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Shapes of geodesic nets

ALEXANDER NABUTOVSKY

REGINA ROTMAN

Let M n be a closed Riemannian manifold of dimension n . In this paper we will
show that either the length of a shortest periodic geodesic on M n does not exceed
.nC1/d , where d is the diameter of M n or there exist infinitely many geometrically
distinct stationary closed geodesic nets on this manifold. We will also show that
either the length of a shortest periodic geodesic is, similarly, bounded in terms of
the volume of a manifold M n , or there exist infinitely many geometrically distinct
stationary closed geodesic nets on M n .

53C22, 53C23; 58E10, 58E35

Introduction

It has been a long-standing question in Riemannian geometry that originated with
H Poincare whether every closed manifold has infinitely many periodic geodesics.
Contributions to this question were made by W Klingenberg [8], and D Gromoll and
W Meyer [4], who discovered that, on a closed Riemannian manifold, there exist
infinitely many periodic geodesics if the space of parametrized curves on this manifold
has an unbounded sequence of betti numbers. Subsequently M Vigue-Poirrier and D
Sullivan showed in [14] showed that this condition is satisfied if and only if the rational
cohomology algebra of M requires at least two generators. In 1989 H-B Rademacher
showed that, generically, there are indeed infinitely many periodic geodesics on any
closed Riemannian manifold [11]. In 1992 it was shown by V Bangert [1] using the
work of J Franks [3] that there exist infinitely many periodic geodesics on a manifold
diffeomorphic to S2 . Later N Hingston found a lower bound for the number of
geodesics of length � x on a Riemannian 2–sphere [7].

On the other hand, for a manifold diffeomorphic to S3 , it is not known whether there
always exist more than one periodic geodesic.

The question is complicated by the fact that for some nonsymmetric Finsler metrics
on Sn , CPn , HPn and CaP2 only finitely many periodic geodesics do exist, as was
shown by A Katok [8]; see also Ziller [15]. From this example one can conclude that,
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in general, the topology of a manifold does not by itself guarantee an infinite number
of periodic geodesics.

Stationary geodesic nets can be viewed as a generalization of periodic geodesics. They
are critical points of the length/energy functional on the space of graphs immersed in a
manifold, similarly to periodic geodesics that are critical points of the above functionals
on the space of closed curves. That is, if � is a stationary geodesic net on M n , then
dlX;�

dt
.0/D 0, where X is any smooth vector field on M n , ˆX .t/ is the corresponding

1–parameter family of diffeomorphisms of M n , and lX ;�.t/D length.ˆX .t/.�//.

Every stationary geodesic net can be “made” into a stationary 1–cycle, if it is not
already one, by doubling the multiplicity of each edge. Stationary 1–cycles can be
considered as homological analogs of periodic geodesics.

Like periodic geodesics, two stationary geodesic nets are geometrically distinct if one
is not a multiple of another.

Conjecture A On any closed Riemannian manifold there exist infinitely many geo-
metrically distinct stationary geodesic nets.

Note that for a generic analytic Riemannian manifold the set of stationary geodesic
nets is countable (for the same reasons that the set of closed geodesics is countable).
Also, it seems that Morse-theoretic arguments do not help to conclude the existence of
infinitely many geometrically distinct stationary geodesic nets in the situations, when
they do not help to conclude the existence of infinitely many closed geodesics. For
example, if M n is homeomorphic to S3 , then a well-known theorem by F Almgren
implies that the space of 1–cycles on M n is homotopy equivalent to K.Z; 2/D CP1

and therefore does not have enough homology classes to conclude the existence of
infinitely many stationary 1–cycles. Moreover, there are virtually no results establishing
the existence of stationary geodesic nets that are not closed geodesics (or are formed
by several intersecting closed geodesics); but see Hass and Morgan [6]. All this makes
Conjecture A look as difficult for all practical purposes as the conjecture asserting the
existence of infinitely many closed geodesics (although the latter conjecture is formally
stronger). One of the objectives of the present paper is to indicate a possible approach
to Conjecture A.

Another, seemingly different, open question is that of the connection between the length
of a shortest periodic geodesic and other geometric parameters of the manifold. For
example, one can ask whether the length of a shortest closed geodesic can be uniformly
bounded in terms of the volume of a manifold (this question is due to M Gromov [5,

Geometry & Topology, Volume 11 (2007)



Shapes of geodesic nets 1227

page 135]) and whether the length of a shortest closed geodesic can be bounded in
terms of the diameter of a manifold. Here is our conjecture:

Conjecture B On every closed Riemannian manifold there exists a periodic geodesic
of length at most c.n/d , where d is the diameter of a manifold.

It is worth noting that there is no known counter-example to show that the length of a
shortest periodic geodesic is not, in fact, bounded by twice the diameter of a manifold.

Conjecture C [5] On every closed Riemannian manifold there exists a periodic
geodesic of length at most zc.n/ vol.M n/

1
n , where vol.M n/ is the volume of a manifold

M n .

0.1 Minimal geodesic nets

In this paper we will prove two theorems: one of them stating that either Conjecture A
or Conjecture B is satisfied for every closed Riemannian manifold M n , and the second
one stating that for a closed Riemannian manifold either Conjecture A or Conjecture C
always holds. Moreover, our techniques are purely topological and apply also in the
Finsler situation, even in situations when the set of distinct closed geodesics is known
to be finite. Further more, if the assertion of Conjecture B (or Conjecture C) does not
hold for a closed Riemannian manifold, then we demostrate the existence of infinitely
many geometrically distinct geodesic nets on M n , which are not periodic geodesics.

Minimal geodesic nets that result from the proofs of the theorems will be of a particular
type. Namely, they will be minimal (stationary) geodesic cages and geodesic flowers
formally defined below.

Definition 0.1 [12; 13]

(a) We define a minimal (or stationary) geodesic net � to be a (finite) graph with
edges enumerated by successive positive integer numbers 1; 2; 3; : : : immersed into a
Riemannian manifold M n that satisfies the following two conditions:

(1) each edge of � is a geodesic segment;

(2) the sum of unit vectors at each vertex tangent to the edges and directed from this
vertex equals to zero.

(b) If, in addition, all the vertices of � have even degrees then � is called a stationary
1–cycle.
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(a) Stationary �–graph

(b) Stationary figure 8
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Figure 1: Geodesic nets

(c) If a minimal geodesic net � has two distinct vertices joined by at most m segments
(counted with multiplicities) or if � is a minimal geodesic flower, that is, a net that
has one vertex and m or less geodesic loops based at that point, it is called a minimal
geodesic m–cage (or just a minimal geodesic cage) see Figure 1.

(d) A (not necessarily minimal or geodesic) immersion of a graph will be called a net.
Also, nets that consist of a vertex together with at most m (not necessarily geodesic)
loops based at that point will be referred to simply as flowers and nets that are made of
two vertices connected by at most m (not necessarily geodesic) segments or nets that
are m–flowers will be referred to as m–cages (or cages).

In this definition we allow a graph to have multiple edges between its vertices and to
have loops. This object is sometimes referred to as a multigraph. Some of the distinct
multiple edges can, in principle, be immersed by means of identical immersions. As the
result, the images of edges of � can have positive integer weights (greater than one).
Therefore it is convenient to introduce notions of the carrier of a geodesic net which is
defined as the set of curves in M n obtained as the images of edges of the multigraph,
support of a geodesic net, which is the union of all geodesics from its carrier, and
the multiplicity vector of a net, which is a vector with positive integer components
indicating the multiplicities of geodesics in the carrier of the net. In this definition we
completely disregard trivial edges (that is, edges mapped into constant curves). We do
not include them into the carrier, and do not take them into account when we define the
multiplicity vector. Two cages (or, more generally, nets) are geometrically distinct if
either their carriers do not coincide or their multiplicity vectors are linearly independent
(ie, are not (rational) multiples of each other). (See Remark 7 at the end of Section 2
for a discussion of this definition of geometrically distinct cages.)
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Figure 2: A non-degenerate stationary 4–cage and minimal geodesic 3–flower

Example 1 Obviously, a closed geodesic is a stationary 2–cage. It can also be
considered as a geodesic flower with one petal. Geodesic loops are minimal geodesic
cages if and only if they are periodic geodesics. A minimal � –graph will be an example
of a stationary 3–cage, and so will be a stationary figure 8. In the latter case two points
p and q coincide and the length of the third segment equals zero. Some examples of
stationary 4–cages can be found in Figure 2.

