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Spindle-configurations of skew lines

ROLAND BACHER
DAVID GARBER

This paper is a contribution to the classification of configurations of skew lines,
as studied mainly by Viro and his collaborators. We prove an improvement of a
conjecture made by Crapo and Penne which characterizes isotopy classes of skew
configurations with spindle-structure. By this result we can define an invariant,
spindlegenus, for spindle-configurations.

57M25, 57Q37, 57Q45; 51H10, 57M27

1 Introduction

A configuration of n skew lines in R3 or a skew configuration or an interlacing of n
skew lines is a set of n non-intersecting lines in R* containing no pair of parallel lines.

Two skew configurations Cy and C, are isotopic if there exists a rigid isotopy (contin-
uous deformation of skew configurations or, equivalently, isotopy of the ambient space
under which all # lines remain pairwise skew lines) from C; to C,.

The study and classification of configurations of skew lines (up to isotopy) was initiated
by Viro [16] and pursued by Viro, Mazurovskii, Borobia—Mazurovskii, Drobotukhina
and Khashin, see for example Borobia—Mazurovskii [1; 2], Drobotukhina [4], Khashin
[6], Mazurovskii [11; 12] and Viro—Drobotukhina [17]. The original definitions, first
invariants and classifications up to five lines are due to Viro. Mazurovskil classified
configurations of six lines, see [11] and [12]. Borobia and Mazurovskii succeeded in
classifying configurations of seven lines (see [1] and [2]) making use of a powerful
invariant defined by Drobotukhina, see [4], who defined a Kauffman polynomial for
such configurations. The numbers of distinct skew configurations, up to isotopy, having
at most 7 lines are shown below.

Lines | Isotopy classes || Lines | Isotopy classes
2 1 5 7
3 2 6 19
4 3 7 74
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1050 Roland Bacher and David Garber

The survey paper [17] (and its refreshed versions available on the author’s website and
on the arXiv) contains accurate historical information and is a good introduction to the
subject and its higher-dimensional generalizations. Most of these results, with changes
in terminology, are also exposed in the survey paper by Crapo and Penne [3]. Our
choice of terminology is often influenced by it and differs thus sometimes from the
terminology used by the authors of the original works. Finally let us cite Matei—Suciu
[10] which is related to spindle configurations.

A spindle (or isotopy join or horizontal configuration) is a particularly nice configuration
of skew lines in which all lines intersect an oriented additional line A, called the axis
of the spindle. Its isotopy class is completely described by a spindle-permutation
o:{l,...,n} — {1,...,n} encoding the order in which an open half-plane bounded
by A and revolving around it intersects the lines during a half-turn (see Section 5 for
the precise definition). A spindle-configuration is a skew configuration isotopic to a
spindle.

Consider the spindle-equivalence relation on permutations of {1,...,n} generated by
transformations of the following three types.

(1) o~ pif u = pop' for some integers 0 < 5,7 < n where p is the cycle
(1,2,...,n).

(2) o ~ p if there exists k < n such that 6(i) <k for i <k and u = o1
where 7, = (1,k)(2,k —1)--- is the involution fixing i > k and transposing
the elements {i,k +1—i} fori <k.

(3) o ~ u if there exists k < n such that 6(i) <k for i <k and

@) = o) i<k
Y= e@) i sk

Our main result is an improvement of Crapo—Penne [3, Conjecture 59].

Theorem 1.1 Two spindle-permutations o, ¢’ give rise to isotopic spindle-configur-
ations if and only if o and ¢’ are spindle-equivalent.

Remark 1.2 The fact that spindle-equivalent permutations lead to isotopic spindles
is [3, Theorem 62] for transformations of type (1) and (2) and follows from Khashin—
Mazurovskii [7, Theorem 3.2] for all three transformations. The original conjecture [3,
Conjecture 59] is slightly weaker than the statement of Theorem 1.1. The formulation
of Theorem 1.1 is however equivalent to [3, Conjecture 59] by [7, Theorem 3.2]. We
will reprove the easy direction of Theorem 1.1 by simplifying (for transformations of
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Spindle-configurations of skew lines 1051

type (3)) the known proofs which realize all transformations for spindle-equivalence
by rigid isotopies. The proof of the other direction is the main result of this paper. Let
us also mention that the proof does not exclude the existence of “exotic” isotopies:
isotopies between spindles which are not reducible (up to deformations) to a finite
sequence of rigid isotopies associated to transformation defining spindle-equivalence,
see Remark 6.5.

Orienting and labeling all lines of a skew configuration, one gets a linking matrix by
considering the signs of crossing lines. The associated switching class or homology
equivalence class is independent of labels and orientations. A result of Khashin
and Mazurovskii [7, Theorem 3.2] states that homology-equivalent spindles (spindles
defining the same switching class) are isotopic. We have thus the following Corollary.

Corollary 1.3 Two spindle permutations define the same switching class if and only
if they are spindle-equivalent.

Isotopy classes of spindle-configurations have thus an easy combinatorial description
and can be considered as “understood”, either in terms of spindle-equivalence classes
or in terms of switching classes, in contrast to the general case where no (provenly)
complete invariants are available.

A few useful and mostly well-known invariants for configurations of skew lines follow.

(1) Equivalence classes of skew pseudoline diagrams (see Section 2): Completeness
unknown (this is a major problem since the obvious planar representation of
skew configurations is perhaps not faithful). A powerful combinatorial invariant
somewhat tedious to handle. Switching classes and Kauffman polynomials
factorize through it.

(2) Switching classes or two-graphs, see Zaslavsky [18, page 7], also called ho-
mological equivalence classes, see Borobia—Mazurovskii [2], are equivalent to
the description of the sets of linking numbers or linking coefficients, see [2] or
[17]. The definition of this invariant uses a linking matrix encoding the signs
of oriented crossing lines (not intersecting in the compactification RP? > R3).
The switching class is a complete invariant for configurations of up to 5 skew
lines and is not complete for more than 5 lines. Switching-classes are however
a complete invariant for spindle-configurations by [7, Theorem 3.2].

Slightly weaker (but more elementary to handle) than the switching class is the
characteristic polynomial of a linking matrix X

n
Py(t) =) ait’ =det(/1—X) .
i=0
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1052 Roland Bacher and David Garber

The coefficient «,—3 of Py (¢) conveys the same information as the sum of
linking numbers introduced by Viro.

(3) Kauffiman polynomials: A powerful invariant introduced by Drobothukina in [4]
which is unfortunately difficult to compute. Its completeness is unknown. See
also [3, Section 14 and Appendix] for a list of computed examples.

(4) Link invariants for links in the 3—sphere S* applied to the preimage 7~ (C) C
S3 of a skew configuration C C R? C RP? under the double covering 7: S3 —
RP3. (This is called a Temari model by some authors, see for instance [3, Section

11].)

(5) Existence of a spindle structure. A generally very weak invariant since spindle
structures are rare among configurations with many lines. Theorem 1.1 shows
however that the spindle-equivalence class provides a complete invariant for the
very small subset of skew configurations with a spindle structure. Moreover,
the existence of a spindle structure in a given switching class can be decided
algorithmically (work in progress by the authors).

(6) One should also mention the shellability order, a generalization of the notion of
spindle structure, used as a classification tool in [2].

The sequel to the paper is organized as follows: Section 2 introduces skew pseudoline
diagrams. Section 3 and Section 4 are devoted to switching classes.

Section 5 describes spindle-configurations and contains a proof of the easy (and known)
direction in Theorem 1.1: Spindle-equivalent permutations yield isotopic configurations.
Section 6 proves the difficult direction: Permutations associated to isotopic spindles
are spindle-equivalent. This completes the proof of Theorem 1.1. Section 7 contains
an easy proof of [7, Theorem 3.2]: Spindle configurations with switching-equivalent
linking matrices are isotopic. This implies Corollary 1.3.

