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Topological conformal field theories and gauge theories

KEVIN COSTELLO

This paper gives a construction, using heat kernels, of differential forms on the moduli
space of metrised ribbon graphs, or equivalently on the moduli space of Riemann
surfaces with boundary. The construction depends on a manifold with a bundle
of Frobenius algebras, satisfying various conditions. These forms satisfy gluing
conditions which mean they form an open topological conformal field theory, that is,
a kind of open string theory.

If the integral of these forms converged, it would yield the purely quantum part of the
partition function of a Chern–Simons type gauge theory. Yang–Mills theory on a four
manifold arises as one of these Chern–Simons type gauge theories.

32G15; 81T13

1 Introduction

Definition 1.0.1 An elliptic space .M;A/ consists of

� A compact C1 manifold M . Let C1.M /D C1.M;C/ denote the algebra
of complex valued smooth functions on M .

� A Z=2 graded algebra A over C1.M /, which is projective as a C1.M /

module. This is the same data as a finite dimensional bundle of complex Z=2

graded associative algebras AM on M , whose algebra of global sections is A.

� An odd derivation QW A!A, which satisfies Q2 D 0, and which is an order
one differential operator with respect to C1.M /.

� .A;Q/ is required to be an elliptic complex.

Definition 1.0.2 A Calabi–Yau structure on an elliptic space is a trace map TrW A!C,
which factors as

A
TrM
���! Densities.M /

R
M
��! C

where the first arrow is C1.M / linear. The trace map must satisfy

Tr.Œa; a0�/D 0 and Tr.Qa/D 0
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There is a map AM ˝ AM ! DensitiesM of vector bundles on M , defined by
a˝a0 7! TrM .aa0/. We require that this be non-degenerate on each fibre of the vector
bundle AM .

The name elliptic space was suggested by Maxim Kontsevich, who studied these
concepts several years ago.

The trace map TrW A! C can be even or odd, depending on whether the map A!
Densities.M / is an even or odd map of super vector bundles. We will refer to this as
the parity p.A/ of A.

These definitions can be modified to deal with Z graded elliptic spaces; the grading
conventions are such that Q is of degree C1. A Z graded CY elliptic space of
dimension d is one such that the trace map TrW A! C is of degree �d . The most
interesting examples are of dimension 3.

We will use the notation A˝A to refer to the space of sections of the vector bundle
AM �AM on M 2 . In other words, ˝ will refer to the completed projective tensor
product where appropriate.

Definition 1.0.3 Let .M;A/ be a CY elliptic space. A Hermitian metric h i on A
is called compatible if there exists a complex antilinear, C1.M;R/ linear, operator
�W A!A such that

Tr.a� b/D ha; bi and ��˛ D .�1/j˛j.p.A/C1/˛

where ˛ 2A is of parity j˛j. We will sometimes refer to a compatible metric on A as
a metric on the CY elliptic space .M;A/.

If A is endowed with a compatible Hermitian metric, let Q| be the Hermitian adjoint
to Q, and let

H D ŒQ;Q|�DQQ|
CQ|Q

be the Hamiltonian. H is an elliptic operator, self-adjoint with respect to the Hermitian
inner product, and with non-negative eigenvalues. Also the L2 completion of A has a
Hilbert space basis of eigenvectors of H . As H is elliptic, these eigenvectors are in
A.

Lemma 1.0.4 (1) Q| and H are both self adjoint with respect to the trace pairing
Tr.ab/ on A.

(2) There is a direct sum decomposition

AD Im Q˚Ker H ˚ Im Q|
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(3) Also Ker H D Ker Q\Ker Q| .

Proof The first statement follows from the condition that ��˛ D .�1/j˛j.p.A/C1/˛ ,
and the second two statements follow from the ellipticity of H .
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2 Summary of the paper

2.1 Examples of Calabi–Yau elliptic spaces

There is a natural Chern–Simons type action associated to an odd CY elliptic space,
given by the formula

S.a/D Tr
�

1
2
aQaC 1

3
a3
�

This is a functional on the linear super-manifold …A.