In [9] we proved analogs of Conjecture B and Conjecture C for integral 1–cycles. That
is we obtained diameter (and volume) estimates for the smallest length of a stationary
1–cycle.

In [10; 12] we obtained similar estimates for m–cages. Finally in [13], we obtained
similar estimates for geodesic flowers.

The main idea of the papers [10] and [12] can be summarized as follows. Let f W Sk �!

M n be a map of the standard k –sphere into M n . In the absense of (short) stationary
.kC1/–cages one can construct a homotopy between f and a sum of k –spheres in M n ,
each of which is obtained by a “filling” of a .kC 1/–cage in M n . Then each of these
k –spheres can be contracted to a point by contracting the corresponding .kC 1/–cage
to a point and filling the resulting cages by a k –sphere at every moment of the homotopy.
(In the absence of short stationary cages these fillings can be performed continuously
as a function of the parameter of the homotopy.) The .k C 1/–cages are contracted
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using “the cage shortening process” similar to the Birkhoff length shortening process
for closed curves, sometimes denoted as BCSP, (see [2] for the detailed description).
Note, that if one applies a length shortening process to a (non-degenerate) m–cage, it
is possible for it to degenerate into a flower. That is, the length of one of its edges can
become zero, and the two vertices will then coincide.

The idea we used in [13] is that we can define a weighted length functional on the
space of cages so that its gradient-like flow will “force” critical cages to degenerate
into geodesic flowers. In other words, it can be arranged so that a (non-degenerate)
stationary m–cage is not a critical point of the new functional.

Definition 0.2 [13]

(1) Let � be a (not necessarily geodesic) net with edges e1; :::; ei ; :::; ek . Then
L.�/D†k

iD1
mi length.ei/, where mi 2 ZC and length.ei/ is the length of the edge

ei will be called a weighted length functional with weights m1; :::;mk . (Note that it
corresponds to the regular length functional on the net, where each edge ei is taken
with a multiplicity mi .)

(2) A net N is critical with respect to a weighted length functional L with weights
mi ; i D 1; :::; k if for any one-parametric smooth flow of diffeomorphisms ˆt ; t D 0

is a critical point of �.t/ D L.ˆt .N //. It is equivalent to all edges being geodesic
segments combined with the following stationarity condition satisfied at every vertex of
N : the weighted sum of unit vectors tangent to edges of N at that vertex and directed
from it, equals to zero.

The new idea that we explore in this paper is that the weighted length functional can
be applied repeatedly with different weights, not with the goal of obtaining flowers,
but with a goal of obtaining distinct critical points.

Example 2 Let us consider the space of 3–cages and let � be an element of this
space. That is � is a graph with two vertices p and q and three edges e1; e2; e3 .
Define L1.�/D length.e1/C2 length.e2/C3 length.e3/ and L2.�/D 3 length.e1/C

4 length.e2/C 5 length.e3/. We claim that critical points of L1 and L2 are stationary
cages that are geometrically distinct, unless it is a periodic geodesic.

To prove this claim let us examine their critical points. First, let us look at the possible
critical points of L1 .

Note that a non-degenerate 3–cage can not be a critical point of L1 . Indeed, one of
the conditions for it to be critical is that v1 C 2v2 C 3v3 D 0, where v1; v2; v3 are
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unit vectors tangent to e1; e2; e3 respectively at p . Obviously, this condition can be
satisfied if and only if the cage is a periodic geodesic. Therefore, if � is critical then
either one of the ei ’s degenerates into a point and the cage degenerates either into a
“figure 8” or a periodic geodesic. In the case of a “figure 8”, the two loops can have the
following multiplicities: (a) 1 and 2; (b) 1 and 3; (c) 2 and 3.

Next, let us look at the critical points of L2 . Its critical points can be

(1) a cage that consists of two vertices and three edges with multiplicities 3; 4; 5, like
in the original cage;

(2) a “figure 8” with one of the following multiplicities (a) 3 and 4; (b) 3 and 5; (c)
4 and 5;

(3) a periodic geodesic.

Even in the case of “figure 8”, the stationary cages will be different, because the pair
of multiplicities are not multiples of each other. Thus, if the appearance of periodic
geodesics can be excluded, we will obtain different geodesic nets.

We then combine this idea with the techniques of [12] that will be explained in the next
section.

Note that although the critical points of the weighted length functionals are not neces-
sarily critical points of the length functional, one can make them into such by taking
some of the edges with appropriate integer weights. Observe that if a stationary cage
Cg that consists of k distinct edges e1; :::; ek is a critical point for the weighted length
functional with weights m1; :::;mk , then a stationary cage zCg that consists of the
geodesic edges ei taken with multiplicities mi , i D 1; :::; k will be a stationary cage,
that is a critical point for the regular length functional. This observation will be used
throughout the paper.

A similar construction of a new “weighted” net from a given net and a given weighted
length functional will be used many times below in this paper. Note that this construction
is somewhat ambiguous, because all edges of nets must be numbered by consecutive
integer numbers. So, when we replace an edge by, say, three geometrically identical
edges, then according to our defintion we need also to indicate what are the indices
of these edges in a numbering of all edges of the resulting graph. Yet we need to
know these indices only to be able to calculate the weighted length functionals on
the net. Since below we are not going to evaluate weighted length functionals on
geodesic nets obtained by this construction, this ambiguity will not create any problems.
To make everything rigorous, we could define also unordered geodesic nets, where
edges of the underlying graph are not numerated. Then for every weighted length
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functional and every (ordered) geodesic net we can construct an (unordered) geodesic
net by multiplying all edges of the given geodesic net by the weights prescribed by
the weighted length functional. The weighted lengths functionals are not defined for
such nets but the usual length functional is, of course, defined. But we do not want to
make our system of definitions too cumbersome. Therefore we will be neglecting the
distinction between ordered and unordered geodesic nets.

0.2 Main results

In the next section we will prove the following two theorems.

Theorem 0.3 Let M n be a closed Riemannian manifold of dimension n and of
diameter d . Let q D minif�i.M

n/ ¤ f0gg. Then either the length l of a shortest
closed geodesic is � .qC 1/d or there exist infinitely many stationary geodesic cages
on M n . Moreover, in the last case for every positive ı there exist infinitely many
stationary geodesic cages with carriers that consist of at most qC 1 geodesic segments
of total length � .qC 1/d C ı .

Remark 1 It will be clear from our proof of Theorem 0.3 that there exists an increasing
function C.k; n;x/, which can be explicitely calculated with the following property: If
l > .nC 1/d , then for every k there exist at least k distinct stationary geodesic cages
of length �C.k; n; d

l�.nC1/d
/d . (Of course, here we count the lengths of geodesics in

the carrier with multiplicities coming from the multiplicity vector. So, we are basically
saying that we are able to majorize the norm of the multiplicity vectors of the stationary
geodesic cages, and not only the total length of their carriers.) As a corollary, if l is
greater than or equal to, say, .nC2/d , then there exists xC .n; k/ such for every k there
exist k geometrically distinct stationary geodesic cages of length � xC .n; k/d . Our
proof will produce infinitely many stationary geodesic cages that not only satisfy this
length bound but also have carriers that consist of at most qC 1 geodesic segments.

Remark 2 There are no known counterexamples to the conjecture that the length
of a shortest closed geodesic is always � .qC 1/d (and even � 2d ). Morover, this
conjecture can turn out to be true even in the Finsler case.

