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Algebraic topology of Calabi–Yau threefolds
in toric varieties

CHARLES F DORAN

JOHN W MORGAN

We compute the integral homology (including torsion), the topological K–theory,
and the Hodge structure on cohomology of Calabi–Yau threefold hypersurfaces and
semiample complete intersections in toric varieties associated with maximal projective
triangulations of reflexive polytopes. The methods are purely topological.

14J32; 32Q25

One of the most fruitful sources of Calabi–Yau threefolds is hypersurfaces, or more
generally complete intersections, in toric varieties. This is especially true since there is
a proposal for the mirror of any such Calabi–Yau threefold. Usually the toric varieties
associated to convex lattice polytopes are singular, causing the Calabi–Yau threefolds
in them also to be singular, so that to get smooth Calabi–Yau threefolds we must
resolve the ambient singularities and take the preimage in the resolution of the singular
Calabi–Yau threefold. This can be done torically by the combinatorial device of taking
a triangulation of the boundary of the convex lattice polytope defining the toric variety
where the vertices of the triangulation are exactly the lattice points contained in the
boundary of the polytope. In general, there will be many such triangulations of a given
lattice polytope, leading to different ambient resolutions producing different families
of Calabi–Yau threefolds associated with the original toric variety.

In spite of the existence of many different such resolutions of a given singular object,
there are lattice-theoretic formulas for the Hodge numbers of these resolutions expressed
in terms of the lattice polytope and its polar. Thus, the Hodge numbers of all the
different resolutions coming from different triangulations are the same. The proofs
of these combinatorial formulas rely on the Griffiths–Dwork method of computing
Hodge numbers using residues of meromorphic differentials on the complement of the
Calabi–Yau threefolds in the toric ambient space (Batyrev and Borisov [1; 2]). The
same methods were used in (Mavlyutov [12]) to describe the Hodge components in
complex cohomology explicitly.

In this paper we study the resolution process from a more topological point of view.
In the topological study of these objects, one treats both complete intersections and
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hypersurfaces simultaneously. This approach allows us to establish refined versions
of the results described above. By directly considering the topology and algebraic
geometry of the resolutions we compare the cohomology of the resolution with the
cohomology of the singular hypersurface or complete intersection. From this we are
able to see several things. The image of H 3 of the singular object in H 3 of the
resolution is identified with the weight 3 quotient of H 3 of the singular object and
hence is the same for all resolutions. The rest of H 3 of the resolution is of Hodge
types .2; 1/ and .1; 2/. It is described as a sum of Hodge structures, summed over
the edges of the polytope. The Hodge structure associated to an edge is the tensor
product of the Hodge structures on H 1 of a smooth curve, contained in the closure
of the two-dimensional toric orbit given by that edge, with a Hodge structure of type
.1; 1/ on the free abelian group with basis the set of lattice points interior to the edge.
It follows that the rational Hodge structure on H 3 is independent of the choice of
resolution. Also, under the identification of H 2;1 with the tangent space to the moduli
space of complex structures, the image of H 2;1 of the singular object is identified
with the tangent space of so called “polynomial deformations”, ie, the subspace of
deformations obtained by varying the hypersurface or complete intersection in the
toric variety. The non-polynomial deformations are then accounted for by the curves
associated to the edges of the polytope and the lattice points in the interiors of these
edges. In this way, we recover the so called “correction term” describing the dimension
of the non-polynomial deformations directly from the resolution description.

It also follows from the resolution description that every class in H 2 of the resolution
is Poincaré dual to a divisor, a toric divisor. As a consequence, the Hodge type of H 2

of the resolution is .1; 1/. We are able to recover the combinatorial formula for the
rank of this group from an understanding of the resolutions of singularities.

Besides allowing us to enhance the combinatorial counts of Hodge numbers to results
about Hodge structures and allowing us to see directly in terms of subvarieties and other
topological objects the sources of these homology groups, there are other advantages
to our topological approach. It permits us to establish results over the integers, and
these of course lead to results in topological K–theory. Since K–theory is the repository
for the most refined conjectures about mirror symmetry, understanding of the integral
homology and cohomology is crucial for more refined tests of mirror symmetry.1 While
this paper establishes all the necessary topology results over Z in order to examine the
mirror symmetry proposals (see, for example, our paper [7]), we do not explore these
issues here; they will be taken up in another paper.

1In [3], Batyrev and Kreuzer use a different method to study the integral cohomology of Calabi–
Yau threefold hypersurfaces in toric varieties and obtain related results, including some computations
suggesting a role played by torsion in cohomology in mirror symmetry.
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1 Preliminaries and statements of results

Let N be a lattice of dimension n, ��NR DN ˝Z R be a reflexive polytope, and
P� the associated toric variety. Denote by V D V .�/ the set of vertices of �. If
nD 4, denote by Y the vanishing locus of a generic section of O.D1/ where

D1 D
X
v2V

Ov;

and Ov denotes the codimension-one torus orbit in P� associated to the vertex v .

Here are the standard facts about toric varieties determined by reflexive polytopes (Cox
and Katz [4, Section 3.5]):

Lemma 1.1 Suppose that ��NR is a reflexive polytope. Let D1 � P� be the Weil
divisor

D1 D
X

v2V .�/

Ov:

The complete variety P� is Cohen–Macaulay. The divisor D1 is a Cartier divisor in
P� . The line bundle O.D1/ is very ample, and anticanonical.

If n> 4 suppose further that we have a NEF partition V D V1

`
V2

`
� � �
`

Vn�3 . In
this case, suppose

Di D

X
v2Vi

Ov

are ample divisors in P� , and let Y � P� be the complete intersection of generic
sections of O.Di/, 1� i � n� 3.

For both the case when Y is a hypersurface and a complete intersection, we denote by
Yi � Y the subvariety which is the intersection of Y with the union of the torus orbits
of codimension � i .

Let T be a maximal projective triangulation of @�. Here maximal means that the
set of vertices of T is N \ @�. A projective triangulation is one for which there
exists a concave T –piecewise-linear function whose domains of linearity are precisely
(maximal) simplices of T (see Gel’fand, Kapranov and Zelevinsky [9, Definition 1.3],
where this is called coherent). Let PT be the toric variety associated to the fan given
by the cones over the simplices of T and let

�W PT ! P�

be the morphism of toric varieties associated to the inclusion of this fan into the fan
determined by �, and define eY D ��1.Y /.
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The variety eY � PT is a (smooth) Calabi–Yau threefold, and this construction of
Calabi–Yau threefolds as complete intersections in Gorenstein toric Fano varieties, due
to Batyrev and Borisov, is by far the richest known source of compact Calabi–Yau
threefolds. In the hypersurface case alone, where the requisite combinatorial data
consists simply of a four dimensional reflexive polytope �, the classification of such
polytopes, due to Kreuzer and Skarke [11], results in more than 400 million examples
of Calabi–Yau threefold hypersurface families.

Our goal in this paper is a complete understanding of the integral (co)homology, Hodge
structure, and topological K–theory of such Calabi–Yau threefolds eY . The approach
taken is thoroughly algebro-topological by looking directly at this resolution.

The Hodge diamonds of the Calabi–Yau threefolds eY look like this

1

0 0

0 h1;1 0

1 h2;1 h2;1 1

0 h1;1 0

0 0

1

and there are combinatorial formulas expressing the Hodge numbers h1;1 and h2;1 .
According to Batyrev and Borisov [1; 2], these formulas involve the distribution of
the points of �\N in the various faces of � and its polar polytope �ı and also,
in the case n > 4, the NEF partition/dual NEF partition. Let E , F , and G denote
respectively the sets of edges, two-faces, and three-faces of @�, and Eı , Fı , and Gı

the same for @�ı . For simplicity, let us consider formulas for h1;1 and h2;1 in the
case of Calabi–Yau threefold hypersurfaces:

(1–1) h1;1
D `.�/� 5�

X
g2G

`�.g/C
X
f 2F

`�.f /`�.f _/

(1–2) h2;1
D `.�ı/� 5�

X
v2V

`�.v_/C
X
e2E

`�.e/`�.e_/:

Here, `.�/ is the cardinality of N \�, and `.�ı/ is defined analogously with respect
to the dual lattice Hom.N;Z/. For a face ˛ of @�, `�.˛/ denotes the number of
lattice points in the relative interior of ˛ , and ˛_ is the dual face to ˛ in @�ı .

Although these formulas were used by Batyrev to check predictions from mirror
symmetry on the level of Hodge diamonds, there are two difficulties with this approach
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which prevent the broader applicability of its methods. First, for many applications to
physical questions one would really like to have a direct geometric construction of the
topological cycles generating the cohomology, especially over Z. One would like a
complete description of the Hodge structure on cohomology, rather than just the Hodge
numbers, and to have it expressed directly in terms of these geometric representatives.
Also, there is the issue of relating these Hodge structures for eY to those of the original
singular variety Y , and seeing how, if at all, the answer depends on the choice of
maximal projective triangulation T .

We begin by describing our results in the case of H 2.eY /, where the geometric repre-
sentatives are more similar to those in the literature, though the algebro-topological
methods of proof are quite different.

As is well known, all of H 2.eY / is spanned by algebraic cycles and hence the Hodge
decomposition of H 2.eY / is all of type .1; 1/. We establish in fact

Theorem 1.2 Let � be a reflexive polytope and T a maximal projective triangulation
of @�. If dim.�/ D 4, let Y � P� be a generic section of O.D1/. If dim� > 4

suppose that we have a NEF partition of V .�/ with associated divisors Di , with the
divisors Di � P� being ample. Let �W PT ! P� be the natural resolution and leteY D ��1.Y /. We have the following results.

(1) In the hypersurface case,

rank H 2.eY /DX
e2E

`�.e/C
X
f 2F

`�.f / � .`�.f _/C 1/C #V � 4:

(2) The Hodge structure on H 2.eY / is of type .1; 1/. Every integral class in
H 2.eY IZ/ is an integral linear combination of classes Poincaré dual to irre-
ducible components of toric divisors in eY , ie, divisors in eY that are irreducible
components of the intersection of eY with the closure of a codimension-one torus
orbit in PT .

(3) The mixed Hodge structure on H 2.Y / is a pure Hodge structure of weight 2 and
Hodge type .1; 1/.

Remark 1.3 Notice the divisors ��.Di/ are semiample in PT .

Remark 1.4 Let us describe the irreducible components of the intersection of eY with
the closures of a codimension-one torus-orbit. These orbits are indexed by the vertices
of T , ie, N \@�. For each ` 2 @�\N , there is a divisor R.`/� eY . Let eO` be the
associated torus orbit in PT . Then R.`/ is the closure of the intersection eY \ eO` .
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When ` 2 V is a vertex, R.`/ is an irreducible complex surface projecting birationally
onto the surface Y \O` in Y .

When ` 2
ı
e lies in the interior of an edge e 2E , letting bZ .e/ denote the smooth and

complete curve Y \Oe , R.`/ is a ruled surface over the curve bZ .e/ with generic fiber
a smooth rational curve P1.`/. In particular, H3.R.`// D H1.bZ .e//˝H2.P

1.`//.
The union over all ` 2

ı
e of the R.`/ produces a fibration where the generic fiber is

A`�.e/–configuration of rational curves.

Finally, when ` 2
ı

f for a 2–face f 2F , R.`/ is a disjoint union of #.Y \Of / copies
of a surface and maps to Y \Of in Y .

