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Filling invariants of systolic complexes and groups

TADEUSZ JANUSZKIEWICZ

JACEK ŚWIĄTKOWSKI

Systolic complexes are simplicial analogues of nonpositively curved spaces. Their
theory seems to be largely parallel to that of CAT(0) cubical complexes.

We study the filling radius of spherical cycles in systolic complexes, and obtain several
corollaries. We show that a systolic group can not contain the fundamental group
of a nonpositively curved Riemannian manifold of dimension strictly greater than
2, although there exist word hyperbolic systolic groups of arbitrary cohomological
dimension.

We show that if a systolic group splits as a direct product, then both factors are
virtually free. We also show that systolic groups satisfy linear isoperimetric inequality
in dimension 2.

20F69, 20F67; 20F65

1 Introduction

Systolic complexes were introduced in Januszkiewicz–Świa̧tkowski [12] and, indepen-
dently, in Haglund [10]. They are simply connected simplicial complexes satisfying
a certain condition that we call simplicial nonpositive curvature (abbreviated SNPC).
The condition is local and purely combinatorial. It neither implies nor is implied
by nonpositive curvature for geodesic metrics on complexes, but it has many similar
consequences. It is a simplicial analogue of the combinatorial condition for cubical
complexes equivalent to nonpositive curvature for the standard piecewise Euclidean
cubical metric, namely the flag property for links at vertices.

SNPC complexes of groups are developable. This allowed us to construct in [12]
numerous examples of interesting systolic complexes of arbitrary dimension (pseudo-
manifolds, normal chamber complexes of arbitrary thickness) with large automorphism
groups. These groups led to the notion of a systolic group, defined in [12] as groups
that act by simplicial automorphisms, properly discontinuously and cocompactly on a
systolic complex. It was shown that systolic groups are biautomatic. Their existence
was established in arbitrary cohomological dimension. A minor modification of the
construction yields also groups that are in addition word-hyperbolic.
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Ideas related to systolic complexes allowed us to answer various open questions. For
example, we isolated a simple combinatorial condition for simplicial complexes that
implies word-hyperbolicity of their fundamental groups, and which works in dimensions
greater than 2. Another simple combinatorial condition turned out to be sufficient for
a simplicial complex to be CAT.0/ with respect to the standard piecewise Euclidean
metric. Constructions using systolic complexes yield finite nonpositively curved (in
the metric sense) branched coverings of arbitrary finite simplicial piecewise Euclidean
pseudomanifolds. They also provide finite nonpositively curved developments of
Euclidean simplicial billiard tables in arbitrary dimension. The reader is referred to
Januszkiewicz–Świa̧tkowski [12] for details concerning these results.

Further properties of systolic groups were found by D Wise [18]. For example, he
showed that every finitely presented subgroup of a systolic group is systolic. He also
found interesting connections between the systolic ideas and small cancellation theory.

In the present paper, which is a continuation of [12], we study filling properties of
spherical cycles in systolic complexes and groups. One of our motivations was to show
that in the systolic world one meets objects very different from classical ones. The
following result is a manifestation of this phenomenon.

Theorem A (Corollary 6.4) Let G be a systolic group. Then G contains no subgroup
isomorphic to the fundamental group of a closed nonpositively curved Riemannian
manifold of dimension strictly greater than 2.

Theorem A together with the construction in [12] of word-hyperbolic systolic groups
of arbitrary cohomological dimension yields the following.

Corollary B For each natural number n > 2 there is a word-hyperbolic group of
cohomological dimension n containing no subgroup isomorphic to the fundamental
group of a closed nonpositively curved Riemannian manifold of dimension greater
than 2.

It is interesting to contrast Corollary B with the conjectural existence of a surface
subgroup in every word-hyperbolic group of dimension greater than 1.

The above results are related to an informal conjecture of Gromov saying that every
construction of hyperbolic groups of large (rational) cohomological dimension uses
arithmetic groups as building blocks. A more precise form of this conjecture, stated as
Question Q 1.3 in Bestvina [1], asks whether for every K > 0 there is N > 0 such
that every word-hyperbolic group G of rational cohomological dimension at least N

contains an arithmetic lattice of dimension at least K . Examples of word-hyperbolic
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systolic groups of large cohomological dimension, constructed in [12], show that this
is not true. Cocompact lattices (of large cohomological dimension) are excluded by
Theorem A, while cofinite volume ones are excluded by biautomaticity.

Remark We would like to mention here that hyperbolic Coxeter groups of large
dimension, constructed in [11], as well as the fundamental groups of their nerves, are
also systolic, and hence satisfy the conclusion of Corollary B. This requires some
additional arguments, which we omit.

Remark Damian Osajda [15] has obtained a partial improvement of Theorem A; see
Comment 6.7.2.2.

The second main result of the paper deals with systolic groups that are products,
showing that there are very few of them.

Theorem C (Corollary 8.5 and Corollary 8.7) If the product of two infinite groups is
systolic then both factor groups are virtually free. The product of more than two infinite
groups is never systolic.

Theorem A and Theorem C are proved using the concept of the filling radius for
spherical cycles. Roughly speaking, a k –spherical cycle in a space is a map from the
sphere Sk to (an appropriate thickening of) the space, and its filling is a singular chain
in the space bounded by this cycle. The filling radius of a spherical cycle C is the
infimum over all fillings D of C of the maximal distance of a point in D from C .
Typically, the filling radius of C grows with the size (eg diameter) of C . Strikingly, in
systolic complexes the filling radius of k –spherical cycles, for k � 2, is universally
bounded from above. More precisely, we have the following.

Lemma (Lemma 4.4) Let f W S ! X be a simplicial map from a triangulation S

of the sphere Sk , for some k � 2, to a systolic complex X . Then f has a simplicial
extension F W B!X , for some triangulation B of the ball BkC1 with @B D S , such
that the image F.B/ is contained in the full subcomplex of X spanned by the image
f .S/.

In Section 5 we introduce an asymptotic property of metric spaces inspired by the
above lemma. We call this property Sk FRC, which is an abbreviation of the phrase
“k –spherical cycles have filling radius constant (ie uniformly bounded)”. In fact, this
gives a sequence of properties, one for each natural number k . Properties Sk FRC are
shown to be preserved by quasi-isometries and hence applicable to finitely generated
groups equipped with word metrics. Theorem A is a consequence of the following
result concerning Sk FRC.
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Theorem D (1) (see Corollary 3.4 in combination with Lemma 5.3) If for some
natural number k a group G is Sk FRC, then any subgroup H <G is Sk FRC.

(2) (see Theorem 4.1 in combination with Lemma 5.3) Systolic groups are Sk FRC
for any k � 2.

(3) (see Proposition 6.1) Let G be the fundamental group of a closed nonpositively
curved Riemannian manifold of dimension n. Then G is not Sk FRC for 1� k � n�1.

We think it is worth emphasizing that among numerous filling invariants it is the filling
radius (and not the more commonly used filling volume) that works particularly effi-
ciently in the context of systolic complexes and groups. The next two facts concerning
this invariant imply the second main result of the paper, Theorem C.

Theorem E (Proposition 7.1) The product of more than two infinite groups is never
S2 FRC. If the product of two infinite groups is S2 FRC, then both factor groups are
S1 FRC.

Theorem F (Proposition 8.1 and Proposition 8.2) If a finitely presented group G is
S1 FRC, then it is word-hyperbolic and its Gromov boundary has topological dimension
0. Consequently, G is virtually free.

As a byproduct of our arguments we obtain the following corollary about groups with
asymptotic dimension 1. For a background concerning asymptotic dimension the reader
is referred to Roe [16]. The corollary follows from Theorem F and Proposition 5.4.

Corollary G A finitely presented group with asymptotic dimension 1 is virtually free.

One more idea contained in the paper and related to filling radius is the concept of
asymptotic hereditary asphericity (AHA) introduced in Section 3. It implies Sk FRC
for all k � 2 and it is satisfied by systolic complexes and groups. As the name
suggests, it is inspired by the property of hereditary asphericity for topological spaces
(see Davermann [4] and Davermann–Dranishnikov [5]). AHA (and in fact its minor
strengthening – see Comment 4.6.1) is the strongest presently known geometric (ie
quasi-isometry invariant) property of systolic complexes and groups. It is inherited
by uniformly embedded subspaces and in particular by arbitrary finitely generated
subgroups. In this paper we use AHA only to shorten exposition, but we suspect it may
play a role in future developments.