Theorem 0.4 Let M n be a closed Riemannian manifold of dimension n and of volume
vol.M n/. Then either there exists a periodic geodesic of length � zc.n/ vol.M n/

1
n ,

or there exist infinitely many geometrically distinct minimal geodesic nets. If the
length of the shortest periodic geodesic is greater than zc.n/ vol.M n/

1
n , then for every

k there exists at least k geometrically distinct minimal geodesic nets of length �
zC .n; k/ vol.M n/

1
n . Here zc.n/ and zC .n; k/ are constants that can be explicitly written

down.
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Remark 3 It can be arranged using the methods introduced in [13] that nets that
appear in Theorems 0.3 and 0.4 would be stationary geodesic flowers. However, to
achieve that, the bounds on the length of a shortest periodic geodesic should be made
significantly worse (although, they still be of the form c.n/d and zc.n/ vol.M n/

1
n ).

See Remark 6 in Section 2 for a specific theorem in this direction.

In this section we will prove Theorem 0.3 in the case when q D 2. Note that when
q D 1, the length of a shortest closed geodesic is bounded above by 2d , thus Theorem
0.3 is trivially satisfied.

Proof of Theorem 0.3 for q=2 Let f W S2 �!M n be a non-contractible map from
a sphere endowed with a fine triangulation (the diameter of each simplex � ı ) into
M n . The proof will be done by contradiction. That is, assuming there is no periodic
geodesic of length � 3d and only finitely many geometrically distinct cages, we will
extend the map f to D3 triangulated as a cone over the triangulation on S2 , thus
reaching a contradiction.

The extension will be done as follows: it is trivial to extend f to the 0–, 1–, and
2–skeleta of D3 . We map the center of the disc, zp to an arbitrary point p 2M n ,
edges of the form Œ zp; zvi � to minimal geodesic segments denoted as Œp; vi � connecting
the point p with the vertex in the induced triangulation vi D f .zvi/ and, finally, we
map the 2–simplices of the form z�2

i D Œ zp; zvi1
; zvi2

� to the surface generated by a
length-decreasing homotopy connecting f .@z�2

i / and a point. Here we are using the
assumption that the length of a shortest periodic geodesic is bigger than 3d .

Extending to the 3–skeleton (see Figure 3)

To extend to the 3–skeleton we will use a trick used in [10; 12; 13], except we will
use it infinitely many times. The trick is the following. Let z�3

i D Œ zp; zvi1
; zvi2

; zvi3
� be

an arbitrary 3–simplex. Its boundary consists of four 2–simplices glued in an obvious
way. One of the simplices Œzvi1

; zvi2
; zvi3

� and consequently Œvi1
; vi2

; vi3
� is so small that

it can be treated as a point q . This assertion can be made more rigorous (see Remark
4). Let us consider the image of 1–skeleton of z�3

i . Assuming Œvi1
; vi2

; vi3
� is a point,

the image of the 1–skeleton consists of three edges that we will denote as e1; e2; e3

respectively, connecting p and q . This is a 3–cage. This 3–cage corresponds, of
course, to the 2–sphere f .@z�3

i / constructed from it by considering 3 of its digons and
contracting each pair to a point by BCSP, (see Figure 3 (a)). The idea running through
papers [10; 12; 13] is that if we can contract this cage to a point, then we can contract
f .@z�3

i / to a point as well.
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Figure 3: Extending to 3–skeleton

The new idea is that there are infinitely many ways we can try to contract this cage
to a point. If one of them works then we have suceeded in extending the map to any
3–simplex in the triangulation of D3 . If none of them works, then for each attempt we
get a new obstruction, which happens to be a stationary 3–cage. As with geodesics,
we should be careful that we, indeed, get geometrically distinct nets and not a multiple
of the same net.

First, let us explain why it suffices to contract the 3–cage to a point. As we would
like to extend our map to the 3–simplex, we want to construct a 3–disc that has
f .@z�3

i / as its boundary. This disc can be constructed as a 1–parameter family of
spheres S2

� ; 0 � � � 1 that starts with the original sphere f .@z�3
i / and ends with a

point (see Figure 3 (c)). This one parameter family of spheres is constructed as follows:
Let N� ; 0 � � � 1 be a 3–cage during some fixed deformation of the initial 3–cage
to a point (see Figure 3 (b)). We can consider three digons formed by .e1/� ; .e2/� ,
.e2/� ; .e3/� and .e3/� ; .e1/� . Note that, it is possible that one or two of the segments
have length zero. Each of these digons varies continuously with � . Moreover, each of
these digons can be contracted to a point without the length increase, assuming there
are no short geodesics, thus generating 2–discs. It is essential that those discs depend

Geometry & Topology, Volume 11 (2007)



Shapes of geodesic nets 1235

continuously on the initial digon. Next, at each time � we glue the boundaries of the
three discs that correspond to the three digons as in the boundary of the 3–simplex,
obtaining S2

� . Th fourth simplex in the boundary of the 3–simplex is shrunk to a point.
Note also, that if we succeed at contracting the net to a point, then S2

1
is also a point

and, thus, we have obtained a 3–disc.

Next, we would like to describe the many ways to contract a cage. They correspond
to many ways of assigning the multiplicity coefficients to the edges of the 3–cage
that result in geometrically distinct stationary geodesic nets. To every weighted length
functional L we can assign a process that decreases the value of L until it reaches a
critical point. This process is defined as follows: For a given cage consider a cage made
of the same geodesic segments, but with weights determined by the length funtional.
Apply the “usual” length decreasing process (described in [9; 10; 12; 13]) to this new
cage. Then we “forget” about the assigned weights at every moment of the constructed
homotopy. The resulting cages will form a homotopy of our initial case which can end
only at a critical point of the weighted length functional.

We, in fact, suggest a specific way of choosing the coefficients of the weighted length
functionals that we will be using to contract 3–cages. Namely, we choose weights as
m;mC 1;mC 2;m 2 f1; 3; 5; :::g for different values of m. We now would like to
note that the infinite number of ways of assigning coefficients does, indeed, lead to
infinite number of geometrically distinct critical poins and not just multiples of finitely
many geometrically distinct critical points.

First, note that during the deformation of the net one of the following three things can
happen:

(a) An edge can disappear Then the possible critical point will be a geodesic flower.
In fact, it will be a figure 8, of one of the following three types, depending on which edge
disappeared: (1) one petal has multiplicity m and the second petal has a multiplicity
.mC1/; (2) one petal has multiplicity m and the second one has a multiplicity .mC2/;
(3) one petal has multiplicity .mC1/ and the second petal has multiplicity .mC2/. The
question is for which different positive integers m and k the corresponding weighted
length functionals result in geometrically the same nets. Assume m> k . Then getting
the same net would mean that the following two equations have to be simultaneoulsy
satisfied:

m C x1 D ˛.k C y1/ and m C x2 D ˛.k C y2/, where ˛ is a positive integer,
x1;x2;y1;y2 2 f0; 1; 2g and x1 ¤ x2 , whereas y1 ¤ y2 .

Analysing this equations we come to the conclusion that the following are the only
non-trivial ways in which they can be satisfied by positive integers:
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(1) ˛ D 1;mD kC 1. This possibility can be excluded, once we assume that m; k

are odd integers.

(2) ˛ D 2;mD 2k or ˛ D 2;mD 2kC 2. This possibility is also excluded when m

is odd.

Thus, in the case of disappearence of an edge, our method does, indeed produce distinct
cages.

Note, it is possible that after one edges disappears, the remaining two petals merge, but
the only stationary geodesic net of this type would be a short periodic geodesic.

(b) Two edges disappear In that case the resulting stationary cage can only be a
periodic geodesic. Its length is at most mdC.mC1/dC.mC2/d

m
D3dC3d

m
. As m becomes

large, this bound approaches 3d . This calculation has the following implication:
Assume that the weighted cage shortening process gets stuck at a critical point that is
a non-trivial periodic geodesic for infinitely many of the considered weighted length
functionals. Then the infimum of lengths of these periodic geodesics does not exceed
3d .

(c) None of the edges disappear In that case one can easily see that the stationary
points must be different for different integers.