In Section 3, I give some examples of Calabi–Yau elliptic spaces, and discuss the
associated Chern–Simons type actions. The most obvious example is when M is a
compact oriented manifold, E is a vector bundle on M and AD��.End.E//. This
yields ordinary Chern–Simons theory. The first non-trivial construction of this note is
to give a Calabi–Yau elliptic space whose associated Chern–Simons type action is a
version of Yang–Mills theory on a compact oriented four manifold with a conformal
class of metrics.

2.2 Forms on moduli space

In Section 4, I give a construction of forms on the moduli space of metrised ribbon
graphs, associated to a Calabi–Yau elliptic space with a metric. If �.n;m/ denotes the
space of metrised ribbon graphs with n incoming and m outgoing external vertices, I
define maps

KW A˝n
!A˝m

˝��.�.n;m/; det˝p.A//

Here det is a certain rank one local system on �.n;m/. These maps are compatible
with the differentials, with gluing of ribbon graphs along external vertices, and with
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disjoint union. The construction is related to Witten’s construction [25] of a measure
on moduli space associated to Chern–Simons theory.

Let �g;h � �.0; 0/ be the subspace of ribbon graphs of genus g with h boundary
components. This space is homeomorphic to the moduli space Mh

g of Riemann
surfaces of genus g with h with unparameterised boundary components1. Under this
homeomorphism the local system det corresponds to the orientation local system on
the manifold Mh

g .

More generally, let �g;h;n � �.n; 0/ be the space of such ribbon graphs which have
n external vertices, with the property that the lengths of the edges attached to the
external vertices is 0, and that the external vertices are a non-zero distance apart. Then
�g;h;n is homeomorphic to the space Mh;n

g of Riemann surfaces † of genus g , with
h boundary components, and with n distinct ordered points in @†.

Thus, the map K we construct gives a map

Kg;hW A˝n
!��.Mh;n

g ;Or˝p.A//

where Or refers to the orientation sheaf.

Taking nD 0, we simply get a closed form K 2��.Mh
g;Or˝p.A//. When p.A/D 0,

the cohomology class of this is the same as that obtained by applying Kontsevich’s
construction [10] to the H�.A/ with the structure of cyclic A1 algebra coming from
the homological perturbation lemma.

In the case when A is a Z graded CY elliptic space of dimension d , so that the trace
is of degree �d , then Kg;h.a1; : : : ; an/ is of degree

P
jai j C d.2g � 2C h/. Note

that dimMh;n
g D 6g � 6C 3hC n. This makes it clear that the case d D 3 plays a

special role.

2.3 Chern–Simons type gauge theories

In Section 6, I describe a relationship between these forms and the Chern–Simons type
action associated to A, when p.A/ is odd. The relationship is very similar to that
between open string theory and Chern–Simons theory discovered by Witten [25].

Consider the algebra MatN .A/DA˝C MatN , where MatN is the algebra of N �N

complex matrices. We can think of MatN .A/ as N �N matrices with coefficients in A.

1Normally, the ribbon graph moduli space is viewed as homeomorphic to the moduli space of surfaces
with punctures, and a label in R>0 at each puncture. However, the latter space is homeomorphic to
the space of surfaces with boundary. The labels at the punctures correspond to lengths of boundary
components. A proof is given in Lemma 4.3.1.
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The operators Q;Q| extend to MatN .A/ by acting on the entries of a matrix. Combin-
ing the trace map TrW A! C with matrix trace gives a trace map TrW MatN .A/! C.
Consider the action

S.B/D 1
2

Tr BQBC 1
3

Tr B3

for B 2 MatN .A/. Here we work with M with p.A/ D 1, that is, the trace map
TrW A! C is odd. We will consider S to be an even functional on the supervector
space …MatN .A/.

