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On the 2–loop polynomial of knots

TOMOTADA OHTSUKI

The 2–loop polynomial of a knot is a polynomial characterizing the 2–loop part of
the Kontsevich invariant of the knot. An aim of this paper is to give a methodology
to calculate the 2–loop polynomial. We introduce Gaussian diagrams to calculate
the rational version of the Aarhus integral explicitly, which constructs the 2–loop
polynomial, and we develop methodology of calculating Gaussian diagrams showing
many basic formulas of them. As a consequence, we obtain an explicit presentation
of the 2–loop polynomial for knots of genus 1 in terms of derivatives of the Jones
polynomial of the knots.

Corresponding to quantum and related invariants of 3–manifolds, we can formulate
equivariant invariants of the infinite cyclic covers of knots complements. Among
such equivariant invariants, we can regard the 2–loop polynomial of a knot as an
“equivariant Casson invariant” of the infinite cyclic cover of the knot complement. As
an aspect of an equivariant Casson invariant, we show that the 2–loop polynomial
of a knot is presented by using finite type invariants of degree � 3 of a spine of a
Seifert surface of the knot. By calculating this presentation concretely, we show that
the degree of the 2–loop polynomial of a knot is bounded by twice the genus of the
knot. This estimate of genus is effective, in particular, for knots with trivial Alexander
polynomial, such as the Kinoshita–Terasaka knot and the Conway knot.

57M27; 57M25

Dedicated to Professor Yukio Matsumoto on the occasion of his 60th birthday

1 Introduction

The Kontsevich invariant is a very strong invariant of knots, which dominates all
quantum invariants and all Vassiliev invariants, and it is expected that the Kontsevich
invariant classifies knots. A problem when we study the Kontsevich invariant is that
it is difficult to calculate the Kontsevich invariant for any knot concretely. That is,
the value of the Kontsevich invariant is presented by an infinite linear sum of Jacobi
diagrams (a certain kind of uni-trivalent graphs), and it is not known so far how to
calculate all terms of such a linear sum at the same time for an arbitrarily given knot.
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Each term is a Vassiliev invariant, and there are algorithms to calculate it, but it is
difficult to determine all terms at the same time.

The infinite sum of the terms of the Kontsevich invariant with a fixed loop number (the
first Betti number of uni-trivalent graphs) is presented by a polynomial [11; 21; 39]1;
this presentation is called the “loop expansion”. In particular, it is known2 that the
1–loop part is presented by the Alexander polynomial. The polynomial presenting
the 2–loop part is called the 2–loop polynomial. The 2–loop polynomial itself is a
2–variable polynomial invariant of knots.

A table of the 2–loop polynomial for knots with up to 7 crossings is given by Rozansky
[40]. The 2–loop polynomial of knots with the trivial Alexander polynomial can often
been calculated by surgery formulas (Garoufalidis and Kricker [11], Kricker [19],
Marché [26]). The 2–loop polynomial for torus knots is explicitly presented by using a
cabling formula (Marché [25] Ohtsuki [35]). However, it is still difficult to obtain an
explicit presentation of the 2–loop polynomial for an arbitrarily given knot, because
the “language” to calculate the 2–loop polynomial has not been enough.

An aim of this paper is to give a methodology to calculate the 2–loop polynomial for
an arbitrarily given knot. We construct the 2–loop polynomial of a knot by calculating
the rational version (Kricker [21]) of the Aarhus integral (Bar-Natan, Garoufalidis
Rozansky and Thurston [2; 3; 4]) of a surgery presentation of the knot. The Lie algebra
version of the Aarhus integral implies the perturbative expansion of a Gaussian integral,
which is obtained by coupling the second-order part and higher-order part of the integral.
In order to calculate the diagram version of the Aarhus integral explicitly, we introduce
Gaussian diagrams, which present the second-order and higher-order parts of diagrams
explicitly. We develop methodology to calculate Gaussian diagrams, showing many
basic formulas of them.

Corresponding to quantum and related invariants of 3–manifolds, we can formulate
equivariant invariants of the infinite cyclic covers of knots complements (Section 1.3).
Among such equivariant invariants, the 2–loop polynomial of a knot can be regarded as
an “equivariant Casson invariant” of the infinite cyclic cover of the knot complement
(Marché [27] Ohtsuki [34]), while it is well known (see, eg, Lickorish [24]) that the
Alexander polynomial can be regarded as an equivariant homology. One aspect of an
equivariant Casson invariant is that a surgery formula for the 2–loop polynomial is given

1This was originally conjectured by Rozansky [39]. The existence of such rational presentations has
been proved by Kricker [21] (though such a rational presentation itself is not necessarily a knot invariant in
a general loop degree). Further, Garoufalidis and Kricker [11] defined a knot invariant in any loop degree,
from which such a rational presentation can be deduced.

2 This follows from the property called the Melvin–Morton–Rozansky conjecture (Bar-Natan and
Garoufalidis [1]). See also [11; 21] and references therein.
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by the equivariant linking number (Kojima and Yamasaki [17]) and equivariant finite
type invariants of degree � 3, while a surgery formula for the Alexander polynomial
is given by the equivariant linking number. Another aspect of an equivariant Casson
invariant is that the 2–loop polynomial of a knot is presented by using finite type
invariants of degree � 3 of a spine of a Seifert surface of the knot (Theorem 4.4),
while the Alexander polynomial of a knot is presented by using finite type invariants of
degree 1, ie, the Seifert form, of a spine of a Seifert surface of the knot.

By constructing the 2–loop polynomial using Gaussian diagrams along the latter aspect,
in Theorem 4.7, we show the following estimate, which was conjectured by Rozansky
[40], that�

the degree of the 2–loop polynomial of a knot
�
� 2

�
the genus of the knot

�
;

where the genus of a knot is the minimal genus of a Seifert surface of the knot. This
implies that the non-zero coefficients of the 2–loop polynomial of a knot lie in the
hexagon whose edges are of length 2g for the genus g of the knot as shown in Table
1 and Table 2. This estimate is a refinement of the estimate of the genus by the
degree of the Alexander polynomial (see, eg, [24]), and, in particular, this estimate is
effective for knots with trivial Alexander polynomial. For example, we see, in Example
4.13, that our bound is sharp for the Kinoshita–Terasaka knot and the Conway knot
whose Alexander polynomial is trivial, while genera of them and many knots has been
determined by Gabai [8] geometrically and by Ozsváth and Szabó [38; 37] using the
knot Floer homology.

n �2 �1 0 1 2

mD 2 � �  ı 

mD 1 � ı ˇ ˇ ı

mD 0  ˇ ˛ ˇ 

mD�1 ı ˇ ˇ ı �

mD�2  ı  � �

Table 1: The non-zero coefficients of tn
1

tm
2

in the 2–loop polynomial
‚K .t1; t2/ of a knot K of genus 1, where ˛; ˇ; ; ı are some integers given
by Theorem 3.1 and Theorem 3.7.

Further, by calculating Gaussian diagrams, we show explicit presentations of the 2–loop
polynomial for some knots. We show, in Theorem 3.7, that the 2–loop polynomial
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n �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6

mD 6 � � � � � � 3 �3 3 �3 3 �3 3

mD 5 � � � � � �3 � � � � � � �3

mD 4 � � � � 3 � 2 �2 2 �2 2 � 3

mD 3 � � � �3 � �2 � � � � �2 � �3

mD 2 � � 3 � 2 � 1 �1 1 � 2 � 3

mD 1 � �3 � �2 � �1 � � �1 � �2 � �3

mD 0 3 � 2 � 1 � � � 1 � 2 � 3

mD�1 �3 � �2 � �1 � � �1 � �2 � �3 �

mD�2 3 � 2 � 1 �1 1 � 2 � 3 � �

mD�3 �3 � �2 � � � � �2 � �3 � � �

mD�4 3 � 2 �2 2 �2 2 � 3 � � � �

mD�5 �3 � � � � � � �3 � � � � �

mD�6 3 �3 3 �3 3 �3 3 � � � � � �

Table 2: The non-zero coefficients of tn
1

tm
2

in the 2–loop polynomial
‚T .7;2/.t1; t2/ of the torus knot T .7; 2/ of type .7; 2/ , whose genus is 3;

‚K .t1; t2/ of a knot K of genus 1 is presented by

‚K .t1; t2/D
1

24

�
V 000K .1/C 3V 00K .1/

���
d2
� d C 1

3

�
.T2;1�T1;0/�

1
2
d.d � 1/T2;0

�
�

1
16

V 0K .�1/
�
.5d2

� 5d C 1/T1;0C
1
2
d.5d � 1/T2;0�

�
5d2
�

7
3
d C 1

3

�
T2;1

�
;

where VK .t/ denotes the Jones polynomial [15] of K , and d D�1
6
V 00

K
.1/. Here, we

put Tn;m , for integers n;m with 0� 2m� n, by

(1) Tn;m D
1
"

�
tn
1 tm

2 C tm
1 tn

2 C tn�m
1 t�m

2 C t�m
1 tn�m

2 C tm�n
1 t�n

2 C t�n
1 tm�n

2

C t�n
1 t�m

2 C t�m
1 t�n

2 C tm�n
1 tm

2 C tm
1 tm�n

2 C tn�m
1 tn

2 C tn
1 tn�m

2 � 12
�
;

where we put3 "D 1 if 0< 2m< n, and "D 2 if 2mD 0 or n; for example,

T2;1 D t2
1 t2C t1t2

2 C t1t�1
2 C t�1

1 t2C t�1
1 t�2

2 C t�2
1 t�1

2 � 6;

T3;1 D t3
1 t2

2 C t3
1 t2C t2

1 t3
2 C t1t3

2 C t2
1 t�1

2 C t1t�2
2

C t�1
1 t2

2 C t�1
1 t�3

2 C t�2
1 t2C t�2

1 t�3
2 C t�3

1 t�1
2 C t�3

1 t�2
2 � 12:

Further, we show, in Proposition 2.4 and Proposition 2.5, that the 2–loop polynomial
for the Kinoshita–Terasaka knot KKT

m and the Conway knot KC
m are presented by

‚K KT
m
.t1; t2/Dm .2T1;0� 2T2;0� 2T2;1CT3;1/;

3 That is, we set "D 1; 2 so that the coefficient of tn
1

tm
2

in Tn;m is equal to 1 .
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‚K C
m
.t1; t2/Dm .2T1;0� 2T2;0� 2T2;1CT3;1/

C2m3
�
T1;0CT2;1�T3;1CT4;0CT4;2CT5;0�T5;1�

1
2
T6;2CT6;3

�
:

This implies that the 2–loop polynomial is sensitive to mutation, unlike the Alexander
and Jones polynomials.

The paper is organized as follows. In Section 1, we review the definition of the 2–
loop polynomial and its construction by the rational version of the Aarhus integral,
introducing Gaussian diagrams. Further, we give a survey on equivariant invariants
corresponding to quantum and related invariants. In Section 2, we give concrete
presentation of the 2–loop polynomial for knots in terms of the Kontsevich invariant of
their surgery presentation when the surgery is along knots, and calculate the 2–loop
polynomial for the .4nmC 1; 2n/ two-bridge knot, the Kinoshita–Terasaka knot, and
the Conway knot. In Section 3, we give explicit presentations of the 2–loop polynomial
for knots of genus 1 in terms of derivatives of the Jones polynomial of them. In Section
4, we show the genus bound of the degree of the 2–loop polynomial, calculating the
2–loop polynomial for knots of any genus. Further, we show clasper surgery formulas
for the 2–loop polynomial. In Section 5, we show many formulas of Gaussian diagrams
used in the other sections, developing methodology of calculating them. See Figure 1
for relations among these sections.

Aarhus integral
original version
rational version

��
�
��*

-

Clasper surgery
formula
(Section 3.2, Section 4.3)

-

2–loop polynomial of
knots with �K .t/D 1

��
���

�:

XXXXXXz
2–loop polynomial of
knots given by
surgery presentation
(Section 2.1

(( Section 5.2))

-HH
HHH

Hj
2–loop polynomial of
knots given by
spines of Seifert surfaces
(Section 3.2, Section 4.1,
Section 4.2)

�
�
�
�
�
��
��

��*

-H
HHH

HHj

2–loop polynomial of
Conway knot
(Section 2.4)

2–loop polynomial of
Kinoshita–Terasaka
knot (Section 2.3)

2–loop polynomial of
some two-bridge
knots (Section 2.2)
2–loop polynomial of
knots of genus 1
(Section 3.1)

Section 3.4
((

Section 5.3)
Section 3.3

genus bound by
2–loop polynomial
(Section 4.2

(( Section 5.4))Figure 1: Relations among sections
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1.1 Definition and properties of the 2–loop polynomial

In this section, we review the definition of the 2–loop polynomial. Further, we introduce
the reduced 2–loop polynomial, and show a property of it.

The Kontsevich invariant is defined in the space of Jacobi diagrams on S1 , which we
define as follows. For a 1–manifold X , a Jacobi diagram on X is the manifold X

together with a uni-trivalent graph such that univalent vertices of the graph are distinct
points on X and each trivalent vertex is vertex-oriented, where a vertex-oriented
trivalent vertex is a trivalent vertex such that a cyclic order of the three edges around
the trivalent vertex is fixed. In figures we draw X by thick lines and the uni-trivalent
graphs by thin lines, in such a way that each trivalent vertex is vertex-oriented in the
counterclockwise order. We define the degree of a Jacobi diagram to be half the number
of univalent and trivalent vertices of the uni-trivalent graph of the Jacobi diagram. We
denote by A.X / the quotient vector space spanned by Jacobi diagrams on X subject
to the following relations, called the AS, IHX, and STU relations respectively,

D� ;

D � ;

D � :

The Kontsevich invariant Z.K/ [18] of a knot K is defined to be in A.S1/; for details
of its constructions, see, eg, [33].

The loop expansion of the Kontsevich invariant is defined in the space of open Jacobi
diagrams. An open Jacobi diagram is a vertex-oriented uni-trivalent graph. We denote
by A.�/ the quotient vector space spanned by open Jacobi diagrams subject to the
AS and IHX relations. The Poincare–Birkhoff–Witt isomorphism (PBW isomorphism)
�W A.�/!A.#/ is defined by

(2) D
�
7�!

D ;
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for any diagram D , where the box denotes the symmetrizer,

(3)

n lines

D
1

n!

�
C C C � � �

�
:

A label of a power series f .„/D c0C c1„C c2„
2C c3„

3C � � � implies that

(4)
f .„/

D c0 C c1
„ C c2

„

„ C c3

„

„

„
C � � � :

Note that
f .„/

D
f .�„/

by the AS relation, in the notation of this paper. Any open Jacobi diagram can be

presented by a trivalent graph with labels on its edges. It is known [11; 21; 39] that the
Kontsevich invariant of a knot K has a presentation,

logt
�
��1Z.K/

�
D

1
2

log sinh.„=2/
„=2

�
1
2

log�K.e
„/

C

finiteX
i

pi;1.e
„/=�K.e

„/

pi;2.e
„/=�K.e

„/

pi;3.e
„/=�K.e

„/

C
�
terms of 3–loop, 4–loop, � � � presented in the same way

�
;

where logt denotes the logarithm with respect to the disjoint-union product of open Ja-
cobi diagrams, �K .t/ denotes the Alexander polynomial, and pi;j .e

„/ is a polynomial
in e˙„ . This presentation is called the loop expansion.

We denote its 2–loop part by

Z.2–loop/.K/D

finiteX
i

pi;1.e
„/=�K.e

„/

pi;2.e
„/=�K.e

„/

pi;3.e
„/=�K.e

„/

:

The 2–loop part is characterized by the polynomial,X
i

pi;1.t1/pi;2.t2/pi;3.t3/ 2 QŒt˙1
1 ; t˙1

2 ; t˙1
3 �=.t1t2t3 D 1/;�

where the equivalence “�” is generated by

(5) f .t1; t2; t3/ � f .t"�.1/; t
"
�.2/; t

"
�.3//
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for any "D˙1 and any permutation � on f1; 2; 3g, which is derived from the symmetry
of the � graph, while the relation t1t2t3 D 1 is derived from the IHX relation. The
symmetrization of the above polynomial with respect to the symmetry of the � graph
is given by

‚K .t1; t2; t3/D
X
"D˙1
�

pi;1.t
"
�.1//pi;2.t

"
�.2//pi;3.t

"
�.3// 2 QŒt˙1

1 ; t˙1
2 ; t˙1

3 �=.t1t2t3D1/;

where � runs all permutations on f1; 2; 3g. Putting t3 D t�1
1

t�1
2

, we denote it by
‚K .t1; t2/, and call it the 2–loop polynomial of K , (Note that this normalization of
‚K .t1; t2/ is 12 times the normalization in [40].) We also denote the 2–loop polynomial
by ‚.K/.

The 2–loop polynomial of the mirror image xK of a knot K satisfies that ‚ xK .t1; t2/D
�‚K .t1; t2/, since Z. xK/ is obtained from Z.K/ by changing the sign of the part of
odd degree.

A particular value ‚K .t; 1/ is a symmetric polynomial in t˙1 divisible by t �1 (since
‚K .1; 1/D 0 by definition) and hence, divisible by .t �1/2 . As in [35], we define the
reduced 2–loop polynomial by

y‚K .t/D
‚K .t; 1/

.t1=2� t�1=2/2
2QŒt˙1�;

which is a symmetric polynomial in t˙1 . As shown in [35], this presents the sl2
reduction of the 2–loop polynomial.

We obtain the formulas of the following proposition for y‚K .1/ and y‚K .�1/ by
rewriting formulas in [35] and in [10; 28] respectively. Recall that the Jones polynomial
VL.t/ 2 ZŒt˙1=2� (which we also denote by V .L/) of an oriented link L is defined by
the skein relation

t V
� �

� t�1V
� �

D .t1=2
� t�1=2/V

� �
and the normalization V .the trivial knot/D 1. Here, the three pictures in the formula
imply three oriented links, which are identical except for a ball, where they differ as
shown in the pictures.

Proposition 1.1 (See [35] and [10; 28]) The reduced 2–loop polynomial of a knot
K at t D˙1 satisfies that

y‚K .1/D 2 v3.K/D
1

18
V 000K .1/C 1

6
V 00K .1/;

y‚K .�1/D� 1
12

V 0K .�1/VK .�1/;
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On the 2–loop polynomial of knots 1365

where v3.K/ denotes 4 times the coefficient of the diagram in logt�
�1Z.K/,

which is an integer-valued primitive Vassiliev invariant of degree 3.

Proof We obtain the first formula of the proposition, as follows. It is shown in [35]
that y‚K .1/ is equal to 2v3.K/. In particular, it is a primitive Vassiliev invariant of
degree 3, which is unique up to a scalar multiple. Hence, it is equal to a scalar multiple
of the coefficient4 of h3 in the expansion of VK .e

h/. We can determine the scalar of
the multiple by calculating an example, say, see Example 3.6. It follows that

y‚K .1/D
1
3

�
the coefficient of h3 in VK .e

h/
�
:

Further, since the third derivative of VK .e
h/ is given by d3

dh3 VK .e
h/D V 000

K
.eh/e3hC

3V 00
K
.eh/e2h C V 0

K
.eh/eh , the coefficient of h3=6 in VK .e

h/ is equal to V 000
K
.1/C

3V 00
K
.1/. Therefore, we obtain the first formula of the proposition.

We obtain the second formula of the proposition, as follows. The Casson–Walker
invariant of the double branched cover of S3 branched along K is presented in [28]
(see also [9]) by a linear sum of the signature of K and V 0

K
.�1/=VK .�1/. On the

other hand, it is also presented in [10] by a linear sum of the signature of K and�
‚K .1;�1/C‚K .�1; 1/C‚K .�1;�1/

�
=�K .�1/2 , noting that ‚K .1; 1/D 0. This

is further equal to �12y‚.�1/=�K .�1/2 from the definition of the reduced 2–loop
polynomial. Hence, y‚.�1/ is equal to a scalar multiple of V 0

K
.�1/VK .�1/, noting

that VK .�1/D�K .�1/. We can determine the scalar of the multiple by calculating an
example, say, see Example 3.6, and this gives the second formula of the proposition.

1.2 Construction of the 2–loop polynomial

In this section, we review a construction of the 2–loop polynomial by the rational version
of the Aarhus integral. We introduce Gaussian diagrams to calculate the rational version
of the Aarhus integral explicitly. Along this construction, we calculate the 2–loop
polynomial in Sections 2–4.

Consider a framed link K [ L, such that K is isotopic to the trivial knot with 0

framing, and the linking number of K and each component of L is equal to 0, and the
3–manifold obtained from S3 by surgery along L is homeomorphic to S3 . We denote
by KL the knot obtained from K by surgery along L. The link K [L is called a

4 Putting VK .e
h/D 1Cc2.K/h

2Cc3.K/h
3C� � � , we can show that c3 is primitive, ie, c3 is additive

with respect to the connected sum of knots, from the fact that VK .t/ is multiplicative with respect to the
connected sum of knots.
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surgery presentation of the knot KL . For example,

(6) KL D ; K[LD D

where we depict K and KL by thick lines, and depict L by thin lines. We explain how
to calculate the 2–loop polynomial of KL from the Kontsevich invariant of K[L.

We review how to calculate the loop expansion of the Kontsevich invariant of KL from
the Kontsevich invariant of K[L, following an idea of Kricker [21], assuming, for
simplicity, that L is a knot; for details see [11; 21]. The Kontsevich invariant Z.K[L/

of K[L is defined to be in A.S1tS1/. We label the two components of S1tS1 by
„ and x respectively. A partially open Jacobi diagram on �tS1 , where � and S1 are
labeled by „ and x respectively, is a vertex-oriented uni-trivalent graph such that some
of the univalent vertices of the graph are labeled by „ and the other univalent vertices
are distinct points on S1 . The PBW isomorphism �„W A.� t S1/! A.# tS1/ is
defined by applying the map (2) to the univalent vertices labeled by „. We identify
A.# tS1/ and A.S1tS1/ by the isomorphism A.# tS1/!A.S1tS1/, which is
obtained by closing the two end points of #. It is shown that ��1

„
Z.K[L/2A.�tS1/

is equal to a linear sum of Jacobi diagrams whose „–labeled vertices are given by
labels of polynomials in e˙„ , by using the formula [6],

��1
„

Z
�
„

�
D

e„

;

where a label of a power series f .„/D c0C c1„C c2„
2C c3„

3C � � � implies that

f .„/

D c0 C c1
„C c2

„

„C c3

„

„

„
C � � � :

An open Jacobi diagram on �t� , where the two �’s of �t� are labeled by „ and x

respectively, is a vertex-oriented uni-trivalent graph each of whose univalent vertices is
labeled by either „ or x . We denote by A.�t�/ the quotient vector space spanned by
Jacobi diagrams on �t� subject to the AS and IHX relations. The PBW isomorphism
�W A.�t�/!A.# t #/ is defined by applying the map (2) to the „–labeled vertices
and the x–labeled vertices respectively. This isomorphism is equal to the composition
of �„ and �x W A.�t �/! A.�t #/. We choose a pre-image of ��1

„
Z.K [L/ in
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A.�t�/, which we denote by ��1Z.K[L/, by choosing a 1–tangle K[ LL whose
closure is isotopic to K [L. The Kontsevich invariant of the surgery along L is
described by the rational version [21] of the Aarhus integral [2; 3; 4], as follows,

(7) ��1Z.KL/D

Z
��1 LZ.K[L/dxZ
��1 LZ.U˙/dx

;

where U˙ denotes the trivial knot with ˙1 framing whose sign we choose depending
on the sign of the framing of L, and, by definition (see [23]), LZ.K[L/ is obtained
from Z.K[L/ by connect-summing � to the L–component of Z.K[L/. An idea
of Kricker [21] is to calculate the loop expansion of the Kontsevich invariant of KL

from (7).