1 The scheme of the proofs of Theorems 0.3 and 0.4

The rough scheme of the proof of Theorem 0.3 goes as follows. We begin with a
non-contractible map of a sphere Sq �!M n of a smallest possible dimension to a
manifold M n . Assuming the conclusion of Theorem 0.3 is not satisfied we will extend
the map to a disc, thus reaching a contradiction. The extension process has a structure
of R–tree. Let us describe it in more detail (see Figure 4).

Step 1 First, let us note that it is trivial to extend the map to 0–, 1– and 2–skeleta
of DqC1 . It will be done exactly as in the case of q D 2 with which we dealt in the
previous section. The only assumption that we will need to use is that there are no
“short” periodic geodesics on M n .

Step 2 In the previous section we also dealt with extending to the 3–skeleton. Recall
that we found infinitely many ways of extending to the 3–skeleton. They correspond to
infinitely many weighted length functionals, L3.m3

j /, on the space of 3–cages, where
fm3

j g is a sequence of natural numbers. Note that for every j L3.m3
j / is defined by
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Extending to the 1–skeleton

Extending to the 2–skeleton

Extending to the 3–skeleton

Extending to the 4–skeleton

Moving 3–cages

Moving 4–cages

: : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : :

Figure 4: The scheme of the proof

three weights. We prefer to write these weights in the form m3
j C ci ; i D 1; 2; 3. We

have demonstrated above that we can take m3
j D 2j C 1 and ci D i � 1.

Observe that either the contraction of three cages corresponding to L3.m3
j /, indeed,

leads to extension to the 3–skeleton, or it stops at a critical point of L3.m3
j /. We can

assume that there are only finitely many critical points of functionals L3.m3
j / that are

not periodic geodesics, or we are done. This means that for most choices of m3
j the

corresponding weighted length functional does not have critical points corresponding
to cages that are not periodic geodesics. We are going to consider only these weighted
length functionals. Further, if our extension attempt fails, it must fail at a periodic
geodesic of length � 3dC3d=mC ". If the extension attempts fail for infinitely many
weighted length functionals, we obtain a periodic geodesic of length � 3d . Therefore,
choosing a cofinite subset of the considered set of weighted length functionals we can
assume that all our attempts to contract each of the considered 3–cages to a point using
one of the considered weighted length functional are successful.
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Let us represent every such weighted length functional (regarded as a way to extend the
considered map to the 3–skeleton) by a branch of the tree. There are infinitely many
of such branches.

Step 3 Let us consider a particular extension to the 3–skeleton, let’s say, L3.m3
�/.

We will now extend the previous map to the 4–skeleton. Likewise, there will be
infinitely many attempts, corresponding to different ways of contracting 4–cages
in accordance with different weighted length functionals L4.m4

j /, where fm4
j g is a

sequence of natural numbers. As before, every weighted length functional L determines
the following procedure of contracting 4–cages: Multiply all segments of a considered
4–cage by weights of L. Apply the cage shortening process to the resulting weighted
4–cage. Then “forget” about the weights that came from L obtaining a homotopy of
“unweighted” cages.

The weights of L4.m4
j / will be of the form m4

j Cc1;m
4
j Cc2;m

4
j Cc3;m

4
j Cc4 . (See

Section 2 for details how exactly we choose values of m4
j and ci .) Those attempts will

be successful, unless L4.m4
j / has a critical point. We are yet to show that different

weighted length functionals correspond to different critical points unless these critical
points are (possibly trivial) closed geodesics. We will also show that if the extension
process for infinitely many of these weighted length functionals get stuck at a non-
trivial periodic geodesics, then the infimum of lengths of these periodic geodesics
cannot exceed .4C 1/d . These two facts together imply that either the assertion of
the theorem is true, or infinitely many of these contraction attempts will be successful
for all considered 4–cages. Each successful attempt to contract a 4–cage corresponds
to a 4–disc “filling” this cage as follows. Consider a 1–parameter family of 4–cages
Cg4

� ; � 2 Œ0; 1� that starts with our cage and ends with a point. At time � D 0 it is a
1–skeleton of a 3–sphere S3

0
. We can construct a 1–parameter family of 3–spheres

that begins with S3
0

and ends with a point. This family will generate a disc. Now each
sphere S3

� is constructed from four 3–discs by gluing them as in the boundary of the
four-simplex, but keeping in mind that the fifth disc is simply a point. 3–discs are
constructed exactly as in Step 2 (using L3.m3

�/). That is, we consider four 3–cages
obtained from Cg4

� , by forgetting one of the edges, to each of the triplets we apply
the weighted length shorteing process associated with L3.m�

3
/, etc. Step 2 is, thus,

repeated at each � giving the process the structure of an R–tree.

We can proceed as above until we extend to the .qC 1/–skeleton of DqC1 , reaching a
contradiction.

Here are some principles on which the proof is based:
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Principle 1 Consider a non-contractible map f W Sq �!M n . The infinitely many
distinct geodesic nets correspond to infinitely many attempts of extending this map to
DqC1 . Of course, all of these attempts should fail. These geodesic nets are obstructions
to extensions. They are the same only if they all happen to be the same “short” periodic
geodesic. The last assertion is not automatic. The weights should be chosen very
carefully, as it is described below, to make it true.

Principle 2 The infinitely many extension attempts correspond to infinitely many
different weighted length functionals, which in its turn correspond to infinitely many
ways of contracting k –cages to a point with a controlled total length. Each of these
ways of contracting 1–cages leads to a 1–parameter family of cages, that begins with
the original cage and ends with a point. For every weighted length functional on the
space of i –cages we assign the following weighted length decreasing process on the
same space: For a given i –cage consider the weighted i –cage, where all edges acquire
weights coming from the definition of the weighted length functional. Apply the “usual”
length decreasing process (see Section 4) to this weighted i –cage obtaining a homotopy
that ends at a (possibly trivial) critical point of the (usual) length functional. Then we
drop the assigned weights, and obtain a homotopy in the space of i –cages that starts
from the original i –cage. The value of the weighted length functional decreases along
trajectories of this homotopy. The homotopy ends at a (possibly trivial) critical point
of the weighted length functional.

Principle 3 For every 1–parameter family of k –cages described in 2 there is a k –disc
that “fills” it. If not, we would either obtained infinitely many geometrically distinct
geodesic nets or a short periodic geodesic on the k th step of our inductive construction.
This allows us to extend to the k –skeleton, k � q . This k –disk is obtained from
.k � 1/–spheres filling individual k –cages in the considered 1–parametric family.
These .k�1/–spheres are obtained by glueing .k�1/–discs fillings .k�1/–subcages
of the k –cages.

Principle 4 Discs are constructed from spheres (of one dimension smaller), spheres are
constructed from discs (of the same dimension). A k –disc is constructed by producing
a 1–parameter family of .k � 1/–spheres that start with the original sphere and end
with a point. This family of spheres is created by contracting the original k –cage
to a point (using an assumption that there is no “small” geodesic cages) and at each
time constructing a .k � 1/–sphere, as it was discussed before. A sphere is obtained
by gluing discs, just as we glue .k � 1/–dimensional simplices in the boundary of
a k –simplex to obtain a sphere (however, since one of those simplices is small, we
treat it as a point). These discs are obtained from .k � 1/–cages. For example, when
we extend to 3–skeleton (see Figure 5), three discs are obtained from 3–cages as one
parameter family of 2–spheres. 2–spheres are obtained by gluing three 2–discs, that
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are constructed by applying the BCSP to the three digons obtained at each �; � 2 Œ0; 1�
from a 3–cage as its 2–subcages.

Principle 5 Continuity is important. So, after we have extended to k –skeleton, using,
let’s say, the cage shortening process associated with Lk.mk

j /, every time we have to
“move” a k –cage, we have to use the same cage shortening process. Thus, from each
“live” m3

j –branch there are growing infinitely many m4
j –branches. Also from each

“live” m4
j –branch there are growing infinitely many m5

j –branches, etc. Here we also
use a fact, that in the absence of minimal objects those spheres will change continuously.
This proof uses a length shortening process for k –cages, which is an adaptation of a
general length shortening process introduced in [9]. A simplified version is also used
in [10; 12; 13]. For the sake of completeness we discuss how to adapt the process of
[9] to the case of k –cages in Section 2.