Section 8 describes a somewhat curious invariant for spindle-equivalence classes of
permutations (or spindle-configurations) which involves 2—dimensional topology.

To our knowledge, only Section 6 and Section 8 contain new results. The remaining
sections recall known facts and sometimes simplify their proofs.

2 Skew pseudoline diagrams

Skew pseudoline diagrams are combinatorial objects providing a convenient tool for
studying configurations of skew lines.
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Spindle-configurations of skew lines 1053

Definition 2.1 A pseudoline in R? is a smooth simple curve representing a non-trivial
cycle in RP2. An arrangement of n pseudolines in R? is a set of n pseudolines with
pairs of pseudolines intersecting transversally exactly once. An arrangement is generic
if no triple intersections occur.

Definition 2.2 A skew pseudoline diagram of n pseudolines in R? is a generic ar-
rangement of n pseudolines with crossing data at intersections. The crossing data
selects at each intersection the over-crossing pseudoline.

We draw skew pseudoline diagrams with the conventions used for knots and links:
under-crossing curves are slightly interrupted at crossings.

Skew pseudoline diagrams are equivalent if they are related by a finite sequence of the
following local moves, presented in Figure 1 (see [3, Section 9]).

N4
NS
VDN \

Figure 1: Local moves

(1) Reidemeister—3 (or x—move), presented on the left half of Figure 1, the most
interesting of the three classical moves for knots and links.

(2) Projective move (or ||-move): pushing a crossing through infinity as presented on
the right half of Figure 1 (with the grey region enclosed by the dashed hyperbola
containing all remaining lines).

Generic projections of isotopic skew configurations yield equivalent skew pseudoline
diagrams (see for instance [3, Theorem 48]).

Not every skew pseudoline diagram is equivalent to the projection of a suitable skew
configuration: a configuration involving at least 4 skew lines is never equivalent to an
alternating skew pseudoline diagram (see Pach—Pollack—Welzl [13]). There are even
examples of generic diagrams having n > 9 pseudolines which cannot be realized using
straight lines, see Griinbaum [5].

The existence of non-isotopic skew configurations inducing equivalent skew pseudoline
diagrams cannot be excluded. This is a major difficulty for classification, see [3, Section
17, Problem 2].
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1054 Roland Bacher and David Garber

3 Linking matrices and switching classes

One assigns signs to pairs of oriented under- or over-crossing curves (as arising for
instance from oriented knots and links) which are drawn in the oriented plane. Figure
2 shows a positive and a negative crossing.

Figure 2: Positive and negative crossings, denoted by +1

The sign or linking number 1k(L 4, L g) between two oriented skew lines L 4, Lg C R3
was introduced by Viro in [16] and can be computed as follows: choose ordered pairs
of points (Ay, Ay) on L4 (resp. (By, By) on Lpg) which induce the orientations.
Then the sign of the crossing determined by L4 and L p is given by

Ay — Ay
Ik(L4, Lp) =sign | det| By — Aw e {1}
By — By

where sign(x) = |§_| for x # 0.
Signs of crossings are also defined in skew pseudoline diagrams.

The linking matrix of a diagram of n oriented and labeled skew pseudolines L1, ..., Ly
is the symmetric n x n matrix X with diagonal coefficients x;; = 0 and x; ; =
Ik(L;, Lj) fori # j.

Example 3.1 Figure 3 shows a labeled and oriented configuration of six skew lines
with linking matrix

0-1-1 1 1-1
-1 0 1 1 1 1
-1 1 0 1-1 -1
X= 1 1 1 0 1-1
1 1 -1 1 0 1
-1 1-1-1 1 0

having characteristic polynomial det(tI1— X) = (1> —5)3.

Two symmetric matrices X and Y are switching-equivalent if

Y=DP' XPD
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2 <" "
e
s

4 S 6

Figure 3: A configuration of 6 labeled and oriented skew lines

where P is a permutation matrix and D is a diagonal matrix with diagonal entries in
{#1}. Since PD is an orthogonal matrix, we have (PD)~! = DP’ and switching-
equivalent matrices are thus conjugate.

Proposition 3.2 All linking matrices of a fixed skew pseudoline diagram are switching-
equivalent.

Proof Relabeling the lines conjugates a linking matrix X by a permutation matrix.
Reversing the orientation of some lines amounts to conjugation by a diagonal matrix
with diagonal entries in {%1}. a

Remark 3.3 The terminology switching classes (also called two-graphs) is motivated
by the switching-relation for simple graphs, see for instance Zaslavsky [18].

Remark 3.4 Characteristic polynomials separate switching classes only for orders
n < 7. For higher orders there exist cospectral pairs of switching classes.

Remark 3.5 Mazurovskii proved that the switching class is a complete invariant for
isotopy classes of skew configurations having fewer than 6 lines.

Moreover, Mazurovskii discovered that the skew configuration of 6 lines depicted in
Figure 3 and its mirror (obtained by changing the signs of all crossings) are in the
same switching class (represented by the matrix X or —X of Example 3.1) but have
different Kauffman polynomials and are thus not isotopic, see [12, Theorem 3.2.1].
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Al 22 possible linking matrices can be obtained from a fixed skew pseudoline
diagram by an appropriate choice of crossing data. The number of equivalence classes
of skew pseudoline diagrams with n pseudolines equals thus at least the number of
switching classes of order 7. Remark 3.5 shows that this inequality is in general strict.
Moreover, the number Ngc (n) of switching classes of order n satisfies the inequality
Nsc(n) > 2(’5)/(2”_1 nl) = Z(nzl)/n! (with asymptotic equality for n — 00). A few
values for these numbers Ngc(n), together with the numbers of distinct characteristic
polynomials associated to switching classes are gathered in the following table.

Lines | Characteristic | Switching
polynomials | classes

6 16 16
7 54 54
8 235 243
9 1824 2038

One can use representation theory of the symmetric groups in order to derive a formula
for Ngc(n) (see Mallows—Sloane [8] and Sequence A2854 in Sloane [15]).

The map
{configurations of skew lines} —> {switching classes}

is perhaps not surjective in general (there seems to be an unpublished counterexample by
Peter Shor for n = 71, see [3, Section 3]). We checked however that all 243 switching
classes of order § arise as linking matrices of skew configurations, as claimed in [3,
Theorem 5]. (The corresponding result holds also for fewer lines.) There are thus at
least 243 isotopy classes of configurations containing 8 skew lines.

The mirror configuration C obtained by reflecting a skew configuration C through the
z = 0 plane has opposite crossing data. We have thus X = —X for associated linking
matrices X and X .

A configuration C is amphicheiral if it is isotopic to its mirror C. We cite without
proof the following easy result, due to Viro, see [16] or [17].
Proposition 3.6

(i) The linking matrix X of an amphicheiral configuration of skew lines is switching-
equivalent to — X . In particular, amphicheiral configurations containing an odd
number of skew lines have non-invertible linking matrices.

(i) Amphicheiral configurations with n = 3 (mod 4) lines do not exist.
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4 Switching classes, vorticity and signature

The set of vorticities (also called homological equivalence class or chiral signature),
introduced by Viro in [16], is a classical and well-known invariant for skew pseudoline
diagrams. We sketch below briefly the well-known proof that it corresponds to the
switching class of an associated linking matrix.

In this paper we work with switching classes mainly because they are easier to handle.

The vorticity vort(L;, L;j, L) of three lines (see [16, Section 2] or [3, Section 3]) is
defined as the product x; jx; g Xk ; € {£1} of the signs for the corresponding three
crossings. The result is independent of the chosen orientations for L;, L;, Ly . It
classifies the skew-configuration {L;, L;j, Ly} up to isotopy and yields an invariant

{triplets of lines in skew pseudoline diagrams} — {£1}.

