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Lagrangian matching invariants for fibred four-manifolds: I

TIM PERUTZ

In a pair of papers, we construct invariants for smooth four-manifolds equipped with
‘broken fibrations’—the singular Lefschetz fibrations of Auroux, Donaldson and
Katzarkov—generalising the Donaldson–Smith invariants for Lefschetz fibrations.

The ‘Lagrangian matching invariants’ are designed to be comparable with the Seiberg–
Witten invariants of the underlying four-manifold; formal properties and first compu-
tations support the conjecture that equality holds. They fit into a field theory which
assigns Floer homology groups to three-manifolds fibred over S1 .

The invariants are derived from moduli spaces of pseudo-holomorphic sections of
relative Hilbert schemes of points on the fibres, subject to Lagrangian boundary
conditions. Part I—the present paper—is devoted to the symplectic geometry of these
Lagrangians.

53D40, 57R57; 57R15

1 Introduction

The Seiberg–Witten invariants of a symplectic four–manifold can be calculated, ac-
cording to Taubes’ famous theorem [28], as Gromov invariants enumerating embedded
pseudo-holomorphic curves and their unramified coverings. In the presence of a
symplectic Lefschetz fibration, the Donaldson–Smith invariant [5; 26] mediates between
the gauge-theoretic and symplectic viewpoints. It is a count of pseudo-holomorphic
multisections of the fibration, within a chosen homology class—more properly, of
pseudo-holomorphic sections of an associated family of symmetric products of the
non-singular fibres, appropriately compactified over the singular fibres. The motivating
observation is that an embedded pseudo-holomorphic curve in the four–manifold, not
having a fibre as a component, will have positive intersections with the fibres and so
define a section of a family of symmetric products.

The equality of the Donaldson–Smith and Gromov invariants, for fibrations of high
degree, has been proved by Usher [29]. In the other direction, the link between
symmetric products and gauge theory arises from the fact that the dimensionally
reduced Seiberg–Witten equations on a surface are the abelian vortex equations. The
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moduli space of solutions to these equations is a symmetric product of the surface; in the
‘adiabatic limit’ as the base of the fibration is expanded, solutions to the Seiberg–Witten
equations approximate pseudo-holomorphic curves in the family of vortex moduli
spaces [23; 28].

In this paper and its sequel we extend the Donaldson–Smith construction in two
directions. First, we generalise it to singular Lefschetz fibrations in the sense of Auroux,
Donaldson and Katzarkov [1], objects which we shall refer to as ‘broken fibrations’.
These are available on any four-manifold with bC

2
> 0—the point being that these

are the manifolds which admit near-symplectic forms. We construct an invariant of
broken fibrations, the Lagrangian matching invariant, which can be compared to the
Seiberg–Witten invariant of the underlying manifold. We conjecture that equality holds.
It still counts pseudo-holomorphic sections of the associated families of symmetric
products, but these are now subject to certain Lagrangian boundary conditions. Much
of this paper is concerned with the construction of these Lagrangians, and with teasing
out their properties.

Second, we show that the Lagrangian matching invariant arises from a field theory: a
.1C1/–dimensional TQFT coupled to singular surface-bundles. To a three–manifold Y

with a fibre bundle � W Y ! S1 and a Spinc –structure t (subject to certain restrictions)
we assign a symplectic Floer homology group HF�.Y; �; t/, and when Y is the
boundary of a broken fibration there is a relative Lagrangian matching invariant in
HF�.Y; �; t/.

Another use of our Lagrangian boundary conditions is to define a Floer homology
group HF�.Y; �; t/ when � is an S1 –valued Morse function without local extrema.
Its Euler characteristic is the Turaev torsion. We shall explain the construction in a
separate paper.

1.1 Relation to near-symplectic geometry

The construction of Lagrangian matching invariants was guided by Taubes’ programme
[27] to obtain the Seiberg–Witten invariants of a near-symplectic four-manifold as
generalised Gromov invariants. However, making a rigorous comparison presents
considerable challenges (besides the matter of precisely defining the generalised Gromov
invariants); there is no ‘tautological correspondence’ in the sense of Usher [29].

It may be worth emphasising that, in contrast to Taubes’ framework, the technical
difficulties in the pseudo-holomorphic theory underlying our invariants from our moduli
spaces are rather mild, at least if one does not aim for the greatest conceivable generality.
Rather, the difficulty in formulating these invariants was in finding good moduli spaces
to consider.
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It seems to be typical of theories based on symmetric products that there are technical
gains in the pseudo-holomorphic theory, and in manifest functoriality, but a loss
in explicitness which can make computations hard. (A strength of Heegaard Floer
homology is that it strikes an effective balance between these aspects.)

1.2 Relation to Seiberg–Witten invariants

The conjectural equality of Lagrangian matching and Seiberg–Witten invariants has
the flavour of an ‘Atiyah–Floer’ conjecture. For a start, the Lagrangian boundary
conditions, which we construct by direct symplectic means, may well have a gauge-
theoretic interpretation arising from the Seiberg–Witten equations on a three-manifold
with boundary (see Remark 1.6). It would be more interesting, though, to find a formal
(TQFT) reason for equality, in the vein of Donaldson’s argument in [4].

1.3 Relation to Heegaard Floer homology

There is a rather direct link with Heegaard Floer homology, and also with Yi-Jen Lee’s
programme to relate it to monopole Floer homology [12], which will be developed in a
future article.

As mentioned above, the Lagrangian boundary conditions studied in the present paper,
and used to define the Lagrangian matching invariants in its sequel, can also be employed
to define symplectic Floer homology groups for a three-manifold with an S1 –valued
Morse function all of whose critical points have indefinite indices (1 or 2). Now,
given a self-indexing Morse function f on Y 3 , the connected sum Y 0D Y #.S1�S2/

carries such an S1 –valued Morse function: one thinks of Y 0 as the result of removing
two balls in Y containing the maximum and minimum, and gluing back Œ�1; 1��S2 .
One considers only those Spinc –structures t on Y 0 such that c1.t/ evaluates as 2

on a 2–sphere in the added handle. The Lagrangian boundary conditions which we
use to define our Floer homologies then reduce (up to smooth isotopy, and probably
also up to Hamiltonian isotopy) to the Heegaard tori T˛ , Tˇ in Symg.†/, where
† D f �1.3=2/ � Y . This viewpoint may give some insight into the cobordism
maps in Heegaard Floer homology, which can be computed as Lagrangian matching
invariants for broken fibrations of a particular kind. In this framework there is no need
to decompose cobordisms into their elementary pieces.

1.4 Broken pencils and fibrations

Definition 1.1 A broken fibration .X; �/ on a smooth, compact, oriented, four-
manifold X (possibly with boundary) is a smooth map � W X!S to a compact surface
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S such that the set of critical points X crit is the union of a discrete set D � int.X /
and a one-submanifold Z � int.X /. These are constrained as follows:

� For each x 2D , there exist positively oriented local coordinate charts

 x W .C
2; 0/! .X;x/; ��.x/ W .C; 0/! .S; �.x//;

such that ��1
�.x/
ı� ı x coincides, near the origin, with the map .z1; z2/ 7! z1z2 .

� For each point z 2Z , there exist positively oriented local coordinate charts

�z W .R�R3; 0/! .X; z/; ��.z/ W .R
2; 0/! .S; �.z//;

such that ��1
�.z/
ı� ı�x coincides, near the origin, with one of the two maps

(1) .t Ix1;x2;x3/ 7! .t;x2
1 Cx2

2 �x2
3/; .t Ix1;x2;x3/ 7! .t;�x2

1 �x2
2 Cx2

3/:

� �.Z/� S is an embedded 1–submanifold disjoint from �.D/. Furthermore, �
maps each component of Z diffeomorphically to its image.

� There exists w 2H 2.X IR/ such that hw; hi> 0 for every h 2H2.X / which
is represented by a connected component of a fibre of � .

Remark One can contemplate many variations on this definition. For instance, there
is no good reason to exclude the possibility that Z contains arcs transverse to @X ,
though it was expedient to do so here. We believe that the techniques presented here
can absorb the greater generality that that would entail, and we plan to explain this in a
future paper.

These fibrations were introduced (under the name ‘singular Lefschetz fibrations’) by
Auroux, Donaldson and Katzarkov [1]. As they showed, the cohomological hypothesis
implies that there exists a near-symplectic form ! 2Z2.X /, a closed two-form such
that !2

x > 0 for x 2X nZ and !zD 0 for z 2Z , positive on the fibres at regular points.
(If Z D∅, this reduces to an observation of Gompf’s about Lefschetz fibrations.)

Example 1.2 Suppose that Y is a closed, oriented three-manifold, and f W Y ! S1 a
Morse function such that all critical points have index 1 or 2. Then f �idS1 W Y �S1!

S1 �S1 is a broken fibration. The cohomological condition (4) holds because every
regular point lies on a loop 
 such that df . P
 / > 0.

The topology of the fibres of a broken fibration changes as one crosses a circle of
critical values. The preimage of a transverse arc is a three-manifold with boundary,
equipped with a Morse function, as illustrated in Figure 1.
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W

† †0 x†

L

Morse function

Figure 1: As one crosses a circle of critical values, the topology of the fibres
changes by surgery. The singular fibres have conical singularities.

Near each circle of critical points, there is a ‘attaching surface’1 Q, cut out in the
coordinates .t Ix1;x2;x3/ as fx3 D 0I x2

1
Cx2

2
D �g. This can be a torus or a Klein

bottle. In the last example these surfaces are tori, but in the next one we get a Klein
bottle.

Example 1.3 (See Figure 2) Let T be a 2–torus, and a, b the standard loops
generating H1.T IZ/. Let � W E ! � be a Lefschetz fibration over the disc with
regular fibre T D ��1.1/ and two critical points whose vanishing cycles v1 and v2

(for vanishing paths 
1 and 
2 ) represent the homology classes Œb� and Œb�C 2Œa�. We
may then suppose that the vi both meet a transversely at a single point, as shown in
the figure.

The monodromy of the fibration is the composite of positive Dehn twists: mD �v2
ı�v1

.
By the Picard–Lefschetz formula, m�.Œa�/D�Œa�; hence m.a/ is isotopic to the curve
a, with reversed orientation. Therefore a sweeps out a Klein bottle Q � @E . One
can extend E to a broken fibration over a larger disc D in which Q collapses to a
circle of critical points, mapping to a circle parallel to @D . This is what is depicted
in the figure (ı is a ‘vanishing path’ to the critical circle; associated with it is the
attaching circle a, shown as a heavy line in the two pictures of the fibre). The fibres
over @D are two-spheres, and they contain a distinguished ‘braid’ (two points on each
fibre, corresponding to the points f.t I 0; 0;˙�/g in the local model (1)). This braid
is isotopic to a trivial braid in S1 � S2 . We can complete the fibration to a broken
fibration � 0 W X!S2 by gluing on a trivial S2 –bundle over the north-polar disc, using
a gluing map which trivialises the braid.

1 Q is the surface along which one would attach a round two-handle S1 �D1 �D2 in giving a round
handle decomposition of the broken fibration.
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v1 D b

v2 D bC 2a
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D
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monodromyD �v2
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Figure 2: A broken fibration over S2 , with tori and spheres as regular fibres.
The north-polar disc in the base is not shown. The loop a sweeps out a Klein
bottle (over the ‘tropic of Capricorn’) which collapses to a circle of critical
points over the equator.

The resulting four–manifold X is simply connected with Euler characteristic �.X /D 4

and signature �.X /D 0 (because � 0 has a section). Indeed, it has a square-zero section,
and since this and the fibre form a Z–basis for homology, the intersection form must
be even. Hence X is a homotopy–S2 �S2 .

Since it is of some interest for the uniqueness problems for broken fibrations, we now
verify that the manifold X of the last example really is S2 �S2 .

Proposition 1.4 X is diffeomorphic to S2 �S2 .

Proof Think of the base as C [ f1g, with the critical values lying in C in the
manner depicted in Figure 2. Consider the circles cx D fRe.z/ D xg [ f1g � C[

f1g; these appear as vertical rulings of the diagram. For C � 0, the preimages
� 0�1.

S
x��C cx/ and � 0�1.

S
x�C cx/ are both diffeomorphic to D2�S2 . We claim

that � 0�1.
S
�C�x�C cx/ is a trivial cobordism.2 To see why the claim holds, let x0

be the least x such that cx hits the critical circle. For small positive � , � 0�1.cx0C�/ is

2To be strictly accurate, here we should smoothly perturb the circles cx (�C � x � C ) near 1 so
that they do not intersect one another.
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diffeomorphic to .S1�S2/[e1 , where e1 is a 1-handle; and � 0�1.
S

x0���x�x0C�
cx/

is an elementary cobordism. This is left to the reader to see, but we do point out the belt-
sphere of the handle attachment (a 2–sphere in � 0�1.cx0C�/): it has a circle in a torus
fibre, isotopic to a, as its equator, which is then pinched off at the two critical points of
� 0 lying over cx0C� . For some x1 > x0 , cx1

passes through the first isolated critical
value, and � 0�1.cx/ changes by adding a 2-handle along v1 (with framing given by
the fibre-framing minus 1). This cancels with the 1-handle, because its attaching circle
v1 intersects the belt sphere transversely at a point. Thus � 0�1.

S
�C�x�x1C�

cx/ is a
trivial cobordism. For the same reason, � 0�1.

S
x1C��x�C cx/ is a trivial cobordism.

The claim follows.

We deduce that X 0 is diffeomorphic to .D2�S2/[� .D
2�S2/, for some orientation-

reversing self-diffeomorphism � of S1 � S2 . We can finish the proof rapidly but
heavy-handedly by invoking Hatcher’s theorem on Diff.S1 �S2/ [10], which implies
that � is isotopic to one of two standard maps. These maps yield S2 � S2 and
CP2#CP

2
, the second of which does not have even intersection form.

A notion closely related to broken fibrations is that of ‘broken pencils’:

Definition 1.5 A broken pencil is a triple .X;B; �/, where B n int.X / is a discrete
subset, and � W X nB ! S2 a map whose critical points conform to the models in
points (1) and (2) of Definition 1.1, and satisfy the condition (3). The model near a
point of B is the projectivisation map C2nf0g!CP1 , .z1; z2/ 7! .z1 W z2/. Condition
(4) is also imposed, where by a ‘fibre’ of � we mean the closure in X of ��1.pt/.

Again, broken pencils are near-symplectic, and the remarkable result of [1] is that the
converse is true: on a closed near-symplectic four-manifold .X; !/, there exist broken
pencils � whose one-dimensional critical set Z coincides with !�1.0/. Moreover,
one can take �.Z/ to be a single circle in S2 , and � to be ‘directional’ in the sense
that only one of the two models in (2) is invoked.

After blowing up X along B , the composite of the blow-down map bX !X with �
extends smoothly to a broken fibration bX ! S2 . The exceptional spheres are sections
of it. Since near-symplectic forms exists as soon as bC.X / > 0, the conclusion is
that, for any non-negative-definite X , X #N CP

2
admits a broken fibration for any

sufficiently large N . (After the basepoints are exhausted, one can go on blowing up
using a simple procedure which produces reducible nodal fibres.)

Roughly speaking, broken pencils are to near-symplectic forms as Lefschetz pencils
are to symplectic forms. However, basic questions remain unanswered:
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� Which connected four-manifolds support broken pencils with connected fibres?
(The fibres over one hemisphere are certainly connected.)

� Auroux–Donaldson–Katzarkov’s sequences of broken pencils seem not to be
‘asymptotically unique’. How are different sequences of pencils on the same
manifold related? A more elementary problem is to write down a set of ‘moves’
which generate many broken fibrations starting from a given one. Example
1.3 can easily be adapted to give a procedure which increases by 1 the genus
of the fibres of a given fibration over a small disc, and does not change the
diffeomorphism-type. This provides one such move.

� Which smooth four-manifolds support broken pencils if we drop the cohomolog-
ical condition (4)? (All of them?)

Remark A development relevant to the second and third questions has occured since
the first version of this paper appeared: Gay and Kirby [7] have produced achiral
broken fibrations (not usually satisfying condition (4)) on arbitrary smooth closed
four-manifolds. Any embedded surface of self-intersection zero can be realised as a
fibre, and its framing can apparently be chosen at will; so, for example, both homotopy
classes of maps S4! S2 are represented by achiral broken fibrations.

Our invariants will be defined for broken fibrations rather than pencils. One could
define invariants of broken pencils from ours simply by blowing up the base locus B

(and relating Spinc –structures on X and bX in the usual way). Then the invariants
of X and bX would be related by the blow-up formula familiar from Seiberg–Witten
theory. However, we will have no more to say about this.

1.5 Outline of the construction

Our construction has three stages:

(I) Constructing Lagrangian boundary conditions for pseudo-holomorphic curves.

(IIa) Properties of the moduli spaces of pseudo-holomorphic curves (transversality,
compactness, orientation, etc.).

(IIb) Algebraic formulation of the invariants.

Stage (I), the subject of the present paper, is perhaps the most interesting, for it is not
obvious how to generalise the moduli spaces studied by Donaldson and Smith. For
(IIa), carried out in the sequel [19], standard techniques from the theory of pseudo-
holomorphic curves suffice, at least if one is prepared to make numerical hypotheses
on the Spinc –structures considered. Stage (IIb) is mostly ‘soft’ topology.
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1.5.1 The Lagrangian correspondences For (I), the key observation (Theorem A,
in Section 3.1) is that, if † is a closed Riemann surface, and x† a Riemann surface
obtained by surgering out a circle L�† (ie, by excising an annulus-neighbourhood
of L and gluing in two discs) then there is a distinguished Hamiltonian isotopy-class
of Lagrangian correspondencesbV L � Symn.†/�Symn�1.x†/; nD 1; 2; � � � W

Lagrangian for a symplectic form of shape .�!/˚x! , where ! and x! are Kähler forms
lying in certain cohomology classes. bV L arises as a vanishing cycle for a symplectic
degeneration of Symn.†/, as follows. Form a holomorphic Lefschetz fibration .E; �/
over the closed unit disc �, with smooth fibre †DE1 and vanishing cycle L�E ,
as in Figure 3. The normalisation of the nodal fibre can then be identified with x† by a
diffeomorphism which is canonical up to isotopy.

The family Symn
�.E/!� of symmetric products of the fibres is a globally singular

space, but, as observed by Donaldson and Smith, it has a resolution of singularities
Hilbn

�.E/ ! Symn
�.E/, the relative Hilbert scheme of n points, which fits into a

commutative diagram

Hilbn
�.E/

//

$$IIIIIIIII
Symn

�.E/

zzuuuuuuuuu

�:

A point on the Hilbert scheme is a pair .s; I/, where s 2� and I is an ideal sheaf in
OEs

such that
P

x2Es
dimC.OEs ;x=Ix/D n. The natural ‘cycle map’ Hilbn

�.E/!

Symn
�.E/ is bijective except over 02�; it partly resolves the fibre over 0. The crucial

observation, which is mentioned in passing by Smith [26, Proposition 3.7], is that
the critical manifold of the natural map Hilbn

�.E/!� (that is, the normal crossing
divisor in the zero-fibre Hilbn.E0/) is naturally biholomorphic to Symn�1. eE 0/.

This hidden link between Symn.†/ and Symn�1.x†/ is the starting point for our
construction.

Choose a Kähler form on Hilbn
�.†/. The Lagrangian correspondence bV L between

Symn.†/ and Symn�1.x†/ is defined as the graph of symplectic parallel transport, over
the ray Œ0; 1���, into the critical set Symn�1. eE 0/.