Extending to the 3–skeleton

Moving 3–cages

Let us look more closely at how moving 3–cages leads
to extending to the 3–skeleton.

While we are moving a 3–cage, we continuously
contract each of its 2–subcages.

Figure 5: The scheme of the proof

Theorem 0.3 will be proved in Section 2. In Section 3 we will prove Theorem 0.4.
The proof is based on the combination of the ideas from the proof of Theorem 0.3
and the idea by M Gromov from [5] involving filling M n by a polyhedron W nC1 in
L1.M n/, attempting to extend the identity map on M n to W nC1 and obtaining a
desired extremal object (in our case a geodesic net) as an obstruction to this extension.
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2 The proof of Theorem 0.3

Lemma 2.1 (a) Let M n be a closed Riemannian manifold of dimension n. There
exist infinitely many different weighted length functionals Lk.mk

j / on the space of
k –cages, where mk

j are natural numbers, and j D 0; 1; 2; ::: , with the following
properties:

(1) Consider two critical points of two distinct weighted length functionals from the
considered sequence. Assume that the support of at least one of these critical points
is not a periodic geodesic. Multiply the edges of these critical points by the weights
of the corresponding weighted length functionals to obtain two critical points of the

“usual" length functional. Then these two critical points of the length functional are
geometrically distinct stationary geodesic cages.

(2) The weights of Lk.mk
j / are equal to mk

j Cc1; :::;m
k
j Cck for appropriately chosen

numbers c1; :::; ck . More specifically, one can take ci D k2i ; i D 1; :::; k and fmk
j g
1
jD1

a cofinite subsequence of the sequence f.1C 2k4kC3/j g1
jD1

.

(b) Let Lk.mk
j / denote the weighted length functionals introduced in part (a) of the

lemma, and d denotes the diameter of M n . Assume that Lk.mk
j / has a critical point

c , such that Lk.mj /.c/� .†
k
iDiciCkmk

j /d . Then the length of the support of c does

not exceed kd C
†k

iD1
ci

mk
j

d D .kCO. 1

mk
j

//d D kd C o.1/, as j �!1.

Proof (a) Consider the weighted length functional Lk.mk
j / with weights .mk

j C

c1; :::;m
k
j C ck/, where ci is a natural number. We would like to find a sequence

fmk
j g
1
jD0

and numbers ci , such that the corresponding functionals have different
critical points unless they are closed geodesics.

Let us note that during the length shortening process one or both of the following two
things can happen: (1) two or more edges can become one; (2) one or more edges can
shrink to a point. In the later case, the cage will degenerate into a flower.

Now let us consider two functionals Lk.�/ and Lk.m/, where mDmk
j1

and �Dmk
j2

for some distinct j1 and j2 . We can also assume that m< �. Suppose that two critical
points of the length functional that are not geometrically distinct arise from critical
points of Lk.�/ and Lk.m/. Let us denote the edges forming the carriers of these
critical points of the length functional by e1; :::; es , where s � k .

Let ai�C di denote the multiplicity of ei when we regard it as an edge in the critical
cage corresponding to Lk.�/, and bimCfi the multiplicity of ei when regarded as an
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edge in the critical cage corresponding to Lk.m/, i D 1; :::; s . These notations imply
that ai and bi are less than or equal to k , di is the sum of some ai distinct numbers
from the set fc1; :::; ckg and fi is the sum of some bi distinct numbers from the same
set. Note that if the crtitical net is not a closed geodesic, then s � 2. The condition that
the critical points of the length functional corresponding to Lk.m/ and Lk.�/ are not
geometrically distinct means that the multiplicities satisfy the following s equations:

ai�C di D ˛.bimCfi/; i D 1; :::; s

where ˛ is a positive rational proportionality constant. Let us take a look at the first
two such equations. The first one implies that � D ˛.b1mCf1/�d1

a1
. Combined with

the second equation we will have ˛.a2.b1mC f1/� a1.b2mC f2//D a2d1� a1d2 ,
where ai ; bi ; fi ; di ;m; � are all integers. Unless a2.b1mCf1/� a1.b2mCf2/D 0,
˛ D a2d1�a1d2

a2.b1mCf1/�a1.b2mCf2/
� maxfa2d1; a1d2g � k2 maxk

iD1
ci . Therefore, � �

k2 maxk
iD1

ci.kmC k maxk
iD1

ci/� 2k3.maxk
iD1

ci/
2m.

To ensure that this case is impossible we can define the sequence fmk
j g
1
jD1

as an

arbitrary cofinite subsequence of the sequence f.1C 2k3.maxk
iD1

ci/
2/j g1

jD1
.

Now let us examine the case when a2.b1mCf1/� a1.b2mCf2/D 0. This equation
has more than one solution m.a1; a2; b1; b2; f1; f2/ if and only if f1 D

a1f2

a2
and

b1 D
a1b2

a2
. We claim that we can easily find coefficients c1; ::; ck , so that it never

happens. Recall that ai and bi are just number of different edges merging into the
considered edge. The numbers f1 and f2 are sums of cj components of the weights
of the merging edges. Therefore, let c1 D k2; :::; ci D k2i ; :::; ck D k2k . Without loss
of generality, assume that b2 > b1 . Then f2 > f1 . Note that b2

b1
� k . On the other

hand, let us examine f2

f1
. For some r � k f2

f1
> k2r

.k�1/k2.r�1/ > k . Therefore, in such a

case it cannot happen that f2

f1
D

b2

b1
. Thus, for chosen c1; :::; ck , the total number of all

solutions m of a2.b1mCf1/� a1.b2mCf2/D 0 does not exceed the number of all
possible six tuples .a1; a2; b1; b2; f1; f2/, which does not exceed k224k . Therefore,
for every k and for all, but finitely many values of j mk

j D .1C2k4kC3/j correspond
to geometrically distinct critical nets. So, there exists a cofinite subsequence mk

j of the
sequence f.1C 2k4kC3/j g1

jD1
satsfying the conditions of Lemma 2.1 (a).

(b) Indeed, if a value of Lk.mk
j / at one of its critical points is equal to x , then the

length of the underlying (unweighted) k –cage does not exceed x

mk
j
Cc1

, whence the

assertion of (b) immediately follows.

Proof of Theorem 0.3 The theorem will be proved by contradiction. Let M n be
a closed Riemannian manifold, such that �1.M

n/ D ::: D �q�1.M
n/ D f0g and
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�q.M
n/¤ f0g. Let f W Sq �!M n be a non-contractible map of a finely triangulated

sphere to M n . Assuming there are no “small” periodic geodesics and only finetely
many stationary geodesic nets, we will extend this map to the disc DqC1 of dimension
qC 1, thus reaching a contradiction. To construct this extension, we will triangulate
the disc as the cone over the chosen triangulation of the sphere. The procedure will
then be inductive on skeleta of DqC1 . To begin with, the center of the disc will be
mapped to an arbitrary point in M n and the edges will be mapped to minimal geodesic
segments that connect this point with corresponding vertices of the triangulation of the
image sphere. Finally, to extend to the 2–skeleton, we will consider simplices of the
form z�2

i . The boundary is mapped to a closed curve of length � 2d C ı . As there are
no short periodic geodesics, it can be contracted to a point using the regular Birkhoff
curve shortening process. We will use the disc generated by this homotopy to extend
to z�2

i .

The rest of the extension procedure uses two ideas:

(1) “Filling” k –cages by k –discs for all values of k � qC 1, which is an inductive
bootstrap procedure similar to the one used in [12; 13]: Assuming that we have extended
our map to the k –skeleton, we will explain how to extend it to the .kC1/–skeleton of
DqC1 . In order to do that we will extend f to each .kC 1/–dimensional simplex of
DqC1 , and in order to do that it will be necessary to “fill” .kC 1/–cages by .kC 1/–
dimensional discs. Note that from the previous step of the induction we already know
how to “fill” .kC 1/–cages by k –spheres.