The last section of the paper deals with filling volume in systolic complexes. The
exposition is essentially independent of the previous sections and the proofs use different
methods. The main result, Theorem H, was suggested to us by D Wise. The reader is
referred to Section 9 for the precise statement of this result.
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Theorem H (Theorem 9.2) The filling volume for 2–spherical cycles in systolic
complexes is linearly bounded by the volume of the cycles.

We finish each of Sections 3–9 with a subsection that contains comments which
complement the content of a section, and/or some open questions.

Acknowledgments The first author was partially supported by the NSF grant DMS-
0405825. The second author was partially supported by the KBN grant 2 P03A 017 25.
We thank The Ohio State University Research Foundation for partial support of visits
of the second author to OSU.

2 Systolic complexes and groups—background

In this section we recall definitions, basic properties and some results concerning systolic
complexes and groups. Our main reference is Januszkiewicz–Świa̧tkowski [12].

A simplicial complex X is flag if every finite subset of its vertices pairwise connected
by edges spans a simplex of X . A cycle in a simplicial complex is a subcomplex
homeomorphic to the circle S1 . The length j j of a cycle  is the number of its edges.
We say that a cycle in X has a diagonal if some two nonconsecutive vertices in this
cycle are connected by an edge in X .

Given a natural number k � 5, a simplicial complex X is k -large if it is flag and every
cycle in X of length 4� j j< k has a diagonal.

A simplicial complex X is locally k –large if its links at all (nonempty) simplices are
k –large. X is k -systolic if it is locally k –large, connected and simply connected.
Since the case of k D 6 is particularly important, we abbreviate the term “6–systolic”
to an easier to pronounce term systolic.

We view local k –largeness (ie k –largeness of links) as a kind of curvature bound
from above. We sometimes call local 6–largeness simplicial nonpositive curvature
(abbreviated SNPC), as it yields similar consequences as metric nonpositive curvature.
A systolic complex is then the simplicial analogue of what is called a CAT.0/ or
Hadamard space.

We now list several straightforward properties of the above notions.

2.1 Fact (1) If k >m and X is k –large then X is also m–large.

(2) Any full subcomplex of a k –large simplicial complex is k –large.
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(3) Links of a k –large complex are k –large, ie any k –large complex is locally
k –large.

(4) If  is a cycle of length j j Dm < k in a k –large simplicial complex X , then
 bounds in X a subcomplex � homeomorphic to the 2–disc consisting of m� 2

2–simplices (and thus containing no other vertices than the vertices of  ).

Given a vertex v in a simplicial complex X , let balls in X centered at v be the subcom-
plexes of X defined inductively as follows. Let B0.v;X /D v and put BnC1.v;X /

to be the union of all those simplices of X that intersect Bn.v;X /. As a direct
consequence of [12, Corollaries 7.5 and 7.4(2)] we have the following.

2.2 Lemma If X is a systolic simplicial complex and v is any vertex of X then for
every integer n� 0 the ball Bn.v;X / is a deformation retract of the ball BnC1.v;X /.

This lemma has several important consequences gathered in the following.

2.3 Corollary (1) (see [12, Corollary 7.5 and Lemma 7.2(1)]) Balls in systolic
complexes are contractible.

(2) (see [12, Theorem 4.1(1)]) Systolic simplicial complexes are contractible.

(3) Locally 6–large simplicial complexes are aspherical (ie their universal covers are
contractible). In particular, 6–large simplicial complexes are aspherical.

(4) Every full subcomplex in a 6–large simplicial complex is aspherical.

Corollary 2.3(2) above is an analogue, for simplicial curvature, of Cartan–Hadamard
Theorem.

Let us mention that there is no obvious relationship between local 6–largeness (SNPC)
and nonpositive curvature in metric sense. However, k –systolicity for k sufficiently
large implies metric nonpositive curvature (see [12, Section 14] for details). Also,
7–systolicity of a simplicial complex implies its hyperbolicity in the sense of Gromov.
More precisely, we have the following.

2.4 Theorem (see [12, Theorem 2.1]) Let X be a 7–systolic simplicial complex.
Then the 1–skeleton of X with its standard geodesic metric is ı–hyperbolic with
ı D 21

2
.

A group is k –systolic if it acts by simplicial automorphisms, properly discontinuously
and cocompactly, on a k –systolic simplicial complex. A group is systolic, if it is
k –systolic with k D 6. In [12, Section 13] we have established the following.
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2.5 Theorem Every systolic group is biautomatic.

The reader is referred to Epstein et al [7] for the definition and properties of biautomatic
groups. Biautomaticity has several algorithmic and geometric consequences. For
example, every biautomatic group satisfies quadratic isoperimetric inequality and hence
has solvable word problem. Moreover, every solvable subgroup of a biautomatic group
is virtually abelian and every abelian subgroup is undistorted.

As a consequence of Theorem 2.4 above we also have the following property of groups.

2.6 Corollary Every 7–systolic group is word-hyperbolic.

Systolic complexes and groups exist in any dimension. The constructions from
[12, Sections 18–20], as well as these of [11] imply, among others, the following.

2.7 Theorem (1) (see [12, Corollary 19.2]) For each natural number n and each
k � 6 there exists an n–dimensional orientable compact simplicial pseudomanifold
that is k –large.

(2) (see [12, Corollary 19.3(1)]) For each natural number n and every k � 6 there
exists a developable simplex of groups whose fundamental group is k –systolic and has
virtual cohomological dimension n.

The fundamental group of a pseudomanifold as in Theorem 2.7(1) is easily seen to
be torsion-free and to have cohomological dimension n. In both parts (1) and (2), if
k � 7 then the corresponding fundamental group is in addition word-hyperbolic.

To formulate results showing even more flexibility in our constructions we need several
definitions. An n–dimensional simplicial complex X is a chamber complex if it is the
union of its n–simplices (which are the chambers of X ). Clearly, links of a chamber
complex are chamber complexes (of lower dimension). A chamber complex is gallery
connected if any two of its chambers can be connected by a finite sequence of chambers
such that any two consecutive chambers in this sequence share a face of codimension 1.
A chamber complex is normal if it is gallery connected and all of its links are gallery
connected.

Thickness of a chamber complex X at a face � of codimension 1 is the number of
chambers of X containing � . For example, X is a pseudomanifold if its thickness is
uniformly 2. Chamber complex X is thick if its thickness at every face of codimension
1 is greater than 2. Thickness of X is its maximal thickness at some codimension 1
face. The next result follows directly from [12, Proposition 19.1].
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2.8 Theorem For each natural number n and every k � 6 there is a compact n–
dimensional thick chamber complex X , with arbitrarily large thickness (uniform or
variable as a function on the set of codimension 1 faces) which is k –large.

A simplicial map f W X ! Y between pseudomanifolds is a branched covering if it is
nondegenerate and its restriction to the complements of codimension 2 skeleta in X

and Y is a covering.

2.9 Theorem (see [12, Proposition 20.3]) Given any k � 6, every finite family
of normal compact pseudomanifolds of the same dimension has a common compact
branched covering which is k –large.

3 Asymptotic hereditary asphericity

In this section we introduce the concept of asymptotic hereditary asphericity. We also
show that it is invariant under uniform embeddings, and hence under quasi-isometries.
In particular, when applied to finitely generated groups with word metrics, it passes to
arbitrary finitely generated subgroups.

Recall that, given a metric space X and a real number r > 0, the Rips complex Pr .X /

is the simplicial complex with X as the vertex set, in which a finite subset of X spans
a simplex if and only if all distances between the points in this subset are not greater
than r . Clearly, if 0< r <R then Pr .X / is a subcomplex of PR.X /.

We view any subset A of a metric space X as a metric space equipped with the
restricted metric.

3.1 Definition (1) Given real numbers 0 < r � R, a metric space X is .r;R/–
aspherical if for every triangulation S of the sphere Sk , with k � 2, any simplicial
map f W S!Pr .X / has a simplicial extension F W B!PR.X / for some triangulation
B of the ball BkC1 such that @B D S .

(2) A metric space X is asymptotically hereditarily aspherical (shortly AHA) if for
every r > 0 there is R� r such that each subset A�X is .r;R/–aspherical.

Recall that a (not necessarily continuous) map hW .X1; d1/! .X2; d2/ between metric
spaces is a uniform embedding if there are real functions g1;g2 with gi.t/!C1 as
t !C1, such that

g1.d1.x;y//� d2.h.x/; h.y//� g2.d1.x;y//

for all x;y 2X1 .
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3.2 Proposition Suppose that a metric space X1 uniformly embeds in a metric space
X2 which is AHA. Then X1 is AHA.

Before giving a proof, we derive some consequences from Proposition 3.2. First, note
that since a quasi-isometry is a uniform embedding, we have the following.

