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Cutting and pasting in the Torelli group

ANDREW PUTMAN

We introduce machinery to allow “cut-and-paste”-style inductive arguments in the
Torelli subgroup of the mapping class group. In the past these arguments have
been problematic because restricting the Torelli group to subsurfaces gives different
groups depending on how the subsurfaces are embedded. We define a category
TSur whose objects are surfaces together with a decoration restricting how they
can be embedded into larger surfaces and whose morphisms are embeddings which
respect the decoration. There is a natural “Torelli functor” on this category which
extends the usual definition of the Torelli group on a closed surface. Additionally, we
prove an analogue of the Birman exact sequence for the Torelli groups of surfaces
with boundary and use the action of the Torelli group on the complex of curves to
find generators for the Torelli group. For genus g � 1 only twists about (certain)
separating curves and bounding pairs are needed, while for genus g D 0 a new type
of generator (a “commutator of a simply intersecting pair”) is needed. As a special
case, our methods provide a new, more conceptual proof of the classical result of
Birman and Powell which says that the Torelli group on a closed surface is generated
by twists about separating curves and bounding pairs.

57S05; 20F05, 57M07, 57N05

1 Introduction

Let †g;n be a genus g surface with n boundary components (we will often omit the
n if it equals 0 and omit both subscripts if they are unimportant). The mapping class
group Mod.†g;n/ is the group of orientation-preserving homeomorphisms of †g;n

which fix the boundary pointwise modulo isotopies fixing the boundary pointwise. The
action of Mod.†g;n/ on H1.†g;nIZ/ preserves the algebraic intersection form. If
n� 1, then this is a nondegenerate alternating form, so in this case the action yields
a representation Mod.†g;n/! Sp.2g;Z/, which is well-known to be surjective. Its
kernel is the Torelli group I .†g;n/. Summarizing, for n�1 we have an exact sequence

1 �! I .†g;n/ �!Mod.†g;n/ �! Sp.2g;Z/ �! 1:
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The group I .†g;n/ plays an important role in both algebraic geometry and low dimen-
sional topology. For a survey of the Torelli group (especially the remarkable results of
Johnson which appear in [14; 15; 16]), see [13].

If i W † ,!†0 is an embedding, then there is an induced map i�W Mod.†/!Mod.†0/.
Namely, if f 2Mod.†/, then i�.f / equals f on †�†0 and the identity elsewhere.
In fancier language, if Sur is the category whose objects are surfaces and whose mor-
phisms are embeddings, then Mod is a functor from Sur to the category of groups and
homomorphisms. These morphisms are fundamental tools in the study of Mod.†/ (they
allow proofs by “cutting and inducting”). In this paper, we develop such technology
for the Torelli group.

This technology has been problematic in the past because the naive definition of the
Torelli group on a surface with boundary simply does not work. Indeed, no single
definition of I .†g;n/ for n> 1 satisfies the following two properties, which are the
minimum needed for inductive proofs:

� I should be functorial in the sense that if i W † ,! †0 is an embedding, then
i�.I .†//� I .†0/.

� I should be closed under restriction in the sense that if i W † ,! †0 is an
embedding, then I .†/D i�1

� .I .†0//.

To see that these properties are mutually contradictory and to explain our solution,
we need some more concepts. For a simple closed curve 
 , let T
 be the right Dehn
twist about 
 . A curve 
 is a separating curve if it separates the surface into two
pieces (for instance, the curve 
1 in Figure 1.c). A pair of disjoint non-isotopic simple
closed curves f
; 
 0g form a bounding pair if neither 
 nor 
 0 separate the surface
but 
 [ 
 0 does (for instance, the pair f
2; 
3g in Figure 1.c). It is not hard to see
that T
 2 I .†g/ if and only if 
 is a separating curve, and similarly if f
; 
 0g is a
bounding pair in †g , then T
T �1


 0 2 I .†g/ (such a mapping class will be called a
twist about a bounding pair).

Now assume that we have a definition of the Torelli group which is both functorial
and closed under restriction, and consider Figure 1, which shows two embeddings of
†0;4 into closed surfaces. The twist T
 is a twist about a separating curve in I .†4/,
so since I is closed under restriction, we must have T
 2 I .†0;4/. However, by
functoriality we would then have T
 2 I .†2/. Since 
 is not a separating curve in
†2 , this is a contradiction.

One difference between the embeddings †0;4 ,! †2 and †0;4 ,! †4 depicted in
Figure 1 is that the partitions

f@S j S is a component of †i n Int.†0;4/g
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Figure 1: a, b: Two different embeddings of †0;4 into larger surfaces
c: A separating curve, a bounding pair and a simply intersecting pair

of the boundary components of †0;4 are different. It turns out that this additional
piece of data is exactly what we need to distinguish between the behavior of the Torelli
groups under different embeddings. We will call a pair .†;P / consisting of a surface
† and a partition P of the boundary components of † a partitioned surface (we
think of each partition element as a “chunk” of the boundary to which we can attach
pieces). We will construct a category TSur whose elements are partitioned surfaces and
whose morphisms are embeddings which “respect the partitions” (see Section 3.2 for
the precise definition of the morphisms). We will also define on a partitioned surface
.†;P / a “homology group” HP

1
.†/ (see Section 3.1). Our main theorem will then be

the following:

Theorem Summary 1.1 There is a functor I from the category TSur to the cate-
gory of groups and homomorphisms (see Corollary 3.7) which satisfies the following
properties:

� If i W † ,!†g is an embedding and

P D f@S j S is a component of †g n Int.†/g;

then I .†;P /D i�1
� .I .†g// (see Theorem 3.3).

� For a partitioned surface .†;P /, the group I .†;P / equals the subgroup of
Mod.†/ acting trivially on HP

1
.†/ (see Theorem 3.3).

� I is closed under restriction in the following sense : if .†0;P 0/ is a partitioned
surface and i W † ,!†0 is an embedding, then there is some partition P of the
boundary components of † so that I .†;P /D i�1

� .I .†0;P 0// (see Theorem
3.8).

Now, the mapping class groups on surfaces with differing numbers of boundary com-
ponents are related by the fundamental Birman exact sequences (see [2; 4] and Section
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2.1). One version of this, due to Johnson [14], is that for n � 1 and .g; n/¤ .1; 1/,
we have an exact sequence

1 �! �1.U†g;n�1/ �!Mod.†g;n/ �!Mod.†g;n�1/ �! 1;

where U†g;n�1 is the unit tangent bundle of †g;n�1 , the map

Mod.†g;n/ �!Mod.†g;n�1/

is induced by “gluing a disc to a boundary component”, and the map

�1.U†g;n�1/!Mod.†g;n/

is induced by “pushing the boundary component around curves”. We construct a similar
exact sequence for the Torelli group:

Theorem 1.2 Let .†g;n;P / be a partitioned surface with n� 1 and .g; n/¤ .1; 1/,
and let b be a boundary component of †g;n contained in a set p 2 P . Consider the
map i W †g;n ,!†g;n�1 induced by gluing a disc to b , and let P 0 be the partition of
the boundary components of †g:n�1 induced by i . There is then an exact sequence

1 �!K �! I .†g;n;P / �! I .†g;n�1;P
0/ �! 1

with K equal to the following:

� If p D fbg, then K D �1.U†g;n�1/.

� If p¤fbg, then K is isomorphic to the kernel of the natural map �1.†g;n�1/!

HP 0

1
.†g;n�1/ (recall that HP 0

1
.†g;n�1/ is the “homology group” discussed in

Theorem Summary 1.1).

See Section 4 for a discussion of the manner in which the kernel K embeds into
�1.U†g;n�1/.

Finally, we combine the machinery we have developed with action of the Torelli group
on the complex of curves C .†/ (see Section 5) to determine generators for I .†;P /.
We define “P –separating curves” and “P –bounding pairs” to be separating curves
and bounding pairs which “respect the partition P ” (see the end of Section 3.1 for a
precise definition). Our first theorem is then the following:

Theorem 1.3 For any partitioned surface .†g;n;P / with g�1, the group I .†g;n;P /

is generated by twists about P –separating curves and twists about P –bounding pairs.

As a special case of this theorem, we obtain a new proof of the following classical
theorem of Birman and Powell [3; 19]:
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Corollary 1.4 For a surface †g;n with n � 1, the group I .†g;n/ is generated by
twists about separating curves and bounding pairs.

Our proof of Theorem 1.3 makes use of a basic result of Armstrong [1] (see Section
2.2) which says that if a group G acts nicely on a simply-connected simplicial complex
X , then G is generated by elements which stabilize vertices of X if and only if X=G

is simply connected. We prove that C .†g/=I .†g/ is simply connected for g � 2,
so Armstrong’s theorem says that I .†g/ is generated by the stabilizer subgroups
.I .†g//
 of simple closed curves 
 . These stabilizer subgroups are supported on
“simpler” subsurfaces, so we can use induction and Theorem 1.2 to analyze them.

Now, the condition g� 1 in Theorem 1.3 is necessary; indeed, for some partitions P of
the boundary components of †0;n , there are no P –separating curves or P –bounding
pairs. To find generators for the Torelli groups of genus 0 surfaces, we make one
final definition. If f
; 
 0g is a pair of simple closed curves in †g;n whose geometric
intersection number is 2 and whose algebraic intersection number is 0 (for instance,
the pair f
4; 
5g in Figure 1.c), then it is easy to see that for any partition P of the
boundary components of †g;n we have ŒT
 ;T
 0 � 2 I .†g;n;P /. We will call these
commutators of simply intersecting pairs. Our final theorem is the following:

Theorem 1.5 For any genus 0 partitioned surface .†0;n;P /, the group I .†0;n;P /

is generated by twists about P –separating curves, twists about P –bounding pairs, and
commutators of simply intersecting pairs.

