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Order in the concordance group and Heegaard Floer
homology

STANISLAV JABUKA

SWATEE NAIK

We use the Heegaard–Floer homology correction terms defined by Ozsváth–Szabó to
formulate a new obstruction for a knot to be of finite order in the smooth concordance
group. This obstruction bears a formal resemblance to that of Casson and Gordon but
is sensitive to the difference between the smooth versus topological category. As an
application we obtain new lower bounds for the concordance order of small crossing
knots.

57M25; 57R58

1 Introduction

A knot K in S3 is called slice if .S3;K/D @.B4;D2/ where D2 is a 2–disk smoothly
and properly embedded in the 4–ball B4 . Knots K1 and K2 are called concordant
if K1 # SK2 is slice where SK represents the mirror image of K with reversed string
orientation. The set of concordance classes of knots forms an Abelian group under the
connected sum operation called the smooth concordance group and is denoted by C1 .
The order of K in this group is the least positive n for which the connected sum of n

copies of K is slice.

In this paper we use the correction terms for 3–manifolds stemming from Heegaard–
Floer homology to obstruct torsion in C1 . Specifically, we focus our attention on
knots with 10 or fewer crossings. Among these there are, as of this writing, 26 knots
with unknown concordance order. Table 1 below, courtesy of KnotInfo1, lists these
knots along with lower bounds on their orders. The existing lower bounds have been
determined by A Tamulis [21]. The structure of C1 is still rather poorly understood
and virtually nothing is known about torsion in C1 . We briefly summarize the current
state of understanding of C1 and point out connections to the knots from Table 1.

1KnotInfo is an online atlas of knots maintained by Charles Livingston. It can be found at
http://www.indiana.edu/�knotinfo/.
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Knot K Order of K Knot K Order of K Knot K Order of K

813 � 4 1026 � 4 10102 � 4

817 � 4 1028 � 4 10109 � 4

914 � 4 1034 � 4 10115 � 4

919 � 4 1058 � 4 10118 � 4

930 � 4 1060 � 4 10119 � 4

933 � 4 1079 � 4 10135 � 4

944 � 4 1081 � 4 10158 � 2

1010 � 4 1088 � 4 10164 � 4

1013 � 4 1091 � 4

Table 1

There is a surjective homomorphism ‚W C1! G (Levine, [9; 10]) from C1 onto the
algebraic concordance group G , which consists of Witt classes of Seifert forms under
orthogonal sums. It is known that G is isomorphic to the infinite direct sum

G Š Z1˚Z12 ˚Z14 :

The analogous homomorphism from odd dimensional concordance groups C2nC1

(concordance classes of embeddings of S2nC1 into S2nC3 ) is an isomorphism for
n> 1 and it is injective onto an index 2 subgroup of G when nD 1. In the case of C1

the kernel is nontrivial as first proved by Casson and Gordon [1; 2]. In fact, the kernel
of ‚, referred to as the subgroup of algebraically slice knots, is known to contain a
subgroup isomorphic to Z1˚Z1

2
by work of Jiang [7] and Livingston [11]. All the

knots in Table 1 map to order two elements in G and are therefore of either infinite
order or finite and even order in C1:

Remark 1.1 Given the isomorphism of the higher dimensional concordance groups
C2nC1 with the group Z1˚Z1

2
˚Z1

4
; it is a reasonable guess to expect C1 to exhibit

4–torsion elements (besides existing 2–torsion, see below) and perhaps no other finite
torsion. In view of this, obstructing 4–torsion in C1 is of particular importance.

The obstruction we use (elucidated in Section 3 in detail) for a knot to be of order n in
C1 applies in principle to all n� 2. However, computational complexity prevents us
from checking the obstruction for n> 4. Nonetheless, for nD 4 the algorithm gives
the following improvement on the above table (compare to Remark 1.1):

Theorem 1.2 The concordance order of any knot K from the set of 14 knots

f813; 914; 919; 933; 944; 1013; 1026; 1028; 1034; 1058; 1060; 10102; 10119; 10135g
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is at least 6.