When we calculate the Aarhus integral, it is often convenient to use the link relation
“ �
.~/

” [2; 3; 4], which is defined by

D
�
.~/

0

for any diagram D , where we put

D C C C � � �C :

The link relations is a relation which relates pre-images in A.�t�/ of an element in
A.�t #/ by the PBW map �x , and it is known [2; 3; 4] that the result of the Aarhus
integral does not depend on the difference derived from the link relation.

To calculate the rational version of the Aarhus integral explicitly, we use Gaussian
diagrams, which we introduce as follows. We denote by a chord written in a double
line an exponential chord; for example,

f
D C

f
C

1
2

f

f C
1
6

f

f

f

C � � � 2A.two intervals/;(8)

f

D expt
� f �

2A.�/;

where expt denotes the exponential with respect to the disjoint-union product of open
Jacobi diagrams. We call a Jacobi diagram with exponential chords a Gaussian diagram.
Further, we denote by a uni-trivalent graph written in double lines its exponential; for
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example,

ˆ�

1/24

� exp
� 1

24

�
;

� �

1/48

� �

�
1C

1

48

�
;

where � is the element in A.#/ whose closure in A.S1/ is equal to the Kontsevich
invariant of the trivial knot, and ˆ is the element called an associator which is the
Kontsevich invariant of an elementary q–tangle; they are basic elements appearing in a
combinatorial construction of the Kontsevich invariant; for details, see, eg, [33]. Here,
in the above formulas (and throughout this paper), we write ˛ � ˇ (resp. ˛ �.2/ ˇ ) if
˛�ˇ is a linear sum of Jacobi diagrams with at least 3 (resp. 2) trivalent vertices, where
we do not count trivalent vertices generated by attached power series. If a uni-trivalent
graph has 2 trivalent vertices, we can put it in any way in a Jacobi diagram modulo the
equivalence; for example,

�

� 0:since their difference equals

So, we write the previous diagrams as � .

We explain how to calculate the rational version of the Aarhus integral in (7) concretely,
using Gaussian diagrams. As mentioned above, ��1

„
Z.K[L/ is presented by a linear

sum of Jacobi diagrams whose „–labeled vertices are given by labels of polynomials
in e˙„ . For simplicity, as in Section 2.1 and Section 2.2, we assume that it is presented
by

��1
„

Z.K[L/�
f .t/

� .1Cˇ/

for some polynomial f .t/ in t˙1 putting t D e„ and some ˇ which is a linear sum of
Jacobi diagrams each of which has at least two trivalent vertices; recall that a double
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line is defined in (8) and a label of a power series of „ is defined in (4), that is,

f .t/ D C f .t/ C
1

2
f .t/ f .t/ C

1

6
f .t/ f .t/ f .t/ C � � � ;

f .t/

D c0 C c1
„ C c2

„

„ C c3

„

„

„
C � � � ;

where f .e„/D c0C c1„C c2„
2C c3„

3C � � � . By definition (see [23]), LZ.K[L/ is
obtained from Z.K [L/ by connect-summing � to the L–component of Z.K [L/,
that is,

��1
„
LZ.K[L/�

f .t/
�

�
1CˇC

1

48

�
:

By calculating ��1 of a Gaussian diagram (for details see Section 2.1), we have that

��1 LZ.K[L/�

�.t/=2

� .1Cˇ0/

for some polynomial �.t/ in t˙1 with �.t/ D �.t�1/, which gives the Alexander
polynomial of KL , and for some ˇ0 which is a linear sum of Jacobi diagrams each
of which has at least one trivalent vertex. As in [11; 21], the rational version of the
Aarhus integral is defined by

Z
��1 LZ.K[L/ dx �

�
�1=2�.t/

; ˇ0
�

where the bracket hD1;D2i is defined to be the sum of the diagrams obtained by
connecting the univalent vertices of D1 and the univalent vertices of D2 if D1 and
D2 have the same number of univalent vertices, and 0 otherwise. Hence, by (7),

(9) ��1Z.KL/ �

�
1˙

1

16

�
�

�
�1=2�.t/

; ˇ0
�
;
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where we choose the same sign in the formula as the sign of the framing of L, since
the normalization factor in (7) is calculated as follows:

Z
��1 LZ

�
U˙

�
dx �

Z �
��1 ˙1=2

�

�
1C

1

24

��
dx

�

Z � ˙1=2

�

�
1C

1

16

��
dx D

�
�1=2

; 1C
1

16

�
� 1�

1

16
:

From (9), we obtain an explicit presentation of the 2–loop polynomial of KL by
calculating ˇ0 concretely.

1.3 Equivariant invariants of the infinite cyclic covers of knot comple-
ments

The 2–loop polynomial of a knot can be regarded as an “equivariant Casson invariant”
of the infinite cyclic cover of the knot complement [27; 34]. The aim of this section is
to see this from the viewpoint of quantum and related invariants of 3–manifolds and
equivariant invariants corresponding to them. We give a survey on quantum and related
invariants of 3–manifolds, and explain how Casson invariant behaves among them.
Further, we see what are equivariant invariants corresponding to them, and consider
relations of the 2–loop polynomial to these equivariant invariants, which would be
meaningful for future directions of the study of these invariants.

We review quantum and related invariants of 3–manifolds; for details, see eg [33].
Let M be a closed 3–manifold, and let L be a framed link in S3 such that M is
obtained from S3 by surgery along L. For simplicity, we consider the sl2 case. Let
Vn be the n–dimensional irreducible representation of the quantum group Uq.sl2/,
whose quantum dimension is Œn� D .qn=2 � q�n=2/=.q1=2 � q�1=2/, and let r be an
odd integer � 3, and put � D exp.2�

p
�1=r/. Then, the quantum SO.3/ invariant

of M is defined by

�SO.3/
r .M /D .normalization constant/ �

X
n1;��� ;nl

Œn1� � � � Œnl �Q.LI Vn1
; � � � ;Vnl

/
ˇ̌
qD�
2C;

where the sum of each ni runs over ni D 1; 3; � � � ; r�2, and Q.LI Vn1
; � � � ;Vnl

/ de-
notes the quantum invariant of L whose components are associated with Vn1

; � � � ;Vnl
,

which is a polynomial in q˙1 . Further, for simplicity, let M be an integral homology
3–sphere. Then, the perturbative SO.3/ invariant �SO.3/.M / is defined to be an
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arithmetic limit of �SO.3/
r .M / as r !1, ie,

�SO.3/.M /D

1X
nD0

�n.q� 1/n 2 ZŒŒq� 1��

where �n ’s are uniquely characterized by

�SO.3/
r .M /�

.r�3/=2X
nD0

�n.� � 1/n modulo .� � 1/.r�1/=2 in ZŒ��

for any prime r � 5. Further, as shown in [13; 14], the perturbative invariant has an
expansion of the form

�SO.3/.M /D

1X
nD0

an.q� 1/.q2
� 1/ � � � .qn

� 1/

for an 2 ZŒq�, and each quantum invariant is derived from the perturbative invariant by
substituting q D � in this expansion, ie,

�SO.3/
r .M /D �SO.3/.M /

ˇ̌
qD�

;

where the substitution is taken in the above expansion. Each perturbative invariant
is derived from the LMO invariant through the weight system (see [33]), and, in this
sense, the LMO invariant is universal among all perturbative invariants. Further, as
shown in [22], the LMO invariant of integral homology 3–spheres is universal among
all finite type invariants; in particular, the degree d part of the LMO invariant are of
finite type of degree d . See Figure 2 for relations among these invariants.

Casson invariant �.M / of an integral homology 3–sphere M appears in the degree 1

part of these invariants as follows; for details, see eg [33]. The degree 1 part of the
LMO invariant is given by Casson invariant, and so is the finite type invariant of degree
1. In particular, Casson invariant has a clasper surgery formula,

(10) �

� �
��

� �
D 1;

where the first picture implies a surgery on an integral homology 3–sphere along a
graph clasper of the form of a � graph (see Section 4.3, for the definition of a graph
clasper). Further,

(11) �SO.3/.M /D 1C 6�.M / .q� 1/C .higher terms/;
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Quantum invariants

?

r !1
6

q D e2�
p
�1=r

Perturbative invariants � -
coefficients are of finite type

Finite type invariants
degree 0 invariant: the order of H1

degree 1 invariant: Casson invariant

@
@

@
@I

universal

�
�
�
��

universal

LMO invariant

Figure 2: Quantum and related invariants of 3–manifolds

and hence,

(12) �SO.3/
r .M /� 1C 6�.M / .� � 1/ modulo .� � 1/2 in ZŒ��

for any prime r � 5. In particular,
�
�.M / modulo r

�
2 Z=rZ is determined by

�
SO.3/
r .M / for any prime r � 5, as shown in [29; 30].

Corresponding to the invariants shown in Figure 2, we consider equivariant invariants
of the infinite cyclic covers of knot complements, as shown in Figure 3.

Corresponding to a quantum invariant of 3–manifolds defined from a modular category
fVigi2I , an invariant T Vm.K/ of a knot K is defined as an equivariant version of
the quantum invariant for the infinite cyclic cover of the complement of K , as in
[36]. Roughly speaking, T Vm.K/ is defined to be the characteristic polynomial of
the quantum invariant of a 3–cobordism obtained from S3 �K by cutting it along
a Seifert surface whose boundary is associated with Vm . To be precise, when a link
K[L is a surgery presentation of a knot KL as in (6), T Vm.KL/ is defined to be the
characteristic polynomial of a matrix whose entries are quantum invariants of a tangle
yL, where yL is a tangle obtained from L by cutting along a disk bounded by K ; for
details, see [36]. For example, for K[L shown in (6):

yL D
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Corresponding to finite type invariants of 3–manifolds, loop finite type invariants of
pairs of integral homology 3–spheres and knots are defined as follows. Consider pairs
.M;K/ such that M is an integral homology 3–sphere and K is an oriented knot in
M , and consider a move between two pairs .M;K/ and .M 0;K0/ such that .M 0;K0/

is obtained from .M;K/ by surgery on a Y graph embedded in M �K whose leaves
have linking number zero with K , where a Y graph is a graph clasper of the form:

Loop finite type invariants of such pairs are defined similarly as a definition of Vassiliev
invariants using this move instead of a crossing change; for details, see [11]5 (see also
[32]). The weight systems of loop finite type invariants are based on the grading of
Jacobi diagrams given by the loop-degree, where the loop-degree of a Jacobi diagram
on S1 is defined to be half of the number given by the number of trivalent vertices
minus the number of univalent vertices of the uni-trivalent graph of the Jacobi diagram,
ie, an n–loop diagram is a diagram of loop-degree n�1. The loop expansion of
the Kontsevich invariant (the rational Z invariant) is universal among loop finite type
invariants [11]. Further, the sl2 reduction of the loop expansion of the Kontsevich
invariant gives the loop expansion of the colored Jones polynomials.

See Figure 3 for relations among these invariants, corresponding to relations shown in
Figure 2.

From the viewpoint that the 2–loop polynomial is an equivariant Casson invariant, we
can expect some relations between the 2–loop polynomial and invariants shown in
Figure 3, corresponding to the relations between Casson invariant and invariants in
Figure 2 mentioned before. Corresponding to the clasper surgery formula (10), the
2–loop part of the Kontsevich invariant has a clasper surgery formula

Z.2–loop/

0BBB@
1CCCA � Z.2–loop/

� �
D

tn

tm

as shown in [11], where the left picture implies a surgery on a knot along a graph
clasper of the form of a � graph whose upper and lower loops have linking numbers n

5 The definition of loop finite type invariants also appears in the September 1999 version of [20].
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Equivariant quantum invariants

pppppp
pppp

Loop expansion of
the colored Jones polynomial
and quantum invariants

p p p p p p p p p p p p p p Loop finite type invariants
loop-degree 0 invariant:

Alexander polynomial
loop-degree 1 invariant:

2–loop polynomial
@

@
@
@I

universal

�
�
�
��

universal

The rational Z invariant

Figure 3: Equivariant invariants of the infinite cyclic covers of knot comple-
ments corresponding to the invariants shown in Figure 2

and m with the knot. Further, the 2–loop polynomial has other clasper surgery formulas
shown in Section 4.3. Corresponding to the relation (11) between Casson invariant and
the perturbative invariant, we have a relation between the reduced 2–loop polynomial
and the 2–loop part of the loop expansion of the colored Jones polynomials as in [35].
Corresponding to the relation (12) between Casson invariant and the quantum invariant,
we can expect that there would be some relations between the 2–loop polynomial and
equivariant quantum invariants, though such relations are not formulated yet so far.
Thus, the 2–loop polynomial would have a central role in the study of these invariants.

2 The 2–loop polynomial calculated from surgery presenta-
tions

In this section, we calculate the 2–loop polynomial of knots from their surgery presenta-
tions. We give concrete presentations of the 2–loop polynomial for knots in terms of the
Kontsevich invariant of their surgery presentations of surgery along knots in Section 2.1.
Further, we calculate the 2–loop polynomial for the .4nmC 1; 2n/ two-bridge knot,
the Kinoshita–Terasaka knot, and the Conway knot in Section 2.2, Section 2.3, and
Section 2.4, respectively.
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2.1 Surgery presentations of surgery along knots

In this section, we give a concrete presentation of the 2–loop polynomial of a knot in
terms of the Kontsevich invariant of a surgery presentation of the knot whose surgery
is along a knot.

Consider a link K[L, such that K is isotopic to the trivial knot with 0 framing, L is
a knot with ˙1=m framing, and the linking number of K and L is equal to 0. We
denote by KL the knot obtained from K by surgery along L. The link K [L is a
surgery presentation of the knot KL . The aim of this section is to give a concrete
presentation of the 2–loop polynomial of KL in terms of the Kontsevich invariant of
K[L.

An idea of [5] to compute a rational surgery is to define the Kontsevich invariant of
a string with a rational framing to be the Kontsevich invariant of a Hopf chain, for
example, as follows,

Z

�
y

˙1=m
framing

�
D

�
1˙

1

16

��1 Z
��1

z
LZ

�
y

z

�m
framing

�
dz

�

y
˙1=2m

�

 
1C

1=m2� 1

48
˙
.m� 1/.m� 2/

48m

!
:

For detailed and general formulas, see [5]. Hence, by putting the Kontsevich invariant
of a string of a rational framing in this way, we can also apply the rational version of
the Aarhus integral.

Let us calculate the 2–loop polynomial of KL in a simple case that ��1
„

Z.K[L/ is
given by

��1
„

Z.K[L/�
f

�

�
1C

1

48m2
˙
.m� 1/.m� 2/

48m

�
;

for some polynomial f .e„/ in e„; e�„ , satisfying that f .1/D˙1=2m, since L has
the framing ˙1=m. The reason why we add the last factor in the above formula is
that this term is natural in the sense that, if f was a scalar in 1

2
Z, the above formula

presents, modulo “�”, the Kontsevich invariant of the trivial knot with 2f framing.
From the definition of LZ ,

��1
„
LZ.K[L/�

f
�

�
1C

1=m2C 1

48
˙
.m� 1/.m� 2/

48m

�
:
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Further, by Lemma 5.13,

��1
x

f �
.~/

�

�
1C

1

12
�

1

4
C

1

12

�
;

where we introduce two markings by

D
1

2
�

f
C

1

2
�

f
; D

1

2
�

f
�

1

2
�

f
:(13)

��1 LZ.K[L/ �
.~/

�
�
1Cˇ

�
;Hence,

ˇ D
1=m2C 1

48
C

1

12
�

1

4
C

1

12
˙
.m� 1/.m� 2/

48m
:

where

The rational version of the Aarhus integral is calculated as follows,Z
��1 LZ.K[L/dx D

�
; ˇ

�
;

D expt

� �
:where we put

Here, we define the marking of a circle by

(14) D

�
1

2.fCf /

for f and its conjugate f defined by f .e„/D f .e�„/. In particular, we have that

D�
1

4
:

For the diagram of ˇ , we have that�
;

�
D 2 ;
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�
;

�
D 2 ;

�
;

�
D 2 ;

�
;

�
D

�
1

2
;

�
D 4

�
C C

�

D 8f .e0/ � C 4 C 4 C 4 C ;

where f .e0/D˙1=2m. Hence,

Z
��1 LZ.K[L/dx � 1C

1=m2C 1

24
C

1

6
˙

1

3m
�

1

12

�
1

6
C

1

3
C

1

3
C

1

12
˙
.m� 1/.m� 2/

48m
:

Further, as we explained in Section 1.2, we have, from (9), that

Z.2–loop/.KL/D˙
m2C 2

48m
C

1=m2C 1

24
C

1

6
˙

1

3m
(15)

�
1

12
�

1

6
C

1

3
C

1

3
C

1

12
:

Therefore, from the definition of the 2–loop polynomial, we obtain the following
proposition, by putting �.t/D˙m

�
f .t/Cf .t�1/

�
and ı.t/D f .t/�f .t�1/.

Proposition 2.1 Let K[L and KL be as above, satisfying that

��1
„

Z.K[L/�
˙�.t/=2mCı.t/=2

�

�
1C

1

48m2
˙
.m� 1/.m� 2/

48m

�

for polynomials �.t/ and ı.t/ in t; t�1 satisfying that �.1/ D 1, �.t�1/ D �.t/

and ı.t�1/ D �ı.t/. Then, the 2–loop polynomial of KL is presented, modulo the
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equivalence (5), by

‚KL
.t1; t2/�˙

1

4m
�.t1/�.t2/

�
.m2
C 2/�.t3/��.t1/�.t2/�m2

� 1
�

(16)

�
m ı.t1/ı.t2/

4

�
�.t3/C

1
2
�.t1/�.t2/C�.t1/�.t3/C

1
2
�.t3/

2
�

˙
m ı.t1/

2

8
�.t2/

�
�.t2/��.t3/

�
;

and its reduced 2–loop polynomial is presented by

y‚KL
.t/D�

1

12m
�.t/

�
�.t/3� .2m2

C 3/�.t/C 2m2
C 2

�
˙

m ı.t/2

12

�
�.t/2C 2

�
:

Remark 2.2 More generally, if ��1
„

Z.K[L/ is given by the following form,

��1
„

Z.K[L/�
˙�.t/=2mCı.t/=2

�

�
1C

1

48m2
˙
.m� 1/.m� 2/

48m
Cˇ

�
;

where ˇ is a linear sum of Jacobi diagrams each of which has two trivalent vertices,
then we can show in a similar way as above that Z.2–loop/.KL/ is presented by

Z.2–loop/.KL/D
�
the right-hand side of (15)

�
C

�
; ˇ

�
;

and the 2–loop polynomial ‚KL
.t1; t2/ is given by the sum of the right-hand side of

(16) and the polynomial corresponding to the last term of the above formula.

2.2 The 2–loop polynomial of the .4nm C 1; 2n/ two-bridge knot

In this section, we calculate the 2–loop polynomial of the .4nmC 1; 2n/ two-bridge
knot as an application of Proposition 2.1 (and Remark 2.2).

The .4nmC 1; 2n/ two-bridge knot is the knot given by

n

m−

;

where we mean k full twists by a boxed “k ”; for example,

3 D :
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The above knot is obtained from the following link K[L by 1=m surgery along the
component L labeled by x :

K[LD

n

x

1=m framing

Let K[L0 be K[L putting the framing of L to be 0. Then,

K[L0 D

n

x

0 framing D

nx

D closure of

n

x

2n

:

��1
„
LZ.K[L0/D cl. of

ΦS2

ΦS2

ΦS2

nS2 exp

exp

1−

1− tt

νν 1/2

ν1/2

2

n

� cl. of

n

1/24

n

−

1/24−

1/24

−

1−t t
�

�
1C

1

16

�
:

Hence,

n− t

t

� n− t
t

�

�
1� n

t t�
�

n− t
t �

�
1� n

t t�
;

Since

we have, by Lemma 5.8, that

��1
„

Z.K[L/
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�

n

n

− t

+1/2m �

�
1C

1

48m2
C

n

24

t t
C
.m� 1/.m� 2/

48m

�

� n− t n+ +1/2m
�

�
1C

1

48m2
C
.m� 1/.m� 2/

48m
Cˇ

�
;

where

ˇ D �
2nC 1=m

4
C

2nC 1=m

4
�

2nC 1=m

3
C

n

24

t t
;

under the notation (13), putting f D�nt C nC 1
2m

.

We apply Proposition 2.1 (and Remark 2.2) to the above formula of ��1
„

Z.K [L/,
putting �.t/D 1� nm.t C t�1� 2/ and ı.t/D�n.t � t�1/, to obtain

‚KL
.t1; t2/ �

1

4m
�.t1/�.t2/

�
.m2
C 2/�.t3/��.t1/�.t2/�m2

� 1
�

(17)

�
m ı.t1/ı.t2/

4

�
�.t3/C

1
2
�.t1/�.t2/C�.t1/�.t3/C

1
2
�.t3/

2
�

C
m ı.t1/

2

8
�.t2/

�
�.t2/��.t3/

�
where the additional part is the polynomial corresponding to�

; ˇ

�
:

Here, the marking of a circle is defined in (14). We calculate this for each diagram of
ˇ as �

;

�
D 2 ;

�
;

�
D�

1

2
;�

;

�
D� �

1

4
;

�
;

t t
�
D 4 � 8

t

t
C 4

t
:
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�
; ˇ

�
D�

2nC 1=m

24
�

2nC 1=m

6
Hence

C
n

6

�
� 2

t

t
C

t
�
:

Since the markings of a crossing and a circle stand for the labels of �.t/=2m and
�m=2�.t/ respectively, from the definition of the 2–loop polynomial, the additional
part of (17) is presented, modulo the equivalence (5), by

2nC 1=m

2
�.t1/�.t2/

�
�.t1/��.t3/

�
C

nm2

2
�.t1/

�
1� 2t2t�1

3 C t1
�
:

Therefore,

‚KL
.t1; t2/ �

1

4m
�.t1/�.t2/

�
.m2
C 2/�.t3/��.t1/�.t2/�m2

� 1
�

�
m ı.t1/ı.t2/

4

�
�.t3/C

1
2
�.t1/�.t2/C�.t1/�.t3/C

1
2
�.t3/

2
�

C
m ı.t1/

2

8
�.t2/

�
�.t2/��.t3/

�
C

2nC 1=m

2
�.t1/�.t2/

�
�.t1/��.t3/

�
C

nm2

2
�.t1/

�
1� 2t2t�1

3 C t1
�
:

By substituting �.t/D1�nm.tCt�1�2/ and ı.t/D�n.t�t�1/ and by symmetrizing
the formula, we obtain the following proposition.

Proposition 2.3 The 2–loop polynomial of the .4nmC 1; 2n/ two-bridge knot is
presented by

‚

 
n

m−
!
D

nm.n�m/

2

�
nm.nmC 1/T1;0C

nm.nm� 1/

2
�T2;0

�
3n2m2� nm� 1

3
�T2;1

�
;

where Tn;m ’s are defined in (1), and its reduced 2–loop polynomial is presented by

y‚

0B@
n

m−
1CAD nm.n�m/

6

�
6� .2nm� 1/.t C t�1

� 2/
�
:
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2.3 The 2–loop polynomial of the Kinoshita–Terasaka knot

In this section, we calculate the 2–loop polynomial for the Kinoshita–Terasaka knot,
from a surgery presentation of the knot. Unlike the case of the previous sections, we
need, not the rational version, but the original version of the Aarhus integral to calculate
the surgery, since the equivariant linking number of the surgery presentation is a scalar
in this case.

