RC//

of the identity with respect to the compact–open topology on the homeomorphisms of
S . Let H2 DH1 , where the closure is taken in the compact–open topology. Then W

and W are H2 –invariant.
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7.2 Lemma X is invariant under E.G/ and under H2 . X is a closed connected
subset of b�C , extending to each of the two ends of b�C . X \@S D∅. For each r > 0,
X \ `r ¤∅. We have a stronger result than the connectedness of X : let J � RC be
any interval, closed, open, half-open, finite or infinite; then XJ D

S
r2J fX \ `r g is

connected.

Proof Given u 2G , F.E.u// preserves each vertical open interval .r C i:m.r/; r C

i:M.r// � W . Lemma 6.7 shows that gr Œr C i:m.r/; r C i:M.r/� is a compact,
connected subset of `r , consisting of the union of the impressions of all the prime
ends of Ur , corresponding to those prime ends of Sr given by points of the closed
vertical interval Œr C i:m.r/; r C i:M.r/�. It follows that X is invariant under E.u/.
The H2 –invariance of X follows from that of W .

To see that X is closed, let .zn/n2N be a sequence in X converging to a point z12b�C .
We have to show that z1 2X . For 1� n�1, we set zn D r.n/C iyn . There is no
harm in going to a subsequence.

We set t.n/D r.1/=r.n/ and apply Lemma 4.13. We obtain a sequence .En/n2N of
quasiconformal homeomorphisms of �C , such that Enj@S D v.t.n//. By (4.13.5),
we may assume that .En/n2N converges to the identity. We may therefore assume
that, for each n, En 2 H2 , so that En.X / D X . So .En.zn//n2N is a sequence in
X\`r.1/ , converging to z1 . This reduces the problem to the case where r.n/D r.1/

is independent of n.

By the definition of X , we may assume that, for 1� n<1, zn lies in a prime end of
Ur.1/ corresponding to a point

wn 2 Œr.1/C i:m.r.1//; r.1/C i:M.r.1//�:

We may assume that .wn/n2N converges to some point w1 . That z1 2X then follows
from Lemma 6.8. This completes the proof that X is closed.

From Lemma 6.9 and Lemma 6.12, we see that, for each s > 0, `s \X is a compact
and connected non-empty subset of �C . It follows that X \ @S D∅.

Let J � RC be an interval. We will show that XJ is connected. So suppose P �XJ

is non-empty, and open and closed in the topology of XJ . We set A� J equal to the
set of s such that `s \X D `s \P . We have just seen that, for each s > 0, `s \X is
compact, connected and non-empty. Also `s \P � `s \X . It follows that

AD fs W `s \P ¤∅g :

Let .si/i2N be a sequence in A converging to s 2 J . We may assume that we are
working in a compact neighbourhood of `s , and therefore in a compact part of P . We
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deduce that s 2A, so that A is closed. Since P is open in XJ , we can apply Lemma
4.13 to show that A is open in J . It follows that AD J . Therefore P D XJ . This
completes the proof that XJ is connected.

Let U0 be the component of �C nX whose boundary contains the positive x–axis,
and let U� be the component whose boundary contains the halfline fx > 0;y D �g.
U0 and U� are invariant under E.G/ and under H2 . U0 and U� will be treated in
the same way: we will describe the situation only for U0 .

7.3 Lemma U0 and U� are simply connected open subspaces of S that are invariant
under G and under H2 .

Proof By Lemma 4.19, �C is open and simply connected. So S2 n�C is compact
and connected. Since X is connected and closed in �C , and its closure in S2 contains
C1, we see that X [ .S2 n�C/ is a closed and connected subspace of S2 . Therefore
each component of �C nX is simply connected.

In order to prove Proposition 7.1, we show that there is a component of �C n Fix.G/
lying between U0 and U� . This is surprisingly difficult, given that we already know
the analogous result, Lemma 6.12, about the model.

What we will do is to show first that the boundary of U0 in �C is fixed by G , and
similarly for U� , and secondly that the boundary of U0 is disjoint from that of U� .
The component asked for in Proposition 7.1 is any component lying between U0 and
U� . By Lemma 6.10, any such component will stretch from C1 to the lefthand
side of �C . It can therefore be used in the manner described in the outline proof of
Theorem 5.1 at the end of Section 5.

The strategy for showing that @U0 � Fix.G/ is to note that G preserves U0 and each
`r . G fixes the lower boundary of U0 , and `r joins the lower boundary of U0 to the
upper boundary. So, naively, one might think that one can directly use this to show
that the upper boundary is fixed. (It could, for example, be used correctly to show that
G fixes the upper boundary of �C , knowing only that the lower boundary is fixed;
but we already know that the upper boundary is fixed by G , so that’s not much help.)
However, we have no control on the way that `r intersects the upper boundary of U0 ,
and so this outline argument is unexpectedly difficult to make rigorous and correct.
Nevertheless, this is what we do. One point to watch out for is that the term prime end
is relative to some definite open simply connected subset of the plane. The prime ends
used in Definition 6.2 have only the most indirect relationship to the prime ends of U0 .

So, in order to prove Proposition 7.1, we first prove the following the result.
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7.4 Proposition The boundary of U0 in b�C is contained in Fix.G/, and similarly
for U� .

Proof As usual in this paper, there is a difficulty in that prime ends may not be
singletons. As usual, our reaction is to use the Riemann Mapping Theorem to transfer
the data to a well-behaved situation.

Let ˆW U0!D2 be a Riemann mapping. We normalize ˆ in such a way that S1 is
the disjoint union of four subsets:
1) f1g, corresponding to the end C1 of U0 ;
2) P , a closed interval (possibly a point), arranged symmetrically about �1, corre-
sponding to the prime ends of U0 at the lefthand end of U0 , arising from the end ofb�C other than C1.
3) an open interval J0 containing �i , corresponding under ˆ to the positive x–axis;
4) an open interval J1 equal to the complex conjugate of J0 , corresponding to prime
ends of U0 on the upper boundary of U0 .

H2 acts on the positive x–axis. By Lemma 4.13, it acts transitively on the positive
x–axis. Conjugation by ˆ does not change maximal dilatations. It follows that, if
E 2H2 is near the identity in the compact open topology on S , then ˆ ıE ıˆ�1 is
also near the identity in the compact open topology. By Theorem 13.2, ˆ ıE ıˆ�1

extends to the closed disk. By Theorem 13.3, ˆıEıˆ�1 is uniformly near the identity
on D2 . We are not (yet) claiming that the action of ˆH2ˆ

�1 on J1 is transitive.

For each r > 0, let C.r/ be the component of r in `r \ .U0[fy D 0g/. By Lemma
13.7, C.r/ meets the upper component of the boundary (in b�C ) of U0 . The following
lemma is a consequence of the invariance of X and the definition of U0 .

7.5 Lemma Each element of E.G/ sends each C.r/ to itself. Each element of H2

preserves the family fC.r/gr>0

7.6 Lemma The closure of U0 in b�C is equal to the disjoint union Y D
S

r>0 C.r/.
Also U0 D

S
r>0 C.r/.

Proof The proof needs to be carried out with care, because we do not know how `r

intersects the boundary of U0 . Since C.r/� `r , the subsets are clearly disjoint.

We first show that Y is closed in b�C . Let z1 2b�C \Y . Then there is a sequence
.zn/n2N in U0 converging to z1 , such that, for each n there is an r.n/ > 0 with
zn 2 U0 \ C.r.n//. We define r.1/ by the condition z1 2 `r.1/ . It follows that
.r.n//n2N converges to r.1/. By Lemma 7.5 and Lemma 4.13, after going to a

Geometry & Topology, Volume 11 (2007)



554 D B A Epstein and V Markovic

subsequence, we can find En 2 E.v.RC// such that the sequence .En/n2N converges
uniformly to the identity in the group of homeomorphisms of S with itself, and such
that En.zn/ 2 Cr.1/ . The sequence .En.zn//n2N also converges to z1 . It follows
that z1 2 Cr.1/ , as required.

Next we prove that ˆ.
S

r>0 C.r// D D2 . We have just proved that
S

r>0 C.r/ is
closed in D2 .

Suppose that there is a point p 2D2 nˆ.Y /. Let r be the infimum of values of s such
that p is to the left of ˆ.C.s//. Since Y is closed, r is actually a minimum rather
than an infimum. But then some element of ˆH2ˆ

�1 moves ˆ.C.r// a little to the
left. This contradicts the definition of r , and proves the final sentence of the statement.

Since Y is closed and contains U0 , we see that the closure of U0 in b�C is contained
in Y . The reverse inclusion is obvious, and the result follows.

ˆ extends continuously to the positive x–axis, and we use the same name ˆ for this
extension. ˆ.C.r// is a connected subset of D2 . We set Y .r/D J1 \ˆ.C.r//. To
see that Y .r/ is compact, we need only show that it does not extend to the ends of J1 .
To see this, note that X \ `r is compact, and therefore can be bounded on each side
by accessible prime ends in the upper boundary of U0 . It follows that Y .r/ lies in a
compact subset of J1 and is therefore itself compact.

We first claim that Y .r/ is connected. For let Œy0;y00� be the smallest closed interval in
S1 containing Y .r/, and let z 2 Œy0;y00� nY .r/. Then z cannot be connected to J0 in
D2 nˆ.C.r//. (A similar situation is illustrated in Figure 10.8.i, where the notation
is also similar to that used here, though not identical.) But we can use ˆH2ˆ

�1 to
find s > 0 such that ˆ.C.s// meets the component Z of z in Œy0;y00� nY .r/. Since
C.r/\C.s/ D ∅, we see that ˆ.C.r//\ˆ.C.s// D ∅. But then ˆ.C.s//[Z is
connected and it connects s 2 J0 to z 2 D2 nˆ.C.r//. This contradiction proves that
Y .r/ is a point or a closed interval.

We next claim that Y .r/ is a singleton, proving this by contradiction. If Y .r/ is an
interval, then, by H2 –equivariance, so is Y .s/ for each s > 0. Since there is an
uncountable collection of such intervals, one for each s , it must be the case that there
exist distinct r and s , such that the corresponding open intervals intersect in an open
interval Y .r; s/. Let q 2 Y .r; s/ be a point corresponding to a prime end of U0 that is
accessible by a straight arc in U0 . This prime end is a singleton fq0g � @U0 . So

q0 2 C.r/\C.s/� `r \ `s D∅:

This contradiction proves that Y .r/ is a singleton.
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Now let z 2 @U0 be a point accessible by a straight arc in U0 , and suppose that the
corresponding prime end z0 2 J1 . By Lemma 7.6, there is an r > 0 such that z 2C.r/.
We claim that C.r/\ @U0 D fr; zg. For suppose there is a sequence .zn/n2N in C.r/

converging to some point p 2 @U0 . where p does not lie on the x–axis. We have
shown above that Y .r/ D fz0g. Therefore .ˆ.zn//n2N converges to z0 . But then
.zn/n2N must converge to a point in the impression fzg of the corresponding prime
end in U0 . So p D z .

Each element g 2 E.G/ sends C.r/ to itself, as we observed in Lemma 7.5. We also
know that g preserves U0 , @U0 and @S\@U0 . Therefore g.z/D z . It follows that the
fixed point set Fix.G/ has a dense intersection with b�C\@U0 . So b�C\@U0�Fix.G/.
Similarly, for the component U� of �CnX , whose boundary contains fy D �;x > 0g,
we have b�C \ @U� � Fix.G/. This completes the proof of Proposition 7.4.

We continue with the proof of Proposition 7.1. We review what we know so far. X

is a closed connected subset of b�C that does not meet @S , and extends from the
lefthand to the righthand end of b�C . U0 and U� are components of �C nX that
are non-empty, open and connected, containing respectively RC and RCC i� . The
boundary of U0 in b�C is contained in Fix.G/, and similarly for U� . All the subsets
mentioned in this paragraph are invariant under G and H2 .

Recall from the proof of Proposition 7.1 that X is defined to be the union of impressions
of all prime ends corresponding to points of W , where W is the subset of Lemma
6.12. For each r > 0, W \fx D rg is a closed interval, whose interior contains points
which correspond to singleton prime ends of Ur on `r . Such points of X are definitely
not fixed by all elements of E.G/. It follows that X nFix.G/¤∅.

We define U D�Cn
�
U0[U�

�
. We know that there is a point x 2X that is not fixed

by all elements of E.G/. It is easy to see that x … U0[U� , and so x 2 U n Fix.G/.
The closure of any component of the non-empty open subset U nFix.G/ is sheltered
from @S by U0 and U� . Proposition 7.1 follows.