History and comments At least two special cases of our construction have appeared
in the literature. The simplest appears in the work of Hain [8], who (in our notation)
considered I .†g;n;P / with P D ff1g; : : : ; fngg, which he defined as the subgroup
of I .†g/ fixing n discs. This is the “largest” possible definition of the Torelli group,
and is rather easily related to the closed surface case. However, it does not have good
functoriality properties, and it seems difficult to use it in inductive proofs (though, as
Hain notes, it does have interesting interpretations in terms of algebraic geometry).

The other special case appears in the work of Johnson [15] and van den Berg [20]. In our
notation, Johnson considered I .†g;n;P / with P Dff1; : : : ; ngg. This is the “smallest”
possible definition of the Torelli group, and it is functorial under embeddings. However,
it is not closed under restriction except in the simplest possible cases, and great care
has to be exercised when using it in inductive proofs. This work was continued in
the unpublished thesis of van den Berg [20], who indicated how to extend Johnson’s
calculation of H1.I .†g/IZ/ to surfaces with boundary using Johnson’s definition of
the Torelli group on surfaces with boundary. She also gave a very brief sketch of the
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identification of the kernel of the exact sequence in Theorem 1.2 for the cases she was
considering, though she did not prove that the associated map was surjective.

The history of Birman and Powell’s result is rather interesting. Though it is a fundamen-
tal result used in nearly every subsequent paper on the Torelli group, their proof is the
only one we are aware of in the literature. The story begins with a paper of Klingen [17]
in which he gave an algorithm for computing a presentation of Sp2g.Z/. In Birman’s
paper [3], she followed this algorithm. Assembling results from a paper of Magnus
[18] and the unpublished thesis of Gold [6], she showed that Klingen’s presentation
has 5 families of generators and 67 families of relations. After an absolutely heroic
calculation (whose details, needless to say, are only briefly sketched in Birman’s short
paper), she reduced this to a presentation with 3 families of generators and 10 families
of relations.

These 3 families of generators are the images of a standard set of generators for
Mod.†g/. She calculated that all but a few of these families of relations lift to relations
in Mod.†g/. The relations in Sp2g.Z/ which do not lift to relations in Mod.†g/

lift to normal generators for I .†g/. In Powell’s paper, he showed how to express
these normal generators for I .†g/ as products of twists about separating curves and
bounding pairs, thus establishing the result.

Our proof seems to be the first to appear in the literature which does not depend on
unpublished results and for which full details are given. Of course, K–theoretic methods
have by now yielded simpler presentations of Sp2n.Z/ than Klingen’s presentation (see,
eg, [7, Theorem 9.2.13]), but these constructions are quite involved, and it is nontrivial
to perform Birman and Powell’s analysis on them to get generators for the Torelli
group. Our method has two advantages over such an approach. First, our methods are
“intrinsic” to the theory of mapping class groups. Second, for the most part we avoid
complicated group-theoretic calculations.

Acknowledgements I wish to thank my advisor Benson Farb for introducing me to the
Torelli group and commenting extensively on previous incarnations of this paper, Ben
Wieland for several useful discussions, and Justin Malestein for many useful discussions
and corrections (in particular, Justin observed Lemma 6.7, which significantly simplified
my original argument). Additionally, I wish to thank Dan Margalit and Matt Day for
some corrections and Yair Minsky for allowing me to use his drawing of the Farey
graph. Finally, I wish to thank the mathematics department of the Georgia Institute
of Technology for their hospitality during the time in which part of this paper was
conceived.

Outline We begin with two sections outlining preliminaries. Next, we define the
Torelli group on a surface with boundary in Section 3.1 and discuss morphisms between
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different Torelli groups in Section 3.2. After a discussion of how to restrict Torelli groups
to subsurfaces in Section 3.3, we prove our analogue of the Birman exact sequence in
Section 4. In Section 5 we find generators for the Torelli groups, proving Theorems
1.3 and 1.5. The proofs of these theorems depend on the simple-connectedness of
C .†g/=I .†g/ for g � 2, which is proven in Section 6 (see the beginning of that
section for an outline of this lengthy proof). We conclude with an Appendix in which
we prove several useful lemmas about the topology of surfaces.

Throughout this paper, all homology groups will have Z–coefficients. A summand
A of a module M is a submodule so that there exists another submodule B with
M D A˚B . We will often abuse notation and discuss the span hX1; : : : ;Xk i of a
set of submodules of a single module X . The algebraic intersection of two homology
classes h1; h2 will be denoted by ia.h1; h2/. The geometric intersection number of two
simple closed curves 
1; 
2 will be denoted by ig.
1; 
2/. Finally, the flag complex
with vertices X and adjacency relation R is the simplicial complex whose simplices
are sets fx1; : : : ;xkg �X so that xiRxj for all i and j .

2 Preliminaries

2.1 The Birman exact sequences

In this section, we will give a detailed review of the exact sequences of Birman and
Johnson [2; 4; 14] which describe the effect on the mapping class group of gluing a
disc to a boundary component. We will need the following definition:

Definition Consider a surface †g;n . Let x 2†g;n be a point. We define the mapping
class group relative to x , Mod.†g;n;x/, to be the group of orientation-preserving
homeomorphisms which fix x and the boundary modulo isotopies fixing x and the
boundary.

Let b be a boundary component of †g;n . There is a natural embedding †g;n ,!†g;n�1

induced by gluing a disc to b . Let x be a point in the interior of the new disc. Clearly
we can factor the induced map Mod.†g;n/!Mod.†g;n�1/ into a composition

Mod.†g;n/ �!Mod.†g;n�1;x/ �!Mod.†g;n�1/:

Now let U†g;n�1 be the unit tangent bundle of †g;n�1 and Qx be any lift of x to
U†g;n�1 . The combined work of Birman [2] and Johnson [14] shows that (except for
the degenerate case .g; n/D .1; 1/) all of our groups fit into the following commutative
diagram with exact rows and columns:
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Figure 2: a: Image of a simple closed curve in Mod.†g;n�1;x/

b: Lift of a simple closed curve to Mod.†g;n/

1 1

# #

Z D Z

# #

1 �! �1.U†g;n�1; Qx/ �! Mod.†g;n/ �! Mod.†g;n�1/ �! 1

# # k

1 �! �1.†g;n�1;x/ �! Mod.†g;n�1;x/ �! Mod.†g;n�1/ �! 1

# #

1 1

The Z in the first column is the loop in the fiber, while the Z in the second column
corresponds to the Dehn twist about the filled-in boundary component.

For 
 2 �1.†g;n�1;x/, let �
 be the element of Mod.†g;n�1;x/ associated to 

(hence �
 is the mapping class which “pushes x around 
 ”). If 
 is a simple closed
curve, then there is a nice formula for �
 (see Figure 2.a). Namely, let 
1 and 
2

be the boundary components of a regular neighborhood of 
 . The orientation of 

induces orientations on 
1 and 
2 ; assume that 
 lies to the left of 
1 and to the right
of 
2 . Then �
 D T
1

T �1

2

.

Continue to assume that 
 is a simple closed curve. We will construct a natural lift Q�

of �
 to �1.U†g;n�1; Qx/�Mod.†g;n/ (we reiterate that our construction depends
on the simplicity of 
 ). Recall that we have been considering †g;n�1 to be †g;n with
a disc glued to b . In the other direction, we can consider †g;n to be †g;n�1 with the
point x blown up to a boundary component. Two such identifications may differ by a
power of Tb ; however, since Tb fixes both 
1 and 
2 , there are well-defined lifts Q
1

and Q
2 of the 
i to †g;n (see Figure 2.b). It is not hard to see that

Q�
 WD T Q
1
T �1
Q
2

is a lift of �
 .
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Remark While the map

�� W �1.†g;n�1;x/ �!Mod.†g;n�1;x/

is a homomorphism, the map Q�� (which is only defined on simple closed curves) does
not extend to a homomorphism.

2.2 Groups acting on simplicial complexes

In this section, we will prove a theorem (really, a corollary of a theorem of Armstrong
[1]) which we will use to find generating sets for the Torelli group. We will need the
following definition:

Definition A group G acts on a simplicial complex X without rotations if for all
simplices s of X the stabilizer Gs stabilizes s pointwise.

The following is our theorem:

Theorem 2.1 Let G act without rotations on a simply-connected simplicial complex
X . Then G is generated by the set [

v2X .0/

Gv

if and only if X=G is simply-connected.

Proof Let H be the subgroup of G generated by the indicated set (note that H is
normal). Observe that since G acts without rotations, we can subdivide X without
changing H . After possibly subdividing twice, the work of Armstrong [1] implies that
there is an exact sequence

1 �!H �!G �! �1.X=G/ �! 1:

This clearly implies the theorem. We briefly indicate the construction of the exact
sequence. Let � W X ! X=G be the projection, and fix a vertex v of X . We define
a homomorphism j W G ! �1.X=G; �.v// in the following way. For g 2 G , let `
be a path in X from v to gv . Then j .g/ WD � ı ` is a loop in X=G based at �.v/.
Since X is simply-connected, j is well-defined, and it is clear that j is a surjective
homomorphism. Now, if gwDw for a vertex w 2X , we claim that j .g/D 1. Indeed,
let `0 be a path from v to w . Then `0 � .g.`0//�1 is a path from v to gv which clearly
projects to a null-homotopic loop in X=G , proving the claim. The bulk of Armstrong’s
work, therefore, consists of showing that if g 2 ker.j /, then g 2 H . We refer the
reader to Armstrong’s paper [1, pages 643-645] for the details.
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Figure 3: A capping of .†1;8; ff1; 2; 3g; f4; 5g; f6g; f7g; f8gg/

3 Definition of the Torelli group on a surface with boundary

3.1 Definition

In this section, we will define the Torelli group on a surface with boundary. As discussed
in the introduction, our main goal is to understand the subgroups of Mod.†/ which
arise as i�1

� .I .†g// for embeddings i W † ,! †g . We observed there that different
embeddings yield different “Torelli groups” for †.