The Kinoshita–Terasaka knot KKT
m [16] is the knot given by

KKT
m D m :

The 2–loop polynomial ‚.KKT
m / of KKT

m is a polynomial in m, as we see later. Note,
in advance, that this polynomial consists only of terms of odd power of m, since
‚.KKT

�m/D‚.K
KT
m /D�‚.KKT

m /, where KKT
m denotes the mirror image of KKT

m .

The Kinoshita–Terasaka knot KKT
m is obtained from the following link K [L0 by

�1=m surgery along the middle component L0 ,

K[L0 D D D

D D ;

where in these pictures we mean by a thick line 2 parallel copies of the line.
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We calculate the Kontsevich invariant of K [ L0 comparing it to the Kontsevich
invariant of the following link,

K[L00 D ;

which is isotopic to the trivial 2–component link. Since

Z

0BBBB@
x y

1CCCCA� 1/24

1/24

1−

x y

�

�
1C

1

96

x

x

C
1

48

x

y

�
;

��1
„

Z

� x y �
�

t 1−

1−t

t t
x y

/24

t /24

�

�
1C

1

96

x

x

C
1

96

y

y

�
1

48

x

y

�
;

(18)

the Kontsevich invariant of K[L0 is presented by

��1
„

Z.K[L0/

�

1−t

t /24

t /24

t
t

1−

− t

t

t /24

t /24

t /24

t /24 C �

�
1C

1

32

t�1

t�1

C
1

24

t�1

t.t�1/

�
:
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Hence, the difference between the Kontsevich invariant of K [L0 and K [L0
0

is
given by

��1
„

Z.K[L0/��
�1
„

Z.K[L00/

�

1−t

t /24

t /24

t
t

1−

− t

t

t /24

t /24

t /24

t /24 �

1−t

t /24

t /24

t 1−t

t /24

t /24

t /24

t /24 :

By Lemma 5.3, the first diagram is equivalent, modulo diagrams of the form , to

1−

−

t

t /24

t /24

t 1−
t 1−

t
t

t /24

t /24

t /24

t /24 C �

�
1�

1

2

t�1

t.t�1/

�
�

. /

1−t

t /24

t /24

t 1−t

t /24

t /24

t /24

t /24 C �

�
1�

1

2

t�1

t.t�1/

�

t.t�1/

t

t�1

C
1

4

t�1

tCt�1

tCt�1

t�1

�
;

where we obtain the equivalence by Lemma 5.9, noting that diagrams of the form
contribute to ‚.KKT

m / by terms of m2 , though such terms vanish in ‚.KKT
m / as we

mentioned before. It follows from the above formulas that

��1
„

Z.K[L0/��
�1
„

Z.K[L00/ �
. /

�

�
�

t.t�1/

tC 1
2

t�1

C
1

4

t�1

tCt�1

tCt�1

t�1

�
:
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Since K[L0
0

is isotopic to the trivial link, we have that

��1
„

Z.K[L0/ �
. /

�

�
1C

1

48
�

t.t�1/

tC 1
2

t�1

C
1

4

t�1

tCt�1

tCt�1

t�1

�
:

Let L be L0 with �1=m framing. Then, similarly as in Section 2.1,

��1
„
LZ.K[L/ �

. /

1/2m−
�

�
1C

1=m2C 1

48
�
.m� 1/.m� 2/

48m

�

t.t�1/

tC 1
2

t�1

C
1

4

t�1

tCt�1

tCt�1

t�1

�
:

Further, from the definition of �,

��1 LZ.K[L/ �
. /

�1=2m

�

�
1C

2=m2C 1

48
�
.m� 1/.m� 2/

48m

�

t.t�1/

tC 1
2

t�1

C
1

4

t�1

tCt�1

tCt�1

t�1

�
:

The 2–loop part of the Kontsevich invariant of KKT
m is given by the Aarhus integral, as

follows,

Z.2–loop/.KKT
m /D

�
m=2

; �

t.t�1/

tC 1
2

t�1

C
1

4

t�1

tCt�1

tCt�1

t�1

�

Dm

� t.tCt�1�2/

t�1C1=2 �
1

4

tCt�1�2

t C t�1

t C t�1

�
:

Hence, by definition, the 2–loop polynomial is presented, modulo the equivalence (5),
by

‚K KT
m
.t1; t2/

� 12m
�
t1.t1C t�1

1 � 2/
�
t�1
2 C

1
2

�
�

1
4
.t1C t�1

1 � 2/.t2C t�1
2 /.t1t2C t�1

1 t�1
2 /

�
:

By symmetrizing this polynomial, we obtain the following proposition.

Proposition 2.4 The 2–loop polynomial of the Kinoshita–Terasaka knot KKT
m is

presented by

‚K KT
m
.t1; t2/Dm .2T1;0� 2T2;0� 2T2;1CT3;1/;
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where Tn;m ’s are defined in (1), and its reduced 2–loop polynomial is presented by

y‚K KT
m
.t/D 2m .t2

C t�2/:

We verify the proposition in Example 4.21 by using a surgery formula for the 2–loop
polynomial. We can also verify that the special values y‚K KT

m
.1/D y‚K KT

m
.�1/D 4m

satisfy Proposition 1.1, noting that

VK KT
m
.t/D 1C .t2m

� 1/.t C t�1
C 1/.t C t�1/.t C t�1

� 1/.t C t�1
� 2/:

2.4 The 2–loop polynomial of the Conway knot

In this section, we calculate the 2–loop polynomial for the Conway knot, from a surgery
presentation of the knot. Similarly as the case of the Kinoshita–Terasaka knot in the
previous section, we need, not the rational version, but the original version of the
Aarhus integral to calculate the surgery in this case.

The Conway knot KC
m (see [24]) is the knot given by

KC
m D

m ;

which is obtained from the Kinoshita–Terasaka knot by mutation. Similarly to the case
of the Kinoshita–Terasaka knot, the Conway knot is obtained from the following link
K[L0 by �1=m surgery along the middle component L0 ,

K[L0 D D ;

where we mean by a thick line 2 parallel copies of the line.
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We calculate the Kontsevich invariant of K [ L0 comparing it to the Kontsevich
invariant of the link

K[L00 D

which is isotopic to the trivial 2–component link. In a similar way to the case of the
Kinoshita–Terasaka knot, we calculate ��1

„
Z.K[L0/, where, instead of (18), we use

an equivalent form of it,

��1
„

Z

 x y !
�

t 1−

1− t
t

t

t
x y

/24

t /24

�

�
1C

1

96

x

x

C
1

96

y

y

�
1

48

x

y
t

�
:

It follows that

��1
„

Z.K[L0/�

1−t

t

t /24

t /24

1−

−

−

−

−

− t

t

t /24

t /24
−

t
t

t /24

− t /24

C �

�
1C

1

32

t�1

t�1

C
1

24

t�1

t.t�1/

�
1

48
t�1

�
:
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Hence

��1
„

Z.K[L0/��
�1
„

Z.K[L00/

�

1−t

t

t /24

t /24

1−

−

−

−

−

− t

t

t /24

t /24
−

t
t

t /24

− t /24

�

1− t

t

t /24

t /24

1−

−

−

t

t /24

t /24

−

−

−

t

t/24

− t/24

By Lemma 5.3, the first diagram is equivalent, modulo diagrams of the form , to

t−t 1− 1−

1− t

t

t /24

t /24

1−

−
−

t

t /24

t /24

−

−

−

t

t/24

−t/24

C �

 
1�

1

2

t�1

t�1

tt

!

�

. / 1− t

t

t /24

t /24

1−

−
−

t

t /24

t /24

−

−

−

t

t /24

−t /24

−

1−t

1−t
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where the equivalence is obtained by Lemma 5.10. Hence

��1
„

Z.K[L0/��
�1
„

Z.K[L00/ �
. /

1−

−−

− − −

−−

−

−

−

t

t

t /24

t /24

1−t
t /24

t /24

−

−−

−

−

−

t1−t1−t
t /24

t /24

�
1−

−

−−

−

−

−

t

t

t /24

t /24

1−t
t /24

t /24

−

−−

−

−

−

t

t /24

t /24

Since the second diagram is related to the trivial link, the diagrams of the form
in the second diagram cancel with each other. Hence, the degree 2 part of the first
diagram is calculated, as follows,

−

−

− −

1−t

1−t

1−t
t

D

−

−

1 1

1

−t
t

t t( )
�

−

−

1 1

1

−t

t t( )
D

−
−
−

1 1
1
1

−t
t

t t( )
C �

t.t�1/

t�1 :

Therefore,

��1
„

Z.K[L0/��
�1
„

Z.K[L00/ �
. / −

−
−

1 1
1
1

−t
t

t t( )
�

 
1C

t.t�1/

t�1

!
� :

Since K[L0
0

is isotopic to the trivial link, we have that

��1
„

Z.K[L0/ �
. / −

−
−

1 1
1
1

−t
t

t t( )
�

 
1C

1

48
C

t.t�1/

t�1

!
:

Let L be L0 with �1=m framing. Then, similarly as in Section 2.1,

��1
„
LZ.K[L/ �

. / −

−

−
−

1 1
1
1

−t
t

t t( )
1/2m

�

 
1C

1=m2C 1

48

�
.m� 1/.m� 2/

48m
C

t.t�1/

t�1

!
:
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Further, from the definition of �,

��1 LZ.K[L/ �
. /

�1=2m
t.t�1/ t�1

t�1
�

 
1C

t.t�1/

t�1
C

1

2

t.t�1/

t�1 t�1

C
2=m2C 1

48
�
.m� 1/.m� 2/

48m

!
:

The 2–loop part of the Kontsevich invariant of KC
m is given by the Aarhus integral, as

follows,

Z.2–loop/.KC
m/D

�
m=2

;
1

2

�
t.t�1/ t�1

t�1

�2

C
1

2

t.t�1/

t�1 tC1

�

Dm3

�
1

2

t2.tCt�1�2/

t�2.tCt�1�2/

t C t�1� 2

C

t.tCt�1�2/

t�1.tCt�1�2/

t C t�1� 2

�

t3.tCt�1�2/

t C t�1� 2

t C t�1� 2

�
1

2

t C t�1� 2

t C t�1� 2

t C t�1� 2

�
C

m

2

t.t � 1/

t C 1

t�1 � 1

:

Hence, by definition, the 2–loop polynomial is presented, modulo the equivalence (5),
by

‚K C
m
.t1; t2/

� 12m3.t1Ct�1
1 �2/.t2Ct�1

2 �2/.t1t2Ct�1
1 t�1

2 �2/
�

1
2
t2
1 t�2

2 Ct1t�1
2 �t3

1�
1
2

�
C 6m t1.t1� 1/.t2C 1/.t1t2� 1/:

By symmetrizing this polynomial, we obtain the following proposition.

Proposition 2.5 The 2–loop polynomial of the Conway knot KC
m is presented by

‚K C
m
.t1; t2/Dm .2T1;0� 2T2;0� 2T2;1CT3;1/

Cm3.t1t�1
2 C t�1

1 t2� 2/.t2
1 t2C t�2

1 t�1
2 � 2/.t1t2

2 C t�1
1 t�2

2 � 2/

� .t1C t�1
1 � 2/.t2C t�1

2 � 2/.t1t2C t�1
1 t�1

2 � 2/

Dm .2T1;0� 2T2;0� 2T2;1CT3;1/

C2m3
�
T1;0CT2;1�T3;1CT4;0CT4;2CT5;0�T5;1�

1
2
T6;2CT6;3

�
;
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where Tn;m ’s are defined in (1), and its reduced 2–loop polynomial is presented by

y‚K C
m
.t/D 2m .t2

C t�2/:

We can verify that the special values y‚K C
m
.1/D y‚K C

m
.�1/D4m satisfy Proposition 1.1,

since the Conway knot and the Kinoshita–Terasaka knot are mutant and have the same
Jones polynomial. Proposition 2.4 and Proposition 2.5 show that the 2–loop polyno-
mial is sensitive to mutation, unlike the Alexander, Jones, HOMFLY and Kauffman
polynomials.

3 The 2–loop polynomial for knots of genus 1

In this section, we give explicit presentations of the 2–loop polynomial for knots of
genus 1 in Theorem 3.1 and Theorem 3.7. We give the presentations in Section 3.1 and
prove Theorem 3.1 in Section 3.2–Section 3.4.

3.1 Presentation of the 2–loop polynomial for knots of genus 1

In this section, we give explicit presentations of the 2–loop polynomial for knots of
genus 1, in terms of finite type invariants of a tangle which gives a part of a spine of
a Seifert surface of the knot in Theorem 3.1, and in terms of derivatives of the Jones
polynomial in Theorem 3.7.

Let T be a 2–component framed tangle, and let KT be the knot obtained from T as
follows,

(19) T D T

x

y

; KT D T (2) ;

where dotted lines in the picture of T imply strands possibly knotted and linked in some
fashion, and T .2/ denotes the tangle obtained from T by replacing each component
of T with 2 parallel copies of it. Any knot of genus 1 can be presented by KT for
some T .
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In particular, when T is of the following form (recalling that a boxed “n” implies the
n full twists), its Kontsevich invariant is presented by

(20) Z

0BBBB@ k

x

y

−

n+k

m+k

1CCCCA�
x

y

k

m/2

n/2

�

�
1C

1

96

x

x

C
1

96

y

y

�
k

24

x x

y y

�
;

where we obtain the formula in a similar way as in Section 2.1.

Theorem 3.1 Let T and KT be as in (19). We present Z.T / by

Z.T /�

x

y

k

m/2

n/2

�

�
1C

�
vxx

2

2
C

1

96

� x

x

C

�
v

yy
2

2
C

1

96

� y

y

C
v

xy
2

2

x

y

C

�
�

k

24
C v3

�x x

y y

�
with some integers n;m; k; vxx

2
; v

yy
2
; v

xy
2
; v3 . Then, the 2–loop polynomial of KT is

presented by

‚KT
.t1; t2/D

�
.nCm/.d � nm

2
/� k.kC 1

2
/.kC 1/C 12v3

�
(21)

�
�
� d.d � 1/T1;0�

1
2
d.d C 1/T2;0C

�
d2
C

1
3
d � 1

3

�
T2;1

�
C 12

�
�mvxx

2 � nv
yy
2
C .kC 1

2
/v

xy
2
C 3v3

�
�
��

d2
� d C 1

6

�
T1;0C

1
2
d2T2;0�

�
d2
�

1
3
d
�
T2;1

�
;

where we put d D nm� k2� k , and Tn;m ’s are defined in (1).

We give a proof of the theorem in Section 3.2.

Remark 3.2 Rozansky [40] conjectured that degreet1

�
‚K .t1; t2/

�
� 2g.K/ for the

genus g.K/ of K , which we prove in Theorem 4.7. In particular, we can verify this
formula for knots of genus 1 concretely by Theorem 3.1; see also Table 1.

Remark 3.3 Rozansky [40] also conjectured that the 2–loop polynomial is a polyno-
mial with integer coefficients. We show this for the knots of genus 1 by Theorem 3.1, as
follows. Since the latter half of (21) has integer coefficients, it is sufficient to show that
the former half has integer coefficients. Note that the first line of (21) is an integer. If d
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is congruent to 1 modulo 3, then the second line of (21) has integer coefficients, and so
does ‚.KT /. Suppose that d is not congruent to 1 modulo 3. Since k.kC 1

2
/.kC 1/

is divisible by 3, it is sufficient to show that .nCm/.d� nm
2
/ is divisible by 3. Suppose

that nCm is not divisible by 3. Then, nm is congruent to 0 or 1 modulo 3. If nm is
congruent to 0, then d is congruent to 0. If nm is congruent to 1, then d is congruent
to 2. In any case, d � nm

2
is divisible by 3. Therefore, ‚.KT / has integer coefficients.

An alternative presentation of the formula of ‚.KT / in Theorem 3.1 is that the 2–loop
part of logt �

�1Z.KT / is given by

Z.2–loop/.KT /D
�nCm

12
.d �

nm

2
/�

1

12
k.kC

1

2
/.kC 1/C v3

�

�

�
�

3

2

.tCt�1�2/=�.t/

C
3

4

.t�t�1/=�.t/

.t�t�1/=�.t/
C

�
d � 1

4

� .tCt�1�2/=�.t/

.tCt�1�2/=�.t/

�

�
1

2

�
mvxx

2 C nv
yy
2
�

�
kC

1

2

�
v

xy
2
� 3v3

� .tCt�1�2/=�.t/

;

where we put �.t/D 1C d.t C t�1� 2/, which is equal to the Alexander polynomial
of KT .

Recall that the Conway polynomial rL.z/ 2 ZŒz� (which we also denote by r.L/) of
an unframed oriented link L is defined by the skein relation

r

� �
�r

� �
D z r

� �
and the normalization r.the trivial knot/D 1. Note that rL.t

1=2� t�1=2/D�K .t/.
The scalars in the formula of Z.T / in Theorem 3.1 are elementarily calculated by the
following proposition.

Proposition 3.4 Under the assumption of Theorem 3.1,

nD .framing of yT1/; mD .framing of yT2/; k D lk. yT1; yT2/;

r. yT1/D 1� vxx
2 z2

CO.z4/; r. yT2/D 1� v
yy
2

z2
CO.z4/;

r. yT1[
yT2/D kz� 2v3z3

CO.z5/; r. yT /D 1� .vxx
2 C v

yy
2
C v

xy
2
/z2
CO.z4/;

where yT1[
yT2 and yT are framed links given by
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yT1[
yT2 D T

yT1

yT2

; yT D T :

When we calculate the Conway polynomial in the proposition, we forget the framing.
The proof of the proposition is an elementary exercise; for a reference, see eg [33].

Alternatively, in the linear skein modulo the relation

� D z ;

some formulas of Proposition 3.4 are rewritten

T1 D
�
1� vxx

2 z2
CO.z4/

�
;

T2 D
�
1� v

yy
2

z2
CO.z4/

�
;

T D
�
1� .vxx

2 C v
yy
2
C v

xy
2
/z2
CO.z4/

�
C
�
kz� 2v3z3

CO.z5/
�

:

Corollary 3.5 Under the assumption of Theorem 3.1, the reduced 2–loop polynomial
is presented by

y‚KT
.t/

D
�
.nCm/.d � nm

2
/� k.kC 1

2
/.kC 1/C 12v3

��
� 2� 2dC1

3
.t C t�1

� 2/
�

� 4
�
mvxx

2 C nv
yy
2
� .kC 1

2
/v

xy
2
� 3v3

�
�KT

.t/;

where �KT
.t/D 1C d.t C t�1� 2/ is the Alexander polynomial of KT .

Proof By definition, we obtain y‚K .t/ from ‚K .t1; t2/ by replacing

T1;0 7�! 2; T2;0 7�! 2.t C t�1
C 2/; T2;1 7�! t C t�1

C 4:

Hence, we obtain the corollary from Theorem 3.1.

Example 3.6 For the pretzel knot K of type .p; q; r/, the reduced 2–loop polynomial
and the Jones polynomial are given by

y‚K .t/D
1

16

�
.pC qC r/.4d C 1/Cpqr

��
�2�

2d C 1

3
.t C t�1

� 2/
�
;
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VK .t/D 1�
t2C t C 1

.t C 1/2
.tpCqCrC1

C tpCqCr�1
� tpCq

� tpCr
� tqCr

C 1/;

where d D .pqC qr C rpC 1/=4; see Section 3.3 for a presentation of the 2–loop
polynomial of the pretzel knot in terms of p , q , r . By the following formulas

y‚K .1/D�
1
8

�
.pC qC r/.4d C 1/Cpqr

�
;�

the coefficient of h3 in VK .e
h/
�
D�

3
8

�
.pC qC r/.4d C 1/Cpqr

�
;

y‚K .�1/D� 1
24

�
.pC qC r/.4d C 1/Cpqr

�
.1� 4d/;

VK .�1/D�K .�1/D 1� 4d;

V 0K .�1/D 1
2

�
.pC qC r/.4d C 1/Cpqr

�
;

we can verify the formula in Proposition 1.1.

Theorem 3.7 The 2–loop polynomial ‚K .t1; t2/ of a knot K of genus 1 is presented
by

‚K .t1; t2/D
1

24

�
V 000K .1/C 3V 00K .1/

���
d2
� d C 1

3

�
.T2;1�T1;0/�

1
2
d.d � 1/T2;0

�
�

1
16

V 0K .�1/
�
.5d2

� 5d C 1/T1;0C
1
2
d.5d � 1/T2;0�

�
5d2
�

7
3
d C 1

3

�
T2;1

�
;

where VK .t/ is the Jones polynomial of K , and d D 1
2
�00

K
.1/D�1

6
V 00

K
.1/, and Tn;m ’s

are defined in (1).

Proof We choose a tangle T in (19) such that KT is isotopic to K . By the formula
of Corollary 3.5 at t D˙1, we have that

.nCm/.d�nm
2
/�k.kC 1

2
/.kC1/C12v3 D�

3
4

�
y‚K .1/C

1

4d � 1
y‚K .�1/

�
D�

1
24

�
V 000K .1/C 3V 00K .1/C

3
2
V 0K .�1/

�
;

4
�
mvxx

2 Cnv
yy
2
�.kC1

2
/v

xy
2
�3v3

�
D�

1
2

�
y‚K .1/C

3

4d � 1
y‚K .�1/

�
D

1
36

�
V 000K .1/C 3V 00K .1/C

9
2
V 0K .�1/

�
;

where we obtain the second and fourth equality by Proposition 1.1, noting that
VK .�1/ D �K .�1/ D 1 � 4d . By substituting those formulas into the formula
of Theorem 3.1, we obtain the required formula.

From the theorem, we obtain the following corollary.
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Corollary 3.8 The reduced 2–loop polynomial y‚K .t/ of a knot K of genus 1 is
presented by

y‚K .t/D
1

72
.t C t�1

C 2/
�
V 000K .1/C 3V 00K .1/

�
C

1
48
.t C t�1

� 2/V 0K .�1/VK .�1/;

where VK .t/ is the Jones polynomial of K .

3.2 Proof of Theorem 3.1

The aim of this section is to prove Theorem 3.1. We reduce the proof to Proposition 3.9
below.

We denote by T0 the tangle in (20), that is, we put

(22) T0 D k

x

y

−

n+k

m+k

; KT0
D

kn+k m+k−
;

for integers n;m; k .

Proposition 3.9 The 2–loop polynomial of the knot KT0
is presented by

‚.KT0
/D

�
.nCm/.d � nm

2
/� k.kC 1

2
/.kC 1/

�
�
�
� d.d � 1/T1;0�

1
2
d.d C 1/T2;0C

�
d2
C

1
3
d � 1

3

�
T2;1

�
;

where we put d D nm� k2� k as before, and Tn;m ’s are defined in (1).

We give two proofs of the proposition; one is a proof using the symmetry of KT0
,

which we give in Section 3.3, and the other is a proof using a surgery presentation of
KT0

, which we give in Section 3.4.