To explain the last assertion consider the image of the boundary of the above simplex.
It consists of kC 2 k –dimensional simplices, one of which is so small that it can be
treated as a point (see Remark 4). Here the idea is that we can contract this simplex to a
point over itself, reducing our situation to the situation, where the simplex is treated as
a point. The remaining kC 1 k –simplices were already obtained during the previous
step of the extension process. Thus, the inductive step of the extension reduces to
contracting k –spheres “filling” k –cages.

(2) One basic idea for contracting these k –spheres is that in the absence of infinitely
many stationary geodesic nets and short periodic geodesics, there is a homotopy
connecting the cage with a point. Because of the continuity of the filling as a function
of the contracted cage, the k –sphere filling the cage also contracts to a point. Here are
the details of our construction.

Suppose that we were able to extend the map f W Sq�!M n to the k –skeleton of DqC1

proceeding as in the previous step of the induction process. In fact, there are infinitely
many such extensions, corresponding to infinitely many weighted length functionals
that were used for this purpose. Because of our construction and assumptions, an
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application of the weighted length shortening process to any k –cage with support of
total length � kd (in fact � .q C 1/d ) contracts this k –cage to a point for any of
these functionals . Moreover, the contracting homotopy will depend continuously on
the k –cage that is being contracted. Now we can just fix one of such weighted length
functionals, Lk . We can assume that similar weighted length functionals Li on spaces
of i –cages were already fixed for all i < k .

Our choice of the finite sequence of weighted length functionals Li corresponds to one
particular extension of f to the k –skeleton of the chosen triangulation of DqC1 . We
will extend this extension to the .kC 1/–skeleton. (This can be done also in infinitely
many distinct ways.) That will be done as follows: let z�kC1

i be a kC1–simplex in the
triangulation of DqC1 . Consider a .kC 1/–cage Cg that corresponds to the image of
1–skeleton of this simplex. Apply a weighted length shortening process LkC1.mkC1

j /

for mkC1
j and ci constructed as in Lemma 2.1. Recall that we assumed that there are

no non-trivial periodic closed geodesics of length � .qC1/d , and there are only finitely
many geometrically distinct stationary 1–cycles. Lemma 2.1 implies that infinitely
many of such length-shortening processes will lead to a homotopy that contracts every
.kC 1/–cage of length � .kC 1/d (and even of length � .qC 1/d ) to a point. This
homotopy will be a continuous function of the initial .kC 1/–cage. We can choose
one of the corresponding weighted length functionals LkC1.mkC1

j / to be LkC1 .

Consider the weighted length shortening process determined by LkC1 . During this
process a .k C 1/–cage (of length � .k C 1/d ) is contracted to a point along a 1–
parameter family of .kC1/–cages Cg� , � 2 Œ0; 1� of smaller weighted length. We can
now construct a 1–parameter family of spheres Sk

� of dimension k that starts with the
image of the boundary of the given simplex and ends with a point, and thus generates a
.kC 1/–dimensional disc. Spheres are constructed by the procedure of “filling” cages
Cg� at each � described in [12]. That is, given a .k C 1/–cage Cg� , consider its
k C 1 “k –subcages”, ie, k –tuples .e1/� ; :::; .yej /� ; :::; .ekC1/� obtained by ignoring
one of the curves. By induction assumption, each of these subcages can be “filled”
by discs of dimension k . (The base of induction is proved by contracting 2–cages,
ie, closed curves, by the usual Birkhoff curve shortening process. At this point we
are using the assumption that there are no short periodic geodesics. More precisely,
Lemma 2.1 implies that we need to contract digons of length � .kC 1/d CO. 1

m
j

kC1

/.

If we get stuck at a closed geodesic for an infinite sequence of values of j , we can
choose a subsequence of the sequence of these closed geodesics converging to a closed
geodesic of length � .kC1/d � .qC1/d obtaining a contradiction.) The weights that
we are using in order to fill k –cages (and, more generally, .k � i/–cages) are already
fixed on the previous steps of the filling procedure. These choices are coded by a path
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from the root (depicted at the top) of the tree on Figure 4 to the vertex of this tree that
we are considering at the moment. Because of our previous choices of the weighted
length functionals L3;L4 , etc. we can be sure that we are not going to get stuck at
non-trivial critical points of these functionals.

We then glue the resulting .kC1/ .kC1/–discs as in the boundary of a .kC1/–simplex
to obtain Sk

� . (We take the .kC2/nd k –disc in the boundary of a .kC1/–simplex to
be trivial.)

It is important to note that the just described process of “filling” of .kC1/–cages Cg�
by k –spheres is continuous with respect to Cg� (and therefore with respect to � ). The
resulting one-parameter family of k –spheres generates the desired .kC1/–dimensional
disc that can be used to extend f . (Indeed, since Cg1 is the trivial .kC 1/–cage, the
corresponding k –sphere is also trivial.)

Remark 4 Let us consider a sphere in the manifold M n obtained as follows: Take a
small 2–simplex Œvi1

; vi2
; vi3

� and a point p , connect p with each vij by a minimal
geodesic segment ej ; j D 1; 2; 3, and finally, contract each of the closed curves ej C

Œvij ; vij mod 3C1
�� ej mod 3C1 , where j D 1; 2; 3 to a point by a length non-increasing

homotopy (see Figure 6 (a)). (Of course, here we use the assumption that there are no
closed geodesics of length � 2d C ", where " can be as large as d .) In the proof of
Theorem 0.3 we claimed that the simplex Œvi1

; vi2
; vi3

� can be treated a point q . Here
is a formal justification of this claim:

Choose a point q 2 Œvi1
; vi2

; vi3
�. Consider the boundary @Œvi1

; vi2
; vi3

�D Œvi2
; vi3

��

Œvi1
; vi3

�C Œvi1
; vi2

�. Denote each of the segments Œvij ; vij mod 3C1
� as sj ; j D 1; 2; 3.

Without any loss of generality, we can assume that s1Cs2Cs3 can be contracted to q in
Œvi1

; vi2
; vi3

� without the length increase. In addition, we can assume that the length of a
trajectory, �j , of vij during this homotopy does not exceed a small number ".ı/, where
".ı/ �! 0 as ı �! 0. Denote the images of sj under this homotopy at the time t as
sj t , and the trajectories of vij traced when the time varies from 0 to t , (t � 1), as �j t

For every t 2 Œ0; 1� we now can consider curves ejC�j tCsj t��j mod 3C1t�ej mod 3C1

of length � 2dC2".ı/C3ı (see Figure 6 (b), (c)). Each of those curves is contractible
to a point without the length increase, assuming there are no geodesics of length � 3d .
Moreover, at t D 1 we will obtain a sphere † that is constructed as follows: take
two points p and q and connect them with three segments e�j D ej C �j , j D 1; 2; 3.
Then take three digons e�j � e�

j mod 3C1
and contract them to the point by the length

decreasing homotopy, (see Figure 6 (d)). We already demonstrated that the initial
2–sphere and the final 2–sphere, †, are homotopic. Therefore, if † is contractible,
then our initial 2–sphere is contractible as well. The same argument straightforwardly
generalizes for higher dimensions.
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Œvi1 ; vi2 ; vi3 �

(a) (b)

(c) (d)

vi1

vi2

vi3

e1 e3 e2

p

p

p

p

q

q

q

e�
1

e�
3

e�
2

�1

�3

�2

Figure 6: A small 2–simplex can be ignored

Remark 5 Note that if l>.kC1/d , then we can choose explicit values mk
j sufficiently

large to ensure that our curve and cage shortening homotopies never get stuck at non-
trivial periodic geodesics. This observation easily implies Remark 1 after Theorem
0.3.

Remark 6 As we mentioned in the introduction, in the absence of short periodic
geodesic there exists infinitely many stationary geodesic flowers. More precisely:

Theorem 2.2 Let M n be a closed Riemannian manifold of diameter d . Let q D

minif�i.M
n/ 6D 0g. Then either there exists a non-trivial periodic geodesic on M n of

length � 2qd , or there exist infinitely many stationary geodesic flowers with carriers
consisting of at most q geodesic loops emanating from the same point. In the second
case for every positive ı one can choose these stationary geodesic flowers so that the
length of their support is � 2qd C ı .