Let
Sk.B/D

1
2

Tr BQB

be the purely quadratic part of S . Let a 2HDKer H , the space of harmonic elements
in A. We can formally write down the partition function

ZCS .a; �;N /D

Z
B2… Im Q|

eS.BCa˝Id/=�
�Z

B2… Im Q|

eSk.B/=�

… denotes parity change, so the integral is over the linear supermanifold … Im Q| �

…MatN .A/. This integral is to be understood formally, in terms of its Feynman
diagram expansion. We perform the Feynman diagram expansion complex linearly. This
means that the propagator is an element of (some completion of) … Im Q|˝C… Im Q| ,
the interaction is a C–linear map … Im Q|˝C… Im Q|˝C… Im Q|! C, etc.

We could alternatively pick a real subspace FR � … Im Q| , such that FR ˝R C D

… Im Q| , perform the integral over the space FR . In this case we should use the
R–linear Feynman diagram expansion. Then it is easy to check we get the same answer
as we did using the C–linear Feynman expansion above.

The Feynman diagram expansion of ZCS .a; �;N / is a formal expression of the form

ZCS .a; �;N /D exp
�X


���./
1

# Aut. /
w .a/

�
where the sum is over connected trivalent ribbon graphs  with some external edges.
The expression w .a/ denotes a certain integral over Rk

>0
, which generally does not

converge. Here k is the number of internal edges in  . To make numerical sense of
ZCS .a; �;N /, we need to regularise these integrals in some way.

Also, we could try to integrate the form Kg;h.a
˝n/ 2 ��.Mh;n

g ;Or/, for a 2 H D
Ker H . Top dimensional cells in Mh;n

g are labelled by trivalent ribbon graphs  with
n external vertices. Thus, we can writeZ

Mh;n
g

Kg;h.a
˝n/=n!D

X


1

Aut. /

Z
Met0. /

Kg;h.a
˝n/
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where the sum is over certain trivalent ribbon graphs, and Met0. / denotes the space
of metrics on  which give zero length to the n external edges.

It turns out that

w .a/D

Z
Met0. /

Kg;h.a
˝n/

Both sides of this equality represent possibly non-convergent finite dimensional inte-
grals; the integrals are of the same integrand over the same space.

The result of this discussion is a formal equality of functions of a 2HD Ker H ,

ZCS .a; �;N /D exp

 X
g;n�0;h>0

2g�2ChCn
2
>0

�2g�2ChN h

Z
Mh;n

g

Kg;h.a
˝n/=n!

!
:

2.4 Regularisation and Sen–Zwiebach formalism

As I mentioned earlier, the integral of our forms on moduli space does not seem to
converge in general. This is because the forms have singularities on the boundary of a
natural compactification of the moduli space of surfaces with boundary. This is the
compactification considered by Liu [15]. In this compactification one allows surfaces
with two types of singularities: nodes on the boundary or nodes in the interior. Also
one allows boundary lengths to shrink to zero. Our forms only have singularities on
surfaces with nodes in the interior, and on surfaces which have a boundary component
of length zero.

One can restrict the region over which we integrate to a compact subset of the region
where the forms are non-singular, and then of course the integral converges. One
natural way to do this is to remove the locus of surfaces which have a very short2

closed loop. Then we find that we are integrating over part of a set of Sen–Zwiebach
[22; 27] open-closed string vertices. This is what we do if we want to construct the
open-closed string partition function.

What does this construction correspond to in terms of the Chern–Simons theory?
Restricting in this way the region in moduli space over which we integrate corresponds
to disallowing “small” subgraphs (which are not trees). This is a very natural way of
regularising Chern–Simons theory: the singularities arise precisely from such graphs.
This suggests an intriguing connection between renormalisation and the Sen–Zwiebach
BV formalism.

2Short means in the canonical hyperbolic metric on the surface.
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3 Examples

3.1 Chern–Simons theory

Let M be a compact oriented manifold, and let AD��.M;C/. The operator Q is
the de Rham differential d, and the trace map TrW A! C is simply integration on M .
If we pick a metric on M , we get a compatible Hermitian metric on A, in the usual
way. Then Q| D d� , and H D4.