The results in the hypersurface case described in part (1) of the theorem imply an
expression for h1;1.eY /. This agrees with that from formula (1–1), since

`.�/D 1C #V C
X
e2E

`�.e/C
X
f 2F

`�.f /C
X
g2G

`�.g/:

There is an analogue of part (1) in the complete intersection case, and corresponding
expressions for h1;1.eY / in the complete intersection case (see Section 2.4 below and
[2, Section 8]).

We now describe our corresponding results for H 3.eY /:
Theorem 1.5 In the hypersurface case or in the complete intersection case when all
the divisors Da � P� are ample we have the following results.

(1) The image of
��W H3.eY /!H3.Y /

is equal to the image of

H3.Y2/!H3.Y / :

(2) Let A`�.e/ be the lattice (with symmetric bilinear pairing) associated to the root
system A`�.e/ . Then

Ker
�
��W H3.eY /!H3.Y /

�
is identified with M

e2E

H1.bZ .e//˝A`�.e/:
Under this isomorphism, the restriction to Ker �� of the usual homological
intersection pairing is identified with the direct sum of the tensor products of the
intersection pairings on H1.bZ .e// with the natural pairing on A`�.e/ .
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It follows that
Image

�
��W H3.eY IZ/!H3.Y IZ/

�
is independent of the choice of maximal projective triangulation T . By general results
in mixed Hodge theory (Deligne [6]) in fact

Image
�
��W H3.eY IQ/!H3.Y IQ/

�
is W�3 �H3.Y IQ/ under the mixed Hodge structure on H3.Y IQ/.

Corollary 1.6 We have the following exact sequence of Q–Hodge structures of weight
three:

0!
H 3.Y IQ/

W2H 3.Y IQ/
!H 3.eY IQ/!M

e2E

H 1.bZ .e//˝A�`�.e/! 0 ;

where the first term is a pure weight three quotient of H 3.Y IQ/. The sequence splits
so that the Hodge structure on H 3.eY IQ/ is isomorphic to the direct sum of this pure
weight three Hodge structure and the direct sum of tensor products of Hodge structures
from the third term. The factor A�

`�.e/
is defined to be of type .1; 1/, so that the third

term has Hodge types .2; 1/ and .1; 2/.

Corollary 1.7 The isomorphism type of the Q–Hodge structure on H 3.eY / is inde-
pendent of the choice of resolution eY of Y (corresponding to the choice of maximal
projective triangulation T of @�).

The last terms in formulas (1–1) and (1–2) are typically called the “correction terms”,
and without these terms the formulas describe the so-called toric part h

1;1
toric of h1;1.eY /

and the polynomial part h
2;1
poly

of h2;1.eY /. The number h
1;1
toric is the dimension of

the subspace of H 1;1.eY IC/ generated by the restriction to eY of the TN –invariant
divisors on PT . Thus, by parts (2) and (3) of Theorem 1.2, the difference between

h
1;1
toric and h1;1 is given by `�.f / � `�.f _/ and reflects the fact that, for ` 2

ı

f , R.`/

has `�.f _/C 1 components. The number h
2;1
poly

counts the dimension of the space
of polynomial deformations of eY � PT , ie, the space of deformations of complex
structure of eY determined by the hypersurfaces in the anticanonical linear system
j�KPT j, or equivalently deformations of eY induced by taking the preimages under �
of deformations of Y � P� .

Corollary 1.8 The sequence in Corollary 1.6 is compatible with the subspace of
polynomial deformations of eY in the sense that the subspace

�
H 3.Y /=W2H 3.Y /

�2;1
of H 2;1.eY / is the tangent space to the space of polynomial deformations of eY .
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The methods used in establishing the above results on (co)homology of the Calabi–Yau
threefolds eY involve both “standard” local decomposition techniques, guided by the
toric structure on PT , and some combinatorial topology about the two-faces of the
reflexive polytope � itself.

The methods apply not only to integral cohomology but also to K–theory. To see this
we use the direct link between topological K–theory and integral homology (including
torsion). A careful analysis of the 7–dimensional stage BSU .7/ of the Postnikov tower
for BSU leads us to the following technical result.

Theorem 1.9 Let M be a closed, oriented 6–manifold. The reduced even K–group
eK0 .M / is isomorphic to

f.c1; c2; c3/ 2H 2.M IZ/˚H 4.M IZ/˚H 6.M IZ/jSq2c2 D Œc3�2C c1c2C c3
1g

where the isomorphism is given by taking the 1st, 2nd, and 3rd Chern class. The odd
K–group K1.M /DeK0 .†M / is

H 1.M IZ/� Œ†M;BSU .7/�

and we have an exact sequence

0!H 5.M IZ/! Œ†M;BSU .7/�!H 3.M IZ/! 0 ;

where the extension is the pullback of the extension

0!H 5.M IZ/!A!H 3.M IZ/! 0

with extension class given by the Sq2 map

H 3.M IZ=2Z/!
H 5.M IZ/

2H 5.M IZ/
DH 5.M IZ=2Z/ :

For Calabi–Yau threefolds, independent of whether or not the manifolds are constructed
as hypersurfaces or complete intersections in a toric variety, we establish the following.

Corollary 1.10 Let M be a Calabi–Yau threefold. The topological K–groups of M

are expressed in terms of the integral homology groups of M :

K0.M /Š Z˚H 2.M IZ/˚H 4.M IZ/˚ 2 �H 6.M IZ/ ;

K1.M /ŠH 1.M IZ/˚H 3.M IZ/˚H 5.M IZ/ :and
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2 Calabi–Yau manifolds in toric varieties

This section lays out notations and basic results from toric geometry which we will use
in subsequent sections. Good references for many of these are the books of Cox and
Katz [4] and Fulton [8].

Let N 'Zn be a lattice, M DHom.N;Z/ the dual lattice, NRDN˝ZR the associated
real vector space, and TN DN ˝Z C� the associated complex torus.

2.1 Toric varieties: The affine case

Let c be a rational polyhedral cone in N . We say that c is strongly convex if c\.�c/D

f0g. The dual cone Lc of a strongly convex rational polyhedral cone c is

Lc D fx 2MR j hx; ci � 0g :

Define the associated open affine toric variety by

U.c;N /D Spec CŒM \ Lc� :

The action TN �U.c;N /! U.c;N / is dual to the morphism

CŒM \ Lc�! CŒM \ Lc�˝C CŒM �

�m
7! .�m

˝�m/

where the characters �mW TN !C� for m 2M \ Lc generate the C–algebra CŒM \ Lc�.
Since c is strongly convex, M \ Lc spans MR as a real vector space and hence this
action has a free TN –orbit that is open and dense.

The faces of c are themselves polyhedral cones and the set of faces is a poset under
inclusion, which we denote by f � f 0 . Consider the 1–dimensional faces r � c of
the cone c . The generators of c , denoted as a set by G.c/, are the generators of the
semigroups r \N as r runs through all the 1–dimensional faces of c . We denote by
ı
c the relative interior

ı
c D c n

[
ff� c jf¤cg

f :

Let f be a face of c . We define Kf �M \ Lc as follows:

Kf D fm 2M \ Lc
ˇ̌
hm; f i D 0g:

Corresponding to the face f of c there is a closed TN –invariant subset in U.c;N /

defined by
Zf D

\
m2.M\Lc/nKf

f�m
D 0g:
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This subset is the closure in U.c;N / of the TN –orbit Of (sometimes denoted Of;N
if we need to specify the lattice N to avoid confusion). This orbit is the open subset of
Zf consisting of all points z 2Zf with the property that for every m2Kf , �m.z/ 6D 0.
The union of the orbits Of , as f ranges over all the faces of c , is U.c;N /. The
closure Of is the union of Of 0 as f 0 ranges over all faces of c satisfying f � f 0 .
The open dense orbit corresponds to the face of c given by the point f0g. At the
other extreme, there is exactly one closed orbit; it is Oc . We denote by U �.c;N / the
complement of this orbit. For maximal dimensional cones we have the following result
about the closed orbit and also about the structure of the toric variety U.c;N /.

Lemma 2.1 Suppose that c spans NR , ie, the dimension of c is n. The orbit Oc

associated to the cone c itself is a fixed point of the TN –action. If c is simplicial, then
U.c;N /' Cn=� , where

� DN=Z-span.G.c// :

Now let us consider the case when c is not of maximal dimension. Let R-span.c/�NR

be the linear span of the cone c as a vector subspace. The dimension of c is defined
to be the dimension of R-span.c/. We define Nc DN \R-span.c/. Of course, c is a
polyhedral cone in .Nc/R . We denote by V .c/ the toric variety U.c;Nc/. According
to Lemma 2.1 there is a unique fixed point, denoted 0c for the TNc

–action on V .c/.

Dual to the inclusion Nc ,!N is the surjection M !Mc , where Mc DHom.Nc ;Z/.
Denote by Kc the kernel of M !Mc . We have in fact the (non-canonically split)
exact sequence of abelian semigroups

0!Kc!M \ Lc!Mc \ Lc! 0:

This gives rise to ring homomorphisms

CŒKc �! CŒM \ Lc�! CŒMc \ Lc� :

Since Kc is identified with Hom.N=Nc ;Z/, and since Nc �N is a direct summand,
we have TN=Nc

D TN =TNc
. Thus, we the dual morphisms are

(2–1) V .c/! U.c;N /! TN =TNc
:

The map U.c;N /! TN =TNc
is a fibration and V .c/ is the fiber over the identity

element. Since Nc is a direct summand of N , there is a (non-canonical) splitting
TN =TNc

,! TN . Restricting the action TN �U.c;N /!U.c;N / to the image of the
splitting determines an isomorphism

V .c/�TN =TNc

 
! U.c;N / :
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We have the product action of TNc
� .TN =TNc

/ on V .c/� .TN =TNc
/. The splitting

identifies this product torus with TN and with this identification the isomorphism
 is equivariant. The closed orbit Oc in U.c;N / is the product of 0c 2 V .c/ with
TN =TNc

.

Lemma 2.2 There is a C�–action on V .c/ whose the only fixed point is 0c and such
that for any x 2 V .c/, lim�!0 � �xD 0c . Restricting to RC �C� produces the natural
contraction action of a real cone-structure on V .c/ with cone point 0c .

Proof Let n 2 Nc be a primitive vector contained in the interior of the cone c .
Associated to this vector is an embedding {nW C� ,!Nc˝Z C� . We claim that for any
x 2 V .c/,

lim
�!0

{n.�/ �x

is the fixed point 0c . The reason is that if u 2Mc n f0g is � 0 on the cone c , then
hu; ni> 0 and hence

lim
�!0

�u.{n.�/ �x/D 0:

This means that the orbits of the RC � C� action give a flow on V .c/ contracting it to
the cone point.

2.2 Toric varieties: The general case

A fan F in NR is a finite collection of strongly convex rational polyhedral cones in
NR such that

(1) If c 2 F , then every face of c is also in F .

(2) If c1; c2 2 F , then c1\ c2 is a face of each of c1 and c2 .

The support of a fan F is the set

jF j D
[
c2F

c �NR :

We obtain the toric variety PF from a fan F � NR by gluing together the affine
TN –spaces U.c;N / for all c 2 F , where U.c1;N / and U.c2;N / are glued together
along U.c1\c2;N /. (To avoid ambiguity arising from choice of lattice, we sometimes
denote the toric variety associated with a fan F � NR by PF ;N .) The variety PF
is complete if and only if the fan F is complete, ie, jF j D NR . By the proposition
on integral closure in [8, page 29], irreducible toric varieties are normal, and hence
nonsingular through codimension two. It follows from the affine case that there is a

Geometry & Topology, Volume 11 (2007)



608 Charles F Doran and John W Morgan

one-to-one correspondence between the TN –orbits and cones of F , with the adherence
relation being the opposite of the face relation; ie, for cones c1 and c2 ,

(2–2) Oc1
�Oc2

, c2 � c1 :

Given a strongly convex rational polyhedral cone c , we define Fc to be the fan
consisting of c and all its faces. In this case we have PFc

DU.c;N /. Also considering
c as a polyhedral cone in .Nc/R , let Fc.Nc/ denote the fan in .Nc/R consisting of c

and all its faces. We have PFc.Nc/ D U.c;Nc/. For a general fan F � NR we have
PF D

S
c2F U.c;N /.