While the correction term obstruction (see Section 3) bears a formal resemblance to that
of Casson and Gordon [1; 2], it is nonetheless bound to be substantially different. While
the Casson–Gordon obstruction does not differentiate between the subtle distinction of
smooth versus topological sliceness, our methods are indeed sensitive to it. For example,
the pretzel knot P .7;�3; 5/ is topologically slice (and so all of its Casson–Gordon
obstructions vanish) but our methods can be applied to show that its order in C1 is
infinite. Further examples of this type can be found in Owens–Manolescu [13].

A negative amphicheiral knot, that is a knot which is isotopic to its mirror image with
reversed orientation, is clearly of concordance order 2. Other than this nothing is
currently known about torsion in C1: In higher dimensions there are order 2 concor-
dance classes not represented by negative amphicheiral knots (Coray–Michel [6]). In
dimension three it is unknown whether or not the corresponding order 2 algebraic
concordance classes have any concordance order 2 representatives.

Levine’s set of invariants of algebraic concordance includes the Tristram–Levine signa-
tures, which being additive integral invariants, vanish for any knot representing a finite
order algebraic concordance class. Accordingly all of these invariants vanish for the
knots from Table 1.

In [3] Cochran, Orr and Teichner gave a geometric filtration

0� � � � � Fn:5 � Fn:0 � � � � � F1:5 � F1:0 � F0:5 � Ctop

which produces an infinite sequence of obstructions that a (topologically) slice knot
needs to obey. In their subsequent work [4; 5] it was shown that the quotient groups
Fn:5=Fn:0 are nontrivial at each stage, C=F1:0 is the algebraic concordance group,
and Casson–Gordon invariants vanish for elements of F1:5: So far this filtration has
not been used to provide information regarding torsion.

There are other, more subtle obstructions (“subtler” in the sense that they differentiate
between the smooth and topological slice genus, a topic which we don’t discuss here)
to a knot representing a torsion class in C1 :

� �.K/D The Ozsváth–Szabó � invariant from Heegaard Floer homology [16].

� s.K/D The Rasmussen invariant defined using Khovanov homology [20].

� ı.K/D The ı–invariant of Manolescu and Owens also defined using Heegaard
Floer homology [13].

Geometry & Topology, Volume 11 (2007)
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If either of these is non-vanishing, the knot K is of infinite order in C1 . For the knots
from Table 1 all three of these invariants are either known or are readily calculated and
are all vanishing.

Yet further information about the concordance order of knots comes from the following
theorem proved by Livingston and Naik [12] using the Casson–Gordon obstructions to
sliceness.

Theorem 1.3 Let K be a knot in S3 with 2–fold branched cover YK . If H1.YK IZ/Š

Zpn ˚G with p a prime congruent to 3 mod 4, n odd and p not dividing the order of
G , then K is of infinite order in C1 .

This theorem gives a rather strong obstruction to being a torsion element in C1 , however,
as is easy to check, none of the knots from Table 1 satisfy the hypothesis of Theorem
1.3.

Additional obstructions to sliceness were obtained in (Kirk–Livingston [8]) using
the twisted Alexander polynomials which relate to determinants of Casson-Gordon
invariants. Using these Tamulis showed in [21] that none of the knots from Table 1
have order 2 in C1:

In summary, the knots from Table 1 are rather resilient to most of the known concordance
invariants. It is in this sense that the use of Heegaard Floer homology in the proof of
Theorem 1.2 is a significant new method, one which we hope will bear more fruit in
the near future.

The remainder of the article is organized as follows. Section 2 reviews relevant parts of
Heegaard Floer homology and reminds the reader of basic properties of the 3–manifold
correction terms d.Y; s/. This section can safely be skipped by the “Heegaard Floer
initiate”, our hope is that it will provide an alternative exposition style for the “Heegaard
Floer novice” complementing that found in the existing literature. Section 3 states the
obstruction to being order n in C1 coming from the said correction terms. Section 4
explains how we calculated the correction terms for the double branched covers of the
knots from Table 1. Finally, Section 5 explains how the results of Theorem 1.2 follow
from our main obstruction. The MATHEMATICA script used in our computations can
be downloaded from the first author’s web page.