We can now complete the proof by contradiction of Theorem 5.1, following the outline
proof given at the end of Section 5. In Lemma 6.10 and Proposition 7.1 we showed the
existence of a component U 0 of �C n Fix.G/, whose closure in b�C is disjoint from
@S , and which meets each `r . Let U 0 be the closure of U 0 in S2 . This contains 1
and is disjoint from @S \fx > 0g.

Given an interval in S1 , we construct a smooth one-parameter family of diffeomor-
phisms supported on the interval, by using a smooth vector field which is non-zero
on the interior of the interval. Using a conformal isomorphism of D2 with S , we
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may conjugate this interval to @S [ fC1g so that C1 is contained in the interior
of this interval. And we may assume that the interval in the boundary of S lies as
near as we wish to C1. By Proposition 3.6, we find a dense subset D of a neigh-
bourhood of the identity in this one-parameter subgroup, such that the quasiconformal
homeomorphisms fE.�/ W � 2Dg all have dilatation less than some constant k . Let�
�j

�
j2N

be a sequence of distinct elements of our one-parameter group, such that�
E.�j /

�
j2N

converges uniformly with respect to the spherical metric on the closure of

S in S2 . We define  j D�jC1ı�
�1
j . The sequence

�
E. j /

�
j2N

converges uniformly
to the identity with respect to the spherical metric. For each j ,  j .C1/ ¤ C1.
Replacing  j by its inverse, if necessary, we may assume that  j .C1/D rj 2 RC ,
where

�
rj

�
j2N

tends to C1.

Since  j commutes with G , we see that E. j / preserves Fix.G/. We have to cope
with the problem that E. j / does not necessarily preserve �C . Although we know
that, for large enough j , E. j /.U

0/ meets U 0 , we cannot assert that these two open
subsets of S are equal.

For each s > 0, S n Us is the set of points of S to the right of `s . Let U 00 be a
component of U 0 \ S n U1 . If j is sufficiently large, E. j /.U

00/ is a connected
subset of �C nFix.G/, and so E. j /.U

00/� U 0 . By Lemma 6.10, E. j /.U
00/ meets

E. j /.`s/ for each s > 1. Letting s tend to infinity, we see that rj 2 RC lies in the
closure of E. j /.U

00/, and hence in the closure of U 0 . But this contradicts what we
know about U 0 . This completes the proof of Theorem 5.1.

8 The dominion of an interval

Let .a; b/� S1 be an open subinterval. In order for the two points a and b to specify
an interval on the circle, we insist that the direction from a to b inside the interval
should be counter-clockwise. The complementary interval is Œb; a�.

Figure 8.0.i illustrates the definitions we now give. Let Ga;b � QS be the group
of quasisymmetric homeomorphisms supported in the closed interval Œa; b�. We set
Fix.b; a/ equal to the set of points of the closed disk fixed under every element
of E.Ga;b/. Fix.b; a/ is a closed subset of D2 and Fix.b; a/ \ S1 D Œb; a�. By
Theorem 5.1, Fix.b; a/ is a closed neighbourhood of .b; a/ in D2 . Let A.b; a/ be
the component of the interior (with respect to the closed disk) of Fix.b; a/ containing
.b; a/�S1 . We set U.b; a/ equal to the union of A.b; a/ with all bounded components
of C nA.b; a/. In other words, U.b; a/ is obtained from A.b; a/ by “filling in the
holes”. A.b; a/ is a connected and U.b; a/ is a simply connected open subset of D2 ,
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A.b; a/
G.a; b/ G.a; b/

a a

b b

U.b; a/

not A.b; a/

Fix.b; a/

B.b; a/ B.b; a/

Figure 8.0.i: This diagram illustrates some of the definitions in this section.
The two pictures illustrate different aspects of the same situation. The points a

and b represent arbitrary distinct points in S1 . The interval Œa; b� is labelled
by G.a; b/ , the group of all quasisymmetric homeomorphisms of S1 that are
supported in Œa; b� . Fix.b; a/ consists of all fixed points for E.G.a; b// . We
have shown Fix.a; b/ with two components (shaded gray), but, for all we
know at the moment, there could be an uncountable number of components.
The open component A.b; a/ meets exactly one component of the fixed point
set Fix.b; a/ . We obtain U.b; a/ by filling in all the holes in A.b; a/ . These
holes could be single points (not visible in the diagram, because they are
smaller than an ink dot). B.b; a/ is the boundary of U.b; a/ in the closed
disk. Note that U.b; a/ contains the open interval .b; a/� S1 .

each meeting S1 in .b; a/. We set B.b; a/ equal to the frontier of U.b; a/ in D2 and
D.b; a/ D B.b; a/[U.b; a/ D U.b; a/. We have D.b; a/\S1 D Œb; a�. The above
definitions are illustrated in Figure 8.0.i.

It is conceivable that there is no inclusion relationship between Fix.b; a/ and D.b; a/.
It is however true that

(8.0.a) B.b; a/� Fix.b; a/:

8.1 Lemma Suppose a; a0; b0; b 2S1 are in counter-clockwise order. Then D.b; a/�

D.b0; a0/ and U.b; a/� U.b0; a0/.

Proof We have Ga0;b0 � Ga;b . Therefore Fix.b; a/ � Fix.b0; a0/ and A.b; a/ �

A.b0; a0/. Hence U.b; a/� U.b0; a0/, and the same is true for their closures.

8.2 Definition If x 2 S1 , we define F.x/D
T

x2.b;a/D.b; a/, where a and b vary
so that x 2 .b; a/. This is the same as taking the intersection of the sets in any sequence
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.D.bi ; ai//i2N , where bi converges to x while moving in a counter-clockwise direction,
and ai converges to x while moving in a clockwise direction. We define

H.x/D
\

x2.b;a/

D2 nU.a; b/;

where a and b vary so that x 2 .b; a/. This is the same as taking the intersection of
the sets in any sequence

�
D2 nU.ai ; bi/

�
i2N

, where bi converges to x while moving
in a counter-clockwise direction, and ai converges to x while moving in a clockwise
direction. We define N.a; b/ to be the closure in C of the component of B.a; b/nH.b/

containing a. We illustrate F.x/ and H.y/ in Figure 8.3.i.

The following result is clear.

8.3 Lemma Let a and b be distinct points in S1 . U.a; b/ is simply connected and
open in the closed disk D2 . The subsets D.a; b/, B.a; b/, F.a/, H.b/ and N.a; b/

are connected. F.b/ \ S1 D H.b/ \ S1 D fbg. We have B.b; a/ \ S1 D fa; bg,
D.b; a/\S1 D Œb; a�, and N.a; b/\S1 is equal either to fag or to fa; bg.

a
b

c

d

e fx

y

F.x/

H.y/

Figure 8.3.i: This picture illustrates the construction of F.x/ and H.y/ . We
show B.a; b/ , B.c; d/ and B.e; f / . The subset D.a; b/ lies on the same
side of B.a; b/ as x . The same holds for D.c; d/ and D.e; f / . F.x/ is
the intersection of subsets like D.e; f / , as e approaches x in a counter-
clockwise direction and f approaches x in a clockwise direction. H.y/ is
the intersection of subsets like D2nU.a; b/ as a approaches y in a clockwise
direction and b approaches y in a counter-clockwise direction.
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Since the sets are defined in an invariant manner, the following lemma is also immediate.

8.4 Lemma Let  2 QS. Then E. /B.a; b/ D B. .a/;  .b//, E. /D.a; b/ D

D. .a/;  .b//, E. /F.x/D F. .x//, E. /H.x/DH. .x// and E. /.N.a; b//

DN. .a/;  .b//.

8.5 Lemma D.a; b/ and B.a; b/ vary continuously in the Hausdorff metric on
compact subsets of D2 , as a and b vary in S1 . F.x/ is a semicontinuous function of
x 2 S1 in the following sense. Let .xi/i2N be a sequence of points in S1 converging
to x , and let N be any open neighbourhood of F.x/. Then, for i sufficiently large,
F.xi/�N . The same type of semicontinuity is true for H.x/.

Proof We fix a; b 2 S1 with a¤ b . Using Corollary 3.10, we construct a sequence
.gi/i2N of quasisymmetric maps, such that .E.gi//i2N converges uniformly to the
identity, and such that .gi.a//i2N converges to a in a counter-clockwise direction
and .gi.b//i2N converges to b in a clockwise direction. It follows from Lemma 8.4
that .D.gi.a/;gi.b///i2N converges to D.a; b/ and .B.gi.a/;gi.b///i2N converges
to B.a; b/, each in the Hausdorff sense.

We can also construct a sequence .hi/i2N of quasisymmetric maps, such that .E.hi//i2N

converges uniformly to the identity, and such that .hi.a//i2N converges to a in a
clockwise direction and .hi.b//i2N converges to b in a counter-clockwise direction.
Then .D.hi.a/; hi.b///i2N converges to D.a; b/ and .B.hi.a/; hi.b///i2N converges
to B.a; b/, each in the Hausdorff sense.

Given a and b , convergence is so far proved only for very special sequences, namely
those with ai D gi.a/, bi D gi.b/, ci D hi.a/ and di D hi.b/. We have to do the
same for general sequences. So suppose that a0 2 .ai ; ci/ and b0 2 .di ; bi/ for a large
value of i . From Lemma 8.1, we see that

D.ci ; di/�D.a0; b0/�D.ai ; bi/:

Therefore D.a0; b0/ is near to D.a; b/. We can also see that the boundaries B.ci ; di/,
B.a0; b0/ and B.ai ; bi/ are near each other. This shows that D.a; b/ and B.a; b/ are
continuous functions of a and b .

To prove the semicontinuity of F.x/, let N be an open neighbourhood of F.x/ in D2

and let .xi/i2N be a sequence of points in S1 converging to x . We choose a and b

sufficiently near to x , with x 2 .a; b/, so that D.a; b/�N . For i sufficiently large,
xi 2 .a; b/. So F.xi/�D.a; b/�N , as required.

The semicontinuity of H.y/ as a function of y is proved in a similar way.
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We will need the following result.

8.6 Lemma For each pair of distinct points a and b of S1 , we have H.b/\U.a; b/D

∅.

Proof Let .bi/i2N be a sequence of points of S1 converging to b in a clockwise
direction. For each i , we have H.b/\U.a; bi/D∅. From Lemma 8.5 and Lemma
8.1, we see that U.a; b/D

S
i U.a; bi/, proving our result.

9 The case F.x0/ ¤ fx0g

9.1 Note We fix attention on one particular x0 2 S1 . Obviously x0 2 F.x0/. There
are now two possibilities: F.x0/ D fx0g and F.x0/ ¤ fx0g. In order to complete
the proof of Theorem 1.1, we need to show that each of these two possibilities leads
to a contradiction. If F.x0/ ¤ fx0g for some x0 2 S1 , then the same inequality is
true for each x 2 S1 . We will assume throughout this section that, for each x 2 S1 ,
F.x/¤ fxg. The other case, when F.x/D fxg for each x 2S1 , is more difficult, and
will take several more sections to deal with.

We define a function f W S1! .0; 1� which measures how far F.x/ goes from S1 .
For each r such that 0� r � 1, we define

Ann.r/D fz 2 C W 1� r � jzj � 1g :

Then Ann.0/D S1 and Ann.1/D D2 . For x 2 S1 , we define

f .x/D inf fr W F.x/� Ann.r/g :

9.2 Lemma There is a number � > 0, such that, for all x 2 S1 , f .x/� � .

Proof Let Xn D
˚
x 2 S1 W f .x/� 1=n

	
. By Lemma 8.5, Xn is a compact subspace.

By the Baire category theorem, there is an open interval .a; b/�S1 and an n> 0, such
that, for x 2 .a; b/, f .x/ � 1=n. It follows from Lemma 8.4 that, for each x 2 S1 ,
there is an �x > 0 and an interval .ax; bx/ containing x , such that, for u 2 .ax; bx/,
f .u/� �x . Since S1 is compact, the result follows.