Recall that in the introduction we indicated that to distinguish these different Torelli
groups we would attach to a surface † a partition P of its boundary components;
the pair .†;P / will be called a partitioned surface. Associated to an embedding
i W † ,!†g is a partition

P D f@S j S is a component of †g n Int.†/g

of the boundary components of †. The following is a useful shorthand for the embed-
dings which give rise to a partition P :

Definition A capping of a partitioned surface .†;P / (see Figure 3) is an embedding

† ,!†g

so that for each component S of †g n Int.†/, the set of boundary components of S is
exactly equal to an element of P .

The follow obvious lemma says that that every embedding is a capping for an appropriate
partition:

Lemma 3.1 Let i W † ,!†g be an embedding. Set

P D f@S � @† j S is a component of †g n Int.†/g:
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Then i is a capping of .†;P /.

We now define the Torelli group of a partitioned surface.

Definition For a partitioned surface .†;P /, let I .†;P / WD i�1
� .I .†g// for any

capping i W † ,!†g .

Of course, it is not at all clear that this definition of I .†;P / is independent of the
chosen capping. Also, it seems rather ad-hoc – one would like to say that I .†;P / is
the subgroup of Mod.†/ fixing some sort of homology group. We will answer these
objections simultaneously by defining a certain intrinsic “homology group” HP

1
.†/

and then proving Theorem 3.3, which says that I .†;P / is exactly the subgroup of
Mod.†/ acting trivially on HP

1
.†/.

The construction of HP
1
.†/ is a two step process. For the first step, observe that

in Figure 3 the mapping class T
1
T �1

2

is an element of I .†8/, but it does not fix
H1.†1;8/. The problem is that (picking appropriate orientations for everything)

Œ
1�� Œ
2�D Œb1�C Œb2�C Œb3�C Œb7�¤ 0:

This motivates the following definition:

Definition Consider a partitioned surface .†;P /, and enumerate the partition P :

P D ffb1
1 ; : : : ; b

1
k1
g; : : : ; fbm

1 ; : : : ; b
m
km
gg:

Orient the boundary components b
j
i so that

P
i;j Œb

j
i �D 0 in H1.†/. Define

@HP
1 .†/D hŒb

1
1
�C : : :C Œb1

k1
�; : : : ; Œbm

1
�C : : :C Œbm

km
�i � H1.†/;

H
P

1 .†/D H1.†/=@HP
1 .†/:

The following lemma is immediate from the definitions:

Lemma 3.2 If i W † ,!†g is a capping of a partitioned surface .†;P /, then there is

an induced injection i�W H
P

1 .†/ ,! H1.†g/.

For the second step of the construction of HP
1
.†/, observe that in Figure 3 the mapping

class Tı does not fix the homology class Œh1�C Œh2� (where the hi are the indicated
arcs and Œhi � is the chain corresponding to hi ; only the sum Œh1�C Œh2� is a cycle),
and hence is not in I .†8/. However, it does fix H

P

1 .†/. The difficulty is that we
really need elements of I .†1;8; ff1; 2; 3g; f4; 5g; f6g; f7g; f8gg/ to fix Œh1�, which is
a homology class relative to points on the boundary components. This motivates the
following definition:
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Definition Fix a partitioned surface .†;P /, and let Q be a set containing one point
from each boundary component of †. Define HP

1
.†/ to equal the image of the

following submodule of H1.†;Q/ in H1.†;Q/=@HP
1
.†/:

hfŒh� 2 H1.†;Q/ j either h is a simple closed curve or h is a properly

embedded arc from q1 to q2 with q1; q2 2Q lying

in boundary components b1 and b2 with fb1; b2g � p

for some p 2 Pgi

We remark that in the future we will omit mention of Q and instead refer to the
homology classes of arcs between boundary components, the set Q being understood.
If boundary components b1 and b2 satisfy b1; b2 2 p for some p 2 P , we will call
them P –adjacent boundary components.

Remark The idea of using relative homology classes to analyze the Torelli groups on
surfaces with boundary is due to Johnson [15].

It is clear that Mod.†/ acts upon HP
1
.†/. We now prove the following:

Theorem 3.3 For a partitioned surface .†;P /, the group I .†;P / is exactly the
subgroup of Mod.†/ which acts trivially on HP

1
.†/. In particular, I .†;P / is well-

defined.

Proof Fix a capping i W † ,!†g of .†;P /. Define the following subsets of H1.†g/:

Q1 D fŒh� 2 H1.†g/ j h is a simple closed curve in †g n†g

Q2 D fŒh� 2 H1.†g/ j h is a simple closed curve in †g

Q3 D fŒh1�C Œh2� 2 H1.†g/ j h1 is a properly embedded arc in † between

P–adjacent boundary components and h2 is

a properly embedded arc in †g n Int.†/

with the same endpoints as h1g

For an example of an element of Q3 , see Figure 3. It is clear that

hQ1[Q2[Q3i D H1.†g/:

For f 2Mod.†/, the mapping class i�.f / fixes every element of Q1 . Also, by Lemma
3.2, the mapping class i�.f / fixes Œh� 2Q2 if and only if f fixes the corresponding
element of HP

1
.†/. Finally, we claim that i�.f / fixes Œh1�C Œh2� 2Q3 if and only if

f fixes Œh1� 2 HP
1
.†/. Indeed, the reverse implication is trivial, while for the forward
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implication, observe that if f does not fix Œh1� 2HP
1
.†/, then Œh1��f .Œh1�/ 2H

P

1 .†/

is nonzero, so by Lemma 3.2 we have

.Œh1�C Œh2�/� i�.f /.Œh1�C Œh2�/D i.Œh1��f .Œh1�//¤ 0I

ie, i�.f / does not fix Œh1�C Œh2�. We conclude that i�.f / acts trivially on H1.†g/ if
and only if f acts trivially on HP

1
.†/, as desired.

We now prove the following lemma, which describes the natural “algebraic intersection
pairing” on HP

1
.†/:

Lemma 3.4 Fix a partitioned surface .†;P /, and let Q � @† be the set from the
definition of HP

1
.†/. Then the algebraic intersection pairing ia.�; �/ on H1.†;Q/

induces a pairing on HP
1
.†/ (which we will continue to call ia.�; �/). This pairing is

preserved by Mod.†/, and for a simple closed curve 
 , the mapping class T
 acts
upon HP

1
.†/ by the transvection

h 7�! hC ia.h; Œ
 �/Œ
 �:

Proof The only nontrivial part of this lemma is that ia is well defined on HP
1
.†/. Let

H � H1.†;Q/ be the pull-back of HP
1
.†/. We must show that for b 2 @HP

1
.†/, the

map ia.b; �/ restricts to the 0 map on H . Enumerating the partition P as

P D ffb1
1 ; : : : ; b

1
k1
g; : : : ; fbm

1 ; : : : ; b
m
km
gg;

we can assume that b is one of the generators Œbi
1
�C � � �C Œbi

ki
� of @HP

1
.†/. If h is a

simple closed curve or an arc between boundary components b
j
r and b

j
s with i ¤ j ,

then trivially ia.b; Œh�/ D 0. If instead h is an arc between boundary components
bi

r and bi
s , then we have ia.b; Œh�/ D ia.Œb

j
r �; Œh�/C ia.Œb

j
s �; Œh�/ D 0. Since ia.b; �/

vanishes on generators for H , it vanishes on H , as desired.

We conclude this section by discussing typical elements of I .†;P /.

Definition Fix a partitioned surface .†;P /.

� A P –separating curve is a simple closed curve 
 so that Œ
 � D 0 in HP
1
.†/.

Equivalently, 
 is a separating curve and for any boundary components b1 and
b2 with b1; b2 2 p for some p 2 P , the curve 
 does not separate b1 from b2 .

� A twist about a P –bounding pair equals T
1
T �1

2

for disjoint, nonisotopic
simple closed curves 
1 and 
2 so that for some choice of orientations we have
Œ
1�D Œ
2� (as elements of HP

1
.†/).
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These are all elements of I .†;P /:

Lemma 3.5 Fix a partitioned surface .†;P /, and let f 2Mod.†/ be a twist about
either a separating curve or a bounding pair. Then f 2 I .†;P / if and only if f is a
twist about a P –separating curve or a P –bounding pair.

Proof The P –separating curves and P –bounding pairs are exactly the separating
curves and bounding pairs in † which remain separating curves and bounding pairs in
any capping of .†;P /.

3.2 Morphisms between Torelli groups

In this section, we construct a category TSur whose objects are partitioned surfaces
.†;P / and whose morphisms from .†g1;n1

;P1/ to .†g2;n2
;P2/ are exactly those

embeddings i W †g1;n1
,! †g2;n2

which induce morphisms i�W I .†g1;n1
;P1/ !

I .†g2;n2
;P2/. There is one obvious condition on such embeddings : for any P1 –

separating curve 
 , the curve i.
 / must be a P2 –separating curve. To translate this
into a condition on the partitions, we need some notation. Let S be any component
of †g2;n2

n Int.†g1;n1
/. Observe that S may in fact consist of a single boundary

component of †g1;n1
which is also a boundary component of †g2;n2

. Let BS be
the boundary components of †g2;n2

which lie in S , and let B0
S

be the boundary
components of †g1;n1

which lie in S . Our category is the following:

Definition The Torelli surface category (denoted TSur) is the category whose ob-
jects are partitioned surfaces .†;P / and whose morphisms from .†g1;n1

;P1/ to
.†g2;n2

;P2/ are embeddings †g1;n1
,!†g2;n2

satisfying the following two conditions:

(1) Each set B0
S

is contained in some p 2 P1 .