3.3 Corollary Asymptotic hereditary asphericity is a quasi-isometry invariant.

By Corollary 3.3, it makes sense to speak of AHA property for finitely generated
groups, by requiring it to hold for the word metric associated to any finite generating
set. Since a finitely generated subgroup of a finitely generated group uniformly embeds
in this group (via inclusion), we have the following.

3.4 Corollary If a finitely generated group � is AHA then every finitely generated
subgroup of � is AHA.

Proof of Proposition 3.2 Without loss of generality, we can assume that the functions
g1;g2 in the estimates for the uniform embedding hW X1 ! X2 are monotone and
that g1 � g2 (otherwise we replace them with yg1.t/ WD infs�t g1.s/ and yg2.t/ WD

sups�t g2.s/).

Fix any subset A � X1 , any r > 0, and any simplicial map f W S ! Pr .A/ from
a triangulated sphere Sk , for some k � 2. The map h induces the simplicial map
hr W Pr .X1/! Pg2.r/.X2/, and we consider the subset h.A/�X2 and the composed
map hr ı f W S ! Pg2.r/Œh.A/�. Since X2 is AHA, there is R0 � g2.r/ (depending
only on h and r , and not on A and f ) and a simplicial extension F 0W B!PR0.h.A//

of hr ı f , for some triangulation B of the ball BkC1 such that @B D S . Put
R WD supft W g1.t/ � R0g and note that, since g1.r/ � g2.r/ � R0 , we have R � r .
Moreover, if h is injective, the inverse map h�1W h.A/!A induces the simplicial map
.h�1/R0 W PR0 Œh.A/�! PR.A/. The composed map F D .h�1/R0 ıF 0W B! PR.A/

is an extension of f showing that A is .r;R/–aspherical. Since the constant R above
does not depend on A, the proposition follows.

In the case when h is not injective, we need to modify slightly the last part of the
argument. Namely, we define a map F on the vertex set of B by requiring that
F.v/2h�1.F 0.v// and F.v/Df .v/ for v2@BDS . These conditions are compatible,
since hıf .v/DF 0.v/ for v2@BDS . Moreover, since d2.F

0.v/;F 0.w//�R0 for any
two adjacent vertices in B , by definitions of R and F we have d1.F.v/;F.w//�R

for any two such vertices. Therefore, F induces the simplicial map B!PR.A/ which
is an extension of f , and the rest of the argument goes as at the end of the previous
paragraph.
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3.5 Comments and questions

(1) The property of asymptotic hereditary asphericity introduced in this section is
inspired by the property of hereditary asphericity for topological (metric) spaces;
see Davermann [4]. The latter was used to construct examples of spaces for
which the cell-like maps do not raise dimension. Hereditarily aspherical spaces
can have arbitrarily large dimension; see Davermann–Dranishnikov [5].

(2) Recall that according to the (unresolved) Whitehead’s conjecture every subcom-
plex of an aspherical 2–complex is aspherical. This provides the context for the
following observations.

(2.1) Let X be a complex of dimension � 2 satisfying Whitehead’s conjecture.
Using methods similar to those in Section 4 it is not hard to show that
G D �1X is AHA.

(2.2) CAT.0/ complexes of dimension � 2 satisfy Whitehead’s conjecture and
hence are AHA. As a consequence, groups acting properly discontinuously
and cocompactly on such complexes are AHA. Thus, product of two (virtu-
ally) free groups is AHA.

(2.3) It follows from 2.2 above that virtually free groups are AHA. It is also not
hard to see that, more generally, groups � with asdim� � 1 are AHA.

(2.4) Whitehead’s conjecture is satisfied by various classes of small cancellation
complexes. For example, every subcomplex of a C 0.1

6
/ complex is C 0.1

6
/,

and hence aspherical. Consequently, C 0.1
6
/ small cancellation groups are

AHA. Note that this class contains many groups that are not finitely presented.

(3) Are there any 2–dimensional groups that are not AHA? This question may
be viewed as group theoretic asymptotic variant of Whitehead’s conjecture.
Here dimension can have various meanings (virtual cohomological dimension,
asymptotic dimension, etc). Special cases of this question are the following.

(3.1) Are word-hyperbolic groups with 1–dimensional boundary AHA?

(3.2) Random groups obtained from the density model of Gromov [9] satisfy
certain strong isoperimetric property, which allows to show that Whitehead’s
conjecture holds for their presentation complexes. Thus these groups are
AHA. Are other natural classes of random groups (eg random quotients of
hyperbolic groups) AHA? Are generic groups of Champetier [3] AHA?

(4) Is a generic (in any reasonable sense) group of dimension � 3 AHA?
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(5) There are AHA groups with both virtual cohomological and asymptotic dimen-
sions arbitrarily large. These are for example hyperbolic systolic groups of
arbitrarily large vcd constructed in Januszkiewicz–Świa̧tkowski [12] (compare
Theorem 2.7(2)). Their asymptotic dimension is large since for word-hyperbolic
groups we have asdim� � dim @� C 1 D vcd� (see Bestvina–Mess [2] and
Świa̧tkowski [17]).

(6) Damian Osajda [14] has proved that Gromov boundary of a 7–systolic group
is strongly hereditary aspherical. We have reasons to believe that the same is
true for all hyperbolic AHA groups. Is the converse true, ie is a word-hyperbolic
group with hereditarily aspherical Gromov boundary necessarily AHA?

(7) For what classes of subgroups H is the free product with amalgamation along
H of AHA groups again AHA? Is this true for H finite, virtually cyclic, of
asymptotic dimension 1, AHA? What about HNN-extensions?

4 Systolic complexes and groups are AHA

This section is entirely devoted to the proof of the following theorem and to the
statement of its corollaries.

4.1 Theorem Every systolic simplicial complex is asymptotically hereditarily as-
pherical. More precisely, for each r > 0, every subset A of the vertex set X .0/ of
a systolic simplicial complex X , with the induced from X polygonal distance, is
.r; 8rC17/–aspherical.

Before getting to the proof, we list some corollaries. Recall that a group is systolic if
it acts simplicially properly discontinuously and cocompactly on a systolic simplicial
complex. Since such a group, equipped with a word metric, is clearly quasi-isometric to
the corresponding systolic complex, in view of Corollary 3.3 we obtain the following.

4.2 Corollary Every systolic group is asymptotically hereditarily aspherical.

Due to Corollary 3.4 we have also the following stronger result.

4.3 Corollary Every finitely generated subgroup of a systolic group is AHA.

We now turn to the proof of Theorem 4.1. The first step is the following observation
concerning systolic simplicial complexes.
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4.4 Lemma Let f W S!X be a simplicial map from a triangulation S of the sphere
Sk , for some k � 2, to a systolic complex X . Then f has a simplicial extension
F W B! X , for some triangulation B of the ball BkC1 with @B D S , such that the
image F.B/ is contained in the full subcomplex of X spanned by the image f .S/.

Proof Denote by K the full subcomplex of X spanned by f .S/. Since X is systolic,
it is 6–large (see [12, Proposition 1.4]), and since any full subcomplex of a 6–large
complex is 6–large, K is 6–large. In particular, K is aspherical. It follows that the
map f , viewed as a continuous map, can be contracted in K to a point. Modifying
this contraction to a simplicial map we get an extension F as required.

We proceed with the proof of Theorem 4.1. Let X be a systolic complex. By
Corollary 3.3, it is sufficient to show that the set X .0/ of vertices in X , equipped
with the metric of polygonal distance in the 1–skeleton of X , is AHA. Fix r > 0,
a subset A � X .0/ and consider an arbitrary k –spherical cycle f W S ! Pr .A/, for
some k � 2.

4.5 Claim There is a subdivision S� of S and a simplicial map f�W S�! X such
that

(1) f�.v/D f .v/ for every vertex v in the initial triangulation S ;

(2) for a simplex � of S , viewed as a subcomplex of S� , we have diam.f�.�// �
4r C 8.

We use this to finish the proof of Theorem 4.1 and then prove the claim. Take a
simplicial map f�W S�!X as in the claim and put C D 4r C8. For each vertex v in
S� consider its image f�.v/ and denote by f0.v/ a vertex in A at distance not greater
than C from f�.v/ in the polygonal distance in X .0/ . If v is a vertex of the initial
triangulation S (before subdividing into S� ), put f0.v/ WD f .v/D f�.v/. Choices as
above are possible due to conditions (1) and (2) in Claim 4.5. The map f0 induces
the simplicial map S�! P2CC1.A/ which we also denote f0 . Moreover, maps f0

and f are clearly simplicially homotopic as maps Sk ! P2CC1.A/, in the following
sense. There is a triangulation T of the product Sk � Œ0; 1� and a simplicial map
hW T ! P2CC1.A/ such that

(h1) triangulation T restricted to Sk �f0g and Sk �f1g is isomorphic to S and S�
respectively;

(h2) restrictions of h to Sk �f0g and Sk �f1g coincide with f and f0 respectively.
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To get the assertion, it is sufficient to get an extension F0W B0! P2CC1.A/ of f0 ,
for some triangulation B0 of the ball BkC1 such that @B0 D S� . Indeed, an extension
F of f as asserted can be then combined out of F0 and h.