9.3 Lemma Let a and b be distinct points of S1 , and let u be a quasisymmetric
homeomorphism, such that ujŒa; b� is the identity. Then E.u/j@F.a/ is the identity.
Suppose v is a quasisymmetric homeomorphism, such that vjŒb; a� is the identity. Then
E.v/j@F.a/ is the identity.
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Proof Using Corollary 3.10, we choose a sequence .ui/i2N of quasisymmetric home-
omorphisms keeping b fixed, moving a a small distance in the clockwise direction,
such that .E.ui//i2N converges uniformly to the identity. Then uiuu�1

i is the identity
on the closed interval Œui.a/; b� and a 2 .ui.a/; b/. It follows that E

�
uiuu�1

i

�
is the

identity on B.ui.a/; b/. But b can now be replaced with any point in .a; b/ and the
hypotheses continue to hold. Therefore E

�
uiuu�1

i

�
is the identity on B.ui.a/; bi/,

where .bi/i2N is any sequence in .a; b/ converging in a clockwise direction to a.

Letting i tend to infinity, we see that E.u/j@F.a/ is the identity. The result stated for
v is proved using a similar technique.

The following result is now clear.

9.4 Corollary Let a and b be distinct points of S1 . Let u1 be a quasisymmetric
homeomorphism of S1 supported on Œa; b� and let u2 be a quasisymmetric homeomor-
phism supported on Œb; a�. Let uD u1 ıu2 . Then E.u/j@F.a/ is the identity.

It is convenient to work in the upper halfplane, where a corresponds to 0 and b to 1.
Let uW R! R be defined by u.x/D x2 if 0� x � 1, by u.x/D�x2 if �1� x � 0,
and by u.x/D x otherwise. Using exp to move from the strip to the upper halfplane,
we see that this is the same as v.2/ in Definition 4.1. (More precisely, the conjugating
map S ! U2 is z 7! � exp.�z/.)

Let Pt be the parabolic transformation x 7! xC t and suppose that t is small and
positive. Pt ı u has a fixed point pt D t C t2 CO.t3/, and another at 1. Since
the derivative of Pt ı u is non-zero at each of these two fixed points, we can write
Pt ıuD vt ıwt , where vt is the identity on Œpt ;1/, wt is the identity on .�1;pt �

and vt and wt are quasisymmetric. From Corollary 9.4, it follows that E.Pt / ıE.u/

is the identity on @F.pt /.

Now use Corollary 3.11 to choose a sequence .t.i//i2N , such that
�
E.Pt.i//

�
i2N

converges uniformly to the identity on compact subsets of U2[R. We may assume
that

�
@F.pt.i/

�
i2N

converges in the Hausdorff metric on the space of compact subsets
to a compact connected subspace C � F.0/, with 0 2 C . By Lemma 9.2, C ¤ f0g.
Taking limits as i tends to infinity, we see that E.u/jC is the identity.

Now E.u/ is quasiconformal with a certain constant K > 1. This means that, for
any x such that 0 < x < 1, the hyperbolic geodesic from x to �x , which is a
semicircle, is mapped by E.u/ into a quasigeodesic from x2 to �x2 . There is an
L > 0, independent of x , such that the quasigeodesic is within a hyperbolic L–
neighbourhood of the geodesic from x2 to �x2 . The hyperbolic distance between
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the two hyperbolic geodesics mentioned is j log.x/j which tends to infinity as x tends
to zero. But for x small enough the two geodesics will meet C , and will therefore
contain points that are fixed by E.u/. So this is a contradiction. This proves that we
must have F.x/D fxg for each x 2 S1 .

We have reduced the proof of Theorem 1.1 to consideration of the case where, for each
x 2S1 , F.x/D fxg. This is much harder to contradict than the case F.x/¤ fxg, and
the proof will occupy the next few sections.

10 The case F.x0/ D fx0g

Throughout this section, we are supposing that F.x0/D fx0g. Then, by Lemma 8.4,
F.x/D fxg for each x 2 S1 .

10.1 Theorem Suppose that F.x/D fxg for one and hence all x 2S1 . Then there is
an open neighbourhood U of S1 in D2 which is invariant under E.QS/. Furthermore,
we can find such a U with the following property: let .un/n2N be a sequence in QS,
converging uniformly to some u 2 QS. Suppose further that the sequence .E.un//n2N

has uniformly bounded dilatation. Then the sequence .E.un//n2N converges uniformly
to E.u/ on compact subsets of U .

The proof of Theorem 10.1 will use a number of lemmas.

10.2 Lemma Let a; a0; b0; b be a subset of four distinct points of S1 , in counter-
clockwise order. Then B.a; b/ and B.a0; b0/ are disjoint.

Proof Let X D B.a; b/\B.a0; b0/. Then X is a compact subset of the open disk.
We will suppose that X ¤ ∅ and prove a contradiction. The proof is illustrated in
Figure 10.2.i.

Let x1 2 .a
0; b0/, and let a0;x;x1;y; b

0 be distinct points in counter-clockwise order.
Let  W S1! S1 be a quasisymmetric homeomorphism fixing Œb; a� pointwise, such
that �.a0/D x and �.b0/D y . By Lemma 8.4, E.�/ fixes B.a; b/ setwise, and sends
B.a0; b0/ to B.x;y/. Recall that D.x;y/ � D.a0; b0/ and U.a0; b0/ � U.a; b/ by
Lemma 8.1. Therefore B.a; b/\U.a0; b0/D∅ and we have

E.�/.X / D B.a; b/\B.x;y/� B.a; b/\D.x;y/

� B.a; b/\D.a0; b0/D B.a; b/\B.a0; b0/DX:

From this we can deduce that D.x;y/\X ¤∅ for all x;y such that x1 2 .x;y/, and
so F.x1/\X ¤∅. But this contradicts F.x1/D fx1g and the lemma is proved.
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x

y
a0

a

B.a; b/

B.a0; b0/

B.a0; b0/

b0

B.x;y/

B.x;y/

b

F.x1/

x1

X

Figure 10.2.i: This picture illustrates the proof of Lemma 10.2.

10.3 Lemma Let x1 and x2 be distinct points in S1 and let h be an orientation
reversing homeomorphism of S1 fixing x1 and x2 , and interchanging .x1;x2/ and
.x2;x1/. Then D2 is the disjoint union of the following uncountable collection of
compact connected subspaces:

(10.3.1) for each x 2 .x1;x2/, the set B.x; h.x//;

(10.3.2) H.x1/;

(10.3.3) fx2g.

Proof We consider a counter-clockwise sequence of points x1 , u, x , x2 , h.x/, h.u/,
as in Figure 10.3.i. By Lemma 10.2, D.x; h.x//� U.u; h.u//. By definition,

H.x1/� D2 nU.u; h.u//� D2 nD.x; h.x//:

It follows that the subsets listed are indeed disjoint. The situation is illustrated in Figure
10.3.i.
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x

x2

x1

h.x/

u

h.u/

U.u; h.u//

D.x; h.x//

H

w

Figure 10.3.i: This picture illustrates the proof of Lemma 10.3. The set
labelled H is a representation of H.x1/ .

Now let w 2D2 nH.x1/ be any point. We must show that, for some x 2 .x1;x2/, we
have w 2 B.x; h.x//. Consider

V D fx 2 .x1;x2/ W w 2 U.x; h.x//g :

By the definition of H.x1/, V is non-empty. By Lemma 8.5, V is open. From Lemma
8.1, we see that V is an interval. We define xw 2S1 by V D .x1;xw/� .x1;x2/. Since
F.x2/Dfx2g, we see that xw¤x2 . From Lemma 8.5, we see that w 2D.xw; h.xw//.
By the definition of xw , xw … U.xw; h.xw//. We deduce that w 2 B.xw; h.xw//.

In order to prove Theorem 10.1, we need to prove that there is a G–invariant neigh-
bourhood U of S1 in D2 with the following property. Let .un/n2N be any sequence
of quasisymmetric homeomorphisms, converging uniformly to a quasisymmetric home-
omorphism u of S1 . We assume that the dilatations of the sequence .E.un//n2N are
uniformly bounded, as in the statement of Theorem 10.1. U must have the property
that the sequence converges to E.u/, uniformly on compact subsets of U . Equivalently,
we need only prove this result when uD Id. From now on, we assume that uD Id.

10.4 Definition At this point, it is convenient to fix notation for a certain quasicon-
formal homemorphism that we call f W D2!D2 . Using Theorem 13.3 and Theorem
13.2, we suppose that the sequence .E.un//n2N converges uniformly on D2 , and set
f equal to the limit.
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So f is quasiconformal and f jS1 D Id. In order to prove Theorem 10.1, we have to
define U , independently of .un/n2N , and then prove that f D Id on U .

Lemma 13.7 implies that N.a; b/\H.b/¤∅. (See Definition 8.2 for N.a; b/.) We
set

AD
[
a;b

N.a; b/

and take U to be the interior of A in D2 .

10.5 Lemma U is invariant under E.QS/ and is an open neighbourhood of S1 .

Proof Since a 2N.a; b/, we have S1 �A. The invariance follows from Lemma 8.4.
So we need only show that U is a neighbourhood of S1 —this means that, for some
� > 0, there is an annulus centred at 0, with outer radius 1 and inner radius 1�� , such
that the open annulus is contained in U , or, equivalently, in A.

The proof is by contradiction. So suppose we have a sequence .xi/i2N in D2 nA

converging to a point x1 2S1 . Now fix a small closed interval I �S1 , just clockwise
from x1 , and a point a just counter-clockwise from x1 . We choose b 2 S1 far from
x1 . Let Li be the radial segment from xi to S1 . By going to a subsequence, we may
assume that each Li is disjoint from N.a; b/[H.b/.

For each i , we choose �i > 0 such that the euclidean distance d.xi ;A/ > 2�i . Li is
an interval that is open at xi and closed at S1 . The situation is illustrated in Figure
10.5.i.

We construct the universal covering �i W Xi! D2 n fxig by cutting along Li , taking
sheets labelled by the integers, and gluing in such a way that, when we cross Li in the
counter-clockwise direction starting from the n-th sheet, we move onto the .nC 1/-st
sheet.

Now we fix i . Using Corollary 3.10 and a compactness argument, we construct a finite
sequence of quasisymmetric maps .˛k ; ˛k�1; : : : ; ˛1/, such that each E. j̨ / moves
points a euclidean distance less than �i , and such that ˛k ı : : :ı˛1 fixes b and sends a

into I by a sequence of small clockwise movements. Of course, k depends on i , and,
indeed, tends to infinity as i tends to infinity. Now E .˛k ı : : : ı˛1/ sends N.a; b/

to N.x; b/ for some x 2 I . For each j with 1� j � k , let aj D j̨ .: : : ˛1.a//. We
have a homotopy of E. j̨ / to the identity by moving, for each z 2 D2 , E. j̨ /.z/ to z

along a straight segment of length less than �i . This induces a homotopy of N.aj ; b/

to N.aj�1; b/, and the homotopy is disjoint from xi . We compose these homotopies
and lift to the covering Xi starting from N.a; b/ in sheet 1, and ending with N.ak ; b/,
where ak 2 I .
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a

b

H.b/

Li

N.a; b/

xiI
ak

N.ak ; b/

x1

Figure 10.5.i: This illustrates the proof of Lemma 10.5. H.b/ and I are
drawn thick. The sequence .xi/i2N converges to x1 2 S1 . The disk with
centre xi and radius �i is shown as a small circle. Li is a radial segment
from xi to S1 . The homotopy, referred to in the text, has to push a clockwise
to ak 2 I “under” the sequence .xi/i2N .

To show that this leads to a contradiction, choose p0 2N.a; b/\H.b/, and inductively
define pj D E. j̨ /.pj�1/. Then, for each j , pj 2H.b/. Moreover, since Li is far
from H.b/, after lifting to the universal cover Xi of D2 nfxig, we see that, for each j

with 1� j � k , part of N.aj ; b/ is in sheet 1, namely pj . On the other hand, having
crossed Li once in a clockwise direction during the homotopies, ak 2N.ak ; b/ is in
sheet 0. Since N.ak ; b/ is connected, it must meet Li .

Now we let i increase to infinity. We obtain a sequence .yi/i2N in I , converging to a
point y1 2 I , such that, for each i , there is a point ni 2 N.yi ; b/\Li � B.yi ; b/.
The sequence .ni/i2N converges to x1 . By Lemma 8.5, x1 2 B.y1; b/. But this
contradicts Lemma 8.3. This completes the proof of Lemma 10.5.

10.6 Lemma Let f W D2 ! D2 be the quasiconformal homeomorphism given by
Definition 10.4, with f jS1 D Id, For each pair of distinct points x;y 2 S1 , preserves
D.x;y/, B.x;y/, U.x;y/, F.x/, H.x/ and N.x;y/ setwise.