(2) Consider b1; b2 2 p for some p 2 P2 . Assume that b1 2 BS for some S and
that b2 2 BS 0 for some S 0 ¤ S . Then B0

S
[B0

S 0
� q for some q 2 P1 . Less

formally, there is a well-defined “retraction map” P2! P1 .

Condition 1 is necessary for all P1 –separating curves in †g1;n1
to remain separating

curves in †g2;n2
, and condition 2 is necessary to assure that they in fact are P2 –

separating curves. The following theorem says that these are exactly the morphisms
we want:

Theorem 3.6 Let .†g1;n1
;P1/ and .†g2;n2

;P2/ be partitioned surfaces. Fix an
embedding i W †g1;n1

,!†g2;n2
. Then

i�.I .†g1;n1
;P1//� I .†g2;n2

;P2/

if and only if i is a morphism of TSur.
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T D T1 T2 T3 T 0 D T4

b1
b0

1 b2
b0

2 b3
b0

3

†g1;n1

S �†g3

†g2;n2

Figure 4: Portion of a component of †g3
n Int.†g1;n1

/

Corollary 3.7 I is a functor from TSur to the category of groups and homomor-
phisms.

We begin by proving a special case.

Proof of reverse implication of Theorem 3.6 when n2 D 0 In this case, condition
2 is vacuous. By Lemma 3.1, there is a partition P 0

1
of the boundary components of

†g1;n1
so that i W †g1;n1

,!†g2
is a capping of .†g1;n1

;P 0
1
/. Observe that condition

1 says that for all p0 2 P 0
1

, there is some p 2 P1 with p0 � p . Defining H �HP1

1
.†/

to equal

hfŒh� j h is a simple closed curve or a properly embedded

arc between P 01–adjacent boundary componentsgi;

we conclude that H surjects onto H
P 0

1

1
.†/. Theorem 3.3 therefore implies that

I .†g1;n1
;P1/� I .†g1;n1

;P 01/D i�1
� .I .†g2

//;

whence the theorem.

We now prove the general case.

Proof of Theorem 3.6 in the general case As was mentioned before the theorem, if
condition 1 is not satisfied, then there is some P1 –separating curve 
 in †g1;n1

so
that i.
 / is not a separating curve, and if condition 2 is not satisfied, then there is some
P1 –separating curve 
 in †g1;n1

so that i.
 / is not a P2 –separating curve. Lemma
3.5 therefore implies the necessity of the 2 conditions. We must prove their sufficiency.

Let j W †g2;n2
,!†g3

be a capping of .†g2;n2
;P2/. We claim that j ıi W †g1;n1

,!†g3

satisfies the conditions of the theorem (for the partition P1 of the boundary components
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of †g1;n1
). Indeed, if S is a component of †g3

n Int.†g1;n1
/, then B0

S
is a union of

B0
T

for certain components T of †g2;n2
n Int.†g1;n1

/. By condition 1, each B0
T

is
contained in some p 2 P1 . It is not hard to see from the definition of a capping (see
Figure 4) that if T and T 0 are 2 components of †g2;n2

nInt.†g1;n1
/ so that B0

T
[B0

T 0
�

B0
S

, then there are components T D T1; : : : ;Tk D T 0 of †g2;n2
n Int.†g1;n1

/ so that
for 1 � i < k there is some bi 2 BTi

and b0i 2 BTiC1
so that bi ; b

0
i 2 q for some

q 2 P2 . By condition 2, for i D 1; : : : ; k � 1 we have that B0
Ti
[B0

TiC1
is a subset of

a single partition element of P1 . We conclude that B0
T

and B0
T 0

are contained in the
same partition element of P1 . This implies that condition 1 holds. Since condition 2 is
vacuous, this implies that j ı i does indeed satisfy the conditions of the theorem.

The special case of the theorem proven above therefore implies that

j� ı i�.I .†g1;n1
;P1//� I .†g3

/:

Since I .†g2;n2
;P2/D j�1

� .I .†g3
//, we conclude that

i�.I .†g1;n1
;P1//� I .†g2;n2

;P2/;

as desired.

3.3 Restriction properties of I

We now prove the following generalization of Theorem 3.3:

Theorem 3.8 Let i W †g1;n1
,!†g2;n2

be any embedding, and let P2 be any partition
of the boundary components of †g2;n2

. There is then some partition P1 of the boundary
components of †g1;n1

so that I .†g1;n1
;P1/D i�1

� .I .†g2;n2
;P2/.

Proof Let
j W †g2;n2

,!†g3

be a capping of .†g2;n2
;P2/. By Lemma 3.1, there is some partition P1 so that

j ı i W †g1;n1
,!†g3

is a capping of .†g1;n1
;P1/. It is not hard to show that

i W †g1;n1
,!†g2;n2

satisfies the conditions of Theorem 3.6 (for the partitions Pi of the boundary
components of †gi ;ni

), and hence i� induces a morphism from I .†g1;n1
;P1/ to

I .†g2;n2
;P2/. The theorem is then an immediate corollary of Theorem 3.3 applied to

both j and i ı j .
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4 A Birman exact sequence for the Torelli groups

In this section, we prove Theorem 1.2. Fix a partitioned surface .†g;n;P / with n� 1

and .g; n/¤ 1. Let b be a boundary component of †g;n , and let p 2 P be the subset
containing b . Regarding †g;n�1 as the surface which results from gluing a disc from b ,
let P 0 be the induced partition of the boundary components of †g;n�1 . The embedding
i W †g;n ! †g;n�1 is clearly a morphism in TSur from .†g;n;P / to .†g;n�1;P

0/,
and hence there is an induced map i�W I .†g;n;P /! I .†g;n�1;P

0/. Now, choosing
a point x in the glued-in disc and a lift Qx of x to the unit tangent bundle U†g;n�1 ,
we discussed in Section 2.1 the following two exact sequences:

1 �! �1.U†g;n�1; Qx/ �!Mod.†g;n/ �!Mod.†g;n�1/ �! 1;(1)

1 �! Z �! �1.U†g;n�1; Qx/ �! �1.†g;n�1;x/ �! 1:(2)

Using exact sequence (1), we see that ker.i�/� �1.U†g;n�1; Qx/. However, it is rarely
all of �1.U†g;n�1; Qx/ : for instance, unless pD fbg, the twist Tb is not a twist about
a P –separating curve, so it is not in the kernel. Theorem 1.2 says that i� is always
surjective and also identifies its kernel. We will prove a slightly more precise version
of Theorem 1.2. Before stating it, we need the following definition:

Definition Assume that a group � splits as G1 ˚ G2 and that �W H1 ! G2 is a
homomorphism, where H1 is a subgroup of G1 . Then the graph of � is the subgroup
f.x; �.x// j x 2H1g of � .

We will prove the following:

Theorem 4.1 With the notation as above, we have an exact sequence

1 �!K �! I .†g;n;P / �! I .†g;n�1;P
0/ �! 1

with K � �1.U†g;n�1; Qx/ equal to the following:

� If p D fbg, then K D �1.U†g;n�1; Qx/.

� If p ¤ fbg, then �1.U†g;n�1; Qx/ splits as �1.†g;n�1;x/˚ Z and K equals
the graph of a homomorphism �W K0! Z for the kernel K0 � �1.†g;n�1;x/

of the natural map �1.†g;n�1;x/! HP 0

1
.†g;n�1/.

Remark The splitting of �1.U†g;n�1/ from the second part of Theorem 4.1 is not

natural. If H
P 0

1 .†g;n�1/ D H1.†g;n�1/ (so K0 is the commutator subgroup), then
since exact sequence (2) describes a central extension, the embedding of K0 into
�1.U†g;n�1/ is canonical. However, this need not be the case.
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The proof of the first part of this theorem is easy.

Proof of Theorem 4.1 when p D fbg Let i W †g;n ,! †g;n�1 be the embedding.
Observe that since p D fbg, the map i induces an isomorphism between HP

1
.†g;n/

and HP 0

1
.†g;n�1/. This isomorphism is equivariant with respect to the action of the

two mapping class groups, so Theorem 3.3 implies that f 2 I .†g;n;P / if and only if
i�.f / 2 I .†g;n�1;P

0/. This implies that the standard Birman exact sequence restricts
in the indicated manner, as desired.

The proof of the other part of Theorem 4.1 is somewhat more complicated. Our proof
makes use of some ideas of van den Berg [20, Proposition 2.4.1].

Proof of Theorem 4.1 when p ¤ fbg Observe that since p ¤ fbg, we must have
n � 1 � 1. Thus �1.†g;n�1;x/ is a free group and exact sequence (2) splits, so
�1.U†g;n�1; Qx/Š �1.†g;n�1;x/˚Z. Fix such a splitting. We begin with a criterion
for an element of Mod.†g;n/ to lie in I .†g;n;P /. Let h2HP

1
.†g;n/ be the homology

class of any arc between b and some other boundary component.

Claim 1 Consider f 2Mod.†g;n/. Assume that i�.f / 2 I .†g;n�1;P
0/ and that f

fixes the homology class h. Then f 2 I .†g;n;P /.

Proof of claim 1 Define L� HP
1
.†g;n/ to equal

hfŒg� 2 HP
1 .†g;n/ j g is a simple closed curve or a properly embedded

arc between P 0–adjacent boundary componentsgi:

It is easy to see that HP
1
.†g;n/ D hL; hi, so it is enough to prove that f fixes L.

Observe that
HP 0

1 .†g;n�1/ŠL=hb i:

Since i�.f / 2 I .†g;n�1;P
0/, it follows that for g 2L we have f�.g/D gC k � Œb�

for some integer k (the integer k depends on g ). However,

ia.h;g/D ia.f�.h/; f�.g//D ia.h;gC k � Œb�/D ia.h;g/C k:

This implies that k D 0, as desired.