To get F0 as above, apply Lemma 4.4 to the map f�W S�!X . It gives an extension
F�W B�! X with image F�.B�/ contained in the full subcomplex K in X spanned
by the image f�.S�/. Define F0 in a similar way as f0 . For every vertex v of B�
choose F0.v/ to be a vertex in A at polygonal distance in X .0/ not greater than C .
However, for boundary vertices v 2 @B� put F0.v/ WD f0.v/, which makes sense
since @B� D S� . Choices as above are possible due to condition (2) in Claim 4.5
and due to inclusion F�.B�/ � K . It is clear from the description that F0 induces
the simplicial map B�! P2CC1.A/ which is an extension of f0 as required. Since
2C C 1D 8r C 17, the theorem follows.

Proof of Claim 4.5 For every 1–simplex .uw/ in S choose a path puw in the 1–
skeleton of X , of length 1�Luw � r C 2, connecting the vertices f .u/ and f .w/.
Subdivide .uw/ into Luw 1–simplices and define f� on the subdivided .uw/ as its
obvious simplicial map on the path puw .

For every 2–simplex � D .uwz/ in S , its boundary @� is already subdivided and the
map f� is already defined on @� . The image f�.@�/ is easily seen to be contained
in the combinatorial ball B2k.f .u/;X /, where k D Œr C 2� is the largest integer
not greater than r C 2. Since balls in systolic complexes are contractible, there is a
subdivision �� of � , compatible with the subdivision on @� , and a simplicial map
f �� W ��!B2n.f .u/;X / which extends the already defined map f� on @� . Moreover,
the diameter of the image f �� .��/ in X is clearly not greater than 4k � 4r C 8.
Note that in the same way we can define (by induction with respect to dimension)
subdivisions �� and extensions f �� for all simplices � in S , with the same estimate
for diameters of images.

Composing a subdivision S� out of the subdivisions �� above, and taking f� to be
the union of the maps f �� , we get a map f�W S�!X as required in the claim.

4.6 Comments and questions

(1) The arguments in this section give the following more general filling property in
systolic complexes: every simplicial map from a simply connected simplicial
complex to a systolic complex can be contracted to a point in the simplicial span
of its image. In particular, every simplicial cycle modeled on a simply connected
space can be filled in the simplicial span of its image by a chain modeled on the
cone over this space. The latter can be converted into an asymptotic property
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slightly stronger than AHA, namely that filling radius for cone fillings of simply
connected cycles is uniformly bounded. This property is the strongest presently
known to us coarse property of systolic spaces and groups.

(2) Systolic groups are, by definition, finitely presented. Are there any finitely
presented AHA groups that are not systolic?

(3) Are there any AHA groups in dimension � 3 that are not systolic?

5 Filling radius of spherical cycles

To prove the main results of this paper concerning systolic groups, we make a limited
use of the fact that these groups are AHA. We only need the S2 FRC property, as
introduced below in this section. This property, and the related properties Sk FRC for
k � 2, are easily implied by asymptotic hereditary asphericity.

To define properties Sk FRC we need some preparations. Our exposition uses simplicial
chain complexes with arbitrary coefficients.

5.1 Definition A k –spherical cycle in a simplicial complex X is a (possibly degen-
erate) simplicial map f W S ! X from an oriented simplicial k –sphere S . Denote
by Cf the simplicial cycle induced by f (the image through f of the fundamental
cycle in S ). A filling of a k –spherical cycle f is a simplicial .kC 1/–chain D in X

such that @D D Cf . Given a simplicial chain C D
P

i ti�i of dimension n in X , its
support is the set supp.C / consisting of all vertices in all underlying simplices j�i j

for which the coefficients ti are nonzero (here we assume that if � 0 is obtained from �

by taking opposite orientation then � 0 D�� , and that the underlying simplices j�i j of
the oriented simplices �i occurring in C D

P
i ti�i are distinct for distinct i ). The

support of a spherical cycle f W S !X , denoted supp.f /, is the image through f of
the vertex set of S . Note that in general supp.Cf / is strictly contained in supp.f /.

The filling radius of a cycle C in a simplicial complex X is the minimum over all
fillings D of the maximal distance of a vertex in supp.D/ from the support of C .
Usually, this filling radius grows with the diameter of cycles C . However, it easily
follows from Lemma 4.4 that in systolic complexes X the filling radius for k –spherical
cycles with k � 2 is 0 (ie each such cycle f has a filling with support contained
in supp.f /). This is the model behavior that motivates the next definition, which
describes an asymptotic version of this phenomenon.

5.2 Definition A metric space X has filling radius for k –spherical cycles constant
(shortly, X is Sk FRC), if for every r > 0 there is R� r such that any k –spherical
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cycle f W S ! Pr .X / which is nullhomologous in Pr .X / has a filling D in PR.X /

with supp.D/� supp.f /.

Note that a more natural definition of Sk FRC, where one asks for the existence of
D whose support is distance at most L from the support of f , is in fact equivalent
to the one we give. To see this one has to change R to RCL, and observe that in
the Rips complex PRCL.X / the cycle D is homologous rel boundary to a chain D0

whose support is contained in the support of f .

We skip an easy argument, similar to that in the proof of Proposition 3.2, showing
that for each k the Sk FRC property is inherited by spaces which uniformly embed
into Sk FRC spaces, and hence it is a quasi-isometry invariant. For completeness, we
include a proof of the following.

5.3 Lemma Let X be a metric space which is asymptotically hereditarily aspherical.
Then X is Sk FRC for all k � 2.

Proof For a fixed r > 0, let R � r be the corresponding constant for X as in
Definition 3.1 of AHA. We will show that each k –spherical cycle in Pr .X / (regardless
if nullhomologous in Pr .X / or not) has a desired filling in PR.X /, for the same
constant R.

Let f W S ! Pr .X / be any k –spherical cycle. If we denote by A � X the set of
images through f of all vertices in S , we can view f as a map to the Rips complex
Pr .A/. By the choice of R, there is a simplicial extension F W B! PR.A/ of f as
in the definition of AHA. We can then take as a filling D of f the chain CF induced
by the map F , ie the image in PR.A/ of the fundamental chain of B .

One more straightforward observation concerning Sk FRC property, Proposition 5.4
below, describes its relationship to the asymptotic dimension of a metric space. We
refer the reader to Gromov [9] or Roe [16] for the definition and some basic facts
concerning the latter notion (in [9] this notion is denoted asdimC and called large
scale dimension). For the proof (which is rather straightforward) we refer the reader to
Świa̧tkowski [17, p 220], where this result occurs as unnumbered proposition in the
appendix.

5.4 Proposition If X is a metric space and asdim X Dp then X is Sk FRC for each
k � p .
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5.5 Comments and questions

(1) There are many ways in which one can strengthen Sk FRC. One is to replace
homological fillings by (simplicial) homotopical ones. Another is to require
thin fillings for all spherical cycles, and not only for fillable ones (call this
Sk –thinness). Also, we can require Sk FRC (or its stronger variants) to hold
uniformly in k (at least for k � 2 or k sufficiently large), ie with R not
depending on k for any given r . All these strengthenings still follow, for all
k � 2, from asymptotic hereditary asphericity.

(2) Another way to strengthen Sk FRC is to require constant filling radius for all
nullhomologous k –dimensional cycles, and not only for spherical ones (call this
k –FRC). The same requirement for all cycles, not only for nullhomologous ones,
is still stronger (call it k –thinness). Of course, one can require both conditions
above to hold uniformly for appropriate dimensions k . However, k –FRC and
k –thinness are not implied by AHA. These conditions are closely related to
asymptotic dimension; see Comment 5.5.6.

(3) Proofs of Lemma 4.4 and Theorem 4.1, with no changes, show that systolic
complexes and groups are k –thin for all cycles that are simply connected (call
this SC–k –thin), uniformly in k � 2 (compare Comment 4.6.1 where even
stronger, homotopical variant of this property is mentioned). SC–k –thinness
is inherited by uniformly embedded subspaces, and in particular by arbitrary
finitely generated subgroups. See Comment 6.7.2.1 for an interesting application
of SC–k –thinness.