Example 3.10 When k D 0, the knot KT0
is isotopic to the .�4nmC 1; 2n/ two-

bridge knot. Hence, by Proposition 2.3,

‚.KT0
/
ˇ̌
kD0
D

1

2
nm.nCm/

�
�
� nm.nm� 1/T1;0�

1
2
nm.nmC 1/T2;0C

�
n2m2

C
1
3
nm� 1

3

�
T2;1

�
:

This is a particular value of the proposition.
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Proof of Theorem 3.1 By definition, ‚.KT / is determined by Z.KT /. Further,
from properties of the Kontsevich invariant, Z.KT / is determined by Z.T /. Hence,
‚.KT / can be determined by Z.T /. In particular, ‚.KT / does not depend on the
degree > 2 part of Z.T /, because such a part can be presented by Jacobi diagrams
with at least 3 trivalent vertices, and we can show, in the same way as the proof
of Lemma 3.11 below, that such a Jacobi diagram changes Z.KT / by .> 2/–loop
diagrams. Therefore, ‚.KT / can be determined by the degree � 2 part of Z.T /.

Let T0 be as in (22). Then,

Z.T / � Z.T0/C
vxx

2

2

x

x

C
v

yy
2

2

y

y

C
v

xy
2

2

x

y

C v3

x x

y y

:

Therefore, T0 is related to some T 0 , satisfying that Z.T /�Z.T 0/
�
hence, ‚.KT /D

‚.KT 0/
�
, by clasper surgery along graph claspers of the form,

x

y

;

x

y

;

x

y

;

y

x

:

See Section 4.3 for graph claspers. Hence, by Lemma 3.11 and Lemma 3.12,

‚.KT / � ‚.KT0
/� 6

�
mvxx

2 C nv
yy
2
� .kC 1

2
/v

xy
2

�
.t1C t�1

1 � 2/�.t2/�.t3/

C v3 � 12
�

3
4
.t1� t�1

1 /.t2� t�1
2 /C

�
d � 1

4

�
.t1C t�1

1 � 2/.t2C t�1
2 � 2/

�
�.t3/:

By symmetrizing it, we have that

‚.KT /D‚.KT0
/�

�
mvxx

2 C nv
yy
2
� .kC 1

2
/v

xy
2

�
� 12

��
d2
� d C 1

6

�
T1;0C

1
2
d2T2;0�

�
d2
�

1
3
d
�
T2;1

�
C v3 � 12

��
2d2
� 2d C 1

2

�
T1;0C

�
d2
�

1
2
d
�
T2;0C

�
� 2d2

C
4
3
d � 1

3

�
T2;1

�
:

Therefore, by Proposition 3.9, we obtain the required formula.

A general form of the following lemma is given in Proposition 4.17.
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Lemma 3.11 The changes of the 2–loop polynomial for surgery along the following
graph claspers are presented, modulo the equivalence (5), by

‚

0BBBBBB@ kn+k m+k−

1CCCCCCA�‚
0BB@ kn+k m+k−

1CCA � �12 m .t1Ct�1
1 �2/�.t2/�.t3/;

‚

0BBBBBB@ kn+k m+k−

1CCCCCCA�‚
0BB@ kn+k m+k−

1CCA � �12 n .t1Ct�1
1 �2/�.t2/�.t3/;

‚

0BBBBBB@ kn+k m+k−

1CCCCCCA�‚
0BB@ kn+k m+k−

1CCA� 12
�
kC1

2

�
.t1Ct�1

1 �2/�.t2/�.t3/:

Proof We show the first formula of the lemma. The first knot of the formula is
rewritten as

kn+k m+k− D

kn+k m+k−

D
k

x y

z
w

n+k m+k−
;

where components depicted in thin lines imply surgery along the components. Hence,
by Lemma 4.16, the difference of the Kontsevich invariant of the two knots in the first
formula is equivalent (modulo “�”) to

xx x x x xy y y y zz w w

n/2 k m/2 t 1−

:
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The equivariant linking matrix and its negative inverse are given by

M D

0BB@
n k 1 0

k m 0 1

1 0 0 t � 1

0 1 t�1� 1 0

1CCA ;

�M�1
D

1

�.t/

0BB@
�m.t C t�1� 2/ t � 1C k.t C t�1� 2/ � �

t�1� 1C k.t C t�1� 2/ �n.t C t�1� 2/ � �

� � � �

� � � �

1CCA ;

where �.t/D 1C .nm�k2�k/.tC t�1�2/, noting that we do not need the omitted
entries in this proof. Hence, the 2–loop part of the Kontsevich invariant of the result of
the surgery is given by the rational version of the Aarhus integral as follows,

�
˛ ;

x

x

�
D �m

.tCt�1�2/=�.t/

;

where ˛ D
x x

�m.tC t�1�2/=2

y x

t�1Ck.tCt�1�2/

y y

�n.tC t�1�2/=2

:

The corresponding 2–loop polynomial gives the right-hand side of the first formula of
the lemma.

The other formulas of the lemma are obtained, in the same way, from

�
˛ ;

y

y

�
D � n

.tCt�1�2/=�.t/

;

�
˛ ;

x

y

�
D
�
kC1

2

� .tCt�1�2/=�.t/

:

A general form of the following lemma is given in Proposition 4.18.
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Lemma 3.12 The change of the 2–loop polynomial for surgery along the following
graph clasper is presented, modulo the equivalence (5), by

‚

0BBBBBB@ kn+k m+k−

1CCCCCCA�‚
0BB@ kn+k m+k−

1CCA
� 12

�
3
4
.t1� t�1

1 /.t2� t�1
2 /C

�
d � 1

4

�
.t1C t�1

1 � 2/.t2C t�1
2 � 2/

�
�.t3/;

where d D nm� k2� k .

Proof Similarly to the proof of Lemma 3.11, the left-hand side of the formula of the
lemma is given by

�
˛ ;

x x

y y

�
D

�m.tCt�1�2/=�.t/

�n.tCt�1�2/=�.t/
�

.t�1Ck.tCt�1�2//=�.t/

.t�1�1Ck.tCt�1�2//=�.t/
C

1

2

.t�t�1/=�.t/

.t�t�1/=�.t/
;

D
3

4

.t�t�1/=�.t/

.t�t�1/=�.t/
C

�
d�

1

4

� .tCt�1�2/=�.t/

.tCt�1�2/=�.t/
;

where ˛ is the one given in the proof of Lemma 3.11. The corresponding 2–loop
polynomial gives the right-hand side of the formula of the lemma.

3.3 Proof of Proposition 3.9 by using symmetry

In this section, we give a proof of Proposition 3.9 using the symmetry of a pretzel knot,
which is isotopic to KT0

.

The pretzel knot of type .p; q; r/ for odd integers p; q; r is given by

p/2 q/2 r/2 ;
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where we mean k half twists by a boxed “k=2”. This is isotopic to KT0
given in (22)

putting p D 2nC 2kC 1, q D�2k � 1, r D 2mC 2kC 1. We put

P .p; q; r/D‚

0B@ p/2 q/2 r/2

1CA :

Then, the formula of Proposition 3.9 is rewritten as

(23) P .p; q; r/D 1
16

�
.pC qC r/.4d C 1/Cpqr

�
�
�
� d.d � 1/T1;0�

1
2
d.d C 1/T2;0C

�
d2
C

1
3
d � 1

3

�
T2;1

�
;

where d D .pqC qr C rpC 1/=4. The aim of this section is to prove this formula.

Proof of Proposition 3.9 We show (23), which is equivalent to Proposition 3.9. Let
P1.p; q; r/ be the coefficient of T1;0 in P .p; q; r/. Putting

yP1.p; q; r/D P1.p; q; r/�
1

16

�
.pC qC r/.4d C 1/Cpqr

��
� d.d � 1/

�
;

we show that yP1.p; q; r/D 0; the other part of (23) can be shown in the same way.

By the symmetry of the pretzel knot, P .p; q; r/ (hence, yP1.p; q; r/) is a symmetric
polynomial in p; q; r . Hence, yP1.p; q; r/ can be presented by some polynomial
F.�1; �2; �3/ in the elementary symmetric polynomials �1 D p C q C r , �2 D

pq C qr C rp , �3 D pqr . By comparing the pretzel knot with its mirror image,
P .p; q; r/ D �P .�p;�q;�r/, hence, yP1.p; q; r/ D � yP1.�p;�q;�r/. Therefore,
F.�1; �2; �3/D�F.��1; �2;��3/. Further, by Lemma 3.15,

P1.p; q; r/D P1.pC 2r;�r; qC 2r/C
r.r2� 1/

4
�
�
� d.d � 1/

�
;

and hence, yP1.p; q; r/D yP1.pC 2r;�r; qC 2r/:

Let � 0
1
; � 0

2
; � 0

3
be the elementary symmetric polynomials in p0 D pC 2r , q0 D �r ,

r 0 D qC 2r . Then, putting ˛ D pC qC 2r , ˇ D .pC r/.qC r/, we have that

�1 D ˛� r; � 01 D ˛C r;

�2 D �
0
2 D ˇ� r2;

�3 D .ˇ�˛r C r2/r; � 03 D�.ˇC˛r C r2/r:
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It follows that

F
�
˛� r; ˇ� r2; .ˇ�˛r C r2/r

�
D F

�
˛C r; ˇ� r2;�.ˇC˛r C r2/r

�
:

Therefore, by Lemma 3.13 below, F.�1; �2; �3/ (hence, yP1.p; q; r/) is equal to 0, as
required.

Lemma 3.13 Let F.�1; �2; �3/ be a polynomial in indeterminates �1; �2; �3 with
rational coefficients, satisfying that

F.�1; �2; �3/D�F.��1; �2;��3/;

F
�
˛� r; ˇ� r2; .ˇ�˛r C r2/r

�
D F

�
˛C r; ˇ� r2;�.ˇC˛r C r2/r

�
;

where we also regard ˛; ˇ; r as indeterminates in this lemma. Then, F.�1; �2; �3/D 0.

Proof Put F.�1; �2; �3/D
PN

nD0 fn.�1; �3/�
n
2

. Putting �2D 0 and ˇD r2 , we have
that f0.�1; �3/D�f0.��1;��3/ and f0

�
˛�r; .2r�˛/r2

�
Df0

�
˛Cr;�.2rC˛/r2

�
.

Hence, by Lemma 3.14 below, f0.�1; �3/D 0. Since F.�1; �2; �3/=�2 satisfies the
assumption of the lemma, the lemma is shown by induction on N .

Lemma 3.14 Let G.�1; �3/ be a polynomial in �1; �3 with rational coefficients,
satisfying that

G.�1; �3/D�G.��1;��3/;

G
�
˛� r; .2r �˛/r2

�
DG

�
˛C r;�.2r C˛/r2

�
;

where we regard ˛; r as indeterminates in this lemma. Then, G.�1; �3/D 0.

Proof From the assumption of the lemma, G
�
˛� r; .2r �˛/r2

�
is equal to a linear

sum of r even˛odd with rational coefficients. Putting ˛ D cr , it is a polynomial in
.c�1/r , .c�2/r3 , which is equal to a linear sum of r oddcodd with rational coefficients.
In particular, the coefficient of rk for each odd k is equal to a linear sum of

.c � 1/k ; .c � 1/k�3.c � 2/; .c � 1/k�6.c � 2/2; � � � ;

which is equal to a linear sum of codd . Hence, it is equal to 0.

Lemma 3.15

P .p; q; r/D P .pC 2r;�r; qC 2r/

C
r.r2� 1/

4
�
�
� d.d � 1/T1;0C

�
�

1
2
d2
�

1
2
d
�
T2;0C

�
d2
C

1
3
d � 1

3

�
T2;1

�
:

Geometry & Topology, Volume 11 (2007)



On the 2–loop polynomial of knots 1403

Proof Recall a presentation (22) of the pretzel knot of type .p; q; r/. We deform it
by isotopy as follows,

ki j
D

ki j
D k ji+1

D k ji+1 D kji+1 −1 ;

where these pictures present knotted framed graphs (with blackboard framing) such that
by a graph we mean the knot of the boundary of a ribbon graph given by the framed
graph. As in (19), the first and the last terms are given by the following tangles,

i

j

k

x

y

;

i+1

j

k−1

x

y

:

The Kontsevich invariant of them are given by (20) and by

Z

0B@ i+1

j

k−1

x

y

1CA�
x

y

j

(i+j+1)/2

(j+k)/2

�

�
1C

1

96

x

x

C
1

96

y

y

�
j

24

x x

y y

�
j .j C 1/

4

x

y

C
j .j C 1/.2j C 1/

12

x x

y y

�
;

where we obtain the formula in a similar way as in Section 2.1; Lemma 3.16 and
Lemma 5.3 are useful when we calculate the formula. Hence, by Lemma 3.11 and
Lemma 3.12 and by putting j D .r � 1/=2,

P .p; q; r/D P .pC 2r;�r; qC 2r/

�
r2� 1

4
� 3.�r/

�
�
�
d2
� d C 1

6

�
T1;0�

1
2
d2T2;0C

�
d2
�

1
3
d
�
T2;1

�
C

r.r2� 1/

4
�
��

2d2
� 2d C 1

2

�
T1;0C

�
d2
�

1
2
d
�
T2;0C

�
� 2d2

C
4
3
d � 1

3

�
T2;1

�
:

This gives the required formula.
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Lemma 3.16 For scalars b and c ,

c

x y
b �

c

x y
b

�

�
1�

bc

2
x y C

bc2

2

x

x

y

y

�
:

Proof By induction on the number of chords labeled by c , we can show that

c

b
�

c

b
C

c
�

�
�

bc

2
C

bc2

2

�
:

The required formula can be shown from the above formula by induction on the number
of chords labeled by b . A detailed proof is left to the reader.

3.4 Proof of Proposition 3.9 from surgery presentations

In this section, we give another proof of Proposition 3.9 by using a surgery presentation
of KT0

. Indeed this proof might be somehow tedious comparing to the previous proof,
but the way of this proof is generalized to the case of higher genus later in Section 4.

Proof of Proposition 3.9 The knot KT0
given in (22) is obtained from the following

link by surgery along the components of thin lines. This link is isotopic to the second
link, which we denote by K[L, where K denotes the knot of thick line and L denotes
the link of thin lines.

kn+k m+k−

D

k

x y

z
w

n+k m+k−

DK[L

We calculate the Kontsevich invariant of K[L by decomposing it into the following
parts; each part can be calculated in a similar way as in Section 2.1,

Z

0@ k

x y

n+k m+k−

1AD
x y

n/2

k

m/2

�

�
1C

1

96

x

x

C
1

96

y

y

�
k

24

x x

y y

�
;

Z

0@
z

x

1AD
z

x

�

�
1C

1

96

x

x

C
1

96

z

z

�
1

24

x x

z z

�
;
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Z

0@ z

z

w

w

1AD z z w w

1−
�

�
1C

1

24

z z

w w

�
;

��1
„

Z

0@ z w

1AD z w

t �

�
1C

1

96

z

z

C
1

96

w

w

�
1

24

z z

w w

t t
�
:

By composing them, we obtain Z.K[L/. Since LZ.K[L/ is obtained from Z.K[L/

by connect-summing � to each component of L by definition, we have that

��1
„
LZ.K[L/D

x
y

z
w

n/2

k

m/2

t
1−

� .1Cˇ1/;

where

12ˇ1D
1

2

x

x

C
1

2

y

y

C
1

2

z

z

C
1

2

w

w

�
k

2

x x

y y

�
1

2

x x

z z

�
1

2

y y

w w

C
1

2

z z

w w

�
1

2

z z

w w

t t
:

Further, by Lemma 5.2,

x
y

z
w

n/2

k

m/2

t
1−

�

x
y

z
w

n/2

k

m/2

t
1−

�

�
1C

k2

8

x

y

C
1

8

x

z

C
1

8

y

w

�
k3

12

x x

y y

�
1

12

x x

z z

�
1

12

y y

w w

�
:

Hence, by Lemma 5.15,

��1
„;x;y

LZ.K[L/ �
.~/

xx

x x
y y

y y

z
w

n/2

k

m/2

t
1−

� .1Cˇ1Cˇ2/;

12ˇ2 D
n2

4

x

x

C
m2

4

y

y

C
3k2C nkCmk

2

x

y

C
nC 3

2

x

z

C
mC 3

2

y

w

where

� k3
x x

y y

�

x x

z z

�

y y

w w

C
k

2

x y

z z

C
k

2

x y

w w

:
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Further, by Lemma 5.17, Lemma 5.19, and Lemma 5.20,

��1 LZ.K[L/ �
.~/ x x

n=2

x y

k

y y

m=2

x z y w z w

t�1

� .1Cˇ1Cˇ2Cˇ3/;

12ˇ3 D
3

2

z

w

tC1

C

z z

w w

�

z z

w w

t t
� 3

z y

w w
t

where

C
1

2

x x

z w
t�1 C

1

2

y y

z w
t�1 C

1

2

z z z

w

t

2t 1− C
1

2

z

w w w
t

2t 1− :

The equivariant linking matrix M is given by

M D

0BB@
n k 1 0

k m 0 1

1 0 0 t � 1

0 1 t�1� 1 0

1CCA ; �M�1
D

1

�.t/

�
FX Y .t/

�
;

where �.t/D 1C .nm� k2� k/.t C t�1� 2/ and FX Y .t/ is given by

Fxx.t/D�m.t C t�1
� 2/; Fxy.t/D t � 1C k.t C t�1

� 2/;

Fxz.t/D�1C k.t�1
� 1/; Fxw.t/D�m.t � 1/;

Fyy.t/D�n.t C t�1
� 2/; Fyz.t/D�n.t�1

� 1/;

Fyw.t/D�1C k.t � 1/; Fzz.t/D n;

Fzw.t/D kC .nm� k2/.t � 1/; Fww.t/Dm;

and FYX .t/D FX Y .t
�1/. Therefore, we obtain ��1Z.KL/ from ��1 LZ.K[L/ by

surgery along L using the rational version of the Aarhus integral,

��1Z.KL/D

Z
��1 LZ.K[L/ dx dy dz dw �

˝
˛; .1Cˇ1Cˇ2Cˇ3/

˛
where

˛ D
Y

X ;YDx;y;z;w

t

Y X

FXY.t/=2

D expt
� X

X ;YDx;y;z;w

Y X

FXY.t/=2

�
(24)
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12.ˇ1Cˇ2Cˇ3/D
n2C 2

4

x

x

C
m2C 2

4

y

y

C
1

2

z

z

C
1

2

w

w

C
3k2C nkCmk

2

x

y

C
nC 3

2

x

z

C
mC 3

2

y

w

C
3

2

z

w

tC1

� .k3
C

k

2
/

x x

y y

�
3

2

x x

z z

�
3

2

y y

w w

C
3

2

z z

w w

�
3

2

z z

w w

t t
� 3

z y

w w
t

C
1

2

x x

z w
t�1C

1

2

y y

z w
t�1 C

k

2

x y

z z

C
k

2

x y

w w

C
1

2

z z z

w

t

2t 1− C
1

2

z

w w w
t

2t 1− :

We calculate the corresponding part of each diagram of 12.ˇ1 C ˇ2 C ˇ3/ in the
formula of ��1Z.KL/ as follows. Noting that, by definition,�

˛;

X

Y

�
D

FX Y .t/=�.t/

for X;Y D x;y; z; w , we have that

�
˛;

x

x

�
D�3m ;

�
˛;

y

y

�
D�2n ;

�
˛;

x

y

�
D .1C2k/ ;

�
˛;

z

z

�
D n ;

�
˛;

w

w

�
Dm ;

�
˛;

x

z

�
D

�
˛;

y

w

�
D� Ck ;

�
˛;

z

w

tC1
�
D k

�
2 C

�
;

where, in this section, we define the markings by

(25) D

tCt�1�2
2�.t/

; D

t�t�1

2�.t/

; D

1
�.t/

:

Further, noting that, by definition,

�
˛;

X Y

Z W

�
D

FX Y .t/=�.t/

FZW .t/=�.t/

�

FX W .t/=�.t/

FZ Y .t/=�.t/

C
1

2

.FXZ .t/�FZX .t//=�.t/

.FY W .t/�FW Y .t//=�.t/
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for X;Y D x;y; z; w , we have that�
˛;

x x

y y

�
D .4d � 1/ � 3 ;�

˛;

x x

z z

�
D

�
˛;

y y

w w

�
D� � 2.dCk2/ � k2

� 3k2 ;�
˛;

z z

w w

�
D .dCk/

�
� 2k � .dCk/ � 3.dCk/

�
;�

˛;

x y

z z

�
D kn

�
2 C C3

�
;�

˛;

x y

w w

�
D km

�
2 C C3

�
;�

˛;

z z

w w

t t
�
D .dCk/ C2kd � d2

� 3d2 ;�
˛;

z y

w w
t

�
D k

�
C Cd � 3d

�
;�

˛;

x x

z w
t�1

�
D 2m

�
C2d

�
;�

˛;

y y

z w
t�1

�
D 2n

�
C2d

�
;�

˛;

z z z

w

t

2t 1−

�
D n.�dCk/

�
2 C C3

�
;

�
˛;

z

w w w
t

2t 1−

�
Dm.�dCk/

�
2 C C3

�
:

Hence, the 2–loop part of the Kontsevich invariant of KL is presented by

12 �Z.2–loop/.KL/D
˝
˛; 12.ˇ1Cˇ2Cˇ3/

˛
D�

1
2
m.n2

C 2/ �
1
2
n.m2

C 2/ C
1
2
n C

1
2
m

C
1
2
.3k2

C nkCmk/.1C 2k/ C
1
2
.nC 3CmC 3/

�
� C k

�
C

3
2
k
�
2 C

�
� .k3

C
1
2
k/
�
.4d � 1/ � 3

�
C 3

�
C 2.d C k2/ C k2

C 3k2
�

C
3
2

�
.d C k/ � 2k.d C k/ � .d C k/2 � 3.d C k/2

�
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�
3
2

�
.d C k/ C 2kd � d2

� 3d2
�

� 3k
�

C C d � 3d
�
C

1
2
.nCm/

�
4d C 2

�
C

1
2
.nCm/k2

�
2 C C3

�
C

1
2
.nCm/.k � d/

�
2 C C3

�
D ..nCm/.d � 1

2
.nm//� k.kC 1

2
/.kC 1//

�
�3 C .4d � 1/ � 3

�
D
�
.nCm/.d � 1

2
.nm//� k.kC 1

2
/.kC 1/

�
�

�
�

3

2

.tCt�1�2/=�.t/

C
3

4

.t�t�1/=�.t/

.t�t�1/=�.t/
C

�
d �

1

4

� .tCt�1�2/=�.t/

.tCt�1�2/=�.t/

�
:

This gives the formula of Proposition 3.9.

4 The 2–loop polynomial for knots of any genus

In this section, we give a presentation of the 2–loop part of the Kontsevich invariant for
knots of any genus. By using the presentation, we show that the degree of the 2–loop
polynomial of a knot is bounded by twice the genus of the knot in Section 4.2. Further,
we show clasper surgery formulas for the 2–loop polynomial in Section 4.3.

4.1 The 2–loop polynomial for knots of genus 2

Before we calculate the case of any genus, we calculate the case of genus 2 in this
section. The approach of the calculations for both cases are almost the same.

Similarly to the case of genus 1, we let T be a 4–component framed tangle, and let
KT be the knot obtained from T as follows,

T D

x x1 1 22y y

; KT D

T (2)

;

where dotted lines in the picture of T imply strands possibly knotted and linked in some
fashion, and T .2/ denotes the tangle obtained from T by replacing each component
of T with 2 parallel copies of it. Any knot of genus 2 can be presented by KT for
some T .
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We consider a particular form T0 of T for integers mi and kij ; recall that a boxed
“k ” implies k full twists:

(26) T0 D
3mmm m2

k−k− k−

k−

k− k−

12

13

14

23

24

34

1 4

Note that ‚.KT / for any T can be obtained from ‚.KT0
/ by Proposition 4.3; the

proposition does not change the linking matrix of T , while T0 represents a class of T

having an arbitrarily fixed linking matrix.