Corollary 2.3 Assume that M n is a simply-connected closed Riemannian manifold
of diameter d with a non-trivial second homology group. Then either there exists a
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non-trivial periodic geodesic on M n of length � 4d , or for every positive ı there exist
infinitely many stationary geodesic flowers with carriers consisting of two geodesic
loops emanating from the same point. In the second case for every positive ı one can
choose these stationary geodesic flowers so that the length of their support is � 4d C ı .

Idea of the proof of Theorem 2.2 We combine our proof of Theorem 0.3 with the
main idea of [13]. Instead of defining weighted length functionals Lk.mk

j / as in
Lemma 2.1 we define them as follows: The weights of the first .k � 1/ edges as the
same as in Lemma 2.1, and the weight of the last edge is equal to the sum of the
first .k � 1/ weights. It is easy to see that for k > 2 Lemma 2.1 will remain true for
these functionals. Then we can proceed exactly as in the proof of Theorem 0.3. Our
choice of weights implies that every stationary point of these functionals must be a
.k � 1/–flower, since the k th edge must collapse to a point. (Otherwise, there is no
way to balance the weighted sum of the unit tangent vectors to the edges of the cage at
its vertices.) The constant 2q (in 2qd ) appears as the limit of the ratio of the sum of
the weights of LqC1.m

qC1
j / to the smallest of these weights, as j �!1.

Remark 7 Note that our definition of geometrically distinct stationary cages is weaker
than the requirement that their supports are distinct sets. (Two stationary geodesic nets
could have identical supports and even identical carriers but non-collinear multiplicity
vectors.) Yet an easy argument shows that for almost all analytic Riemannian metrics
on an underlying manifold our definition of geometrically distinct stationary cages is
equivalent to the condition that their supports are distinct providing that two stationary
geodesic cages that are being compared are not periodic geodesics. (As usual, “almost
all” means that the considered set of metrics is the complement to a countable union of
nowhere dense sets.) So, for almost all analytic Riemannian metrics we obtain either
a short periodic geodesic or infinitely many geodesic cages as in Theorem 0.3 (or in
Theorem 0.4) which have distinct supports. In the remaining (exceptional) cases we
obtain either a short periodic geodesic or an infinite sequence of stationary geodesic
cages as in Theorem 0.3 (or Theorem 2.2) with identical carriers but pairwise non-
collinear multiplicity vectors. The last situation obviously cannot occur if the carrier
consists of just two geodesic loops emanating from the same point. Therefore in the
situation of Corollary 2.3 we always obtain either a periodic geodesic of length � 4d

or infinitely many stationary geodesic flowers supported at distinct 2–flowers of length
� 4d C ı .

The proof of Corollary 2.3 easily implies that an infinite sequence of these 2–flowers
will converge to a stationary 2–flower of length � 4d . (The existence of a stationary
2–flower of length � 4d in the considered situation is already known [9]. Similarly,
the existence of stationary cages and flowers satisfying the same length bounds as the
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stationary cages and flowers that could be obtained by a similar limit construction in
the general situation had been proven in [12; 13]. Yet this observation suggests the
following question: Is it possible to obtain infinitely many stationary flowers supported
at “short” 2–flowers by perturbing one “short” stationary geodesic 2–flower? (And
in the case of success one could try to reprove our main results in the general case
similarly perturbing a non-trivial stationary cage or flower obtained in [12; 13]. Such a
proof of our main results would be conceptually simpler, and would produce infinitely
many stationary geodesic cages that are not merely geometrically distinct but have
distinct supports.) Yet this idea encounters significant (and maybe even unsurmountable)
difficulties. The first of them is that the vertex of a stationary 2–flower can be conjugate
to itself along one of the geodesic loops forming the 2–flower. As the result, small
perturbation of the vertex of the 2–flower do not always extend to perturbations of
both geodesic loops.

3 The proof of Theorem 0.4

Theorem 0.4 is proved by similar methods. However, we will need the definition of the
Filling Radius below originally defined by M Gromov in [5].

Definition 3.1 [5] Let M n be an abstract manifold and let X D L1.M n/ be
the Banach space of bounded Borel functions f on M n . Let M n be isometrically
imbedded in X , where the imbedding of M n into X is the map that assigns to each
point p of M n the distance function p �! fp D d.p; q/. Then the filling radius
FillRad M n is the infimum of " > 0, such that M n bounds in the "–neighborhood
N".M

n/, ie, homomorphism Hn.M
n/ �!Hn.N".M

n// vanishes, where Hn.M
n/

denotes the singular homology group of dimension n with coefficients in Z, when M

is orientable, and with coefficients in Z2 , when M is not orientable.

Alternatively, one can give a different definition of the filling radius of M n by defining
first FillRad.M n � X /, the filling radius of M n isometrically imbedded into some
metric space X , as the smallest ", such that M n bounds in the "–neighborhood of
M n and then taking the infimum over all of the isometric imbeddings. It was shown
by M Katz that FillRad M n �

d
3

, where d is the diameter of M n (see [8]).

In [5] M Gromov had found an estimate for the filling radius of a closed Riemannian
manifold in terms of the volume of this manifold.

Theorem 3.2 [5] Let M n be a closed connected Riemannian manifold. Then
FillRad M n � gc.n/.vol.M n//

1
n , where gc.n/D .nC 1/nn.nC 1/!

1
2 and vol.M n/

denotes the volume of M n .
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In this section we will prove the following:

Theorem 3.3 Let M n be a closed Riemannian manifold. Then either there exists
a periodic geodesic on M n of length � a.n/FillRad M n or there exist infinitely
many geometrically distinct geodesic nets. Assume that the length l of the short-
est periodic geodesic is greater than a.n/FillRad.M n/. There exists a function
A.n; k/; k 2 f1; 2; 3; :::g, such that for every k there exist k geometrically distinct
stationary geodesic nets of length � A.n; k/FillRad M n . Moreover, one can write
explicit formulae for a.n/ and A.n; k/.

Theorem 3.3 combined with Theorem 3.2 leads to the volume bound in Theorem 0.4.

Proof of Theorem 0.4 The proof of Theorem 3.3 is based on the combination of the
ideas from the proof of Theorem 0.3 and an adaptation of the trick by M Gromov from
[5] involving filling M n by a polyhedron W nC1 in L1.M n/, attempting to extend
the identity map on M n to W nC1 and otaining a short periodic geodesic or infinitely
many geometrically distinct stationary geodesic nets as an obstruction to this extension.

The details of the proof of Theorem 3.3 are very similar to that of Theorem 0.3, except
that instead of contracting k –cages, we will be contracting 1–skeletons of simplices.
The spheres and discs are then built out of those 1–skeletons in a similar fashion. Also,
for each k the weighted length functionals applied to 1–skeletal net will be L�

k

.mk
j /

with weights mk
j C ck

1
; :::;mk

j C ck
k.kC1/

2

, where the weight mk
j C ck

i corresponds to

an edge ei of the 1–skeleton of the k –dimensional simplex �k . One can then prove a
lemma similar to Lemma 2.1 that one can find constants ck

i and a sequence mk
j , such

that each such length functional has geometrically distinct critical points, unless it is a
periodic geodesic.

Here are some of the details of the extension process. Suppose the conclusion of
Theorem 0.4 is not satisfied, that is there is only finitely many geometrically distinct
minimal geodesic nets and no “short” periodic geodesics.

Definition 3.1 implies M n bounds a polyhedron W in the .FillRad M nCı/–neighbor-
hood of M n (see [5]). That is, M n D @W , when M n is orientable and M n D @W

mod 2, when M n is not orientable. Triangulate W and M n so that the diameter of
every simplex in this triangulation is smaller than some small ı > 0 and so that the
triangulation of M n extends the triangulation of W . We will extend the identity map
idW M n �!M n to W , thus reaching a contradiction.