(4) Note that if X is k –thin for k � 2 uniformly, then for each r > 0 there is R� r

such that for any A�X and any k � 2 the map Hk ŒPr .A/�!Hk ŒPR.A/� has
trivial image. This may be viewed as homological analogue of AHA.

(5) It follows from the results and arguments in Świa̧tkowski [17, Section 5] that
if � is a random group as described by Gromov in [9, Chapter 9] (and called
strongly isoperimetric group in [17]), then � is k –thin uniformly for k � 2. The
same is true for groups satisfying various types of small cancellation conditions.

(6) By Proposition in the appendix of Świa̧tkowski [17, p 220], bounds on the
asymptotic dimension of a metric space X imply strengthened variants of
Sk FRC. For example, if asdim X D p then X is p–FRC and it is k –thin
for k � pC 1 uniformly. Uniform k –FRC for k � p defines what is called in
[17, Definition 1.2] the asymptotic homological dimension, denoted asdimh .

(7) Define the asymptotic spherical homological dimension asdims
h as follows:

asdims
h X � p if and only if X is Sk FRC for all k � p . We have inequalities

asdims
h � asdimh � asdim (see Świa̧tkowski [17] for the latter inequality). It

Geometry & Topology, Volume 11 (2007)



Filling invariants of systolic complexes and groups 743

is also clear that asdims
h.X / � 2 for each metric space X which is AHA, in

particular for systolic complexes and groups. On the other hand, the asymptotic
dimensions asdim and asdimh of a systolic complex or group can be arbitrarily
large (see Comment 3.5.5).

(8) Find a group � with asdims
h� � 2 which is not AHA. Find a group which is

Sk FRC for k � 2 but not uniformly, or which is not Sk –thin for some k � 2.
Such a group will not be AHA. Are there other reasons that force a group with
asdims

h � � 2 to be not AHA? The same problems concern groups � with
asdimh � � 2, or even asdim� � 2, compare Comment 3.5.3.

(9) Systolic groups are (in general) not k –thin for any natural k . However, they
may have filling radius uniformly bounded for all cycles modeled on a fixed
k –dimensional manifold or pseudomanifold M , whatever k and M are. If
this is true, the following interesting problem arises. What is the dependence of
the uniform filling radius bound on the topology of M ? Note that this poten-
tially yields some topological complexity hierarchy in which simply connected
manifolds are the least complex ones (compare Comment 5.5.3).

6 Nonpositively curved manifolds

In this section we look at the Sk FRC condition in the context of nonpositively curved
manifolds. Our main objective is to show that systolic groups contain no fundamen-
tal groups of nonpositively curved manifolds other than surface groups. A crucial
observation is the following.

6.1 Proposition Let X be a simply connected nonpositively curved complete Rie-
mannian manifold with dim.X /D n. Then X is not Sk FRC for 1� k � n� 1.

Before proving the proposition we derive its consequences. By applying Lemma 5.3
we get the following.

6.2 Corollary If X is a simply connected nonpositively curved complete Riemannian
manifold with dim.X /� 3 then X is not S2 FRC. In particular, X is not AHA.

To formulate next corollaries we introduce some terminology. A group is called a
nonpositively curved manifold group of dimension n if it acts isometrically, properly
discontinuously and cocompactly on a simply connected nonpositively curved complete
Riemannian manifold of dimension n (examples are the fundamental groups of closed
nonpositively curved manifolds). Since such groups are clearly quasi-isometric to the
corresponding manifolds, Corollary 6.2 implies the following.
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6.3 Corollary Nonpositively curved manifold groups of dimension greater than 2 are
not S2 FRC. In particular, they are not AHA.

The above corollary together with Corollary 4.3 imply the following results concerning
systolic groups.

6.4 Corollary A systolic group contains no nonpositively curved manifold group of
dimension greater than 2. In particular, it contains no fundamental group of a closed
nonpositively curved manifold other than the infinite cyclic group or a surface group
(including the torus group Z˚Z ).

6.5 Corollary An abelian subgroup of a systolic group has rank at most 2.

6.6 Corollary A systolic group contains no product of fundamental groups of closed
nonpositively curved manifolds other than Z˚Z .

Proof of Proposition 6.1 Fix some k as in the statement and some r > 0. For every
R� r we will construct a k –spherical cycle f W S!Pr .X / which is nullhomologous
in Pr .X / but has no filling in PR.X / with support contained in the support of f .

Fix a point p 2X and consider the exponential map EW TpX !X . By the Cartan–
Hadamard Theorem, this map is a distance nondecreasing diffeomorphism. Consider
the sphere of radius 1000R in the tangent space TpX , centered at 0, and an equatorial
subsphere Sk of dimension k in it. Denote by NR the R–neighborhood of Sk in
TpX , ie the set consisting of all points in TpX at distance not greater than R from
Sk . Note that the inclusion of Sk in NR is a homotopy equivalence, and in particular
the element ŒSk � induced by Sk in the singular homology Hk.NR/ is nontrivial. The
same is clearly true for the element ŒE.Sk/� in Hk.E.NR//.

Fix a triangulation S of the image sphere E.Sk/ so that the adjacent vertices are at
distance at most r in X . The inclusion of vertices of S in X induces a k –spherical
cycle f W S!Pr .X /. Since X is contractible, this cycle is clearly nullhomologous in
Pr .X /. Suppose D is a filling of f in PR.X / with support contained in the support
of f . Denote by UR the R–neighborhood of the image sphere E.Sk/ in X . Since
UR �E.NR/ (because the exponential map E is distance nondecreasing), and since
supp.f /�E.Sk/, it is not hard to make out of D a singular chain in E.NR/ which
fills some singular cycle representing the homology class ŒE.Sk/�. This contradicts
the fact that 0¤ ŒE.Sk/� 2Hk.E.NR//, hence the proposition.
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6.7 Comments and questions

(1) Is the fundamental group of every closed aspherical manifold of dimension n� 3

not Sk FRC for some 2� k < n?

(1.1) Note that, due to Theorem 3b.2 (iii) in Davis–Januszkiewicz [6] (and its
proof), if X is a closed PL n–manifold with large links then metric spheres
in X are homeomorphic to the sphere Sn�1 . In particular, the proof of
Proposition 6.1 above applies to the universal cover of such manifold and,
consequently, its fundamental group is not Sk FRC for 1� k � n�1. In this
class there are manifolds that (after any smoothing) admit no Riemannian
metric of nonpositive curvature.

(2) Is it true that systolic (or more generally AHA) groups contain no fundamental
groups of closed aspherical manifolds of dimension greater than 2? In view
of Corollary 3.4 and Lemma 5.3, a positive answer to question 1 above would
imply a positive answer to the present question.

(2.1) One can answer question 2 above in affirmative, using SC–k –thinness
(see Comment 5.5.3) rather than AHA, for a class of aspherical manifolds
described in Section 5c of [6]. This is some class of negatively curved
topological manifolds N with no negatively curved PL metric, existing in
any dimension n� 5. A crucial property of these manifolds is that metric
spheres in their universal covers, though not homeomorphic to Sn�1 , are all
simply connected. In particular, fundamental groups of these manifolds N

are not SC–.n� 1/–thin by the argument as in the proof of Proposition 6.1.
In view of Comment 5.5.3, fundamental groups of these manifolds are not
systolic, and cannot occur as subgroups in systolic groups. These groups are
different from fundamental groups of Riemannian or PL negatively curved
manifolds since the ideal boundary is not a manifold.

(2.2) Damian Osajda [15] has proved that higher homotopy groups at infinity for
systolic complexes are trivial. Since, according to a result of D Wise [18],
finitely presented subgroups of torsion free systolic groups are systolic, this
implies that torsion free systolic groups contain no subgroups isomorphic to
the fundamental groups of closed aspherical manifolds covered by Rn , for
n� 3.

7 Products

In this section we characterize products of groups that are S2 FRC. Together with
the results in the next section, this provides restrictions on product groups that are
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asymptotically hereditarily aspherical, or that are systolic. The main result is the
following.

7.1 Proposition The product of more than two infinite groups is never S2 FRC. If the
product of two infinite groups is S2 FRC then both factor groups are S1 FRC.

In view of the obvious fact that an infinite group is not S0 FRC, the above proposition
is a direct consequence of the following.

7.2 Proposition Let k D 0; 1. If G1 is a group which is not Sk FRC and G2 is
infinite, then the product G1 �G2 is not SkC1 FRC.