No originality is claimed on the material presented in sections 2–4. Our main obstruction
Obstruction 3.1 has been first observed by Ozsváth and Szabó [15] and been successfully
used by other authors (Owens–Strle [14], Owens–Manolescu [13]). Our contribution is
the use of this obstruction to address long-standing questions about torsion in C1 .

Geometry & Topology, Volume 11 (2007)
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2 Heegaard Floer homology

This section serves as a reminder of some basic definitions and properties of the
Heegaard Floer homology groups and the resulting correction terms for 3–manifolds.

2.1 The Heegaard Floer homology groups

In their seminal papers [17; 18] Peter Ozsváth and Zoltán Szabó introduced the Heegaard
Floer homology groups bHF .Y; s/, HF˙.Y; s/ and HF1.Y; s/ associated to a spinc

3–manifold .Y; s/. These Abelian groups come equipped with a relative Zd –grading
gr where

d D gcdfhc1.s/; hijh 2H2.Y IZ/g:

In the case when s is torsion (by which we mean that c1.s/ is torsion) the relative
Z–grading gr lifts to an absolute Q–grading egr .

The various Heegaard Floer groups are related by means of long exact sequences. For
example HF˙.Y; s/ and HF1.Y; s/ fit into the sequence

(1) � � � !HF�.Y; s/!HF1.Y; s/
�
!HFC.Y; s/!HF�.Y; s/! � � � :

If s is torsion then the maps in the above sequence preserve the absolute grading egr
except the map HFC.Y; s/!HF�.Y; s/ which drops degree by 1.

2.2 Cobordism induced maps

The Heegaard Floer homology groups fit into a TQFT framework in the following
sense: given a spinc 4–manifold .W; t/ with @W D�Y1 tY2 (where �Y is Y with
its orientation reversed) there are induced group homomorphisms

FıW ;t WHFı.Y1; tjY1
/!HFı.Y2; tjY2

/

where ı stands for any of b, C, �, 1. When tjY1
and tjY2

are both torsion the
degree shift of the map Fı

W ;t is

(2) deg FıW ;t WD egr.FıW ;t.x//� egr.x/D
.c1.t//

2� 2eW � 3�W

4
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where eW and �W are the Euler number and signature of W respectively and x 2

HFı.Y1; tjY1
/ is any homogeneous element. Said differently, Fı

W ;t is a homogeneous
map of degree ..c1.t//

2� 2eW � 3�W /=4.

Proposition 2.1 (Ozsváth-Szabó, [15]) When bC
2
.W /D 0 the homomorphism F1

W ;t

is an isomorphism for all spinc –structures t on W .

The exact sequence (1) is functorial under cobordism induced maps in the sense that
one obtains the commutative diagram (with exact rows):

(3)

����! HF�.Y1; s1/ ����! HF1.Y1; s1/
�

����! HFC.Y1; s1/ ����!

F�
W ;t

??y F1
W ;t

??y F
C

W ;t

??y
����! HF�.Y2; s2/ ����! HF1.Y2; s2/

�
����! HFC.Y2; s2/ ����!

In the above diagram si stands for tjYi
.

2.3 The correction terms for 3–manifolds

Let Y be a rational homology sphere and let s 2 Spinc.Y / be a spinc –structure on Y .
The correction term d.Y; s/ is defined to be

d.Y; s/Dminfegr.�.x//jx 2HF1.Y; s/g

where � W HF1.Y; s/!HFC.Y; s/ is the map from the exact sequence (1).

Example 2.2 Consider S3 with its unique spin-structure s0 . Recall from [18] that
HF1.S3; s0/ Š ZŒU;U�1� and HFC.S3; s0/ Š ZŒU�1�. The absolute grading
on both groups is specified by egr.U k/ D �2k and the map � W HF1.S3; s0/ !