Proof Recall that f is defined using a sequence .un/n2N of quasisymmetric home-
omorphisms. From Lemma 8.5, we see that, for each n, E.un/ sends each D.x;y/

to the nearby D.un.x/;un.y//. Taking limits, we see that f preserves each D.x;y/.
The other parts of the statement follow easily.

The following result will complete the proof of Theorem 10.1.
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10.7 Proposition Let a and b be distinct points of S1 . Then the map f is equal to
the identity on the neighbourhood N.a; b/ of a in B.a; b/. It follows that f jA is the
identity (where A is defined just before Lemma 10.5).

Proof We have already proved a result (Proposition 7.4) that is very similar to this.
Some discussion is needed to set up the parallel and provide a convincing proof in the
current situation.

By Lemma 8.6, we know that H.b/\U.a; b/D∅. Let hW S1!S1 be induced by the
hyperbolic isometry of D2 given by hyperbolic reflection in the hyperbolic geodesic
.a; b/.

By Lemma 10.3 (with h�1 replacing h), the disjoint subsets fB.h.x/;x/gx2.a;b/ fill up

D2nH.b/. See Figure 10.7.i for a picture. In particular U.a; b/�
S

x2.a;b/B.h.x/;x/.
For each x 2 .a; b/, let C.x/ be the component of U.a; b//\B.h.x/;x/ containing
x . It follows from Lemma 13.7 that C.x/\B.a; b/¤∅.

a

b

B.h.x/;x/

h.x/

U.a; b//

x
C.x/

H.b/

Figure 10.7.i: This picture illustrates the beginning of the proof of Proposition
10.7. U.a; b/ is shaded grey. B.h.x/;x/ is pointed to by a dotted arrow.
C.x/� B.h.x/;x/\U.a; b/ is drawn as a thicker line, as is H.b/ .

For t 2 R, let ˆt W D2 ! D2 be the hyperbolic transformation with fixed points a

and b , moving points of the geodesic from a to b a signed hyperbolic distance t

towards b and away from a. Let �t W S1 ! S1 be induced by ˆt . The subgroup
fE.�t /gt2R preserves B.a; b/, but the dependence on t is not necessarily continuous.
For x 2 .a; b/, we have E.�t /.C.x//D C.�t .x//.

Here a plays the role of C1 in Lemma 7.6, and .a; b/ plays the role of RC . The
group fE.�t /gt2R here plays the role of fE.v.r//gr>0 there. B.h.x/;x/ here plays
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the role of `r there. C.x/ here plays the role of C.r/ there. The use of Lemma 4.13
used in the proof of Lemma 7.6 is replaced by the use here of Corollary 3.11.

Let C be the component of a in B.a; b/ nH.b/. We define bU D U.a; b/[C , in
analogy to b�C .

10.8 Lemma The closure of U.b; a/ in bU is equal to the disjoint union Y DS
x2.a;b/ C.x/. Also U.a; b/D

S
x2.a;b/ C.x/.

Proof The proof is just a repeat of the proof of Lemma 7.6, using the dictionary above
to translate to this situation..

We can now complete the proof of Proposition 10.7. The proof follows exactly the
lines of the proof of Proposition 7.4. Let V be the interior of D.a; b/ as a subset
of C. So U.a; b/ D .a; b/[ V . Let L be an open halfdisk. Let RW V ! L be a
Riemann mapping. We choose R so that the circular part Lc � @L corresponds to
Œa; b�DS1\D.a; b/ and the straight part Ls � @L corresponds to B.a; b/. R extends
continuously to Œa; b�� S1 , and we use the same notation R for the extension.

a

b

R.C.x//

C.x/

Lc

R.a/

R.b/

R

Ls

x

V

y00

y0

z

Figure 10.8.i: This picture illustrates the effect of the Riemann map R in
the proof of Proposition 10.7. It shows why the dashed line from z , which is
supposed to be disjoint from R.C.x// , cannot exist. The formal argument in
the text is that the arc represented by the dashed line, joining z to Lc in the
complement of R.C.x// , would separate y00 from x , which is impossible.

The situation to be described below is illustrated in Figure 10.8.i. C.x/ is a connected
subset of V , and therefore R.C.x// is connected. It follows that the closure R.C.x//

in C is connected. Let Y .x/DR.C.x//\Ls . Y .x/ is a compact subset of C. Since
the closure of C.x/ meets B.a; b/, we see that Y .x/¤ ∅. It follows from Lemma
10.6 that, for each x , f .C.x//D C.x/.
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V here plays the role of U0 in the proof of Proposition 7.4. R here plays the role of
ˆ there. The subspace Y .x/ here plays the role of Y .r/ there. In brief, we show that,
for each x , Y .x/ is a singleton that is fixed by f . This shows that f fixes C , and
therefore its closure N.a; b/. This completes the proof of Proposition 10.7 and hence
of Theorem 10.1.

11 The affine group on an interval

We now do the hard analysis necessary to complete the proof of Theorem 1.1.

We turn our attention to the affine group. We will investigate the effect of E on
this group. We will be able to show (but only approximately so) that, if a > 0 and
b 2 R, then E must send the map x 7! ax C b for x 2 R to the map z 7! az C b

for z 2 U2 . Of course, E can always be changed by conjugating by a quasiconformal
homeomorphism of U2 that is the identity on the boundary. So the result is only proved
up to such a conjugation. And even that is considerably more than what we really
prove—nevertheless, this is the idea of the proof, and the idea guides what we actually
do.

Our work on the affine group will provide the basis for the proof of Theorem 12.1.
This result uses in its hypothesis a certain type of continuity of E. We have already
shown (Theorem 10.1) that, if E exists, it must be continuous in the required sense.
All this information will then rule out the existence of E and prove Theorem 1.1.

The proof of Theorem 12.1 depends on Proposition 3.6. But that result applies only
to groups of quasisymmetric homeomorphisms that fix at least three points. This can
be achieved by using a diffeomorphism R! .�1; 1/ to conjugate the affine group so
that it is supported in a finite interval. The three points are chosen outside this interval.
Such a conjugated affine map will in general fail to be quasisymmetric near the two
endpoints of the interval. We need to choose our conjugating homeomorphism with
care, so as to give a version of the affine group, supported in a finite interval, and acting
by homeomorphisms that are quasisymmetric on the whole of R[f1g. Even more
difficult, in order for Proposition 3.6 to be applicable, we have to arrange for these
quasisymmetric homeomorphisms to be near the identity in the Teichmüller metric.

In this section we will concentrate on producing the conjugation to a finite interval
so that the conjugated homeomorphisms have the required properties. The proofs
are analytical in the classical sense, and the homomorphism E does not make an
appearance.
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11.1 Definition Given a>0 and b2R , we define the affine transformation Aa;bW R!

R by Aa;b.x/D axC b . Let AD
˚
Aa;b

	
be the group of all orientation preserving

affine transformations of the real line. We are also interested in the 1–parameter
group of earthquake homeomorphisms fRaga>0 . Here RaW R! R is defined so that
Ra.x/D x for x < 0 and Ra.x/D ax for x � 0.

Let I be an open interval and let �W R! I be a homeomorphism. We can make A

act on I by conjugating with � . Since all elements of A preserve orientation, we can
extend the action of A on I to an action on R by making it act by the identity outside
I . The same applies to the earthquake subgroup.

11.2 Theorem Let � > 0. Then there are constants L and M , with M >L=� > 1=�2 ,
and a C 1 –diffeomorphism ‰�W R! .�M;M / with the following properties:

(11.2.1) For x 2 R, ‰�.�x/D�‰�.x/.

(11.2.2) ‰�jŒ�L;L� is the identity.

(11.2.3) We recall the notation from Definition 11.1. We define Ba;bW R! R by
setting it equal to ‰� ıAa;b ı‰

�1
� on .�M;M /D‰�.R/ and equal to the

identity elsewhere. Then Ba;b is a quasisymmetric homeomorphism.

(11.2.4) If, further, � < a< 1=� and �1< �b < 1, then dT.Ba;b; Id/ < � .

(11.2.5) We recall the definition of the earthquake map RaW R! R from Definition
11.1. Following the model introduced in Definition 11.1, we proceed as
in the case of affine homeomorphisms, conjugating Ra to .�M;M / by
using ‰� , and extending the conjugate to the rest of R by setting the
extension to the identity outside .�M;M /. The resulting map Ra;� is
quasisymmetric. There is a continuous function ˇW Œ0;1/! Œ0;1/, such
that ˇ.0/D0 and dT.Ra;�; Id/�ˇ.j log.a/j/ for sufficiently small values of
� > 0. The function ˇ is defined in the proof of Lemma 11.4. Its definition
is independent of � .

(11.2.6) There is a quasisymmetric homeomorphism P�W R ! R with compact
support, such that P�.�M;M / D .�M;M / and ‰�1

� .P�.‰�.t/// D t2 .
The support of P� is equal to Œ�M �1;M C1�. It should be noted that this
is larger than the range of ‰� , which is .�M;M / and so the data here does
not determine P� completely.

In our construction, the Ba;b are C1 except at ˙L and ˙M . They are C 1 near ˙L

and, if a¤ 1, not even differentiable at ˙M . They are, however, quasisymmetric, as
stated in (11.2.3).
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Proof We will choose ı > 0, depending on � , and then a diffeomorphism  ı depend-
ing on ı . ‰� will be a linear rescaling of  ı .

11.3 Definition We assume 0< ı and that ı is small. The diffeomorphism  ıW R!

.�1; 1/ is defined in terms of another diffeomorphism ˛W .0;1/! .0; 1/. The use of
the notation ˛ for this map is confined to this paragraph. We define ˛.t/D exp

�
�t�ı

�
.

It is easy to see that ˛W .0;1/! .0; 1/ is strictly monotonic and C1 . If we extend
˛ by continuity to ˛W Œ0;1/! Œ0; 1/, so that ˛.0/ D 0, we find that all derivatives
of ˛ are 0 at 0. There is exactly one point t0 > 0, namely t0 D ı1=ı , such that
˛0.t0/D ˛.t/=t . We have ˛.t0/D exp.�1=ı/ and we denote this point by x0 . The
tangent line to the graph of ˛ at .t0; ˛.t0// goes through the origin. The graphs of ˛
and  ı are shown in Figure 11.3.i.

x0

y0

Figure 11.3.i: This picture illustrates the definition of  ı (see Definition
11.3). The solid curve represents the graph of ˛ . The dotted curve shows
how ˛ has to be changed so that it becomes linear near 0.

On Œ�t0; t0� we set  ı.t/D tx0=t0D t.eı/�1=ı , which is a linear map with very large
slope for small ı . (We will in due course take ı extremely small, and t0 is very much
smaller.) On Œt0;1/, we set  ı.t/ D ˛.t/. On .�1; 0/, we set  ı.t/ D � ı.�t/.
The two definitions of  ı on Œ�t0; 0/ agree with each other. Then  ıW R! .�1; 1/ is
a surjective C 1 –diffeomorphism.

Using the following lemma, we can check some of the assertions of quasisymmetry in
Theorem 11.2.

11.4 Lemma There is a continuous function ˇW Œ0;1/! Œ0;1/, such that ˇ.x/D 0

if and only if x D 0, and such that ˇ has the following properties. Let f W .0;1/!
.0;1/ and gW .0;1/! .0;1/ be orientation preserving homeomorphisms, such that
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f , g , f �1 and g�1 are piecewise C 1 –diffeomorphisms. Let hW R!R be defined by
h.0/D 0, and, if t > 0, h.t/D f .t/ and h.�t/D�g.t/. Suppose that there is a c > 0

such that, for all t > 0, f .t/=g.t/, f 0.t/t=f .t/ and g0.t/t=g.t/ all lie in the interval
.e�c ; ec/. Then h is quasisymmetric and dT.h; Id/ < ˇ.c/. In particular, if c is small,
then dT.h; Id/ is small.

Proof Let S be a horizontal strip of height � and let U2 be the upper halfplane. We
transfer the problem to @S and S by conjugating with logW U2!S and expW S!U2 .
Let u; vW R! R be defined by u.x/D log.f .exp.x/// and v.x/D log.g.exp.x///.
We define F W S ! S by

F.xC iy/D
.� �y/u.x/Cyv.x/

�
C iy:

Then, on R, h.t/D exp.F.log.t///, where we are using the usual complex form of
log, so that, if t < 0, then log.t/D i� C log.�t/.