One natural way that complete fans arise is from convex lattice polytopes � � NR .
For us a convex lattice polytope contains the origin in its interior and has points of N

as its vertices. We denote by V .�/ its set of vertices, by E DE.�/ its set of edges
and by F D F.�/ its set of two-faces. We define the fan F.�/ associated2 with �
consisting of cones over the faces of @� (by convention we include as a face the empty
face whose cone is the origin), ie, over a face 
 consider the cone

c.
 /D f�.x�x0/ jx 2�;x0 2 
; �� 0g �NR :

We define the associated toric variety

P� D PF.�/ :

For any face 
 of @� we denote by O
 the TN –orbit Oc.
 / , by U.
;N / the affine
toric variety U.c.
 /;N /, by N
 the sublattice Nc.
 / , and by V .
 / the affine toric
variety V .c.
 //.

A notation we shall use throughout is the following: If 
 is a face of a lattice polytope
then `�.
 / denotes the number of lattice points contained in the relative interior of the
face; i.e,

`�.
 /D #
�

N \
ı



�
:

2.2.1 Refinements and induced maps: The affine case We say that a fan F 0 refines
the fan F if each cone of F 0 is contained in a cone of F and that the supports of F 0
and F are the same.

Let’s begin with the case of refining a single cone. Fix a strongly convex rational
polyhedral cone c and suppose that F 0c is a fan refining Fc .

2Our associated fan is not what is referred to in [4] as the normal fan of � ; in our notation, the normal
fan of ��NR is a fan in MR .
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Lemma 2.3 There is a TN –equivariant morphism �W PF 0c ! U.c;N / which is a
birational isomorphism.

Proof Let c0 be a cone of F 0c . Since c0 � c , it follows that Lc � Lc0 . The map
U.c0;N /! U.c;N / is dual to the inclusion

CŒM \ Lc�! CŒM \ Lc0�:

It is easy to see that these affine maps are TN –equivariant and are fit together to define
the map � as given in the statement.

We wish to describe the pre-image of the orbit Oc under the map �W PF 0c ! U.c;N /.
Because of the TN –equivariance, this pre-image is a union of TN –orbits. In order to
describe this map, let us introduce the dual cell decomposition †.F 0c/ of the refinement.

There is one cell � 0 dual to each cone c0 of F 0c meeting
ı
c . The dimension of � 0 is

n� dim.c0/. The cell � 0 dual to c0 is a face of the cell � 00 dual to c00 if and only if
c00 � c0 . Notice that this cell complex is of dimension at most n� 1. It need not be of
this dimension, nor even be of homogeneous dimension. We denote by c� the cone in
F 0c dual to the cell � 2†.F 0c/.

Lemma 2.4 The pre-image ��1.Oc/ is given as

��1.Oc/D
[

�2†.F 0c/

Oc� :

This bijective correspondence between the TN –orbits in ��1.Oc/ and the cells of
†.F 0c/ identifies the face relationship in †.F 0c/ with adherence relationship of orbits.

Proof Let c0 be a cone in F 0c . Then �.Oc0/D Oc if and only if every m 2M \ Lc

that is not identically zero on c is not identically zero on c0 . Since c0 contains a
relative interior point of c and since m � 0 on c , this is clear. The fact that Oc1

is
contained in the closure of Oc2

if and only if .c1/� is a face of .c2/� is clear from
Equation (2–2).

Example 2.5 Let c be the cone on an edge e with vertices indecomposable elements
of N . Set k.e/ D `�.e/C 1. Then V .c/ ' C2=.Z=k.e/Z/. The action is given by
the primitive k.e/th root of unity � acting by �.z1; z2/D .�z1; �

�1z2/. In particular,
the space V .c/ is homeomorphic to c.L.k.e/;�1//, the cone over the Lens space
L.k.e/;�1/. Consider the subdivision F 0c of Fc given by the decomposition

e D e1[ : : :[ e`�.e/C1
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l1

e1

l`�.e/ e`�.e/C1

Figure 1: Example 2.5

with li D ei\eiC1 for i D 1; : : : ; `�.e/ the points N\
ı
e . Then PF 0c is smooth and the

morphism �W PF 0c ! V .c/ resolves the singularity at 0c into an A`�.e/ configuration
of rational curves — a chain of `�.e/ rational curves.

Lemma 2.6 Suppose that the R–span of c is NR , so that we have the unique fixed
point 0c of the TN –action on U.c;N /. Then the fiber ��1.0c/ is a compact variety,
and PF 0c deformation retracts to ��1.0c/.

Proof Let RC�U.c;N /!U.c;N / be the action coming from the cone contraction
given in Lemma 2.2. Since �W PF 0c ! U.c;N / is TN –equivariant, this RC action
lifts to PF 0c . This defines a deformation of PF 0c into an arbitrarily small neighborhood
of ��1.0c/. Of course, a sufficiently small neighborhood of ��1.0c/ deformation
retracts onto ��1.0c/. Compactness of the fiber follows from the properness of � (see
[8, Section 2.4]).

The refinement F 0c of Fc determines a fan denoted F 0c.Nc/ in .Nc/R . As above we
have �W PF 0c.Nc/! V .c/ with PF 0c.Nc/ deformation retracting to the compact variety
��1.0c/.

Corollary 2.7 PF 0c is a locally trivial fiber bundle over TN =TNc
with fiber PF 0c.Nc/ .

The fibers ��1.Oc/�PF 0c and ��1.0c/�PF 0c.Nc/ are related by ��1.Oc/Š�
�1.0c/�

TN =TNc
.

Proof Use the fact that �W PF 0c ! U.c;N / is TN –equivariant and the fibration
structure in Equation (2–1).
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2.2.2 Refinements and induced maps: The general case One class of especially
nice lattice polytopes are reflexive polytopes: Given a polytope ��NR , define the
polar polytope

�ı D fv 2MR j hx; vi � �1; for all x 2�g �MR :

A lattice polytope � is said to be reflexive if �ı is a lattice polytope in MR .

Definition 2.8 Let � be a reflexive polytope. Let T be a triangulation which is a
rectilinear subdivision of @�, with set of vertices equal to N \ @�. The cones of the
simplices of T form a refinement F.T / of F.�/. Such refinements are called maximal
projective subdivisions. We denote by V .T / the set of vertices of the triangulation T ,
ie, V .T /DN \ @�.

Lemma 2.9 Let � be a reflexive polytope. Let F 0 be a maximal projective subdivision
of F.�/. Let D1 �PF 0 be the Weil divisor [v2V .T /Ov , called the divisor at infinity.
For any simplex ı of T of dimension � 2, U.ı;N / is smooth and D1\U.ı;N / is
an anticanonical divisor in U.ı;N / and is a divisor with normal crossings in U.ı;N /.

Proof By reflexivity of �, the vertices fv1; : : : ; vr g of any simplex ı of F 0 of
dimension � 2 form part of a basis for N [4, Corollary A.2.3]; let

fv1; : : : ; vr ; erC1; : : : ; eng

be a basis for N . Use this basis to split N DA˚B with v1; : : : ; vr being a basis for
A and erC1; : : : ; en a basis for B . Let A�C denote the “positive 2r -ant” in the dual
space A� with respect to the dual basis. Then

M \ Lc DA�C �B�

so that
U.ı;N /D Spec CŒM \ Lc�D CA �TB

where CA D C˝Z A and

(2–3) D1\U.ı;N /D[r
iD1Hi �TB

where Hi � CA is the i th coordinate hyperplane. Let ti W TN ! C� be the coordinate
functions for this basis. Then

dt1

t1
^ � � � ^

dtn

tn

is a holomorphic differential n–form on TN with simple poles along D1 [8, Section
4.3], proving that D1 is anticanonical.
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In order to capture all of these properties we make the following definition.

Definition 2.10 Let † be a finite cell complex, not necessarily of homogeneous
dimension. Let S be a compact complex algebraic variety. We say that † is a
combinatorial model for S if the following hold:

� For each i –cell c of † there is a locally closed, irreducible algebraic subset Sc

of S and Sc is isomorphic to a complex torus of dimension i .

� S D[cSc .

� For c 6D c0 , Sc \Sc0 D∅.

� For every cell c of † the closure Sc of Sc is isomorphic to a smooth variety
and

Sc D

[
fc0�cg

Sc0 :

� For every cell c of † the subset [fc0�cj c0 6DcgSc0 in Sc is a smooth divisor with
normal crossings in Sc . It is an anticanonical divisor for Sc .

Figure 2: Examples of triangulated two-faces with dual cell complexes

Proposition 2.11 Let � be a reflexive polytope, let F 0 be a maximal projective
subdivision of F.�/, and let f be a face of @�. Let �W PF 0

f
.N /! U.f;N / be the

map given in Lemma 2.3 and let �f be the restriction of � to PF 0
f
.Nf /
� PF 0

f
.N / .

Denote by †.F 0
f
/ the cell complex †.F 0

c.f /
/. Then †.F 0

f
/ is a combinatorial model

for S.f /D ��1.0f /� PF 0
f
.Nf /

. Furthermore, under the map �W PF 0
f
.N /! U.f;N /

the preimage of the closed orbit Of is isomorphic to S.f /�TN =TNf .
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Proof By Lemma 2.4, ��1.0f / is the union of all the TNf –orbits in PF 0
f
.Nf /

corre-

sponding to simplices of F 0 meeting
ı

f . The dimension of the orbit corresponding to
a simplex ı is the codimension of ı in f . Hence there is a bijective correspondence
between the i –cells of †.F 0/ and the i –dimensional TNf –orbits in ��1.0f /. By
Equation (2–2), under this correspondence the face relation becomes the adherence
relation. This establishes the first four conditions in the definition. The fifth is immediate
from Lemma 2.9.

The last statement is immediate from Corollary 2.7.

2.3 Lefschetz theorems and arithmetic genus of Calabi–Yau manifolds in
toric varieties

Suppose that N is a lattice of rank 4 and � � NR is a reflexive polytope with P�

as associated toric variety and D1 the divisor at infinity. Since O.D1/ is ample [4,
Lemma 4.1.2], the sections of this bundle define a projective embedding

�W P� ,! P.H 0.P�;O.D1//_/:

Let T be a maximal projective triangulation of �. Taking the cones over the simplices
of T defines a maximal projective subdivision F 0 D F.T / of F.�/. There are the
associated projective variety PF 0 and the TN –equivariant morphism �W PF 0 ! P� .
Let eD1D ��.D1/. Recall that for each face 
 of @�, F 0
 .N
 / is the sub-fan of F 0
consisting of all cones in F 0 contained in c.
 /. According to [4, Lemma 4.1.2 and
Corollary A.2.3] eD1 is anticanonical and is semiample, and for every face 
 of @�
of positive codimension, PF 0
 .N
 / is smooth.