By a similar argument as in Section 3.4, we obtain KT0
from the following link K[L

by surgery along L:

K[LD 3mmm m2

2

2

2

2

k−k− k−

k−

k− k−

12

13

14

23

24

34

1

1

1

1

1

4

x
x

z

z

y

y

w

w

where K denotes the knot of thick line and L denotes the link of thin lines.

We calculated the Kontsevich invariant of K[L, in a similar way as in Section 3.4,
as follows. We rename the labels by X1 D x1 , X2 D y1 , X3 D x2 , X4 D y2 , and
Z1 D z1 , Z2 D w1 , Z3 D z2 , Z4 D w2 , and use both names in formulas of this
section, to simplify their presentations. By a similar argument as in Section 3.4, the
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upper part of ��1
„
LZ.K[L/ is given by

12

x

x11

11 z

z

k

k

k k
k

k

23

3n /2

n /2

2 2

2 n /2

2 2

1

n /24

24

13

14

34

y

y

w

w

�

�
1C

X
1�i�4

1

24

Xi

Xi

�

X
1�i<j�4

kij

24

Xi Xi

Xj Xj

C
k13k24

2

X2 X1

X3 X4

�
;

where niDmi�
P

j¤i kij putting kij Dkji . Further, the middle part of ��1
„
LZ.K[L/

is given by Y
1�i�4

t
Xi Zi

�

�
1C

X
1�i�4

�
1

8

Xi

Zi

�
1

8

Xi Xi

Zi Zi

��
:

Hence, by Lemma 5.28, ��1 LZ.K[L/ of the above parts is given by

Y
1�i�4

t
Xi Xi

ni=2

�

Y
1�i<j�4

t
Xi Xj

kij

�

Y
1�i�4

t
Xi Zi

�

Y
1�i<j<l�4

t

Xi Xl

Xj

�ij l � .1Cˇ1/;

where we put �ijl D .kij kilCkij kjlCkilkjl/=2 and

12ˇ1 D

X
1�i�4

�
n2

i C 2

4

Xi

Xi

C
ni C 3

2

Xi

Zi

�
3

2

Xi Xi

Zi Zi

�

C

X
1�i<j�4

�
3k2

ij C nikij C nj kij

2

Xi

Xj

�

�
k3

ij C
kij

2

�Xi Xi

Xj Xj

C
kij

2

Xi Xj

Zi Zi

C
kij

2

Xi Xj

Zj Zj

�

C

X
1�i�4

X
j<l

j ;l¤i

�
3kij kilkjl C kjl.k

2
ij C k2

il/

�Xi Xi

Xj Xl

C 2.k12k13k14C k21k23k24C k31k32k34C k41k42k43/

�X2 X1

X3 X4

C

X2 X1

X3 X4

�
C 3.k12C k34� k14� k23� 2/k13k24

� X2 X1

X3 X4

�

X2 X1

X3 X4

�
C3.k12C k13C k24C k34/k14k23

X2 X1

X3 X4

C 3.k13C k14C k23C k24/k12k34

X2 X1

X3 X4

:
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The lower part of ��1
„
LZ.K[L/ is calculated similarly as in Section 3.4, but a different

point is to use

��1
„

Z

0@ w
w

2

21
1

z
z

1A� w2w11z 2z
1− −tt t t t

2

�

�
1C

1

24

X
1�i�2

� zi

zi

C

wi

wi

�

zi zi

wi wi

t t
��
;

which is obtained from

��1
„

Z

 !
�.1/

1− −t
2 ;

where we write 1 �.1/ 2 if 1�2 is equal to a linear sum of diagrams with at least
1 trivalent vertex. It follows that the lower part of ��1

„
LZ.K[L/ is given by

t
1−

t
1−

x1 1

1 1

2 2

2 2

x

zz w w

y y

�

�
1C

1

24

X
1�i�2

� zi

zi

C

wi

wi

C

zi zi

wi wi

�

zi zi

wi wi

t t
�
C

1

2

z1 z2

w1 w2

t�1t t
�
:

Hence, by Lemma 5.17, ��1 LZ.K[L/ of the lower part is given byY
1�i�2

t

�
zi wi

t�1 zi zi

wi

t=2

zi

wi wi

t=2

�
� .1Cˇ2/;

where

12ˇ2 D

X
1�i�2

�
1

2

zi

zi

C
1

2

wi

wi

C
3

2

iz

iw

t−1 t−1C
3

2

zi zi

wi wi

�
3

2

zi zi

wi wi

t t
� 3

zi zi

wi wi

t
C3

zi zi

wi wi

t

t

C

zi zi

zi wi

t
tC1
C

wi zi

wi wi

t
tC1C

1

2

xi xi

zi wi

t�1C
1

2

yi yi

zi wi

t�1

�
C 6

z1 z2

w1 w2

t�1t t
:

By composing the above resulting formulas for the parts of ��1 LZ.K[L/, we have

��1 LZ.K[L/ �
.~/

Y
1�i�4

t
Xi Xi

ni=2 Y
1�i<j�4

t
Xi Xj

kij Y
1�i�4

t
Xi Zi

Y
1�i<j<l�4

t

Xi Xl

Xj

�ij l

�

Y
1�i�2

t

�
zi wi

t�1 zi zi

wi

t=2

zi

wi wi

t=2

�
� .1Cˇ1Cˇ2/:
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Its equivariant linking matrix is presented by

M D

 
A I

I J

!
;

where I is the unit matrix of size 4, and A is the linking matrix of T0 , and

J D

0BB@
0 t � 1 0 0

t�1� 1 0 0 0

0 0 0 t � 1

0 0 t�1� 1 0

1CCA:
As in Section 3.4, we obtain ��1Z.KT0

/ from ��1 LZ.K[L/ by the rational version
of the Aarhus integral; in particular, the 2–loop part is presented by

Z.2–loop/.KT0
/D

˝
˛; .ˇ1Cˇ2Cˇ3/

˛
;

where

˛ D
Y

P;QDXi ;Zj

t

Q P

FPQ.t/=2

D expt

� X
P;QDXi ;Zj

Q P

FPQ.t/=2

�
;

ˇ3 D

� X
1�i<j<l�4

�ijl

Xi Xl

Xj

C
1

2

X
iD1;3

�Zi Zi

ZiC1

t
C

Zi

ZiC1ZiC1

t

��2

;

and
�
FPQ.t/

�
D�M�1 ; see also Lemma 4.2 for a presentation of its entries.

4.2 The 2–loop polynomial for knots of any genus

In this section, we give a presentation of the 2–loop part of the Kontsevich invariant
for knots of any genus g . By using the presentation, we show that the degree of the
2–loop polynomial of a knot is bounded by twice the genus of the knot.

Similarly to the case of genus � 2, we let T be a 2g–component framed tangle, and
let KT be the knot obtained from T , as follows,

T D

1 12X X X X3 4 X X2g 2g−

;

KT D

T (2)

;(27)
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where dotted lines in the picture of T imply strands possibly knotted and linked in some
fashion, and T .2/ denotes the tangle obtained from T by replacing each component
of T with 2 parallel copies of it. Any knot of genus g can be presented by KT for
some T .

Similarly to the case of genus 2, we let T0 be a particular tangle of T such that its
linking matrix is .kij /, where we put kii D ni , and any 4–component sub-tangle of T0

is of the form (26). Further, we set K[L as in Section 4.1, and label the components
of L by xi ;yi ; zi ; wi similarly to the case of genus 2, and rename them by X2i�1Dxi ,
X2i D yi , Z2i�1 D zi , and Z2i D wi .

In the same way as in Section 4.1, we obtain the following proposition.

Proposition 4.1 The 2–loop part of the Kontsevich invariant of KT0
is given by

Z.2–loop/.KT0
/D

˝
˛; .ˇ1Cˇ2Cˇ3/

˛
;

where

˛ D
Y

P;QDXi ;Zj

t

Q P

FPQ.t/=2

for FPQ.t/ given in Lemma 4.2,

12ˇ1 D

X
1�i�2g

�
n2

i C 2

4

Xi

Xi

C
ni C 3

2

Xi

Zi

�
3

2

Xi Xi

Zi Zi

�

C

X
1�i<j�2g

�
3k2

ijCnikijCnj kij

2

Xi

Xj

�

�
k3

ijC
kij

2

�Xi Xi

Xj Xj

C
kij

2

Xi Xj

Zi Zi

C
kij

2

Xi Xj

Zj Zj

�

C

X
1�i�2g

X
j<l

j ;l¤i

�
3kij kilkjl C kjl.k

2
ij C k2

il/
�Xi Xi

Xj Xl

C

X
i;j ;l;h

�
2.kij kilkihC kjikjlkjhC kliklj klhC khikhj khl/

�Xj Xi

Xl Xh

C

Xj Xi

Xl Xh

�

C 3.kij C klh� kih� kjl � 2/kilkjh

�Xj Xi

Xl Xh

�

Xj Xi

Xl Xh

�

C 3.kijCkilCkjhCklh/kihkjl

Xj Xi

Xl Xh

C 3.kilCkihCkjlCkjh/kij klh

Xj Xi

Xl Xh

�
;
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12ˇ2 D

X
1�i�g

�
1

2

zi

zi

C
1

2

wi

wi

C
3

2

iz

iw

t−1 t−1C
3

2

zi zi

wi wi

�
3

2

zi zi

wi wi

t t
� 3

zi zi

wi wi

t
C 3

zi zi

wi wi

t

t

C

zi zi

zi wi

t
tC1
C

wi zi

wi wi

t
tC1C

1

2

xi xi

zi wi

t�1C
1

2

yi yi

zi wi

t�1

�
C

X
1�i<j�g

6

zi zj

wi wj

t�1t t
;

ˇ3 D

� X
1�i<j<l�2g

�ijl

Xi Xl

Xj

C
1

2

X
iD1;3;��� ;2g�1

�Zi Zi

ZiC1

t
C

Zi

ZiC1ZiC1

t

��2

:

Lemma 4.2 The FPQ.t/’s in Proposition 4.1 are presented by

FXi Xj
.t/

�.t/
D� .t1=2

� t�1=2/ eT
i .t

1=2V � t�1=2V T /�1 ej ;

FXi Zj
.t/

�.t/
D� eT

i .t
1=2V � t�1=2V T /�1

�
0 �t�1=2

t1=2 0

�˚g

ej ;

FZi Xj
.t/

�.t/
D� eT

i

�
0 �t�1=2

t1=2 0

�˚g

.t1=2V � t�1=2V T /�1 ej ;

FZi Zj
.t/

�.t/
D eT

i

�
0 �t�1=2

t1=2 0

�˚g

.t1=2V � t�1=2V T /�1 A ej ;

where A is the linking matrix of T , and V is the Seifert matrix of a natural Seifert
surface of KT in (27), and �.t/D det

�
t1=2V � t�1=2V T

�
. Further, for P;Q;R;S 2

fXi ;Zj g and ˛ given in Proposition 4.1:

�
˛;

P

Q

�
D

FPQ.t/=�.t/

�
˛;

P Q

R S

�
D

FPQ.t/=�.t/

FRS .t/=�.t/

�

FPS .t/=�.t/

FRQ.t/=�.t/

C
1

2

.FPR.t/�FRP .t//=�.t/

.FQS .t/�FSQ.t//=�.t/

Proof In a similar way to Section 4.1, FPQ.t/’s are the entries of
�
FPQ.t/

�
D�M�1 ,

where

M D

 
A I

I .t1=2�t�1=2/J

!
; J D

�
0 t1=2

�t�1=2 0

�˚g

;
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and I is the unit matrix of size 2g . Hence,

�M�1
D

1

�.t/

 
�.t1=2�t�1=2/S�1 �S�1J

�J S�1 J S�1A

!
;

where we put S D t1=2V � t�1=2V T and �.t/D det S , noting that V DAC
�

0 1
0 0

�˚g .
Therefore, we obtain the former four formulas of the lemma.

We obtain the latter two formulas from the definition of the bracket.

Proposition 4.3 Let T , T0 , and KT be as above, such that the linking matrices of T

and T0 are equal. We present ��1Z.T / by

logt �
�1Z.T /� logt �

�1Z.T0/

C

X
1�i<j<l�2g

aijk

Xi Xl

Xj

C

X
1�i<j�2g

bij

Xi

Xj

C

X
i;j ;l;h

cijlh

Xi Xj

Xl Xh

:

Then, the 2–loop part of the Kontsevich invariant of KT is given by

Z.2–loop/.KT /DZ.2–loop/.KT0
/C

˝
˛; ˇ01Cˇ

0
3

˛
;

where ˛ is as in Proposition 4.1, and

ˇ01 D
X

1�i<j�2g

bij

Xi

Xj

C

X
i;j ;l;h

cijlh

Xi Xj

Xl Xh

ˇ03 D

� X
1�i<j<l�2g

aijk

Xi Xl

Xj

�

�

� X
1�i<j<l�2g

�
�ijl C

aijk

2

�Xi Xl

Xj

C
1

2

X
iD1;3;��� ;2g�1

�Zi Zi

ZiC1

t
C

Zi

ZiC1ZiC1

t

��
:

Proof As in Section 4.1, KT (resp. KT0
) is obtained from a link K [ L (resp.

K0[L0 ) by surgery along L (resp. L0 ). By Lemma 5.24, the Kontsevich invariant
of K[L and K0[L0 are related by

logt �
�1 LZ.K[L/� logt �

�1 LZ.K0[L0/

�

X
1�i<j<l�2g

aijk

Xi Xl

Xj

C

X
1�i<j�2g

bij

Xi

Xj

C

X
i;j ;l;h

cijlh

Xi Xj

Xl Xh

:

��1 LZ.K[L/�.2/ �
�1 LZ.K0[L0/Since
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�.2/ 1C
X

1�i<j<l�2g

�ijl

Xi Xl

Xj

C
1

2

X
iD1;3;��� ;2g�1

�Zi Zi

ZiC1

t
C

Zi

ZiC1ZiC1

t

�
;

the part of ��1 LZ.K[L/���1 LZ.K0[L0/ which contributes to the 2–loop part is
equal to ˇ0

1
Cˇ0

3
. Hence, we obtain the required formula.

We mean by a finite type invariant of a knotted trivalent graph of degree d a coefficient
of the Kontsevich invariant of the knotted trivalent graph of degree d , where the
Kontsevich invariant of a knotted trivalent graph is defined in [31]. It is a problem
proposed by Kricker [19] to express the 2–loop polynomial of a knot in terms of finite
type invariants of degree � 3 of the links obtained by pushing off the curves on a
Seifert surface of the knot.

Theorem 4.4 (see a problem in [19]) For a tangle T and the knot KT given in (27),
the 2–loop polynomial ‚.KT / of KT can be presented by finite type invariants of T

of degree � 3. In other words, the 2–loop polynomial of a knot can be presented by
finite type invariants of degree � 3 of a knotted trivalent graph which is a spine of a
Seifert surface of the knot.

Proof By Proposition 4.3, the 2–loop part of the Kontsevich invariant of KT is pre-
sented by finite type invariants of T of degree � 3, hence, so is the 2–loop polynomial
of KT . This is the former statement of the theorem.

We put the knotted trivalent graph GT by

GT D

T

:

Then, GT is related to a spine of a Seifert surface of the knot by a sequence of the
local move $ . Further, when two knotted trivalent graphs are related by this
move, finite type invariants of one of them can be presented by finite type invariants of
the other. Hence, we obtain the latter statement of the theorem.

Remark 4.5 The 2–loop polynomial of the knot given as the boundary of the ribbon
graph of a knotted trivalent graph is a finite type invariant of the knotted trivalent graph
of degree � 3 which is unchanged under the local move $ . In general, the
n–loop part of logt �

�1Z.K/ can be presented by finite type invariants of degree
� .2n� 1/ of the knotted trivalent graph which is a spine of a Seifert surface of the
knot such that the invariant is unchanged under the local move $ .
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Remark 4.6 Rozansky [40] conjectured that the coefficients of the 2–loop polynomial
are integers. Marché [26] proved a weaker statement that the coefficients are in 1

12
Z.

From Proposition 4.1, we can obtain an integrality result, but it is a further weaker
statement that the coefficients are in 1

24
Z.

Theorem 4.7 (a conjecture in [40]) The degree of the 2–loop polynomial of a knot
K is bounded by twice the genus g of K ,

degreet1

�
‚K .t1; t2/

�
� 2g:

Proof We choose a tangle T whose KT in (27) is isotopic to K . By Proposition 4.1
and Proposition 4.3, it is sufficient to show that

(28)
˝
˛; .ˇ1Cˇ2Cˇ3Cˇ

0
1Cˇ

0
3/
˛
�

.deg�2g/
0;

where ˛; ˇ1; ˇ2; ˇ3; ˇ
0
1
; ˇ0

3
are given in the propositions, and we write

�1 �
.deg�2g/

�2

if the t1 –degree of the corresponding 2–loop polynomial of �1� �2 is at most 2g .

We calculate the ˇ1Cˇ
0
1

part of (28) as follows. For each diagram of ˇCˇ0
1

, by
Lemma 4.2, its corresponding part in (28) is equal to a linear sum of diagrams of the
form

f .t/=�.t/

g.t/=�.t/

where f .t/ and g.t/ are either FXi Xj
.t/, FXi Zj

.t/, FZi Xj
.t/, or FZi Zj

.t/. The
corresponding 2–loop polynomial of this form isX

"D˙1
fi;j ;kgDf1;2;3g

f .t"i /g.t
"
j /�.t

"
k/ 2 QŒt˙1

1 ; t˙1
2 ; t˙1

3 �=.t1t2t3 D 1/:

By Lemma 4.8, its t1 –degree is at most 2g . Hence,˝
˛; ˇCˇ01

˛
�

.deg�2g/
0:

We calculate the ˇ2 part of (28) as follows. By the same argument as above, diagrams
without labels of polynomials in t˙1 vanish in (28). For the other diagrams, the
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corresponding parts in (28) are calculated as follows,

�
˛;

iz

iw

t−1 t−1

�
D

Fziwi
.t/=�.t/

t � 1

t � 1

�
.deg�2g/

�2

Fziwi
.t/=�.t/

t ;�
˛;

zi zi

wi wi

t t
�
�

.deg�2g/
0;�

˛;

zi zi

wi wi

t

�
�

.deg�2g/
�

Fziwi
.t/=�.t/

t

Fwi zi
.t/=�.t/

;

�
˛;

zi zi

wi wi

t

t

�
�

.deg�2g/
�

Fziwi
.t/=�.t/

t2Fwi zi
.t/=�.t/

;�
˛;

zi zi

zi wi

t

tC1
�
�

.deg�2g/

�
˛;

wi zi

wi wi

t

tC1

�
�

.deg�2g/
0;�

˛;

xi xi

zi wi

t�1

�
�

.deg�2g/

�
˛;

yi yi

zi wi

t�1

�
�

.deg�2g/
0;

�
˛;

zi zj

wi wj

t�1t t
�
�

.deg�2g/
�

t�1Fziwj
.t/=�.t/

t � 1

t�1Fwi zj
.t/=�.t/

�
.deg�2g/

0:

Hence ˝
˛; ˇ2

˛
�

.deg�2g/

1

4

X
1�i�g

�
�

Fziwi
.t/=�.t/

t
C

Fziwi
.t/=�.t/

t

Fwi zi
.t/=�.t/

�

Fziwi
.t/=�.t/

t2Fwi zi
.t/=�.t/

�
:

The first and third diagrams are further calculated as follows,

Fziwi
.t/=�.t/

t
�

.deg�2g/

Fziwi
.t/=�.t/

tgC1�.g/=�.t/ ;

Fziwi
.t/=�.t/

t2Fwi zi
.t/=�.t/

�
.deg�2g/

Fziwi
.t/=�.t/

tgC1F
.g�1/
wi zi

=�.t/
;

where we denote by �.g/ the coefficient of tg in �.t/ and denote by F
.g�1/
wi zi

the
coefficient of tg�1 in Fwi zi

.t/. Since they cancel with each other by Lemma 4.9, we
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have that

˝
˛; ˇ2

˛
�

.deg�2g/

1

4

X
1�i�g

Fziwi
.t/=�.t/

t

Fwi zi
.t/=�.t/

:

We calculate the ˇ3Cˇ
0
3

part of (28) as follows. By the same argument as in the case of
ˇ1 , most diagrams in ˇ3Cˇ

0
3

vanish in (28). The surviving case is graphically shown
as follows.

z

w

w

F
t/2t/2 i

wi

wi

i

i

z i

z i

z i (t)

Hence, we have that

˝
˛; ˇ3Cˇ

0
3

˛
�

.deg�2g/

1

4

X
1�i�g

Fziwi
.t/=�.t/

t�2Fziwi
.t/=�.t/

Fwi zi
.t/=�.t/

�
.deg�2g/

1

4

X
1�i�g

Fziwi
.t/=�.t/

t2Fwi zi
.t/=�.t/

Fwi zi
.t/=�.t/

Therefore, by summing the resulting formulas of the ˇ1Cˇ
0
1
; ˇ2; ˇ3Cˇ

0
3

cases, we
have that˝

˛; .ˇ1Cˇ
0
1Cˇ2Cˇ3Cˇ

0
3/
˛

�
.deg�2g/

1

4

X
1�i�g

 Fziwi
.t/=�.t/

t

Fwi zi
.t/=�.t/

C

Fziwi
.t/=�.t/

t2Fwi zi
.t/=�.t/

Fwi zi
.t/=�.t/

!

�
.deg�2g/

1

4

X
1�i�g

 Fziwi
.t/=�.t/

tgC1�.g/=�.t/

Fwi zi
.t/=�.t/

C

Fziwi
.t/=�.t/

tgC1F
.g�1/
wi zi

=�.t/

Fwi zi
.t/=�.t/

!
:

Since this vanishes by Lemma 4.9, we obtain (28), as required.

Lemma 4.8 The minimal and maximal degrees of polynomials given in Lemma 4.2
are bounded, as follows,

min-deg�.t/� �g; max-deg�.t/� g;

min-deg FXi Xj
.t/� �g; max-deg FXi Xj

.t/� g;

min-deg Fzi zj
.t/� �.g� 1/; max-deg Fzi zj

.t/� g� 1;

min-deg Fwiwj
.t/� �.g� 1/; max-deg Fwiwj

.t/� g� 1;

min-deg Fziwj
.t/� �.g� 1/; max-deg Fziwj

.t/� g;

min-deg Fzi Xj
.t/� �.g� 1/; max-deg Fzi Xj

.t/� g;

min-deg Fwi Xj
.t/� �g; max-deg Fwi Xj

.t/� g� 1:
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Further, if i ¤ j , then min-deg Fziwj
� �.g� 2/.

Proof The bound for �.t/ is obtained from the fact that �.t/Ddet.t1=2V T�t�1=2V /

and V is a .2g/�.2g/ matrix.

The bound for FXi Xj
.t/ is obtained as follows. From its definition in Lemma 4.2,

FXi Xj
.t/D�.t1=2

� t�1=2/ � eT
i ��.t/.t

1=2V � t�1=2V T /�1
� ej :

The second factor in the right-hand side is equal to the .i; j / entry of �.t/.t1=2V �

t�1=2V T /�1 , which is equal to a minor determinant of .t1=2V � t�1=2V T /. Hence,
we obtain the required bound for FXi Xj

.t/.

In the same way, we obtain the bounds of the other polynomials except for the last one.