Let us remark that almost all authors use the terminology linking coefficient instead
of vorticity. This is slightly confusing since the linking coefficient denotes also the
isotopy type of a pair of oriented skew lines.

The set of vorticities is the list of vorticities vort(L;, Lj, Ly) for all triplets of lines
{L;,Lj, L} in a skew pseudoline diagram.

Sets of vorticities (defining a two-graph, see [18]) and switching classes are equivalent.
Indeed, vorticities of a skew pseudo-line diagram D can easily be retrieved from a
linking matrix for D. Conversely, given all vorticites vort(L;, L;, Ly ) of a diagram
D, choose an orientation of the first line L. Orient the remaining lines L,,..., Ly
such that they cross L positively. A linking matrix X for D is givenby xq; = x; 1 =
l,2<i=<nand x,p =vort(L{, Ly, Lp) for 2<a#b=<n.

Two skew pseudoline diagrams are homologically equivalent (the terminology refers to
properties of the complement, endowed with a suitable extra-structure, of a configuration
in RP3) if there exists a bijection between their lines, which preserves all vorticities.
Two diagrams are homologically equivalent if and only if they have switching-equivalent
linking matrices.

Some authors (see [3, Section 3 and Appendix]) consider the chirality (y4, y—) defined
as
yr =H{1<i<j<k<n|vort(Lj,Lj, L) =1}
y—=M1<i<j<k=n|vort(L;, Lj, L) =—1}

of a skew pseudoline diagram. One has 2y; = (’3’) +c, 2y = (r31) _ ¢ where
c= Y XijXjkXk; = gtrace(X?) = _0‘"2—3

1<i<j<k=<n
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is proportional to the coefficient of "3

¥, t! of alinking matrix X .

in the characteristic polynomial det(t/ — X) =

Remark 4.1 There is a canonical choice (obtained by reversing all rows and columns
containing initially an odd number of 1’s and (—1)’s and closely related to simple
Eulerian graphs, see Seidel [14]) avoiding the sign indeterminancy for linking matrices
representing switching classes of odd order. For even orders, there seems to be no
completely satisfactory analogue.

S Spindles

5.1 Spindle-configuration

Mazurovskii introduced a construction, called the isofopy join, which associates a
configuration of (a; + a, + 1)—dimensional affine subspaces in R"172%1 (o pairs of
configurations of @;—dimensional affine subspaces in R", see for instance [7, Section
1.7]. The special case ay =a, =0 and ny =n, =1 yields configurations of skew lines,
called spindles by some authors. We recall that a spindle is a configuration of skew
lines intersecting an oriented auxiliary line A, called its axis. A spindle configuration
(or a spindle structure) is a configuration of skew lines isotopic to a spindle.

The orientation of the axis A induces a linear order L; < --- < L, on the n lines of a
spindle C. Each line L; € C defines a plane I1; containing L; and the axis 4.

A second auxiliary line B (called a directrix) in general position with respect to
A,I1y,..., 1, and oriented in order to cross A negatively, intersects the planes
Iy,..., I, at points o(L;) = BN II;. One can assume o(L;) € L; by a suitable
rotation fixing 4 N I1; of the plane II; containing L;. Since the orientation of B
induces a linear order on the points o (L;), we get a spindle-permutation (still denoted)
i+—o(i) of the set {1,...,n} by identifying the two linearly ordered sets L,..., Ly
and o(L1),...,0(Ly) in the obvious way with {1,...,n}. Figure 4 displays an exam-
ple corresponding to o (1) =1, 0(2) =4, 0(3) =2, d(4) =5, o(5) =3. In the sequel,
we often denote by («, ) the line Ly defined by o () = B in a spindle configuration.
The spindle of Figure 4 thus consists of the lines (1, 1),(2,4),(3,2), (4,5) and (5, 3).

Spindles can also be represented by (the isotopy classes of) configurations of skew
lines with all lines contained in distinct affine horizontal planes of R3 (horizontal
configurations). An associated spindle permutation encodes the two orders on the set
of lines given by the heights of the horizontal planes containing them and by the slopes
of the lines after orthogonal projection onto such a horizontal plane.
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Figure 4: A spindle

A linking matrix X of a spindle C is easily computed as follows. Transform C
isotopically into a spindle with oriented axis A and directrix B as above. Orient a
line L; from L; N A to L; N B. A straightforward computation shows that the linking
matrix X of this labeled and oriented skew configuration has coefficients

xi,j = sign((i — j)(o (i) —a(})))

where sign(0) = 0 and sign(x) = x for x # 0 and where ¢ is the corresponding
spindle-permutation. For example, the configuration of Figure 4 has linking matrix

0O 1 1 1 1
I 0-1 1 -1
X=]1-1 0 1 1
1 1 1 0-1
l1-1 1-1 0

Remark 5.1 A configuration C of n skew lines has a spindle structure if and only
if its mirror configuration C has a spindle structure. A spindle permutation & for C
is then for instance given by 0(i) =n+1—0(i), 1 <i <n, where o is a spindle-
permutation for C. For n < 13 such that n # 3 (mod 4), the table of Section 5.2
shows the existence of spindle configurations having » lines which are amphicheiral
(isotopic to their mirror).
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5.2 Spindle-equivalent permutations

The aim of this subsection is to show that the three types of transformations of spindle-
permutations, defined by Crapo and Penne in [3, Section 15], preserve the associated
spindle configuration, up to isotopy. This is the easy direction in Theorem 1.1. This
part is also proved in [7, Theorem 3.2].

A (linear) block of size k or a k—block in a permutation ¢ of {1,...,n} is a subset
{i +1,...,i +k} of k consecutive integers in {1,...,n} such that

o((i+1,...i+k)={j+1.....j+k}

for some integer j (that is the image under o of aset {i + 1,...,i + k} of k
consecutive integers is again a set of k& consecutive integers). In the sequel, we denote
by [, B]={a,a+1,...,8—1,8} C{l,...,n} asubset of consecutive integers and
byo(i +1,i +k])=[j+1,j+ k] a k-block as above.

Recall that two spindle-permutations are equivalent (see [3, Section 15]) if they are
equivalent under the equivalence relation generated by the following spindle moves:

(1) (Circular move)
o~ pif p=pop'
for some integer 0 < s,¢ <n where p is the n—cycle (1,2,...,n).

(2) (Vertical reflection of a block or local reversal) o ~ p if there exists an integer
1 <k <n such that o([1, k]) =[1, k] and

o [rr1mote 1o ik
FO= 60 ik

(see Figure 5).

1 2 3 4 5 6 1 2 3 4

1 2 3 4 5 6 1 2 3 4
Figure 5: Vertical reflection of a block
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(3) (Horizontal reflection of a block or local inversion) o ~ u if there exists an
integer 1 <k <n such that o([1, k]) =1, k] and

el i<k
“(l)_{a(i) P>k

(see Figure 6).
1 2 3 4 5 6 1 2 3
1 2 3 4 5 6 1 2 3

Figure 6: Horizontal reflection of a block

4 5 6

4 5 6

Circular moves suggest to extend the linear order on {1,...,n} to the cyclic order
induced by the compactification RP? > R. We have an obvious notion of cyclic
blocks and can consider horizontal and vertical reflections of cyclic blocks related to
vertical and horizontal reflections as above by conjugations involving circular moves.
Such (more general) moves lead to the same equivalence relation as the three moves
considered above and we allow them for the sake of conciseness.