More generally, let E be a flat complex vector bundle M . Then let

AD End.E/˝C1.M /�
�
M :

A combination of vector bundle trace and the usual volume element gives M a volume
element. Then, as above, Q is the de Rham differential on A, coupled as usual to the
flat connection on End.E/. If we pick a Hermitian metric on E and a metric on M ,
we get a metric on A which is compatible.

The Chern–Simons type action in this example is simply the usual Chern–Simons action.
When dim M D 3, this has been analyzed in Axelrod and Singer [2], Kontsevich [10]
and Witten [25]. The papers of Kontsevich [10] and Schwarz [21] study also the higher
dimensional generalisation.

3.2 Holomorphic Chern–Simons

Let M be a compact complex manifold of dimension n, with a holomorphic volume
form VolM . Let E be a complex of holomorphic vector bundles on M . Let A D
End.E/˝C1.M /�

0;�
M

, that is, A is the Dolbeaut resolution of the sheaf of holomorphic
maps E!E . The natural differential on the complex A defines the operator Q. The
map

A
TraceE
����!�

0;�
M
!�

0;n
M

VolM ^
�����!�

n;n
M

defines the trace map TrW A! C. If we pick a metric on M , and a Hermitian metric
on each term of the complex E , there is an induced compatible Hermitian metric on
the A.

The action in this case is the holomorphic Chern–Simons action, as studied in the work
of Witten [25], Donaldson and Thomas [6] and Thomas [23].

3.3 Yang–Mills

Let M be a compact oriented 4 manifold with a conformal structure. Let �2
C.M;R/

be the space of self dual real two forms on M , and let �2
C.M /D�2

C.M;R/˝R C.
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Let �k.M / denote the space of complex forms on M . Define A to be the complex

�0.M /
d
�!�1.M /

dC
��!�2

C.M /

This is an elliptic space, but it is not Calabi–Yau. Similarly, if we have a vector bundle
E with an anti-self dual connection A, the algebra

�0.End.E//
dA
�!�1.End.E//

dAC

���!�2
C.End.E//

defines an elliptic space. (This construction was explained to me by Maxim Kontsevich).

Next we will show how to construct Calabi–Yau elliptic spaces over conformal 4

manifolds. Let E be a complex vector bundle on M with a connection A, which
satisfies the Yang–Mills equation

dAF.A/C D 0

Here
F.A/C 2�

2
C.End.E//D�2

C.M /˝C1.M / End.E/

denotes the self-dual part of the curvature.

We can make a non-commutative elliptic space using E . It is easiest to describe this
construction in several steps. First, consider the algebra ��.End.E//, with the odd
derivation dA . Of course d2

A
is not necessarily zero. Now take the algebra

B D��.End.E//˝CŒ"�

where " is a parameter of degree �1. The operator dA extends to a derivation of B , in
a unique way such that dA"D 0.

For an element x 2B , let Lx be the inner derivation given by Lx.y/D Œx;y�. Observe
that for any derivation D of B , ŒD;Lx �D LDx .

Define a derivation Q of B by

QD dA�L"F.A/C C
@
@"

In other words, if a; b 2��.End.E//, then

Q.aC "b/D dAaC b� "ŒF.A/C; a�� "dAb

It is easy to calculate that
ŒQ;Q�D 2LF.A/� :

Indeed, the fact that dAF.A/C D 0 implies that ŒdA;L"F.A/C �D 0, the second two
terms in Q commute with themselves, and

ŒdA; dA�� 2
�
@
@"
;L"F.A/C

�
D 2LF.A/� 2LF.A/C
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Next, consider the subalgebra BC of B spanned by elements aC "b such that

b 2�2
C.End.E//˚�3.End.E//˚�4.End.E//

The operator Q preserves the subalgebra BC .

Now let I � BC be the ideal

I D�2
�.End.E//˚�3.End.E//˚�4.End.E//� BC

The ideal I is preserved by Q. Therefore we can define the quotient

AD BC=I

In the original algebra B , ŒQ;Q�D LF.A/� . It follows that ŒQ;Q�D 0 in A.