Proof We will work with fixed word metrics d1; d2 on the groups G1;G2 respectively,
and with the word metric d on G1 �G2 corresponding to the union of generating sets
in the factor groups. This metric d can be also described by

d..g1;g2/; .g
0
1;g
0
2//D d1.g1;g

0
1/C d2.g2;g

0
2/:

Since G1 is not Sk FRC, there is r > 0 such that for every R � r there is a k –
spherical cycle f W S!Pr .G1/ which is nullhomologous in Pr .G1/ but has no filling
in PR.G1/ with support contained in the support of f . We will construct out of f a
.kC1/–spherical cycle fc W Sc!PrC1.G1�G2/ nullhomologous in PrC1.G1�G2/

but having no filling in PR.G1 �G2/ with support contained in the support of fc .
This will show that G1 �G2 is not SkC1 FRC.

Since a k –spherical cycle f W S ! Pr .G1/ as above is nullhomologous in Pr .G1/ it
follows that there is a triangulation D of the .kC 1/–disc, extending the triangulation
S viewed as the boundary triangulation of D , and a simplicial map F W D! Pr .G1/

extending f . Note that here we use the assumption that k D 0; 1, since in higher
dimensions spheres can bound topologically more complicated chains. For the second
factor group G2 , consider the triangulation L of the line segment consisting of 3l C 1

edges, for some l � R, with vertices a0; a1; : : : ; a3lC1 placed in this order on L,
and an isometric simplicial embedding �W L! P1.G2/, ie a simplicial map such that
d2.�.a0/; �.a3lC1// D 3l C 1. Such � clearly exists since the group G2 is infinite.
Take the product D � L, with the product structure of a polyhedral cell complex,
and choose a triangulation .D �L/t subdividing the cell structure of D �L without
introducing new vertices. The map of the vertex set of D �L to G1 �G2 determined
by F and � induces the simplicial map F � �W .D �L/t ! PrC1.G1 �G2/. Since
.D�L/t is topologically a .kC2/–disc, its boundary @.D�L/t is a triangulation of
the .kC 1/–sphere, and we define the .kC 1/–spherical cycle fc to be the restriction

fc D .F ��/j@.D�L/t W @.D �L/t ! PrC1.G1 �G2/:
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Clearly, the map F �� shows that fc is nullhomologous in PrC1.G1 �G2/.

It remains to show that there is no filling of fc in PR.G1�G2/ with support contained
in the support of fc .

To any simplicial n–dimensional chain C in PR.G1 �G2/ we associate a simplicial
.n � 1/–dimensional chain �.C / in PR.G1/, in the following three steps. First,
we take C 0 to be the chain in PR.G1 �G2/ consisting of those n–simplices in C

which have at least one vertex not contained in the subcomplex PR.G1 �B/, where
BDfg 2G2 W d2.g; �.a0//� 2lg. Next, we take as @BC 0 the subchain in the boundary
@C 0 consisting of those .n� 1/–simplices that have all vertices in G1 �B . Finally,
we project (the vertices of) @BC 0 on G1 , getting the chain �.C / in PR.G1/.

Note that the above description of the operator � corresponds, when applied to cycles,
to the standard way of defining the homomorphisms

Hn.PR.G1 �G2//!Hn.PR.G1 �G2/;PR.G1 �B//!

Hn�1.PR.G1 �B//!Hn�1.PR.G1//

on the level of simplicial cycles. We mention without including further arguments the
following easy to verify properties of �:

(1) If C is a cycle then �.C / is a cycle.

(2) �.@C /D�@.�.C // for any chain C

(3) �.fc/D f .

Now, suppose that D is a filling of fc in PR.G1 �G2/ with support contained in
supp.fc/. Then, by the above properties of �, the chain �.D/ is (up to sign) a filling
of f in PR.G1/. We check the properties of the support of �.D/. Since all vertices
in the simplices of D0 lie at distance greater than R from G1 �f�.a0/g, the vertices
of @BD0 lie at distances greater than R from G1 � f�.a0/; �.a3lC1/g. Denoting by
L.0/ the set of vertices in L, we have

supp.fc/�G1 � f�.a0/; �.a3lC1/g[ supp.f /��.L.0//

supp.@BD0/� supp.D/� supp.fc/;and

so it follows that supp.@BD0/� supp.f /��.L.0//. After projecting to G1 , we clearly
get supp.�.D//� supp.f /, a contradiction.
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7.3 Comments and questions

(1) A method used in the proof of Proposition 7.2 allows to show that, for any k ,
the product of an infinite group with a group which is not k –FRC is not .kC1/–
FRC (see 5.5.2 for the definition of k –FRC). Is the statement of Proposition 7.2
still true for k > 1?

(2) Is it true in general that the product of a group which is not k –FRC with a group
which is not l –FRC is always not .kC l/–FRC? Is the product of a group which
is not Sk FRC with a group which is not S l FRC always not SkCl FRC?

(3) Is the product of any two S1 FRC groups S2 FRC (compare Question 8.9.3)? Is
the same true for products of Sk FRC or k –FRC groups for arbitrary k ?

8 S 1FRC groups

In this section we establish several properties of S1 FRC groups. We use them, together
with the results from the previous section, to get restrictions on product groups that are
AHA or systolic.

Our main results are the following.

8.1 Proposition If a finitely presented group is S1 FRC then it is hyperbolic.

8.2 Proposition The topological dimension of the Gromov boundary of an S1 FRC
hyperbolic group is zero.

In view of the well known fact that a hyperbolic group with zero-dimensional boundary
is virtually free, the above propositions imply the following.

8.3 Corollary Any finitely presented S1 FRC group is virtually free.

Before proving Proposition 8.1 and Proposition 8.2 we derive some of their conse-
quences for S2 FRC, systolic and AHA groups.

8.4 Corollary The product of two infinite finitely presented groups is S2 FRC if and
only if both factors are virtually free.

Proof One implication follows from the fact that asymptotic dimension of the product
of two finitely generated free groups is 2, and from Proposition 5.4. The other implica-
tion follows from Proposition 7.1 and Corollary 8.3.
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8.5 Corollary If the product of two infinite groups is systolic then both factor groups
are virtually free.

Proof Any systolic group is finitely presented since it acts simplicially properly
discontinuously and cocompactly on a simplicial complex. If it is a product then
all factors are finitely presented. The rest of the argument is then as in the proof of
Corollary 8.4.

Remark The converse to Corollary 8.5 holds true. Tomasz Elsner and Piotr Przytycki
pointed out to us how to construct systolic complexes with a geometric action of the
product of two finitely generated virtually free groups. Surprisingly, the dimension of
the complexes is 3 and not 2 as one would expect.

Since AHA groups are S2 FRC (Lemma 5.3), we also have the following.

8.6 Corollary If the product of two infinite finitely presented groups is AHA then
both factors are virtually free.

Note that Proposition 7.1 alone, without using results from this section, implies the
following result that complements Corollary 8.5 and Corollary 8.6.

8.7 Corollary The product of more than two infinite groups is never AHA and, in
particular, never systolic.

Proof of Proposition 8.1 Let � be any finitely presented group which is S1 FRC.
Fix a finite generating set † and the corresponding word metric d† in � . Since � is
finitely presented, there is r � 1 such that each 1–spherical cycle in the Rips’ complex
P1.�/ is nullhomologous in Pr .�/. For example, we can take as r the maximal length
of a relation from some finite presentation for � with † as the generating set. Let
R� r be a constant occurring in the definition of S1 FRC property (Definition 5.2), ie
such that each 1–spherical cycle f W S ! Pr .�/ which is nullhomologous in Pr .�/,
has a filling D in PR.�/ with support contained in the support of f . We will show
that � is ı–hyperbolic for ı D 100R. The constant ı we obtain is obviously far from
optimal.

Let T be a geodesic triangle in the Cayley graph C.�;†/, with vertices in � . View
T as a 1–spherical cycle in P1.�/, and denote the corresponding simplicial map
from a 1–sphere by fT W ST ! P1.�/. Since fT has a filling in Pr .�/ (due to finite
presentability, as above), there is a filling D of fT in PR.�/ such that supp.D/ �
supp.fT /. This implies the following.
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Claim 1 The map fT (viewed as a continuous map) is a loop which is contractible (ie
homotopic to a constant map) in the Rips complex PR Œsupp.fT /�.