Let Y � P� be the intersection of P� with a generic hyperplane in

P.H 0.P�;O.D1//_/ :

Then Y is a generic anticanonical divisor in P� transverse to all TN –orbits. We seteY D ��1.Y /� PF 0 . It is anticanonical and, as was the case with PF 0
 .N
 / above, eY
is a smooth Calabi–Yau threefold. For any lattice point ` 2N \ @�, there is a toric
divisor eO` � PF 0 . The only singularities of its closure in PF 0 occur at fixed points
of the TN –action. Thus, the intersection of eY with the closure of eO` is a smooth
divisor in eY . We denote it by R.`/. Its image in Y is the intersection of Y with the
closure of the orbit corresponding to the unique open face of @� containing `.

Let us turn to the analogue for � of dimension n> 4 and complete intersections. First
we need to recall the notion of Batyrev and Borisov of NEF partitions defining complete
intersections. Let ��NR be a reflexive polytope. Let V .�/D V1

`
� � �
`

Vk be a
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partition of the vertices of �. According to [2, Section 4] this is a NEF partition if
there are functions 'i W NR! R; 1� i � k , with the following properties:

(1) 'i is piecewise linear and linear on the cone on each face of @�.

(2) 'i.v/D

(
0 if v 62 Vi ;

�1 if v 2 Vi :

(3) 'i is a concave function; ie, 'i.taC .1� t/b/� t'i.a/C .1� t/'i.b/.

(4) For each i � k and each maximal dimensional face f of @� there is an
mi;f 2M such that

'i jc.f / D hmi;f ; �i:

Set rıi �MR equal to the convex hull of the fmi;f g as f ranges over the maximal
dimensional faces of @�. Then

'i.x/D min
y2rı

i

hy;xi:

Let Di D
P
v2Vi

Ov . Clearly, D1 DD1C� � �CDk is anticanonical. The divisor Di

is ample if and only if the function 'i is strictly convex on @�, see [8, page 70]. Now
let us suppose that we have a NEF partition V .�/D V1

`
� � �
`

Vk with the property
that each of the corresponding divisors Di is ample. This condition implies that rıi is
combinatorially dual to �.

We need the following elementary lemma from [2, Proposition 6.3].

Lemma 2.12 Suppose that 
 is a face of @� and suppose that the relative interior of

 contains a lattice point. Then there is an i � k such that all vertices of 
 belong to
the same Vi . We denote by i.
 / this index.

Suppose that the relative interior of 
 contains a lattice point. Then all the vertices
of 
 are contained in Vi.
 / , and hence for every j 6D i.
 / we define the dual of 
 in
rıj , denoted 
_j , to be the face of rıj that evaluates 0 on 
 . Analogously, we define

_

i.
 /
to be the face of rı

i.
 /
that evaluates �1 on 
 . Since Di is ample, 
_i is the

face of rıi dual to the face 
 of @� under the combinatorial duality. In particular, for
each face 
 of @� the dimension of 
_i is n� 1� dim.
 /.

2.3.1 Lefschetz theorems We need a generalization of the classical Lefschetz theo-
rem, a generalization established by Bernstein, Danilov and Khovanskiı̆ [5, Theorem
6.4]. Consider the generic affine complete intersection Y0 � Tn D .C�/n of dimension
r D n� k .
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Theorem 2.13 The compactly supported cohomology H i
c .Y0/ D 0 for i < r . Fur-

thermore, if all the Newton polyhedra �1; : : : ; �k have dimension n, then the Gysin
homomorphism H i

c .Y0/!H iC2k
c .Tn/ is an isomorphism for i > r and surjective for

i D r .

The first statement is classical, given that Y0 is a smooth affine variety of dimension r .

Applying Poincaré duality for noncompact manifolds yields:

Corollary 2.14 Under the hypotheses of Theorem 2.13, the map in homology induced
by the inclusion,

Hi.Y0/!Hi.T
n/

is an isomorphism for i less than the complex codimension k of Y0 and surjective for
i D k .

It will be important to have these results not only for the open torus-orbit in P� but
also for orbits of smaller dimension. In the hypersurface case, let ! be a generic
section of O.D1/. Consider a face 
 of @�. The restriction of ! to the orbit O

has convex hull an affine translate of 
_ ��ı and hence the dimension of this convex
hull is equal to the dimension of the orbit O
 . Thus, the Lefschetz theorem applies to
Y \O
 !O
 . But notice that the dimension of Y \O
 is smaller than r , and the
comparison of homologies only goes up to the middle (real) dimension of this variety.

In the complete intersection case, the necessary dimension hypothesis does not auto-
matically restrict to the faces. For this we need the Di to be ample.

Lemma 2.15 Let ��NR be a reflexive polytope and let V .�/D V1

`
� � �
`

Vk be
a NEF partition. Suppose that each of the divisors Di associated to the Vi are ample.
Let !i be a generic section of Di . Then for each face 
 of @�, the convex hull of the
support of !i j
 has dimension equal to the dimension of O
 .

Proof The convex hull of the support of !i j
 is an affine translate of 
_i �r
ı
i . Since

Di are ample, the rıi are combinatorially dual to �, and hence the faces 
_i have
dimension n� 1� dim.
 /, which is exactly the dimension of O
 .

Now applying Corollary 2.14 gives the following:

Proposition 2.16 Let � � NR be a reflexive polytope. Let Y � P� be an r –
dimensional variety, either a generic anticanonical hypersurface or a generic complete
intersection associated to a NEF partition D1 DD1C � � � CDk , with the Di being
ample. Then for each face 
 of @� the inclusion Y\O
!O
 induces an isomorphism
on homology below dimension .r � codim.
 // and induces a surjection on homology
in that dimension.
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2.3.2 Arithmetic genus We begin by recalling a result of Khovanskiı̆ [10, Theorem
1] in the case of hypersurfaces in a torus.

Proposition 2.17 Let TnDC�˝N be a torus, and let ! 2CŒTn� be a non-degenerate
regular function on C�˝N , non-degenerate in the sense that Y D !�1.0/ is a smooth
hypersurface. Let �0�MR be the convex hull of the support of ! . Then the arithmetic
genus �.Y / is given by

�.Y /D 1�B.�0/

B.�0/D .�1/dim.�0/#.�0\M / :where

We apply this to our context. First, let us also suppose that N is of rank 4 and that
� � N ˝R is reflexive. Let 
 be a face of @� and denote by 
_ the dual face in
@�ı consisting of all x 2�ı with the property that hx; 
 i D �1. Under the mapping
P�! P.H 0.P�;O.D1//_/D P.CM\�ı/ the image of the orbit O
 is contained
in the subprojective space determined by the vanishing of all m 2�ı n 
_ . Thus, the
supporting polytope for the restriction of a generic section

! D
X

m2M\�ı

am�
m

of O.D1/ to O
 is the convex hull of M \
_ . Since the vertices of 
_ are contained
in M , the supporting polytope is 
_ . Applying the Khovanskiı̆ result cited above to
O
 gives the following:

Corollary 2.18 Let N be a lattice of rank 4, ��NR a reflexive polytope, ! a generic
section of O.D1/, and Y � P� the zero locus of this section. Then for any edge e of
� the intersection Y \Oe is a (non-compact) riemann surface of genus `�.e_/. For
any two-face f of � the intersection Y \Of consists of 1C `�.f _/ points.

Let’s now generalize this to the complete intersection case.

Theorem 1 of [10] also implies the following.

Proposition 2.19 The arithmetic genus �.Y / of the variety Y defined in .C�/n by
a nondegenerate system of equations !1 D : : : D !k D 0 with Newton polyhedra
�0

1
; : : : ; �0

k
is given by

�.Y /D 1�
X

i

B.�0i/C
X
i<j

B.�0i C�
0
j /� : : :C .�1/kB.�01C : : :C�

0
k/ ;

B.�0/D .�1/dim.�0/#.�0\M / :where
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Applying this result to the various faces gives:

Corollary 2.20 Let ��NR be a reflexive polytope, where dim NRD nD kC3. Let

V .�/D
a
i2I

Vi ;

where I D f1; : : : ; kg, be a NEF partition with the associated divisors Di being ample.
Let Y � P� be a generic complete intersection of sections of the O.Di/. Then:

(1) For any 2–face f of @� whose relative interior contains a lattice point,

#.Y \Of /D 1C
X

J�I I J 6D∅

.�1/3�jJ j`�.
X
j2J

f _j /:

(2) For an edge e of @� containing an interior lattice point, the curve Y \Oe has

�.Y \Oe/D 1�
X

J�I I J 6D∅

.�1/3�jJ j`�.
X
j2J

e_j /:

Notice that when k D 1, this formula specializes to the one given in Corollary 2.18.

2.4 First computations of homology groups of Calabi–Yau threefolds

Throughout this section we suppose that � is a reflexive polytope and that either the
dimension of � is 4 and Y is the vanishing locus of a generic section of O.D1/, or that
the dimension of � is nD kC3 and we have a NEF partition V .�/D V1

`
� � �
`

Vk

with the corresponding divisors D1; : : : ;Dk being ample with Y being the complete
intersection of the zero loci of generic sections of the Di . In either case Y is a (possibly
singular) Calabi–Yau threefold. Since eY D ��1.Y / � PT is smooth, it is easy to
compute H1.eY / and H2.eY / given the Lefschetz theory described above.

Let eY 0 be the intersection of eY with the open TN –orbit in PT . By the Lefschetz
theorem (Section 2.3.1) we have

H0.eY 0/DH0.Y0/D Z

H1.eY 0/DH1.Y0/DN

H2.eY 0/DH2.Y0/D^
2N:

We set fW � eY equal to the union of Y0 and all the intersections of eY with the
codimension-one torus orbits in PT . Of course, these orbits are indexed by the vertices
of T , ie, by N \ @�. Thus, the pair .fW ; eY 0/ is excisively equivalent toa

`2@�\N

.eY \ eO`/� .D2;S1/:
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Let’s use the Lefschetz theory to analyze eY \ eO` .

Lemma 2.21 (1) If ` 2 V .@�/, then eY \ eO` D Y \O` . Furthermore, H0.eY \eO`/D Z and the inclusion eY \ eO`! eO` induces an isomorphism H1.eY \eO`/!H1. eO`/.
(2) If ` is contained in the interior of an edge e of �, then eY \ eO` is a torus-

fibration over Y \Oe with (one-dimensional) fiber

N \R-span.e/
N \R-span.`/

˝C�:

Furthermore, eY \ eO` is connected and the inclusion eY \ eO`! eO` induces a
surjection on H1 .

(3) If ` is contained in the interior of a two-face f of �, then eY \ eO` is a torus
fibration over Y \Of , which is a finite, non-empty set of points. The fiber is
identified with the complex two-torus

N \R-span.f /
N \R-span.`/

˝C�:

In particular, each component of eY \ eO` has first homology isomorphic to

N \R-span.f /
N \R-span.`/

inside H1. eO`/DN=Zh`i.

(4) If ` is contained in the interior of a three-face of @�, then eY \ eO` D∅.

Proof If ` is contained in the interior of a face 
 of �, then the restriction of the
map � to a map eO`!O
 is the natural projection

N

Zh`i
˝C�!

N

N \R-span.
 /
˝C�:

Since Y �X is generic, eY \O
 is a fibration with fiber

N \R-span.
 /
Zh`i

˝C�:

When ` is a vertex of @�, eY \ eO` D Y \O` and the homology statements in part
(1) are verified in Proposition 2.16.

Let us suppose that ` is contained in the interior of an edge e of �. Then by Proposition
2.16 we have Y \Oe is connected and H1.Y \Oe/!H1.Oe/ is surjective. Since
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eY \ eO`! eO` is a C�–bundle over the inclusion Y \Oe!Oe , the result follows
in this case.

Now suppose that ` is contained in the interior of a two-face f . By Proposition 2.16,
Y \Of is a finite, non-empty, set of points. The result is then clear in this case.