The following table shows the number of spindle-permutations, up to equivalence,
for n < 13 (see Sequence A110888 in [15]). We also indicate the number of am-
phicheiral spindle-permutations (giving rise to amphicheiral skew configurations), up
to equivalence (see Sequence A110890 in [15]).

n | spindle classes |amphicheiral classes || n |spindle classes | amphicheiral classes
1 1 1 8 180 12

2 1 1 9 985 5

3 2 0 10 6867 83

4 3 1 11 60108 0

5 7 1 12 609112 808

6 15 3 13| 6909017 47

7 48 0

Assertion (ii) of Proposition 3.6 explains the non-existence of amphicheiral classes for
n=3 (mod 4).
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Remark 5.2 The number of spindle classes is a lower bound for the number of skew-
line configurations by Theorem 1.1, and for the number of distinct switching classes
containing a linking matrix of a skew-line configuration by Corollary 1.3.

We restate and reprove the easy direction (see also [7]) of Theorem 1.1.
Proposition 5.3 Equivalent spindle-permutations yield isotopic spindle configurations.

Proof A transformation of type (1) amounts to pushing the last few lines of the spindle
on the axis and directrix through infinity. This can be done isotopically.

An isotopy inducing a vertical reflection (type (2) above) can be described as follows:
Consider the two complementary subblocks o ([1,k]) = [1,k] and o([k + 1,n]) =
[k+1,n]in o. All lines of the first block o ([1, k]) =[1, k] can be squeezed isotopically
into the interior of a small one-sheeted hyperboloid H whose axis of revolution
intersects orthogonally the axis A and the directrix B of . Moreover, we may assume
that no line of the complementary block o ([k + 1, n]) = [k + 1, n] intersects the interior
of H. The isotopy of skew lines given by rotating the interior (containing the block
o([1,k]) =1, k]) of H by a half-turn around its axis of revolution induces a vertical
reflection (see Figure 7).

Figure 7: Isotopy for a transformation of type (2)

For constructing an isotopy inducing a horizontal reflection (type (3)) we start as above
by pushing the & lines of the first block o ([1, k]) = [1, k] into a small hyperboloid
H; with revolution axis C; intersecting the axis A and the directrix B orthogonally.
Denote by Ip the open segment of B contained in the interior of H;. Moreover,
suppose that the directions of the axis A4 and the directrix B are orthogonal. Push
the lines of the complementary block o ([k + 1,n]) = [k + 1, n] in the positive sense
along the directrix B until they can be squeezed into the interior of a small revolution
hyperboloid H, not intersecting H; with revolution axis C, parallel to the directrix
Bofo.

Rotate the interior of the first hyperboloid H; containing the block o ([1,k]) =[1, k]
by a half-turn around the revolution axis C, of H, (see part (1) of Figure 8) and call
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the resulting hyperboloid H . Finally, rotate the hyperboloid /| and the lines inside it
by 7/2 around its revolution axis C; and translate it along C; until the image of Ip
is contained in the directrix A of o (see part (2) of Figure 8) . This yields a spindle
configuration whose spindle-permutation is related by a circular move and a horizontal
reflection (and perhaps a vertical reflection of the first block, depending on the sense
of the half-turn around C7) to the initial spindle-permutation. a

N

4 @

H,

Figure 8: Isotopy for a transformation of type (3)

6 Isotopic spindle configurations

In this section, we prove the difficult direction of Theorem 1.1. We start by describing
all blocks (up to spindle moves) in spindle configurations.

Proposition 6.1 Let o be a spindle-permutation with linking matrix X . Let I be a
subset of at least 2 indices corresponding to lines such that for all i1,i, € I and all
j €1, the product

XiyiaXiy, j¥is,j € {E ]}
depends only on i1, i, and is independent of j .

Then, up to spindle moves of o, the lines {L;};cy corresponding to I form a block of
o.

Corollary 6.2 Let B C o be a block of a spindle-permutation o . Let ¢ be an isotopy
between o and a second spindle-permutation o’. Then, up to spindle moves of o’, the
set of lines 1(B) C ¢’ is a block too.
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Proof of Proposition 6.1 We index the rows and columns of X by {1,...,n} and
first consider the case (/) = 2. Up to circular moves, we can assume that / = {1, o}
corresponds to the lines (1, 1), (&, B) € . Up to replacing ¢ by a mirror permutation
0, we can also assume X1,4X1 X,y = 1 for y €{2,...,n}\ {a}. This implies (a —
yY)(B—0o(y)) > 0 and shows o = 8. Moreover, the lines (2,0 (2)), (3,0(3)), ..., (¢—
l,o0(x — 1)), (o,®) form a block B C o and a vertical reflection with respect to B
transforms the line (¢, ) into the line (2, 2).

Suppose now that the subset / containing & > 3 lines is minimal in the sense that
it contains no strict subset I’ C I of kK’ > 2 indices satisfying the condition of
Proposition 6.1. Then we claim that the corresponding subset of lines {(i,0(i))}ier
form a block of 0. Indeed, otherwise there exist (up to a horizontal reflection and
a circular move) indices 1 < j; <i < j, <n with 1,i € I and j;, j, € I. Up
to replacing o by a mirror-permutation and up to circular moves we can assume
I =0(l) <o(j1) <o(j2). The equality xq ;X1 j,Xi,j; = X1,iX1,j,Xi,j, implies
now o(j1) <o(i) <a(jp) forall i € 1,1, j, &1 with j; <i < j,. A similar
argument shows that o (i) €{a(j1),0(j1) +1,...,0(jp)} forall i € I withi < j
or i > j,. This implies that both sets 11 =TI N({1,2,...,j1 —1}U{jr+1,...,n})
and I, = I N{j; +1,...,j,— 1} satisfy the condition of Proposition 6.1. At least
one of the non-empty proper subsets /1, I C I contains 2 elements or more and this
contradicts the assumed minimality of 7.

In the general case, we consider a proper subset I’ C I which satisfies the condition
of Proposition 6.1 and which contains either only two lines or is minimal as defined
previously. Since Proposition 6.1 holds for I’ we can suppose (up to spindle moves
if #(I’) = 2) that the lines of I’ form a block B’ C o. Considering the lines of B’
as rigidly linked (and thus allowing only spindle-moves of ¢ transforming all lines of
B’ similarly) we can consider B’ as being represented by a single line L” € B’. This
yields a smaller spindle-permutation & together with a subset of indices T satisfying
the condition of Proposition 6.1 for the corresponding linking matrix X obtained by
removing from X all rows and columns corresponding to B’ \ L’. Proposition 6.1
holds now for & by induction on the number of lines and gluing back the rigid block
B’ (its insertion is well-defined up to a vertical and horizontal reflection of B”) onto
L’ € yields the result. O

Proof of Corollary 6.2 The set of indices corresponding to a subblock B C ¢ satisfies
the condition of Proposition 6.1 for a common linking matrix X of the isotopic spindles
o and o’. O
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Remark 6.3 The proof of Proposition 6.1 shows that blocks of more than 2 lines
which are minimal (contain no non-trivial proper subblock) cannot be “torn apart” by
spindle moves.

Theorem 6.4 Let : be an isotopy relating two spindle configurations (associated to
spindle-permutations) o and o’. Then the bijection from the lines of o onto the lines
of ¢’ induced by 1 can be realized by spindle moves.

Proof of Theorem 1.1 Follows from Proposition 5.3 and Theorem 6.4. a

Remark 6.5 Theorem 6.4 does not exclude the existence of “exotic” isotopies be-
tween spindle-equivalent spindle configurations which do not arise from (a continuous
deformation of a sequence of) spindle moves.

For proving Theorem 6.4 we have to generalize some notions for spindle-permutations:
A spindle-permutation is a bijection o: E — F between two finite subsets £, F C R
which we consider either linearly ordered or cyclically ordered by the cyclic order
induced by R on the compactification R C RU {oo} = RP! ~ S!. We use in general
E=F={0,....n—1}or E=F=1{1,...,n} for spindles with n lines and suitable
subsets for subspindles. For e € E we denote by (e, a(e)) the corresponding line of
the spindle configuration associated in the obvious way to o and we identify o with
the set {(e,0(e)}ecg Of its lines. For e € E, the notation ¢ \ (e,0(¢)) denotes the
spindle or spindle-permutation obtained by restricting o to E \ {e}.