The relative Hilbert scheme belongs to a class of symplectic degenerations which we
call ‘symplectic Morse–Bott fibrations’. Their geometry is developed in Section 2.
The specific geometry of bV L is explored in Section 3. For a bare definition of the
invariants, a shorter treatment would suffice, but our aim is to get a grip on these
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x†Š eE0
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n normalisation map

Figure 3: An elementary Lefschetz fibration E!� with smooth fibre †
and vanishing cycle L . We recover x† as the normalisation of its central fibre.

decidedly slippery correspondences, both for the sake of intuition and as a foundation
for future work. For example, the link with Heegaard Floer homology requires a good
deal of control over the vanishing cycles.

Remark 1.6 One can also construct (embedded? non-singular?) Lagrangian corre-
spondences between symmetric products—equipped with their canonical Kähler forms
arising from their interpretation as vortex moduli spaces—via the Seiberg–Witten equa-
tions on (a metric completion of) the elementary 3–dimensional cobordism, compare
[22]. It would be very interesting to understand the relation of these correspondences
with ours; this could also be a first step in relating Lagrangian matching and Seiberg–
Witten invariants.
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1.5.2 A moduli space For concreteness, we will focus here on an ‘elementary broken
fibration’ .X0; �/ over a cylinder C D S1� Œ�1; 1�. This has just one circle of critical
points, mapping diffeomorphically to C crit D S1 � f0g. Let Y D ��1.S1 � f�1g/

and xY D ��1.S1 � f1g/. Let us suppose that the fibres Yt have genus g , and that the
fibres xYt genus g� 1. (One can perfectly well reverse the orientation of C , but things
run a little more smoothly if we suppose that the fibres are connected.)

Inside Y , there is the attaching surface Q—a torus or a Klein bottle—formed from
circles in the fibres Yt which shrink to points in the circle X crit

0
.3 Let

Y Œn� D Symn
S1.Y /; xY Œn� D Symn�1

S1 . xY /

be the ‘associated bundles’ of symmetric products of the fibres. These become smooth
when one chooses complex structures on the fibres of Y ! S1 and xY ! S1 . By
applying the construction of Lagrangian correspondences simultaneously to all the
circles Q\Yt � Yt , we obtain a sub-fibre bundle

Q� Y Œn� �S1
xY Œn�1�:

There exist closed, fibrewise Kähler forms � on Y Œn� and x� on xY Œn�1� such that Q

is globally isotropic with respect to .��/˚ x�. This construction is the content of
Theorem B (in Section 4).

We obtain a moduli spaces of holomorphic curves as follows. Consider the two spaces

X Œn�
D Y Œn� � .�1; 0�; xX Œn�

D xY Œn� � Œ0;1/;

equipped with the forms obtained from � and x� by pulling back. These spaces
fibre respectively over C� WD S1 � .�1; 0� and over CC WD S1 � .1; 0�. Choose
asymptotically translation-invariant almost complex structures on the vertical tangent
bundles of X Œn� and xX Œn� , compatible with the fibrewise symplectic forms. Consider
pairs .u; xu/ where u (resp. xu) is a pseudo-holomorphic section of X Œn�! C� (resp.
xX Œn� ! S1 � CC ). Both are required to have finite energy. Neither u nor xu is

individually constrained by a boundary condition over S1 � f0g. However, the pair
.@u; @xu/ WD .ujS1�f0g; xujS1�f0g/, which is a section of Y Œn��S1

xY Œn�1� , is required
to be a section of the sub-fibre bundle Q! S1 .

It is possible to interpret this boundary condition as a Lagrangian boundary condition
for a pseudo-holomorphic half-cylinder in a symplectic manifold. In particular, its
linearisation is Fredholm.

3I am indebted to Paul Seidel for the idea that this surface could serve as a boundary condition for
holomorphic curves.
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There are three sources of non-compactness for the moduli space of pairs .u; xu/: (i) a
sequence may converge to a ‘broken trajectory’ in the sense of Floer theory; (ii) there
may be bubbles in interior fibres; (iii) there may be boundary bubbles, ie, holomorphic
discs in the fibres of Y Œn��S1

xY Œn�1� with boundary on Q. Of these, (i) is an essential
feature, built into the algebra of Floer homology; we will rule out (ii) and (iii) on
‘monotonicity’ grounds providing that n� g.†/, and on ‘weak monotonicity’ grounds
when n � .g � 1/=2, using the methods due to Hofer–Salamon and Lazzarini. The
range .g� 1/=2 < n < g� 1 would take us into the realm of virtual moduli chains;
boundary-bubbling would be a serious issue. The case nD g� 1 is a little better, but
there could be complicated wall-crossing phenomena.

Remark How are we to understand the boundary condition Q? A section 
 of Q

projects to an n–fold multi-section 
 of Y , and an .n� 1/–fold multi-section x
 of
xY ; these have homology classes Œ
 � 2H1.Y IZ/ and Œx
 � 2H1. xY IZ/. It turns out that
there is a standard relative homology class ˇ 2H2.X0; @X0[ZIZ/, where Z DX crit

0

is the circle of critical points, such that

@ˇ D Œx
 �� Œ
 �C ŒZ�:

Thus there is a surface in X0 which ‘tunnels’ between 
 and x
 and has one further
boundary component, along Z . This can be chosen to be a disjoint union of cylinders.
Loosely speaking, Q encodes the condition that 
 ‘matches’ with x
 in the sense that
there is such a surface joining them. This notion of matching boundaries explains the
name of our invariant, which is intended to be suggestive rather than literal. It also
makes a weak link with Taubes’ programme—at the level of homology, not of moduli
spaces.

As Floer homology experts will realise, there are symplectic Floer homology modules

HF�.Y
Œn�; �/; HF�. xY

Œn�1�; x�/

associated with the bundles of symmetric products Y Œn� and xY Œn�1� . In general, these
are modules over the universal Z–Novikov ring ƒZ . Our moduli space gives rise to a
homomorphism

ˆW HF�.Y
Œn�; �/!HF�. xY

Œn�1�; x�/:

This is a raw form of the Lagrangian matching invariant of an elementary broken
fibration. (If one decomposes the Floer homology groups by topological sectors (Spinc –
structures) it is possible to choose the two-forms in such a way that the group associated
with a fixed sector is defined and finitely generated over Z rather than ƒZ .)
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By considering the same broken fibration over the orientation-reversed cylinder, one
gets another map ‰ running in the opposite direction. This map is the adjoint of ˆ
with respect to the Poincaré duality on Floer homology.

It seems highly likely that computational consequences in Floer homology can be
extracted from Lagrangian matching invariants, possibly in the form of exact triangles
(a precise conjecture is stated in Part II).

1.5.3 Lagrangian matching invariants for compact manifolds The Lagrangian
boundary condition Q serves equally well when one has a broken fibration over a
compact surface. For example, given a broken fibration .X; �/ over S2 , with just
one circle of critical points Z , mapping to an ‘equator’ �.Z/, one parametrises a
neighbourhood C of �.Z/ as a cylinder. Then S2 n int.C /DDC[D� , where D˙

are closed discs. Let X˙ D ��1.D˙/, and suppose that the regular fibres over DC

(resp. D� ) have genus g (resp. g�1). Then one considers pairs .uC;u�/, where uC

(resp. u� ) is a pseudo-holomorphic section of the relative Hilbert scheme Hilbn
DC
.XC/

(resp. Hilbn�1
D� .X

�/. The pair of boundary values .@uC; @u�/ is again required to lie
on a Lagrangian Q.

We should keep track of the ‘topological sectors’ of the moduli space, namely, the
homotopy classes of pairs of smooth sections .uC;u�/ with boundary on Q. Each
topological sector ˇ distinguishes a Spinc –structure sˇ 2 Spinc.X / (that is, the homo-
topy class of a lift of the classifying map for the tangent bundle from B GLC.4;R/ to
B Spinc.4/).

Theorem D [19] The expected dimension of the moduli space for the sector ˇ is the
number

d.sˇ/D
1

4
.c1.sˇ/

2
� 2�.X /� 3�.X //:

This number is familiar to gauge theorists as the dimension of the Seiberg–Witten
moduli space.

One can cut down the moduli space to zero dimensions by insisting that uC passes
through certain cycles in marked fibres of the relative Hilbert scheme. The cut down
moduli space is (for certain sˇ ) compact. The Lagrangian matching invariant is a count
of its points. It also keeps track of homological information about the cycles used to
cut down the moduli space.

Remark We should warn the reader of the potentially confusing point that relative
Hilbert schemes play two distinct roles in this story. We study pseudo-holomorphic
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sections of relative Hilbert schemes of points on Lefschetz fibrations; however, the
boundary conditions for these sections are also derived from relative Hilbert schemes
of points on elementary Lefschetz fibrations.

1.5.4 Formulation of the invariants Let Spinc.X / denote the H 2.X IZ/–torsor of
(isomorphism classes of) Spinc –structures on the oriented four-manifold X . When X

is given a structure of broken fibration, with F 2H2.X IZ/ the class of a regular fibre,
we write

Spinc.X /k D fs 2 Spinc.X / W hc1.s/;Fi D 2k; .�/g;

where .�/ is the condition that for any connected component † of a regular fibre, one
has hc1.s/; Œ†�i � �.†/.

Definition 1.7 k 2 Z is admissible for .X; �/ if either (i) the fibres are all connected
and k > 0, or (ii) �.Xs/=2< k < ��.Xs/=2 for all s 2 S reg . A Spinc –structure s is
admissible if s 2 Spinc.X /k with k admissible.

Construction Theorem C [19] To a broken fibration .X; �/ over S2 , such that
�jX crit is injective, one can associate an invariant L.X ;�/ , the Lagrangian matching
invariant. This is a map[

k admissible

Spinc.X /k ! A.X /; s 7! L.X ;�/.s/:

Here A.X / is the graded abelian group

ZŒU �˝Zƒ
�H 1.X IZ/; deg.U /D 2:

The element L.X ;�/.s/ is homogeneous of degree d.s/. It is invariant under isotopies
of � through fibrations of the same type, and equivariant under isomorphisms .X; �/Š
.X 0; � 0/.

The same holds when the base is an arbitrary surface S , providing one replaces A.X /

by A.X; �/D ZŒU �˝Zƒ
�Hom.K� ;Z/, where

K� D ker.�� W H1.X IZ/!H1.S IZ//�H1.X /:

Remark The condition that �jX crit should be injective can always be achieved
by perturbing a given fibration so that a multiply-covered circle of critical values
becomes a family of parallel circles. Unfortunately, we do not prove here that different
perturbations give the same L.X ;�/ , so we cannot remove this restriction. What is
needed is a commutativity property for Lagrangian correspondences (Conjecture 3.16),
which should be provable by fine-tuning of symplectic forms.
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The format of this invariant is familiar. The Seiberg–Witten invariant of a four–manifold
with bC � 1 can be formulated as a map

SWX W Spinc.X /! A.X /;

where SWX .s/ is homogeneous of degree d.s/. In this formulation, SWX .s/ is
the fundamental homology class of the Seiberg–Witten moduli space in the ambient
configuration space B�

X ;s , under isomorphisms

H�.B
�
X ;sIZ/DH�.BGX IZ/Š A.X /:

Here GX DMap.X;S1/ is the gauge group. We should make two standard caveats: (i)
The overall sign of SWX depends on a homology orientation for X ; (ii) if bC.X /D 1,
one has to choose a ‘chamber’ in the space of auxiliary parameters.

Conjecture 1.8 Let s 2 Spinc.X /k with k � 1 admissible. Then

LX ;�.s/D˙i.SWX .s//

on Spinc.X /k , k � 1, where i W A.X / ! A.X; �/ is the map induced by K� ,!

H1.X IZ/, and the sign is independent of s. In particular, LX ;� depends only on X

and not on � . (When bC
2
.X / D 1, the right-hand side is calculated in the ‘Taubes

chamber’ of a compatible near symplectic-form.)

The assumption k � 1 is somewhat arbitrary; the conjecture might well hold for many
(if not all) of the other Spinc –structures for which LX ;� is defined.

It is already known, by combining theorems of Usher and Taubes, that the Donaldson–
Smith invariant is the Seiberg–Witten invariant for high-degree Lefschetz pencils. In
the case of broken fibrations which arise from Morse functions by crossing with S1 ,
the Lagrangian matching invariant can be understood via .2C 1/–dimensional TQFT
methods.

Theorem E [19] Let MK be a 3-manifold obtained by zero-surgery on a knot,
f W MK ! S1 a Morse function with critical critical points of index one and two such
that f �ŒS1� is a generator for H 1.MK IZ/. Consider the broken fibration id�f W S1�

MK ! S1 �S1 , and let s be an admissible Spinc –structure. If c1.s/ is the pullback
of k times the generator of H 2.MK IZ/, then d.s/D 0 and

˙LS1�MK ;id�f .s/D
X
i�1

iakCi D˙SWS1�MK
.s/;

where a0C
P

i ai.t
i C t�i/ is the normalised Alexander polynomial of K .
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There is also a vanishing theorem for the connected sum (not fibre sum!) of broken
fibrations:

Theorem F [19] Let .X; �/ and .X 0; � 0/ be broken fibrations over the same base.
Then there is a broken fibration on the connected sum X #X 0 whose invariants vanish
for any admissible Spinc –structure.

(The admissible Spinc –structures are fewer than one would like here, because there
are disconnected fibres.)

1.5.5 The field theory This is constructed using the theory of Floer homology for
symplectic automorphisms, applied to relative symmetric products of fibred three-
manifolds. See also Usher’s closely related work [30]. The symplectic forms involved
are chosen carefully so as to get a theory which is finitely generated over Z (for a fixed
topological sector).

� Let .Y; �/ be a closed, oriented 3-manifold fibred over a closed, oriented, one-
manifold T . Let t 2 Spinc.Y /k where k is � –admissible. To .Y; �; t/ is
assigned a finitely generated abelian group HF�.Y; t/ (which might depend on
� , despite the notation). Write HFQ

� .Y; t/ for HF�.Y; t/˝Q. If �W T ! T

is an orientation-reversing diffeomorphism, and ��� W �Y ! T the resulting
fibration, one has

(2) HFQ
� .�Y;�t/DHFQ

� .Y; t/
�:

If T D T1qT2 , and Yi D Y jTi , then

(3) HFQ
� .Y; t/DHFQ

� .Y1; tjT1/˝Q HFQ
� .Y2; tjT2/:

� HF�.Y; t/ is graded by the Z–set J.Y; t/ of homotopy classes of oriented
two-plane fields � � T Y underlying t. That is, HF�.Y; t/ is a direct sumL

j2J .Y;t/HFj .Y; t/. (As observed by Kronheimer et al in [11, Section 2.4],
J.Y; t/ is naturally a transitive Z–set with stabiliser div.c1.t//Z, where div.c/
is the divisibility of c in H 2.Y IZ/.)

� HF�.Y; t/ is a graded module over the graded ring ZŒU �˝Zƒ
�K� , where U

has degree �2, and K� D ker.H1.Y IZ/!H1.T IZ// has degree �1. That is,
U �HFj �HFj�2 and a �HFj �HFj�1 for a 2K� .

� Let .X; �/ be a broken fibration over a compact surface-with-boundary S . Let
Y D ��1.@S/, and suppose s 2 Spinc.X / is admissible. Then there is a relative
invariant, namely an element

L.X ;�/.s/ 2HF�.Y; t/; tD sjY:
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L.X ;�/.s/ has degree zero in the sense that it lies in HFj .Y; t/, where j 2

J.Y; t/ is characterised by the existence of an almost complex structure on X ,
representing s and preserving j on Y .

� When .X; s/ is a cobordism from .Y1; t1/ to .Y2; t2/, and Yi D �
�1.Si/ for a

decomposition @S D @S1q@S2 , we usually rewrite the relative invariant, using
formulae ((2), (3)), as a group homomorphism

L.X ;�/.s/ 2 Hom.HFQ
� .Y1; t1/;HFQ

� .Y2; t2//:

It then intertwines the action of ZŒU �. If classes ˛1 2K�1
and ˛2 2K�2

become
homologous in X , then ˛2 �L.X ;�/.s/.x/D L.X ;�/.s/.˛1 �x/.

� When S separates along an embedded circle T � S reg , S decomposes as
S D S1[S2 and X as X DX1[Y X2 , where Y D ��1.T /. Orienting T as
the boundary of S1 , one has

(4) L.X ;�/.s/D L.X2;�jX2/.sjX2/ ıL.X1;�jX1/.sjX1/:

� Continue with the last point but now suppose S is closed. One can use the duality
property of the groups under orientation-reversal to write L.X2;�jX2/.sjX2/ as a
homomorphism

L_.X2;�jX2/
.sjX2/W HFQ.Y; sjY /!Q:

Then the invariant for the closed manifold X is computed using the module
structure as

L.X ;�/.s/.U
p
˝�/D L_.X2;�jX2/

ıU p
ı� ı .L.X1;�jX1/sjX1/;

where � 2ƒ�K� is in the image of ƒ�K�jY .

Remark We have brought in rational coefficients only so as to avoid distracting Ext
and Tor terms.

Remark Floer homology aficionados will want to know how HF�.Y; t/ compares
with the groups arising in other Floer theories. D Salamon conjectured that the symplec-
tic Floer homology groups of relative symmetric products of .Y; �/, defined using a
closed two-form � 2�2.Symn

S1.Y //, should be isomorphic to the perturbed Seiberg–
Witten monopole Floer homology of Y [23]. Different forms � will correspond to
different perturbations; one can make this precise by comparing the periods, cf Y Lee’s
article [12]. The canonical, finitely-generated group HF.Y; t/ should be isomorphic
to monopole Floer homology with ‘monotone perturbations’:

HF�.Y; t/
?
Š

b

HM�.Y; tI Œw�/:
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Here w is a closed two-form which is used to perturb the Chern-Simons-Dirac func-
tional, chosen so that Œw�D�c1.s/, where �> 2� (compare [12]). For such a Œw� there
are no reducibles, so HM � D 0. Hutchings’ periodic Floer homology groups (which,
like HF�.Y; t/, involves the map � ) are also thought to be isomorphic; Usher has
made some progress in this direction [30]. Ozsváth–Szabó’s HFC is closely related,
but not always the same (our groups can be non–zero for infinitely many t).

It is natural to conjecture that, under the isomorphism between HF� and monopole
Floer theory, the cobordism-maps should also coincide, ie, that these are equivalent field
theories on the cobordism-category of broken fibrations equipped with Spinc –structures.

1.5.6 Further directions There are other gauge theories which one could attempt to
mimic using methods similar to those in this paper, notably SO.3/ instanton theory.
Indeed, Chris Woodward and Katrin Wehrheim are working on a closely related theory
based on Lagrangian correspondences between spaces of flat connections. The SU.2/
instanton theory is more problematic; one needs a good way of dealing with the
singularities in moduli spaces of flat connections over surfaces. It would also be
interesting to develop the knot Floer homology of Ozsváth–Szabó and Rasmussen from
a ‘Lagrangian matching’ point of view. As we have mentioned, Lagrangian matching
invariants have applications within symplectic Floer homology; we plan to develop this
by studying the exactness of certain triangles of Floer homology groups.

1.5.7 Navigation The main results of this paper—the ones which have a major
bearing on its sequel—are Theorem A (which occurs near the beginning of Section 3.1)
and Theorem B (in Section 4). The results of Section 4.1 will also be needed, though
their role is of secondary importance. The ‘structure theorem’ 3.10 is an important
staging post in establishing Theorems A and B. Section 2 sets the stage; it also contains
a non-trivial result, the ‘monodromy theorem’ 2.16 which, however, is not part of the
main logical thread.