HFC.S3; s0/ is the obvious quotient map

ZŒU;U�1�!
ZŒU;U�1�

U ZŒU �
Š ZŒU�1�:

Thus � is surjective and therefore d.S3; s0/ is the lowest grading in HFC.S3; s0/

which in turn is given by

(4) d.S3; s0/D egr.U 0/D 0:

Geometry & Topology, Volume 11 (2007)
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The correction terms enjoy a number of nice properties. Given s 2 Spinc.Y / let xs be
the conjugate spinc –structure. Then

d.Y;xs/D d.Y; s/

d.�Y; s/D�d.Y; s/

d.Y1#Y2; s1#s2/D d.Y1; s1/C d.Y2; s2/:(5)

2.4 Correction terms for 3–manifolds bounding rational homology 4–balls

Consider now two rational homology 3–spheres Y1 and Y2 equipped with spinc –
structures si 2 Spinc.Yi/. Consider furthermore a negative definite cobordism .W; t/

from .Y1; s1/ to .Y2; s2/ (ie a 4–manifold W with @W D �Y1 t Y2 , tjYi
D si and

bC
2
.W / D 0). Let x2 2 HF1.Y2; s2/ be an element with egr.�.x2// D d.Y2; s2/

where � is the map from (1). According to Proposition 2.1 the homomorphism
F1

W ;tW HF1.Y1; s1/! HF1.Y2; s2/ is an isomorphism. Let x1 2 HF1.Y1; s1/

be the unique preimage of x2 under this map. The degree-shift formula (2) and the
commutative diagram (3) show that

egr.�.x2//� egr.�.x1//D
.c1.t//

2� 2eW � 3�W

4
:

Since d.Y1; s1/ � egr.�.x1// by definition and d.Y2; s2/D egr.�.x2// by choice of
x2 , the above equality becomes the inequality

(6) d.Y1; s1/� d.Y2; s2/�
.c1.t//

2� 2eW � 3�W

4
:

Let us now turn to the special case when Y2 D S3 and W has the rational homology
of a punctured 4–ball. Then eW D 0 D �W and .c1.t//

2 D 0 for all t 2 Spinc.W /.
The above inequality along with Example 2.2 then shows that d.Y1; s1/ � 0 for
all spinc –structures s1 2 Spinc.Y1/ which lie in the image of the restriction map
Spinc.W /! Spinc.Y1/. Reversing the orientation on W and applying (6) once more
shows that d.Y1; s1/� 0 also. Therefore

d.Y1; s1/D 0 8s1 2 ImŒSpinc.W /! Spinc.Y1/�:

If we fill in the S3 boundary component of W with a 4–ball, we see that Y D Y1

bounds a rational homology ball X DW [S3 B4 . It is well known (and follows easily
from the universal coefficient theorem and the exact sequence of the pair .X;Y /) that
such a 3–manifold has second cohomology of square order, say jH 2.Y IZ/j D n2 ,
and that the order of the image H 2.X IZ/! H 2.Y IZ/ is n. After suitable affine
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identifications of Spinc.X / Š H 2.X IZ/ and Spinc.Y / Š H 2.Y IZ/ the restriction
map Spinc.X / ! Spinc.Y / corresponds precisely to the restriction induced map
H 2.X IZ/!H 2.Y IZ/. We summarize our discussion in the following Theorem.

Theorem 2.3 Let Y be a rational homology 3–sphere which bounds a rational ho-
mology 4–ball X . Then jH 2.Y IZ/j D n2 for some n and there is a subgroup P of
H 2.Y IZ/ of order n such that

d.Y; s/D 0 8s 2 P

under a suitable identification Spinc.Y /ŠH 2.Y IZ/.

3 The sliceness obstruction

Let K be a knot in S3 and let YK be the double branched cover of S3 branched along
K . The order of the second cohomology of YK is given by

jH 2.YK IZ/j D j det.K/j D j�K .�1/j

where �K .t/ is the Alexander polynomial of K .

If K is slice with slice disk D2 ,! B4 we let XK be the double branched cover of
B4 branched along D2 . The manifold XK is a rational homology ball with boundary
@XK D YK . Thus according to Theorem 2.3 we must have j det.K/j D n2 for some
integer n and d.YK ; s/D 0 for all s in some subgroup P of H 2.YK IZ/ of order n.
As sample calculations show, this turns out to be a rather strong obstruction to the
sliceness of K .