We then have

2Fz D Fx � iFy D .1�y=�/u0.x/C .y=�/v0.x/C 1� i.v.x/�u.x//=� and

2FNz D FxC iFy D .1�y=�/u0.x/C .y=�/v0.x/� 1C i.v.x/�u.x//=�:

We will show that the absolute value of the Beltrami coefficient of F (sometimes called
its complex dilatation) has a supremum that is bounded away from 1 by a function of
c . (See Section 13 for the definition of the Beltrami coefficient.) The square of the
absolute value of the Beltrami coefficient is equal toˇ̌̌̌

FNz

Fz

ˇ̌̌̌2
D

ˇ̌̌̌
.1�y=�/u0C .yv0=�/� 1 C i.v�u/=�

.1�y=�/u0C .yv0=�/C 1 � i.v�u/=�

ˇ̌̌̌2
D
..1�y=�/u0C .yv0=�/� 1/2C ..v�u/=�/2

..1�y=�/u0C .yv0=�/C 1/2C ..v�u/=�/2
:

Now v�uD log ı.f=g/ ı exp, and so �c � jv�uj � c . We have

u0.x/D f 0.exp.x// exp.x/=f .exp.x//D f 0.t/t=f .t/ and

v0.x/D g0.exp.x// exp.x/=g.exp.x//D g0.t/t=g.t/:

and so u0.x/ and v0.x/ both lie in the interval .e�c ; ec/. The same therefore follows
for the convex combination .1�y=�/u0.x/C .y=�/v0.x/.

To estimate the absolute value of the Beltrami coefficient, we consider the function
�W S ! Œ0; 1/ defined by

�.r; s/2 D
.r � 1/2C s2

.r C 1/2C s2
:
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We are interested in bounding �.r; s/ above when r D .1�y=�/u0.x/C .y=�/v0.x/

and s D .v�u/=� . It is sufficient to bound �.r; s/ above, when .r; s/ is in the closed
rectangle R given by e�c � r � ec and 0� s� c=� . By compactness, �.r; s/ achieves
its maximum in R at some point .r0; s0/ 2R.

Since �.r; s/ is a strictly increasing function of s , it follows that s0 D c=� . We
therefore have only to maximize �.r; s0/ as a function of r 2 Œe�c ; ec �. We have

@ log.�.r; s0//

@r
D

4.r2� s2
0
� 1/

..r � 1/2C s2
0
/..r C 1/2C s2

0
/
:

This is zero at at most one point, namely r D

q
1C s2

0
(which may or may not lie in

the closed interval Œe�c ; ec �. For smaller values, �.r; s0/ is a decreasing function of r ,
and for larger values, it is an increasing function of r . It follows that either r0 D e�c

or r0 D ec .

Finally, we see that the square of the absolute value of the Beltrami coefficient is
bounded above by

max

(
.e�c � 1/2C .c=�/2

.e�c C 1/2C .c=�/2
;
.ec � 1/2C .c=�/2

.ec C 1/2C .c=�/2

)

�  .c/D
.ec � 1/2C e2c.c=�/2

.ec C 1/2C e2c.c=�/2

< 1:

The above equality serves to define  .c/. We set

ˇ.c/D log
�
1C

p
 .c/

�
� log

�
1�

p
 .c/

�
:

This completes the proof.

11.5 Lemma Let a > 0. Let f D fıW R! R be the homeomorphism which is the
identity outside .�1; 1/ and is defined by f .x/D ı.a �1

ı
.x// for �1< x < 1. Then

f is quasisymmetric and

dT.f; Id/� ˇ.ıj log.a/j/:

Suppose � � a� 1=� . If ı < �=j log.�/j, then dT.f; Id/ < ˇ.�/. Also, f is C 1 except
at ˙1. The limit of f 0.x/ as x tends to 1 from below is a�ı , and this is also equal to
the left derivative of f at 1.
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Proof According to Lemma 11.4, we need to estimate log.f 0.x/x=f .x// for x > 0.
If x > 1, this is equal to zero. For 0 < x < 1, we define t by  ı.t/ D x . Then
f 0.x/D  0

ı
.at/a= 0

ı
.t/ and f .x/D  ı.at/. We set

q.t/D
 0
ı
.at/

 ı.at/
:
 ı.t/

 0
ı
.t/
:aD

f 0.x/x

f .x/
:

Then dT.f; Id/�ˇ .supt j log.q.t/// j, where ˇ is the function that came up in Lemma
11.4. So we need to bound j log.q.t//j. Since dT.f; Id/ D dT.f

�1; Id/, we may as
well take a> 1. Note that  0

ı
.t/= ı.t/D ıt

�ı�1 for t � t0 .

The first case is t < at � t0 , where t0 comes from Definition 11.3. In this range,  ı is
linear, q.t/D 1 and log.q.t//D 0. The second case is t0 � t < at . Then q.t/D a�ı

and j log.q.t//j D ı log.a/. The third case is t < t0 D ı
1=ı < at , which implies that

t�ı > t�ı0 D 1=ı > .at/�ı:

In this case,  ı.t/= 0ı.t/D t , since  ı is linear on Œ0; t �. So

a�ı < q.t/D ıa�ıt�ı < 1:

It follows that j log.q.t//j< ı log.a/.

The computation in the second case shows that f 0.x/x=f .x/ is equal to a�ı for
x0 D  ı.t0/ < x < 1. When x tends to 1, so does f .x/. It follows that f 0.x/� a�ı

for x < 1 and x near 1. The First Mean Value Theorem shows that f is differentiable
on the left at 1, with f 0�.1/D a�ı . Since f 0.x/D 1 for x > 1, there is a discontinuity
in f 0 at x D 1, and similarly for x D�1.

11.6 Lemma Let b 2 R . Let fb D fb;ıW R! R be the homeomorphism which is the
identity outside .�1; 1/ and is defined by fb.x/D  ı.bC 

�1
ı
.x// for �1< x < 1.

Then fb is C 1 and therefore quasisymmetric. For jbj sufficiently small, dT.fb; Id/ <
�=2.

Proof For �1 < x < 1, fb is the composition of C 1 –functions and is therefore
C 1 . It is also C 1 for jxj > 1. By symmetry, to prove that fb is C 1 everywhere, it
only remains to check near x D 1. For x < 1, we write x D 1� u, with u small.
Using  �1

ı
.x/D .� log.x//�1=ı , we expand fb.1�u/ in terms of u> 0. A careful

calculation shows that both left and right derivatives of fb at x D 1 are equal to 1, and
that the derivative is continuous at xD 1. Since fb is C 1 , and is supported on Œ�1; 1�,
it is also quasisymmetric.
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To understand the dependence of fb on b , we need to understand the function �
defined by

�.x; b/D fb.x/D  ı

�
bC �1

ı .x/
�

when �1< x < 1 and by �.x; b/D x when jxj � 1. We will prove that the derivative
@�.x; b/=@x tends uniformly to 1 as b tends to 0. We may assume that �1< x < 1.
Since f�b D f

�1
b

, we may assume that b > 0.

We have @�.x; b/=@x D  0
ı
.t C b/= 0

ı
.t/, where  ı.t/D x . The first case is �t0 �

t < t C b � t0 . Then  ı is linear and @�.x; b/=@x D 1.

The second case is t0 � t . Then the partial derivative is

exp
�

1

tı
�

1

.t C b/ı

�
:

t1Cı

.t C b/1Cı
:

The second factor tends uniformly to 1 on Œt0;1/ as b tends to 0. Considering the
first factor, we see that, for t0 � t ,

0< t�ı � .t C b/�ı � t�ı0

�
1� .1C b=t0/

�ı
�
:

The righthand side of this inequality tends uniformly to 0 as b tends to 0 and its
exponential tends to 1.

The third case is t < t0 < t C b . The partial derivative is then

ı exp.�.t C b/�ı/t�.1Cı/.eı/1=ı:

We may rewrite this as

.t0=t/1Cı exp
�

1

ı
� .t C b/�ı

�
D .t0=t/1Cı exp

�
t�ı0 � .t C b/�ı

�
:

In this case, t0=t tends to 1 and t�ı
0
� .t C b/�ı tends to 0 uniformly as b tends to 0.

So the partial derivative tends uniformly to 1 as b tends to zero.

From the Mean Value Theorem, we can now deduce that

fb.xC h/�fb.x/

fb.x/�fb.x� h/

converges to 1 uniformly as b tends to 0. By Paragraph 13.4, this proves that the
Teichmüller distance from the identity tends to zero.

11.7 Lemma Let a > 0, and let f D fı be the homeomorphism obtained by
conjugating the earthquake map Ra on R to .�1; 1/, using  ı . Explicitly, f W R! R

is the homeomorphism which is the identity outside .0; 1/ and is defined by f .x/D
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 ı.a 
�1
ı
.x// for 0 < x < 1. Then f is quasisymmetric. If ı < 1, then dT.f; Id/ �

ˇ.j log.a/j/, where ˇ is the function of Lemma 11.4.

Proof We will prove this result by applying Lemma 11.4. First we have to find a
bound for log .f 0.x/x=f .x//. Outside .0; 1/, this quantity is equal to 0. In .0; 1/, we
have already found an explicit bound in the proof of Lemma 11.5, namely ıj log.a/j.

We also have to find a bound for log.f .x/=x/. For x outside .0; 1/, this quantity is
equal to 0, so we may assume that 0< x < 1. Defining t by  ı.t/D x , we have to
bound log. ı.at/= ı.t//, which we denote by �.t/. We may assume without loss of
generality that a> 1. If t < at � t0 D ı

1=ı , then �.t/D log.a/.

Now we assume that t0 � t < at . Then

�.t/D�.at/�ıC t�ı D
1� a�ı

tı
:

For all t � t0 , �.t/ > 0 and �.t/ decreases as t increases. The maximum value occurs
at t D t0 , and �.t0/D .1� a�ı/=ı . This is a continuous function of ı . By calculus,
it increases as ı decreases, and the limit as ı tends to zero is log.a/. This gives
�.t/� log.a/.

Finally, we have to estimate  ı.at/= ı.t/ when t < t0 < at . In this case we have

 ı.at/

 ı.t/
D
 ı.at/

t 0
ı
.t0/

:

We have  0
ı
.t0/D .eı/

�1=ı . Therefore

�.t/D�a�ıt�ı � log.t/C 1=ıC log.ı/=ı:

We want to find the maximum value of �.t/ for t 2 Œt0=a; t0�. Differentiating, we find

�0.t/D ıa�ıt�ı�1
� 1=t:

The sign of �0.t/ is equal to the sign of ıa�ı � tı , which decreases as t increases.
For t D t0=a, this quantity is zero. It follows that �0.t/ < 0 for t 2 .t0=a; t0�. So the
maximum value of �.t/ for t 2 Œt0=a; t0� is �.t0=a/D log.a/.

In the notation of Lemma 11.4, we have shown that dT.f; Id/ � ˇ.j log.a/j/. This
completes the proof of Lemma 11.7.

In order to prove (11.2.6), we first prove a lemma which could be pushed much further;
but the present version is easy to deal with and is sufficient in our situation.
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11.8 Lemma Let x0 < x1 < : : : < xn be a finite increasing sequence of real numbers.
For each i with 0< i < n, let ci ¤ 0 be a real number, and let ri and si be real analytic
functions of a real variable near 0, with vanishing 2–jets at 0. Let f W R! R be a
homeomorphism. Then f is quasisymmetric if the following conditions are satisfied.

(11.8.1) The restriction of f to .�1;x0�[ Œxn;1/ is the identity.

(11.8.2) The restriction of f to .�1;x1/[ .xn�1;1/ is C 1 with strictly positive
derivative.

(11.8.3) For each i with 1< i < n the restriction f j.xi�1;xi/ is C 1 , with strictly
positive derivative.

(11.8.4) Suppose that 1< i < n, x � xi and that x is near xi . Then

f .x/D f .xi/C ci

�
.x�xi/

2
C ri.x�xi/

�
:

(This is a condition on f , not a result to be proved.)

(11.8.5) Suppose that 1< i < n, x � xi and that x is near xi . Then

f .x/D f .xi/� ci

�
.x�xi/

2
C si.x�xi/

�
:

(Another condition on f .)