The differential graded algebra A looks like

�0.End.E//

dA

��

�ŒF.A/C; �

&&MMMMMMMMMMMMMMMMMMMMMMM
degree 0

�1.End.E//

dAC

��

�ŒF.A/C; �
LLL

LLL
LLL

&&LLLLLLLLLLL

˚ �2
C.End.E//

�dA

��

Idrrr
rr

xxrrrrrrrrrrrrrrrrr

degree 1

�2
C.End.E//

�ŒF.A/C; �

&&MMMMMMMMMMMMMMMMMMMMMMM
˚ �3.End.E//

�dA

��

degree 2

�4.End.E// degree 3

The signs are slightly tricky in this diagram. We should think of the right hand column
as being things of the form "b , where b 2��.End.E//. Therefore the left action of
the left column on the right column is twisted by a sign. The right action is the obvious
one. This explains also why we have �dA instead of dA in the right hand column.

The trace map TrW A! C is given by the composition of the trace map

TrE W �
4.End.E//!�4.M /

Geometry & Topology, Volume 11 (2007)



1548 Kevin Costello

with integration on M .

Lemma 3.3.1 .M;A/ is a Calabi–Yau elliptic space. Also, if we pick a metric on
M in the given conformal class, and a Hermitian metric on E , we get a compatible
Hermitian metric on the space A, and so a metric on the elliptic space .M;A/.

Proof We have already seen that A is associative and Q is a derivation of square zero.
It is also easy to see that A is elliptic, and that the pairing Tr.ab/ is non-degenerate.

Let TrE W �
�.End.E//!��

M
denote the fibrewise trace map. For any connection A

on E , and any x 2�3.End.E//, Tr.dAx/D d Tr.x/. Also, for x;x0 2�2.End.E//,
we have TrE.Œx;x

0�/D 0. It follows that for a 2A3 , Tr QaD 0.

Picking a metric on M and E gives complex antilinear Hodge star maps

�0W �
i.End.E//!�4�i.End.E//

defined by
�0.!˝X /D �.!/˝X |

where X 2 End.E/ and ! 2 �i.M /. X | denotes the Hermitian adjoint to X and
�.!/ is the usual Hodge star of ! .

The Hodge star operator � on A as follows. As always, we are thinking of A as a
subquotient of ��.End.E//Œ"�. Then � is defined by

�.aC "b/D .�1/jaj"�0 aC�0b

It is clear that �2 D 1. The pairing Tr.a� a0/ is the Hermitian metric on each direct
summand of A which comes from the choice of metric on M and on E . This is
obvious for each summand except �1.End E/ � A1 . But, if a; a0 are in this space,
then

Tr.a� a0/D�Tr.a�0 a0/D Tr..�a0/a/

as Tr.Œx;y�/D 0.

3.3.1 The action functional The Chern–Simons type action functional, for ˛ 2A1 ,
is defined by

S.˛/D 1
2

Tr˛Q˛C 1
3

Tr˛3

Let us write ˛ D aC "b , where a 2 �1.End.E//, b 2 �2
C.End.E//, and " is an

odd parameter. As before, we are considering A as a subquotient of the algebra
��.End.E//Œ"�.
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Proposition 3.3.2

S.aC "b/D Tr
�

1
2
b2
C .F.AC a/�F.A//.b�F.A/C/

�
Proof

Q˛ D dACaC b� "dAb� "ŒF.A/C; a�

˛Q˛ D "bdAaC "b2
C "adAbC "aŒF.A/C; a�

˛3
D "a2bC "ba2

� "aba

so that
S.aC "b/D Tr

�
1
2
b2
C .dAa/bC a2bC aŒF.A/C; a�

�
D Tr

�
1
2
b2
C .F.AC a/C�F.A/C/b� a2F.A/C

�
where AC a refers to the connection obtained by adding a onto the given Yang–Mills
connection A on E . Since

.dAaC a2/F.A/C D .F.AC a/C�F.A/C/F.A/C

and
Tr..dAa/F.A/C/D 0

because dAF.A/C D 0, this action can be rewritten

S.aC "b/D Tr
�

1
2
b2
C .F.AC a/C�F.A/C/b�F.AC a/CF.A/CCF.A/2C

�
D Tr

�
1
2
b2
C .F.AC a/C�F.A/C/.b�F.A/C/

�
as desired.