For e¢1 <e, € E and f; < f> € F wedenote by [eq, e»], respectively [ f1, /2], the subset
([e1,e2] N E) C E, respectively ([ f1, fo]N F) C F. For subsets E' C E, F' C F of
the same cardinality such that o (e) € F’ for all e € E’ we denote by (E’,0(E’) = F’)
the spindle-permutation obtained by restricting o to E’. A subblock of o can thus
be written as ([e, e2],0([e1, e2])) C o or ([e1,ez],[f1, f2]) C 0. Sometimes we will
also use the notation o ([ey, e2]) = [f1, f2]. In the sequel, a k—block (of a spindle-
permutation ¢ ) will almost always denote a cyclic block consisting of k lines, that is a
subset E/ C E of k cyclically consecutive elements with o (E’) cyclically consecutive
in F.

Notice that given a spindle-permutation o: E —> F, its mirror configuration is for
instance associated to the spindle-permutation o: E —> F where F = F as a set but
equipped with the opposite (cyclic) order. The application 0 —— ¢ which replaces
a spindle-permutation by its mirror enjoys good properties (preserves the spindle-
equivalence relation, the isotopy relation, yields a bijection between subblocks, etc)
and will often be used for reducing the number of possible cases.
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The proof of Theorem 6.4 is by induction on the number of lines involved in o and
o’. The result holds clearly for configurations with less than 4 lines (in this case,
spindle-moves generate the complete permutation group of all lines).

Call a permutation irreducible if it contains no non-trivial block (consisting of 2 < k <
n — 2 cyclically consecutive lines).

Call a block minimal if it consists of 2 < k < n —2 lines and if it contains no subblock
of strictly smaller cardinality k" > 2.

Proposition 6.1 shows that the set of possible subblocks of a spindle-permutation o is
encoded by its linking matrix. Thus, either both or none of the spindle permutations
0,0’ are irreducible.

The proof of Theorem 6.4 splits into two cases, depending on the reducibility of o and

o'.

6.1 The reducible case

Consider a non-trivial k—block B C . Corollary 6.2 shows that, up to spindle moves,
B’ = «(B) is a non-trivial k—block of o’.

Up to circular moves, we can assume that B and B’ are given by o ([1,k]) = [1, k]
and o/([1,k]) =[1, k]. We denote by B =0\ B and B’ =0’ \ B’ the complementary
blocks.

By induction on the number of lines, the bijection of lines obtained by restricting ¢ to
the subspindles (1,0(1)) U B and (:(1),¢’(1(1))) U B’ can be obtained by an isotopy
@ which is a composition of spindle-moves. Up to a vertical reflection of B, the
isotopy w can be extended uniquely to all lines of o by considering the block B C o
(represented by the line (1,0(1))) as rigid. We allow thus only spindle moves having
the same effect on all lines of B. Replacing ¢ with the isotopy £~ ! ot we can suppose
that the permutation induced by : fixes all lines of B = o \ B. Applying the above
argument to the complementary block B and working with BU (k + 1,0 (k + 1)), we
get (after gluing back the block B onto the line (k + 1,0 (k + 1))) an isotopy that
consists only of spindle-moves, transforms ¢ into ¢’ (up to a vertical and/or horizontal
reflection of the block B) and induces the line-bijection prescribed by the initial isotopy
L. (]

6.2 The irreducible case

The case where o and o’ are irreducible is more complicated. It splits into the following
three subcases:
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Subcase (1) There exists a line L € ¢ with ¢ \ L irreducible.

Subcase (2) There exists a line L such that ¢ \ L contains a minimal block B
consisting of 3 <k <n —4 lines.

Subcase (3) For every line L € ¢, the subspindle ¢ \ L contains a 2—block.

Subcases (1) and (2) are dealt with by induction on the number of lines. A spindle-
permutation in Subcase (3) is called exceptional. Subcase (3) is handled by classifying
all exceptional spindle-permutations.

6.2.1 Subcase (1) Choose a line L € o with ¢ \ L irreducible. By Corollary 6.2,
the spindle-permutation o’ \ ¢(L) is also irreducible. Up to circular moves of o and
o’ we can assume L = (n,n) €o,1(L) = (n,n)€o’.

By induction on n, the restriction of ¢ to the spindle configurations o ([1,n —1]) =
[1,n—1], o/([1,n—1]) =[1,n—1] yields a bijection between their lines which can be
realized by spindle moves. By irreducibility of ¢ \ L and ¢’ \ (L) and by induction on
the number of lines, there exist (up to horizontal and vertical reflections of ¢”) integers
0 <oa,B <n—1 such that

o’'i)=0(i—a (mod (n—1)))+p (mod (n—1))

fori =1,...,n—1 where x (mod (n—1))e{l,...,n—1}. Thusaline (i,0(i)) =
(i, j) (with 1 <i <n—1) of o corresponds to the line (i +«, j + ) of ¢’ (where the
numbers i +«, j + B €{l,...,n—1} are modulo n — 1). We say that a line (i,0(i))
(with i < n) is moved through infinity if either i > n —« or o(i) > n— . If both
inequalities hold, we say that (i, o (i)) is moved twice through infinity.

If there exists a line (i, 0(7)) which is moved exactly once through infinity, then every
line (j,o0(j)), 1 <j <n—1 is moved exactly once through infinity: Otherwise ,
consider a line (i, 0(i)) which is moved once and a line (j,o(j)) which is not moved
through infinity or moved twice. This implies that the 3—subspindles

{G.0(0). (j,0()). (n.n)} and {t(7, (i), 1(j.0())). L(n,n) = (n.n)}

are mirrors (and thus of different vorticities and not isotopic) which is impossible.
Thus every line of o \ (n,n) is moved through infinity exactly once which implies
a+f=n—lando(1,8)=[n—-B.n—1],c(f+1.n—1])=0c(n—a,n—1]) =1, «].
This contradicts the irreducibility of o .

We can now assume that every line of o \ (n,7) is moved an even number of times
through infinity. This implies @ = 8 and the existence of a non-trivial subblock of the
foomo((n—a,n—1)=[n—a,n—1]oro(n—a,n])) =[n—o,n] in o for e > 0. We
have thus & = 8 = 0 which shows o = ¢’ and proves the result.
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6.2.2 Subcase (2) Up to circular moves, we can assume that o \ (n,#) contains a
minimal block B of size 3 < #§(B) < n—4. Irreducibility of o shows the existence
(up to horizontal and vertical reflections of o) of integers o, § > 1 with 3 <o+ f =
f(B) <n—4 and of an integer y with 1 <y <n—1—a — B such that B is given by

o(l,aJUn=B.n=1) =[y + 1.y +a+p],

see Figure 9 with B included in the shaded region. Up to considering mirror-config-
urations, we can suppose ¥ < o(a) <o(m—pB) <a + f + y. There exist now indices
vy, vy such that @ < vy <vy, <n—pB and 6 (vy) >a+ B+ y, 6(vy) <y (see Figure
9). Indeed, otherwise o(jo + 1, + y]) =[l,y]and o(ea + y + l,n — B —1]) =
[@ 4+ B + y + 1,n— 1] which implies the existence of a non-trivial subblock in ¢ and
contradicts the irreducibility of o .

y+1 y+a+p n

1 a Vi V2 n—8 n

Figure 9: A schematical picture of the subspindle 6 C 0.

Lemma 6.6 The subspindle ¢ C o defined by
BU(vi,o0(v1)) U (v2,0(v2)) U (n,n)

is irreducible.