To apply this algorithm to the question of the order of a knot K in C1 consider the
knot K0 D #2mK , the 2m–fold connected sum of K with itself.

If K is of order 2m then K0 is slice and the above algorithm asserts the vanishing of
d.YK 0 ; s

0/ for spinc –structures s0 from some (affine) subgroup O of Spinc.YK 0/ of
order j det.K/jm . Recall that

YK1#K2
Š YK1

#YK2
Spinc.Y1#Y2/Š Spinc.Y1/�Spinc.Y2/:

Thus a spinc –structure s0 2 Spinc.YK 0/ corresponds to a collection of 2m spinc –
structures s0 D .s1; : : : ; s2m/ with si 2 Spinc.YK /. Furthermore (5) implies that for
such an s0 the correction term d.YK 0 ; s

0/ is given by

d.YK 0 ; s
0/D d.YK ; s1/C � � �C d.YK ; s2m/:

To summarize we obtain the following.

Geometry & Topology, Volume 11 (2007)
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Obstruction 3.1 If K is of order 2m in the smooth knot concordance group C1 there
exists a subgroup O of

�
H 2.Y IZ/

�2m
Š .Spinc.YK //

�2m of order j det.K/jm with

(7) d.YK ; s1/C � � �C d.YK ; s2m/D 0 8.s1; : : : ; s2m/ 2O:

In the above YK is the double branched cover of S3 branched along K .

One drawback of this obstruction algorithm is that there is a priori no way of knowing
what the group O might be in the case of a concrete knot K . We are thus forced to
consider all subgroups O of H 2.YK IZ/

�2m of order j det.K/jm and hope that for
none of them relation (7) holds. If this is the case, K cannot be of order 2m.

To use this obstruction for the knots K from Table 1 one needs to calculate the correction
terms d.YK ; s/ for all s 2 Spinc.YK /. In the next section we do this by distinguishing
a number of cases.

4 Calculating obstruction terms

4.1 2–bridge knots

Some of the knots from Table 1 are 2–bridge knots and so their double branched covers
are lens spaces. The correction terms for lens spaces have been calculated by Ozsváth
and Szabó in [15] and follow the recursive formula

d.�L.p; q/; i/D

 
pq� .2i C 1�p� q/2

4pq

!
� d.�L.q; r/; j /

where r and j are the mod q reductions of p and i respectively. Here i is an integer
0 � i < p C q whose mod p reduction represents the spinc –structure Œi � 2 Zp Š

Spinc.�L.p; q//.

The knots from Table 1 whose double branched covers YK are lens spaces are given in
Table 2. For example, the correction terms of Y813

thus obtained are˚
�

2
29
;�18

29
; 8

29
; 18

29
; 12

29
;�10

29
; 10

29
; 14

29
; 2

29
;�26

29
;�12

29
;�14

29
;�32

29
;� 8

29
; 0;

�
8

29
;�32

29
;�14

29
;�12

29
;�26

29
; 2

29
; 14

29
; 10

29
;�10

29
; 12

29
; 18

29
; 8

29
;�18

29
;� 2

29

	
:

4.2 Alternating knots

When K is a knot which possesses an alternating projection D the correction terms of
YK can be calculated from the Goeritz matrix G associated to D . The details of this
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Knot K YK Knot K YK

813 L.29; 11/ 1013 L.53; 22/

914 L.37; 14/ 1026 L.61; 17/

919 L.41; 16/ 1028 L.53; 19/

1010 L.45; 17/ 1034 L.37; 13/

Table 2

have been worked out by Ozsváth and Szabó in [19] and we summarize them here for
the benefit of the reader.

Let D be an alternating projection of a knot K . We color the regions of D black and
white according to the convention from Figure 1, to obtain a checkerboard pattern.

Figure 1: The coloring conventions near a crossing.