The last bound of the lemma is obtained as follows. By definition,

Fziwj
.t/D FZ2i�1Z2j

.t/D�.t/ t1=2 eT
2i .t

1=2V � t�1=2V T /�1 A e2j

D t1=2 eT
2i .t

1=2V � t�1=2V T /0A e2j ;

where we denote .det M /M�1 by M 0 for a regular matrix M , noting that entries
of M 0 are presented by minor determinants of M . Hence, similarly as in the above
case, we have that min-deg Fziwj

.t/��.g� 1/. Further, the coefficient F
.�gC1/
ziwj

of
t�gC1 in Fziwj

.t/ is calculated as follows,

F .�gC1/
ziwj

D eT
2i .�V T /0A e2j D eT

2i .�V T /0 V T e2j D�.det V / eT
2i e2j D 0:

This implies the required bound.

Lemma 4.9 We have that F
.g�1/
wi zi

D��.g/ , where �.g/ denotes the coefficient of tg

in �.t/, and F
.g�1/
wi zi

denotes the coefficient of tg�1 in Fwi zi
.t/.

Proof In the same way as in the proof of Lemma 4.8,

F .g�1/
wi zi

D�.det V / eT
2i e2i D�.det V /:

Further, �.g/ D det V , since �.t/ D det.t1=2V � t�1=2V T /. Hence, we obtain the
lemma.

Remark 4.10 The bound of Theorem 4.7 might be sharp for most knots as we see
in Table 1, Table 2, Example 4.11 and Example 4.13. However, we can construct
examples which give inequality of the formula of Theorem 4.7. Such examples can be
constructed by surgery along graph claspers with at least 3 trivalent vertices; for graph
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claspers, see Section 4.3. More generally, it is known [7] that we can construct knots
which have the same .< n/–loop part of the Kontsevich invariant, but have different
n–loop part, for any n. For example, the following knot and the trivial knot give such
examples, when this graph clasper has 2n trivalent vertices.

In particular, this knot gives the inequality of the formula of Theorem 4.7.

Example 4.11 It is shown in [35] that the degree of the 2–loop polynomial of the
torus knot of type .p; q/ equals .p� 1/.q� 1/. Since the genus of the torus knot of
type .p; q/ equals .p� 1/.q� 1/=2 (see eg [24]), torus knots give the equality of the
formula of Theorem 4.7.

Example 4.12 In Theorem 3.7, we gave a presentation of the 2–loop polynomial for
knot of genus 1. Its degree satisfies the formula of Theorem 4.7, and its equality holds
when V 0

K
.�1/¤ 0 or v3.K/¤ 0 (see also Proposition 1.1).

Example 4.13 The generalized Kinoshita–Terasaka knot KKT
m;n [16] and the general-

ized Conway knot KC
m;n (see [24]) are given by

KKT
m;n D m

−

−n/2

n+1

n/2

2
n+1

2

; KC
m;n D

m

− −n/2n+1

n/2

2

n+1
2

;

where a boxed “k=2” implies k half twists, as before. We show in Proposition 4.14
and Proposition 4.15, that the degree of the 2–loop polynomial for these knots are
2n� 1 and 4n� 2 respectively. This implies, by Theorem 4.7, that their genera are at
least n and 2n� 1. Since there exist their Seifert surfaces of these genera, it follows
that these are exactly their genera, as it has been shown in [8] geometrically, and in
[38] by using the knot Floer homology.

Proposition 4.14 The t1 –degree of the 2–loop polynomial ‚K KT
m;n
.t1; t2/ of the gen-

eralized Kinoshita–Terasaka knot KKT
m;n is equal to 2n� 1.
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Proof For nD 2, a concrete presentation of ‚K KT
m;2
.t1; t2/ given in Proposition 2.4

shows that the proposition holds in this case.

For general n, similarly as in Section 2.3, we put

K[L0 D

−

−n/2

n+1

n/2

2
n+1

2

D

−

−n/2

n+1

n/2

2
n+1

2

;

where we mean by a thick line 2 parallel copies of the line. For example, for nD 4, it
is isotopic to

D :

By calculating its Kontsevich invariant in a similar way as in Section 2.3, it is shown
that the highest-degree part of ��1

„
Z.K[L0/ is given by

t

1−− t

t

n

1−
t 1−n

� t 1−t 1−− t n 1−t n
C �

�
1�

1

2

t�1

tn�1.t�1/

�

� �

�
1�

tn�1.t�1/

tn�1C 1
2

t�1

C
1

4

t�1

tn�1Ct1�n

tn�1Ct1�n

t�1

�
;

where the first and second equivalences are obtained from Lemma 5.3 and Lemma 5.9
respectively. Hence, by a similar calculation as in Section 2.3, the highest-degree part
of Z.2–loop/.KKT

m;n/ is given by

*
m=2

; �

tn�1.t�1/

tn�1C 1
2

t�1

C
1

4

t�1

tn�1Ct1�n

tn�1Ct1�n

t�1

+
Dm

 tn�1.tCt�1�2/

t1�nC1=2
�

1

4

tCt�1�2

tn�1C t1�n

tn�1C t1�n

!
:

Further, the highest-degree part of the 2–loop polynomial ‚K KT
m;n
.t1; t2/ is presented,

modulo the equivalence (5), by

(29) 12m
�
tn�1
1 .t1Ct�1

1 �2/
�
t1�n
2 C

1
2

�
�

1
4
.t1Ct�1

1 �2/.tn�1
2 Ct1�n

2 /.tn�1
1 tn�1

2 Ct1�n
1 t1�n

2 /
�
:
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As its reduction, the highest-degree part of the reduced 2–loop polynomial y‚K KT
m;n
.t/

is presented by
2m.t2n�2

C t2�2n/;

whose degree is equal to 2n� 2. This implies that the degree of (29) is at least 2n� 1.
Further, the degree of the symmetrization of (29) is at most 2n� 1. Therefore, the
degree of ‚K KT

m;n
.t1; t2/ is equal to 2n� 1, as required.

Proposition 4.15 The t1 –degree of the 2–loop polynomial ‚K C
m;n
.t1; t2/ of the gen-

eralized Conway knot KC
m;n is equal to 4n� 2.

Proof For nD 2, a concrete presentation of ‚K KT
m;2
.t1; t2/ given in Proposition 2.5

shows that the proposition holds in this case.

For general n, we put

K[L0 D

− −n/2n+1

n/2

2

n+1
2

:

By calculating its Kontsevich invariant similarly to the proof of Proposition 4.14 follow-
ing arguments in Section 2.4, it is shown that the highest-degree part of ��1

„
Z.K[L0/

is given by

t 1−

1−− t

t

n

1−t n

� t 1−t 1−− t n 1−t n
C �

 
1�

1

2

t�1

tn�1.t�1/

!

�

. /
t 1−t 1−− t n 1−t n

�
tn�1.t�1/

t �1

�t1�n.t�1/

�

 
1C

tn�1.t�1/

tn�1.1�t�1/

!
;

where the first and second equivalences are obtained from Lemma 5.3 and Lemma 5.10
respectively. Hence, the highest-degree part of ��1 LZ.K[L/ is given by

�1=2m
tn�1.t�1/ tn�1.1�t�1/

t�1
:

Further, the highest-degree part of Z.2–loop/.KC
m/ is given by
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�
m=2

;
1

2

�
tn�1.t�1/ tn�1.1�t�1/

t�1

�2 �

Dm3

 
1

2

t2n�2.tCt�1�2/

t2�2n.tCt�1�2/

t C t�1� 2

C

tn�1.tCt�1�2/

t1�n.tCt�1�2/

t C t�1� 2

�

t3n�3.tCt�1�2/

t C t�1� 2

t C t�1� 2

�
1

2

t C t�1� 2

t C t�1� 2

t C t�1� 2

!
:

Hence, the highest-degree part of the 2–loop polynomial ‚K C
m
.t1; t2/ is presented,

modulo the equivalence (5), by

12m3.t1C t�1
1 � 2/.t2C t�1

2 � 2/.t1t2C t�1
1 t�1

2 � 2/�
1
2
t2n�2
1 t2�2n

2 C tn�1
1 t1�n

2 � t3n�3
1 �

1
2

�
:

Further, its symmetrization is presented by

m3.tn�1
1 t1�n

2 C t1�n
1 tn�1

2 � 2/.t2n�2
1 tn�1

2 C t2�2n
1 t1�n

2 � 2/

� .tn�1
1 t2n�2

2 C t1�n
1 t2�2n

2 � 2/.t1C t�1
1 � 2/.t2C t�1

2 � 2/.t1t2C t�1
1 t�1

2 � 2/;

whose t1 –degree is equal to 4n� 2. Therefore, the degree of ‚K C
m
.t1; t2/ is equal to

4n� 2, as required.

4.3 Clasper surgery formulas

In this section, we show surgery formulas for the 2–loop polynomial under surgery
along some types of graph claspers, as consequences of calculations of the previous
section.

A graph clasper is an embedded graph in a knot complement, such as shown in
Lemma 4.16, defined by

D D ; D ;

where the right-hand side of the first formula implies the result of surgery along the
Hopf link. The embedded graph in the first picture is called a clasper, and a circle at
an end of a clasper is called a leaf; see [12] for details of claspers.
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As a particular case of a modification of results in [20], we obtain the following lemma;
see also [33] for calculations of the Kontsevich invariant for graph claspers.

Lemma 4.16 We have that

Z

0B@
x y

1CA�Z

�
x y

�
�

x y
�

x

y

;

Z

 x y

z w

!
�Z

 x y

z w

!
�

z w

x y

�

x y

z w

:

Sketch proof We show a sketch proof of the lemma; for details see [33].

Introducing a white trivalent vertex by

D � ;

the left-hand side of the second formula of the lemma is equal to the Kontsevich
invariant of

(30)

x y

z w

�

x y

z w

D

x y

z w

;

because, when we break one trivalent vertex of a graph clasper, the whole of the graph
clasper vanishes. By Lemma 4.20 below, The Kontsevich invariant of a white vertex is
presented by

Z

0B@
x y z

1CA�Z

�
x y z

�
�.2/ �

x y z

:

Hence, by replacing each clasper in (30) with a Hopf link, the Kontsevich invariant of
(30) is obtained from

z w

x y

−1

−1 −1

−1

−1−1
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by the Aarhus integral, which gives the surgery along the Hopf links. This gives the
right-hand side of the second formula of the lemma.

The first formula of the lemma is obtained in the same way.

Let F be a Seifert surface of a knot K . The Seifert form H1.F /˝H1.F /! R is
defined by taking a˝ b to the linking number of a and bC , where bC denotes the
puss-off of b in the normal direction of F . It is presented by a Seifert matrix, fixing
a basis of H1.F /. We denote by ex; ey the vectors presenting cohomology classes
x;y 2H 1.F / for the basis. The scaler eT

x .t
1=2V � t�1=2V T /�1 ey depends only on

the Seifert form and x;y 2H 1.F /, independently of the choice of a basis of H1.F /.
The Alexander polynomial of the knot is given by �K .t/D det .t1=2V � t�1=2V T /.

A leaf of a clasper in the complement of a Seifert surface F of a knot is associated
with a cohomology class in H 1.F / counting cycles as

x :

The following two propositions can alternatively be obtained from a surgery formula
in [19].

Proposition 4.17 Consider a graph clasper of the form in the following formula,
embedded in the complement of a Seifert surface of a knot K . Let x , y be cohomology
classes in H 1.F / associated with the leaves of the graph clasper. Then, the change
of the 2–loop polynomial of the knot by surgery along the graph clasper is presented,
modulo the equivalence (5), by

‚

 !
�‚

 !
� 12 Fxy.t1/�K .t2/�K .t3/;

where
Fxy.t/

�K .t/
D�.t1=2

� t�1=2/ eT
x

�
t1=2V � t�1=2V T

��1
ey :

Proof Since the formula of the lemma is independent of a choice of a Seifert surface
F and a basis of H1.F /, it is sufficient to show the proposition for a particular choice
of them. We assume that V is a Seifert matrix for a natural basis of H1.F / of a natural
Seifert surface F of KT in (27). We can also assume, without loss of generality, that
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x and y are cohomology classes given by components Xi and Xj of T in (27). By
Proposition 4.3,

Z.2–loop/

 !
�Z.2–loop/

 !
D

�
˛;

x

y

�
D

Fxy.t/=�.t/

;

where ˛ is given in Proposition 4.1, and Fxy.t/=�.t/ given above is equal to the
one given in Lemma 4.2. The corresponding 2–loop polynomial gives the required
formula.

Proposition 4.18 Consider a graph clasper of the form in the following formula,
embedded in the complement of a Seifert surface of a knot K . Let x , y , z , w be
cohomology classes in H 1.F / associated with the leaves of the graph clasper as shown
at the leaves. Then, the change of the 2–loop polynomial of the knot by surgery along
the graph clasper is presented, modulo the equivalence (5), by

‚

 x y

z w

!
�‚

 !

� 12
�
Fxy.t1/Fzw.t2/�Fxw.t1/Fzy.t2/

C
1
2

�
Fxz.t1/�Fzx.t1/

��
Fyw.t2/�Fwy.t2/

��
�K .t3/;

where FX Y .t/ is the one given in Proposition 4.17.

Proof In the same way as the proof of Proposition 4.17,

Z.2–loop/

0BB@
1CCA�Z.2–loop/

0BB@
1CCAD � ˛; x y

z w

�

D

Fxy.t/=�.t/

Fzw.t/=�.t/

�

Fxw.t/=�.t/

Fzy.t/=�.t/

C
1

2

.Fxz.t/�Fzx.t//=�.t/

.Fyw.t/�Fwy.t//=�.t/

:

The corresponding 2–loop polynomial gives the required formula.

The following proposition can alternatively be obtained by using a surgery formula in
[26].
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Proposition 4.19 Let T be a tangle as in (27), and let T C be a tangle obtained from
T by surgery along a graph clasper C as

T C
D

Xa Xb Xc

:

Suppose that

��1Z.T /�.2/
Y

1�i�2g

t
Xi Xi

ni=2 Y
1�i<j�2g

t
Xi Xj

kij

�

�
1C

X
i;j ;l

�ijl

Xi Xl

Xj

�
:

Then
Z.2–loop/.KC

T /�Z.2–loop/.KT /D
˝
˛; ˇ

˛
;

where

ˇ D�

Xa Xc

Xb

�

�
�

1

2

Xa Xc

Xb

C

X
i;j ;l

�ijl

Xi Xl

Xj

C
1

2

X
iD1;3;��� ;2g�1

�Zi Zi

ZiC1

t
C

Zi

ZiC1ZiC1

t

��

C
1

2

�Xa Xa

Xb Xc

C

Xb Xb

Xa Xc

C

Xc Xc

Xa Xb

�
C

1

2

X
1�i�g

�
kia

Xi Xc

Xa Xb

C kib

Xi Xa

Xb Xc

C kic

Xi Xb

Xc Xa

�
:

Proof By Lemma 4.20 below, we have that

��1Z.T C /���1Z.T /

�

Y
1�i�2g

t
Xi Xi

ni=2 Y
1�i<j�2g

t
Xi Xj

kij

�

�
�

Xa Xc

Xb

�

�
1�

1

2

Xa Xc

Xb

C

X
i;j ;l

�ijl

Xi Xl

Xj

�

C
1

2

� Xa Xa

Xb Xc

C

Xb Xb

Xa Xc

C

Xc Xc

Xa Xb

�
C

1

2

X
1�i�g

�
kia

Xi Xc

Xa Xb

C kib

Xi Xa

Xb Xc

C kic

Xi Xb

Xc Xa

��
;

since

��1

Xi

kia

Xa

Xc

Xb

D

Xi Xa

kia

�

� Xa Xc

Xb

C
kia

2

Xi Xc

Xa Xb

�
:

Hence, by Proposition 4.3, we obtain the required formula.

Lemma 4.20 We have that
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Z

�
x y z

�
�Z

�
x y z

�

� �

x y z

C
x y z

�
1

2

� x z

y

x z

y

C

x x

y z

C

y y

x z

C

z z

x y

�
:

Proof The left-hand side of the required formula is presented by

(31) Z

0BB@
x y z

1CCA�Z

0BB@
x y z

1CCA :

We calculate the difference of the part surrounded by the box. We have that

Z

 
x y z

!
�

x y z

1+

1

1

1+

−

−
�

x y z

1−
�

�
1C

1

2

x x

y z

C
1

2

z z

x y

�
;

where the second equivalence is obtained from the following formula,

−1

1

x

y
z

+ �

x y z

1−

�

�
1C

1

2

x x

y z

C
1

2

z z

x y

�
;

which is obtained by Lemma 5.6. Hence,

Z

 
x y z

!
�Z

 
x y z

!

��

x y z

C

x y z

�
1

2

� x z

y

x z

y

C

x x

y z

C

z z

x y

�
:

Geometry & Topology, Volume 11 (2007)



On the 2–loop polynomial of knots 1431

Therefore, (31) is calculated as follows,

�

x y z

−
1/2

C x y z �
1

2

� x z

y

x z

y

C

x x

y z

C

z z

x y

�

��
x y z

C x y z �
1

2

� x z

y

x z

y

C

x x

y z

C

y y

x z

C

z z

x y

�
:

This gives the right-hand side of the required formula.

Example 4.21 Using Proposition 4.19, we calculate the 2–loop polynomial of the
Kinoshita–Terasaka knot KKT

m again, to verify Proposition 2.4, as follows. The
Kinoshita–Terasaka knot is presented by

KKT
m D

m

D

m

D

m

D

m

D

m

:

It is isotopic to the boundary of the ribbon graph given by the following knotted trivalent
graph:

m
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Hence, the Kinoshita–Terasaka knot is isotopic to KT C given in (27) for

m D m

X X X X1 2 3 4

D T C

where T denotes the tangle in the middle picture ignoring the graph clasper C , and T C

denotes the tangle obtained from T by surgery along C , noting that KT is isotopic to
the trivial knot. We have that

Z.T C /�Z.T /�

X X X X1 2 3 4

−1

1/2 m/2

C

X X X X1 2 3 4

�
1

2

� X1 X3

X2

X1 X3

X2

�

X1 X1

X2 X3

C

X2 X2

X1 X3

�

X3 X3

X1 X2

�
:

Hence,

��1Z.T C /���1Z.T /�
X2 X2

1=2

X2 X3

�1

X4 X4

m=2

�

� X1 X3

X2

C
1

2

X1 X3

X2

X1 X3

X2

�
1

2

X1 X1

X2 X3

�
:

By Proposition 4.19,

Z.2–loop/.KKT
m /DZ.2–loop/.KC

T /�Z.2–loop/.KT /D
˝
˛; ˇ

˛
;

where �KT
.t/D�K C

T
.t/D 1, and

˛ D
Y

1�i;j�4

t

� Xj Xi

FXi Xj
.t/=2

Zj Xi

FXi Zj
.t/

Zj Zi

FZi Zj
.t/=2

�
;

ˇ D
1

2

X1 X3

X2

�

� X1 X3

X2

C

X
iD1;3

�Zi Zi

ZiC1

t
C

Zi

ZiC1ZiC1

t

��
�

1

2

X1 X1

X2 X3

;

and FPQ.t/’s are given by

FXi Xj
.t/D eT

i

0BBB@
�tC2�t�1

Cm.t2�4tC6�4t�1Ct�2/
t�1 m.t2�3tC3�t�1/ �t2C2t�1

�1C t�1 0 0 0

m.�t C 3� 3t�1C t�2/ 0 m.�t C 2� t�1/ t � 1

�1C 2t�1 � t�2 0 �1C t�1 0

1CCCA ej ;
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FXi Zj
.t/D eT

i

0BB@
�1 �t C 1Cm.t2� 3t C 3� t�1/ t � 1 m.t2� 2t C 1/

0 �1 0 0

0 m.�t C 2� t�1/ �1 m.�t C 1/

0 �1C t�1 0 �1

1CCA ej ;

FZi Zj
.t/D eT

i

0BB@
0 0 0 0

0 1Cm.�t C 2� t�1/ �1 m.�t C 1/

0 �1 0 0

0 m.1� t�1/ 0 m

1CCA ej :

We have that�
˛;

1

2

X1 X3

X2

X1 X3

X2

�
D

1

2

FX1X2
.t/

FX2X1
.t/

FX3X3
.t/
D�

m

2

t � 1

t�1 � 1

tCt�1�2

;

�
˛;

1

2

X1 X3

X2

Z1 Z1

Z2

t�1

�
D 0;

�
˛;

1

2

X1 X3

X2

Z1

Z2 Z2

t�1

�
D�

1

2

FX1Z1
.t/

FX2Z2
.t/

.t�1�1/FX3Z2
.t/
C

1

2

FX1Z1
.t/

.t�1�1/FX2Z2
.t/

FX3Z2
.t/

D
m

2 .t�1�1/.tCt�1�2/
�

m

2
t�1 � 1

tCt�1�2

;

�
˛;

1

2

X1 X3

X2

Z3 Z3

Z4

t�1

�
D 0;

�
˛;

1

2

X1 X3

X2

Z3

Z4 Z4

t�1

�
D

1

2

FX1X2
.t/

FX3Z3
.t/
.t�1/FZ4Z4

.t/

D�
m

2

t�1�1 t � 1

;

�
˛; �

1

2

X1 X1

X2 X3

�
D

1

2

FX1X3
.t/

FX2X1
.t/
�

1

2

FX2X1
.t/ FX1X3

.t/

D
1

2

2FX1X3
.t/�FX3X1

.t/

FX2X1
.t/

D
m

2

2t2�5tC3Ct�1�t�2

t�1 � 1

:

Hence, Z.2–loop/.KKT
m /D�

m

2

t � 1

t�1 � 1

tCt�1�2

C
m

2 .t�1�1/.tCt�1�2/

�
m

2
t�1 � 1

tCt�1�2

�
m

2

t � 1

t � t�1
C

m

2

2t2�5tC3Ct�1�t�2

t�1 � 1

:
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Therefore, by definition, the 2–loop polynomial of the Kinoshita–Terasaka knot is
presented by

‚K KT
m
.t1; t2/Dm .2T1;0� 2T2;0� 2T2;1CT3;1/;

as we showed in Proposition 2.4.

5 Calculation of Gaussian diagrams

In this section, we develop methodology to calculate Gaussian diagrams. We prove
basic formulas in Section 5.1, calculate the PBW isomorphism for Gaussian diagrams
in Section 5.2, and show further formulas to calculate the 2–loop polynomial for knots
of genus 1 and for knots of any genus in Section 5.3 and Section 5.4 respectively.

5.1 Basic formulas for Gaussian diagrams

In this section, we show basic formulas to calculate Gaussian diagrams. Some of the
formulas are useful when we move an exponential chord beyond other chords.

Recall that a box over parallel chords denotes the symmetrizer of the chords as in (3).

Lemma 5.1

n lines

� �
n� 1

2
C
.n� 1/.n� 2/

6
:

In particular,

n lines

�.2/ �
n� 1

2
:
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Proof When the left-hand side of the following formula is a part of a diagram, we
can calculate the part as follows,

D
1

n
C

1

n
C

1

n
C

1

n
C � � �C

1

n

D �
n� 1

n
�

n� 2

n
�

n� 3

n
� � � � �

1

n
;

where n is the number of chords shown in the left-hand side. Diagrams in the right-hand
side are further calculated as follows,

D D � ;

D D � � � � 2 ;

:::

D D � � � � � .n� 2/ :

Hence, we obtain the first formula of the lemma.

The second formula of the lemma is a reduction of the first formula.