1.5.8 Acknowledgements This paper is a refined and reworked version of material
from the author’s PhD thesis [18] (Imperial College London, 2005) under Simon
Donaldson. It was he who proposed the problem of constructing invariants for broken
fibrations. I owe many thanks to him for his generosity with time and ideas and for
his patient encouragement. I am indebted to Paul Seidel, who has made invaluable
suggestions at several points in the project, and to Ivan Smith for many useful discussions
and comments. I acknowledge the strong influence on this work of papers by these same
three people (chiefly [5], [25] and [24]). My thanks also to Michael Usher for telling me
about his related work [30] and pointing out a good way of using a cohomology-class
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2 Fibred symplectic Picard–Lefschetz theory

A leading role in this paper is played by certain Lagrangian correspondencesbV � .Symn.†/�Symn�1.x†/; !˚�x!/

between symmetric products of Riemann surfaces †, x†, where �.x†/� �.†/ D 2.
The natural setting for these submanifolds is Picard–Lefschetz theory: they arise as
vanishing cycles for algebro-geometric degenerations of Symn.†/. The degenerations
are globally smooth, but have critical fibres with normal crossing singularities. Our
approach emphasises the symplectic geometry of these degenerations; for us, they
are examples of ‘symplectic Morse–Bott fibrations’. In this section we develop the
geometry of such fibrations. Only the basics are required for the definition of Lagrangian
matching invariants. The results on monodromy (2.4, 2.5) are not, though they may
well prove useful in computations.

The work of Seidel and Smith [25] exploited closely related geometries. However, by
working with affine algebraic varieties with C�–actions, they were able to circumvent
several difficulties (but had to contend with an additional one, concerning parallel
transport).

Definition 2.1 (a) A symplectic Morse–Bott fibration .E; �;�;J0; j0/ consists of
a manifold E2nC2 (possibly with boundary) and a smooth proper map � W E! S to
an oriented surface S , mapping @E submersively to @S ; a closed two-form � on E ;
an almost complex structure J0 in a neighbourhood of the set of critical points of � ,
Ecrit �E ; and a positively oriented complex structure j0 in a neighbourhood of the
set of critical values S crit � S .

It is required that � is .J0; j0/–holomorphic near Ecrit ; that Ecrit is a smooth sub-
manifold of E ; that the complex Hessian form

Hx WD
1

2
.D2�/x W Nx˝C Nx! T�.x/S

is non-degenerate as complex bilinear form, for each fibre Nx of the normal bundle
N !Ecrit ; and that � is non-degenerate on the vertical tangent distribution T vE D

ker.D�/, compatible with J0 , and ‘normally J0 –Kähler’ (defined momentarily) near
Ecrit .
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(b) An elementary symplectic Morse–Bott fibration is one where the base S is a
closed disc xD.r/, having S crit D f0g, with connected critical set Ecrit . It has rank k

when Ecrit has real codimension 2kC 2 in E .

(c) We explain the term normally Kähler. This means that a neighbourhood of Ecrit is
foliated by J0 –complex normal slices fSxgx2Ecrit , such that J0jSx is integrable and
�jSx Kähler.

In our applications, J0 will usually be integrable, and � a J0 –Kähler form near Ecrit .
This implies that it is normally J0 –Kähler: for example, one can construct the leaves
Sx as the fibres of the tubular neighbourhood embedding of a disc bundle in N induced
by the Kähler metric.

The condition of being ‘normally Kähler’ is a technical convenience. It could probably
be eliminated by means of an argument to show that after perturbing J0 and � it can
always be satisfied, but we do not pursue this point.

Definition 2.2 A locally Hamiltonian fibration (LHF) is a triple .E; �;�/, where
� W E! S is a smooth fibre bundle, and � a closed two-form such that �j ker.D�/
is non-degenerate.4

A point of crucial importance is that an LHF has a canonical symplectic connection,
whose horizontal distribution T hE is the symplectic complement of T vE D ker.D�/.
Locally in S , this connection effects a reduction of structure group from the symplectic
automorphism group Aut.Es; �jEs/ to the Hamiltonian group Ham.Es; �jEs/.

2.1 Lefschetz fibrations

A symplectic Morse–Bott fibration with discrete critical locus Ecrit � E is called a
symplectic Lefschetz fibration; these are the subject of symplectic Picard–Lefschetz
theory. In [24], Seidel gives a complete account of the part of this this theory which is
local in the base. Briefly, this goes as follows.

With an elementary Lefschetz fibration, whose smooth fibre is .M; !/D .Er ; �jEr /,
one associates its vanishing cycle .L; Œf �/, which is a Lagrangian submanifold L�M

together with a framing (a diffeomorphism f W Sn! L, up to reparametrisation by
orthogonal transformations). Conversely, given a framed Lagrangian sphere .L; Œf �/

4The nomenclature is not standard but there does not seem to be a generally accepted term for these
objects. Some other names that have been used, such as ‘symplectic bundle’, are not really accurate. Some
authors insist on normalisation conditions, but these are irrelevant here.
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in .M; !/, there is a standard elementary Lefschetz fibration which has .L; Œf �/ as
vanishing cycle.

Also associated with .L; Œf �/ is the Dehn twist �.L;Œf �/ 2 Aut.M; !/, which is a
symplectomorphism determined up to Hamiltonian isotopies supported near L. Given
an elementary Lefschetz fibration, the monodromy of the symplectic fibration @E!
@ xD.r/ is in the same Hamiltonian-isotopy class as the Dehn twist about its vanishing
cycle.

Our aim here is to explain how these ideas generalise to symplectic Morse–Bott
fibrations. For the most part, the generalisation is straightforward (and was known
to Seidel circa 1998—unpublished notes). There are two new points. One concerns
Hamiltonian deformation invariance of the vanishing cycles, which can be efficiently
handled using a lemma of Wei-Dong Ruan concerning deformations of fibred coisotropic
submanifolds. The second point, which requires some work, is how to deform � to a
two-form which is of a standard kind in some tubular neighbourhood of Ecrit . Such
an isotopy is an essential step in computing the symplectic monodromy of .E; �;�/.
The strategy—making a preliminary deformation so as to make � manageable along
Ecrit itself—is my implementation of a suggestion of Paul Seidel, and I am grateful
for his advice.

Notation We collect here our customary notation concerning (elementary) symplectic
Morse–Bott fibrations .E2nC2; �;�;J0; j0/. We write

� M for the smooth fibre ��1.r/, xM for the critical manifold Ecrit � ��1.0/;

� ! (resp. x! ) the restriction of � to M (resp. xM );

� N for the normal bundle N xM=E!
xM ;

� V � M for the coisotropic vanishing cycle; this comes with a submersion
�W V ! xM ;

� bV � .M;�!/� . xM ; x!/ for the graph of � (the Lagrangian vanishing cycle).

� T vE � TE is the vertical tangent distribution ker.D�/; T hE is the �–
horizontal tangent distribution (defined on E nEcrit ).

2.2 Preliminaries

2.2.1 Tubular neighbourhoods Let .E2nC2; �;�;J0; j0/ be a symplectic Morse–
Bott fibration with critical locus xM WDEcrit and rank k . To simplify the notation, we
will assume in the present discussion that there is a single critical value s 2 S . Choose
a holomorphic chart � W .D.r/; 0/! .S; s/.
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The normal bundle N ! xM is a complex vector bundle of rank k C 1 (it carries a
complex structure J N

0
obtained by linearising J0 ). It has a natural non-degenerate

complex quadratic form, the Hessian form of � , so its structure group is reduced to
O.kC 1;C/.

Definition 2.3 A Morse–Bott tubular neighbourhood for xM is a smooth tubular
neighbourhood embedding �W D�N xM=E ! E such that, for each x 2 xM , (i) the
map �x W D�Nx ! E is .J N

0
;J0/–holomorphic; (ii) ��x� is a Kähler form; and (iii)

D��1 ı� ı �W D�N ! C is equal to the Hessian form Hx .

Lemma 2.4 A Morse–Bott tubular neighbourhood always exists.

Proof By assumption, there is a family of holomorphic normal slices Sx �E through
x 2 xM , foliating a neighbourhood of xM , such that �jSx is Kähler. Shrinking the Sx

if necessary, we may suppose that they define a locally trivial fibration in which the
fibres are complex manifolds biholomorphic to a ball B2n.0I �/� Cn .

The holomorphic Morse lemma implies that, for fixed x 2 xM , there is a holomorphic
embedding �0x W D�Nx!Sx , mapping 0 to 0, such that D��1ı� ı�0DHx . Moreover,
the parametric (or Morse–Bott) version of the lemma says that we can find a smooth
family of such embeddings as x ranges over a ball B � xM .

Fixing x again, any other such embedding differs from �0x by an element of O.Hx/,
since the only holomorphic automorphisms of the ball which preserve a non-degenerate
quadratic form are its orthogonal transformations. We can pin down �x uniquely by
saying that the derivative D0�x W Nx! TxSx DNx should be the identity map on Nx

(this is in any case part of the definition of a tubular neighbourhood embedding). The
maps �x then depend smoothly on x , for over the ball B � xM they evidently differ
from the initial choice x 7! �0x by a smooth gauge transformation.

Remark The normal bundle p W N ! xM has a totally real subbundle NR D fv 2

N W .D2�/p.v/.v; v/ 2 Rg which, like N itself, carries a non-degenerate quadratic
form. Thus the structure group of N is reduced to O.k C 1/ � O.k C 1;C/: there
is a principal O.k C 1/–bundle P ! xM (the orthonormal frames of NR ) and an
isomorphism P �O.kC1/ CkC1 ŠN .

2.2.2 Symplectic associated bundles One way to construct associated bundles in
the symplectic category is the following (compare eg, Guillemin–Sternberg [9, Example
2.3] or the useful discussion in Seidel–Smith [25, Section 4.3]). Take a Hamiltonian
action of a compact Lie group G (with Lie algebra g) on the symplectic manifold
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.F; �/, generated by the moment map �W F ! g� , so d�.�/ D ��.X�/� for � 2 g.
Suppose p W P ! B is a principal G–bundle over a smooth manifold B . Choose a
connection one-form ˛ 2�1.P I g/. Pulling back ˛ 2�1.P I g/ and � 2�0.F I g�/

to the product P �F and contracting via the pairing g�˝g!R results in an ordinary
one-form h�; ˛i 2�1.P /. The two-form

dh�; ˛iC � 2�2.P �F /

is invariant under the action of G on P �F given by g � .x; z/D .x �g�1;g � z/, so
it descends to the associated bundle P �G F . It is closed, and non-degenerate on the
fibres of P �G F ! B . If x! is a symplectic form on B then

(5) � WD p�x!C dh�; ˛iC � 2�2.P �G F /

is symplectic in an open set U� D P �G �
�1.B�/� P �G F when B� � g� is a ball

of sufficiently small radius � . This becomes apparent as soon as one writes down
the value of � on a pair of tangent vectors: take .u1;u2/ 2 Tp.x/B and lift them to
˛–horizontal vectors .u\

1
;u
\
2
/ 2 TpP . Choose vertical vectors .v1; v2/ 2 TzF . Then

the vectors u
\
i C vi 2 TŒx;z�.P �G F / satisfy

�.u
\
1
C v1;u

\
2
C v2/D x!.u1;u2/Ch�.z/; d˛.u

\
1
;u
\
2
/iC �.v1; v2/:

We call � 2�2.U�/ an associated symplectic form.

A case to keep in mind is F D CkC1 , with G D O.k C 1/ acting linearly. The
moment map is �W CkC1! o.k C 1/�; �.x/ D .� 7! 1

2
.x; �x//, so ��1.0/ D f0g.

Its associated symplectic forms

(6) �D p�x!C dh�; ˛iC!CnC1 :

will appear periodically in this paper.

2.3 Vanishing cycles

In a symplectic Lefschetz fibration .E; �;�/, one associates with a path 
 W Œa; b�!S

leading to a critical value its vanishing cycle. This is a Lagrangian sphere in E
.a/ .
In a symplectic Morse–Bott fibration, the vanishing cycle is rather a Lagrangian
correspondence between E
.a/ and the singular locus in E
.b/ .

2.3.1 Symplectic parallel transport As observed above, an LHF .E; �;�/ has a
natural connection: the horizontal subspace T h

xE � TxE is defined to be the set of
vectors u such that �.u/� is zero on T v

xE . The connection is symplectic is the sense
that any horizontal vector field h satisfies Lh�D 0. When � is proper, the connection
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can be integrated over any smooth path 
 W Œa; b�! S in the base, so 
 has a parallel
transport map

�
 W Ea!Eb;

a symplectomorphism between the fibres.

Now suppose that .E; �;�/ is symplectic Morse–Bott. Parallel transport obviously
still make sense for paths in the open set of regular values S reg � S . If 
 W Œa; b�! S

is a path satisfying 
�1.S crit/D fbg, define

(7) V
 D fx 2Ea W lim
t!b�

�
 jŒa;t �.x/ 2Ecrit
g;

the set of points for which the limiting parallel transport exists and lands in the singular
locus of Eb . Put M DEa and xM DEcrit\Eb , and denote by � the limiting parallel
transport map V
 ! xM .

Lemma 2.5 V
 � M is a submanifold and the map �W V
 ! xM a smooth fibre
bundle. The fibres are spheres Sk , where k is the rank of .E; �/. The structure group
of � is reduced, in a canonical way, to O.kC 1/, via an isomorphism of V
 with the
unit sphere bundle in NR .

Proof See [24, Lemma 1.13]. The only difference is that we must use Morse–Bott
tubular neighbourhoods instead of holomorphic Morse charts.

Notice that there is even a well-defined parallel transport map �
 W Ea ! Eb , the
pointwise limit of �
 jŒa; b0� as b0 ! b from below. Consequently, an elementary
symplectic Morse–Bott fibration deformation-retracts to its critical fibre.

The fibre bundle �W V
 ! xM , together with its reduction to O.kC 1/ and embedding
V
 !M is called the vanishing cycle associated with 
 .

The restriction of the � to V
 is also the pullback of � from the critical set:

(8) ��.�j xM /D�jV
 :

This follows readily from the fact that the parallel transport maps �
 jŒa;t � are symplectic.

The symplectic complement of T V
 is ker.D�
 /�T V
 . The fibres of � are isotropic
spheres. Thus V
 is a fibred coisotropic submanifold of M : T V
 contains its own
symplectic complement, and the isotropic foliation of V
 is a fibration: each leaf F

has a neighbourhood diffeomorphic to F �B2n�k by a diffeomorphism which takes
the isotropic foliation to the product foliation with leaves F � fzg.
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2.3.2 Good two-forms It is sometimes convenient to have at one’s disposal a space
of two-forms, not necessarily closed, which have well-defined vanishing cycles in the
smooth (not symplectic) category. We therefore make the following ad hoc definition.

Consider a symplectic Morse–Bott fibration .E; �;�0;J0; j0/.

Definition 2.6 Fix a Morse–Bott tubular neighbourhood N of Ecrit , and consider it
as an associated CkC1 –bundle of a principal O.kC1/–bundle p W P !Ecrit . Fix also
an almost complex structure J on E , extending J0 , such that D� ıJ D iıD� , tamed
by �0 . A two–form � is good if (a) it is non-degenerate on T vE (and so defines a
connection away from Ecrit ); (b) it is an ‘associated form’ p�x!C dh�; ˛iC!CkC1

on N , as in formula (6) above; and (c) it ‘tames’ J , ie, �.u;Ju/ > 0 when u¤ 0.

So ˛ is a connection one–form on P ; � the moment map for O.k C 1/ acting on
CkC1 ; and x! a non-degenerate (but not necessarily closed) two–form on Ecrit .

Parallel transport is well-behaved for a good two–form � (the only potential problem
is near the critical set, and there it is the closed forms dh�; ˛iC!CkC1 which control
the transport, so everything works as usual). It therefore defines a vanishing cycle
which is an Sk –bundle over Ecrit .

Lemma 2.7 Once the tubular neighbourhood and J are fixed, (i) the space of good
forms is contractible, hence any two vanishing cycles are smoothly isotopic; (ii) if one
has a good form � defined on an open subset U of E containing N , and if U 0 �� U

is an open set whose closure lies within U , then there is a globally-defined good form
which agrees with � on U 0 .

Proof The space of good forms is convex, which gives (i). For (ii), we can patch
locally-defined forms; the patching works because of the taming condition.

2.3.3 Hamiltonian deformations A solution to the infinitesimal deformation prob-
lem for fibred coisotropic manifolds has been given by W Ruan [21].

Let .M; !/ be a symplectic manifold, and V0 �M a fibred coisotropic submanifold.
Let . xM0; x!0/ be the reduced space of isotropic leaves, and �0 W V0!

xM0 the quotient
map.

Given an isotopy fVtgt2Œ0;1� , one chooses diffeomorphisms �t W V0 ! Vt covering
diffeomorphisms x�t W

xM0!
xMt of the reduced spaces. Let Xt D

P�t be the generating
vector fields on Vt , and put ˇt D �.Xt /.!jVt /. Then for any vector field Yt on Vt tan-
gent to the isotropic distribution, one has �.Yt /LXt

.!jVt /D 0. But �.Yt /LXt
.!jVt /D
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�.Yt /d �.Xt /.!jVt /D �.Yt /dˇt . Thus both �Yt
dˇt and LYt

dˇt Dd �Yt
dˇt D0 vanish.

Hence dˇt D�
�
t 
t for closed two–forms 
t 2�

2. xMt /. It follows that ��t ˇt represents
a class

(9) Œ��t ˇt � 2H 0. xM0IH1/;

where H1 is the natural local system on xM0 with fibres H1
x DH 1.��1

0
.x/IR/. Let

us call the class (9) the flux of f.Vt ; �t /g.

Ruan shows that the isotopy fVtg is symplectic—that is, it is induced by a global sym-
plectic flow on M —if and only if ıŒ��t ˇt �D 0 for each t , where ı W H 0. xM0IH1/!

H 2. xM0IR/ is the Leray–Serre differential. He also proves the following lemma; we
take the liberty of reproducing the proof.

Lemma 2.8 (Ruan [21]) fVtg is a Hamiltonian isotopy if and only if the flux Œ��t ˇt �

is zero for all t .

Proof Necessity is clear. For sufficiency, observe that the vanishing of Œ��t ˇt � means
that there are functions Kt 2C1.Vt / such that dKt�ˇt vanishes on the isotropic fibres
of Vt . For any vector field Yt on Vt which is tangent to the isotropic distribution, we
have �.Yt /.dKt�ˇt /D 0, and LYt

.dKt�ˇt /D��.Yt /dˇt D 0. So dKt�ˇt D�
�
t ˇ
0
t

for some ˇ0t 2�
1. xM /. Now, ˇ0t D �.Zt /! for a vector field Zt along Vt which is

tangent to Vt . Let X 0t DXt �Zt . Integrating X 0t , one gets a new flow �0t W V0! Vt .
Since �.X 0t /! D dKt , �0t globalises to a Hamiltonian isotopy.

We apply the lemma to the vanishing cycles of .E; �;�/ for varying �. Let 
 W Œ0; 1�!
S be a path in the base, with 
�1.S crit/D f1g. Let M D ��1.
 .0// be the smooth
fibre, xM � ��1.
 .1// the critical manifold, and V �M the coisotropic vanishing
cycle associated with 
 . Parallel transport defines an Sk –bundle �W V ! xM with
isotropic fibres. One can also identify this map with the quotient map to the reduced
space of isotropic leaves in V .

Consider a path �t of two-forms on E , each making � a symplectic Morse–Bott
fibration, such that d�=dt is exact for all t . Suppose additionally that �s is constant
on M and on xM . Let .Vt ; �t / be the vanishing cycle associated with 
 , defined via
�t .

Lemma 2.9 There is a Hamiltonian isotopy t 7!ˆt 2Ham.M; !/ with ˆt .V0/DVt .