Lemma 3.3.3 The set of critical points of the action S is the set a C "b with
dACaF.AC a/C D 0 and b D F.A/C�F.AC a/C .

Proof Varying b immediately leads to the equation that at a critical point,

b D F.A/C�F.AC a/C

If we vary a to aC ıa, then, to first order,

F.AC aC ıa/D F.AC a/C dACaıa

Therefore we find the constraint

dACa.b�F.A/C/D 0

Finally, since at a critical point b D F.A/C�F.AC a/C , this equation becomes the
Yang–Mills equation

dACaF.AC a/C D 0

Geometry & Topology, Volume 11 (2007)
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Thus we have shown that the set of critical points is the same as the set of those
a satisfying the Yang–Mills equation. In other words, the action we wrote down is
classically equivalent to the Yang–Mills action.

3.3.2 Relationship to Yang–Mills at the quantum level At the quantum level, the
Chern–Simons type theory we construct is equivalent to ordinary Yang–Mills, given by
the action

SYM.a/D
1
2

Tr.F.AC a/2C/

This equivalence seems to be well-known to experts in the area.

If we perform the simple change of coordinates b 7! b C F.A/C , then our action
becomes

Tr
�

1
2
b2
CF.AC a/CbC 1

2
F.A/2C

�
Since F.A/2C is a constant, we can ignore it. Then the action is precisely the same
as that studied by Witten [26, Section 4.4] where it was described as equivalent to
ordinary Yang–Mills.

A very similar action was studied by Cattaneo et al. [3], and by Martellini and Zeni
[18], given by the formula

Tr
�

1
2
b � bCF.AC a/b

�
:

Here we are perturbing around a flat connection A, a 2 �1.End.E//, and b 2

�2.End.E// is not necessarily self dual. These authors showed this theory was
equivalent to Yang–Mills at the quantum level. If we perturb around a connection A

with F.A/C D 0, then our action is given by the same formula. The only difference is
that our field b is self dual.

Besides these references to the literature, let me give a simple formal argument showing
that the theory we considered here should be equivalent to ordinary Yang–Mills. Define
a non-linear map ˆW A1!A1 by

ˆ.aC "b/D aC ".bCF.A/C�F.AC a/C/

It is easy to see that

S.ˆ.aC"b//D 1
2

Tr.F.ACa/2C�F.A/2CCb2/D�SYM.a/C
1
2

Tr b2
�

1
2

Tr F.A/2C

The last term in this formula is a constant, and can be ignored. The derivative of the
map ˆ is the identity plus a triangular matrix, and therefore the Jacobian is trivial.

If we consider the theory defined by the action �SYM.a/C
1
2

Tr b2 , and we integrate
out b , we recover the usual Yang–Mills action.
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Let ˛ 2 �3.End.E//, considered as a linear form on �1.End.E//. The argument
above show that, formally, we have the identity

Z.˛/D

Z
a;b

exp��1
�
Tr
�

1
2
b2
C .F.AC a/�F.A//.b�F.A/C/

�
C˛.a/

�
D c

Z
a

exp��1
�
�SY M.a/C˛.a/

� Z
b

exp��1
�

1
2

Tr b2
�

D c0
Z

a

exp��1
�
�SY M.a/C˛.a/

�
where c; c0 are constants independent of �.

3.3.3 Categorical generalisation This construction can be easily generalised to give
a differential graded Calabi–Yau category associated to the conformal 4 manifold M ,
whose objects are vector bundles with Yang–Mills connections.