Lastly, if ` is contained in the interior of a three-face g , then the generic Y in the given
linear system misses the point Og in P� . Hence, the preimage eY misses eO` .

Using the long exact sequence of the pair .fW ; eY 0/ givesM
`2@�.2/\N

H1.eO` \ eY / ˚`.�^`/�! ^
2N !H2.fW /!(2–4)

M
`2@�.2/\N

H0.eO` \ eY /L` �`
! N !H1.fW /! 0:

Here, the notation @�.2/ refers to the two-skeleton of @�. The first map is the direct
sum over ` of the compositions

H1.eY \ eO`/!H1. eO`/DN=h`i
�^`
! ^

2N:

Using this we shall show the following result.

Corollary 2.22 (1) H1.eY /DN=Span.N \ @�.2//.

(2) We have an exact sequence:

0! Tor H2.eY /!H2.eY /! Ker.
M
`

.�`//! 0:

(3) Ker.
L
`.�`// is free abelian. In the hypersurface case it is of rank

rank Ker.
M
`

.�`//D #V C
X

e

`�.e/C
X
f

`�.f /.1C `�.f _//� 4:

In the complete intersection case (of ample divisors) its rank is:

rank Ker.
M
`

.�`//D#V C
X

e

`�.e/C

X
f

`�.f /

0@1C
X

J�I I J 6D∅

.�1/3�jJ j`�.
X
j2J

f _j /

1A� n
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(4) Tor H2.eY /D^2N= Image

 M
`2@�.1/\N

N

N \R-span.`/
^ `

˚

M
f

�M
`2
ı

f

N \R-span.f /
N \R-span.`/

^ `
�!

Proof Since the complement of fW in eY is a union of orbits of complex codimension
at least two, and since eY is smooth, it follows by general position that Hi.fW /!

Hi.eY / is an isomorphism for i � 2. Hence, we work with Hi.fW / for i D 1; 2.

The first statement is immediate from the long exact sequence of the pair .fW ; eY 0/

since eO` \ eY is non-empty for every ` 2 @�.2/ . It is easy to see that the first map
in this exact sequence has torsion cokernel. Since the fourth term is free abelian, the
second statement follows. It also follows that Ker.

L
`.�`// is free abelian. Let us

compute its rank, which is the rank of fourth term minus n, the rank of N . By the
Lefschetz theorem eO` \ eY is connected if ` is contained in the one-skeleton of @�.
By Corollary 2.18 in the hypersurface case eO` \ eY has .1C `�.f _// components if
` is contained in the relative interior of two-face f . By Corollary 2.20 in the complete
intersection case if ` is contained in the relative interior of a two-face then eO` \ eY
has

1C
X

J�I I J 6D∅

.�1/3�jJ j`�.
X
j2J

f _j /

components. In both cases the formula for the rank is immediate. The fourth item is
clear from our description of H1. eO` \ eY /.
Notice that parts (2) and (3) of this result establish part (1) of Theorem 1.2 and give
the more general formula for the rank of H2.eY / in the complete intersection case.

2.4.1 Representation by divisors We now establish the results in part (2) of Theorem
1.2.

Proposition 2.23 For every ˛ 2H 2.eY /, there exists a integral linear combination of
divisors DD

P
j nj Dj such that ˛ is Poincaré dual to D . In fact, each irreducible com-

ponent Dj in this sum can be taken to be an irreducible component of the intersection
of eY with the closure of a torus-orbit of codimension one in eX .

Proof We have the exact sequenceM
`

H 0.eY \ eO`/!H 2.eY /!H 2.eY 0/:
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The image of the generator of one of the Z–summands in H 0.eY \ eO`/ maps to
the Poincaré dual of the corresponding divisor in H 2.eY /. Thus, the proposition
follows immediately if we can show that the map H 2.eY /!H 2.eY 0/ is trivial. Since
H 2.eY 0/DH 2.TN / is torsion free, it suffices to show that the algebraically dual map

H2.eY 0/!H2.eY /
has torsion image. Since the inclusion fW � eY induces an isomorphism H2.fW /!

H2.eY /, using the exact sequence (2–4) we need only show thatM
`

H1. eO` \ eY /!^2N

has torsion cokernel. This we already observed in the proof of Corollary 2.22

This completes the proof.

Corollary 2.24 The Hodge structure on H 2.eY / is of type .1; 1/.

Corollary 2.25 The mixed Hodge structure of H 2.Y / is pure of weight 2 and Hodge
type .1; 1/.

Proof H 2.Y /!H 2.eY / is injective.

Unfortunately, this direct approach we employed here is not as useful for computing
H3.Y /, since we need to understand the role of the codimension-two orbits. It is also
not as useful for computing the map H2.eY /!H2.Y / since Y is singular. We find it
convenient to organize the computation differently in order to address these issues.

3 Integral homology of Calabi–Yau threefolds in toric vari-
eties

In this section we compute the maps H�.eY IZ/ ! H�.Y IZ/ for � � 3. As we
indicated at the end of the last section the direct approach inductively studying the
intersection of eY with the orbits in PT of higher and higher codimension is not the
best way to organize the argument. Rather one inductively considers the preimage of
the intersection of Y with the torus-orbits in X of higher codimension. The reason
is that the preimage of these intersection is a union of intersections of eY with orbits
in PT of various dimension, but with the help of the combinatorial models for these
preimages we are able to say a lot about their homology that is not apparent studying
one orbit at a time in eY .
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3.1 The general set-up

Let � be a reflexive polytope of dimension n. Let X D P� . Let Xi denote the union
of the TN –orbits of dimension � n� i . We have the chain of inclusions

X0 �X1 �X2 �X3 �X4 � � � � �Xn DX:

In particular X0 is the open torus orbit and hence is isomorphic to TN . The difference
Xi nXi�1 is the union of orbits of complementary dimension, ie,

Xi nXi�1 D

a
codimODi

O:

Denoting PF 0 by eX and by � W eX ! X the induced resolution, we define eX i D

��1.Xi/ so that we haveeX 0 �
eX 1 �

eX 2 �
eX 3 �

eX 4 � � � � �
eX n D

eX :

As always Y �X is either a generic section of O.D1/ if � has dimension 4 or Y is
a generic complete intersection arising from a NEF partition V .�/D V1

`
� � �
`

Vk

if � has dimension 3Ck . In the latter case we assume each of the associated divisors
Di is ample. In both cases we define the nested sequence of open subvarieties of Y

Y0 � Y1 � Y2 � Y3 D Y

Yi D Y \Xi :where

Let Zi be the intersection of Y with all torus orbits of codimension i . Then

Zi D Yi nYi�1

is a closed subvariety of Yi . It is a disjoint union

Zi D

a
ff j dim.f /Di�1g

Z.f / ;

where Z.f / is Y \Of . We let �i � Yi be a (closed) regular neighborhood of Zi .
We choose �i so that the projection � W �i !Zi is a proper, locally trivial fibration
with compact fibers which are identified with regular neighborhoods of the cone point
0c in V .c/. Then ��i D �i \Yi�1 is the complement of 0c in this neighborhood, and
@�i is a deformation retract of ��i . Of course, we have

Yi D �i [��
i

Yi�1:

We have �i D

a
ff jdim.f /Di�1g

�.f / ;
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where �.f / is the component of �i containing Of \ Y . We see that the inclusion
induces an identification

H�.�.f /; @�.f //DH�.�.f /; �
�.f //:

Furthermore, each of these pairs is a locally trivial relative fibration over Z.f / with fiber
homotopy equivalent to the pair .U.f;Nf /;U �.f;Nf //. The TN –action produces a
trivialization of this relative fiber bundle. The relative homology is then

H�.�i ; @�i/'
M

dimfDi

M
aCbD�

Ha.Z.f //˝Hb.V .f /;V
�.f //

D

M
dimfDi

M
aCbD�

Ha.Z.f //˝Hb�1.V
�.f //:

We define eY i D �
�1.Yi/ for i D 1; 2; 3, so that eY i D

eY \ eX i . We obtaineY 0 �
eY 1 �

eY 2 �
eY 3 D

eY :
Let e� i D �

�1.�i/, e��i D ��1.��i /. We denote by z�.f / and z��.f / the preimages of
�.f / and ��.f / respectively. We also denote by �i W

eY i! Yi the map induced by � .
The pair .z�.f /; z��.f //!Z.f / is a relative fibration with fiber homotopy equivalent
to the pair �

PF 0
f
.Nf /

;PF 0
f
.Nf /
nS.f /

�
where S.f / is as given in Proposition 2.11. Again by Corollary 2.7 the TN –action
produces a trivialization of this bundle.

3.2 The comparison of eY 1 and Y1

We know that �1W
eY 1! Y1 is an isomorphism.

3.3 The comparison of eY 2 and Y2

To make this comparison, we need to understand the nature of e�2 or equivalently,
PF 0e.Ne/ . For any edge e of �,

��1.Oe/'Oe �S.e/ :

Consider the one-cell complex dual to the restriction of T to
ı
e : it has a one-cell

for each vertex in
ı
e and a zero-cell for each edge of T je . By Proposition 2.11 this

dual cell complex is a combinatorial model for S.e/ in the sense of Definition 2.10.
Thus, S.e/ is a chain of P1 ’s, one irreducible component for each one-cell. Two
irreducible components intersect if and only if the corresponding one-cells share a
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vertex, in which case the irreducible components meet in the single point which is
the 0–dimensional orbit corresponding to this vertex. The smooth affine complex
surface PF 0e.Ne/ deformation retracts onto S.e/, and hence H2.PF 0e.Ne// is identified
with A`�.e/ , the root lattice of the Lie algebra A`�.e/ . The intersection pairing on
H2 of this surface agrees with the usual symmetric pairing on this root lattice given
by the Cartan matrix. In particular, the pairing is non-degenerate and its adjoint has
cyclic quotient of order k.e/D `�.e/C 1. This means that H2.PF 0e.Ne/; @PF 0e.Ne// is
identified with the dual lattice A�

`�.e/
and the natural map

H2.PF 0e.Ne//!H2.PF 0e.Ne/; @PF 0e.Ne//

is injective with cokernel, denoted Qe , a cyclic group of order k.e/, see Example 2.5.
Of course,

.z�2; z�
�
2 /'

a
e2E

Z.e/�
�
PF 0e.Ne/;PF 0e.Ne/ nS.e/

�
:

Define:

�0
2
D �2 n .�2\ �3/ @hor�

0
2
D �2\ @�3

z�0
2
D ��1.�0

2
/ @horz�

0
2
D ��1.@hor�

0
2
/

Y 0
2
D Y2 n .Y2\ �3/ Y 0

1
D Y1 n .Y1\ .�2[ �3//eY 02 D ��1.Y 0

2
/ eY 01 D ��1.Y 0

1
/

Z0.e/ D Z.e/ n .Z.e/\ �3/ @Z0.e/ D Z.e/\ @�3

Note that @Y 0
2
D @�3 . Also, eY 02 � eY 2 is a homotopy equivalence, as are all the

other similarly related primed and unprimed pairs. We denote by @ver�
0
2

the closure of
@�0

2
n @hor�

0
2

. Similarly, we define @verz�
0
2

.