Remark The folowing proof applies for any k ; however, when k > 1, the result
follows immediately from Ruan’s lemma, since H 1.Sk IR/D 0.
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Proof Consider the ‘thimble’ Wt �E associated with the path 
 and the form �t , ie,
the closure of the manifold swept out by Vt via �t –parallel transport along 
 . We may
assume (by adding a form pulled back from the base) that �t is symplectic on E . Then
Wt � .Et ; �t / is fibred coisotropic, and its isotropic fibres are .kC1/–disks. Choose
diffeomorphisms ˆt W W0 ! Wt covering the identity map on xM , with generating
vector field Xt D

P̂
t along Wt . Let ˛t D �.Xt /�t 2�

1.Wt /. Then ˆ�t ˛t has a flux
Œˆ�t ˛t �2H 0. xM IH1/. But the fibre H1 is H 1. xDkC1IR/D 0, so H1 is the zero local
system and Œˆ�t ˛t �D 0.

Now, ˆt restricts to V0 D @W0 to give a diffeomorphism �t W V0! Vt , generated by
the vector field Yt D Xt jVt . Put ˇt D �.Yt /! . The flux Œ��t ˇt � lies in H 0. xM IK1/,
where the fibre of the local system K1 is H 1.Sk IR/. It is the image of of Œˆ�t ˛t �

under the natural restriction map, and is therefore zero. The result now follows from
Ruan’s lemma.

There is a useful repackaging of this result in the language of fibre bundles, which
allows us to dispense with the assumption that the path �t is constant on M and xM .

Suppose that M! Œ0; 1� is a fibre bundle, and �2�2.M/ a closed, fibrewise-symplectic
form. Let V�M be a sub-bundle such that the fibres Vt �Mt are fibred coisotropic.
There is then a bundle xM! Œ0; 1� of reduced spaces, and a quotient map �W V! xM.
One has the easy lemma:

Lemma 2.10 The following two conditions are equivalent:

(1) V is coisotropic; moreover, �jVD ��x� for a closed two-form x� on xM;

(2) the sub-bundle V is preserved by the �–parallel transport maps over intervals
Œa; b�� Œ0; 1�.

When this happens, we shall simply say that V is ‘globally coisotropic’.

The �–parallel transport �t W Mt !M0 over Œ0; t � trivialises the symplectic fibration
M! Œ0; 1�. The fibre .M; !/D .M0; !0/ contains coisotropic submanifolds �t .Vt /

which are easily seen to be Hamiltonian isotopic. Conversely, if Vt � .M; !/ are
coisotropic submanifolds which are Hamiltonian isotopic, then

S
t2Œ0;1� Vt � ftg �

M � Œ0; 1� is globally coisotropic with respect to a closed form of shape !Cd.Htdt/

on M � Œ0; 1�.

Choose a connection r on V! Œ0; 1�, and define ˇ 2�1.V/ by

ˇ D �.@
\
t �
e@ t /�:
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Here @\t is the vector field of �–horizontal lifts of @t along V, and e@ t the field of
r–horizontal lifts of @t , tangent to V. (If V were globally coisotropic, we could define
r to be the connection obtained from � by restriction, and ˇ would be zero.) Then ˇ
defines a flux

(10) Œˇ� 2H 0. xM;H1/;

where H1 is now the natural local system on xM with fibres H1
x D H 1.��1.x/IR/.

To see this, simply observe that �–parallel transport trivialises M and reduces the
situation to the one already considered.

Proposition 2.11 If Œˇ� vanishes, we can find a different closed two-form �0 such that
� � �0 vanishes on the fibres, for which V is globally coisotropic.

Proof This is Ruan’s lemma, translated into fibre bundle language.

Let us apply this to families of vanishing cycles:

Lemma 2.12 Suppose that E is equipped with two-forms �s , s 2 Œ0; 1�, each making
.E; �;�s/ a symplectic Morse–Bott fibration, and that the �s are the restrictions of a
closed two-form � on E � Œ0; 1�. Then the forms !s D�jE1 are the restrictions of a
closed two-form � 2�2.M � Œ0; 1�/ such that the union of the coisotropic vanishing
cycles,

VD
[

s2Œ0;1�

Vs � fsg �M � Œ0; 1�

is globally coisotropic. Moreover, we can take � to equal �jM � Œ0; 1� outside a small
neighbourhood of V.

Indeed, our previous argument shows that the flux vanishes.

Remark We can also allow the base to be S1 rather than Œ0; 1�. Any LHF .M!

S1; �/ is isomorphic to the mapping torus of its monodromy. A mapping torus is a
bundle T.�/ obtained from a symplectic automorphism � 2 Aut.M; !/:

T.�/D .M � Œ0; 1�/=.�.x/; 0/� .x; 1/:

This space maps naturally to S1 . The two-form is !� , the unique form whose pullback
to M � Œ0; 1� is the pullback of ! from M . If V is a fibrewise-integral-coisotropic
subbundle whose flux vanishes, we can replace !� by a form of shape !�Cd.t ^Ht /

which makes V globally coisotropic. Notice that the replacement form is cohomologous
to !� .
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2.4 Fibred Dehn twists

Neither this subsection, nor the next, is required for the definition of Lagrangian
matching invariants.

Seidel explains in [24, Section 1.2] that the symplectic manifold .T �Sn; d�can/ carries
a distinguished class of compactly supported symplectomorphisms, the model Dehn
twists. Define

(11) HD fh 2 C1.R;R/ W h is even and h.t/D�jt j=2 for t � 0g:

The model Dehn twist ıh is an automorphism associated with an element h 2H . The
map H! Autc.T �Sn; d�can/, h 7! ıh , is constructed as follows.

There is a Hamiltonian S1 –action on T �Sn n Sn , generated by the moment map
�.v;x/ D jvj, where j � j is the norm inherited from RnC1 on T �Sn D f.v;x/ 2

RnC1�RnC1 W jxj D 1; hv;xiD 0g. The Hamiltonian functions H1D hı�, H2D
1
2
�

Poisson-commute; hence �H1CH2

t D �
H1

t ı�
H2

t . The model Dehn twist ıh is defined
(on T �Sn nSn ) to be the time-2� Hamiltonian flow �

H1CH2

2�
D �

H1

2�
ı�

H2

2�
. Because

h is a smooth function of t2 , H1 extends smoothly over the zero-section Sn , and its
flow is trivial there; �H2

2�
also extends smoothly over the zero-section, where it acts

as the antipodal map. Thus ıh 2 Autc.T �Sn; d�can/, and ıh.0;x/D .0;�x/. Since
H is is convex, ıh0 differs from ıh by a canonical, compactly supported Hamiltonian
isotopy.

Now consider a principal O.nC1/–bundle p W P ! xM . The linear action of O.nC1/

on Sn induces an action on T �Sn , which is Hamiltonian with moment map � . We
can form the associated bundle T D P �O.nC1/ T �Sn , with associated closed forms,

d
�
�canCh�; ˛i

�
2�2.T /;

defined via connection one-forms ˛ 2 �1.P I onC1/. If x! 2 �2. xM / is symplectic
then ! WD p�x!C td.�canCh�; ˛i/ 2�

2.T / is symplectic on a neighbourhood of the
zero-section U D P �O.nC1/ T �Sn

��
.

The moment map � 2 C1.T �Sn n Sn/ globalises to a map �P 2 C1.T n xM /.
Given h 2 H , we can form H1 D h ı �P , as well as H2 D �P=2. Let HU D

fh 2H W supp.H1/� U g. Given h 2HU , we can consider the !–Hamiltonian flow
ıU

h
WD �

H1CH2

2�
on U . The vertical vector field XHi

, given on each fibre as the d�can –
Hamiltonian vector field of Hi , is easily checked to be the global !–Hamiltonian
vector field of Hi . Hence the flow �

H1CH2

2�
preserves the fibres of p . Thus ıU

h
is just

the map obtained by applying ıh to each fibre, and as such it is globally smooth, with
proper support inside U .
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To sum up, we have:

Lemma 2.13 There is a map HU ! Aut.U; !/, h 7! ıU
h

, such that (i) ıU
h

covers
the identity map on xM ; (ii) ıh has proper support inside U ; (iii) ıU

h
acts on the zero

section P�O.nC1/S
n as the antipodal map Œp;x� 7! Œp;�x�; and (iv) ıU

h0
is canonically

Hamiltonian isotopic to ıU
h

.

We call ıU
h

the model fibred Dehn twist associated with h on the associated bundle
P �O.nC1/ T �Sn .

Model fibred Dehn twists as monodromy maps Model fibred Dehn twists arise as
monodromy maps for certain symplectic Morse–Bott fibrations over the disc. Actually
this cannot literally be true, because according to our definition, the fibres of a symplectic
Morse–Bott fibration are closed manifolds. However, there is an obvious extension of
the definition to allow fibres which have boundary (similar to that of Lefschetz fibrations
in [24]) where the total space has a codimension-two corner where the ‘horizontal’ and
‘vertical’ parts of the boundary meet.

A basic example of a Lefschetz fibration .Er ; �; !CnC1 ;J0; j0/ in this broader sense
is the following from [24, Lemma 1.10]: let

(12) Er D fz 2 CnC1
W jq.z/j � r; kzk4� jq.z/j2 � 4�2

g; q.z/D
X

i

z2
i :

This maps to the disc xD.r/ by � WD qjEr . The complex structures are the standard
ones.

Lemma 2.14 (Seidel) There is an O.nC 1/–invariant one-form ˛ , supported in
Er \fz W kzk

4�jq.z/j2 � 3�2g such that the following holds. There is a canonical iso-
morphism � W .Er ; !CnC1Cd˛/! ..T �Sn/��; d�can/, and the (positive) monodromy
� of .Er ; !CnC1 C d˛/ around @ xD.r/ has the property that � ı � ı ��1 is a model
Dehn twist.

The orthogonal group O.nC1/ preserves E�CnC1 and preserves the fibres of q , so we
can form an associated bundle EP WDP �O.nC1/E! xM and a map qP W EP!

xD.r/,
Œp; z� 7! q.z/. A choice of connection ˛ on P gives an associated two-form

� WD p�x!C �C dh˛; �i;

which, if we choose � and r small, is symplectic on EP . The fibre .EP /r D q�1
P
.r/

is also a bundle over xM . Moreover, the map � W Er ! .T �Sn/�� is O.nC 1/–
equivariant,5 hence �P W .EP /r!P�O.nC1/T

�Sn
��

, Œp; z� 7! Œp; �.z/� is well-defined
and pulls back ! D p�x!C dh�; ˛iC d�can to the restriction of �.

5This follows from the interpretation of � as a symplectic parallel transport map, [24, Lemma 1.10].

Geometry & Topology, Volume 11 (2007)



Lagrangian matching invariants for fibred four-manifolds: I 789

Thus we obtain the following lemma.

Lemma 2.15 There is a canonical isomorphism

�P W ..EP /r ; �j.EP /r /! .P �O.nC1/ T �Sn
��; d�can/:

Moreover, the monodromy �P of EP around @ xD.r/, taken in the positive direction,
has the property that �P ı �P ı�

�1
P

is a model fibred Dehn twist.

2.4.1 Fibred Dehn twist along a coisotropic sphere-bundle The model fibred Dehn
twists, and the standard fibrations EP , can be transplanted into other manifolds.

Suppose given

� symplectic manifolds .M 2n; !/ and . xM 2n�2k ; x!/;

� an orthogonal Sk –bundle p W V ! xM ;

� a smooth, proper embedding e W V !M such that e�! D p�x! .

From these data, one immediately obtains a Lagrangian correspondence—the graph of
p :

(13) bV WD f.x;px/ W x 2 V g � .M;�!/� . xM ; x!/:

Moreover, one can construct (a) an automorphism �V 2 Aut.M; !/, the fibred Dehn
twist along V , supported in a tubular neighbourhood of V , and determined up to
Hamiltonian isotopies also supported in a tubular neighbourhood; and (b) a symplectic
Morse–Bott fibration .EV ; �;�/ over the disc xD.r/ such that ��1.r/Š .M; !/. The
monodromy of EV around @ xD.r/ is a fibred Dehn twist along V .

The construction for (a) is as follows. The submanifold e.V / �M is coisotropic,
for the annihilator of e�.TxV / in Te.x/M is ker.Dxp/ � e�.TxV / (the inclusion
ker.Dxp//� e�.TxV /! is clear, and equality holds by a dimension-count).

Let T� D PV �O.kC1/ .T
�Sk/�� , where pV W PV !

xM is the principal O.kC 1/–
bundle of orthogonal frames. The zero-section gives an embedding e0 W V ! T� , and
with the symplectic form !0Dp�

V
x!Cdh�; ˛iCd�can , this is a coisotropic embedding

with e0�! D e�! .

The coisotropic neighbourhood theorem tells us that, near e.V /, ! is determined up to
symplectomorphism by e�! . Hence e extends to a symplectic embedding ye W T�!M

for some � > 0 (unique up to Hamiltonian isotopies acting trivially on e.V /).

We define �V by �V .ye.x//D ye.ı
PV

h
.x// for a function h 2H . Since this is supported

inside im.ye/, we may extend it trivially over M . Though �V depends on the choice
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of embedding ye , it its Hamiltonian isotopy class does not, and we shall imprecisely
refer to ‘the Dehn twist �V ’.

For (b), we again make use of the standardising embedding ye . Let M0 be the closure
of M n im.ye/. We define

EV D
�
M0 �

xD.r/
�
[ˆ EP

where the gluing map ˆ identifies the ‘horizontal boundaries’ of the two pieces. In
doing so it must marry both the projections to xD.r/ and the two-forms. (On M0�

xD.r/

we use the trivial projection and the two-form which pulls back ! .) A suitable map
ˆ is constructed by Seidel [24, Lemma 1.10] in the case xM D fpt:g. It is O.kC 1/–
equivariant, and can therefore be applied to associated bundles.

2.5 Monodromy

We now bring together the two threads of the discussion—vanishing cycles and fibred
Dehn twists—by proving the following.

Monodromy Theorem 2.16 Let .E; �;�/ be an elementary symplectic Morse–Bott
fibration over xD.r/, with smooth fibre M WDEr , critical set xM DEcrit , and vanishing
cycle �W V ! xM . Then the monodromy �E 2Aut.M; �jM / is Hamiltonian-isotopic
to the fibred Dehn twist �V .

Here we have to do a little more work in generalising from symplectic Lefschetz
fibrations to symplectic Morse–Bott fibrations (though the existence of Morse–Bott
tubular neighbourhoods is already a useful preliminary step).

The theorem is a consequence of the following technical result.

Proposition 2.17 Let .E; �;�;J0; j0/ be a symplectic Morse–Bott fibration with
critical manifold xM DEcrit , equipped with holomorphic charts near S crit and Morse–
Bott tubular neighbourhood � W D�N ! E . Identify N with the associated bundle
P �O.kC1/ CkC1 , where P ! xM is the principal O.k C 1/–bundle of orthonormal
frames of NR . Then there is a family of two-forms f�tgt2Œ0;1� , such that

� �0 D�;

� �t tames J0 for each t ;

� there exist one-forms ˛t such that d�t=dt D d˛t , with ˛t j.E n im.�//D 0 and
��˛t D 0; and

� ���1 is an associated symplectic form in a neighbourhood of the zero-section.
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Proof of the Monodromy Theorem 2.16 When we deform � as in Proposition 2.17,
the monodromy around @ xD.0I r/ does not change, since �t is constant over @ xD.0I r/.
The vanishing cycle at time t is a coisotropic submanifold

Vt � .M; !/:

By Lemma 2.9, the isotopy of submanifolds fVtg is in fact Hamiltonian: it is generated
by a path �t 2 Ham.M; !/. Since ��t V0

D �t ı �V0
ı ��1

t , the Hamiltonian isotopy
class of the associated Dehn twist is constant. We may therefore assume, by Proposition
2.17, that xM has a Morse–Bott tubular neighbourhood N in which � is an associated
symplectic form. The argument is then virtually the same as in [24, Proposition 1.15], so
we shall be very brief. It suffices, by an argument involving radial parallel transport over
an annulus, to show that the monodromy of a very small loop @ xD.�r/ is Hamiltonian
isotopic to the Dehn twist. Over xD.�r/, one can identify the fibration with the union of
a standard piece contained in N , and a trivial piece (trivialised by symplectic parallel
transport). The result then follows from the definition of the fibred Dehn twist.

Proposition 2.17 will be deduced from a lemma:

Lemma 2.18 Let xM be a compact manifold, F ! xM a real vector bundle of rank
r with Euclidean metric g , and J an almost complex structure on the total space of
F ˝C such that (i) J acts as scalar multiplication by i on the fibres Fx˝C, and (ii)
the image of the zero-section �W xM !F˝C is an almost complex submanifold. Let �
be a symplectic form on the disc-subbundle U D fv 2F˝C W gC.v; v/ <Rg �F˝C,
compatible with J .

Then there is another symplectic form �0 on U , still taming J , equal to � near @U
and satisfying ���0 D ���, but also invariant under unitary gauge transformations
along im.�/.

Here ‘unitary’ is taken with respect to the hermitian metric gC , the hermitian extension
of g to the complexified bundle. Gauge invariance means that there is a constant t 2 R

such that, for any x 2 xM , if u1;u2 2 T h
�.x/

.F ˝ C/, v1; v2 2 T v
�.x/

.F ˝ C/, then
�0
�.x/

.u1C v1;u2C v2/D�
0
�.x/

.u1;u2/C t Im gC.v1; v2/.

Proof The almost complex structure J gives rise to a dc –operator on forms, dc D

J ı d . We can write � as

(14) �D p����C d˛

where p is the projection F ˝C! xM . Moreover, we can write ˛ D dc�Cˇ , where
�.z/D�h.z; z/ for some hermitian metric h; ��dˇ D 0; and dˇj.Fx˝C/ vanishes
at the origin. By adding a closed one-form to ˇ , we may suppose that ��ˇD 0 as well.
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We shall deal with the terms one by one. First, take a smooth, increasing function
�W R�0!R , identically 0 on Œ0; 1� and 1 on Œ2;1/. Define �ı W F˝C!R for ı > 0

by �ı.v/D �.jvj=ı/, where j � j is the hermitian metric obtained by complexifying g .
Let

�1 D p����C ddc�C d.�ıˇ/;

so �1 is a closed two-form which differs from � only near the zero-section. We
claim that �1 tames J , provided that ı is small. Along the zero-section, J is
tamed by p����C ddc� ; the same is therefore true inside a disc-bundle of some
small radius ı0 . Take ı � ı0=2. By convexity, J is tamed by the non-closed form
p����Cddc�C�ı dˇ . This differs from �1 by d�ı^ˇ . Using the assumption that
��ˇ D 0, one sees that as ı! 0, d�ı ^ˇ! 0 uniformly over the 2ı–tube. Hence,
decreasing ı if necessary, we find that J is tamed by �1 .

We next modify the term ddc� . For this, note that there exists a smooth convex
function f W R!R such that f .x/D 0 for x 2 Œ�1; 1� and f .x/D x2Cc for jxj> 2,
such that, on Cr with its standard norm, �ddcf .kzk/ is a non-negative form. This
form equals zero on D2r .0I 1/ and 4!Cr outside D2r .0I 2/. Let h0 D gC be the
hermitian metric extending g , and introduce also a third hermitian metric h00D h��h0 ,
where � > 0 is small enough that h00 is positive-definite.

Define functions f� D �f ı .��1=2h00/ (here h00 abbreviates z 7! h00.z; z/). Then
ddc.��h0� f�/ is non-negative on the fibres, gauge-invariant near im.�/, and equals
ddc� outside the disc-bundle of radius 2� . We shall prove that, for �� ı and �� 1,
the form

�2 D�1� ddc�C ddc.��h0�f�/

(which differs from �1 inside the 2�–tube only) still tames J . Setting �0 D�2 , we
will then have a form with the required properties.