Lemma 5.2 For a power series f ,

f

x y
�

f

x y
�

�
1C

1

8

f

fx y �
1

12 f

f

f
x

x

y

y

�
;

f

x y
�

f

x y
�

�
1�

1

8

f

fx y C
1

12 f

f

f
x

x

y

y

�
:
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Proof The first formula of the lemma is easily obtained from the second formula. The
second formula is reduced to its expansion,

(32) � �
n.n� 1/

8
C

n.n� 1/.n� 2/

12
;

where the diagrams are of degree n. We show this formula by induction on n.

For simplicity, we calculate the case nD 4; the general case can be calculated in the
same way. By Lemma 5.1, we have that

(33) � �
3

2
C :

The last diagram vanishes because

� D
1

2
� 0:

By substituting the following relation

�.2/ �
1

2
�

1

2
�

1

2

into the second last diagram of (33), we have that

� �
3

4
C

3

2

� �
3

2
C 2 ;

where the second equivalence is obtained from the assumption of induction,

� �
3

4
C

1

2
:

Hence, we obtain (32) for nD 4.
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Lemma 5.3 For a power series f ,

f

x y
�

f

x y
�

�
1�

1

4

f

x yf
C

1

6

f

f
f

x

x

y

y

�
:

Proof By Lemma 5.2,

f
�

f
�

�
1�

1

8

f

f
C

1

12

f

f
f

�
:

By applying the antipode on the right string and replacing f with �f , we have that

f
�

f
�

�
1C

1

8

f

f
�

1

12

f

f
f

�
:

Since the diagrams in the left-hand sides of the above two formulas are equal, we obtain
the required formula.

Lemma 5.4 For power series f and g ,

f

g
x

y

z
�

f
f

g
g1/2−

x

y

z
�

�
1C

1

6

f
f
g

x

y

y

z

C
1

6

f

g
g

x

y

z

z

�

�

f
f

g
g

1/2−

x

y

z
�

�
1C

1

6

f
f
g

x

y

y

z

C
1

6

f

g
g

x

y

z

z

C
1

4

f

f
g

x

x

y

z

C
1

4

f

gg

x

x

y

z

�
:

Proof The second equivalence of the lemma is easily obtained by using the relation,

f
�.2/

f
�

1

2

f
:

The first equivalence is rewritten as Lemma 5.5 below.

Lemma 5.5 For power series f and g ,

f

g
x

y

z

�

f
f

g
g

1/2−

x

y
y

z
z

�

�
1C

1

6

f
f
g

x

y

y

z

C
1

6

f

g
g

x

y

z

z

�
:
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Proof For simplicity, we omit f , g , x , y , z in diagrams of the proof. By Lemma 5.1,

� �
nCm� 1

2
C
.nCm� 1/.nCm� 2/

6
;

where n (resp. m) is the number of chords whose right ends are labeled by y (resp. z )
in the diagram of the left-hand side. The last two terms are calculated as follows,

�
nCm� 1

2
D�

m

2
;

.nCm� 1/.nCm� 2/

6
D

m.nCm� 2/

6

D�
m.n� 1/

6
C

m.m� 1/

6
:

Hence, � �
m

2
�

m.n� 1/

6
C

m.m� 1/

6
:

This formula implies the mth part of the expansion of the following formula,

� �
1

2
�

n� 1

6
C

1

6
;

where n is the number of chords whose right ends are labeled by y (relatively upward
ends) in the diagram of the left-hand side. From this formula, we obtain the following
formula by induction on n,

� �
n

2
C

n.n� 1/

6
C

n

6
C

n.n� 1/

8
:
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This formula implies the nth part of the expansion of the upper double lines of the
following formula,

� �

�
1C

1

6
C

1

6
C

1

8

�
�

1

2
:

This implies the required formula.

Lemma 5.6 For power series f and g ,

f

g

x

y

z

�

f
f

g
g

−

x

y

z

1 �

�
1C

1

2

f
f
g

x

y

y

z

C
1

2

f

g
g

x

y

z

z

C
1

2

f

f
g

x

x

y

z

C
1

2

f

gg

x

x

y

z

�
:

Proof The lemma is easily obtained from the following formula,

f

g

x

y

z

�

f
f

g
g

−

x

y
y

z
z

1
�

�
1C

1

2

f
f
g

x

y

y

z

C
1

2

f

g
g

x

y

z

z

�
:

We show this formula, omitting f;g;x;y; z for simplicity.

By applying Lemma 5.5 twice, we have that

1/2−
�

�
1C

1

6
C

1

6

�
� D

�
1/2

�

�
1C

1

6
C

1

6

�
;

hence

1/2−
�

1/2
�

1/2
�

�
1�

1

2

�
:

It follows that
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�

1/2−

1/2−

�

�
1C

1

2

�

�
−1

�

�
1C

1

2
C

1

2

�
;

as required.

Lemma 5.7 For power series f and g ,

f

g

x y

�
f
g

f
g

f g+

1/2

1/2

x y

�

�
1�

1

6
f
g

f+2g

x

y

y

y

�
1

6
f

g

f+2gx

x

x

y �
1

4

f

f
g

x

x

y

y

�
1

4
f

f

g
x

x

y

y

C
1

4

f

g
g

x

x

y

y

C
1

4 f
g

g
x

x

y

y

C
1

4

f

f
g

x

x

y

y

�
3

4
f

g

g
x

x

y

y

�
1

4

f

gx y

�
:

As a corollary, the following formula is easily obtained from the lemma,
f

g

x y

�

x y

f
g

f
g

f g+

1/2

1/2

�

�
1C

1

12
f
g

x

y

y

y

f g−

C
1

12
f

g

x

x

x

y

f g−

�
1

4

f

f
g

x

x

y

y

�
1

4
f

g

g
x

x

y

y

C
1

4

f

gx y

�
:

Proof of Lemma 5.7 For simplicity, we omit x , y in diagrams of the proof. By
applying Lemma 5.4 to the left box of the second diagram of the following formula,
we have that

(34)
f g+

D

f

g �

f
f
g

g

1/2− �

�
1C

1

6

f
f
g
C

1

6

f

g
g

�

�

f

f
g

g

1/2−
�

�
1C

1

6

f
f
g
�

1

3

f

g
g

�
;
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where the last equivalence is obtained from the following formula,

f
f

g
g

D

f

f
g

g
�

f

f
g

g
�

f
g

g

f
g

:

Here, the equivalence is obtained from the relation,

g
�.2/

g
�

g

g :

Since

g

f

�.2/
g

f

�

g

f

f g+ ;

we have that

f

f
g

g
�

f

f
g

g
C

f
g �

�
�

1

2
f

g

f g+

C
1

2 f
g

f g+ �

�

f

f
g

g
C

f
g �

�
�

1

2
f

g

f g+

C
1

2 f
g

f g+

�
1

2

f

g

�
:

Hence, from (34), we have that

f g+
�

f

f
g

g

1/2−

�

�
1C

1

6

f
f
g
�

1

3

f

g
g

C
1

4
f

g

f g+

�
1

4 f
g

f g+

C
1

4

f

g

�
:
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By applying Lemma 5.4 again, we have that

f

f
g

g

1/2−
�

1/2−

f

f

f
g

g
g

1/2−

�

�
1C

1

6

f
f

g
C

1

6

f

g
g

C
1

4
g

g

f

C
1

4

g

f
f

�

�
1/2−

f

f

f
g

g

g

1/2−

�

�
1C

1

6

f
f

g
�

1

3

f

g
g

�
1

4
g

g

f

C
1

4

g

f
f
C

1

2

g

g
f

�
:

Therefore,

f g+
�

1/2−

f

f

f
g

g

g

1/2−

�

�
1C

1

6
f
g

f+2g

C
1

6
f

g

f+2g

C
1

4 g
f

f

C
1

4

g

f
f
�

1

4
g

g

f

�
1

4

g

g
f

�
1

4
g

f

f
C

3

4

g

g
f C

1

4

f

g

�
:

Hence, we obtain the formula of the lemma.

Lemma 5.8 The following formulas hold for a power series f and a scalar c , under
the notation (13),

f

c
� f+c �

�
1�

c

2
C

c

2
�

2c

3

�
;

−f

c

c

� f �

�
1�

c

2
C

c

2
�

2c

3

�
:
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Proof By Lemma 5.7,

f

c �

f+

1/2
f

f
1/2

c

c

c

�

�
1�

c

6

f
f �

c

6

f
f

C
c

4

f

f
�

c

4

f �

�

f+c

�

�
1�

c

6

ff

�
c

6

ff

�
c

4

ff

�
c

4
C

c

2

�
:

By removing the boxes by Lemma 5.2, we obtain the first formula of the lemma. The
second formula is obtained from the first one by replacing f with f � c .

Lemma 5.9 The following formula holds for a power series f , under the notation
(13),

f

f−
� �

�
1� C �

�
:

Proof We have that

f
D

f
� C f C

1

2
ff

� �

�
1C

1

2
�

3

2
C

1

2
�

1

2

�
:

On the other hand, by Lemma 5.5, we have that

f
D

f

−
�

f

f−
�

f
f

f f−

1/2
�

f

f

f

f

−

1/2
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�

f

f− �

�
1C

1

2
�

1

2
�

1

2
C

1

2

�
;

where we obtain the last equivalence from Lemma 5.2 and the following formula,

f

f
1/2
� C

1

2

f

f ��
1

2

f

f C �

�
1C

1

2
f

f

�

� �

�
1C

1

2
f

f
�

1

4
f f

�
:

Hence, we obtain the required formula.

Lemma 5.10 For a power series f ,

f

f−

�
f−

f

�

�
1C

1

2
f f �

1

2

f f

f
�

1

2

f f

f
�

1

2

f f
f

C
1

2

f
f f

�
:

Proof By Lemma 5.6,

f

f−

�

−

f

f f
f

�

−

f

f

�

�
1C

1

2
f f

�
� �

�
1C

1

2
f f

�
:

By applying Lemma 5.6 again in another way,

f

f−

�

f
f

f
f

− �

�
1�

1

2

f f

f
�

1

2

f f

f
C

1

2

f f
f

�
1

2

f
f f

�

�

f

f−

f

f

�

�
1C

1

2

f f

f
C

1

2

f f

f
C

1

2

f f
f

�
1

2

f
f f

�
:
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The lemma follows from the above formulas.

5.2 Calculation of the inverse image of Gaussian diagrams by the PBW
isomorphism

In this section, we calculate the inverse image of an exponential chord by the PBW
isomorphism. This result is used, in Section 2, to calculate the rational version of the
Aarhus integral, which constructs the 2–loop polynomial of knots from their surgery
presentations.

Recall the markings introduced in (13). For example, the following diagrams are
calculated as follows,

f

D

f
D

f

D
1

2

� f

C

f �
D ;(35)

f D f D f D
1

2

�
f C f

�
D :(36)

Further, when the left-hand side of the following formula is a part of a diagram, the
part is calculated as follows,

(37)
f

D� f D
1

2

� f

� f

�
D :

Lemma 5.11 Under the notation (13),

��1 f � expt

�
C

1

2
� �

1

6

C
1

4
�

1

2
C

1

3
C

1

3

�
:

Proof Since
f

D f D
1

2

� f

C f

�
D ;
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the right-hand side of the formula of the lemma is equivalent to
f

�

�
1C

1

2
� C

1

8
�

1

2
C

1

2

�
1

6
C

1

4
�

1

2
C

1

3
C

1

3

�
:

Hence, the lemma is reduced to the following formula,

f � f C
1

2 f � f
C f �

�
1

8
�

1

2
(38)

C
1

2
�

1

6
C

1

4
�

1

2
C

1

3
C

1

3

�
:

The second term of the right-hand side is calculated as follows,

1

2
f �

1

2
f �

1

2
f � �

1

2
f

�
1

2
f C f �

�
�

1

4
C

1

2

�
;

where the last equivalence is obtained by Lemma 5.12, and the second last diagram of
the first line vanishes because

D� D� :

Here, the first equality is derived from the AS relation and the second equality is derived
from the fact that the marking can move over by the IHX relation. The third term
of the right-hand side of (38) is similarly calculated as follows,

� f �� f C
f �

�� f C
f �

�
C

1

2
�

�
:
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Hence, from (38), the lemma is reduced to the following formula,

f � f �
1

2
f C f

C f �

�
1

8
�

1

2
(39)

C
1

2
C

1

6
�

1

4
C

1

2
�

1

3
�

1

3
�

�
:

We show the nth part of the expansion of this formula by induction on n.

In the following of this proof, for simplicity, we calculate the 4th part of the expansion
of (39); the general case can be calculated in the same way. By Lemma 5.1, we have
that

(40) ffff � f f f f �
7

2
f f f f C 7 f f f f :

The last term is calculated as follows,

(41) 7 f f f f D 7
f
f

f
f
D

f
f
f
C 6

f

f
f
;

where the second last diagram is obtained by using the relation (37); this diagram
vanishes as follows,

f
f
f
D f

f
� f f � D 0:

The last term of (41) is calculated as follows,

6
f

f
f
D

f

f
f
C

f

f
f
C 4

f

f

� f f �

� f

� f

�
C f � 4

f
:

The first term of the last line vanishes by (35) and (36). Hence, from (41), the last term
of (40) is written

(42) 7 f f f f D f � 4 f :
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The second last term of (40) is calculated as follows,

(43) �
7

2
f f f f D�

7

2

f
f

f
f
D�

1

2

f
f
f
� 3 f

f

f

:

By applying Lemma 5.1 twice to the last term, we have that

�3 f
f

f

D�3 f
f

f

C
15

2
f
f

f

D�3 f
f

f
C 6 f

f

f
C

15

2
f
f

f

:

The last two terms are calculated respectively as follows,

6 f
f

f
D 6

f

f
� f � .�6/ ;

15

2
f
f

f

D
3

2
f
f

f
C 6

f

f
� f f �

3

2
C f � 6

f
:

Further,

f D f �
1

2
�

�
f C f C f

�
D f �

1

2
� :

Hence, from (43), the second last term of (40) is written

(44) �
7

2
f f f f D�

1

2

f
f
f
� 3 f

f

f
C f �

�
6

f
� 6

�
:

We calculate the first term of the right-hand side of (40) by using Lemma 5.1 as follows,

(45) f f f f � f f f f � 3 f f f f C 5 f f f f :
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The last term is calculated as follows,

5 f f f f D 5
f

ff
f
D 5 f

f
f
D f

f
f
C 4

f
f

� f f � C f � 4 f :

The second last term of (45) is calculated as follows,

�3 f f f f D�3 f
f
f
f
D�3

f
f f
��3

f
f f
C 6

f
f f ;

where the last equivalence is derived from Lemma 5.1. The last two terms are calculated
as follows,

6
f
f f D 6

f
f � f � 6

f
;

�3
f
f f
��3 f

f

f

C f �

�
12

f
C 12

f �

��3 f
f

f

C f �

�
�12 � 12

�
C f f � .�

3

2
/ ;

where the last equivalence is obtained from the relation,

f
C

f
C

f
D

f

D C D� :

Hence, from (45), the first term of the right-hand side of (40) is written

f f f f � f f f f � 3 f
f

f

C f f �

�
�

3

2

�

C f �

�
4 f C 6

f
� 12 � 12

�
:

Geometry & Topology, Volume 11 (2007)



1450 Tomotada Ohtsuki

Therefore, from (42), (44), and the above formula, (40) is rewritten

ffff � f f f f �
1

2

f
f
f
C 6 f

f

C f f �

�
�

3

2

�
C f �

�
�6 � 12

�
:

The last two diagrams of the first line are calculated by (47) and (48) as follows,

�
1

2

f
f
f
D�

1

2
f f f ��

1

2
f f f C f f �

3

4
� f� 3

6 f
f
D 6 f f � 6 f f �

f � 6 C � 12

Hence,

1

24
ffff �

1

24
f f f f �

1

48
f f f C

1

4 f f(46)

C f f �

�
1

24
�

1

16
C

1

32

�

C f �

�
�

3

8
�

1

4
�

1

2

�
C �

1

2
:

By the assumption of induction,

1

6
f f f �

1

6
f f f �

1

4
f f C f

C f �

�
1

8
C

1

6
�

1

4
C

1

2

�

C �

�
�

1

2
�

1

3
�

1

3
�

�
:
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Substituting this formula into the first term of the right-hand side of (46), we calculate
the term as follows,

1

24
f f f f �

1

24
f f f f �

1

16
f f

f
C

1

4 f
f

C f f �

�
1

32
C

1

24
�

1

16
C

1

8

�

C f �

�
�

1

8
�

1

12
�

1

12
�

1

4

�

�
1

24
f f f f �

1

16
f f f C

1

4 f f

C f f �

�
1

32
C

1

24
�

1

16
C

1

4

�

C f �

�
�

1

8
�

1

12
�

1

3
�

1

2

�
;

where the last equivalence is obtained by using the following relations,

f
D C D 2 ;

f
D C :

Therefore, from (46),

1

24
ffff �

1

24
f f f f �

1

12
f f f C

1

2 f f

C
1

2
f f �

�
1

8
C

1

6
�

1

4
C

1

2

�

C f �

�
�

1

2
�

1

3
�

1

3
�

�
C �

1

2
:

This is exactly the 4th part of the expansion of (39), as required.
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Lemma 5.12 Under the notation (13),

f �.2/
f �

1

2
f C f :

In particular, as the second and third parts of the expansion of the formula of the lemma,

1

2
f f �.2/

1

2
f f �

1

2
f C ;(47)

1

6
f f f �.2/

1

6
f f f �

1

4
f f C f :(48)

Proof of Lemma 5.12 The formula of the lemma is a reduction of (39). In fact, it
can be proved in the same way as the proof of (39), but the proof is far easier than the
proof of (39), which we show in the proof of Lemma 5.11. A detailed proof is left to
the reader.

Lemma 5.13 Under the notation (13),

��1 f �
.~/

�

 
1C

1

12
�

1

4
C

1

12

!

Proof By Lemma 5.11,

��1 f � �

�
1C

1

2
� C

1

8
�

1

2
C

1

2

�
1

6
C

1

4
�

1

2
C

1

3
C

1

3

�
:
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The required formula is obtained from this formula by using the following link relations,

0 �
.~/

D �

�
� 2

�
;

0 �
.~/

D �

�
� 2 � 2

�
;

0 �
.~/

D �

�
� 2 �

�
;

0 �
.~/

D �

�
� � 2

�
:

Lemma 5.14 Under the notation (13),

��1
x f

g

x

y

D

x

x

x

g
y

� expt

�
1

2
x �

x

x

x
C y

gx

x

�
1

6

x

x

C
1

4

x

x

�
1

2

x

x

C
1

6
x y

g
C

1

2
x y

g
C

1

3

x

x

x

x

C
1

3

x

x

x

x

C
1

3

g
y

x

x

x

�
1

4

g

g

yx

yx

C
1

6

y
g

g

x

yx

�
1

2

y
g

x

x

x

�
;

for power series f and g . In particular, when f is a scalar c ,

��1
x

g

x

y

c �

x

x

x

g
y

c
�

�
1C

c2

12

x

x

C
c

6
x y

g
�

c

12

g

g

yx

yx

�
:

Proof The second formula of the lemma is easily obtained from the first formula. In
the following of this proof, we show the first formula.
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In a similar way as the proof of Lemma 5.2, we can show that

f

m lines

�

f

�

f

C
f
�

�
1

3
C C

2

3

�

C
f
�

�
m� 1

2
�

m� 1

3

�
:

By this formula we can show the mth part of the expansion of the following formula
by induction on n,

f � f �
f
C f �

�
�

1

6

C C
2

3
C

1

4
�

1

6
C

1

2

�
:

Further, applying (38) to the first diagram of the right-hand side, we have that

f � f �
f
�

1

2 f
C

f

C f �

�
�

1

8
C

1

2
�

1

2
C

1

6
�

1

4

C
1

2
�

1

3
�

1

3
�

1

6
C

C
2

3
C

1

4
�

1

6
C

1

2

�
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� f �
f
�

1

2 f
C

f
C f �

�
�

1

8

C
1

2
�

1

2
C

1

6
�

1

4
C

1

2
�

1

3

�
1

3
�

1

6
�

1

3
C

1

4
�

1

6

�
1

2
�

1

2
�

1

2
C

1

2
C

�
;

where the second equivalence is obtained from the following relations,

f
�

f
��

f

� f �

�
� � �

�
;

f
�

f
��

1

2 f
� f �

�
� �

�
;

f
�

f
��

1

2 f

� f �

�
�

1

2
�

�
:

Therefore, we obtain the first formula of the lemma.

5.3 Formulas for Gaussian diagrams used in Section 3.4

In this section, we show formulas for Gaussian diagrams which are used in Section 3.4
to calculate the 2–loop polynomial for knots of genus 1.
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Lemma 5.15 For power series f , g and a scalar c ,

��1
x

z

y

c

x

f

g

�

z

z

y

y

cx

x
x

x

x

f

f

g
g

1/2
�

 
1C

c2

12

x

x

C
c

6

y

x

f
C

c

6 z

x g

�
c

12

y

yx

x

f
f �

c

12 z

z

x

x

g
g �

c

6
z

y

x

x

f

g

C
1

12
z

y

y
x

f
f
g C

1

12 z

z

y

x

f

g
g

!

�
.~x/

z

y

cx

x
x

x

f

g
�

 
1C

c2

12

x

x

C
c

12

y

x

f
C

c

12
z

x g
C

1

24 z

z

y

x

f

g
g

!
:

Proof For simplicity, we omit f , g , c in formulas of the proof.

In a similar way as in the proof of Lemma 5.14, we have that

� �
k

6
C

k.k � 1/

12
;

where k is the number of horizontal chords in the diagram of the left-hand side. By
splitting the chords into two parts, we have that

� �
n

6
�

m

6

C
n.n� 1/

12
C

m.m� 1/

12
C

nm

6
;
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where n (resp. m) is the number of horizontal chords whose right ends are labeled by
y (resp. z ). Hence,

� � .1C˛/;

where

˛ D�
1

6
�

1

6
C

1

12
C

1

12
C

1

6
:

Therefore, by Lemma 5.11 and Lemma 5.16,

�
−1/2

�

�
1C˛�

1

12
C

1

6
�

1

3

�

It follows that

�

1/2

�

�
1�˛C

1

12
�

1

6
C

1

3

�

�
1/2

�

�
1�˛C

1

12
C

1

12
C

1

12

�
:

Hence, we obtain the first equivalence of the required formula.

The second equivalence of the required formula is obtained from the following link
relations,

0 �
.~/

D � ;

0 �
.~/

D �

�
� �

�
;

0 �
.~/

D �

�
� �

�
;
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0 �
.~/

D �

�
C

�
;

0 �
.~/

D �

�
C

�
:

Lemma 5.16 For power series f and g ,

z

y

x

f

g �
−

z

z

y

y

f

f

g

g1/2

x

�

 
1C

1

6
z

y

y
x

f
f
g �

1

3 z

z

y

x

f

g
g

!
:

Proof By Lemma 5.5,

� �

�
1C

1

6
C

1

6
C

1

8

�
�

1

2

� �

�
1C

1

6
�

1

3
C

1

8

�
�

1

2
:

This implies the required formula.