Proof We will suppose that f is not quasisymmetric and deduce a contradiction.
Let

�
uj

�
j2N

be a sequence of real numbers and let
�
hj

�
j2N

be a sequence of strictly
positive real numbers such that

f .uj C hj /�f .uj /

f .uj /�f .uj � hj /

converges either to infinity or to zero. See Paragraph 13.4 for references about qua-
sisymmetry. We may assume that

�
uj

�
j2N

converges to C1, to �1 or to a finite
limit and that

�
hj

�
j2N

converges to C1, to a finite positive limit or to 0. It is easy to
see that the limit of

�
uj

�
j2N

cannot be infinite. Let u1 be the finite limit. It is easy
to see that the limit of

�
hj

�
j2N

cannot be infinite, and then that it must be zero. It

follows that x0 � u1 � xn and that f cannot be a C 1 –diffeomorphism near u1 . It
follows that u1D xi for some i with 0< i < n. From now on i is fixed in this proof.
We change coordinates so that u1 D xi D 0.

We can assume that, for each j , uj � 0. We may further assume that, for all j ,
0 < hj � uj , or that, for all j , 0 � uj < hj . In the first case, we may assume that
hj=uj converges to a limit �1 with 0� �1 � 1. In the second case, we may assume
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that uj=hj converges to a limit �2 with 0� �2 � 1. In order to have a less cluttered
notation, we drop the subscript j .

In the first case, we have 0< h� u and we have to consider

.uC h/2�u2C r.uC h/� r.u/

u2� .u� h/2C r.u/� r.u� h/
:

Now .uC h/n � un and un � .u� h/n are both polynomials in u and h which are
divisible by h. Using the expression of r as a power series starting with a cubic term,
we see that we can divide both numerator and denominator in our expression by h. Our
ratio is equal to .2uChCo.u//=.2u�hCo.u//, which converges to .2C�1/=.2��1/.
But we are assuming that the limit is either 0 or 1, so this is a contradiction.

In the second case, we have 0� u< h and we consider

.uC h/2�u2C r.uC h/� r.u/

u2C .u� h/2C r.u/C s.u� h/
:

Dividing both numerator and denominator by h2 and taking the limit, we obtain
.2�2C 1/ =

�
�2

2
C .1��2/

2
�
. This is also a contradiction, so Lemma 11.8 is proved.

11.9 Lemma There is a quasisymmetric homeomorphism f D fıW R ! R with
compact support, such that f .1/D1, f .�1/D�1, and, for all t 2R ,  �1

ı
ıf ı ı.t/D

˙t2 , where the sign is the same as that of t . The support of f strictly contains Œ�1; 1�.

Proof The statement of Lemma 11.9 forces the definition of f j.�1; 1/. For x < 1

and x near 1, we have

f .x/D exp
�
�

��
.� log.x//�2=ı

��ı��
D exp

�
� .log.x//2

�
:

We introduce a local coordinate uD 1�x near x D 1. The image of u is

f .1�u/D exp
�
�u2
C : : :

�
D 1�u2

C  .u/;

where  is an analytic function with a zero 2–jet at 0. In terms of local coordinates,
u is sent to �u2C  .u/. The situation for x > �1 and x near �1 is similar. Using
Lemma 11.8, we are therefore able to construct f on a larger domain so that it is
quasisymmetric.

We are now in a position to complete the proof of Theorem 11.2. Given � > 0, we
choose ı sufficiently small so that various Teichmüller distances are appropriately
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small. Explicitly, we use Lemma 11.5 to ensure that the conjugate (called f in Lemma
11.5) of x 7! ax is at a Teichmüller distance less than �=2 from 0 if � < a < 1=� .
By Lemma 11.7, this ensures that the conjugate f of the earthquake Ra satisfies
dT.f; Id/� ˇ.j log.a/j/, which is independent of � and ı . We define

‰�.t/D
N�

x0

 ı

�
t0t

N�

�
;

where N� > 0 will be chosen shortly. Then ‰�W R! .�N�=x0;N�=x0/ is a C 1 –
diffeomorphism and ‰�.t/D t if jt j �N� .

To choose N� , we refer to Lemma 11.6. This states that there is an �1 > 0, such that
the conjugate f of t 7! tCb satisfies dT.f; Id/ < �=2 if jbj< �1 . Notice that scaling
in the domain or range does not change dilatations or Teichmüller distances, and we
are therefore free to choose N� as large as we wish. We choose N� large enough
so that t0 < N���1 . If jbj � 1=� , then t0jbj=N� < �1 . It follows that the map gb ,
given by x 7!‰�

�
bC‰�1

� .x/
�

for jxj<N�=x0 and otherwise by x 7! x , satisfies
dT.gb; Id/ < �=2.

This deals with all parts of Theorem 11.2 except for (11.2.6), an analogue of which
was proved in Lemma 11.9. The difference is that in (11.2.6) one uses ‰� , whereas in
Lemma 11.9 one uses  ı . These differ only through multiplication by two constants,
one in the domain and the other in the range. We now repeat the proof of Lemma 11.9,
noting that each of the two constants must initially appear twice in the formulas, once
for ‰� and once for ‰�1

� . Lemma 11.8 is used in the same way that it was used in the
proof of Lemma 11.9.

This completes the proof of Theorem 11.2.

11.10 Note In the above proof it is sufficient to take

N� > t0= .��1/ :

We have not determined �1 explicitly in terms of � and so we are not entitled to assume
that it increases with � . Note also that the map P� of (11.2.6) does not have bounded
quasisymmetric constants as � tends to zero. As a result, special arguments will become
necessary when taking limits of maps like P� .

12 Continuous extensions

In this section we complete the proof of Theorem 1.1, stating that the extension
homomorphism E does not exist. We are assuming it does exist, and we are busy
showing that this leads to a contradiction.
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We recall the definition of F.x/, for x 2 S1 , given in Definition 8.2. There are two
cases: F.x/ ¤ fxg and F.x/ D fxg. The first case was shown to be impossible in
Section 9. The second case has as its consequence (see Theorem 10.1) a certain type of
continuity for E. We now restate this condition, and show that it leads to a contradiction,
thus completing the proof of Theorem 1.1.

12.1 Theorem It is not possible to find a homomorphism EW QS ! QC and an
open E.QS/–invariant neighbourhood U of S1 D @D2 in D2 with the following two
properties:

(12.1.1) The composite

QS
E

����! QC
q

����! QS

is the identity.

(12.1.2) Let .un/n2N be a sequence in QS, converging uniformly to some u 2

QS. Suppose further that the sequence .E.un//n2N has uniformly bounded
dilatation. Then the sequence .E.un//n2N converges uniformly to E.u/ on
compact subsets of U .

Under the hypotheses of Theorem 12.1, we can prove a more convenient form of
Proposition 3.6.

12.2 Proposition Let EW QS! QC satisfy the hypotheses of Theorem 12.1. Then,
for each r > 0, there is a k > 1 such that, if g 2 QS3 and dT.g; Id/� r , then E.g/jU

has dilatation bounded by k .

Proof First note that, under our continuity hypotheses, we may replace Q in Proposi-
tion 3.6 by the entire �0 –ball centred at the identity in QS, provided we are trying to
bound only the dilatation of quasiconformal homeomorphisms of the form E.g/jU .
The bound is exp.k0/, where k0 comes from the statement of Proposition 3.6.

Let f 2 QC3 with dT.f; Id/ � r . In [1, page 99], Ahlfors shows how to factorize
f D f1 : : : fm , where fi 2 QC3 and dT.fi ; Id/� r=m. See Paragraph 13.5.

Now let g 2QS3 and extend g to f 2QC3 , with dT.g; Id/D dT.f; Id/� r . Since f
can be factorized, so can g . We take an integer m> r=�0 and write gDg1 : : :gm with
dT.gi ; Id/� r=m< �0 . It follows that, for each i , the maximal dilatation of E.gi/jU

is bounded by exp.k0/. Therefore the maximal dilatation of E.g/jU is bounded by
exp.mk0/, as required.
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Proof of Theorem 12.1

Later on we will choose a decreasing sequence of small positive numbers .�.n//n2N .
For the moment, let us suppose that such a sequence is given. We apply Theorem
11.2 with � D �.n/ together with Note 11.10 to choose strictly increasing sequences of
constants Ln>n and Mn>nLn , and a C 1 –diffeomorphism ‰�.n/W R! .�Mn;Mn/,
such that ‰�.n/ is the identity map on Œ�Ln;Ln�.

12.3 Definition Given an orientation preserving homeomorphism map hW R! R,
we define a homomorphism �n.h/W Homeo.R/! Homeo.R/ by

�n.h/.x/D

(
‰�.n/.h.‰

�1
�.n/

.x/// for �Mn < x <Mn

x for jxj �Mn:

Let Gn�QS be the subgroup of h such that �n.h/ is quasisymmetric. Let Gb�
T

n Gn

be the subgroup consisting of those h for which dT.�n.h/; Id/ is bounded as n varies.
From now on, we will restrict the use of �n to mean the homomorphism �nW Gb!QS.

12.4 Lemma Gb contains the affine group, the earthquake group, and any qua-
sisymmetric homeomorphism with compact support. If g 2Gb , �Ln � x �Ln and
�Ln � g.x/�Ln , then �n.g/.x/D g.x/.

Proof This is an immediate consequence of Theorem 11.2

We will want to work with the squaring map t 7! t2 as though it is in Gb . Unfortunately
it is not in Gb , nor in any Gn . We will deal with this in due course, using a special
trick—see Lemma 12.14.

We work in the upper halfplane rather than the disk. U , previously a neighbourhood of
S1 in Theorem 12.1, now becomes an open neighbourhood of R[f1g. We denote by
QS3 the group of quasisymmetric homeomorphisms of R that fix 0, 1 and 1, and by
QC3 the group of quasiconformal homeomorphisms of U2[R fixing the same three
points. We apply Proposition 12.2 to show that, if we bound the Teichmüller distance
of g 2 QS3 from the identity, then the Teichmüller distance of E.g/ 2 QC3 from the
identity is also bounded.

In order to apply this result to the image of �n , we need to move to the side the support
of the image subgroup so that 0, 1 and 1 are fixed by all elements of �n.Gb/. We
therefore need to apply a translation �n . In order to take care of our subsequent trick
for the squaring map, we will need to translate by a little more than currently seems
necessary.
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12.5 Definition We define �n to be the translation of R by MnC 4. We define Tn

to be translation of the upper halfplane by MnC 4.

Given any group G and g 2G , we denote by c.g/W G!G the inner automorphism
defined by c.g/.g1/D gg1g�1 . Consider the homomorphism EnW Gb! QC defined
by the composition

(12.5.a) En WGb

�n
����! QS

c.��1
n /

����! QS
E

����! QC
c.Tn/
����! QC:

This is the same as
En.g/D TnE

�
��1

n �n.g/�n

�
T �1

n :

Notice that, for all g 2Gb , ��1
n �n.g/�n has support in .�1; 0/. Composition with

�n or its inverse makes no difference to the Teichmüller distance from the identity in
QS. It follows from Proposition 12.2 that the dilatation of En.g/jTn.U / is bounded
by a number depending only on the Teichmüller distance of �n.g/ from the identity.
Moreover, En.g/jRD�n.g/ and, by Lemma 12.4, �n.g/ is equal to g on Œ�Ln;Ln�\

g�1Œ�Ln;Ln�. It follows that, for each g 2Gb , En.g/jR converges to g as n tends
to infinity, uniformly on compact subsets of R. (In fact, for a given compact subset
of R, and a given g , the restriction of En.g/ to the compact set is independent of n,
provided n is large enough.)

For fixed g 2Gb , we want convergence of En.g/ as n tends to infinity; at the moment,
we only know that En.g/jR converges to g . Given any compact subset K � U2 , we
have K � Tn.U / for n sufficiently large. Also, the dilatation of En.g/jTn.U / is
bounded in terms of the Teichmüller distance of �n.g/ from the identity. It follows
that, for each g 2 Gb , there is a sequence .n.i//i2N for which

�
En.i/.g/

�
i2N

con-
verges uniformly on compact subsets of U2 . Since the restriction to R converges to
g , the sequence must converge uniformly on compact subsets to a quasiconformal
homeomorphism (and not to a constant map or to infinity)—see Section 13.

12.6 Definition The standard diagonalization argument now shows that, given any
sequence .gm/m2N of elements of Gb , we may assume that, for each m, the sequence�
En.i/.gm/

�
i2N

converges to a quasiconformal homeomorphism—we denote this limit
by bE.gm/W U2! U2 .