Consider tangent vectors u, of length 1 with respect to some metric (it doesn’t matter
which), attached to points inside the 2�–tube. We have �2.u;Ju/D p����.u;Ju/C

ddc.��h0 � f�/.u;Ju/. This is certainly positive when u is tangent to the fibre,
so let us fix a horizontal distribution H and assume that u 2 H . The first term,
p����.u;Ju/, is still positive when � is less than some �0 , and bounded below by a
constant C > 0, independent of � < �0 . On the other hand, j.ddch0/.u;Ju/j � C 0 for
a similar constant C 0 > 0, so taking � � C=2C 0 , we have

p����.u;Ju/C ddc.��h0/.u;Ju/�
C

2
> 0:

The troublesome term in �2.u;Ju/ is the last one, .ddcf�/.u;Ju/. We have

dcf� D q0.h00/ dch00;
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where q.t/D � f .��1=2t1=2/; hence

ddcf� D q00.h00/ dh00 ^ dch00C q0.h00/ ddch00:

Choose an h00–orthonormal frame .ei/ for the real vector bundle underlying F ˝C

over a patch U � xM . This trivialises the bundle, identifying it with U �R2r , and we
may take H to be the trivial horizontal distribution. We then have dh00.u/ D 0, so
only the latter term matters. We write the U –coordinates as .xj /. We may as well
take uD @xj

, and we can then write JuD
P

i Jij@xi
C
P

k Ykj ek . The terms in the
resulting expression for ddcf�.u;Ju/ then involve Ykj or @Ykj=@xl as coefficients.
But both Ykj and its horizontal derivatives go to zero along the zero–section, since
the zero–section is almost complex. This implies that .ddch00/.u;Ju/, evaluated at
.x; �/ 2 U �R2r , goes to zero as �! 0. Hence, if we take � small enough, we can
ensure that j.ddcf�/.u;Ju/j� C

4
inside the 2�–tube, whereupon �2.u;Ju/� C

4
>0.

Proof of Proposition 2.17 Replace the initial form � by an �0 as in Lemma 2.18.
(Note that �0 is linearly homotopic to �, since both are J –positive). The new form
�0 is gauge-invariant along the zero-section.

Let x! D ���0 , and let t > 0 be the unique constant such that �0jT v
�.x/

N D t!Cr for

all x 2 xM . Let q W P �Cr !N be the quotient map. Choose a connection form ˛ on
P , and introduce the two–form �D p�x!C t.!Cr Cdh�; ˛i/ 2�2.P � xM /. Besides
being O.r/–invariant, � tames J in some neighbourhood of the zero-section.

We have q��0 � � D d
 for an invariant one-form 
 such that d
 vanishes along
im.�/. Introduce cutoff functions �ı as in the proof of the lemma, and consider the
forms �C d.�ı
 /. These are also invariant, and so descend to N . Choosing ı small
enough that, within the ı–tube, � tames J , and so that the term d�ı ^
 is very small,
we find that these forms are also tame J . Thus we may set �1 D �C d.�ı
 / and
�t D t�1C .1� t/�0 .

3 Lagrangian correspondences

3.1 Symplectic Morse–Bott fibrations from families of curves

In this section we will study some particular symplectic Morse–Bott fibrations and
their vanishing cycles. The key examples will be relative Hilbert schemes of n points
on families of complex curves.

By considering the vanishing cycles of relative Hilbert schemes, we prove the following:
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Theorem A Let .†; j / be a Riemann surface, and L�† an embedded circle. Let
x† be the result of surgery on L, that is, the surface obtained by excising a tubular
neighbourhood nd.L/ of L and gluing in two discs. Let xj be a complex structure on x†
which agrees with j outside nd.L/. Using j and xj , we may consider the symmetric
products of † and of x† as complex manifolds. For any n > 0, any .s; t/ 2 R2

>0
,

and any pair of Kähler forms ! 2�2.Symn.†// and x! 2�2.Symn�1.x†// lying in
cohomology classes

.Œ!�; Œx!�/D .s�†C t�†; s�x†C t�x†/

(see below) there exists a Lagrangian submanifoldbV L �
�

Symn.†/�Symn�1.x†/; !˚�x!
�

such that

(i) the first projection embeds bV L into Symn.†/, and

(ii) the second projection is an S1 –bundle over Symn�1.x†/.

Moreover, we can construct such a bV L canonically up to Hamiltonian isotopies through
Lagrangians satisfying (i) and (ii). When n D 1 (so Symn�1.x†/ is a one-point set),bV L �† is Hamiltonian isotopic to L.

In this construction, we can make bV L vary smoothly with the input data .j ; xj ; !; x!/.

To explain the notation: for any closed Riemann surface C , there are two distinguished
classes in H 2.Symn.C /IZ/, both invariant under the action of the mapping class group
of C . They arise via the first Chern class z of the universal divisor

Zuniv
D f.x;D/ W x 2 Supp.D/g � C �Symn.C /:

For c 2H�.C IZ/, let cŒ1� D pr2!.pr�
1
c [ z/. Then �C D o

Œ1�
C

, where oC 2H 2.C IZ/

is the orientation class, and

�C D

X
i

˛
Œ1�
i [ˇ

Œ1�
i ;

where f˛i ; ˇig is a symplectic basis of H 1.C IZ/.

The theorem is a consequence of (i) the general vanishing-cycle construction of the
previous section, together with (ii) an observation about the structure of the singular
locus of the Hilbert scheme of n points on a nodal curve.

Our chief concern will be elucidating the geometry of bV L . Its interpretation in terms
of points on † and x† is rather subtle—these are not ‘tautological’ correspondences.
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Definition 3.1 By an elementary Lefschetz fibration we will mean a triple .E; �;J /
consisting of a smooth four-manifold (with boundary) E , a proper map � W E!� to
the closed unit disc �, and an almost complex structure J on E such that D� ıJ D

iD� . We require that

(i) There is precisely one point c where � fails to be submersive; it lies over 02�;

(ii) J is integrable in a neighbourhood of c ;

(iii) the complex Hessian form 1
2
D2

c� W TE˝C TE! C is non-degenerate. By D2
c

we mean the derivative viewed as a complex bilinear form, and non-degeneracy
is over C.

A holomorphic elementary Lefschetz fibration is one in which J is globally integrable.

We have the following straightforward observation.

Lemma 3.2 (a) Given a pair .†;L/, an oriented surface with an embedded circle,
there is a holomorphic elementary Lefschetz fibration .E; �;J / and a diffeomorphism
ı W ��1.1/!† such that ı�1.L/ is, topologically, a vanishing cycle for E . Moreover,
the construction is canonical in the sense that to specify .E; �;J I ı/ we have only to
choose .†;L/ and a point in a contractible space.

(b) Let .E; �;J I ı/ be as in (a). Let eE 0!E0 be the normalisation of the singular
fibre E0 .6 Then there is a canonical isotopy-class of diffeomorphisms xı W eE 0!

x†,
where x† is the surface obtained from † by surgery on L.

Proof (a) Let q W C2! C be the map .a; b/ 7! a2C b2 , and let

U D fx 2 C2
W jq.x/j � 1; kxk4� jq.x/j2 � cg:

Let Z D f.a; b/ 2 U W .a; b/ 2
p

a2C b2 R2g. Then the map q W U nZ ! � is a
holomorphic submersion, and its fibres are biholomorphic to ��q�� ; it is therefore
a trivial holomorphic fibre bundle.

To build .E; �;J / one glues the standard piece U to a trivial fibration ��.†nA/!�,
where A is an annular neighbourhood of L, via a holomorphic trivialisation of U nZ .

The data needed to set up the gluing are (i) a positively oriented conformal structure j

on †; and (ii) the germ of a lift of j to a Riemannian metric g in a neighbourhood
of L. These clearly form a contractible space. The metric g determines a tubular

6Readers shy of algebraic geometry may wish to be reminded that the normalisation of a nodal curve
is the resolution of singularities in which one excises a neighbourhood f.a; b/ 2��� W ab D 0g of the
node, and replaces it by two discs; and that this is an intrinsic (ie coordinate-independent) operation.
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neighbourhood L� Œ��; �� ,!† of L. Its image is biholomorphic to a closed annulus,
uniquely up to rotations of the annulus. But an embedding of the annulus (up to rotation)
is exactly what is needed to set up the gluing.

Part (b) is an obvious consequence of the gluing construction.

We now apply a moduli functor to the family .E; �;J / to obtain a new family. Two
examples to keep in mind are:

(1) The Hilbert scheme of n points on E relative to S . Its fibre over s ¤ 0 is
Symn.Es/.

(2) The Picard fibration of degree n. Its fibre over s ¤ 0 is the Picard variety
Picn.Es/ parametrising holomorphic line bundles of degree n. The zero-fibre
is the compactified Picard variety of E0 , parametrising torsion-free sheaves of
rank 1 and degree n. (Here we require � to be proper.)

The two examples are usually constructed as GIT quotients of certain Hilbert schemes.
The total space is non-singular. These are smooth, projective varieties relative to the
base. The critical fibre has normal crossing singularities, and the structure of the normal
crossing divisor can be related to moduli spaces of objects on the normalisation eE 0 .
In the first two examples, the normal crossing divisor is itself smooth, so the relative
moduli space has a structure of symplectic Morse–Bott fibration.

There are also relative moduli spaces when the central fibre has more than one node,
but these will typically not be globally smooth.

It is the Hilbert scheme example which will be developed in detail here, since this is
the one which will lead to Seiberg–Witten-like invariants for broken fibrations. The
Picard fibration is briefly considered.

When � is proper, one would like to add as a third example a suitably compactified
moduli space of stable bundles of rank two and odd degree d on E relative to S .
However, this is tricky. First, there is a question about whether to fix the determinant; in
the algebraic geometry literature one typically does not. There is Gieseker’s construction
[8], using bundles over semistable models for the nodal curve, in which the special fibre
has non-smooth normal crossing singularities. Pandharipande [17] takes a different
approach, involving torsion-free sheaves (see also Nagaraj–Seshadri [15]).

Remark In view of the complications in the algebraic geometry of moduli of stable
bundles, it may be simpler to work with their gauge theoretic counterparts. Take a
compact oriented surface †, of genus g � 2, with one boundary component. Consider
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the moduli space M.†/ of flat SU.2/–connections which restrict to a fixed connection
A0 on the boundary, with hol@† A0 D�1, modulo gauge transformations fixing A0 .
This is smooth of dimension 6g� 6, and the mapping class group of .†; @†/ acts on
it.

Callahan (unpublished thesis draft) showed that the action of a Dehn twist about a
(non-contractible, non-boundary-parallel) separating circle 
 is a rank 1 fibred Dehn
twist. Seidel (also unpublished) showed that when 
 is non-separating, the action is
by a rank 3 fibred twist. In this case the vanishing cycle corresponds to fixing the
conjugacy class of the holonomy hol
 , and one can identify the reduced manifold with
the corresponding moduli space M.x†/ for the surgered surface.

Thus, instead of building a Lagrangian correspondence via a symplectic Morse–Bott
fibration (as we shall do for symmetric products), one can here reverse the process, first
writing down the correspondence and then building a symplectic Morse–Bott fibration
from it.

3.2 Lagrangian correspondences via degeneration of symmetric products

We construct Lagrangian correspondences between symmetric products, first in a special
case where we can make things explicit, and then in general. The special case makes it
clear that these correspondences do not have any simple ‘tautological’ interpretation in
terms of points on the surfaces themselves.

3.2.1 A genus-zero example There is a simple construction of a Lagrangian corre-
spondence

(15) Ln �
�

Symn.S2/�Symn�1.S2
[S2/; .�!Pn/˚!0

�
:

Here !Pn is the Fubini–Study form on Symn.S2/DPn , and !0D
S

k !Pk�1 ˚!Pn�k

on Symn�1.S2[S2/D
Sn

kD1 Pk�1 �Pn�k .

Let an;k designate the diagonal action of S1 on complex projective space Pn with
weights

.1; : : : ; 1„ ƒ‚ …
k

�1; : : : ;�1„ ƒ‚ …
n�kC1

/; k 2 f1; : : : ; ng:

The action an;k preserves the Fubini–Study form !Pn , and is moreover a Hamiltonian
S1 –action, generated by the moment map �n;k W Pn! R given by

�n;k.z0 W � � � W zn/D
.jz0j

2C � � �C jzk�1j
2/� .jzk j

2C � � �C jznj
2/

2�kzk2
:
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There is a natural identification of the reduced space ��1
n;k
.0/=S1 with

(16) .Pk�1
�Pn�k ; !Pk�1 ˚!Pn�k /;

To see that the identification is valid symplectically, note that there is an action of
P.U.k/�U.n� k C 1// � P U.nC 1/ on Pn which commutes with the S1 –action.
The symplectic form on the reduced space must be invariant under this group, and is
therefore a multiple c.!Pk�1 ˚!Pn�k /.

The quotient map qk W �
�1
n;k
.0/! ��1

n;k
.0/=U.1/ is identified with the unit circle bundle

in the line bundle O.1/ � O.�1/ (the tensor product of line bundles pulled back
from the respective factors). The Duistermaat–Heckman formula [6] implies that, for
t 2 .�1; 1/, the cohomology class of the symplectic form on ��1

n;k
.t/=S1 varies linearly

with t , with slope .�1; 1/, and from this one can read off that c D 1.

It follows from the elementary properties of symplectic reduction that the graph

Ln;k D f.x; qkx/ W �n;k.x/D 0g � .Pn;�!Pn/� .Pk�1
�Pn�k ; !Pk�1 ˚!Pn�k /

is Lagrangian. Set Ln D
Sn

kD1 Ln;k .

3.2.2 Vanishing cycle interpretation The Lagrangian correspondences Ln in the
previous example can be interpreted as vanishing cycles for a degeneration of Pn .
We will give this degeneration as an explicit family of projective varieties HŒn�! C;
however, we should explain its geometric origin. We interpret Pn as Hilbn.P1/, the
Hilbert scheme of n points (parametrising ideal sheaves I �OP1 of finite colength
n). Given a degeneration of P1 to a nodal curve, we may consider its relative Hilbert
scheme of n points. Specifically, we consider the family 2P1 �C ! C obtained by
blowing up P1�C at ..1 W 0/; 0/, and the associated family HilbC.

2P1 �C/!C. This
is a degeneration of Hilbn.P1/. Explicit equations for the relative Hilbert scheme were
given by Ran [20]; the variety HŒn� is Ran’s model for Hilbn

C.
2P1 �C/.

Define a sequence of complex surfaces Xn , n� 2, as follows.

� X2 D P1 ��, where � is the closed unit disc.

� For n� 3,
Xn � P1

1 � � � � �P1
n�1 ��;

where P1
i is a copy of P1 . It is the subvariety cut out by the equations

(17) biaiC1 D taibiC1; i D 1; : : : ; n� 2

with .ai W bi/ homogeneous coordinates on P1
i and t the coordinate on �.
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The projection onto the last factor, Xn ! �, has non-singular rational fibres over
points in C� . The zero-fibre is, for n� 2, a chain of n� 1 rational curves. One can
obtain XnC1 from Xn by blowing up a point in the last curve in the chain.

Now, define
HŒn�
� Pn

�Pn
�Xn

to be the subspace defined by the equations

a1yn D tb1y0I

xibiy0 D yn�iaix0; i D 1; : : : ; n� 1I(18)

bn�1xn D tan�1x0;

where .x0 W � � � W xn/ and .y0 W � � � W yn/ are homogeneous coordinates on the two Pn

factors.

It is routine to verify the following result.

Lemma 3.3

(1) HŒn� is a complex manifold of dimension nC 1.

(2) Let � W HŒn�!� be the projection map. Then, for t 2 C� , projection onto the
first Pn –factor gives an isomorphism ��1.t/Š Pn .

(3) The critical set H
Œn�
crit WD crit.�/ �HŒn� is a complex submanifold of codimen-

sion two, contained in ��1.0/. Moreover, H
Œn�
crit is naturally biholomorphic toSn

kD1 Pk�1 �Pn�k .

(4) Near any point in crit.�/, � is holomorphically modelled on the map
.z0; : : : ; zn/ 7! z0z1 . Hence ��1.0/ has normal crossing singularities along
crit.�/.

We give HŒn� the Kähler structure ! induced by the standard Kähler form on Pn �

Pn� .P1/n�1�C. Then .Hn; �; !/ is a symplectic Morse–Bott fibration over �. The
vanishing cycle associated with the ray Œ0; 1� is a Lagrangian correspondence

bV � Pn
�

 
n[

kD1

Pk�1
�Pn�k

!
;

where the symplectic structure comes from a product of Fubini–Study forms as before.

S1 –actions Consider the diagonal S1 –action on Pn �Pn � .P1/n�1 �� with the
following weights:

� ..C1/k I .�1/n�kC1/ on the first Pn (for some k 2 f1; : : : ; ng);

Geometry & Topology, Volume 11 (2007)



800 Tim Perutz

� ..�1/k I .C1/n�kC1/ on the second Pn ;

� .�1; 1/ on each P1
i ;

� 0 on �.

Denote this action by An;k . It is Hamiltonian, and its moment map is the sum of
the moment maps of the factors. It is easy to check that An;k leaves HŒn� invariant.
The naturality of moment maps implies that the moment map �n;k W H

Œn�! R for the
action on HŒn� is the restriction of the one on Pn �Pn � .P1/n�1 ��.

Let �t W �
�1.1/! ��1.t/ denote parallel transport in HŒn� along the ray Œt; 1�. Since

An;k preserves the fibres of � , we have

d

dt
.� ı �t /D 0:

Introduce the ‘Lefschetz thimble’,

W D f�t .x/ W x 2 V; t 2 Œ0; 1�g

W 0 D

n[
kD1

��1
n;k.0/\�

�1.Œ0; 1�/:and also

Lemma 3.4 W DW 0:

Proof We have W \��1.0/DH
Œn�
crit . It is also true that W 0\��1.0/DH

Œn�
crit , as one

can verify directly using the defining equations and the formula for the moment map.
If x 2HŒn� , with �.x/D t 2 .0; 1�, then x 2W 0 if and only if ��1

Œs;t �
x 2W 0 for all

s 2 .0; t �, where �Œs;t � is parallel transport over Œs; t �. Hence W DW 0 .

We conclude from the lemma that there is a commutative diagramSn
kD1 �

�1
n;k
.0/

qn;k //

�1

((PPPPPPPPPPPPPP

Sn
kD1 �

�1
n;k
.0/=S1

Š

��

H
Œn�
crit;

with �1 the limiting parallel transport and qn;k the quotient map. Actually, one be
a little more precise: the two spaces on the right can each be identified canonically
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and holomorphically with
S

Pk�1 �Pn�k , and under these identifications the vertical
arrow becomes the identity map. Hence

bV D k[
nD1

Ln;k

where both are considered as subspaces of Pn �
Sn

kD1.P
k�1 �Pn�k/:

3.2.3 The general construction Hilbert scheme of a nodal curve An algebro-
geometric interlude is required.

We work in the category of complex analytic spaces. The Hilbert scheme of n points
on a complex curve C is a complex space Hilbn.C / parametrising those ideal sheaves
I �OC such that

P
x2X dimC.OC;x=Ix/ is finite and equal to n. Its characteristic

property is that there is a coherent ideal sheaf

Iuniv �OHilbn.C /�C

on Hilbn.C /�C such that the parametrisation sends z 2 Hilbn.C / to i�z Iuniv , where
iz W C 3 x 7! .z;x/ 2 Hilbn.C /�C .