Proof Consider the S5—subspindle ¢ C & containing the five lines

(a7 O-(a))7 (1)1, O-(1)1))7 (Vz’ G(VZ))7 (}’l _/37 O(n - IB))7 (I’l,l’l) .

The inequalities ¢ < vy <vy<n—fB <mnand o(vy) <o(a) <o(mn—pB)<o(vy) <n
imply easily that 7 is irreducible (it is enough to check that t contains no 2-block).
Thus any block B C & intersects T in a subset with h cardinality t[(B Nt)e {O, 1,4,5}.
Up to replacing B by its complementary block &\ B C &, we can assume Ii(B Nnt)<1.

If BNt = (o, 0()) or Bnt= (n—pB,0(n—p)), then B C B is also a non-trivial
subblock in o . This contradicts the irreducibility of o.
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If BNt = {(n,n)}, then a non-trivial subblock B of & contains also at least one line
of the set {(v{,0(v1)), (v2,0(v3))}. This contradicts our assumption (B Nt) < 1.

If BNt ={(vy,0(v))}, then a non-trivial subblock B contains also at least one line
of {(a, 0()), (v2,0(v7))}, contradicting again f(B Nt) <1.

The case BNt = {(v2,0(v2))} is analogous.

The case BNt =& implies that B is a block of o. Since o is irreducible, this is
impossible. d

Apply now Theorem 6.4 to ¢ restricted to the subspindles & and 6’ = ¢(6) C o’ (which
contain at most n — 1 lines). By minimality of B, the subset B’ = ((B) is already a
subblock in ¢’ \ t(n,n), see Remark 6.3. Up to spindle moves, the relative position
of the subblock B’ C ¢’ \ (n,n) (with (n,n) = t(n,n)) inside ¢’ is described by
integers o', B’, )’ defined in the obvious way. Applying Theorem 6.4 to the restriction
of ¢ to the irreducible subspindle & we get o’ = «, B’ = B. The number y, respec-
tively y’, is given by the number of triplets {(1,0(1)), (j,o(J)), (n,n)}, respectively
{(1,0'(1)), (j,0o'(j)), (n,n)} of vorticity —1 (isotopic to {(1,2), (2,1),(3,3)}) with
a=0a < j<n—pf =n—p". These numbers can be retrieved from the linking matrix
of o, respectively ¢’, and we have thus y = y’. This implies that the permutation
induced by ¢ fixes all lines of B and B = B’ is thus a common subspindle of o and

o'.

Denoting by B = o \ (B U (n,n)) the complementary subblock of B in ¢ \ (n,n),
the above discussion shows that ((B) is a block in ¢’ \ (n,n). Since the proof of
Lemma 6.6 does not request minimality, we can find an irreducible subspindle o
containing B, (n,n) and two suitable lines of B. Applying Theorem 6.4 inductively
to the restriction of ¢ to the subspindles & C o and ¢’ = ((¢) C ¢’ (containing by
assumption at most # — 1 lines) shows that the permutation induced by ¢ fixes also the
set B. This implies ¢ = ¢’ and proves Subcase (2).

6.2.3 Exceptional irreducible spindles Call a spindle-permutation o of n > 4 lines
exceptional if o is irreducible and ¢ \ L contains a (cyclic) 2-block for every line
Leo.

Proposition 6.7
(i) For n > 5 odd, the spindle-permutation T = t, of {0, ...,n — 1} defined by

T:i+—1()=2i (modn), 0<i<n-—1
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and its mirror T = T, given (up to circular moves) by
Tiirt+—1(@)=-2i (modn), 0<i<n-—1

are exceptional. The spindle-permutations ts and Ts are spindle-equivalent. For
n > 5 odd, the spindle-permutations t, and T, are not spindle-equivalent and
have linking matrices in different switching classes. In particular, their associated
spindle configurations are not isotopic.

(i1) The spindle-permutations t,, T,, n = 5 odd, are the only exceptional spindle-
permutations having more than 3 lines, up to spindle-equivalence.

(iii) If ¢ is an isotopy of the exceptional spindle configuration t, onto itself, then the
line permutation L +— ((L) induced by ¢ can be realized by spindle moves.

T5 Ts 7 17

Figure 10: The exceptional spindles ts, Ts, 77, 77.

Proof We write t = 1, for n > 5 odd. We have 7 = 7k with
™ i+—>7k@{)=2k+1(—k (modn)) (mod n)

showing that 7 has a group of automorphisms acting transitively on its lines. Since
7\ (0, 0) contains the (cyclic) 2-block {(“5L,n—1), (%, 1)}, we get thus a cyclic
2-block in 7\ L for any line L € 7.

Suppose now that 7 is reducible and consider a non-trivial subblock B C t. Up to
replacing B by the complementary block 7\ B, we can assume that B contains fewer
than 7 lines. Up to cyclic moves we can assume that (0,0), (1,2) € B. This implies
either B =1\ (%, 1) which contradicts the non-triviality of B or B contains the
line (#, 1). But then B contains either all lines (k,2k), 1 <k < % or all lines
(k,2k —n), % <k <n-—1. Since (0,0) € B, we have in both cases §(B) > %
which contradicts the assumption f{(B) < 5.

This shows that T = 7, and its mirror 7, are exceptional.

A horizontal reflection transforms t5 into 7s which proves their equivalence under
spindle moves (see Figure 10).

Geometry & Topology, Volume 11 (2007)



Spindle-configurations of skew lines 1071

For n > 5 odd, 7,\ L and T, \Z contain both a unique 2-block B, resp. B (the choice
of the lines L, L is irrelevant since they are transitively permuted by automorphisms).
We get 3—subspindles L U B C 1, and L U B C T, which are not isotopic since
they are mirrors and have opposite vorticities (see Figure 10). Since such a 3—spindle
and its isotopy class can be recovered from the linking matrix, the associated linking
matrices are not switching equivalent and the corresponding spindle configurations are
not isotopic. This proves assertion (i).

(Note that this argument fails for n = 5: In this case, 7 \ L gives rise to two com-
plementary (cyclic) 2-blocks B, B such that L U B and L U B are non-isotopic
3—spindles.)

An inspection shows that no irreducible 4—spindle exists. This proves assertion (ii) for
n = 4. Hence, we can suppose n > 5.

Consider an exceptional spindle permutation o on # > 5 lines. For each line L, choose
a 2-block By C o\ L. We call the set By C o a line-block. The condition n > 5
ensures that we have exactly n different line-blocks.

Suppose first the existence of a line (a,b) € By, N B, N By, which is common
to three different line-blocks. Up to replacing o by its mirror-permutation, circular
moves, vertical and horizontal reflections, we can assume (a,b) = (2,2) and By, U
Br,UBr, =1{(0,¢c),(1,0),(2,2),(3,4)} with c € {1,3}. If ¢ = 1, the existence of
the 2-block {(0, 1), (1,0)} contradicts the irreducibility of o. If ¢ = 3 (see Figure 11),
the line-block B, ,) defined by (2,2) is either {(1,0), (3,4)} which implies n =5
and 0 =15 or {(0,3),(n—1,1)}. If n =5 we get 0 = t5. If n > 5, the existence of
the non-trivial sub-block {(0, 3), (1,0), (2,2), (n — 1, 1)} contradicts the irreducibility
of 0. Hence a line (a, b) is included in at most two line-blocks.

Figure 11: ¢ = 3 for three intersecting line-blocks.

Since every line-block By, in o contains two lines of o, we can now assume that every
line of o is contained in exactly two different line-blocks Bp,, B, .