To prove ı–hyperbolicity of � , for ı D 100R, we need to show that, for any side
A of the triangle T and for every vertex x on A, there is a vertex y in the union
B [C of two other sides such that d†.x;y/� 100R. Note that if length of A is not
greater than 200R then this condition is trivially satisfied. If length of A is greater than
200R, choose vertices p0;p1; : : : ;pm on A, occurring in this order, with p0;pm the
endpoints of A, such that for i D 0; 1; : : : ;m� 1 we have

50R< d†.pi ;piC1/� 98R:

This clearly can be done, for example by taking all distances minimal (ie as close from
above to 50R as possible), except the last two possibly bigger. For each i D 0; 1; : : : ;m

put Ui WD fg 2 � W d†.g;pi/� 50Rg. We then have:

(a1) Ui \UiC1 ¤∅ for i D 0; 1; : : : ;m� 1,

(a2) Ui \Uj D∅ for ji � j j> 1,

(a3) A.0/ �
Sm

iD0 Ui , where A.0/ is the set of vertices on the side A.

We omit the straightforward check of these properties.

For every vertex v 2 B.0/ [ C .0/ put Uv WD fg 2 � W d†.g; v/ � Rg. Denote by
U the family consisting of the sets Ui for i D 0; 1; : : : ;m and the sets Uv for all
v 2 B.0/[C .0/ . It follows from property (a3) that

(a4) supp.fT /�
S
U .

To finish the proof, we will show the following.

Claim 2 For each i D 0; 1; : : : ;m� 1 there is a vertex v 2 B.0/ [ C .0/ such that
Ui \UiC1\Uv ¤∅.

Given Claim 2, one concludes the proof of Proposition 8.1 as follows. For each x 2A.0/

there is i such that d†.x;pi/ � 49R. By Claim 2, there is v 2 B.0/ [ C .0/ with
d†.pi ; v/ � 50RC R D 51R. Consequently, d†.x; v/ � 100R, and hence � is
ı–hyperbolic with ı D 100R.

It remains to prove Claim 2. To do this, denote by N.U/ the nerve of the family U , ie a
simplicial complex whose vertices are the sets from U and whose simplices correspond
to subfamilies of U that have nonempty intersection. For each vertex w 2 supp.fT /

choose a set from U containing w , denoting it by h.w/, as follows. If w 2 A.0/
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choose as h.w/ one of the sets Ui and if w 2B.0/[C .0/ n fp0;pmg put h.w/DUw .
Note that if vertices w1; w2 2 supp.fT / are adjacent in the Rips’ complex PR� then
the corresponding sets h.w1/; h.w2/ have nonempty intersection. Consequently, h

induces a simplicial map H W PR Œsupp.fT /�!N.U/.

Suppose, contrary to Claim 2, that there is i such that Ui \ UiC1 \ Uv D ∅ for
each v 2 B.0/ [C .0/ . Together with property (a2) above this implies that the edge
.Ui ;UiC1/ in the nerve N.U/ is isolated, ie not contained in any 2–simplex. We claim
that then the composed map H ı fT W ST ! N.U/ is not contractible. To see this,
note that h.pi/ D Ui , h.piC1/ D UiC1 and h.w/ 2 fUi ;UiC1g for all vertices w
contained in A lying between pi and piC1 . This means that part of the 1–sphere
ST corresponding to the segment Œpi ;piC1��A is mapped through H on the edge
.Ui ;UiC1/. Moreover, by definition of h, no edge in ST not contained in the above
segment Œpi ;piC1� is mapped on the edge .Ui ;UiC1/ through H . As a consequence,
the loop H ı fT W ST !N.U/ passes through the edge .Ui ;UiC1/ an odd number of
times, and since the edge is isolated, the loop is not contractible. Since this contradicts
the assertion of Claim 1, the proof of Proposition 8.1 is completed.

Proof of Proposition 8.2 We will prove that if G is a hyperbolic group such that
dim @1G � 1 then G is not S1 FRC.

Given � > 0, an �–path in a metric space .X; d/ connecting points a; b 2X is a finite
sequence x0;x1; : : : ;xn of points in X such that x0D a, xnD b , and d.xi�1;xi/< �

for i D 1; : : : ; n. We start with the following auxiliary fact, certainly well known,
including its proof for completeness.

8.8 Fact Let .X; d/ be a compact metric space with dim X � 1. Then there are
distinct points a; b 2X such that for every � > 0, a; b can be connected by an �–path
in X .

Proof We will show that if points a; b as in the assertion do not exist then dim X D 0.
More precisely, we will show that every point a2X has arbitrarily small neighborhoods
that are open and closed.

Let U be any open neighborhood of a in X . Consider the real function f W X nfag!R

defined by

f .x/ WD inff� > 0 W x is connected with a by an �–path in X g:

By our assumption in the proof, the function f is positive at every point. Moreover, it
is easily seen to be locally constant, hence continuous. Since the complement X nU
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is compact, f has minimum m> 0 at this complement. Take any 0< ı <m and put

V WD fx 2X W x can be connected with a by a ı–path in X g:

It is straightforward that V is open and closed, and that a 2 V � U . This completes
the proof of Fact 8.8.

Coming back to the proof of Proposition 8.2, note that Gromov boundary @1G is
a compact metric space. Existence of �–paths as in Fact 8.8 between some points
a; b 2 @1G allows to construct S1 –cycles f W S ! Pr G , for some fixed r > 0, with
arbitrarily large filling radii, using a method from Świa̧tkowski [17]. More precisely,
if dim @1G � 1, there is a proper compact subset K � @1G with dim K � 1, and
distinct points a; b 2K which can be connected by an �–path c� in K for every � > 0.
Fixing point s 2 @1G nK , it is possible to project paths c� to various horospheres
in G centered at s , by the projections described in Section 2 of [17]. If � is small
enough, we can construct an S1 –cycle by taking projections of c� on two sufficiently
distant horospheres, and connecting them with two segments contained in projection
rays corresponding to points a; b (the endpoints of c� ). The fact that S1 –cycles in
some Pr G constructed in this way have arbitrarily large filling radii follows from the
argument as in the proof of Theorem 3.1 in [17]. The argument is the same as in the
proof of Theorem 4.1 in [17] and we omit further details.

8.9 Comments and questions

(1) The results of this section motivate the following general question. Which
products of infinite groups are “2–dimensional”? “Dimension 2” in this question
can be interpreted in any of the following senses: S2 FRC, AHA, systolic,
asymptotically or (virtually) cohomologically 2–dimensional, S2 –thin, 2–FRC,
2–thin, etc. Here are some observations and more detailed questions concerning
this subject.

(1.1) Note that, since the product of two virtually free groups is asymptotically
2–dimensional (as the product of two asymptotically 1–dimensional factors),
AHA (Comment 3.5.2.2), and S2 –thin, and since S2 –FRC is implied
by any of these three conditions (Proposition 5.4), Corollary 8.4 can be
strengthened as follows: the product of two infinite finitely presented groups
is asymptotically 2–dimensional (or AHA or S2 –thin) if and only if both
factor groups are virtually free.

(1.2) It was observed by Tomasz Elsner and Piotr Przytycki that product of two
finitely generated virtually free groups is systolic.
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(1.3) Note that the product of two groups of asymptotic dimension 1 has asymptotic
dimension at most 2 (see Roe [16, Proposition 9.11]) and hence, due to
Proposition 5.4, is S2 FRC. Is it AHA? Are there S1 FRC groups that are
not asymptotically 1–dimensional? If the answer to the last question is
negative then product of any two S1 FRC groups is S2 FRC.

(2) Which extensions of infinite groups by infinite groups are systolic, S2 FRC or
AHA? Note that in the systolic case this class probably coincides with the class
of systolic products, because systolic groups are biautomatic; see Januszkiewicz–
Świa̧tkowski [12]. (Biautomatic groups satisfy quadratic isoperimetric inequality,
their solvable subgroups are virtually abelian and their infinite cyclic subgroups
are undistorted. This probably excludes most of nonproduct extensions.) On the
other hand, Baumslag–Solitar groups are AHA as they act on the product of a
tree and the line (compare Comment 3.5.2.1).

(3) What are the relationships between the following classes of “1–dimensional”
groups: virtually free, asymptotic dimension 1, S1 –thin, S1 –FRC? In the
finitely presented case all these classes coincide, and in the infinitely presented
one there are obvious inclusions. A similar question can be asked for various
classes of “2–dimensional” and “higher dimensional” groups.

(4) The finite presentability assumption in Corollary 8.3 is essential; see Fujiwara–
Whyte [8] and Nowak [13].

9 Second isoperimetric inequality

In this section we show that the isoperimetric function for 2–spherical cycles (the so
called second isoperimetric function) is linear in systolic complexes. Our exposition
uses simplicial chain complexes with integer coefficients.

To formulate the main result of this section we need the following.