From such a pattern we extract a graph in the following way: The vertices of the graph
are in bijection with the white regions in the diagram (including the unbounded region
if it happens to be white). There is an edge between two vertices for each touching
point of their corresponding white regions. Figure 2 shows the checkerboard diagram
and the associated graph for the knot 817 .

From the graph we now extract a matrix - the Goeritz matrix of the projection D . Pick
and discard one of the vertices of the graph (the vertex enclosed in a dotted circle
in Figure 2) while retaining all of its edges. Give the remaining vertices an arbitrary
ordering. The Goeritz matrix G D Œgij � has the entries

gij D

(
Number of edges between the i th and j th vertex i ¤ j

�1 �Valence of the i th vertex i D j:

Geometry & Topology, Volume 11 (2007)
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III

II
I

IV

Figure 2: The checkerboard diagram and graph associated to the knot 817 .
In the construction of the Goeritz matrix we drop the vertex enclosed by the
dotted circle.

For example, the Goeritz matrix associated to the projection of 817 from Figure 2 with
the ordering of the vertices as indicated is

G817
D

2664
�3 1 0 1

1 �3 1 1

0 1 �2 0

1 1 0 �4

3775 :
Finally, from the Goeritz matrix it is now a matter of arithmetic to extract the correction
terms d.YK ; s/: Consider GW V ˝V !Z as a negative definite bilinear quadratic form
where V D Z` if G is of dimension `� `. Let gW V ! V � and G�W V �˝V �!Q

be the obvious maps induced by G , namely

g.v/DG.v; �/ and G�.G.v; �/;G.w; �//DG.v; w/:

Let MgW Coker.g/!Q be

Mg.�/D
1

4

�
max

fv2V �jŒv�D�g
G�.v0C 2v; v0C 2v/C rk.V /

�
where v0 is any characteristic vector of G (ie any vector v0 2 V � with v0.w/ �

G.w;w/.mod 2/ for all w 2 V ). It is shown in [19] that there is an isomorphism
'W Coker.g/!H 2.YK IZ/ such that

d.YK ; '.�//DMg.�/

for some affine identification of H 2.YK IZ/ with Spinc.YK /.
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For example, the correction terms for Y817
calculated this way are˚

�
20
37
;�32

37
; 18

37
;�18

37
; 8

37
; 22

37
; 24

37
; 14

37
;� 8

37
; 32

37
;�14

37
; 2

37
; 6

37
;

�
2

37
;�22

37
; 20

37
;�24

37
;� 6

37
; 0;� 6

37
;�24

37
; 20

37
;�22

37
;� 2

37
; 6

37
;

2
37
;�14

37
; 32

37
;� 8

37
; 14

37
; 24

37
; 22

37
; 8

37
;�18

37
; 18

37
;�32

37
;�20

37

	
:

Of the knots from Table 1 which do not appear in Table 2, the ones which have
alternating projections are listed in Table 3.

Knots having alternating projections
817, 930, 933, 1058, 1060, 1079, 1081

1088, 1091, 10102, 10109, 10115, 10118, 10119

Table 3

4.3 The remaining cases

Section 4.1 and Section 4.2 allow for a calculation of the correction terms of YK for
most knots K from Table 1. The knots from that table which do not fall into either
category are

(8) 944 10135 10158 10164

and these require special attention. All four of these knots however “resemble” alter-
nating knots sufficiently so that a calculation of their correction terms can be done by
using the Goeritz matrix again.

The following algorithm has been described in [19], see also [13]. Suppose that K

is a knot with a knot projection D which outside some region R is alternating and
inside R consists of k left-handed half-twists of two parallel strands, see Figure 3.
Such projections can be found for all four knots from (8).

Let L be the 2–component link obtained from K by replacing R with R0 . For example,
Figure 4 shows a knot projection of 10158 with the marked region R, Figure 5 depicts
the corresponding link L.

There is a restriction we impose: the vertex from the checkerboard pattern for L that
we drop in the computation of the Goeritz matrix of L, should always be one of the
vertices from the region R. In Figure 5, two such vertices are indicated.