We choose sequences in Gb that help with our problem. Note that the definition ofbE depends on the choice of subsequence. We can always take a subsequence of the
subsequence so that a further finite (or even countable) subset of elements of Gb is
incorporated into the domain of bE . Note that, for all g 2Gb , bE.g/jRD g .
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The definition of bE will, in due course, be altered by a conjugation in Definition 12.7.
The conjugating element will be the identity on R, so that we will continue to havebE.g/jRD g . We will also further enlarge the domain of our current definition of bE by
going to subsequences a fixed finite number of times.

Let .An/n2N be a sequence of affine homeomorphisms which is dense in the affine
group, and let .Rn/n2N be a sequence of earthquakes which is dense in the earthquake
group. We choose the An and Rn so that the set of all An is a subgroup of QS, and
similarly for the Rn . In fact, it is convenient to go further. We fix an irrational ˛ .
We choose the first few An so that A1.t/ D t C 1, A2.t/ D t C ˛ , A3.t/ D 2t and
A4.t/D 2˛t . Then A1 and A2 generate a subgroup that is dense in the subgroup of
translations, and A3 and A4 generate a subgroup that is dense in the subgroup of all
positive multiplications. .An/n2N is a listing of all the elements in the group generated
by these four elements. For the group .Rn/n2N , we use the group generated by R1 and
R2 defined by R1.t/D 2t and R2.t/D 2˛t for t � 0 and by R1.t/DR2.t/D t for
t � 0. For each n 2 N, we define the constants an and bn so that An.t/D ant C bn .

We can now determine the sequence .�.n//n2N . We choose �.0/D1=2. For each n2N,
we choose �.n/ > 0, so that �.n/ < �.n�1/=n and, for i � n, j log.ai/j< j log.�.n//j,
and jbi j�.n/<1. These inequalities allow us to use (11.2.4) in the context of Proposition
12.2.

Using Theorem 13.3, we find a sequence .n.i//i2N such that, for each m 2N, the two
sequences

�
En.i/.Am/

�
i2N

and
�
En.i/.Rm/

�
i2N

each converge uniformly on compact
subsets to quasiconformal homeomorphisms.

We fix the sequence � D .n.i//i2N (actually, we will still need to replace � by
a subsequence a few more times) and define the subgroup G� � Gb to consist of
all quasisymmetric g such that the sequence

�
En.i/.g/

�
i2N

converges uniformly on
compact subsets to an element of QC. By definition, G� contains the groups fAmg

and fRmg. We can include in G� any further countable collection of elements we
desire in Gb , by going to a suitable subsequence. The limit gives us a homomorphismbEW G� ! QC. We have bE.g/jRD g .

Using (11.2.4), we see that, for any fixed m, .dT.�n.Am/; Id//n2N converges to zero.
Since translation does not affect Teichmüller distance in QS, we see that, for any fixed
m,

�
dT

�
��1

n �n.Am/�n; Id
��

n2N
converges to 0. We now apply Proposition 12.2 to

show that there is a k > 1, such that, for each m, the dilatation of bE.Am/ is bounded
by k .

According to Sullivan in [21] and Tukia in [23], we can find a single quasiconformal
homeomorphism q such that, for each m, q ıbE.Am/ıq�1 is a Möbius transformation.
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Without loss of generality, we may assume that q fixes 0, 1 and 1. We write
r D qjR . For each m, rAmr�1 is a Möbius transformation fixing 1, and is therefore
an affine transformation. Moreover, if Am is a translation, then rAmr�1 is an affine
transformation with no finite fixed points, so it is also a translation. For i 2 Z, let
Bi W R! R be translation by 2�i . We prove by induction on i that r commutes with
Bi if i � 0.

To start the induction, we have shown that rB0r�1 is a translation sending 0 to 1.
Therefore rB0r�1DB0 . Suppose we know inductively that rBi�1r�1DBi�1 . Then
rBir

�1 is a translation whose square is equal to Bi�1 . Therefore rBir
�1 D Bi and

the induction is complete.

From this it follows that q fixes every point of the form n=2i , with n 2 Z and i 2N.
Since such points are dense in R, qjRD r is the identity map.

12.7 Definition As we warned immediately after Definition 12.6, we now change the
definition of bE by composing with conjugation by q .

For each m, bE.Am/ is now a Möbius transformation whose restriction to R is equal to
Am . It follows that, for each m, bE.Am/W U2!U2 is equal to the affine transformation
z 7! amzC bm . Also, for all g 2G� , it continues to be the case that bE.g/jRD g .

In Paragraph 4.20, we showed how to associate subsets, like the `r of Section 4,
to a 4–tuple of points in S1 , with cross-ratio 2. Given x 2 R and r > 0, the 4–
tuple .x C r;1;x � r;x/ has cross-ratio 2. There is a corresponding conformal
isomorphism between f W S ! U2 , with f .C1/D x , f .�1/D1, f .0/D x� r

and f .i�/D xC r . The group v.RC/ of Definition 4.1 is conjugated by f to a group
with support in the real interval Œx � r;xC r �. The fixed points of this group are x ,
points of the interval ŒxC r;C1� and points of the interval Œ�1;x� r �.

12.8 Specializing still further, we fix x D �2 and r D 1, leading to a definite
conformal isomorphism f W S ! U . Conjugation c.f / by f maps the group of
quasisymmetric homeomorphisms of the boundary of S to the group of quasisymmetric
homeomorphisms of R[ f1g. Then c.f / ı v is a homomorphism from RC to the
group of quasisymmetric homeomorphisms of R fixing �1, �2 and �3, with support
in Œ�3;�1�. We will pay particular attention to c.f /.v.2//D .f jR/ı v.2/ı .f jR/�1 ,
which we will denote by wW R! R. We replace � by a subsequence of � , in such a
way that w 2G� .

12.9 Proposition For each earthquake Rr W R!R , such that Rr 2G� , bE.Rr /W U2!

U2 maps each ray in U2 through the origin to a ray through the origin. The restriction
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to each ray is a change of scale fixing 0. Let � be as small as possible, with 0� �� �

such that, for all r > 0 and all z 2U2 such that �� arg.z/�� , we have bE.Rr /.z/D z .
Then � < � .

Proof Let Aa;b be the affine map of U2[R defined by Aa;b.z/D azC b . Consider
the subgroup H of hyperbolic transformations in G� that fix 0 and 1. Then bE.H /

is the “same” group of hyperbolic transformations acting on U2 . We consider the
orbit of any point p 2 U2 under bE.H /. The orbit of p is dense in the ray containing
p . Since each earthquake Rr commutes with each Aa;0jR, bE.Rr / commutes withbE �Aa;0jR

�
D Aa;0 , whenever Rr and Aa;0 are both in G� . Since, for fixed r ,bE.Rr /W U2! U2 is continuous, it must send each ray from the origin to a ray from

the origin, and the restriction to any ray must be a change of scale, depending on the
particular ray.

In order to complete the proof, we examine more closely the limiting process that
produces bE.Rr / and bE.w/, where w is defined immediately before the statement
of Proposition 12.9. The quasisymmetric homeomorphisms Rr and w have disjoint
supports and therefore commute. Therefore ��1

n ı�n.Rr / ı �n commutes with ��1
n ı

�n.w/ ı �n . For n> 3, ‰�.n/ is the identity on Œ�3;�1�, so that �n.w/D w . This in
turn implies that ��1

n ı�n.Rr / ı �n commutes with ��1
n ıw ı �n .

Let f W S ! U2 be the conformal isomorphism defined in Paragraph 12.8. Consider
the homomorphism

v.r/ 7! f �1qTnE.��1
n .f jR/v.r/.f jR/�1�n/T

�1
n q�1f

D f �1q En

�
.f jR/v.r/.f jR/�1

�
q�1f:(12.9.a)

The justification for the equality in (12.9.a) is that �n is the identity on quasisymmetric
maps of compact support, provided n is large enough. Now (12.9.a) gives us a
homomorphism ES;nW v.RC/! QC.S/, such that ES;n.v.r//j@S D v.r/, which the
only hypothesis necessary for the analysis in Section 4. We want to apply Lemma 4.21.
The information we need is a bound for the dilatation of the homeomorphism of U2 in
(12.9.a), when r D 2.

We have dT.v.2/; Id/� log.2/, as we see from the explicit extension of v.2/ to S . (In
fact, the inequality is an equality, but we don’t need this.) The argument of E in (12.9.a)
is at the same Teichmüller distance from the identity. By Proposition 12.2, there is
a k3 > 1, independent of n, such that the dilatation of E..��1

n .f jR/v.r/.f jR/�1�n/

is at most k3 . To bound the dilatation of the homeomorphism of U2 in (12.9.a), we
need only bring in the dilatation of q , once for q�1 and once for q itself. We find that
the dilatation is bounded by some k4 > 1, which is independent of n. This enables us
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to apply Lemma 4.21, with K D k4 , to obtain a fixed halfdisk D , independent of n,
centred at �2, such that, for each n, D is contained in the set f .�C;n/ associated to
ES;n (see Definition 4.18). The situation is illustrated in Figure 12.9.i.

�2

f .�C;n/

f .`1/

a bc d

D

�1�3

Figure 12.9.i: This picture illustrates the definition of D towards the end
of the proof of Proposition 12.9. The region bounded by the dotted line
and part of the x–axis is f .�C;n/ . We have c D f .1/ D �2� e�1 , d D

f .i�/D�2Ce�1 , aD f .1CW0/D�2�exp.�1�W0/ , bD f .1CW0�

i�/D�2C exp.�1�W0/ . One way to compute these coordinates is to use
hyperbolic geometry and Lemma 4.21.

By Theorem 5.1, D is contained in the fixed point set of qEn.Rr /q
�1 , for each r > 0.

If Rr 2G� , we can take the limit, with nD n.i/, as i tends to infinity. We find thatbE.Rr / is the identity on D .

Since bE.Rr / sends each ray through the origin to some ray through the origin by a
change of scale, it must be fixed on any ray through the origin meeting D , as illustrated
in Figure 12.9.ii

12.10 Note Rr is an earthquake that fixes .�1; 0/ pointwise. We define the earth-
quake Lr fixing .0;1/ by Lr Rr D Ar;0jR. A similar proof to that of Proposition
12.9 goes through for Lr (or alternatively we can conjugate by reflection in the y–
axis), and we find the maximum � , such that 0< � � � and, such that, for any r > 0bE.Lr / fixes each point z 2 U2 such that 0< arg.z/� � . Since Lr Rr DAr;0jR andbE.Ar;0jR/DAr;0 , we see that 0< � < � < � .

Our next task is to determine bE.Lr / and bE.Rr /. Let x 2 R; then A1;x is translation
by x . A1;xRr A1;�x is an earthquake based at x . This earthquake, denoted by Rx;r ,
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D

0

Figure 12.9.ii: This picture illustrates why �E.Rr / is fixed on a wedge with
one boundary edge along the negative x–axis. Each of the rays through 0
that meets D (a typical ray is shown dotted) is pointwise fixed by �E.Rr / .
This argument occurs right at the end of the proof of Proposition 12.9.

is the identity on .�1;x/. Similarly, we set Lx;r D A1;xLr A1;�x , which is the
identity on .x;1/.

12.11 Definition Let 0 < � < � . By a � –ray, we mean an infinite ray in U2 the
upper halfplane, at an angle � to the positive x–axis, and ending on @U2 . We denote
by Ray.�;x/ the � –ray ending at x 2 R. In this section only, the open quadrant will
mean the set of points z 2U2 with � < arg.z/ < �, where � and � are defined in Note
12.10. The closed quadrant is its closure in C. Given a point z in the quadrant, we
give it coordinates .u; v/ as follows. Form a parallelogram with each side a segment in
either a �–ray or a �–ray, and with opposite vertices 0 and z . Then u is the euclidean
length of the �–segment and v is the euclidean length of the �–segment. See the
illustration in Figure 12.12.i.

12.12 Theorem In the quadrant we havebE.Lr /.u; v/D .u; rv/ and bE.Rs/.u; v/D .su; v/;

provided that Lr and Rs are in G� .

Proof Since Lr and Rs commute with At;0jR , we see that bE.Lr / and bE.Rs/ each
permute the set of rays in U2 through the origin. Also, for each t > 0 and z 2 U2 , we
have bE.Lr /.tz/D tbE.Lr /.z/ and bE.Rs/.tz/D tbE.Rs/.z/. In particular, the set of
fixed points for bE.Rs/ is a union of rays through 0 and similarly for Lr .