Consider two graphs Fg, F; with vertices {0, 1,...,n—1} and edges defined as follows:
Anedge {i, j} of T2 (respectively {o(i),a(j)} of T'}) exists if {(i,0(i)), (j,o(j))}
is a line-block of o. Such an edge {i, j} C T'2 (respectively {o(i),0o(j)} C T})is
of type k > 1if j =i £k (mod n) (respectively o (j) =o0(i) £k (mod n)). The
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definition of an edge implies k € {1,2} and the application i — ¢ (i) induces an
isomorphism from I'? onto T'! sending an edge of type k in I'Y onto an edge of
type 3—k in T'}. Our assumptions imply that T'Y and '} are 2-regular graphs with
connected components given by cyclic graphs containing at least 3 vertices.

Suppose first that (a connected component of) FUO contains two adjacent edges of
different types. Up to a vertical reflection and circular moves, we can assume that these
edges are either {1, 2}, {1, 3} or {1,2},{2,4}.

If T'9 contains the edges {1,2}, {1, 3}, we can assume, up to replacing ¢ by its mirror
permutation and circular moves, that o contains the lines (1, 2), (2,4) and (3, ¢) with
¢ €{1,3}. The case ¢ = 3 leads to a 2-block {(2,4), (3,3)} in o which is impossible.
o contains thus the lines (1, 2), (2,4), (3, 1) (see Figure 12).

0

Figure 12: The case ¢ = 3, together with parts of 'Y (dashed lines at the
bottom) and 1“; (dashed lines at the top).

Consider now the vertex 3 of degree 2 in the graph Fé. Since the vertex 2 is already
involved in the edges {1, 2} (corresponding to the line-block B, 4) = {(1,2),(3,1)} C
o\(2,4))and {2,4} (corresponding to the line-block B(,—1(3) 3y =1(1,2), (2,4)} Co\
(071(3),3)) of T'}, the vertex 3 of I'} has its two neighbours in the set {1,4, 5} and is
either adjacent to vertex 1 or to vertex 4 (and perhaps to both). In the first case, the line-
block corresponding to the edge {1, 3} of '} must be B, =1{3. 1), (c71(3),3)} =
{(3,1),(4,3)} and we get the existence of the lines (1,2),(2,4),(3,1),(4,3) in o
which implies 0 = t5 if n = 5 and the existence of a non-trivial subblock {(1,2),
(2,4),(3,1),(4,3)} for n > 5. In the second case, the existence of the edge {3, 4} in
'l implies the existence of a line (c, 3) with ¢ € {0,4} in 0. The case ¢ = 0 creates
a 2-block {(0, 3), (1,2)} in ¢ and is excluded. The case ¢ = 4 leads to ¢ = 75 for
n =5 or to the existence of the non-trivial subblock {(1,2),(2,4),(3,1), (4, 3)} for
n>>3.

Consider now the case where I'? contains the adjacent edges {1,2} and {2,4} of
different types. Since the vertex 2 of I' has already two neighbours 1 and 4, the
arguments considered a few lines above apply and the vertex 3 is either adjacent to 1
or to 4 (and perhaps to both). The first case, where I'J contains the edges {1,2} and
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{1, 3}, has already been discussed. The second one can be reduced to the first case
after a vertical reflection and a circular move.

We can thus suppose that all edges of a connected component in I‘g are of the same
type which can be assumed to be 1, up to a horizontal reflection. This shows, that o
consists (up to circular moves) of the lines

0,0),(1,%£2),(2,£4),...,(k,£2k),...,(n—1,£2(n—1))
which implies #» odd and o = 1, or 0 = T, and proves assertion (ii).

Up to considering mirror configurations, it is enough to prove assertion (iii) for 7. We
consider first the case n = 5. Up to circular moves, vertical and horizontal reflections,
we can assume that an isotopy ¢: Ts —> 5 induces the identity-permutation on the
lines (0, 0) and (1, 2). An inspection of isotopy types of triplets {(0, 0), (1, 2), (i, 2i
(mod 5))} shows that ¢(3,1) = (3, 1). A similar argument yields then ¢(2,4) = (2,4)
and completes the proof for ts.

We consider now an isotopy of o = 1t for an odd integer n > 5. The definition of
the graph F((,) (see the proof of assertion (ii) above) with vertices {0,...,n — 1} and
edges {i,i + 1 (mod n)} corresponding to line-blocks B(% (mod 1).2i+1) = {(,2i
(mod n)), (i +1,2i +2 (mod n))} implies that ¢ induces a graph automorphism of
I'2. Up to circular moves and a vertical reflection, we can thus assume that ¢ induces
the identity automorphism of I'g and thus the identity permutation on the lines of
o="1y. m|

Proof of Theorem 6.4 Follows from Section 6.1 and Section 6.2 O

7 Theorem 3.2 of Kashin—-Mazurovskii

In our terminology, [7, Theorem 3.2] can be restated as follows:

Theorem 7.1 Spindle configurations with switching-equivalent linking-matrices are
isotopic.

We prove it by constructing an isotopy between the two spindle configurations.

Let o and p be two spindles with switching-equivalent linking matrices X, = P’ X, P
where P is a signed permutation matrix inducing a bijection between the lines of o
and p. (Recall that the linking matrix X7 of a spindle with permutation t is defined
by

(Xz)i,j = sign((i — /) (z (i) —7()))) )
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Up to circular moves, we can assume that the line-bijection

(i,0(i) —> (', nG’))

induced by P sends the first line (1,0(1) = 1) of o onto the first line (1, u(1) =1)
of w. This implies that the conjugating matrix P is an ordinary permutation matrix
and thus we have

(i — )o@ —o(NGE" =) RiE") = p(")) >0
forall 1 <i < j <mn.
For ¢ € R fixed, consider the liqe Li(t) = sPL(t)+ (1—5) P(ft (¢) parametrized by
s € R, oriented from P} (¢) to P} (t) where
Pi(t) = (1—1)(i,1,0)+1(0,1,i")
{P:,;(t) = (1=0)(0.~1.0() +(=pu(i"). ~1.0).

Proposition 7.2 For t € R, the lines L(t) ={L(¢),..., L,(t)} form a skew configu-
ration.

Moreover, £(0) realizes the spindle o and L(1) realizes the spindle (.

This is essentially [7, Theorem 3.2]. The following proof is a transcription of the
original proof in [7], made slightly more elementary in the sense that we avoid using [7,
Theorem 2.13] (involving configurations of subspaces in spaces of dimension higher
than 3) at the cost of a determinant-computation.

Proof We have to show that
PL (1) — PL(1)
IK(L;(¢), Lj(¢)) =sign | PJ () — PL(t)
Pgy(t) — Py (1)

is constant. The matrix is given by

t—1i—tu@) =2 (1—=t)o@)—ti’
(1-0)j+tu@y 2 @¢—Do@)+tj’
t=1j—ipn() =2 A1=0)o(j) =1’

and its determinant p equals

p=2(G =)o)+ (" =) uG)—n(N)
—4(i =)o@ —o(Nt+20 = j)o @) —a())).

Geometry & Topology, Volume 11 (2007)



Spindle-configurations of skew lines 1075

The discriminant (with respect to ¢) of p given by

—16( — /)0 () —o ()" = j) (@) — ()

is strictly negative for i # j which shows that p is non-zero for all ¢ € R. This proves
that £(¢) is a skew configuration for all € R.

For t = 0, we get a spindle with axis (R, 1,0) and directrix (0, —1, R) realizing the
spindle o with lines

Li=s50,1,00+(1—-5)0,—-1,0()),i=1,...,n, seR.

For t = 1, we get a spindle with axis (0, 1, R) and directrix (—R, —1,0) (where —R
denotes the real line endowed with the opposite order) realizing p with lines

L, =s0,1,i")y + (1 =s)(—p@i’),—1,0), i" =1,...,n,s €R. |
The proof of Theorem 7.1 is immediate.

Proof of Corollary 1.3 Spindle-equivalent permutations give rise to isotopic spindles
and their linking matrices are thus switching-equivalent.