Geometry & Topology, Volume 11 (2007)
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R R0

Figure 3: The left-handed orientation of the twists in the region R is shown
on the left. The region R0 on the right is used to replace R in forming L

from K .

R
10158

Figure 4: The region R is the portion of this projection of 10158 inside the
dotted oval.

R0

Figure 5: The link L in case of K D 10158 .
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Let zG be the Goeritz matrix of L and let G be the matrix obtained from zG as

(9) G D

2666664
0

zG
:::

0

1

0 : : : 0 1 �k

3777775
where k is the number of negative half-twists in the region R.

When K is any of 944 , 10135 , 10158 or 10164 the correction terms of YK are calculated
from G in the way described in Section 4.2 for alternating knots.

For example, the Goeritz matrix zG of the link L (Figure 5) and its associated matrix
G for the knot K D 10158 (Figure 4) are

zG D

24 �4 1 2

1 �4 2

2 2 �4

35 G D

2664
�4 1 2 0

1 �4 2 0

2 2 �4 1

0 0 1 �3

3775
leading to the correction terms˚
�

2
45
;�2

5
; 8

9
;� 8

45
; 2

5
; 28

45
; 22

45
; 0;�38

45
;� 2

45
; 2

5
; 22

45
; 2

9
;�2

5
; 28

45
;

�
32
45
;�2

5
;�4

9
;�38

45
; 2

5
;�32

45
;� 8

45
; 0;� 8

45
;�32

45
; 2

5
;�38

45
;�4

9
;�2

5
;�32

45
;

28
45
;�2

5
; 2

9
; 22

45
; 2

5
;� 2

45
;�38

45
; 0; 22

45
; 28

45
; 2

5
;� 8

45
; 8

9
;�2

5
;� 2

45

	
:

5 Applying the obstruction

Given a knot K , Obstruction 3.1 implies that if K has order 2m in C1 then there
is a subgroup O of H 2.YK IZ/

�2m of order j det.K/jm for which all corresponding
correction terms vanish. To check the obstruction for a concrete knot K one needs to:

(1) Calculate all correction terms of YK .

(2) Find all subgroups O of H 2.YK IZ/
�2m of order j det.K/jm .

(3) Check that

d.YK ; s1/C � � �C d.YK ; sm/D 0 8.s1; : : : ; sm/ 2O:
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We have written a MATHEMATICA script which performs each of the 3 steps above.
Computationally the most demanding part by far is step 2. In fact, our computational
resources only allowed us to use mD 2 (and thus test for 4–torsion in C1 ) and even in
that case we were forced to use a weaker version of obstruction Obstruction 3.1.

Obstruction 5.1 If j det.K/j D p or j det.K/j D p � q where p ¤ q are primes, then
if K is of order 4 there exists a subgroup eO of H 2.YK 0 IZ/ isomorphic to Zj det.K /j
with

d.YK ; s1/C d.YK ; s2/C d.YK ; s3/C d.YK ; s4/D 0

for all .s1; s2; s3; s4/ 2 eO . Here K0 denotes #4K .

This is a direct consequence of Obstruction 3.1. The results of Theorem 1.2 follow
from our MATHEMATICA implementation of Obstruction 5.1.

An easy check reveals that all knots from Table 1 satisfy the hypothesis of Obstruction
5.1 except 1010 , 10158 and 10164 . Each of these 3 knots has determinant 45. If
either of them were of order 4, it would still follow from Obstruction 3.1 that there is
a subgroup eO of H 2.YK 0 IZ/ of order 45 whose associated correction terms vanish.
However, unlike in Obstruction 5.1, there are now 2 possibilities for the isomorphism
type of eO , namely Z45 and Z3˚Z15 . While for each of the knots 1010 , 10158 and
10164 no group of the former type (with vanishing correction terms) exists, there are
groups of the latter type and so no conclusions can be drawn.

References
[1] A J Casson, C M Gordon, On slice knots in dimension three, from: “Algebraic and

geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, CA, 1976),
Part 2”, Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc., Providence, R.I. (1978)
39–53 MR520521

[2] A J Casson, C M Gordon, Cobordism of classical knots, from: “À la recherche de la
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