The pair .eY 02; eY 01/ is excisively equivalent to the pair .z�0
2
; @z�0

2
/. Analogously .Y 0

2
;Y 0

1
/

is excisively equivalent to .�0
2
; @�0

2
/. We have the long exact sequence of the pairs

H�C1.z�
0
2
; @verz�

0
2
/ ! H�.eY 01/ ! H�.eY 02/ ! H�.z�

0
2
; @verz�

0
2
/ ! H��1.eY 01/

# jj # # jj

H�C1.�
0
2
; @ver�

0
2
/ ! H�.Y

0
1
/ ! H�.Y

0
2
/ ! H�.�

0
2
; @ver�

0
2
/ ! H��1.Y

0
1
/

#

0

Our descriptions of z�2 and �2 lead to the following:
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Claim 3.1

H�.z�
0
2; @verz�

0
2/D

M
e

.H��2.Z
0.e//˝A�`�.e//˚

M
e

.H��4.Z
0.e//˝Z/

H�.�
0
2; @ver�

0
2/D

M
e

.H��2.Z
0.e//˝Qe/˚

M
e

.H��4.Z
0.e//˝Z/

and the projection map

��W H�.z�
0
2; @verz�

0
2/!H�.�

0
2; @ver�

0
2/

is the natural one.

Thus, �� is surjective with kernel
L

e H��2.Z
0.e//˝A`�.e/ .

An elementary diagram chase in the long exact sequence above shows that H2.eY 02/!
H2.Y

0
2
/ is surjective and its kernel is identified with the kernel of

H2.z�
0
2; @verz�

0
2/!H2.�

0
2; @ver�

0
2/:

Thus, we have established the following relationship between H�.eY 2/ and H�.Y2/:

Lemma 3.2 There is an exact sequence

0!
M

e

H��2.Z.e//˝A`�.e/!H�.eY 2/!H�.Y2/! 0:

The kernel is represented by the fundamental classes of the P.`/–bundles over cycle
representatives for the classes in H��2.Z.e//.

Exactly the same argument can be applied to @z�3! @�3 . Recall from the definition
that @Z0.e/ is contained in @�3 . For any edge e and any two-face f containing e in
its closure denote by @fZ0.e/ the components of @Z.e/ given by @�.f /\Z0.e/, so
that @Z0.e/D f̀ je�f @fZ0.e/.

Lemma 3.3 For any two-face f of @� there is a short exact sequence

0!
M

e2EI e�f

H��2.@fZ0.e//˝A`�.e/!H�.@z�.f //!H�.@�.f //! 0:

The kernel is represented by the fundamental classes of the P1.`/–bundles over the
cycles in @fZ0.e/ for the classes in H��2.@fZ0.e//.

In order to carry out the next step in the comparison, we need to understand the relative
version, that is to say the map H�.eY 02; @z�3/!H�.Y

0
2
; @�3/.
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Proposition 3.4 H�.eY 02; @z�3/! H�.Y
0
2
; @�3/ is an isomorphism for � � 2 and is

surjective with kernel
L

e2E H1.Z
0.e/; @Z0.e//˝A`�.e/ for � D 3.

Proof We consider @z�3 � .@z�3[ z�
0
2
/� eY 02 and @�3 � .@�3[ �

0
2
/� Y 0

2
. Of course,

.eY 02; @z�3[z�
0
2
/' .eY 01; @eY 01/ and .Y 0

2
; @�3[ �

0
2
/' .Y 0

1
; @Y 0

1
/. Thus we have:

H�C1.eY 01; @eY 01/!H�.z�
0
2
; @horz�

0
2
/!H�.eY 02; @z�3/!H�.eY 01; @eY 01/!H��1.z�

0
2
; @horz�

0
2
)

jj # # jj #

H�C1.Y
0
1
; @Y 0

1
/!H�.�

0
2
; @hor�

0
2
/!H�.Y

0
2
; @�3/!H�.Y

0
1
; @Y 0

1
/!H��1.�

0
2
; @hor�

0
2
)

Again, the description of z�2 and �2 leads immediately to the following:

Claim 3.5

H�.z�
0
2; @horz�

0
2/D

M
e2E

.H��2.Z
0.e/; @Z0.e//˝A`�.e//˚

M
e2E

H�.Z
0.e/; @Z0.e//

H�.�
0
2; @hor�

0
2/D

M
e2E

H�.Z
0.e/; @Z0.e//

and the projection map induces the natural one on homology.

Thus, H�.z�
0
2
; @horz�

0
2
/!H�.�

0
2
; @hor�

0
2
/ is surjective with kernel H��2.Z

0.e/; @Z0.e//.
In particular, H�.z�

0
2
; @horz�

0
2
/! H�.�

0
2
; @hor�

0
2
/ is an isomorphism for � � 2. Plug-

ging this into the commutative diagram, the five lemma tells us that H�.eY 02; @z�3/!

H�.Y
0
2
; @�3/ is an isomorphism for � � 2.

Now we consider � D 3.

H4.eY 01; @eY 01/!H3.z�
0
2
; @horz�

0
2
/!H3.eY 02; @z�3/!H3.eY 01; @eY 01/!H2.z�

0
2
; @horz�

0
2
/

#D # # #D #'

H4.Y
0
1
; @Y 0

1
/ ! 0 ! H3.Y

0
2
; @�3/! H3.Y

0
1
; @Y 0

1
/ !H2.�

0
2
; @hor�

0
2
/

A standard diagram chase shows that H3.eY 02; @z�3/!H3.Y
0
2
; @�3/ is onto, with kernel

the image of H3.z�
0
2
; @horz�

0
2
/!H3.eY 02; @z�3/. Of course,

H3.z�
0
2; @horz�

0
2/D

M
e2E

H1.Z
0.e/; @Z0.e//˝A`�.e/:

To complete the argument, we need to know that H4.eY 01; @eY 01/!H3.z�
0
2
; @horz�

0
2
/ is

the trivial map. That is the content of the next lemma.

Lemma 3.6

(3–1) H4.eY 01; @eY 01/!H3.z�
0
2; @horz�

0
2/
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is the trivial map.

Proof The morphism factors as

H4.eY 01; @eY 01/!H3.@eY 01/!
H3.@eY 01; z�3\ @eY 01/'H3.@verz�

0
2; @hor@verz�

0
2/!H3.z�

0
2; @horz�

0
2/ ;

where we introduce the notation

@ver�
0
2 D �

0
2\Y 01

@hor@ver�
0
2 D @ver@hor�

0
2 D @.�

0
2\ @�3/D @ver�

0
2\ @�3 :

The isomorphism is from excision. The pair .z�0
2
; @horz�

0
2
/ is a locally trivial fiber

bundle over
`

e.Z
0.e/; @Z0.e// with fiber over any x 2 Z0.e/ a regular neighbor-

hood of A`�.e/ . Hence, H3.z�
0
2
; @horz�

0
2
// '

L
e H1.Z

0.e/; @Z0.e//˝A`�.e/ is free
abelian. On the other hand, .@verz�

0
2
; @hor@verz�

0
2
/ is a locally trivial fiber bundle over`

e.Z
0.e/; @Z0.e// with fiber over any x 2 Z0.e/ identified with the boundary of

a regular neighborhood of the cone point 0e in V .e/. The latter is the lens space
L.n.e/;�1/. Thus, H3.@verz�

0
2
; @hor@verz�

0
2
/ D

L
e H2.Z

0.e/; @Z0.e//˝ Tor`�.e/ is a
torsion group. Hence, the morphism in Equation (3–1) is the zero map.

This completes the proof of Proposition 3.4.

Note that the three inclusions of

.eY 02; @z�3/ ,! .eY ; z�3/

.Y 02; @�3/ ,! .Y2; �3/

.Z0.e/; @Z0.e// ,! .Z.e/;Z.e/\ �3/

each consist of excisive pairs.

3.4 The comparison of eY and Y

In the previous subsection, to study the relationship between eY 2 and Y2 , for each
edge e of @� we described S.e/ in terms of its combinatorial model which is the cell
complex dual to T je . Analogously, in order to understand the relationship between eY
and Y we need to understand the homology of the surfaces S.f / for two-faces f of
@�. Of course by Proposition 2.11 we have analogous result for each two-face f : the

combinatorial model for S.f / is the cell complex dual to the triangulation of
ı

f . We
study S.f / using this cell complex.
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Let † be a finite, connected cell complex dual to the triangulation of the interior of
a two-face. Then every cell of † has dimension � 2, every vertex v has valence,
denoted o.v/, which is � 3, and every edge has two vertices. Let S be a compact
algebraic variety of dimension � 2 such that † is a combinatorial model for S . It
follows from the definition that for every edge ˛ of † the algebraic subset S˛ of S is
isomorphic to P1 . We also denote this subset by P1.˛/.

Define †2 � † to be the sub-cell complex which is the closure of the union of the
two-cells of †. Let †1 � † be the sub-cell complex consisting the closure of the
union of all edges of † that are not contained in †2 .

Figure 3: †1 and †2 for the triangulations of Figure 2

Notice that †2 is a disjoint union of contractible homogeneously two-dimensional
complexes, and †1 is a disjoint union of trees. Furthermore, †2 \†1 consists of
a set of trivalent vertices of †. If A is a component of †2 we denote by SA the
corresponding, possibly reducible, surface in S . If X is a component of †1 we denote
by SX the corresponding curve (which is a union of irreducible rational components)
in S . We denote by C2 the set of two-cells in †, by E2 the set of edges in †2 , and by
B2 the set of interior edges of †2 . Lastly, we denote by E1 the set of edges in †1 .

The following is immediate from the Meyer–Vietoris sequence.

Lemma 3.7 Let † be a combinatorial model for S as above. Then:

H0.S/ D Z

H1.S/ D
L

A2�0.†2/
H1.SA/

H2.S/ D
L

A2�0.†2/
H2.SA/˚

L
˛2E1

H2.P
1.˛//

H3.S/ D
L

A2�0.†2/
H3.SA/

H4.S/ D
L

A2�0.†2/
H4.SA/
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Recall that S.f /D ��1.0f /:

We now wish to compute the cohomology of .PF 0
f
.Nf /

;PF 0
f
.Nf /
nS.f //. Of course,

by Proposition 2.11, †.F 0
f
/ is a combinatorial model for S.f /. Clearly, †.F 0

f
/ is

identified with a polyhedral subset of the face f of � and hence is embedded in the
plane spanned by f . To simplify notation we set †D†.F 0

f
/ and S D S.f /.

Consider the pair �
PF 0

f
.Nf /

;PF 0
f
.Nf /
nS

�
:

Since PF 0
f
.Nf /

deformation retracts to S , by Lefschetz duality, we have

H i
�

PF 0
f
.Nf /

;PF 0
f
.Nf /
nS

�
DH6�i .S/ :

The following lemma computes these groups:

Lemma 3.8 For any f 2 F , we have

H6.S/D 0

H4.S/D
M
fc2C2g

ZŒSc �

H0.S/D Z;

and all odd homology groups vanish. Furthermore, H2.S/ is free abelian with rank

b2.S/D `
�.f /C

X
fedges eje�f g

`�.e/C vf � 3:

Proof Let Tf be the induced triangulation of f . We say that an edge of a two-
dimensional triangulation of a surface is free if it is the face of exactly one two-simplex.
There are three types of simplifications we wish to perform on triangulations of surfaces:

Type A Remove a two-simplex whose closure meets the boundary in exactly one
edge and remove that free edge as well.

Type B Remove a two-simplex with exactly two free edges and remove both free
edges and the vertex they have in common.

Type C Remove a two-simplex with three free edges, all its edges, and all its vertices.