The cycle map, that is, the map Hilbn.C /! Symn.C / sending an ideal to its support,
is an isomorphism if C is non-singular.

One can consider, more generally, a family of curves X ! S . The relative Hilbert
scheme, Hilbn

S .X /! S , is an analytic space with a sheaf Iuniv over X �S Hilbn
S .X /

which identifies the fibre Hilbn
S .X /s with the Hilbert scheme Hilbn.Xs/, for each

s 2 S . There is a cycle map Hilbn
S .X /! Symn

S .X /.

Example 3.5 Let U Df.z1; z2/2C2 W jz1z2j�1g, and consider the family � W U!�,
.z1; z2/ 7! z1z2 . According to Ran, its Hilbert scheme Hilbn

�.U / is given as follows.
We assume n� 2. Recall the complex surfaces Xn defined in subsection 3.2.2. The
Hilbert scheme is the subspace

Hilbn
�.U /� Cn

�Cn
�Xn

cut out by the equations

a1yn D tb1I

xibi D yn�iai ; i D 1; : : : ; n� 1I

bn�1xn D tan�1;

where .x1; : : : ;xnIy1; : : :yn/ are the coordinates on Cn �Cn . (See [20] or [18] for
the details of the universal sheaf.)
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One can give a direct construction of the Hilbert scheme of a general family of curves
� W X ! S over a curve S , where � has non-degenerate quadratic critical points, by
patching together fibre products of Hilbert schemes of .z1; z2/ 7! z1 and of .z1; z2/ 7!

z1z2 . The most important case is this:

Proposition 3.6 Suppose .E; �;J / is an elementary Lefschetz fibration. Then the
relative Hilbert scheme EŒn� WD Hilbn.�/ is a smooth manifold of dimension 2nC 2

equipped with a smooth map � Œn� W EŒn�! xD . Each fibre has the structure of complex
analytic space. The critical locus crit.� Œn�/ is the singular set of .� Œn�/�1.0/, hence a
complex space, and is itself smooth.

The normal bundle N D Ncrit.�/=E! crit.�/ has a structure of holomorphic vector
bundle (induced by J ), and the complex Hessian form on N is non-degenerate.

The statement above is a little complicated because J is not assumed integrable.
If .E; �;J / is a holomorphic fibration then EŒn� is itself a complex manifold, � Œn�

holomorphic, and for any point x 2 crit.� Œn�/ there exist holomorphic charts centred
on x and on � Œn�.x/ in which � Œn� takes the form .z0; : : : ; zn/ 7! z0z1:

Remark If � W E! C has two non-degenerate critical points c1 and c2 in the same
fibre then Hilbn.�/ is singular for any n� 2. Consider, for example, the unique point
in Hilb2.�/ lying over c1C c2 2 Sym2.E0/. This has a neighbourhood which is the
fibre product of small neighbourhoods of the ci in E . Thus it is modelled on the
singular quadric threefold

f.a; b; c; d/ 2 C4
W ab D cdg:

3.2.4 Global description of the Hilbert scheme of n points on a nodal curve The
singular fibre E

Œn�
0

of the relative Hilbert scheme of an elementary Lefschetz fibration
is the Hilbert scheme Hilbn.C / of the nodal curve C D E0 . We can give a global
description of such a Hilbert scheme as follows. See Figure 4 for a picture of Hilb2.C /

when C D fzw D 0g.

Let C be a complex curve with precisely one singular point—a node c . Thus c has a
neighbourhood U isomorphic, as a local-ringed space, to

U� WD f.z1; z2 2 C2
W z1z2 D 0; jz1j

2
Cjz2j

2
� �/g

for some � > 0. Let � W eC ! C be the normalisation map (so eC is obtained from C

by replacing U� by two discs of radius � ), and let .cC; c�/ be a labelling of the two
points in ��1.c/. Now consider the embeddings

�˙ W Symn�1.eC /! Symn.eC /; D 7!DC c˙:
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C2 C2

fC2

P1

Figure 4: Schematic picture of Hilb2.fzw D 0g/ . It consists of two copies
of C2 and one of C2 blown up at the origin. The exceptional P1 is shown.
The normal crossing divisor is isomorphic to C[C (the normalisation of
fzwD 0g). The insertions indicate the behaviour of the cycle map: they show
the support of the ideals parametrised by the Hilbert scheme (visualised on
the normalisation of fzw D 0g , with its distinguished points marked by
crosses).

Let S D im.�C/\ im.��/. Thus S is an embedded copy of Symn�2.eC /.
Define eH Œn�

C to be the blow-up of Symn.eC / along S . The embeddings �˙ lift uniquely
to embeddings

z�˙ W Symn�1.eC /! eH Œn�

C :

Moreover, im.z�C/\ im.z��/D∅.

We now describe an analytic space H
Œn�
C

. As a topological space, it is obtained fromeH Œn�

C by gluing im.z�C/ to im.z�C/. That is,

(19) H
Œn�
C
D eH Œn�

C =�

where
z�C.x/�z��.x/; x 2 Symn�1.eC /:
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Its complex analytic structure is characterised by the property that the quotient map

eH Œn�

C !H
Œn�
C

is holomorphic. This map then becomes the the normalisation map, and H
Œn�
C

becomes
a complex space with normal crossing singularities.

Lemma 3.7 There is an ideal sheaf Iuniv on C �H
Œn�
C

which makes HŒn� into the
Hilbert scheme Hilbn.C /.

Proof

Step 1 We begin locally near a node. The following easy algebraic lemma describes
ideals in the local ring at a node:

Consider the C–algebra OC2;0 of germs of holomorphic functions near the origin in
C2 . Let RDOC2;0=hz1z2i. Then a proper ideal I �R has finite length dimC R=IDn

if and only if it is of the form I D Im;.aWb/ , where

(20) Im;.aWb/ D hz
mC1
1

; zn�mC1
2

; azm
1 C bzn�m

2 i; 1�m� n� 1; .a W b/ 2 P1:

The proof is left to the reader (it is, however, given in [18, Section 4.3.3]). The formula
for Im;.aWb/ defines an ideal sheaf over Spec.R/�

Sn�1
mD1 P1 which makes

Sn�1
mD1 P1

into the ‘local Hilbert scheme’ Hilbn.R/ of ideals in R.

Step 2 To express this invariantly, think of R as the local ring at a node x 2 C . Let
CC , C� be the germs of the two sheets of eC , and x˙ 2C˙ their distinguished points,
mapping to the node x by the normalisation map nW eC ! C . Then Hilbn.R/ is given
by pairs .m; �/, where m 2 f1; : : : n� 1g specifies a divisor mŒxC�C .n�m/Œx�� oneC , and � 2 PT.xC;x�/.C

C �C�/.

The local ring RDOC;x embeds as the subring of OCC;xC �OC�;x� of functions
with f .xC/D f .x�/. The mth copy of PT.xC;x�/.C

C �C�/ parametrises ideals
by the map .m; �/ 7! Im;� , where Im;� is the ideal of functions f vanishing to order
m at x� , to order n�m at xC , and such that the leading order terms of f jCC and
f jC� are in the ratio �.

Step 3 Now we turn to the global structure of ideal sheaves over C . The local
classification of ideals implies that, to specify an ideal sheaf of colength n over C is
precisely to give (i) an effective divisor D 2 Symn.C /; and (ii) if fxC;x�g �D , a
point � 2 PT.xC;x�/.C

C �C�/. This is simply the statement that there is a bijection
from HŒn� to the set of colength n ideal sheaves, ŒD; �� 7! ID;� .
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We finally exhibit a universal ideal sheaf Iuniv , inducing the bijection ŒD; �� 7! ID;� .
It is perhaps clearer to give the corresponding subscheme Zuniv : take the universal
divisor �univ in eC � Symn.eC /, and let e�univ be its proper transform in eC � eH Œn�

C .
Then Zuniv is the push-forward of e�univ in C �H

Œn�
C

.

It is enough to check universality of Zuniv locally on C . It is certainly universal near
regular points. Moreover, Zuniv , restricted to C �fŒD; ��g, is cut out near the singular
point x by the ideal Im;� as in (20). This gives the result.

The following corollary, an immediate consequence of the identification of H
Œn�
C

as the
Hilbert scheme Hilbn.C /, is crucial for this paper.

Corollary 3.8 The singular set sing.Hilbn.C //, ie, the normal crossing divisor in
Hilbn.C /, is naturally identified with Symn�1.eC /.
The normal cone to the divisor sing.Hilbn.C // is the union of two normal line bundles,
NC and N� . These are identified with the normal bundles to im.z�C/ and im.z��/ in
the normalisation eH Œn�

C .

Proposition 3.9 Considered as holomorphic line bundles over Symn�1.eC /, we have

NC DO.ın�1
C � ın�1

� /;

N� DO.ın�1
� � ın�1

C /:

Here ın�1
˙

is the hypersurface fD 2 Symn�1.eC / W x˙ 2 Supp.D/g.

Proof The situation is that we have a pair .Y1;Y2/ of codimension 1 complex sub-
manifolds in a complex manifold X , with transverse intersection Z D Y1\Y2 . We
want to understand the normal bundles NeYi =

eX to the proper transforms eYi of Yi ineX , the blow-up of X along Z . But the blow-down map eX !X identifies eYi with
Yi , and NeYi =

eX with NYi=X ˝OYi
.�Z/.

Applying this to Y1 D ı
n
� , Y2 D ı

n
C in X D Symn.eC /, we obtain

NeY1=
eX ŠN

ın
�=Symn.eC /

˝Oın
�
.�ın�1
C /

ŠN
ın
�=Symn.eC /

˝Oın
�
.�ın�1
� /˝Oın

�
.ın�1
� � ın�1

C /

ŠN
ın
�=Symn.eC /

˝ .OX .�ı
n
�//jı

n
�˝Oın

�
.ın�1
� � ın�1

C /

ŠOın
�
.ın�1
� � ın�1

C /;
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where the last isomorphism uses the adjunction formula. Compute N eY2 =
eX in the

same fashion.

Remark (i) The proposition shows that NC is dual to N� . This is no accident:
thinking of Hilbn.C / as the zero-fibre of a family EŒn� over the disc, the Hessian form
on the normal bundle to Sing.Hilbn.C // in EŒn� gives a perfect pairing of NC with
N� .

(ii) When eC is connected, we have c1.N˙/D 0. However, when eC is disconnected,
N˙ can be topologically non-trivial.

3.2.5 Structure of the vanishing cycles We now have an explicit (if opaque) local
construction of the relative Hilbert scheme � W EŒn�!� of a holomorphic elementary
Lefschetz fibration E ! �, and a global description of its special fibre E

Œn�
0

. With
these in hand, we can now set out the following theorem.

Theorem 3.10 (Structure theorem)

(1) For any Kähler form � on EŒn� , .EŒn�; �;�/ is a symplectic Morse–Bott fibra-
tion.

(2) There is a natural holomorphic identification of the critical set crit.�/ with
Symn�1.fE0 /.

(3) The vanishing cyclebV � Symn.E1/�Symn�1.fE0 /

associated with the ray Œ0; 1��� is Lagrangian with respect to !˚�x! , where
! (resp. x! ) is the restriction of � to Symn.E1/ (resp. Symn�1. eE 0/).

(4) The projection bV ! Symn.E1/ is a smooth embedding.

(5) The projection bV ! Symn�1. eE 0/ is an S1 –bundle, isomorphic to the unit
circle bundle in O.ın�1

C � ın�1
� /. In particular, when eE 0 is connected, bV is a

trivial S1 –bundle over Symn�1. eE 0/.

Proof For the most part, this is a restatement of what we have already established.
Parts (1)–(3) have been proved (Proposition 3.6, Corollary 3.8, and Section 2.3), and
(4) is obvious.

As to (5), this also goes along the lines of the discussion in Section 2.3. The normal
bundle N DNcrit.�/=EŒn� carries a non-degenerate complex Hessian form H , making
it an O.2;C/–bundle. There is a totally real subbundle NR D fv 2N WH.v; v/ 2 Rg,
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reducing the structure to O.2;R/. The projection bV ! Symn�1. eE 0/ is isomorphic to
the unit circle bundle in NR . But N is isomorphic to a sum of line bundles L˚L_ ,
so that the Hessian corresponds to the canonical pairing on L ˚ L_ . Projection
onto the L–summand gives an isomorphism NR Š L. By Proposition 3.9, we have
LŠO.ın�1

C � ın�1
� /, so we are done.

3.3 The Picard fibration

Canonically associated with an elementary Lefschetz fibration E!�, with a chosen
section � , is a proper family

Pn
�.E/!� .n 2 Z/;

the degree n Picard fibration (see [2], for example). A (closed) point of Pn
�.E/

represents a point s 2� and a torsion-free coherent sheaf on Es , of rank one and first
Chern class n 2H 2.EsIZ/D Z. For explicit descriptions, see [5; 18]. The key points
about its structure are as follows:

� Pn
�.E/ is smooth.

� For s ¤ 0, the fibre Pn.Es/ is canonically identified with the Picard variety
Picn.Es/.

� The critical fibre Pn.E0/ has normal crossing singularities. If E0 is irreducible,
the singular locus Sing.Pn.E0// is naturally identified with Picn�1. eE 0/. If
E0 is reducible with one node, and eE 0 has components C1 and C2 , then
Sing.Pn.E0//D

Sn
iD0 Pici.C1/�Picn�i.C2/.

� There is a holomorphic Abel–Jacobi map uW Hilbn
�.E/ ! Pn

�.E/. Indeed,
if L is a rank one torsion-free sheaf on a nodal curve C , then every s 2

PH 0.L/ defines a closed subscheme .s/ of C , and conversely, every colength
n subscheme arises this way. If n> 2g� 2, where g is the genus of the regular
fibres, then the fibres have constant dimension, and hence this is a projective
vector bundle.

� There is a holomorphic line bundle ‚! Pn
�.E/ which is ample relative to S ,

and which restricts over regular fibres to the standard theta line-bundle over the
Picard torus.

The polarisation in the last point gives rise to a Kähler structure on Pn
�.E/. With

this it becomes a symplectic Morse–Bott fibration over the disc, of rank one. It has a
Lagrangian vanishing cycle bV P � Picn.†/�Picn�1.x†/;
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where we have used the identifications ı W E1!† and xı W eE 0!
x†.

At a topological level, the Picard fibration of an elementary Lefschetz fibration E is
easily understood, providing that the vanishing cycle L�E1 is non-separating. The
regular fibres of Pn

�.E/ are diffeomorphic to T2g , and the family is the fibre product
of a trivial family T2g�2 ��!� and a genus 1 elementary Lefschetz fibration E0 .
The vanishing cycle for such a fibre product (equipped with a product symplectic form)
is

L0 � diagT2g�2 � T2
�T2g�2

�T2g�2
D T2g

�T2g�2;

where L0 is the vanishing cycle for E0 .

3.4 Lagrangian correspondences between symmetric products: examples

3.4.1 Genus 0 We studied the case †DS2 in subsection 3.2.1. The characterisation
of bV as an S1 –bundle given in point 5 of the structure Theorem 3.10 is consistent
with our explicit picture.

3.4.2 Sym2 in genus 2 Let E!� be a degeneration of a genus 2 curve along a
non-separating loop L. As discussed above, the compactified Picard family Pn

�.E/ is,
topologically, the fibre product of a trivial T2 –bundle and a genus 1 Lefschetz fibration
E0 with vanishing cycle L0 . The vanishing cycle for Pn

�.E/ (with respect to a product
symplectic form) is

L0 � diagT2 � T2
�T2

�T2
D T4

�T2:

The Abel–Jacobi map expresses Sym2.†/ as the blow-up at a point of the 4-torus
Pic2.†/. Likewise, the relative Hilbert scheme Hilb2

�.E/ is the blow-up of the
compactified Picard family P2

�.E/ along the section � (where �.s/ is the point
corresponding to KEs

). Note that �.0/ is a regular point. We can choose a symplectic
form on Pn

�.E/ so that the Lefschetz thimble in the Picard family is disjoint from
im.�/. We obtain a symplectic form on the blow-up in the standard way. We then find
that the vanishing cycle bV for the relative Hilbert scheme is just the proper transform
of that for the Picard family:bV DL0 � diagT2 ,!fT4 �T2:

3.4.3 Projective bundle range, n > 2g � 2 In this numerical range, there is a
holomorphic vector bundle p W U ! Picn.†/, of rank n�gC 1, such that the Abel–
Jacobi map identifies Symn.†/ with PU . We can choose Kähler forms adapted to
this projective bundle.7

7Caution: our procedure here is not quite the same as the one used to form symplectic associated
bundles in Section 2.
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Recall (from [14, page 209], for example) that in a principal G –bundle P !B with
connection ˛ , one has a vertical cotangent bundle i˛ W T

�
vertP ,! T �P , which carries

the closed two-form i�˛!can . If .F; �/ is a Hamiltonian G–space then P �G F can
be obtained by symplectic reduction of T �vertP � F , and therefore carries a closed
two-form � D �.�; ˛/ inherited from i�˛!can˚� . This form restricts to � on the fibres,
and the connection on P �G F ! B it induces is the one associated with ˛ .

Let us apply this to the principal U.n�gC1/–bundle P of unitary frames for U , and
to .F; �/D .Pn�g; !FS/. We obtain a closed two-form � D �.�; ˛/ on the associated
bundle PU D P �U.n�gC1/ Pn�g , which restricts to !FS on the fibres of PU . Then
�C cp�� is a symplectic form when c� 0. (It seems likely that, when ˛ is the Chern
connection, this form is of type .1; 1/, but we have not verified this.)

The relative Hilbert scheme Hilbn
�.E/ is a projective bundle over Pn

�.E/, and conse-
quently we can apply the same procedure to obtain a symplectic form on Hilbn

�.E/.

One then easily checks that symplectic parallel transport in Hilbn
�.E/ is the horizontal

lift of symplectic parallel transport in Pn
�.E/ via the connection ˛ . It follows that

the coisotropic vanishing cycle VL � Symn.†/ is the Abel–Jacobi preimage of the
vanishing cycle VP for the Picard fibration, and that the limiting parallel transport map
�W VL! Symn�1.x†/ is the lift of limiting parallel transport from the Picard fibration,
VP! .Pn

�.E//
crit .

3.4.4 Cohomological correspondences Recall the structure of the cohomology ring
of the symmetric products of a compact Riemann surface C , as first established by
MacDonald [13]. If C is connected, we associate with it a sequence of graded rings

(21) S.C; n/D

nM
iD0

ZŒU �=.U iC1/˝Zƒ
n�iH 1.C IZ/; deg U D 2:

(Here S.C; 0/D Z.) One should think of U as the generator of H 2.C IZ/. If C is
disconnected, with components C1; : : : ;Cm , we put

S.C; n/D
M
nj�0

n1C���CnmDn

S.C1; n1/˝ � � �˝S.Cm; nm/

There is a ring isomorphism

(22) aC W S.C; n/!H�.Symn.C /IZ/:

To specify aC , it is enough to do so on monomials 1 ˝ � � � ˝ Ui ˝ � � � ˝ 1 and
1˝ � � �˝�i ˝ � � �˝ 1, where �i 2H 1.Ci IZ/, since such elements generate the ring
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S.C; n/. The first Chern class z of the universal divisor in C �Symn.C / gives rise to
operations

(23) H�.C IZ/!H�C2k�2.Symn.C /IZ/; c 7! cŒk� WD pr2!

�
zk
� pr�1c

�
:

(We only need the operation c 7! cŒ1� here.) We have

aC .1˝ � � �˝Ui ˝ � � �˝ 1/D o
Œ1�
Ci
; aC .1˝ � � �˝�i ˝ � � �˝ 1/D �

Œ1�
i ;

where oCi
is Poincaré dual to the point class in Ci .