We now examine the manner in which �1.U†g;n�1; Qx/ � Mod.†g;n/ acts on h.
Observe that we have an injection

j W HP 0

1 .†g;n�1/ ,! HP
1 .†g;n/=h Œb�i:
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Since Mod.†g;n/ preserves Œb�, the action of Mod.†g;n/ on HP
1
.†g;n/ descends

to an action on HP
1
.†g;n/=h Œb�i . Recall that Tb is the generator of the kernel of

exact sequence (2). Since Tb acts trivially on HP
1
.†g;n/=h Œb�i , exact sequence (2)

implies that the action of �1.U†g;n�1; Qx/ on HP
1
.†g;n/=h Œb�i descends to an action

of �1.†g;n�1;x/ on HP
1
.†g;n/=h Œb�i . Let h be the image of h in HP

1
.†g;n/=h Œb�i .

The following claim says that �1.†g;n�1;x/ acts in the most obvious possible way on
h:

Claim 2 
 2 �1.†g;n�1;x/ acts upon h by

h 7�! hC j .Œ
 �/:

Proof of claim 2 Assume first that 
 is a simple closed curve. In this case, the lift
Q�
 2Mod.†g;n/ (see Figure 2.b) equals T Q
1

T �1
Q
2

for two simple closed curve Q
1 and
Q
2 satisfying

Œ Q
2�D Œ Q
1�C Œb�:

Now, we know that ia.h; Œb�/D 1. The claim then follows from an easy calculation,
using the fact that Dehn twists act as transvections on homology.

To prove the general case, observe that by the proof of the case pD fbg, we know that
�1.U†g;n; Qx/ acts as the identity on the submodule of HP

1
.†g;n/ generated by the

homology classes of simple closed curves. Now, since simple closed curves generate
�1.†g;n�1;x/, we can write 
 D 
1
2 � � � 
k , where the 
i are simple closed curves.
The previous case (plus the observation at the beginning of this paragraph) then implies
that


 .h/D .
1
2 � � � 
k/.h/D .
1
2 � � � 
k�1/.hC j .Œ
k �//

D .
1
2 � � � 
k�2/.hC j .Œ
k�1�/C j .Œ
k �//

D � � � D hC j .Œ
1�/C � � �C j .Œ
k �/D hC j .Œ
 �/;

as desired.

We now prove that K equals the graph of some subgroup K0 � �1.†g;n�1;x/.

Claim 3 There exists a subgroup K0 of �1.†g;n�1;x/ and a homomorphism �W K0!

Z so that K is the graph of � .
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Proof of claim 3 Let K0 equal the projection of K � �1.†g;n�1;x/ ˚ Z to
�1.†g;n�1;x/. To prove that K is the graph of a homomorphism �W K0 ! Z, it
is enough to show that each element of K0 is the image of exactly one element of
K . In other words, we must prove that Z\K D 1. This follows from the fact that
T m

b
.h/D hCmŒb�¤ h if m¤ 0.

We now identify K0 .

Claim 4 K0 equals the kernel of the natural map �1.†g;n�1;x/! HP 0

1
.†g;n�1/.

Proof of claim 4 Let K00 be the kernel of the natural map �1.†g;n�1;x/ !

HP 0

1
.†g;n�1/, and consider f 2 �1.U†g;n�1; Qx/. Let f 2 �1.†g;n�1;x/ be the

projection of f . To show that K0DK00 , we need to show that there exists some m2Z

so that f T m
b
2 I .†g;n;P / if and only if f 2K00 . By Claim 1, f T m

b
2 I .†g;n;P /

if and only if f T m
b

fixes the homology class h. Now, T m
b
.h/D hCmŒb�. It follows

that we can find an m such that f T m
b

fixes the homology class h if and only if f
fixes h 2 HP

1
.†g;n/=h Œb�i (see the discussion before Claim 2). By Claim 2, this will

be true if and only if f 2K00 , as desired.

We finish by proving that the map I .†g;n;P /! I .†g;n�1;P
0/ is surjective.

Claim 5 Let f 2 I .†g;n�1;P
0/. There then exists some f 2 I .†g;n;P / so that

i�.f /D f .

Proof of claim 5 Let f 2 Mod.†g;n/ be any lift of f . Since the space of all
embeddings of h[ b into †g;n�1 which fix the endpoint of h not on b is connected,
we can assume that f fixes h. Claim 5 then tells us that f 2 I .†g;n;P /, as desired.

This completes the proof of the theorem.

4.1 An addendum to Theorem 4.1

We now prove the following lemma, whose proof uses some ideas from the proof of
[20, Proposition 2.4.2]:

Lemma 4.2 Let

1 �!K �! I .†g;n;P / �! I .†g;n�1;P
0/ �! 1
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a b c

Q�1
Q�2

b

Q�1

Q�2

b
bQ
1

1

Q
1
2

Q
2
1

Q
2
2

Figure 5: a: Q�� for a simple closed curve � which cuts off a
one-holed torus
b: Q�� for a simple closed curve � which cuts off a set of boundary
components
c: Q�
1 and Q�
2 for simple closed curves 
 1 and 
 2 so that 
 1\
 2D fxg

and so that a regular neighborhood of 
 1[ 
 2 is homeomorphic to †0;3 .

be as in Theorem 4.1. If g � 1, then K is in the subgroup of I .†g;n;P / generated
by twists about P –separating curves and twists about P –bounding pairs. If g D 0,
then K is in the subgroup generated by twists about P –separating curves, twists about
P –bounding pairs, and commutators of simply intersecting pairs (see the introduction
for the definition of a commutator of a simply intersecting pair).

Proof As in Theorem 4.1, let b be the boundary component to which we are attaching
a disc and p 2 P be the partition element containing b . If p D fbg, then the lemma
is trivial, so we assume that p ¤ fbg. This implies that K is isomorphic to the
kernel of the natural map �1.†g;n�1/! HP 0

1
.†g;n�1/. This kernel is generated by

the commutator subgroup Œ�1.†g;n�1/; �1.†g;n�1/� plus the set of all simple closed
curves which cut off subsets q 2P 0 of boundary components. We will prove that these
generators lie in the indicated subgroup of I .†g;n;P /.

We begin with the commutator subgroup. If g � 1, then Lemma A.1 from the ap-
pendix says that the commutator subgroup is generated by Œ
 1; 
 2�, where 
 1; 
 2 2

�1.†g;n�1/ are simple closed curves which only intersect at the basepoint and where a
regular neighborhood of 
 1[
 2 is homeomorphic to †1;1 . This implies that Œ
 1; 
 2�

is homotopic to a simple closed curve � which cuts off a one-holed torus. Replacing �
by its inverse if necessary, the lift Q�� then equals T Q�1

T �1
Q�2

for simple closed curves
Q�1 and Q�2 like those depicted in Figure 5.a. Observe that T Q�1

is a twist about a
P –separating curve and that TbT �1

Q�2
is a twist about a P –bounding pair. We conclude

that the element of I .†g;n;P / associated to Œ
 1; 
 2� equals

Q��Tb D T Q�1
.TbT �1

Q�2
/;

which is in the desired subgroup.
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If g D 0, then pairs of curves like those in the previous paragraph do not exist.
However, it is immediate that the commutator subgroup is generated by Œ
 1; 
 2�, where

 1; 
 2 2 �1.†g;n�1/ are simple closed curves which only intersect at the basepoint
and where a regular neighborhood of 
 1[ 
 2 is homeomorphic to †0;3 . In this case,
for 1� i � 2 we have that Q�
 i D T˙1

Q
 i
1

T
�1

Q
 i
2

for curves like those depicted in Figure

5.c (the signs depend on the orientations on 
 1 and 
 2 ). Observe that

ŒT˙1

Q
1
1

T
�1

Q
1
2

;T˙1

Q
2
1

T
�1

Q
2
2

�D ŒT˙1

Q
1
1

;T˙1

Q
2
1

�:

Using the commutator identities Œg�1
1
;g2�D Œg2;g1�

g�1
1 and Œg1;g

�1
2
�D Œg2;g1�

g�1
2

if necessary, we see that this is a commutator of a simply intersecting pair, thus proving
that the element of I .†g;n;P / associated to Œ
 1; 
 2� lies in the desired subgroup.

We conclude by considering a simple closed curve � 2 �1.†g;n�1;x/ which cuts off a
subset q 2 P 0 of boundary components. Reversing the orientation of � if necessary,
the associated element Q�� of Mod.†g;n/ equals T Q�1

T �1
Q�2

for the curves Q�1 and Q�2

pictured in Figure 5.b. There are two cases. The first case is q ¤ p n fbg. In this case,
T Q�1

is a P –separating curve and TbT �1
Q�2

is a P –bounding pair. Hence the element of
I .†g;n;P / associated to � equals

Q��Tb D T Q�1
.TbT �1

Q�2
/;

which is in the desired subgroup. The other case is q D p n fbg. In this case, T Q�2

is a P –separating curve and T Q�1
T �1

b
is a P –bounding pair. Hence the element of

I .†g;n;P / associated to � is

Q��T �1
b D .T Q�1

T �1
b /T �1

Q�2
;

which again is in the desired subgroup.

5 Generators for the Torelli groups

In this section, we will prove Theorems 1.3 and 1.5. Our main tool will be Theorem 2.1.
We will apply this theorem to the action of the Torelli group on the complex of curves,
which is a simplicial complex introduced by Harvey [10] to encode the combinatorial
topology of a surface.

Definition The complex of curves C .†g/ is the simplicial complex whose simplices
are sets f
1; : : : ; 
kg of isotopy classes of nontrivial (that is, not isotopic to a point)
simple closed curves which can be realized disjointly.
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The following theorem is due to Harer [9]; see [11] for an alternate proof:

Theorem 5.1 C .†g/ is 2g� 3–connected. In particular, C .†g/ is simply-connected
for g � 2.