The extension procedure will be inductive to skeleta of W . It is different from the
extension procedure employed in the proof of Theorem 0.3 only in the initial stages of
extending to the 0; 1–skeleta of W .
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The 0; 1–skeleta
Let us begin with the 0–skeleton of W . To each vertex zwi 2W we will assign a vertex
wi 2M n , that is closest to zwi . As the result d. zwi ; wi/ � FillRad M nC ı . Next, to
extend to the 1–skeleton, we will assign to each edge of the form Œ zwi ; zwj ��W nM n a
minimal geodesic segment Œwi ; wj � connecting wi and wj of length � 2 FillRad M nC

3ı .

The 2–skeleton
Now, let us extend to the 2–skeleton. Let z�2

i0;i1;i2
D Œ zwi0

; zwi1
; zwi2

� be an arbitrary
2–simplex. Its boundary is mapped to a closed curve of length � 6 FillRad M nC 9ı .
This curve can be contracted to a point without the length increase, using the Birkhoff
curve shortening process, assuming, of course, that there are no periodic geodesics of
smaller length. Moreover, assuming that there are no “short” periodic geodesics, this
homotopy depends continuously on the original curve. We will map z�2

i0;i1;i2
using the

above mentioned homotopy, obtaining a singular 2–simplex that we will denote as
�2

i0;i1;i2
.

The 3–skeleton
Next let us go to the 3–skeleton. Consider an arbitrary 3–simplex z�3

i0;i1;i2;i3
D

Œ zwi0
; :::; zwi3

�. By the previous step of the induction, its boundary is mapped as the
following singular chain: †3

jD0
.�1/j�2

ii ;:::;yij ;:::;i3

. Consider its 1–skeleton. It will be a

(not geodesic) net, that we will denote by Ki . Let us apply a weighted length shortening
process L�

3

.m3
j / to continuously deform it to a point. In fact, there exist infinitely

many such weighted length functionals, as there are no “short” periodic geodesics and
only finitely many distinct stationary nets. (The weighted length decreasing process for
nets is defined similarly to its definition for cages: We multiply all edges of a net by
weights coming from a considered weighted length functional and apply the “usual”
length decreasing process described in the next section. Then we drop the weights
and restore the original numeration of the edges.) We will be using weighted length
functional Lk.mk

j / with weights mk
j C ci , i 2 f1; : : : ; k.kC1/

2
g, where mk

j and ci can
be defined similarly to how it had been done for cages in the proof of Lemma 2.1.

At each time �; � 2 Œ0; 1� during this deformation, we can use the net .Ki/t to construct
a 2–dimensional sphere S2

� in a way that is analogous to the similar construction in
the proof of Theorem 0.3. This 1–parameter family of 2–spheres can be regarded as a
3–disc that we will denote as �3

i0;:::;i3
. We will assign it to z�3

i0;:::;i3
. We can continue in

a similar fashion until we reach the .nC1/–skeleton of W , thus constructing a singular
chain on M n , that has the fundamental class ŒM n� as its boundary, and therefore,
arriving at a contradiction.
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4 Length shortening process for m–cages

Recall that our definition of weighted length shortening processes for weighted length
functionals on spaces of cages (or more generally nets) used a length shortening process
for cages (correspondingly, nets) described in [9] (as well as in [12; 13] in the case
of cages). We refer the reader to [9] for the details. The length shortening process
described there is defined for 1–cycles. However, it works without any changes in the
case of nets. For the sake of completeness here we will sketch this process for cages.
A similar length shortening process for closed curves was introduced by G Birkhoff
and is described in detail in [2, Section 2]. Consider the length functional on the space
C m

L
of m–cages of length �L. One can construct a flow on C m

L
that decreases the

length functional, assuming there is no stationary m–cages of length �L. Note that
points can also be regarded as m–cages. We claim that in such a case there exists
a deformation retraction of C m

L
to M n , (that is, m–cages of zero length), such that

the length functional decreases along the trajectory of the deformation. Consider an
m–cage consisting of two vertices a and b and m curves ˛i ; i D 1; :::;m that join
those vertices.

The length shortening process we will describe is very similar to the Birkhoff Curve
Shortening Process.

We will begin by replacing the curves ˛i ’s by piecewise geodesics. To do this, subdivide
each of the curves into N “small” segments of equal length � InjRad.M n/=4, where
InjRad.M n/ denotes the injectivity radius of M n and N D Œ 4L

InjRadM n �C 1. Then we
replace each small segment by the minimal geodesic segment. Clearly, the original m–
cage and the new piecewise geodesic m–cage will be homotopic by a length-decreasing
homotopy. Moreover, this homotopy will continuously depend on the initial cage. (This
observation is analogous to the starting point of Birkhoff Curve Shortening Process;
see [2]).

Thus, we find a deformation retraction of C m
L

to a finite dimensional space that we
will denote FC m

L
, such that the length of an arbitrary segment of the cage does not

increase during this deformation.

FC m
L

can be regarded as a subset of .M n/N for a sufficiently large N .

Let Cgm 2FC m
L

. We can define a vector of steepest descent tangent to FC m
L

at Cgm .
It will be defined as follows: consider all the vertices (ie, non-smooth points) of the
m–cage. There will be many vertices, where two geodesic segments come together
and two points a and b , where m geodesic segments come together. If aD b , there
will be one point where � 2m tangent vectors come together.
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At each vertex consider the sum of the diverging unit vectors tangent to geodesic
segments meeting at this vertex (see Figure 7). This collection of vectors tangent to
M n constitutes the vector of the steepest descent for Cgm . Note also, that it will
also “work” for m–cages that are sufficiently close to Cgm . That is, for any m–cage,
sufficiently close to Cgm , if we parallel transport our vector to that m–cage, we will
obtain a vector such that the first variation of the length functional in the direction of
this vector will be negative. We can now choose a net in C m

L
, a locally finite cover

of C m
L

by open neighborhoods of points of this net, and a subordinate partition of
unity, and construct a vector field on FC m

L
such that the first variation of the length

functional in the direction of this field is negative and FC m
L

deforms to FC m
0

in a
finite time.

a

b

At a typical point we will add
unit vectors tangent to two
geodesic segments meeting at
this point.

There will be three geodesic segments
meeting at point a and meeting at point b
so at each of these points we will have
to add three unit vectors.

Figure 7: Length Shortening Process for � –graph

This process is a very much simplified version of the process described in paper [9] (see
the proof of a Morse-theoretic type lemma for the space of 1–cycles made of at most
k segments [9, Lemma 3], in which we show that, assuming there are no non-trivial
stationary 1–cycles in the space of 1–cycles �x

k
made of at most k segments of length

� x , then the space �0
k

of 1–cycles of 0 length is a deformation retract of �x
k

). All the
technical difficulties that arise during this deformation were dealt with in [9]. One can
find an explanation of its simplified version that works for � –graphs in [10, Section
3]. During this length shortening process, it can happen that the length of one of the
edges becomes 0 and the two points a and b coincide. We will then have to move
this unique vertex in the direction of the sum of all unit vectors tangent to geodesic
segments and diverging from this vertex. This is the reason why the length shortening
process needs to be defined using a locally finite covering of FC L

m and a subordinate
partition of unity, rather than just the vector of the steepest descent. The vector of the
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steepest descent does not, in general, depend continuously on the cage near the cages,
where aD b . Another difficulty is that despite the fact that the total length of each cage
decreases, the distance between two neighboring vertices can increase. We want this
distance to remain smaller than InjRadM n . Otherwise we will not be able to connect
the endpoints by a unique geodesic segment. Therefore, to resolve this difficulty, we
apply the flow only for the time t D

InjRadM n

4
. Then we stop, divide each segment into

equal segments of length � InjRadM n

4
and replace it by a piecewise geodesic curve, as

it was done in the beginning. Then we apply the flow again for t D
InjRadM n

4
etc.

Under this curve shortening process the m–cage converges either to a stationary m–
cage (possibly degenerate, where two vertices coincide and lenghts of one or more
segments are equal to zero) or to a point.
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