A triangulated surface with boundary is said to be shellable if there is a finite sequence of
these simplifications that reduces it to the empty triangulation. Notice that each of these
operations replaces a triangulated surface by a triangulated subsurface with one fewer
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two-simplex. As we perform a sequence of these operations we obtain a decreasing
sequence of triangulations on subsurfaces of f . Dual to this sequence of triangulations
is the sequence of dual cell complexes. Each time we remove simplices from one of
the triangulations, we remove their dual cells from the dual cell complex. Thus, we
produce a decreasing sequence of subcell complexes †D �0 � �1 � � � � � �m D∅.
Corresponding to the sequence of subcell complexes there is a decreasing sequence
of TNf –invariant locally closed algebraic subsets S D S0 � S1 � � � � � Sm D∅: As
we remove a cell of �i we remove the corresponding TNf orbit from Si . Suppose
that SiC1 is obtained from Si by an operation of Type A. Then SiC1 is obtained by
removing a contractible subset of a closed irreducible (complex) surface component
of Si . The subset is disjoint from all other irreducible components of Si . Hence,
b4.SiC1/D b4.Si/� 1, and all other homology groups are the same. Suppose instead
that SiC1 is obtained from Si by an operation of Type B. Then SiC1 is obtained
by removing a contractible subset of an irreducible component of Si isomorphic to
P1 . Again, the subset is disjoint from all other irreducible components of Si . Hence,
b2.SiC1/D b2.Si/� 1, and all other homology groups are the same. Lastly, suppose
that SiC1 is obtained from Si by an operation of Type C. Then SiC1 is obtained
by removing an isolated point of Si . Hence, b0.SiC1/ D b0.Si/� 1, and all other
homology groups are the same.

Claim 3.9 Let � be a compact triangulated contractible surface. Then there is a
sequence of operations of Types A,B, and C that reduce � to the empty surface.

Proof The argument is by induction on the number of two-simplices in � . If there
is a two-simplex of � whose intersection with the boundary is an edge, then we can
perform an operation of Type A on this two-simplex producing a contractible surface
with one fewer two-simplex. Suppose there are no such two-simplices. Then every
two-simplex that contains an edge of the boundary has all its vertices in the boundary.
Orient the boundary and let � be a two-simplex containing an edge ˛ of the boundary
with third vertex p˛ . Define the distance from ˛ to p˛ along the boundary to be the
number of edges moving in the positive direction that separate ˛ from p˛ . If this
distance is 1, then � has at least two edges in the boundary. If it has exactly two, then
we can perform an operation of Type B on � . If it has all three edges in the boundary,
then we can perform an operation of Type C on � . If the distance along the boundary
from ˛ to p˛ is greater than one, let ˛0 be the edge next to ˛ in positive direction
along the boundary. Clearly, the distance along the boundary from ˛0 to p˛0 is less
than that from ˛ to p˛ . Eventually we arrive at an edge ˛0 with the distance from ˛0

to p˛0
being 1, completing the induction.

Geometry & Topology, Volume 11 (2007)



Algebraic topology of Calabi–Yau threefolds in toric varieties 631

Given this, it follows from the above description and induction that all the homology
groups of S are free abelian and all those except H4.S/, H2.S/, and H0.S/ vanish.
The groups H4 and H0 are clearly as stated. The rank of H2 is the number of
operations of Type B. A direct combinatorial argument shows that the number of
operations of Type B is as given in the statement.

Since .eY ; eY 02/ is excisively equivalent to .z�3; @z�3/, we have:

Corollary 3.10

Hi.z�3; @z�3/'Hi.eY ; eY 02/DM
f 2F

H0.Y \Of /˝Hi

�
PF 0

f
.Nf /

;PF 0
f
.Nf /
nS.f /

�
:

Of course, since z�3 is homotopy equivalent to S.f /, we see that Hodd .z�3/D 0 and
Hev.z�3/ is free abelian.

3.5 The computation of ��W H1.eY /! H1.Y /

Proposition 3.11 The morphism

��W H1.eY /!H1.Y /

is an isomorphism, and H1.eY / is identified with the quotient of N by the lattice
spanned by the 2–skeleton of @�.

Proof By Lemma 3.2 the restriction of � induces an isomorphism

H1.eY 2/
Š
�!H1.Y2/:

We have the exact sequence:

� � � ! H2.eY / ! H2.eY ; eY 2/ ! H1.eY 2/ ! H1.eY / ! 0

# # #Š # jj

� � � ! H2.Y / ! H2.Y;Y2/ ! H1.Y2/ ! H1.Y / ! 0

To prove that the map ��W H1.eY /! H1.Y / is an isomorphism we need only see
that the natural map H2.eY ; eY 2/!H2.Y;Y2/ is onto. By excision, it is equivalent to
show that H2.z�3; @z�3/!H2.�3; @�3/ is onto.

Claim 3.12 H2.z�3; @z�3/!H2.�3; @�3/ is onto and the range is torsion.
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Proof Since �3 is a disjoint union of cones, H2.�3; @�3/ŠH1.@�3/.

Lemma 3.3 shows that H1.@z�3/! H1.@�3/ is onto. Thus, to complete the proof
of surjectivity, we need only see that H2.z�3; @z�3/!H1.@z�3/ is surjective, but that
follows because H1.z�3/D 0 by Corollary 3.10.

To establish that H2.�3; @�3/ is torsion, we must show that for each two-face f ,
H1.@�3.f //D 0. Of course, @�3.f / is homotopy-equivalent to V .f /� D V .f / n 0f .
But V .f / is a three-dimensional toric variety and V .f /� is the union of all the torus
orbits of codimension < 3, ie, V .f /� D V .f /2 (with notation analogous to that for
the Xi �X ). The result now follows from the observations that V .f /0 D TNf , that

H1.V .f /1/D
Nf

Span Vertices.f /

(which is torsion) by the exact sequence for the pair V .f /0 ,! V .f /1 , and that

H1.V .f /2/D
Nf

hN \f .1/i

by the exact sequence for the pair V .f /1 ,! V .f /2 .

This completes the proof of Proposition 3.11

3.6 The computation of ��W H2.eY /! H2.Y /

In Corollary 2.22 we showed that in the hypersurface case

rank H2.eY /D #V C
X

e

`�.e/C
X
f

`�.f /.1C `�.f _//� 4

and in the complete intersection case that

rank H2.eY /D #V C
X

e

`�.e/C
X
f

`�.f /.1C
X

J�I I J 6D∅

.�1/3�jJ j`�.
X
j2J

f _j /�n:

We also gave a formula in terms of the lattice and � for the torsion part of this group.
The new result here is:

Proposition 3.13 The morphism

��W H2.eY /!H2.Y /

is onto.
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Proof We begin by computing with the two excisive triples

eY 02 � eY ! .eY ; eY 02/'.z�3; @z�3/

Y 02 � Y ! .Y;Y 02/'.�3; @�3/

from which we have:

0 0 0

# # #

0 ˚eA`�.e/ ! Ker2 ! Ker02
jj # # #

H3.z�3; @z�3/ ! H2.eY 02/ ! H2.eY / ! H2.z�3; @z�3/ ! H1.eY 02/
# # # # #D

H3.�3; @�3/ ! H2.Y
0
2
/ ! H2.Y / ! H2.�3; @�3/ ! H1.Y

0
2
/

# #

0 0

where the exactness of the second and fourth columns was established in Lemmas 3.2
and 3.3 respectively, and we take by definition Ker2 to be the kernel of H2.eY /!
H2.Y /. Here Corollary 3.10 implies that H3.z�3; @z�3/ D 0. By Lemma 3.2, the
sequence

0!A`�.e/!H2.eY 02/!H2.Y
0
2/! 0

is exact. Note: We are not claiming that the top row is exact.

By Claim 3.12, H2.z�3; @z�3/ is onto. Finally, H1.eY 02/DH1.Y
0
2
/ by Lemma 3.2. A

straightforward diagram chase completes the proof of Proposition 3.13.

3.7 The computation of ��W H3.eY /! H3.Y /

For each edge e of @� we have the (incomplete) algebraic curve Z.e/D Y \Oe . Its
completion bZ .e/D Y \Oe is a compact complex curve. Since Oe has singularities
at most at isolated points, bZ .e/ is a smooth riemann surface. Recall that for each edge
e of @� and each lattice point ` 2

ı
e we have a ruled surface R.`/ over bZ .e/. The

generic fiber of R.`/! bZ .e/ is a smooth rational curve denoted P1.`/. We also have
H3.R.`//DH1.bZ .e//˝H2.P

1.`//. Taking the union over all ` 2
ı
e gives a surface

whose H3 is identified with H1.bZ .e//˝A`�.e/ .
Here we shall prove:
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Proposition 3.14

(1) The kernel of ��W H3.eY /!H3.Y / is identified with
L

e H1.bZ .e//˝A`�.e/
given by the inclusion of the ruled surfaces

`
eI`2

ı
e

R.`/M
eI`2

ı
e

H3.R.`//!H3.eY /:
(2) The image of ��W H3.eY /!H3.Y / is Image.H3.Y2/!H3.Y //.

Proof First let us consider the kernel of the map ��W H3.eY /! H3.Y /. Consider
the long exact commutative diagram associated to the pairs

z�3 �
eY ! .eY ; z�3/'.eY 02; @z�3/

�3 � Y ! .Y; �3/'.Y
0
2; @�3/:

We obtain:

0 0

# #

0 ! Ker3 ! ˚eH1.Z
0.e/; @Z0.e//˝A`�.e/

jj #

H4.eY 02; @z�3/ ! H3.z�3/ ! H3.eY / ! H3.eY 02; @z�3/ ! H2.z�3/

# # # #

H3.�3/ ! H3.Y / ! H3.Y
0
2
; @�3/ ! H2.�3/

jj # jj

0 0 0

The short exact sequence in the fourth column is established in Proposition 3.4. Corol-
lary 3.10 shows that H3.e�3/D 0. Of course, since �3 is a disjoint union of cones, its
third homology vanishes.

Now a diagram chase shows that Ker3 D Ker.��W H3.eY / ! H3.Y // sits in the
sequence

(3–2) 0! Ker3!˚eH1.Ze; @Ze/˝A`�.e/
@
!H2.z�3/:

The following lemma completes the computation of Ker3 .

Lemma 3.15 The natural map a
eI`2

ı
e

R.`/! eY
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induces an isomorphism fromM
eI`2

ı
e

H3.R.`//
'
�! Ker3 :

Proof The “boundary morphism” @ in Equation (3–2) is the composition of natural
homomorphisms. The first of these

(3–3)
M

e

H1.Z
0.e/; @Z0.e//˝A`�.e/!

M
e

H0.@Z
0.e//˝A`�.e/

is given by the direct sum of the boundary homomorphism in relative homology on the
first factor tensored with the identity homomorphism on the A`�.e/ term. The groupM

e

H0.@Z
0.e//˝A`�.e/ D

M
e

M
e�f

H0.Of \Y /˝A`�.e/

D

M
f

M
e�f

H0.Of \Y /˝A`�.e/

D

M
f

H0.Of \Y /˝
M
e�f

A`�.e/

where the first isomorphism follows from the fact that @Z0.e/D
`

e�f .Of \Y /�S1 .
The second homomorphismM

f

ŒH0.Of \Y /˝
M
e�f

A`�.e/�!H2.e�3/D
M
f

ŒH0.Of \Y /˝H2.S.f //�

is given by
L
f IdH0.Of\Y /˝

hL
e�f A`�.e/!H2.S.f //

i
. The main point is to

show the injectivity of this last morphism. That is to say, for all f , the mapL
e�f A`�.e/ ! H2.S.f // is injective. In light of the isomorphism H2.S.f // '

H2.z�3.f //, and the fact that the morphism
L

e�f A`�.e/!H2.S.f // factors through
the morphism H2.@z�3.f //!H2.S.f //, which is itself injective by the long exact
sequence of the pair (the previous term being H3.z�3; @z�3/D 0), it suffices to show thatL

e�f A`�.e/!H2.@z�3.f // is injective. This last follows by Lemma 3.3. Thus K is
the kernel of the homomorphism in Equation (3–3). This latter kernel is easily identified
with ˚eH1.bZ .e//˝A`�.e/ which is naturally identified with

L
eI`2

ı
e

H3.R.`//.