Observe that I .†g/ acts on C .†g/. A theorem of Ivanov [12, Theorem 1.2] implies
the following:

Theorem 5.2 For all g , the group I .†g/ acts on C .†g/ without rotations.

The following theorem will be the key to our argument:

Theorem 5.3 For g � 2, the complex C .†g/=I .†g/ is simply-connected.

We postpone the proof of Theorem 5.3 until Section 6. Instead, we use it to prove
Theorems 1.3 and 1.5.

Proof of Theorems 1.3 and 1.5 Observe first that Theorem 1.5 follows from repeated
applications of Lemma 4.2. We will prove Theorem 1.3 by induction on g . The base
case is gD 1. Using Lemma 4.2, we can assume that nD 0, in which case the theorem
is trivial.

Now consider a partitioned surface .†g;n;P / with g > 1. By repeated use of Lemma
4.2, we can reduce to the case that nD 0 (and hence forget about P ). By Theorems
5.1, 5.3, and 5.2, we can use Theorem 2.1 to conclude that I .†g/ is generated by the
subgroups �
 of I .†g/ stabilizing simple closed curves 
 . If 
 is a separating curve
which separates †g into two surfaces †h1;1 and †h2;1 with h1C h2 D g , then we
have an exact sequence

1 �! hT
 i �! I .†h1;1/˚ I .†h2;1/ �! �
 �! 1:

By induction, both †h1;1 and †h2;1 are generated by twists about separating curves and
bounding pairs, so we conclude that �
 is also generated by such elements, as desired.
If instead 
 is a nonseparating curve, let N be a small open regular neighborhood of

 . The surface S D†g nN is then a genus g�1 surface with 2 boundary components
b1 and b2 , and additionally the inclusion S ,! †g is a capping of .S;P / for the
partition P D ffb1; b2gg of the boundary components of S . By induction, the group
I .S;P / is generated by P –separating curves and P –bounding pairs. Now, we have
an exact sequence

1 �! hTb1
T �1

b2
i �! I .S;P / �! �
 �! 1:

Since the P –separating curves and P –bounding pairs in I .S;P / project to separating
curves and bounding pairs in �
 , we conclude that �
 is generated by such elements,
and we are done.
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6 The connectivity of C.†g/=I .†g/

In this section, we prove Theorem 5.3. First, in Section 6.1 we interpret a large
subcomplex of C .†g/=I .†g/ in terms of H1.†g/. Next, in Section 6.2 we show how
to homotope loops in C .†g/=I .†g/ so that they “avoid” a fixed homology class. In
Section 6.3 this leads quickly to a proof of Theorem 5.3 when g � 3. In the genus 2

case, the additional argument needed is given in Section 6.4.

6.1 A concrete description of a subcomplex of C.†g/=I .†g/

In this section, we give a concrete description of the quotient by I .†g/ of the following
subcomplex of C .†g/:

Definition The nonseparating complex of curves on †g , which we will denote
Cnosep .†g/, is the subcomplex of C .†g/ whose simplices are sets f
1; : : : ; 
kg of
isotopy classes of simple closed curves on †g so that †g n.
1[� � �[
k/ is connected.

The importance of this subcomplex for us comes from the following:

Lemma 6.1 The inclusion Cnosep .†g/=I .†g/ ,! C .†g/=I .†g/ induces a surjec-
tion on �1 .

Proof Fix a base point in C .†g/=I .†g/ at a vertex corresponding to a nonseparating
curve, and consider a based loop ` 2 �1.C .†g/=I .†g//. We can assume that ` is a
simplicial path in the 1–skeleton. Lift ` (one edge at a time) to a path Q̀ in C .†g/.
Assume that Q̀ contains a subpath of the form 
1� 
2� 
3 , where 
2 is a separating
curve. If 
1 and 
3 lie on different sides of 
2 , then they are disjoint and we can
replace 
1 � 
2 � 
3 with 
1 � 
3 . Otherwise, let 
 0

2
be a nonseparating curve on

the side of 
2 not containing 
1 and 
3 . We can then homotope our segment to

1 � 


0
2
� 
3 , eliminating the separating curve 
2 . A similar argument allows us to

eliminate any edges corresponding to pairs of nonseparating curves which together
separate the surface. This allows us to homotope Q̀ into the 1–skeleton of Cnosep .†g/.
Projecting this homotopy to C .†g/=I .†g/, the based loop ` is homotoped to a loop
coming from a loop in Cnosep .†g/=I .†g/, as desired.

Now, consider a simplex f˛1; : : : ; ˛kg of Cnosep .†g/. Observe that since †g n .˛1[

� � � [˛k/ is connected, we can find nonseparating curves f˛kC1; : : : ; ˛g; ˇ1; : : : ; ˇgg

so that ig.˛i ; j̨ / D ig.ˇi ; ǰ / D 0 and ig.˛i ; ǰ / D ıij for all i and j and so that
†gn.˛1[ˇ1[� � �[˛g[ˇg/ is connected. If we orient the ˛i and the ǰ correctly, this
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implies that fŒ˛1�; Œˇ1�; : : : ; Œ˛g�; Œˇg�g is a symplectic basis for H1.†g/. In particular,
fŒ˛1�; : : : ; Œ˛k �g spans a k –dimensional isotropic summand of H1.†g/ (a summand A

of H1.†g/ is isotropic if ia.x;y/D 0 for all x;y 2A). Since we had to put arbitrary
orientations on the ˛i and the ǰ , this suggests the following definition:

Definition Let V be a Z–module with a symplectic form i.�; �/. The complex of uni-
modular isotropic lines in V , denoted L.V /, is the simplicial complex whose simplices
are sets fL1; : : : ;Lkg of 1–dimensional summands Li of V so that hL1; : : : ;Lk i

is a k –dimensional isotropic summand of V .

Since the Torelli group preserves H1.†g/, there is a natural map

� W Cnosep .†g/=I .†g/ �! L.H1.†g//:

We will prove the following:

Lemma 6.2 � is an isomorphism of simplicial complexes.

Proof We have a series of projections

Cnosep .†g/
Q�
�! Cnosep .†g/=I .†g/

�
�! L.H1.†g//:

We must prove that for all simplices s of L.H1.†g//, there is some simplex Qs of
Cnosep .†g/ so that �ı Q�.Qs/Ds , and in addition if Qs1 and Qs2 are simplices of Cnosep .†g/

so that � ı Q�.Qs1/D � ı Q�.Qs2/, then there is some f 2 I .†g/ so that f .Qs1/D Qs2 . We
begin with the first assertion. Let s be a simplex of L.H1.†g//. Pick a symplectic basis
fa1; b1; : : : ; ag; bgg so that s D fha1 i; : : : ; hah ig. Lemma A.3 from the appendix
allows us to realize this symplectic basis by simple closed curves f˛1; ˇ1; : : : ; ˛g; ˇgg.
Observe that Qs D f˛1; : : : ; ˛hg is a simplex of Cnosep .†g/ with � ı Q�.Qs/D s .

We now prove the section assertion. Let Qs1 and Qs2 be two simplices of Cnosep .†g/ with
� ı Q�.Qs1/D� ı Q�.Qs2/. Let the vertices of the Qsi be f˛i

1
; : : : ; ˛i

h
g. Order these and pick

orientations so that Œ˛1
j �D Œ˛

2
j �. Set aj D Œ˛

1
j �, and extend this to a symplectic basis

fa1; b1 : : : ; ag; bgg for homology. Lemma A.3 from the appendix allows us to extend
f˛i

1
; : : : ; ˛i

h
g to a set of oriented simple closed curves f˛i

1
; ˇi

1
; : : : ; ˛i

g; ˇ
i
gg realizing

the homology basis fa1; b1 : : : ; ag; bgg. Using the classification of surfaces, there
must exist some f 2Mod.†g/ so that f .˛1

j /D ˛
2
j and f .ˇ1

j /D ˇ
2
j for all j . Since

we have chosen f so that it fixes a basis for homology, it follows that f 2 I .†g/.
The proof concludes with the observation that f .Qs1/D Qs2 .

Henceforth we will identify Cnosep .†g/=I .†g/ with L.H1.†g//.
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6.2 Homotoping loops off a homology class

In this section, we will show how to homotope (in C .†g/=I .†g/) curves which lie
in L.H1.†g// so that they “avoid” a fixed homology class. To make this precise, we
need the following definition:

Definition Let V be a Z–module with a symplectic form i.�; �/, and let W be a
submodule of V . We then define LW .V / to be the full subcomplex of L.V / whose
vertices are 1–dimensional summands L of V so that L�W .

We will also need the following standard definition from PL–topology:

Definition Let v be a vertex of a simplicial complex X . The link of v in X (denoted
linkv.X /) is the subcomplex of X whose simplices are simplices s of X so that v … s

and so that s[fvg is a simplex of X .

Fix a symplectic basis fa1; b1; : : : ; ag; bgg for H1.†g/, and set

W D ha1; b1; : : : ; ag�1; bg�1; ag i � H1.†g/:

Our lemma is the following:

Lemma 6.3 Let i W L.H1.†g// ,! C .†g/=I .†g/ be the inclusion.

� For g � 2, let ` be a simplicial arc in L.H1.†g// whose endpoints lie in
LW .H1.†g//. There is then a simplicial arc `0 in LW .H1.†g// so that i�.`/

is homotopic to i�.`
0/ (fixing the endpoints).

� For g � 3 and L any vertex of L.H1.†g//, let ` be a simplicial arc in
linkL.L.H1.†g/// whose endpoints lie in LW .H1.†g//. There is then a sim-
plicial arc `0 in LW .H1.†g//\ linkL.L.H1.†g/// so that i�.`/ is homotopic
to i�.`

0/ (fixing the endpoints).