Let x > 0. Then Rx;s commutes with Lr . The fixed point set of the groupnbE.Rx;s/
o

s>0
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Ray.�;x/

���

�u
v

ru

rv

0 x

Figure 12.12.i: This picture illustrates the proof of Theorem 12.12.

has a component in U2 which abuts @U2 to the left of x and it is the only such
component. Therefore the component is preserved by bE.Lr /, and its boundary
Ray.�;x/ is also preserved. See Figure 12.12.i. Interpreting this in the quadrant,
we have bE.Lr /.u; v/D .u; v

0/ for some v0 . Since bE.Lr /.z/D z if arg.z/ � � , we
see that v0 > 0. Similarly bE.Rs/.u; v/D .u

0; v/ for some u0 > 0.

In order to determine u0 and v0 defined in the preceding paragraph, note that Ar;0 DbE.Lr /bE.Rr /. Therefore

.ru; rv/DAr;0.u; v/D bE.Lr /.u
0; v/D .u0; v00/:

So u0 D ru and bE.Rr /.u; v/D .ru; v/. Similarly bE.Lr /.u; v/D .u; rv/.

In order to complete the proof of Theorem 12.1, we need to bring in the squaring
map †W R! R, defined by †.t/D t2 if t � 0 and †.t/D �t2 if t � 0. † can be
extended to the upper halfplane by †.rei� /D r2ei� , where the dilatation is 2. So †
is quasisymmetric. Unfortunately, † …Gb . In fact, for each n, † is not in the domain
of �n . So it is not at first clear how to extend bE so that † is contained in its domain.

We start with P�.n/ , defined in (11.2.6). Imitating, as far as possible, the construction
of En in Equation (12.5.a), we set

(12.12.a) Pn D TnE
�
��1

n P�.n/�n

�
T �1

n :

12.13 Lemma Let w be a word whose set of symbols consists of f†g [X , where
X is a finite subset of Gb . The word w is a concatenation of these symbols and their
formal inverses. We make the following two assumptions on w :

(12.13.1) Evaluated as a composition of homeomorphisms, wW R! R is the identity.
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(12.13.2) The sum of exponents of † in w is zero.

Now substitute in w by taking Pn instead of † and En.g/ instead of g 2X , obtaining
a quasiconformal homeomorphism WnW U2[R! U2[R. Then Wn D Id.

Proof First substitute in w by taking P�.n/ instead of † and �n.g/ instead of g 2X ,
obtaining wn . By Definition 12.3 and (11.2.6),

wnj.�Mn;Mn/W .�Mn;Mn/! .�Mn;Mn/

is obtained from w by conjugating with ‰�.n/W R ! .�Mn;Mn/. Then (12.13.1)
shows that this restriction of wn is the identity. On R n .�Mn;Mn/, the only terms
in the word wn that are not the identity are those that come from † by substituting
P�.n/ . It follows from (12.13.2) that wn D Id here as well.

Conjugating the identity map by any homeomorphism gives the identity map and
applying E to the identity map gives the identity map. It follows that Wn D Id as
required.

Recall that we are using the sequence � D .n.i//i2N to define bEW Gb ! QC. Now
suppose we knew, after passing to a subsequence of � , that

�
Pn.i/

�
i2N

, as defined
in Equation (12.12.a), converged uniformly on compact subsets to a quasiconformal
P W U2[R! U2[R . Lemma 12.13 would then show that we can extend the domain
of bE to the group generated by Gb and †, by defining bE.†/D P . (This statement
assumes that (12.13.2) follows from (12.13.1). This is probably true, though we want
to avoid taking the time and trouble to prove it. To obtain a rigorous treatment, the
statement should be interpreted as providing motivation, rather than being part of
a formal proof.) However, the maximal dilatations of the Pn.i/ are not uniformly
bounded, so we cannot use the usual route for proving convergence.

Instead we proceed as follows. Recall the definition of Ln , given just after the proof
of Proposition 12.2. The conjugating map ‰�.n/W R! .�Mn;Mn/ is the identity on
Œ�Ln;Ln�. We define SnW U2! U2 as follows.

Sn.rei� /D

8̂<̂
:

r2ei� if r �L
1=3
n

p
rLnei� if L

1=3
n � r �Ln

rei� if Ln � r:

The dilatation of Sn is 2: the important point is that it is independent of n. We set
sn D SnjR and then dT.sn; Id/� log.2/. Also, sn is supported on Œ�Ln;Ln� and so
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��1
n sn�n keeps 0, 1 and1 fixed. In addition, �n.sn/D sn . It follows from Proposition

12.2 that there is a k5 > 1, such that, for each n, the dilatation of

Qn D qTnE
�
��1

n �n.sn/�n

�
T �1

n q�1
D qEn.sn/q

�1

is bounded by k5 . Taking a subsequence of �D .n.i//i2N , we may assume, by Theorem
13.3 that this converges uniformly on compact subsets of U2[R to a quasiconformal
limit, which we denote by S W U2[R! U2[R. We have S.x/D x2 for x � 0 and
S.x/D�x2 for x � 0.

Now we compare Qn with qPnq�1 , where Pn is defined in Equation (12.12.a). Since
qjR is the identity, qPnq�1 and Qn agree on the interval In D .�L

1=3
n ;L

1=3
n /. As in

Paragraph 4.20, the 4–tuple .�L
1=3
n ; 0;L

1=3
n ;1/ determines a conformal conjugacy

with the infinite strip S . From Theorem 5.1 we have an open neighbourhood �n of In

in U2 , with the property that, if a quasisymmetric map f is the identity on In , then
E.f / is the identity on �n . Using Lemma 4.21, we find a closed halfdisk Dn ��n

centred at 0. The hyperbolic distance of Dn to the geodesic joining the endpoints of In

can be kept fixed independently of n, as shown in (4.16.1). It follows that Dn expands
with n and that

S
n Dn D U2[R.

For each n, qPnq�1jIn D QnjIn is the map x 7! ˙x2 . Hence qPnq�1jDn D

QnjDn . Given a compact subset C � U2 [ R, C � Dn for some n. It follows
that

�
qPn.i/q

�1
�
i2N

converges to the quasiconformal homeomorphism S uniformly
on C , and therefore uniformly on each compact subset.

12.14 Lemma We make the same assumptions about w that are made in Lemma
12.13. Substitute in w by taking S instead of † and bE.g/ instead of g 2X , obtaining
a quasiconformal homeomorphism W W U2[R! U2[R. Then W D Id.

Proof Let � D .n.i//i2N . We apply Lemma 12.13 with nD n.i/. Replacing Pn by
qPnq�1 and En.g/ by qEn.g/q

�1 , we get another version of Lemma 12.13. Letting
i tend to infinity, we obtain the statement we want.

Now consider the word w D SbE.Lr /S
�1bE.L1=r /bE.L1=r /. We see that w is the

identity as a map R!R . Also the sum of exponents of S is 0. It follows from Lemma
12.14 that w D Id as a map U2 ! U2 . So SbE.Lr / D bE.Lr /bE.Lr /S . Similarly
SbE.Rs/D bE.Rs/bE.Rs/S .

12.15 Lemma S preserves the rays Ray.�; 0/ and Ray.�; 0/ (see Definition 12.11).
S preserves the quadrant between these two rays.
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Proof We know from Theorem 12.12 that bE.Rr / fixes no point of the open quadrant,
unless r D 1, and similarly for bE.Ls/. Using the fact that bE.Rr /bE.Lr /DAr;0 and
the fact that bE.Lr / fixes any point with argument between 0 and � , we see that bE.Rr /

fixes no point in the sector between 0 and � , unless r D 1. So the fixed point set ofbE.Rr / with r ¤ 1 is exactly the sector of points with argument between � and � .

The equation SbE.Rr /D bE .Rr2/S shows that, if z is in the sector �� arg.z/� � ,
then S.z/ is a fixed point for each bE.Rt / with t D r2 . But this means that S.z/ is in
the same sector. This proves the lemma.

Using Theorem 12.12, we now work out the value of S in the quadrant of Definition
12.11. We write S.u; v/ D .s1.u; v/; s2.u; v//. The equation SbE.Lr / D bE.Lr2/S

implies that s1.u; rv/ D s1.u; v/ and s2.u; rv/ D r2s2.u; v/. Therefore s1.u; v/ is
independent of v and can be written as s1.u/. Similarly s2.u; v/ can be written s2.v/.
We have s2.rv/D r2s2.v/ and s1.ru/D r2s1.u/.

It follows that there are constants a > 0 and b > 0, such that S.u; v/D .au2; bv2/.
The coordinates .u; v/ in the quadrant are affinely related to conformal coordinates.
So we see that S is not quasiconformal on the quadrant. This contradiction completes
the proof of Theorem 12.1 and therefore the proof of Theorem 1.1.

13 Standard results

Most of the statements found in this section are proved in the book [1] by Ahlfors.

13.1 Theorem Let f W D2! D2 be a quasiconformal homeomorphism. Then f can
be extended to a continuous quasiconformal homeomorphism of the closed disk.

This is a consequence of Mori’s Theorem—see [1, page 47].

There is a stronger form of this, also a consequence of Mori’s Theorem.

13.2 Theorem Given a family of uniformly quasiconformal homeomorphisms of the
open unit disk (that is, their maximal dilatations are uniformly bounded) and a number
r , such that 0 � r < 1, and such that, for each u in the family, the absolute value
ju.0/j < r , then the family is equicontinuous. (This means that, given � > 0, there
exists ı > 0 . . . , that works for every u in the family.

13.3 Theorem Let U be a connected open subset of S2 , and let .fn/n2N be a
sequence of uniformly quasiconformal homeomorphisms of U with itself. Then
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either some subsequence converges to a point, or some subsequence converges to a
quasiconformal homeomorphism of U . The convergence is uniform on any fixed
compact subset of U . If U D D2 , then each of these functions can be continuously
extended to D2 , and then uniform convergence to a quasiconformal homeomorphism
can be replaced by uniform convergence on D2 .

This is proved at [1, page 51, Theorem 2].

13.4 The M –condition In [2], Beurling and Ahlfors gave the M –condition for an
orientation preserving homeomorphism of R to be quasisymmetric. This is discussed
in [1, Chapter IV]. The condition says that an orientation preserving homeomorphism
h of R is quasisymmetric (the restriction of a quasiconformal homeomorphism on the
closed unit disk keeping one point of S1 fixed), if and only if there exists M � 1 such
that, for all x 2 R and for all t > 0,

M�1
�

h.xC t/� h.x/

h.x/� h.x� t/
�M:

In fact, if M is chosen as small as possible for a fixed h, then using log.M / is more
or less equivalent to using the Teichmüller metric.

13.5 Beltrami differentials A quasiconformal homeomorphism �W D2 ! D2 is
differentiable almost everywhere. The Beltrami differential is defined by

�.z/D
@�=@z

@�=@z
:

In some ways it is natural to regard � as an almost everywhere defined function into the
hyperbolic plane, thought of as the unit disk provided with the Poincaré metric. This is
pointed out in [1, page 10]. In [1, page 99], Beltrami differentials are used to prove that
any quasiconformal homeomorphism is a product of quasiconformal homeomorphisms
that are near the identity, in fact simultaneously near the identity, in terms both of the
Teichmüller metric and of the uniform metric.

We frequently use a result proved by the authors, working with Al Marden, namely [6,
Theorem 5.1]). To state this result, recall that the unit disk with the Poincaré metric is
a model for the hyperbolic plane.

13.6 Theorem There is an explicit function �W Œ1;1/! Œ0;1/, with the following
property. Let f W D2! D2 be a K–quasiconformal homeomorphism. Then f is a
.K; �.K//–quasi-isometry with respect to the hyperbolic metric.
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We also include here the following topological lemma.

13.7 Lemma Let X be a connected compact Hausdorff space, and let A and B be
disjoint non-empty closed connected subsets of X . Let C be the component of X nA

containing B . Then C \A¤∅.

Proof It is sufficient to show that, for each open neighbourhood U of A, C \U ¤∅.
By contradiction, we assume that C \U D ∅. Let D be the component of X nU

containing B . We know that D � C � C , and so D\U D∅.

It is standard (but not trivial) that each component of a compact Hausdorff space is
the intersection of subsets that are simultaneously open and closed. We apply this to
the compact Hausdorff space X nU and the component D . Let E be a set that is
open and closed in X nU , with D � E and E \U D ∅. It follows that E is both
open closed in X . Since X is connected, E D ∅ or E D X . But each of these is
impossible.

There is an example due to Knaster and Kuratowski (see [15]) of a connected subset
X of the plane and a point x 2 X , such that X n fxg is non-empty and each of its
components is a point.
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