Now, let’s compute the image of ��W H3.eY / ! H3.Y /. We have the long exact
commutative diagram associated to the sequenceseY 2 �

eY 3! .eY 3; eY 2/'.z�3; @z�3/

Y2 � Y3! .Y3;Y2/'.�3; @�3/:
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We obtain

0

#

˚eH1.Ze/˝A`�.e/
#

H3.eY 2/ ! H3.eY / ! 0

# # #

H3.Y2/ ! H3.Y / ! H3.�3; @�3/ ! H2.Y2/ ! H2.Y /

#

0

yielding

Image.H3.eY /!H3.Y //D Image.H3.Y2/!H3.Y //:

It is not true in general that ��W H3.eY / ! H3.Y / is onto, or equivalently that
H3.Y2/ ! H3.Y / is onto. From the exact sequence of the pair .Y;Y2/ and the
fact that .Y;Y2/ is excisively equivalent to .�3; @�3/ we see that the cokernel of
H3.Y2/!H3.Y / is identified with the kernel of H3.�3; @�3/!H2.Y2/. Of course,
since each component of �3 is a cone, this kernel is identified with the kernel of the
map induced by the inclusion H2.@�3/!H2.Y2/. Let’s compute rationally. Arguing
as in the proof of Lemma 2.21 using Y0 � Y1 � Y2 we see that H1.Y2IQ/D 0 and

H2.Y2IQ/D Ker .˚v2V .�/Zhvi !N ˝Q/ :

Clearly, this map is onto rationally and hence the rank of H2.Y2/ is #V .�/� n. For
each two-face f of @�, the boundary of the regular neighborhood @�.f / is homotopy
equivalent to V .f /� , the complement of the fixed point 0f in V .f /. Similar arguments
to the ones for Y2 show that the rank of H2.V .f /

�;Q/ is given by the number of
vertices of f minus 3. (Indeed the map between these groups is easily determined
from the combinatorial configuration of vertices and two-faces.) In any event if the
sum over the two-faces of the number of vertices of the face minus three is greater than
the number of vertices of � minus n, then the kernel of this map is non-trivial and
hence H3.eY /!H3.Y / will not be onto. As an explicit example where this map is
not onto, we have the 4–cube which has 24 two-faces, each with four vertices. For
each two-face f the affine threefold V .f / is a (complex) cone on the quotient of
P1 �P1 by an involution preserving the factors. Thus, V .f /� has second homology
of rank 1. The cube itself has 16 vertices so that H2.Y2/ has rank 12. Hence, in this
case the kernel of the map has rank at least 12, and in fact has rank 13.
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Corollary 3.16 In the hypersurface case the rank of the kernel of ��W H3.eY / !
H3.Y / is

2
X
e2E

`�.e/`�.e_/:

For complete intersections of ample divisors the rank of the kernel of the map
��W H3.eY /!H3.Y / is given by

2
X
e2E

`�.e/

0@ X
J�I I J 6D∅

.�1/3�jJ j`�.
X
j2J

e_j /

1A :
In both cases the Hodge structure on this kernel is of type .2; 1/ and .1; 2/ each piece
being of half the rank.

Proof According to Corollary 2.18 in the hypersurface case the rank of H1.bZ .e// is
2`�.e_/. According to Corollary 2.20 the formula for the rank of H1.bZ .e// in the
general case is

2
X

J�I I J 6D∅

.�1/3�jJ j`�.
X
j2J

e_j /:

The result is immediate from this.

3.8 The tangent space to the space of polynomial deformations

Lemma 3.17 Suppose M is a smooth n–dimensional Calabi–Yau manifold and let
D �M be a smooth divisor. Suppose the pair .M;D/ deforms. Let

˛M 2H 1.M;TM /DH n�1;1.M /

be the Kodaira–Spencer class of the deformation of M . Then the restriction of ˛M to
a class in H n�1;1.D/ vanishes.

Proof Suppose we have a deformation of the pair .M;D/. We have the following
sequence in cohomology

H 0.D; �D�M /!H 1.D;TD/! H 1.D;TM jD/ !H 1.D; �D�M /

"

H 1.M;TM /

where, via the Kodaira–Spencer mapping, H 1.M;TM / corresponds to the tangent
space to deformations of M and H 1.D;TD/ to those of D . Deformations of the pair
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.M;D/ are given by a pair of classes ˛M 2H 1.M;TM / and ˛D 2H 1.D;TD/ with
the same image ˛0 2H 1.D;TM jD/. Thus, the composite mapping

H 1.M;TM /!H 1.D;TM jD/

sends ˛M to zero. Moreover, we have the sequence

H 1.M; �n�1
M

/ !H 1.D; �n�1
M
jD/! H 1.D; �n�1

D
/

jj jj

H 1.M;TM / H 1.D;KD/

so that the composition map

H 1.M;TM /!H 1.D;TM jD/!H 1.D;TD/

is identified with the natural restriction map

H n�1;1.M /!H n�1;1.D/

This shows that if the pair .M;D/ deforms, then the restriction map on H n�1;1 is trivial.
Conversely, if the image of ˛M in H 1.D;TM jD/ goes to zero in H 1.D; �D�M / then
there is a class ˛D 2H 1.D;TD/ with the same image as ˛M in H 1.D;TM jD/. The
pair .˛M ; ˛D/ then gives an infinitesimal deformation of .M;D/.

Now let us apply this to the situation of Calabi–Yau threefolds in toric varieties.

Corollary 3.18 Let ˛ 2H 1.eY ;T eY /DH 2;1.eY / be the Kodaira–Spencer class of
a deformation of eY induced by taking the preimage under the map �W PT ! P�

of a polynomial deformation of Y � X (ie, a deformation obtained by varying the
coefficients of the polynomials cutting out Y as a complete intersection). Then for each
edge e of @� and any lattice point ` 2

ı
e , the element ˛ 2H 2;1.eY / restricts to zero in

H 2;1.R.`//.

Proof Since the deformation fYtg of Y takes place in P� we have the family of
curves bZ t .e/DYt\Oe and their preimages which are surfaces Rt .`/� eY t deforming
R.`/. Thus, the given deformation of eY lifts to a deformation of the pair .eY ;R.`//.
Applying the previous lemma gives the result.

Corollary 3.19 Let H
2;1
poly.

eY / be the tangent space of the polynomial deformations ofeY inside H 2;1.eY /. This subspace is identified with the kernel of the map

H 2;1.eY /! M
`2N\@�.1/nV .�/

H 2;1.R.`//:
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Proof The previous result shows that H
2;1
poly.

eY / is contained in the kernel of the
restriction mapping. In Corollary 3.16 we showed that the rank of the kernel of the
restriction mapping is equal to the rank of the space of non-polynomial deformations
(ie, the correction term) as computed by [2].

4 K 0 and K 1 of Calabi–Yau threefolds in terms of homology

The 7–dimensional stage of the Postnikov tower for BSU , denoted BSU .7/ , contains
the homotopy groups �i.BSU / for i � 7 and has trivial groups in degrees � 8. In
particular,

�i.BSU .7//'

�
Z i D 4; 6

0 otherwise:

If X is a CW complex of dimension � 7, then the natural map from

ŒX;BSU �! ŒX;BSU .7/�

is a bijection.

BSU .7/ is given by a fibration

(4–1) K.Z; 6/! BSU .7/
!K.Z; 4/

with k –invariant ıSq2�4 the unique nontrivial element (of order two) in
H 7.K.Z; 4/IZ/. Thus we also have a fibration

BSU .7/
!K.Z; 4/�K.Z; 6/!K.Z=2; 6/

where the first map is given by the second and third Chern classes .c2; c3/ and the
second map is given by Sq2�4C Œ�6�2 , with �4 and �6 being the fundamental classes
of the factors and Œ � �2 denoting reduction mod 2.

This means that for any CW–complex X of dimension � 7 we have that

ŒX;BSU �D ŒX;BSU .7/�

sits in an exact sequence

H 3.X IZ/˚H 5.X IZ/
˛
!H 5.X IZ=2/! ŒX;BSU �

!H 4.X IZ/˚H 6.X IZ/
ˇ
!H 6.X IZ=2/

where ˛.a; b/ D Sq2aC Œb�2 and ˇ.c; d/ D Sq2c C Œd �2 . In the special case that
M is a closed, oriented 6–manifold, H 6.M IZ/ is torsion-free, and hence the mod 2
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reduction H 5.M IZ/!H 5.M IZ=2/ is onto. Thus, we have

0! ŒM;BSU �
.c2;c3/
! H 4.M IZ/˚H 6.M IZ/!H 6.M IZ=2/! 0:

This proves:

Lemma 4.1 Let M be a closed oriented 6–manifold. Then ŒM;BSU � is isomorphic
to

f.c2; c3/ 2H 4.M IZ/˚H 6.M IZ/jSq2c2 D Œc3�2g

where the isomorphism is given by taking the 2nd and 3rd Chern class.

An examination of low dimensional examples allows one to extend this result to
eK0 .M /D ŒM;BU �:

Lemma 4.2 Let M be a closed oriented 6–manifold. Then eK0 .M / is isomorphic to

f.c1; c2; c3/ 2H 2.M IZ/˚H 4.M IZ/˚H 6.M IZ/jSq2c2 D Œc3�2C c1c2C c3
1g

where the isomorphism is given by taking the 1st, 2nd, and 3rd Chern class.

Corollary 4.3 If M is a Calabi–Yau threefold, then

Tor K0.M /D Tor H 2.M IZ/˚Tor H 4.M IZ/

rank K0.M /D
X
��3

rank
�

H 2�.M IZ/
.

Torsion
�
:and

Proof The rank statement is well-known. The torsion statement follows from the
above since

Sq2
W H 4.M IZ/!H 6.M IZ/

is zero. This follows from the fact that this map is the cup product with w2.M / which,
for any almost complex manifold, is the reduction mod 2 of c1.M /. The Calabi–Yau
condition means that c1.M /D 0.

In other words, we have that, for a Calabi–Yau threefold M , the even K–group is

K0.M /' Z˚H 2.M IZ/˚H 4.M IZ/˚ 2 �H 6.M IZ/:

Similar arguments show that:
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Lemma 4.4 Let M be a closed oriented 6–manifold. Then K1.M /DeK0 .†M / is

H 1.M IZ/� Œ†M;BSU .7/�

and we have an exact sequence

0!H 5.M IZ/! Œ†M;BSU .7/�!H 3.M IZ/! 0

coming from the fibration (4–1).

Corollary 4.5 When M is a Calabi–Yau threefold the extension class is trivial.

Proof Once again
Sq2
W H 3.M IZ/!H 5.M IZ=2/

is the reduction mod 2 of cupping with c1 , which is consequently trivial. Thus, by
Lemma 4.2, for any class a 2H 3.M IZ/ there is a unique (up to isomorphism) bundle
over †M with c2 D a and c1 D c3 D 0. The Whitney sum formula shows that these
bundles form a subgroup in eK0 .†M /, and hence this construction gives a splitting of
the sequence.

In other words, we have that, for a Calabi–Yau threefold M , the odd K–group is

K1.M /'H 1.M IZ/˚H 3.M IZ/˚H 5.M IZ/:
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