On the other hand, given two permutations o, ¢’ with switching-equivalent linking
matrices, Theorem 7.1 yields an isotopy between the associated spindle configurations
and Theorem 1.1 implies that o, 0’ are spindle-equivalent. a

8 Spindlegenus

We describe a topological invariant of permutations up to spindle-equivalence. This
yields an invariant for spindle configurations by Theorem 1.1.

Let P be a regular polygon with n edges Eq,..., E, in clockwise cyclical order.
Reading indices modulo »n we orient the edge E; from E;_; N E; to E; N E; 4+ and
denote by E_; the edge E; with the opposite orientation. Consider a second polygon
P’ with edges E’,..., E, obtained from P by an orientation-reversing isometry
(for example an orthogonal symmetry with respect to a line). Given a permutation
o:{l,...,n} —{1,...,n}, gluing the oriented edge E; € P onto the oriented edge
E (/f o) € P’ for 1 <i <n yields a compact orientable surface (o). We call the genus
g(0) e N of X(0) the spindlegenus of .

This construction can be generalized as follows:

A signed permutation is a permutation of the set {£1,..., +n} such that 6(—i) =
—a (i). The group of all signed permutations is the full group of all isometries acting on
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the regular n—dimensional cube [—1, 1]" C R". Such a permutation can be graphically
presented by segments [(Z,0), (|5 (i), 1)] carrying signs ¢; = %3' € {£1}. The
notion of spindle-equivalence extends to signed permutations in the obvious way. The
construction of the compact surface X (o) can now be applied to a signed permutation &
(glue the oriented edge E; € P onto the oriented edge E:?(i) € P foralli=1,...,n)
and yields a generally non-orientable surface X (o) presented as a C W —complex with
two open 2—cells (corresponding to the interiors of the polygons P and P’), n open
1—cells (the edges of P or P’) and with v(&) points or O—cells. The surface X (&) is
orientable if and only if } >, 6," = n, that is if & is either an ordinary permutation
or the opposite of an ordinary permutation. The Euler characteristic 2 —n + v(¢) and
orientability describe the surface X (6) up to homeomorphism (see for instance Massey

[9D.

Proposition 8.1 If G, &’ are two signed spindle-equivalent permutations, then v(G) =
v(6") and the compact surfaces () and X (6") are homeomorphic.

Corollary 8.2 Two permutations o and o’ which are spindle-equivalent have the
same genus (that is g(o) = g(0”)).

The following table lists the multiplicities for the spindlegenus g(o) (related to the
number v(o) of vertices in the C W —complex considered above by the formula x(X) =
2—n+v(o) =2 —2g(c) for the Euler characteristic of X (o)) of permutations
normalized by o (1) = 1. Multiplication by n gives the corresponding numbers for all
permutations:

nig=0jg=1jg=2| g=3 g=4 g=>5
1 1

2 1

3 1 1

4 1 5

5 1 15 8

6 1 35 84

7 1 70 469 180

8 1 126 | 1869 | 3044

9 1 210 | 5985 | 26060 8064

10| 1 330 |16401| 152900 | 193248

11 1 495 139963 | 696905 | 2286636 | 604800
12| 1 715 [88803|2641925(18128396|19056960

(see also Sequence A60593 of [15]).
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Given a permutation ¢ of {1,...,n} and a sequence of signs € = (eq, ..., €,) € {£1}",
we consider the signed permutation o¢: i —> €;0(i) and set

Vy(t,z) = Z L0006 (i ¢ Z[Z, % Z].
(€1,...,€n) {1}

Corollary 8.3 The application o —> V4 (¢, z) is well-defined on spindle-equivalence
classes and satisfies
Vst z) = Vo’(%, Z)

where 6 (i) =n+ 1 — o (i) is a mirror spindle-permutation of o .

Proof of Proposition 8.1 The number v(c) is obviously invariant under circular
moves.

The compact surface X (&) is orientable if and only if Y 7_, €; € {£n} and > j_, € is
preserved under spindle-equivalence. Hence it is enough to show the invariance under
horizontal and vertical reflections of the number v(o) of vertices in the C W —complex
representing X (7).

This number v = v(&) can be computed graphically as follows: Represent the signed
permutation ¢ (i) of o by drawing n segments joining the points (/,0), i =1,...,n
to (|o(i)|, 1) as shown in Figure 13 for the signed permutation ¢ (1) = -2, 6(2) = 3,
o(3)=1.

(0-5’1)_,.--“"(‘1‘,'1) 151 @1 @51 (3,-‘1)"”-»__(3-571)
- - . —F
05.0) - (10 (150 2.0 (250 (.0 G5

Figure 13: Example for the computation of v(c)
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Add 2n + 2 additional points (0.5, 0), (1.5,0),...,(n+0.5,0) and (0.5, 1), (1.5, 1),
...,(n+0.5,1) by drawing all points at height y =0 or y = 1 which are at distance
0.5 from an endpoint of a segment [(i,0), (| (7)|, 1)]. Join (0.5,0),(n + 0.5,0) (re-
spectively (0.5, 1), (n+0.5,1)) by dotted arcs and join the points (i £0.5, 0),(|5 (/)| =+
€;0.5, 1) by dotted arcs with ¢; = % corresponding to the sign of the 7 th segment,
see Figure 13 for an example. This yields a 2—regular graph with vertices

(0.5,0), (1.5,0),...,(n+0.5,0),(0.5,1), (1.5, 1), ..., (n + 0.5, 1)

by considering all dotted arcs as edges. In the example of Figure 13, this graph has
two connected components with vertices

(0.5,0),(3.5,0),(1.5,1),(1.5,0), (2.5, 1)
and
(2.5,0),(3.5,1),(0.5,1).

The number of connected components of this graph (two for Figure 13) equals v(5).
This can be seen as follows: The interior of the polygons P, P’ correspond to the
half-planes y <0 and y > 1. Vertices of P, P’ correspond to the points

(0.5,0), (1.5,0),...,(n+0.5,0), (0.5, 1), (1.5,1),..., (n +0.5,1)

where the pairs of points (0.5, 0), (n+0.5,0) and (0.5, 1), (n+0.5, 1) have to be iden-
tified (achieved by additional arcs joining these points). The segments (7, 0), (o (i)[, 1)
represent glued edges with dotted arcs joining vertices identified under gluing.

Let us analyze the local situation around a block B of o. The (internal) dotted arcs
associated to lines of B connect the four boundary points adjacent to B in one of the
three ways depicted in Figure 14. The proof is now obvious since each of these three

situations is invariant under vertical and horizontal reflections. O
oL o) <R © I} [}
o ) o’ 0 <) ©

Figure 14: Three local situations around a block
We leave the easy proofs of Corollaries 8.2 and 8.3 to the reader.
Remark 8.4 Many similar invariants of spindle-permutations, up to spindle-equi-

valence, can be defined similarly by considering a set S of subsets of lines in & which
is defined in a topological way (for example triplets of lines of a given isotopy class,
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subsets of k lines defining a subspindle in a set of prescribed spindle-equivalence
classes, etc) and by considering all sign sequences (€q,...,€,) € {£1}" such that
{i | ¢, = —1} € S. Then, the corresponding sum 3" z¥() is of course well-defined
for spindles and thus for spindle-permutations, up to equivalence.

The following two questions are natural:

(1) Corollary 1.3 shows that the (complete) spindlegenus factorizes through switch-
ing classes associated to spindles. Can the spindlegenus (or some related invari-
ant) be extended to all switching classes?

(2) Isthere a natural extension of the invariant defined by the (complete) spindlegenus
to skew configurations which are not spindles?

A positive answer to Question (1) above yields such an extension but a solution to
Question (2) does perhaps not factorize through switching classes.
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