There are two distinguished classes in H 2.Symn.C /IZ/ (when nD 1 they are linearly
dependent). The first is the class

(24) �C D aC .oC /D o
Œ1�
C
;

where oC 2 H 2.C IZ/ is the orientation class. This is dual to the divisor x C

Symn�1.C /. The second is

(25) �C D aC .
X

i

˛i ^ˇi/;

where f˛i ; ǰ g is a symplectic basis for H 1.C IZ/ (so
P

i ˛i ^ˇi is the intersection
form on H1.C IZ/). These two classes are invariant under the action of the mapping
class group of C , and when C is connected they generate the invariant subring.

The vanishing cycle bV � Symn.E1/�Symn�1. eE 0/;

associated with Hilbn
�.E/ is Lagrangian with respect to a form of shape !˚�x! . The

symplectic forms ! and x! cannot be chosen arbitrarily: they must be the restrictions of
a closed two-form on Hilbn

�.E/, and this entails a relation between their cohomology
classes. The pair .Œ!�; Œx!�/ is constrained to lie on a correspondence corr2

n˝Z R , where

corr2
n �H 2.Symn.E1/IZ/�H 2.Symn�1. eE 0/IZ/

is the space of common restrictions of classes in H 2.Hilbn
�.E/IZ/.

Proposition 3.11 Let

C k
D f.j �1 c; n�j �0 c/ W c 2H k.EIZ/g �H k.E1IZ/�H k. eE 0IZ/

where js W Es ! E is the inclusion of the fibre over s 2 �, and nW eE 0 ! E0 the
normalisation map. Then corr2

n is spanned by the classes

� .xŒ1�[yŒ1�; xxŒ1�[ xyŒ1�/, where .x; xx/ and .y; xy/ are in C 1 ;

� .zŒ1�;xzŒ1�/, where .z;xz/ 2 C 2 ;
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� if E0 is irreducible, the class .�E1
; � eE 0

/.

In an appendix to this paper, we describe an embedding S.E0; n/ ,!H�.Hilbn
�.E/IZ/,

and show that the quotient is isomorphic to S. eE ; n�2/Œ�2�. The proof of Proposition
3.11 is given there, as a corollary of the calculation of H 2 .

We now identify a convenient set of Kähler classes on Hilbn
�.E/.

8 Let �� be the
class which restricts to Hilbn.E0/ as � D o

Œ1�
E0

, and let �� be the pullback by the
Abel–Jacobi map of c1.‚�/, where ‚�! Pn

�.E/ is the theta line-bundle.

Lemma 3.12 For any s; t > 0, the class s��C t�� is represented by a Kähler form.

Again, the proof fits in with the results on the cohomology of the Hilbert scheme, and
so is consigned to the appendix.

3.5 Proof of Theorem A

The proof is a matter of assembly: all the pieces have already been constructed. Recall
that the input data comprises the pair .†;L/, together with complex structures j

on † and xj on the surgered surface †L ; and Kähler forms ! 2�2.Symn.†// and
x! 2�2.Symn�1.x†//.

We can form a holomorphic elementary Lefschetz fibration E! � with .†; j / as
smooth fibre E1 and topological vanishing cycle L, as in Lemma 3.2. Recall that the
construction is essentially canonical. Both x† and eE 0 are built from † by excising a
neighbourhood of L and gluing in a pair of discs. Because of this, we can choose a
diffeomorphism xı eE 0 Š

x† which is the identity outside the neighbourhood, and such
that xı� xj coincides with the complex structure of eE 0 . Indeed, this requirement pins
down xı precisely, because the open disc has no compactly supported holomorphic
automorphisms.

Form the relative Hilbert scheme Hilbn
�.E/!�, and choose a Kähler form

� 2�2.Hilbn
�.E//; Œ��D s��C t��:

Using � we construct the vanishing cycle bV � � Symn.†I j /�Symn�1.x†I xj /. This
is not quite what is wanted, because the restrictions !1 D �jSymn.†/ and x!1 D

8There appears to be a small error concerning this point in the paper of Donaldson and Smith [3]. In
Theorem 3.6, the line bundle ƒr .�/ is not, as claimed, relatively ample. However, if one twists it by the
Abel–Jacobi-pullback of the theta line bundle ‚ over the Picard fibration, the resulting line bundle is
relatively ample.
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xı�1�.�jSymn�1. eE 0// are not the given forms ! and x! . We can remedy this using
the convexity of the space of Kähler forms. Set

!t D t!1C .1� t/!; x!t D t x!1C .1� t/x!:

Since the !t (resp. x!t ) are cohomologous Kähler forms, they give rise to symplectic
flows

�t W .Symn.†/; !0/! .Symn.†/; !t /;(26)

x�t W .Symn�1.x†/; x!0/! .Symn�1.eE0/; x!t /:(27)

Put bV L D .�
�1
1 �

x��1
1 /.bV �/:

This is a Lagrangian submanifold of Symn.†I j / � Symn�1.x†I xj / with respect to
�!˚ x! .

Since the space of auxiliary choices involved in the construction is path connected
(indeed, contractible), the Lagrangian isotopy class of bV L is canonically determined.
We must check that so too is the Hamiltonian isotopy class. To simplify the notation,
we will assume that the data are all fixed apart from the Kähler form, which varies in a
path �t and prove Hamiltonian isotopy of the resulting vanishing cycles bV L;t . The
remaining ambiguity (ie, the precise choice of .E; �;J /) can be handled in just the
same way.

The �t are cohomologous forms. By Lemma 2.12, they extend to a closed two-form
„ on Hilbn

�.E/� Œ0; 1� with the property that the union of the coisotropic vanishing
cycles,

VD
[

t

V�t
� Symn.†/� Œ0; 1�;

is globally coisotropic with respect to � WD „j.Symn.†/� Œ0; 1�/. Then �jV is the
pullback of a closed form x� 2 �2.Symn�1. eE 0/� Œ0; 1�/ (a closed extension of the
family of forms �t jSymn�1. eE 0/). Using the maps ((26), (27)), define

ˆW Symn.†/� Œ0; 1�! Symn.†/� Œ0; 1�; .x; t/ 7! .�t .x/; t/;

x̂ W Symn�1.x†/� Œ0; 1�! Symn�1.eE0/� Œ0; 1�; .xx; t/ 7! .x�t .xx/; t/:

Then ˆ�1.V/ is globally coisotropic with respect to .ˆ�1/�� . Using the bundle
isomorphism x̂ , we obtain a sub-bundle[

t2Œ0;1�

bV L;t � .Symn.†/� Œ0; 1�/�Œ0;1� .Symn�1.x†/� Œ0; 1�/
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which is globally isotropic with respect to � ˚ �x̂�x� . This shows that bV L;0 is
Hamiltonian–isotopic to bV L;1 , and so concludes the proof.

3.6 A partial model

It is possible to write down explicit hypersurfaces in Symn.†/ (for instance as level
sets of S1 –valued functions) which represent the smooth isotopy class of the vanishing
hypersurface V � Symn.†/. However, proving the validity of such a model would
entail a lengthy diversion, so we will content ourselves with something much weaker.

Let A�† be the image of an embedding of an annulus,

�W fz 2 C W � � jzj � ��1
g ,!†;

with LD i.fjzj D 1g/ its unit circle. Set

A0 D �.fz W 2� < jzj< .2�/�1
g/�A;

a smaller, open annulus. Then Symn.†/ contains open subsets

Ui D Symi.A0/�Symn�i.† nA/; i D 0; : : : ; n:

Lemma 3.13 The pair .V; �/ (hypersurface in Symn.†/, S1 –bundle projection to
Symn�1.x†/) is isotopic to a pair .V 0; �0/ such that

� V 0\U0 D∅;

� V 0\U1 DL�Symn�1.† nA/; and

� �0j.V 0\U1/ is given by the obvious projection to Symn�1.†nA/�Symn�1.x†/.

Proof As pointed out below Definition 2.6, one does not need closed two-forms to
construct topological vanishing cycles; ‘good’ two-forms are adequate (for the almost
complex required by the definition we take our usual integrable one). Moreover, any
two good two-forms have smoothly isotopic vanishing cycles.

Let E!� be the Lefschetz fibration associated with .†;L/ (so E1D†). The space
E is the union of a trivial fibration E0 D�� .† n int.A// and E0 DE n int.E0/. Let
E0

0
�E0 be a slightly smaller open set: say E0

0
DE n .�� .† nA0//.

In the relative Hilbert scheme of E there are open subsets

W0 D Hilbn
�.E

0/D��Symn.† n int.A//;

W1 DE00 �� Hilbn�1
� .E0/DE00 �Symn�1.† n int.A//:
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Take a closed two-form form on W0 which is the pullback of a Kähler form on
Symn.† n int.A///. Take a closed two-form form on W1 which is the product of a
Kähler form on Symn�1.†n int.A// and a symplectic form on E0

0
which has L as its

vanishing cycle.

Extend these forms to a good two-form on Hilbn
�.E/. Then the parallel transport over

the ray Œ0; 1� preserves W0 and W1 , and the conclusions of the lemma are immediate.

The remaining sets Ui extend to subsets Wi of the Hilbert scheme in a similar way.
Like W1 , the higher Wi are fibre products, and we can choose Kähler forms on them
which respect the fibre product structure. Extending these to globally-defined good
two-forms, and using the path-connectedness of the space of good two-forms, we obtain
the following lemma.

Lemma 3.14 We can isotope V to another hypersurface V 0 such that, for each i ,
V 0 \ .Symi.A/ � Symn�i.† nA// D V 0i � Symn�i.† nA/ for hypersurfaces V 0i �

Symi.A/. In other words, for an n–tuple x 2 Symn.†/, membership of V 0 depends
only on those points of x which lie in A. Moreover, the V 0i can be taken to be

‘universal’, ie, independent of the topology of †.

Now let V be the image of bV in Symn.†/. We compute the fundamental class
ŒV � 2H2n�1.Symn.E1/IZ/. Note that there is an isomorphism

�W H1.†IZ/!H 1.Symn.†/IZ/; h 7! �.h/D c=h

where c 2 H 2.†� Symn.†/IZ/ is dual to the universal divisor. (We have �.h/ D
.PD.h//Œ1�:/

Lemma 3.15 Given an orientation of L, there is an orientation of V such that ŒV � is
Poincaré dual to �.ŒL�/.

Proof If � 2 Diff.†/ acts as the identity in a neighbourhood of L then, by the
naturality of the Hilbert scheme construction, Symn.�/ preserves ŒV �. One such
diffeomorphism is the Dehn twist along a circle parallel to L. Now, .Symn.�//� �

�.h/D�.��h/, so we must have ŒV �D�.h/ where h is invariant under the stabiliser
of ŒL� in Sp H 1.†IZ/. It follows that h is a multiple of ŒL�. If ŒL�D 0 we are done.
If not, we need to see that it is a unit multiple. We can test this by computing the
intersection number of V with the 1-cycle ƒD fŒx; : : : ;x� W x 2L0g, where L0 �†

is a circle which intersects L transversely in a single point. Deform V to V 0 as in
Lemma 3.14. The remark implies that V 0 intersects ƒ only in Symn.A/, and that the
intersection number is independent of the topology of †. But since the intersection
number is ˙1 in our genus 1 and 2 examples, the general case follows.
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3.6.1 Iterated vanishing cycles and Heegaard tori As we have seen, a circle L�†

gives rise to a Lagrangian correspondence

bV L D
bV n

L �
�

Symn.†/�Symn�1.sL†/;�!˚ x!
�
:

where sL† denotes the result of surgery along L. If L0 is another circle, disjoint from
L, then L0 is still visible in sL†, and it too gives rise to a vanishing cycle

bV n�1

L0 � Symn�1.sL†/�Symn�2.sL0sL†/:

We can then compose these correspondences to obtain

bV n�1

L0 ı
bV n

L � Symn.†/�Symn�1.sL0sL†/:

(Recall that, given smooth correspondences C12 �M1 �M2 and C23 �M2 �M3 ,
their composition C23 ıC12 �M1 �M3 is the set of pairs .x1;x3/ such that there

exists x2 2M2 with .x1;x2/ 2 C12 and .x2;x3/ 2 C23 ). Thus bV n�1

L0 ı
bV n

L is an
.S1 � S1/–bundle over Symn�2.sL0sL†/. For it to be Lagrangian, our symplectic
form on Symn�1.sL†/�Symn�2.sL0sL†/ should be of shape �x!˚xx! , where x! is the
same form as was used to form the first vanishing cycle. This is possible, because one
can extend x! to a Kähler form on the relative Hilbert scheme which has Symn�1.sL†/

as its smooth fibre.

It is straightforward to prove, using good two-forms, that bV n�1

L0 ı
bV n

L is smoothly

isotopic to bV n�1

L ı bV n

L0 .

Conjecture 3.16 bV n�1

L0 ı
bV n

L is Hamiltonian isotopic to bV n�1

L ı bV n

L0 .

If L1; : : :Ln are disjoint circles in †, there is an n–times iterated correspondence

T � Symn.†/:

The second factor does not appear here because it is Sym0.sLn
ı � � � ı sL1

†/, ie a point.

Lemma 3.17 The iterated vanishing cycle T � Symn.†/ is smoothly isotopic to
L1 � � � � �Ln .

Proof We prove by induction on n that we can find a sequence of good two-forms on
successive relative Hilbert schemes so that the iterated topological vanishing cycle T

Geometry & Topology, Volume 11 (2007)



816 Tim Perutz

is equal to L1 � : : :Ln . This is certainly true when nD 1, so we suppose that n> 1

and that the iterated topological vanishing cycle

T 0 WD bV n�1

L2
ı � � � ı bV 1

Ln
� Symn�1.†1/

is L2 � � � � � Ln . Let EL1
be the Lefschetz fibration in which † degenerates to

†1 along L1 . Choose a good two-form on Hilbn
�.EL1

/ as in Lemma 3.13. The
projection to Symn.†/ of its vanishing cycle bV n

L1
then intersects T 0 precisely along

L1 � � � � �Ln .

In particular, suppose that L1 : : : ;Lg � † are disjoint and linearly independent in
homology, where g is the genus of †. Then T is isotopic to the Heegaard torus
L1 � � � � �Lg . These tori are the cornerstone of Heegaard Floer homology.

The link with Heegaard Floer homology will be developed in a future paper, which
will contain a symplectic refinement of this topological observation, and also address
the symplectic interpretation of handle-sliding as an operation on the Heegaard tori.

3.6.2 A homotopical lemma The following lemma will help us control boundary
bubbling when we consider pseudoholomorphic curves.

Lemma 3.18 Assume that n � 2. Fix a basepoint x 2 bV , and consider the natural
homomorphism

�x W �2

�
Symn.†/�Symn�1.x†/Ix

�
! �2

�
Symn.†/�Symn�1.x†/; bV Ix�:

When x† is connected, �x is surjective. When x† is disconnected, coker.�x/ is a
non-trivial cyclic group.

Proof Write †Œn� D Symn.†/, x†Œn�1� D Symn�1 x†. By the exact sequence of
homotopy groups for the pair .†Œn� � x†Œn�1�; bV /, we have

coker.�x/Š ker
�
�1.bV Ix/! �1.†Œn� � x†Œn�1�Ix/

�
:

Suppose that x† is connected. Then bV is a trivial S1 –bundle over x†Œn�1� by point
(5) of Theorem 3.10, and so has fundamental group Z �H1.x†/ when n > 2, and
Z��1.x†/ when nD 2. Any class h in its kernel must clearly be a multiple of the
fibre of the S1 –bundle. But the fibre-class is non-trivial in H1.†Œn�/D �1.†Œn�/ (it
is the class defined by the vanishing circle L � †) so the result follows. (There is
an alternative argument using the Abel–Jacobi map—this was the approach taken in
[18]).)

Geometry & Topology, Volume 11 (2007)



Lagrangian matching invariants for fibred four-manifolds: I 817

Now suppose x† is disconnected. As in the connected case, any class h in the image
of �2.†Œn� � x†Œn�1�; bV Ix/ ! �1.bV Ix/ must be a multiple of the fibre F of the
S1 –bundle which passes through x . Thus coker.�x/ is cyclic. It must be non-trivial
because Fx is in the kernel of the Hurewicz map to �1.bV /!H1.bV /, and hence in
the kernel of any homomorphism from �1.bV / to an abelian group.

4 Lagrangian matching conditions from broken fibrations

In this section we explain how the Lagrangian correspondences between symmetric
products, constructed and analysed in the previous section, can be cast as ‘Lagrangian
matching conditions’ associated with broken fibrations.

Start with an elementary broken fibration .Xbr ; �br / over an annulus AD fz 2 C W

1=2� jzj � 2g, with connected critical set Z mapping diffeomorphically to fjzj D 1g.
Let Y D ��1

br
.fjzj D 1=2g/ and xY D ��1

br
.fjzj D 2g/. We suppose that the fibre

†D ��1
br
.1=2/ is connected of genus g , and that ��1

br
.2/ is either connected of genus

g� 1, or else disconnected with components of genera g1 and g�g1 .

We supplement the fibration with the following data, which are all determined up to
deformation by .Xbr ; �br /:

� A near-symplectic form ! , positive on the fibres of �br at regular points, and
vanishing along Z (see [1]). Once this is chosen, xY is identified with the
mapping torus T.�/ of its symplectic monodromy � 2 Aut.†; !j†/. Likewise,
xY D T.x�/ for some x� 2 Aut.x†;!j x†/.

� A surface Q� xY (a torus or Klein bottle) which shrinks to Z . Recall that we
refer to this as the attaching surface of the fibration. One can choose ! so that
Q is isotropic, though this is rarely necessary for our puropses.

� A complex structure j on T vY , compatible with ! . There is also a complex
structure xj on T v xY , but usually we choose this in a particular way, to be
explained presently.

We shall write .Y Œn�; � Œn�/ (resp. xY Œn�1�; x� Œn�1� ) for the relative symmetric product
Symn

S1.Y /! S1 (resp. Symn�1
S1 . xY /! S1 ). These are to be considered as differen-

tiable families of complex manifolds.

To state the following theorem—a parametric version of Theorem A—we need to
specify some cohomology classes on the relative symmetric products.

There are operations

H�.Y IZ/!H�C2k�2.Y Œn�IZ/; c 7! cŒk�
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defined using the universal divisor as in (23), and one obvious family of classes to
consider are those of form wŒ1� , where w 2H 2.Y IZ/. Another useful cohomology
class is the first Chern class of the vertical tangent bundle.

Theorem B (Lagrangian matching condition) Let � 2�2.Y Œn�/, x� 2�2. xY Œn�1�/

be closed, fibrewise-Kähler two-forms representing a pair of cohomology classes of
form

Œ��D wŒ1���c1.T
vY Œn�/; Œx��D xwŒ1���c1.T

v xY Œn�1�/; � > 0;

where w and xw are common restrictions of a class W 2H 2.Xbr IR/. Then, inside the
fibre product

.Y Œn� �S1
xY Œn�1�; � Œn� �S1 x� Œn�1�; .��/˚ x�/

there is a canonical isotopy class of isotropic sub-bundles Q with the property that the
projection Q! Y Œn� is an embedding and the projection Q! xY Œn�1� is an S1 –bundle.

(Note that there is an implicit restriction on � here: if it is too large, the classes will
cease to admit Kähler forms.)

Remark The zeroth symmetric product of a space is a point, so when nD 1, Q lies
inside Y itself. In this case Q is isotopic to Q itself.