Lemma 5.17

��1
z;w

z

yx

w

t

1−
�

.~z;w/
−

−1/2
t

t

1/2
t

1−z

z

z

z

z

yx

w

w

w

w

w

�

�
1C

1

8
wz

t 1−

t 1− C
1

12

w

w

z

z

�
1

12

w

w

z

z

t

t

�
1

4

w

w

z

z

t C
1

4

w

w

z

z

t

t
C

1

12 t
wz

z

z

t+1

C
1

12 t
w

w

w

z

t+1

C
1

24

x x

wz t 1− C
1

24

y y

wz t 1−

�
:

Proof By Lemma 5.2 and Lemma 5.7,

t

1−
� t

1−
�

�
1C

1

8
C

1

8

t
C

1

12
�

1

12

t

t

�
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�

−

−1/2
t

t

1/2
t

1−
�

�
1C

1

8

t 1−

t 1− C
1

12
�

1

12

t

t

�
1

4
t C

1

4

t

t
C

1

12 t

t+1

C
1

12 t

t+1 �
:

A left part of the first diagram of the right-hand side is calculated as follows,

−

−1/2
t

t

1/2
t

1−
� t 1− �

�
1C

1

8
t

t

C
1

8
t

t

C
1

4
t

t �

C
1

2
t

t 1−
C

1

2
t

t 1−
:

The map ��1
z takes diagrams of the right-hand side as follows,

��1
z

t 1− �
.~z /

t 1− �

�
1C

1

24
t 1−

�
;

��1
z t

t 1−
� t 1− �

�
t
C

1

2
t

t 1−
C

1

2
t

�
�
.~z /

t 1− �
t

;

��1
z t

t 1−
� t 1− �

�
t
C

1

2
t
t 1−
C

1

2

t
�
�
.~z /

t 1− �
t
;

where the first formula is obtained from Lemma 5.18 below, and the second and third
formulas are obtained by calculating them directly. Hence,

��1
z

−

−1/2
t

t

1/2
t

1−

�
.~z / −

−1/2
t

t

1/2
t

1−

�

�
1C

1

24
t 1−

�
:
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Further, in the same way, we have that

��1
z;w

−

−1/2
t

t

1/2
t

1−

�
.~z;w/ −

−1/2
t

t

1/2
t

1−

�

�
1C

1

24
t 1− C

1

24
t 1−

�
:

The required formula follows from the above formula and the first formula of the
proof.

Lemma 5.18 For power series f and g ,

��1
x

z

y

x

f

g �
.~x/

z

y

x

x

f

g �

�
1C

1

24
z

y

y
x

f
f

g

�
:

Proof By definition,

(49)
1/2

� �

�
1C

1

8

�
C

1

2
:

The first diagram of the right-hand side is calculated, by Lemma 5.4, as follows,

� �

�
1C

1

8
C

1

6
C

1

6

�
�

1

2
:

Further, the last diagram of (49) is directly calculated as follows,

� C �

�
�

1

2
�

1

2
�

1

2

�
:

Hence, (49) is rewritten

1/2
� �

�
1�

1

12
�

1

12

�
:
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Therefore, from the definition of �,

��1
�

1/2
�

�
1C

1

12
C

1

12

�
:

The required formula follows from this formula by using the following link relations,

0 �
.~/

D ;

0 �
.~/

D �

�
C

�
;

0 �
.~/

D �

�
C

�
:

Lemma 5.19

x x

x x

y

y y

y

z
z

z

z

z

w
w

w

w

w

n/2

k

m/2

t 1−
t/2

t/2

�
.~/

x x

x x
y

y y
y

z z ww

n/2

k

m/2

t 1−

�

�
1C

1

8
t wz

z

z
C

1

8
t

w

w

w

z

C
1

4

w

w

t
z

z
�

1

4

w

w

tz

z

�
:

Proof For simplicity, we omit n, m, k in some diagrams in the proof. We have that

�

x x

x x

y

y y

y

z
z

z
w

w

w

w

n/2

k

m/2

t

t
1−

D

t 1−
�
.~z /

t 1−

�
.~x/

t 1−

�
.~y/

t 1−

D 0:

In the same way,

x x

x x

y

y y

y

z
z

z

z

w
w

w

n/2

k

m/2

t

t
1−

�
.~/

0:
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Similarly,

0 �
.~/ t

t
1−

D
x x

x x
y

y y
y

z z ww

n/2

k

m/2

t 1−

�

�
�

w

w

w

t

tz

z
z

C

w

w

t
z

z
�

w

w

tz

z

�
;

0 �
.~/ t

t
1−

D
x x

x x
y

y y
y

z z ww

n/2

k

m/2

t 1−

�

�
� w

w

t
z

w

w

t
z

C t
w

w

w

z

�
:

Further, in the same way,

0 �
.~/

x x

x x
y

y y
y

z z ww

n/2

k

m/2

t 1−

�

�
�

w

w

w

t

tz

z
z

C

w

w

t
z

z
�

w

w

tz

z

�
;

0 �
.~/

x x

x x
y

y y
y

z z ww

n/2

k

m/2

t 1−

�

�
� t

w

w

tz

z
z

z

C t wz

z

z

�
:

The required formula follows from the above relations.

Lemma 5.20

x x

x x
y

y y
y

z z ww

n/2

k

m/2

t 1−

�

�
t

w

z

�

w w

z z

t

t

1−
�

y

ww

z

t

�
�
.~/

0 :

Proof The lemma is obtained from the following link relation,

t
t

1−
�
.~/

0 :
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5.4 Formulas for Gaussian diagrams used in Section 4

In this section, we show formulas for Gaussian diagrams which are used in Section 4
to calculate the 2–loop polynomial for knots of any genus.

Lemma 5.21 For a scalar c and power series f1; f2; � � � ; fn ,

��1
x

x

y1

y2

yn

f

f

f

1

2

n

c

�

x

x
x

x

x

y1

y2

yn

f

f

f

1

2

n

c

�

� Y
1�i<j�n

t

1/2
fi

f j

yi

yj

x

�

�

�
1C

c2

12

x

x

C
c

6

X
1�i�n

fi yix �
c

12

X
1�i�n
1�j�n

fi

f j

yi

yj

x

x

C
1

12

X
1�i<j�n

� y

x

fi
fi

f j

i

yi

yj

C x

fi

f j

f j

yi

yj

yj

�

C
1

6

X
1�i<j<k�n

�
x

fi

f
f

j

k

yi

y

y

j

k

C fk

y

x

fi
f j

i

yj

yk

��
;

where
Q
t denotes the product with respect to the disjoint-union product.

Proof For simplicity, we omit f1; f2; � � � ; fn in diagrams of the proof.

In a similar way as in the proof of Lemma 5.15, we have that

x

Y
�

x
Y
� .1C˛/;

where we put Y D y1Cy2C � � �Cyn and

˛ D�
1

12

x

x

�
1

6
x Y C

1

12

x

x

Y

Y
:
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Therefore, by Lemma 5.22 below,

x

Y
D

x

y1

y2

yn

�

x

y1

y2

yn

�

�
1C˛C

1

6

X
i<j

y

x

i

yi

yj

�
1

3

X
i<j
i<k

x

yi

y

y
j

k

�
#
Y
i<j

#

−1/2
yi

yjx
;

where
Q

# denotes the product with respect to the connected-sum product and the last
term is connect-summed to the bottom of the first diagram of the last line. Hence,

x

y1

y2

yn

�

x

Y
�

�
1�˛�

1

6

X
i<j

y

x

i

yi

yj

C
1

3

X
i<j
i<k

x

yi

y

y
j

k

�
#
Y
i<j

#

1/2
yi

yjx

� �x

� x

x
x Y

�

Y
i<j

t

1/2
yi

yj

x

�

�

�
1�˛�

1

6

X
i<j

y

x

i

yi

yj

C
1

3

X
i<j
i<k

x

yi

y

y
j

k

C
1

4

X
i<j

x
yi

yj

Y �
:

This implies the required formula.

Lemma 5.22 For power series f1; f2; � � � ; fn ,

y

y

yx

f
f

f

11

2
2

n

n

�

y

y

yx

f
f

f

11

2
2

n

n

�

�
1C

1

6

X
i<j

y

x

fi
fi

f j

i

yi

yj

�
1

3

X
i<j
i<k

x

fi

f
f

j

k

yi

y

y

j

k

�
#
Y
i<j

#

−1/2
fi

f j

yi

yjx

where
Q

# denotes the product with respect to the connected-sum product.

Proof For simplicity, we omit x; f1; f2; � � � ; fn .

By Lemma 5.16,

y
1

2

y

y3
D y

1

2

y

y3+ � 1/2−

y
1

2

y

1y

y3+

y2 y3+

�

�
1C

1

6

1y

1y

y2 y3+

�
1

3

1y

y2 y3+
y2 y3+

�
:
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By applying Lemma 5.16 again,

y2 y3+
D

y2

y3 � 1/2−

y2

y2

y3

y3

�

�
1C

1

6

y2

y2

y3

�
1

3

y2

y3
y3

�
:

From the above two formulas, we obtain the required formula for nD 3.

The required formula for any n is obtained similarly by induction on n

Lemma 5.23 For a scalar c and power series f1; f2; � � � ; fn ,

��1
x

x

y1

y2

yn

f

f

f

1

2

n

c

�
.~x/

x

x
x

x

x

y1

y2

yn

f

f

f

1

2

n

c

�

� Y
2�i<j�n

t

1/2
fi

f j

yi

yj

x

�
�

�
1C

c2

12

x

x

C
c

12

X
2�i�n

fi yix C
1

12

X
2�i<j�n

� y

x

fi
fi

f j

i

yi

yj

C
x

fi

f j

f j

yi

yj

yj

�

C
1

6

X
2�i<j<k�n

�
x

fi

f
f

j

k

yi

y

y

j

k

C
fk

y

x

fi
f j

i

yj

yk

�
C

1

24

X
2�j�n

x

yj

j

f1
f1

f

y1

y1
�
:

Proof The lemma is obtained from Lemma 5.21 by using the following link relations,

x
x

x

Y

y1

�
.~/

x

x
x Y

� x

y

Z

1

;

Y
Yx

x
x

x

�
.~/

x

x
x Y

�

�
x Y �

x

x

Y

Y

�
;

x

x
x

x

y

Z
1

Y

y1

�
.~/

x

x
x Y

�

�
x
x

Z
Z

y1
y1

C
x

Z

y1
y1

�
;

Y
Y

x

x
x

x

y

Z
1

�
.~/

x

x
x Y

�

�
�

x

Z

y1
y1

C x
Z

Z

y1 �
;

where we put Y D y1Cy2C � � �Cyn and Z D y2C � � �Cyn .
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Lemma 5.24 For scalars a and c ,

��1

X

z

x

a

uvc

�
.~/

x
x

x

x x

X

z

a

u
v

c

�

�
1�

c

12

x x

z X

C
1

24

x X

z z

�
:

Proof Similarly as in the proof of Lemma 5.15, we have that

c

X

u

v

x a

�

c

X

u

v

x a

�

�
1�

c2

12

x

x

�
c

6

X

x

C
c

12

X X

x x

�
a

2

X v

x u

�
:

Further, by modifying Lemma 5.23, we have that

��1

z

c

X

u

v

x a

�
.~/ x

x
x

x
x z

c

X

u

v

a

�

�
1C

c2

12

x

x

C
c

12

X

x

C
1

24

z z

x X

C
a

2

X v

x u

�
:

We obtain the required formula from the above two formulas, using the following link
relation,

x

x

x
x

x
x z

c

X

X
u

v

a

�

x

x
x

x
x z

c

X

u

v

a

�

� X

x

�

X X

x x

�

z X

x x

�
:

Lemma 5.25 For scalars n1; n2; k12 ,

��1 x1

z1

x2

z2

k12

n1/2 2n /2

�
.~/

x1
x1

x1
x1

z1

x2
x2 x2

x2

z2

k12

n1/2 2n /2

�

�
1C

X
1�i�2

�
n2

i

48

xi

xi

C
ni

24

xi

zi

�

�
k3

12

12

x1 x1

x2 x2

C
k12

24

x1 x2

z1 z1

C
k12

24

x1 x2

z2 z2

C
3k2

12
C n1k12C n2k12

24

x1

x2

�
:

Proof By Lemma 5.2,

x1

z1

x2

z2

k12

n1/2 2n /2

�
x1

z1

x2

z2

k12

n1/2 2n /2

�

�
1C

k2
12

8

x1

x2

�
k3

12

12

x1 x1

x2 x2

�
:
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By applying Lemma 5.15 to each solid circle of the first diagram of the right-hand side,
we obtain the required formula.

Lemma 5.26 For scalars ni ; kij ; b ,

��1

x

x x

z

z z

k

k k

n1

1

1

2

2

2

3

3

3

12 13

23

/2

n /2 n /2
b �

.~/

x

x x

z z

k

k k
1x1

2 2x2

x2
x2
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2

33

x3

x3

x3x3

3

12 13

23

n /2 n /2

x

z

n1

1 x1 x1

1

/2

�

x1

x2 x3

bC
k12k13Ck12k23Ck13k23

2 �

�
1C

X
1�i�3

�
n2

i

48

xi
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C
ni

24

xi

zi

�

C

X
1�i<j�3

�
3k2

ijCnikijCnj kij

24

xi

xj

�
k3

ij

12

xi xi

xj xj

C
kij

24

xi xj

zi zi

C
kij

24

xi xj

zj zj

�

C

X
.i;j ;l/

�
b.kij C kil/

2
C

kij kilkjl

4
C

kjl.k
2
ij C k2

il
/

12

�xi xi

xj xl

�
;

where the last sum is taken over .i; j ; l/D .1; 2; 3/; .2; 1; 3/; .3; 1; 2/.

Proof We obtain the terms of the right-hand side of the required formula labeled by at
most 2 colors in the same form as in Lemma 5.25. It is sufficient to calculate the terms
labeled by 3 colors. In this proof we consider the equivalence modulo the diagrams
with 2 trivalent vertices and at most 2 colors.

The diagram of the left-hand side of the required formula is equivalent to

b

x

x x

z

z z

k

k k

n1

1

1

2

2

2

3

3

3

12 13

23

/2

n /2 n /2
�

�
1C

b.k12C k13/

2

x1 x1

x2 x3

�
:
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By applying Lemma 5.27 to the solid circle labeled by x1 , the first diagram is taken
by ��1

x1
(modulo the equivalence) to

b

x

x x

z

z z

k

k k

n1

1 x1 x1

x1 x1x1

1

2

2

2

3

3

3

12 13

23
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n /2 n /2

+ 1
23K

�

�
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12

k13

12
C

bk12

2

� x2 x2

x1 x3

C

�k12k2
13

12
C

bk13

2

� x3 x3

x1 x2

�
;

where we put Ki
jl
D kij kil=2. Further, the first diagram is equivalent to

b

x
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z

z z

k

k k
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1 x1 x1
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3
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�
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�
bC

k12k13

2

�x1 x1
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�
bC
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2

�x2 x2

x1 x3

�
:

By applying Lemma 5.27 to the solid circle labeled by x2 , the lower part of the first
diagram is taken by ��1

x2
(modulo the equivalence) to

b

x

z z

k

k k

x1 x1x1

2 x2
x2x2

2

x2 x2

x2

2

3

3

3

12 1313

23

n /2 n /2

+ +1
23K K

�

�
1C

�k2
12

k23

12
C

k12

2

�
bC

k12k13

2

��x1 x1

x2 x3

C

�k12k2
23

12
C

k23

2

�
bC

k12k13

2

��x3 x3

x1 x2

�
:

Further, the right part of the first diagram is equivalent to

x

z

k

k

x1 x1

x2
x2

3

3

3

13

23

n /2
b 2

13+ +1
23K K

�

�
1�

k23

2

�
bC

k12.k13C k23/

2

� x2 x2

x1 x3

�
:
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By applying Lemma 5.27 to the solid circle labeled by x3 , the first diagram is taken
by ��1

x3
(modulo the equivalence) to

12

z

k

k

x1 x1

x2
x2

3

x3

x3

x3
x3

x3

3

x3

3

13

23

n /2
b 2

13+ +1
23K K +K �

�
1C

�k2
13

k23

12
C

k13

2

�
bC

k12k13C k12k23

2

��x1 x1

x2 x3

C

�k13k2
23

12
C

k23

2

�
bC

k12k13C k12k23

2

��x2 x2

x1 x3

�
:

By summing the diagrams in the right part of the above formulas, we obtain the terms
of the required formula colored by 3 colors, completing the proof.

Lemma 5.27 For scalars a1; a2; a3; b; c ,

��1
x

x

y1

y2
y2

y

1

2

c
a
a

a
3

y33

b

�
.~x/

x

x
x
x
x

y1

y2

y

1

2

c
a
a

3

a3

� x 2
2a a3b+ y2

y3

�

�
1C

c2

12

x

x

C

X
2�i�3

aic

12
yix C

X
2�j�3

a2
1
aj

24 yj

y1
y1

x

C

�a2
2
a3

12
C

a2b

2

�
x

y2
y2

y3

C

�a2a2
3

12
C

a3b

2

�
x

y2

y3
y3

�
:

Proof By definition,

x

y1

y2
y2

y

1

2

c
a
a

a
3

y33

b �

x

y1

y2

y

1

2

c
a
a

a
3

3

�

�
1C

b2

2

x
x

y2
y2

y3
y3

�
C

x

y1

y2
y2

y

1

2

c
a
a

a
3

y33

b :

In a similar way as Lemma 5.21, we have that

��1
x

x

y1

y2
y2

y

1

2

c
a
a

a
3

y33

b

�

x

x
x
x
x

y1

y2

y

1

2

c
a
a

3

a3

�

��
b x

y2

y3

�
�

�
1C

aiaj

2

X
1�i<j�3

yi

yj

x

�

C
a1b

2

y1

x
y2

y3

C
a2b

2
x

y2
y2

y3

C
a3b

2
x

y2

y3
y3

�
:
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The error term between the required formula and a particular case of Lemma 5.23 is

x

x
x
x
x

y1

y2

y

1

2

c
a
a

3

a3

�

��
b x

y2

y3

�
�

�
1C

b

2
x

y2

y3

C
aiaj

2

X
1�i<j�3

yi

yj

x

�

C
a1b

2

y1

x
y2

y3

C
a2b

2
x

y2
y2

y3

C
a3b

2
x

y2

y3
y3

�
�
.~/

x

x
x
x
x

y1

y2

y

1

2

c
a
a

3

a3

�

��
b x

y2

y3

�
�

�
1C

b

2
x

y2

y3

C
a2a3

2
x

y2

y3

�
C

a2b

2
x

y2
y2

y3

C
a3b

2
x

y2

y3
y3

�
;

where the relation is obtained from the following link relation,

0 �
.~/

y1

y1

y2
y2

y

1

2

c
a

1a

a

a
3

y33

b

x

x
x
x

x

x

D

x

x
x
x
x

y1

y2

y

1

2

c
a
a

3

a3

�

��
b x

y2

y3

�
�

�
a1a2

y1

x

y2

C a1a3

y1

x

y3

�
C a1b

y1

x
y2

y3

�
:

Hence, from a particular case of Lemma 5.23 and the above mentioned error term, we
obtain the required formula.

Lemma 5.28 For scalars ni ; kij (with kij D kji ),

��1

12

x

x x

x1

1

z z

zz

3

3

k

k

k k
k

k

23

3n /2

n /2 2
2 n /2

2

1

n /24

4

4

24

13

14

34

�
.~/

z z

12
x

x

1zz

3

k

k

k k
k

k

23

3n /2

n /2

2x2x2

x2
x2

x2

2 n /2

2

1

n /2

4
x4

x4 x4

x4
x4

4

4

24

13

14

34

x3
x3

x3x3

x3 x3

x1
x1

x1 x1

x1x1

�

Y
1�i<j<l�4

t

i

j l

X

X X

�ij l �.1Cˇ/;
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where we put �ijl D .kij kilCkij kjlCkilkjl/=2 and

12ˇ D
X

1�i�4

�
n2

i

4

xi

xi

C
ni

2

xi

zi

�

C

X
1�i<j�4

�
3k2

ij C nikij C nj kij

2

xi

xj

� k3
ij

xi xi

xj xj

C
kij

2

xi xj

zi zi

C
kij

2

xi xj

zj zj

�

C

X
1�i�4

X
j<l

j ;l¤i

�
3kij kilkjl C kjl

�
k2

ij C k2
il

��xi xi

xj xl

C 2.k12k13k14C k21k23k24C k31k32k34C k41k42k43/

� x2 x1

x3 x4

C

x2 x1

x3 x4

�
C 3.k12C k34� k14� k23/k13k24

� x2 x1

x3 x4

�

x2 x1

x3 x4

�
C 3.k12C k13C k24C k34/k14k23

x2 x1

x3 x4

C 3.k13C k14C k23C k24/k12k34

x2 x1

x3 x4

:

Proof We obtain the terms of the right-hand side of the required formula labeled by at
most 3 colors in the same form as in Lemma 5.26. It is sufficient to calculate the terms
labeled by 4 colors, similarly as the proof of Lemma 5.26. In this proof we consider
the equivalence modulo the diagrams with 2 trivalent vertices and at most 3 colors.

The diagram of the left-hand side of the required formula is taken by ��1
x1

(modulo the
equivalence) to

12x

x x

x1
x1

x1

x1
x1

x1

x1
x11

1

1

x1

1

z z

zz

3

3

k

k k
k

k

k

23

23

3n /2

n /2
2

2

n /2
2

1

n /24

4

4

24

24

13
14

34

34

K

K

K
�

�
1C

k12k13k14

6

� x2 x1

x3 x4

C

x2 x1

x3 x4

��
;
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where we put Ki
jl
D kij kil=2 as in the proof of Lemma 5.26. The first diagram is

taken by ��1
x2

(modulo the equivalence) to

1

12k

2

2 2

2

n /22 x1

x1
x1 n /21

x

1

xx 2x

2x

2x
2x

x
2x

2x

11 x1 x
x1

x1

z z3

3

k k

k k

k

23

23

3n /2 n /24

4

4

24

24

13

13

14

14

34

34K34KK K

x

+ 1 2K K+ �

 
1C

k21k23k24

6

� x2 x1

x3 x4

C

x2 x1

x3 x4

�

C
K1

24
k23

2

x2 x1

x3 x4

C
K1

23
k24

2

x2 x1

x3 x4

!
:

Further, the first diagram is taken by ��1
x3

(modulo the equivalence) to

2
2

2

2

x

1

xxx

2x

2x

11
x1 x

x
x1

x1

z z3

3

33

k

k

k
k

k

23

3n /2 n /2
4

4
4

24
24

24

13

14

14

14

34

34K34K

x
3x

3x

3x 3x
3x3x3x

3x
1 2K K

K
+

+K+κ123

�

�
1C

k31k32k34

6

� x2 x1

x3 x4

C

x2 x1

x3 x4

�
C

K1
34

k23

2

x2 x1

x3 x4

C
.K1

23
CK2

13
/k34

2

x2 x1

x3 x4

�
K2

34
k13

2

x2 x1

x3 x4

�
:

Furthermore, the first diagram is taken by ��1
x4

(modulo the equivalence) to

2

x

x1

x1

x1

x

2x2x

z

3

k

k

k
n /2

4

x4

x4

x4

x4

x4

x4
x4x4

4

4

24

14

34
x

3x

3x
κ

κ

κ 124

234

134

�

�
1C

k41k42k43

6

� x2 x1

x3 x4

C

x2 x1

x3 x4

�
C
.K2

34
CK3

24
/k14

2

x2 x1

x3 x4

C
.K1

24
CK2

14
/k34

2

x2 x1

x3 x4

C
.�K1

34
CK3

14
/k24

2

x2 x1

x3 x4

�
:

By summing the diagrams in the right part of the above formulas, we obtain the terms
of the required formula colored by 4 colors, completing the proof.
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