An immediate corollary of the first conclusion of this lemma and Lemma 6.1 is the
following:

Corollary 6.4 For g � 2, the inclusion LW .H1.†g// ,! C .†g/=I .†g/ induces a
surjection on �1 .

Remark At first glance, it may appear that LW .H1.†g// is contained in the cone of
hag i . However, while it is true that ia.ag;x/D 0 for all x 2W , this does not imply
that hx i is adjacent to hag i in LW .H1.†g// (for instance, consider x D 2a1C ag ).
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Before proving Lemma 6.3, we need a definition.

Definition Let L be a 1–dimensional summand of a Z–module M which has a fixed
free basis fx1; : : : ;xng. Observe that LD hvi for a primitive vector v (that is, v is
not divisible by any integer n � 2) and that v is unique up to multiplication by ˙1.
Expand v as

v D c1x1C � � �C cnxn:

For any 1� i�n, we then define rkxi
.L/Djci j (by the observation this is well-defined).

We will call this the xi –rank of L.

The proof of Lemma 6.3 then goes as follows:

Proof of Lemma 6.3 The proofs of both parts of the lemma are similar; we will prove
the (slightly more difficult) second part and leave the first to the reader.

The proof will be by induction on

RDmaxfrkbg
.A/ j A is a vertex of `g:

The case RD 0 being trivial, we assume that R> 0. We first claim that we can assume
that ` does not contain two adjacent vertices A and B so that rkbg

.A/D rkbg
.B/DR.

Indeed, assume it does and that AD hv1 i and B D hv2 i . Trivially we can assume
that A¤B . Replacing v2 by �v2 if necessary, it follows that rkbg

.hv1� v2 i/D 0.
Figure 6.a then shows that we can homotope (in C .†g/=I .†g/) the segment A�B

to A� hv1� v2 i �B , rendering A and B nonadjacent.

Now consider some segment X�A�Y of ` so that rkbg
.A/DR and rkbg

.X /; rkbg
.Y /

<R. Lift X , A, Y , and L to curves QX ; QA; QY ; QL 2 Cnosep .†g/ so that f QX ; QA; QLg and
f QY ; QA; QLg are simplices of Cnosep .†g/. Cutting †g along QA[ QL, we get a copy of
†g�2;4 in which both QX and QY are nonseparating curves. Using Lemma A.2 from
the Appendix, we can find a sequence of nonseparating curves

QX D QZ1; QZ2; : : : ; QZk D
QY

in †g�2;4 so that for 1 � i < k we have ig. QZi ; QZiC1/ D 1. Gluing the boundary
components of our †g�2;4 back together to recover our original †g , we have obtained
a sequence of curves

QX D QZ1; QZ2; : : : ; QZk D
QY

so that for 1 � i � k the set f QZi ; QA; QLg is a simplex of Cnosep .†g/ and so that for
1� i < k we have ig. QZi ; QZiC1/D 1.
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Let a be a primitive vector in H1.†g/ so that AD hai , and for 1� i � k let zi be a
primitive vector in H1.†g/ so that Zi WD hzi i is the projection of QZi to L.H1.†g//.
By the division algorithm, we can find integers qi (with q1 D qk D 0) so that

rkbg
.hzi C qiai/ <R:

Set z0i D ziCqia and Z0i D hz
0
i i (hence Z0

1
DZ1DX and Z0

k
DZk D Y ). Observe

that for all 1 � i � k , the set fZ0i ;A;Lg is still a simplex of L.H1.†g//, and in
addition we still have for all 1� i < k that ia.z

0
i ; z
0
iC1

/D 1. We can therefore lift the
Z0i to nonseparating curves QZ0i in †g which are disjoint from QA and QL and which
satisfy ig. QZ

0
i ;
QZ0

iC1
/D 1 for all 1� i < k .

For 1 � i < k , let QSi be the boundary component of a regular neighborhood of
QZi [

QZiC1 . Hence QSi is a separating curve disjoint from QZi , QZiC1 , QA, and QL. For
1� i < k , cutting †g along QSi and L yields a copy of †g�2;3 . A simple dimension
count shows that there must be some simple closed nonseparating curve QBi in this
copy of †g�2;3 whose homology class lies in W (and, in particular, the span of whose
homology class has bg -rank 0). Observe that the path

QZ1�
QA� QZk

in C .†g/ is homotopic (fixing the endpoints) to

QZ1�
QS1�

QZ2�
QS2� � � � �

QSk�1�
QZk ;

which is then homotopic to

QZ1�
QB1�

QZ2�
QB2� � � � �

QBk�1�
QZk :

Projecting this homotopy down to linkL.C .†g/=I .†g// allows us to homotope the
segment X �A� Y to a new segment which lies in linkL.L.H1.†g/// and which
does not contain any vertices whose bg –rank is greater than or equal to R. Repeating
this process allows us to remove all vertices of ` whose bg –rank equals R, and we
are done by induction.

6.3 Completing the proof for g � 3

In this section, we complete the proof of Theorem 5.3 for g � 3. Define

W 0 D ha1; b1; : : : ; ag�1; bg�1 i:

We will prove the following:

Lemma 6.5 The inclusion LW 0.H1.†g// ,! C .†g/=I .†g/ induces a surjection on
�1 .
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First, though, we will use Lemma 6.5 to prove the desired special case of Theorem 5.3.

Proof of Theorem 5.3 for g � 3 By Lemma 6.5, it is enough to show that the
inclusion LW 0.H1.†g// ,! C .†g/=I .†g/ induces the zero map on �1 . Indeed,
the inclusion map LW 0.H1.†g// ,! LW .H1.†g// induces the zero map on �1 , as
LW 0.H1.†g// can be contracted in LW .H1.†g// to hag i .

We now prove Lemma 6.5.

Proof of Lemma 6.5 Fix a basepoint in C .†g/=I .†g/ which lies in the image
of LW 0.H1.†g//, and consider a based loop `, which we can assume to be a sim-
plicial loop in the 1–skeleton. By Lemma 6.3, we can assume that ` lies in the
image of LW .H1.†g//. We will prove that ` can be homotoped into the image of
LW 0.H1.†g// by induction on

RDmaxfrkag
.A/ j A is a vertex of ` g:

The case RD 0 being trivial, we assume that R> 0. By an argument like that in the
proof of Lemma 6.3, we can assume that no two adjacent vertices in ` have ag –rank
equal to R. Now consider a subpath X � A � Y of ` so that rkag

.A/ D R and
rkag

.X /; rkag
.Y / <R. Since linkA.L.H1.†g// is connected (this is our main use of

the assumption g � 3), we can find a path

X DZ1�Z2� � � � �Zk D Y

in linkA.L.H1.†g///, which by Lemma 6.3 we can assume lies in LW .H1.†g//.
Let a be a primitive vector in H1.†g/ so that A D hai , and for 1 � i � k let zi

be a primitive vector in H1.†g/ so that Zi D hzi i . By the division algorithm, for
1� i � k there exists an integer qi (with q1 D qk D 0) so that rkag

.hzi C qiai/ <R.
Setting Z0i D hzi C qiai , the path

X DZ01�Z02� � � � �Z0k D Y

still lies in LW .H1.†g//\linkA.L.H1.†g///. We can therefore homotope X�A�Y

to this path, eliminating A without introducing any new vertices whose ag –rank is
greater than or equal to R. Repeating this process, we can eliminate all vertices whose
ag –rank equals R, and we are done by induction.

6.4 Completing the proof for g D 2

In genus 2, the above proof fails. To complete the proof in this case, we introduce one
final object.
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Œv1� Œv2�

Œv1C v2�

a b
0

1=0

1=3

1=2

2=3

�1=3

�1=2

�2=3

3

2

3=2

�3

�2

�3=2

1�1

Figure 6: a: Illustration that triangles hv1 i � h˙v1˙ v2 i � hv2 i in
L.H1.†g// come from triangles in C .†g/

b: The Farey tessellation

Definition Let V be a Z–module with a symplectic inner product i.�; �/. The aug-
mented complex of unimodular isotropic lines in V , which we will denote L.V /, is
equal to L.V / with 2–cells attached to all triangles of the form

hv1 i � h˙v1˙ v2 i � hv2 i

for all edges fhv1 i; hv2 ig of L.V /. For any submodule W of V , we also define
LW

.V / to be the full subcomplex of L.V / spanned by vertices L with L�W .

Figure 6.a yields the following lemma:

Lemma 6.6 The inclusion

L.H1.†g// ,! C .†g/=I .†g/

extends to a map
L.H1.†g// ,! C .†g/=I .†g/:

We now prove the following (recall that the Farey tessellation of H2 is the 2–dimensional
flag complex whose vertices are elements of Q[ f1g and where b=a and d=c are
adjacent if jad � bcj D 1; cf Figure 6.b):

Lemma 6.7 Let W be a maximal isotropic subspace of H1.†2/. Then the simplicial
complex LW

.H1.†2// is homeomorphic to the Farey tessellation of H2 (with the
weak topology). In particular, LW

.H1.†2// is contractible.

Proof Identifying W with Z2 , observe that LW
.H1.†2// equals the following

simplicial complex:
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� The vertices are the 1–dimensional summands of Z2 . These are classified by
their slope in Q[f1g.

� Two vertices b=a; d=c 2Q[1 form a 1–simplex if h.a; b/; .c; d/i DZ2 . This
is true if and only if the matrix whose columns are the vectors .a; b/ and .c; d/
is invertible over Z; ie, if and only if the determinant ad � bc equals ˙1.

� Three vertices b=a, d=c , and f=e form a 2–simplex if b=a and d=c form an
edge and .e; f /D˙.a; b/˙ .c; d/. It is easy to see that this is true if and only
if each pair of vertices form an edge.