9.1 Definition Let C D
P

i ti�i be an n–chain in a simplicial complex X . Suppose
(without loss of generality) that the underlying simplices j�i j for which ti ¤ 0 are
distinct for distinct i . The (n–dimensional) volume of C , Vn.C /, is defined as
Vn.C / WD

P
i jti j. The (2–dimensional) volume of a spherical 2–cycle f W S ! X ,

V2.f /, is the number of 2–simplices in S that are mapped by f on 2–simplices (ie the
number of 2–simplices on which f is injective). Note that if Cf is the chain induced
by f then V2.Cf /� V2.f /, and the inequality can be strict.
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9.2 Theorem Given any spherical 2–cycle f W S!X in a systolic simplicial complex
X , there exists a filling D of f such that

V3.D/�
3

2
�V2.f /:

Proof The argument is an induction on the number of 2–simplices in the triangulation
S of the 2–sphere.

The smallest triangulation S of the 2–sphere consists of four 2–simplices (the boundary
triangulation of a 3–simplex). Then any nontrivial (ie such that Œf � ¤ 0) spherical
2–cycle f W S ! X has volume V2.f / D 4. Moreover, by the fact that X is flag,
there is a filling D of f consisting of a single simplex, ie such that V3.D/D 1. The
assertion of the theorem is clearly satisfied in this case.

Now let S be any triangulation of the 2–sphere, and let f W S !X be any simplicial
map. We consider three cases. The first two deal with rather degenerate situations,
making no use of the fact that X is systolic. The key systolic argument occurs in the
third (most regular) case.

Case 1 f is degenerate.

Consider a 1–simplex eD .v; w/ in S for which f .v/Df .w/, and let �1D .v; w;u1/,
�2 D .v; w;u2/ be the 2–simplices adjacent to e in S . Delete from S the interior of
the union �1[ �2 and glue the obtained boundary edges in pairs: .u1; v/ with .u1; w/

and .u2; v/ with .u2; w/. As a result we obtain a multisimplicial triangulation S 0 of
the 2–sphere, which may contain potentially a double edge or a double triangle (ie two
2–simplices that share boundaries), but never a loop. Suppose first that S 0 is simplicial.
The simplicial map f W S!X induces the simplicial map f 0W S 0!X in the obvious
way. Moreover, we have the equality Œf 0�D Œf � for the induced cycles, and thus every
filling of f 0 is also a filling of f . Consequently, since S 0 consists of less 2–simplices
than S , the assertion follows for f by induction.

It remains to deal with the case when S 0 is not a simplicial complex. This case splits into
two subcases. First is when S 0 consists of two 2–simplices that share their boundaries.
But then Œf 0�D 0, hence Œf �D 0, and the assertion holds trivially. Otherwise, there
must be a vertex y in S such that .v;y/ and .w;y/ are both the 1–simplices in S .
Since by passing from S to S 0 the vertices v and w are identified, this leads to a
double edge in S 0 . We still denote by .w;y/ and .v;y/ the corresponding edges in
S 0 . Let yi be all the vertices in S satisfying the property as y above. Denote by
ei D .v;yi/ and e0i D .w;yi/ the corresponding edges in S 0 . The union of all these
edges splits S 0 into open discs Dj , and the boundary of each Dj is the union of edges
from some pair ei ; e

0
i or from two such pairs. In any case, we identify the edges from

Geometry & Topology, Volume 11 (2007)



Filling invariants of systolic complexes and groups 755

the pairs ei ; e
0
i in the closure of each Dj , getting 2–spheres Sj of the following two

kinds. Some of these spheres may consist of two 2–simplices identified along whole
boundaries. It is not hard to see that all other spheres Sj are the honest simplicial
spheres. We will denote them as Sjk

. Clearly, the map f W S ! X induces simplicial
maps fjk

W Sjk
!X and we have

P
k Œfjk

�D Œf �. It follows that the sum
P

k Djk
of

any fillings Djk
of fjk

is a filling of f . Since moreover
P

k V2.fjk
/ � V2.f /� 2,

the assertion follows for f by induction.

Case 2 f is nondegenerate and the images of some two adjacent 2–simplices in S

coincide.

Denote by �1D .v; w;u1/ and �2D .v; w;u2/ the two adjacent simplices in S whose
images through f coincide. Remove from S the interior of the union �1[�2 , and glue
the edges of the resulting boundary in pairs: .u1; v/ with .u2; v/ and .u1; w/ with
.u2; w/. After gluing we obtain a cell decomposition S 0 of the 2–sphere. We omit the
easy case when S 0 is a simplicial triangulation and pass directly to the opposite case.

The only reason for S 0 not to be simplicial is that there is an edge e D .u1;u2/

in S (which becomes a loop in S 0 , still denoted e ) or that there are pairs of edges
ei D .u1; zi/ and e0i D .u2; zi/ in S (which become the double edges in S 0 , still
denoted ei ; e

0
i ). Split S 0 into open discs Dj along the union of all edges ei ; e

0
i and e

as above. Consider those discs Djk
in the splitting that contain more than two open

2–simplices of S 0 . Observe that the loop e (if exists) is not contained in the boundary
of any Djk

. Moreover, the boundary of each Djk
is the union of edges from some pair

ei ; e
0
i or from two such pairs. We identify the edges from the pairs ei ; e

0
i in the closure

of each Djk
, getting 2–spheres Sjk

. It is not hard to see that each Sjk
is simplicial.

Note that the map f induces in the obvious way the simplicial maps fjk
W Sjk

!X .
The rest of the argument is as in Case 1.

Case 3 f is nondegenerate and no two adjacent 2–simplices from S are mapped to
the same simplex.

By the Euler characteristic argument (or combinatorial Gauss–Bonnet theorem), there
exists a vertex v in S for which the link Sv is a polygonal cycle consisting of m< 6

edges. Since the map f is nondegenerate, it induces the nondegenerate simplicial
map fvW Sv!Xf .v/ on links. Since no two adjacent 2–simplices of S have the same
image, the map fv is locally injective, ie no two adjacent edges in Sv are mapped to
the same edge. Since length m of Sv is at most 5, the map fv is in fact injective. Its
image in the link Xf .v/ is a cycle of length m. Since X is systolic, the link Xf .v/
is 6–large, and thus the cycle fv.Sv/ has a disc filling �1 in Xf .v/ consisting of
m� 2 simplices of dimension 2. Viewing the link Xf .v/ as a subcomplex in X , the
cycle fv.Sv/ has also the disc filling �2 in X equal to the join of the cycle with v .
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Moreover, there is a 3–chain C in X , consisting of m� 2 simplices of dimension
3, such that �2 ��1 D @C and the support of C consists of v and the vertices in
fv.Sv/.

We now modify the spherical 2–cycle f W S !X by removing from S the open star
of the vertex v , and by gluing to the obtained boundary Sv the disc � made of m� 2

simplices of dimension 2 in the way compatible with the filling �1 of fv.Sv/. If
the obtained 2–sphere S 0 is simplicial, we define the simplicial map f 0W S 0! X by
taking the compatibility map �!�1 as the restriction of f 0 to �, and by putting
f 0 D f outside �. Note that V2.f

0/ D V2.f /� 2 and the difference Œf �� Œf 0� is
equal to �2 ��1 . Let D be a filling of f 0 satisfying the assertion of the theorem
(which exists due to inductive assumption). By what was said above about the chain C ,
the sum DCC is a filling of f with V3.DCC /� V3.D/Cm�2: Since m�2� 3,
the chain DCC is a filling of f as required.

It remains to consider the subcase in which the obtained 2–sphere S 0 is not simplicial.
The only reason for S 0 not to be simplicial is as follows. For an edge ı of the inserted
disc � not contained in the boundary @�, its endpoints (viewed as vertices in Sv )
may be connected by an edge e in S . In S 0 we then get two edges ı and e connecting
the same pair of vertices. Let .ıi ; ei/ be all pairs of double edges in S 0 as above. Note
that for distinct i the corresponding edges ıi are distinct, and hence there are at most
m�3 such pairs. The union of all edges ıi and ei from these pairs splits S 0 into open
discs Dj , and the boundary of each Dj is the union of edges from some pair .ıi ; ei/

or from two such pairs. Similarly as in Case 1, we identify the edges from the pairs
.ıi ; ei/ in the closure of each Dj , getting 2–spheres Sj . The rest of the argument is as
at the end of Case 1, combined with the estimates above in this case (for S 0 simplicial).
We omit the obvious details.

9.3 Comments and questions

(1) One is tempted to investigate higher dimensional isoperimetric inequalities for
systolic complexes, similar to that in Theorem 9.2. It seems that proving them
requires techniques significantly different from ours. On the other hand, tangible
meaning and applications of such results remains unclear to us at this stage.

(2) What are the possibilities for the second isoperimetric function for AHA com-
plexes and groups?
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