The situation differs from Theorem A only in that we are now considering not a single
surface †, but a family of surfaces parametrised by S1 . The proof runs as follows: (1)
we construct an S1 –family of elementary Lefschetz fibrations Et ; (2) we form the
associated S1 –family of relative Hilbert schemes, and endow it with a global closed
two-form; (3) we form the S1 –family of vanishing cycles, arising from symplectic
parallel transport into the critical locus, along an S1 –family of rays; (4) we fine-tune
the global two-form so that the family of vanishing cycles becomes globally coisotropic.
The only other point to take care of is that we have specified appropriate cohomology
classes. By MacDonald’s formula 14.5 in [13],

c1.T Symn.†//D .nC 1�g/�† � �†:

Proof An S1 –family of Lefschetz fibrations Given a Riemann surface † with an
embedded circle L, we can construct an elementary Lefschetz fibration .E; �;J / over
the closed unit disc, with smooth fibre E1 D† and vanishing cycle L. It is canonical
up to deformation. If we are additionally supplied with � 2Diff.†/ leaving L invariant,
then we can extend � to ˆ 2 Diff.E/, again canonically up to deformation. This is
most clearly seen by directly building the mapping torus of ˆ as a five-dimensional
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manifold E fibred over S1 . This is simply a parametric version of Lemma 3.2. Each
fibre †t of the mapping torus T.�/ contains a circle Qt , and we may build a Lefschetz
fibration .Et ; �t ;Jt / with smooth fibre †t D �

�1
t .1/ and topological vanishing cycle

Qt . Because the construction varies smoothly with parameters, these fit together
to form a manifold E equipped with a smooth map E! S1 ��. The composite
E! S1 ��! S1 has compact fibres, and so E may be identified with the mapping
torus T.ˆ/ of a self-diffeomorphism ˆ of E , extending � .

The S1 –family of relative Hilbert schemes We now form the set

ED
[

t2S1

Hilbn
�.Et /:

This carries a natural topology and differentiable structure, extending the standard ones
on the Hilbn

�.Et /: it is characterised by the map E! S1 being smooth.

The normalisations of the critical fibres of the Et fit together to form a three-manifold
fibred over S1 , with a complex structure on its vertical tangent bundle. We may identify
this with xY . This identification induces a map jcrit W xY ! E. We have

Symn�1
S1 . xY /D

[
t2S1

Sing.Hilbn.��1
t .0//D Ecrit:

Cohomology of E We need to verify that the pairs of classes .wŒ1�; xwŒ1�/ and
.c1.T

vY Œn�/; c1.T
v xY Œn�1�// arise as common restrictions of classes in E. In the

case of the Chern classes, this is almost immediate: the vertical tangent bundle
T vE (vertical with respect to the projection E! S1 ) comes equipped with a com-
plex structure, and c1.T

vE/ restricts to Y Œn� as c1.T
vY Œn�/. It restricts to Ecrit as

T v xY Œn�1� ˚ NC ˚ N� for a pair of complex line bundles NC and N� . How-
ever, NC Š .N�/_ because of the non-degeneracy of the Hessian pairing, hence
c1.T

v xY Œn�1�˚NC˚N�/D c1.T
v xY Œn�1�/.

Now consider a pair .wŒ1�; xwŒ1�/, where .w; xw/ is the pair of restrictions of W 2

H 2.Xbr /). There is a unique class W 0 2 H 2.E/ such that j �critW
0 D wj xY and

W 0jY D wjY . To see this, observe that we can certainly find a family of classes
W 0t 2 H 2.Et /, t 2 S1 , which agree with the restrictions of w to Yt and xYt . The
possible ways of extending the family fW 0t g to a single class W 0 are parametrised by a
quotient of H 1.Et /, so there will precisely one which extends W . There is a natural
operation H 2.E/!H 2.E/, c 7! cŒ1� , and applying it to W 0 we get the desired result.

Adjusting the two-forms We can now certainly find a global closed two-form ¨ on
E which restricts to the classes Œ�� and Œx��. Moreover, we can arrange (cf Lemma
3.12) that is Kähler on each Hilbn

�.Et /. We must perturb it to ensure that the family
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of coisotropic vanishing cycles VD
S

t2S1 VQt
� Y Œn� is globally coisotropic. As we

have seen in Section 2 (Lemma 2.12), and again in Section 3 (proof of Theorem A,
this is achievable.

The result now follows.

4.1 Topology of the Lagrangian matching condition

It is useful to know a little about the topology of Q. We have already studied the
topology of the vanishing cycle bV —the fibre of the bundle map Q! S1 —so what
we are interested in here is the behaviour of the S1 –family.

As the result of surgery, the surface x† contains two distinguished points fxC;x�g. In
xY , the pairs of distinguished points on the fibres trace out a 1-manifold � , well-defined
up to isotopy—a two-fold cover of S1 . If Q is orientable, the covering is trivial, and
� is the disjoint union of two sections of Y ! S1 which we write as �C and �� . If
Q is non-orientable, � is non-trivial.

Remark As in Section 3.6, Q is isotopic, through Lagrangian-subbundles, to another
such bundle Q0 which has the following property: let � be a tubular neighbourhood of Q

in Y . Consider the open set U�Y Œn� of n–tuples Œx1; : : : ;xn�2†t such that x1 lies in
� and x2; : : :xn lie outside � . Then, inside U, Q0 is cut out as Q�S1 Symn�1

S1 .Y n�/.
Moreover, the bundle map to xY Œn�1� is the projection to Symn�1

S1 .Y n �/.

This can be rephrased as follows. Let x� be a tubular neighbourhood of � in xY . Then
the S1 –bundles Q�S1

xY Œn�1� ! xY Œn�1� and Q0 ! xY Œn�1� become isomorphic on
restriction to Symn�1

S1 . xY n x�/� xY
Œn�1� .

For the following lemma, we should clarify our notation. We have submersions

Q
�
�! xY Œn�1� �

Œn�1�

�! S1:

The map � is an S1 –bundle, and its structure group is naturally reduced to O.2/–bundle.
We write T vQ to mean ker D.� Œn�1� ı �/� T Q.

Lemma 4.1 Consider Q! xY Œn�1� as an O.2/–bundle.

(1) When Q is orientable (a torus), we have w1.Q/D 0.

(2) In general, w1.Q/ restricts trivially to H 1.Symn�1.x†/IZ=2/.

(3) Let ı� �Q be the codimension-two sub-fibre bundle of .n�1/–tuples containing
a point of � . Then Œı� � is Poincaré dual to w2.Q/. If Q!S1 is orientable then
Q reduces to an SO.2/–bundle, and c1.Q/ is Poincaré dual to Œı�C �� Œı�� �.
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(4) w1.T
vQ/D ��w1.Q/.

(5) w2.T
vQ/D ��w2.Q/C �

�w2.T
vY Œn�/.

Proof (1) and (2) are clear.

(3) The class w2.Q/� P:D:Œı� � restricts trivially to the fibres, and is therefore equal
to tc for some c 2 H 1.Symn�1.x†//. Since the � map on H1 is an isomorphism,
we may write c D �.h/ for some h 2 H1.x†IZ=2/. But h must be invariant under
diffeomorphisms of x† trivial near fxC;x�g, hence h D 0. In the oriented case, c1

can be handled similarly.

(4)–(5) The vertical tangent bundle T vQ fits into a short exact sequence

0! ��Q! T vQ! ��T vY Œn�! 0:

But w1.T
vY Œn�/D 0, so the Whitney formula gives the result.

The last lemma dealt with Q as a bundle over xY Œn�1� . The next deals with its funda-
mental class as a submanifold of Y Œn� .

Lemma 4.2 Let ıQ be the sub-fibre bundle of Y Œn�! S1 of n–tuples which contain
a point of Q. Then ŒQ�D ŒıQ� 2H2n.Y

Œn�/. Here we use Z–coefficients when Q is a
torus, Z=2–coefficients otherwise.

Proof By Lemma 3.15, the difference ŒQ�� ŒıQ� gives zero when intersected with the
fibre Symn.†/. It is therefore a class supported on Symn.†/. But both ŒQ� and ŒıQ�
go to zero inside the S1 –family of Hilbert schemes E, whereas fundamental classes of
components of Symn.†/ do not, hence ŒQ�� ŒıQ�D 0.

Appendix A Cohomology of the relative Hilbert scheme

In this appendix we describe the additive structure of the integral cohomology of
Hilbn

�.E/, where E!� is a connected elementary Lefschetz fibration. This is more
than is really needed here—it is H 2 which is actually used. One reason to investigate
the full cohomology is that there is an interesting homomorphism H�.Hilbn

�.E//!

HF�.�/ to the Floer homology of the symplectic monodromy of the Hilbert scheme
(a fibred Dehn twist). Notice that Hilbn

�.E/ deformation-retracts to its central fibre
Hilbn.E0/, which therefore has the same cohomology; we shall pass freely from one
space to the other.

Some notation is required:
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(i) We have inclusion maps

Symn.E1/
i1 // Hilbn

�.E/ Symn�1.eE0/:
icritoo

(ii) We write js W Es ! E for the inclusion of the fibre Es of E . Also write
nW eE 0!E0 for the normalisation map, and jcrit D n ı j0 .

(iii) The relative Hilbert scheme has a universal divisor

Zuniv
� � Hilbn

�.E/��E:

This has a dual class z 2H 2.Hilbn
�.E/��E/. There are resulting operations

H�.E/!H�C2k�2.Hilbn
�.E//; c 7! cŒk� WD p1!

�
zk
�p�2c

�
;

(Z coefficients) where p1 and p2 are the projections from the fibre product onto
Hilbn

�.E/ and E respectively. (We will only be concerned with the first of these
operations, c 7! cŒ1� .) There are similar operations

H�.E1/!H�C2k�2.Symn.E1//;

H�.eE0/!H�C2k�2.Symn�1.eE0//;

also denoted c 7! cŒk� and defined using universal divisors in exactly the same way.
These are related as follows:

Lemma A.1 For any c 2H�.E/, we have i�
1

cŒk� D .j �
1

c/Œk� , for any k � 1. If c has
positive degree then i�critc

Œ1� D .j �critc/
Œ1� .

Proof The first assertion follows from a comparison of the universal ideal sheaves
(divisors). These divisors are

Zuniv
� �E �� Hilbn

�.E/;

Zuniv
E1
�E1 �Symn.E1/:

Clearly, Zuniv
�

pulls back to Zuniv
E1

, and this immediately gives the result.

The second assertion can also be proved by studying the universal divisor ZuniveE 0

�eE 0�Symn�1. eE 0/, but since this leads to rather indigestible formulae, we shall instead
prove it using Poincaré-Lefschetz duality. Any class c 2H k.E/, k D 1; 2, is Poincaré-
Lefschetz dual to a cycle �c , representing a class Œ�c � 2H 4�k.E; @E/. We can take
�c to be a smooth cycle which maps submersively to � (in particular, �c \Ecrit D∅).
Then cŒ1� is dual to the cycle �Œ1�c of points x 2Hilbn

�.E/ with Supp.x/\ �c ¤∅. So
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�
Œ1�
c \crit.Hilbn.C // is the set of points x 2 Symn�1. eE 0/ which hit �c\E0 . But this

means that �Œ1�c \ crit.Hilbn.C // is Poincaré dual (in Symn�1. eE 0/) to .j �critc/
Œ1� .

Recall from subsection 3.4.4 the algebras S.C; n/ associated with a curve C . Each
such algebra comes with a homomorphism aC W S.C; n/! H�.Symn.C //. When
followed by the map on cohomology induced by the cycle map Hilbn.C /! Symn.C /,
this gives a homomorphism S.C; n/!H�.Hilbn.C // which we continue to denote
by aC .

Theorem A.2 The integral cohomology of the Hilbert scheme of n points on a
compact one-nodal curve C DE0 fits into a natural short exact sequence

0 // S.C; n/
aC // H�.Hilbn.C //

b // S.eC ; n� 2/Œ�2� // 0:

Proof Let eH Œn�

C be the normalisation of the Hilbert scheme, so there is a quotient

map � W eH Œn�

C ! Hilbn.C /. We established in subsection 3.2.4 that eH Œn�
is the

blow-up of Symn.eC / along Symn�2.eC /, and that � folds together two embeddings
zi˙ W Symn�1.eC /! eH Œn�

.

The map b is given by the composite

H�.Hilbn.C //
��

!H�.eHŒn�

C /!H�.Z/

!H��2.Symn�2.eC // a�1
C
! S.eC ; n� 2/Œ�2�:

Here the second map is restriction to the exceptional divisor Z in the blow-up, and the
third map integration down the fibre of the P1 –bundle Z! Symn�2.eC /.
Step 1 bıaC D0 It suffices to show that bıaC .c/D0 for the generators c 2 eH �.C /
of S.C; n/. This is trivially true when c has degree � 1. As to the degree two case,
��aC .oC /D �

�o
Œ1�
C
D o

Œ1�eC is dual to the divisor eıx , the proper transform in eH Œn�

C of

ıx � Symn.eC / (we defined ıx to be the locus of n–tuples which contain x in their
support). Hence ��aC .oC / evaluates trivially on the fibres of Z! Symn�2.eC / and
b ı aC .c/D 0.

Step 2 aC is injective Irreducible case Identifying H�.Hilbn.C // with
H�.Hilbn

�.E//, we have i�
1
ıaC D aE1

ıj �
1

by Lemma A.1. This shows that i�
1
ıaC

is injective (here we use the irreducibility of C ).

Reducible case Here i�crit ı aC is injective, since it equals a eE 0

ı j �crit by Lemma A.1.
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Step 3 b is surjective In sheaf cohomology, we have

H�.Hilbn.C /I ��Z/ŠH�.eH Œn�

C IZ/:

Indeed, Rq��Z D 0 for q > 0 since the fibres of � are zero-dimensional, so the
isomorphism is implied by the Leray spectral sequence. There is a short exact sequence
of sheaves of abelian groups on Hilbn.C /,

0! ZHilbn.C /! ��ZeH Œn�

C

! icrit�ZSymn�1.eC /
! 0:

(The sheaf on the right is the extension by zero of the constant sheaf Z on the singular
set.) The cohomology exact triangle is

H�.Hilbn.C //
�� //

H�.eHŒn�
/

.ziC/
��.zi�/

�

��

H�.Symn�1.eC /IZ/C1

hhRRRRRRRRRRRRRR

By the formula for cohomology of blow-ups,

H i.eH Œn�

C /ŠH i.Symn.eC //˚H i�2.Symn�2.eC //:
The composite map H i.Hilbn.C //

��

! H i.eH Œn�

C /! H i�2.Symn�2.eC // (where the
second map is projection on a summand) is nothing but b . Our task is therefore to
show that zi�C�zi

�
� is zero on this summand.

Now, any class in the summand H i�2.Symn�2.eC // � H i.eH Œn�
/ is supported in

the exceptional divisor Z . It therefore suffices to show that .zi�C �zi
�
�/jZ D 0. But

Z D P.NC˚N�/, a projective bundle over Symn�2.eC /, having im.ziC/\Z and
im.zi�/\Z as zero- and infinity-sections. These two sections are homotopic, hence
.zi�C�

zi��/jZ D 0, as required.

Step 4 Exactness in the middle Irreducible case Since eC is connected, ziC is
homotopic to zi� , hence .ziC/� � .zi�/� is identically zero. The exact triangle breaks
into short exact sequences since .ziC/�� .zi�/� D 0, and a dimension count finishes the
proof.

Reducible case We claim that .ziC/��.zi�/� is surjective. We restrict it to the summand
H�.Symn.eC // in H�.eH Œn�

C /, and so consider it as a map

S.eC ; n/! S.eC ; n� 1/:
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Now, S.eC ; n/ is generated by monomials mi;n�i , where the subscripts designate the
summand S.eC 1; i/˝S.eC 2; n� i/. We have

Œzi�C�
zi���mi;n�i Dmi�1;n�i �mi;n�i�1;

(monomials with negative subscripts are read as zero.) Granted this formula, surjectivity
is an easy exercise.

So again the exact triangle breaks into short exact sequences. Now take x 2 ker.b/.
Then ��.x/ 2 H�.Symn.eC // D S.eC ; n/, so we may write ��.x/ D aeC .y/. We

have �� W S.C; n/ Š S.eC ; n/, so y D ��.y0/ for a unique y0 2 S.C; n/. But then
��x D aeC ��.y0/D ��aC .y

0/, and since �� is injective, x D aC .y
0/.

Corollary A.3 H 2.Hilbn.C //ŠH 2.C /˚ƒ2H 1.C /˚Z; where the third summand
is generated by c1.O.Z//.

Remark It would be interesting to understand (along the lines of [16, Chapter 8].)
the operations on

L
n�0 H�.Hilbn.C // induced by the correspondences

f.I1; I2/ W I1 � I2; Supp.I2=I1/D fnodegg � Hilbn.C /�HilbnCi.C /:

We finish by giving two deferred proofs of cohomological results concerning the relative
Hilbert scheme. The first, Proposition 3.11, gave the structure of the cohomological
correspondence corr2

n .

Proof of Proposition 3.11 By Corollary A.3,

H 2.Hilbn.E0//ŠH 2.E0/˚ƒ
2H 1.E0/˚Z;

where the third summand is generated by � , so our task is to understand i�crit and
i�
1

on each of the three summands. By Lemma A.1, i�crit.c
Œ1�/ D .n�j �

0
c/Œ1� and

i�
1
.cŒ1�/D i�

1
cŒ1� . The class �E1

is the pullback by the Abel–Jacobi map of

c1.‚E1
/ 2H 2.Picn.E1//;

where ‚E1
is the standard theta line-bundle. Likewise, � eE 0

is the pullback of

c1.‚ eE 0

/2H 2.Picn�1. eE 0/IZ/. The theta line-bundles extend to a line bundle ‚�!

Pn
�.E/ (the natural ample class relative to the base which is part of the construction

of the compactified Picard family). This pulls back to a class on Hilbn
�.E/. Hence

.�E1
; � eE 0

/ 2 corr2
n .

We need to see that the classes we have constructed span corr2
n . When E0 is irreducible,

we have at our disposal a set B of linearly independent classes in corr2
n , such that B
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bijects with a Z–basis for Hilbn.C /, and such that each member of B is simple (not a
multiple of another class by an integer > 1). Hence B spans corr2

n .

When E0 is reducible, the result will follow as soon as we can show that the natural
map H 2.Hilbn.E0//! corr2

n has non-trivial kernel. Consider the class c D � � o
Œ1�
E0

.
One can see directly that i�critc D 0. Thus hc;Si D 0 for any 2-cycle S contained in
Symn�1. eE 0/. But such homology classes such 2-cycles span H2.Symn.E1//, hence
i�
1

c D 0 too.

The other deferred proof concerned Kähler classes on the relative Hilbert scheme.

Proof of Lemma 3.12 There are several ways to go about this. One is to use the fact
that, for n� 0, Hilbn

�.E/ is the total space of a projectivised holomorphic vector
bundle p W PV ! Pn

�.E/. Thus .p�‚/˝M ˝OPV .N / is an ample line bundle over
PV (relative to �/, for any M > 0, N > 0. It is therefore represented by a closed
.1; 1/—form � which is positive on each fibre Hilbn.Es/, s 2�. Adding the pullback
from � of iRdz^dxz , R� 0, one gets a Kähler form. Moreover, Œ��DM��CN�� .
By convexity of the set of Kähler classes, we can allow M and N to be non-integral.
This finishes the proof when n� 0.

We now argue by descending induction. Take a Kähler representative �0 for s��Ct�� ,
and a holomorphic section � W �!E . Then �0 restricts to the complex submanifold
�CHilbn�1

� .E/�Hilbn�1
� .E/ as a Kähler form �00 . Considered as a closed form on

Hilbn�1
� .E/, Œ�00�D s��C t�� . The result follows.
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