The claim follows.

We now prove Theorem 5.3 when g D 2.

Proof of Theorem 5.3 for g D 2 Consider a loop ` in C .†2/=I .†2/ based at

ha1 i 2 L.H1.†2//� C .†2/=I .†2/:

We can assume that ` is a simplicial loop in the 1–skeleton. By Lemma 6.3, we

can also assume that ` lies in L ha1; b1; a2 i .H1.†2//. We will prove that ` can be
homotoped to a point by induction on the length of `. Observe first that if ` lies

in L ha1; a2 i .H1.†2//, then Lemma 6.7 implies that ` can be contracted to a point.
Assume, therefore, that ` contains a vertex whose b1 –rank is nonzero. Let `0 be a
subpath of ` all of whose vertices have b1 –rank nonzero and which is maximal with
respect to this property. In addition, let x and y be the vertices of ` immediately
preceding and immediately succeeding `’; in other words, ` contains the subpath

x� `0�y:

Observe that by the maximality of `0 , both x and y have b1 –rank equal to 0; ie,

x;y 2 L ha1; a2 i . Additionally, since every vertex of `0 has positive b1 –rank, both x

and y must have a1 –rank 0. We conclude that x D y D ha2 i . In other words,

x� `0�y

is a loop. If `0 consists of a single vertex, then we can contract this loop and thus
shorten `, and we are done. Otherwise, since every vertex of `0 has b1 –rank greater
than 0, it follows that every vertex of `0 has a1 –rank equal to 0. We conclude that the
loop

x� `0�y

lies in L ha2; b1 i .H1.†2//. By Lemma 6.7, we can contract this loop to a point, thus
shortening `, and we are done.
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Figure 7: a: Generators for �1.†2;2;x/

b: The four configurations of curves on three-holed spheres needed

Appendix A Appendix on surface topology

In this appendix, we will prove three lemmas about the topology of surfaces for which
we are unable to provide appropriate references, though they are certainly known to
the experts.

A.1 Generators for the commutator subgroup of a surface group

In this section, we will prove a lemma which provides generators for the commutator
subgroup of a surface group. It is a generalization of a lemma which appears in a paper
of Johnson [15, Lemma 7]. It also is implicit in the unpublished thesis of van den Berg
[20, Proposition 2.4.2], though her proof is not quite complete.

Lemma A.1 Let g � 1 and � 0 D Œ�1.†g;n;x/; �1.†g;n;x/�. Assume that the
basepoint x is in the interior of †g;n . Then � 0 is generated by Œ
1; 
2�, where

1; 
2 2 �1.†g;n;x/ are simple closed curves so that 
1 \ 
2 D fxg and so that
a regular neighborhood of 
1[ 
2 is homeomorphic to a one-holed torus.

Proof Let � be the subgroup generated by the indicated elements. We will first prove
that � contains Œ
1; 
2� for simple closed curves 
1 and 
2 so that 
1\
2 D fxg and
so that a regular neighborhood of 
1 [ 
2 is homeomorphic to a three-holed sphere.
There are two cases. In the first, one of the 
i (say 
2 ) is nonseparating. We can then
find a simple closed curve 
3 so that 
3 \ 
1 D 
3 \ 
2 D fxg and so that regular
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neighborhoods of both 
1
3 [ 
2 and 
3 [ 
2 are homeomorphic to one-holed tori
(see the top portion of Figure 7.b). We then have the identity

Œ
1; 
2�D .
3Œ
1
3; 
2�

�1
3 /.
3Œ
2; 
3�


�1
3 /:

Observe that conjugation does not change the “type” of a commutator (this follows
from the identification of �1.†g;n;x/ with the kernel in the Birman exact sequence,
and is the reason we require the basepoint to be in the interior). Hence the right hand
side is in � , so the left hand side is as well.

In the second case, both of the 
i are separating curves. Reordering the 
i if necessary,
we can then find a simple closed nonseparating curve 
3 so that 
3\
1D 
3\
2Dfxg

and so that 
1
3 is nonseparating (see the bottom portion of Figure 7.b; this is where
we use the assumption that g � 1). We again have the identity

Œ
1; 
2�D .
3Œ
1
3; 
2�

�1
3 /.
3Œ
2; 
3�


�1
3 /:

By the previous case, the right hand side is in � , so the left hand side is as well.

Now let
S D f˛1; ˇ1; : : : ; ˛g; ˇg; ı1; : : : ; ıng

be a standard basis for �1.†g;n;x/ (see Figure 7.a). Thus � 0 is normally generated
by Œ
1; 
2� for 
1; 
2 2 S . Since we have proven that every such commutator is in � ,
we conclude that � D � 0 , as desired.

A.2 A connectedness lemma

In this section, we prove a lemma which allows us to move between simple closed
nonseparating curves in a simple manner.

Lemma A.2 For g � 1 and n� 0, let 
 and 
 0 be two simple closed nonseparating
curves in †g;n . We can then find a sequence 
1; 
2; : : : ; 
k of simple closed nonsep-
arating curves in †g;n so that 
1 D 
 , 
k D 


0 , and so that for 1 � i < k we have
ig.
i ; 
iC1/D 1.

Remark For nD 0, this lemma is well-known. However, we need it for surfaces with
boundary, so we include a proof.

Proof of Lemma A.2 It is well-known that there exists a set S of simple closed
curves in †g;n so that fTı j ı 2 S g generates Mod.†g;n/ and so that for all ı 2S we
have ig.ı; 
 /� 1 (for example, S could be the curves the twists about which form the
generating set in [5] and 
 could be the “central” curve b from that paper). Observe
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2 
3

ı

ˇ 0

ˇ 00�˛1
˛2 ˛3

Figure 8: The various curves needed in the proof of Lemma A.3

that for all ı 2 S , either T˙1
ı
.
 / D 
 or ig.T

˙1
ı
.
 /; 
 / D 1. Now, Mod.†g;n/

acts transitively on the set of simple closed nonseparating curves, so there exists a
sequence of curves ı1; : : : ; ık 2 S and a sequence of numbers e1; : : : ; ek 2 f˙1g so
that T

e1

ı1
� � �T

ek

ık
.
 /D 
 0 . We conclude that after eliminating repetitions, the following

is the desired sequence:


;T
e1

ı1
.
 /;T

e1

ı1
T

e2

ı2
.
 /; : : : ;T

e1

ı1
T

e2

ı2
� � �T

ek

ık
.
 /:

A.3 Realizing homology bases

In this section, we prove a lemma which allows us to realize symplectic bases for
H1.†g/ in a nice manner.

Lemma A.3 Let fa1; : : : ; ag; b1; : : : ; bgg be a symplectic basis for H1.†g/, and for
integers 0 � h; k � g let f˛1; : : : ; ˛h; ˇ1; : : : ; ˇkg be a set of oriented simple closed
curves in †g so that the following hold for all i and j for which the expressions are
defined:

Œ˛i �D ai and Œˇi �D bi ;

ig.˛i ; j̨ /D 0 and ig.ˇi ; ǰ /D 0;

ig.˛i ; ǰ /D ıij :

Then we can find simple closed curves f˛hC1; : : : ; ˛g; ˇkC1; : : : ; ˇgg so that these
expressions continue to hold.

Proof The proof will be by induction on g . The case g D 0 is trivial. Now assume
that g > 0. If both ˛1 and ˇ1 are given to us, let N be a small regular neighborhood
of ˛1[ˇ1 . Observe that N is a copy of †1;1 which is disjoint from the remaining
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˛i and ǰ . Hence †g nN is a copy of †g�1;1 containing f˛2; : : : ; ˛h; ˇ2; : : : ; ˇkg.
Let †g nN �! †g�1 be the embedding induced by gluing a disk to the boundary
component. By induction, we can solve the resulting problem on †g�1 , and it is clear
that any lift of the solution to †g solves the problem there as well.

We can therefore assume without loss of generality that we are given no ˇi ’s. If no
curves are given, then it is trivial to find ˛1 , so we can also assume without loss of
generality that we are given f˛1; : : : ; ˛hg for some h � 1. Let � be any separating
curve dividing †g into two subsurfaces S1 and S2 with ˛i 2S1 for all i . Arrange the
˛i and � in the pattern indicated in Figure 8, and let 
2; : : : ; 
h and ˇ0 be the curves
indicated there. It is clear that with the indicated orientations we have

Œ
i �D Œ˛i �� Œ˛1�:

Also, � induces a symplectic splitting

H1.†g/D H1.S1/˚H1.S2/:

Pick d 2 Z and an irreducible vector b00 2 H1.S2/ so that the projection of b1 to
H1.S2/ equals db00 (if this projection is 0, then d D 0 and b00 is arbitrary). Let ˇ00

be any simple closed curve in S2 realizing b00 . Since ia.a1; b1/ D 1, we can find
c1; : : : ; ch 2 Z so that

b1 D Œˇ
0�C .

Xh

iD1
ciai/C d Œˇ00�:

See Figure 8. Let ı be the curve indicated there. Hence

Œı�D Œˇ00�� Œ˛1�:

Set

ˇ1 D T c1C���CchCd
˛1

T �c2

2
� � �T �ch


h
T �d
ı .ˇ0/:

Observe that ig.˛i ; ˇ1/D ıi1 . Also,

Œˇ1�DŒˇ
0�C .c1C � � �C chC d/Œ˛1�C c2Œ
2�C � � �C chŒ
h�C d Œı�

DŒˇ0�C .c1C � � �C chC d/Œ˛1�

C c2.Œ˛i �� Œ˛1�/C � � �C ch.Œ˛h�� Œ˛1�/C d.Œˇ00�� Œ˛1�/

DŒˇ0�C .c1a1C � � �C chah/C d Œˇ00�D b1;

as desired. This reduces us to a previous case, and completes the proof.
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