If E is such a vector bundle, let us use the notation HomYM.E;E/ for the differential
graded algebra A constructed above. If E1;E2 are Yang–Mills bundles, the algebra
End.E1˚E2/ has two idempotents �1; �2 , corresponding to projection onto E1 and
E2 . These extend to idempotents in HomYM.E1˚E2;E1˚E2/, which commute
with the differential Q. Let HomYM.E1;E2/ D �2 HomYM.E1˚E2;E1˚E2/�1

This is a complex which looks like

�0.Hom.E1;E2//

dA

��

F.A1/C�F.A2/C

''PPPPPPPPPPPPPPPPPPPPPPPPPP
degree 0

�1.Hom.E1;E2//

dAC

��

F.A1/C�F.A2/C
PPP

PPPPPPP

''PPPPPPPPPPPPP

˚ �2
C.Hom.E1;E2//

�dA

��

Idnnnnn

wwnnnnnnnnnnnnnnnnnnn

degree 1

�2
C.Hom.E1;E2//

F.A1/C�F.A2/C

''PPPPPPPPPPPPPPPPPPPPPPPPPP
˚ �3.Hom.E1;E2//

�dA

��

degree 2

�4.Hom.E1;E2// degree 3
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The notation F.A1/C�F.A2/C denotes the operation x 7! xF.A1/C�F.A2/Cx .

This defines the morphism space in the differential graded Calabi–Yau category of
Yang–Mills bundles on M . Passing to the cohomology category yields a Calabi–Yau
A1 category.

One can associate to each such Calabi–Yau A1 category a closed TCFT, that is, a
kind of closed string theory (see Kontsevich [11], Costello [5] and Kontsevich and
Soibelman [14]). The closed string states is the Hochschild homology of the category.
It seems to me to be a very interesting problem (which I have no idea how to solve) to
understand in geometric terms the associated closed TCFT.

3.4 G 2 manifolds

There is also a construction of Calabi–Yau elliptic spaces associated to G2 manifolds.
This construction was kindly explained to me by Maxim Kontsevich; it is also discussed
by Donaldson and Thomas [6].

Let M be a compact G2 manifold. Let � 2�4.M / be the canonical 4 form. Let E

be a complex vector bundle on M with a connection A such that � ^F.A/D 0. Let
Ann.� ˝ IdE/��

�.End.E// be the ideal of elements whose product with � ˝ IdE

is zero. Let
AD��.End.E//=Ann.� ˝ IdE/

A is concentrated in degrees 0; 1; 2; 3. The covariant differentiation operator dA

descends to A, because dA.� ˝ IdE/D 0. The operator Q is defined to be dA on A.
The condition that � ^F.A/D 0 implies that Q2 D 0.

The trace map TrW A! C comes from

�3.End.E//
TrE
��!�3.M /

�^
��!�7.M /

R
M
��! C

The action S , on an element a 2A1 D�1.End.E//, is given by the formula

S.a/D

Z
M

� ^ 1
2

TrE adAaC � ^ 1
3

TrE a3

3.5 GL.n; C/ versus U.n/

In each of the examples of Calabi–Yau elliptic spaces above, we have an associated
gauge theory, given by the Chern–Simons type action. One can ask what the gauge
group is. Let’s discuss this in the simplest case, that of a flat bundle E on a compact
3 manifold M , with A D ��.End.E//. The bundle E is a flat GL.n;C/ bundle.
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However, when we compute the perturbative Feynman integral, we perform the Feynman
rules complex linearly. This is equivalent to integrating over any real slice of … Im Q| ,
that is any real subspace … Im Q

|
R such that … Im Q

|
R˝R C D… Im Q| . If E is a

flat U.N / bundle, so that E has a Hermitian metric compatible with the connection,
then we can look at the subspace

AR D�
�.M;R/˝Hermitian endomorphisms of E �A

Then …AR \… Im Q| is a real slice of … Im Q| , and we find we are computing
perturbative U.n/ gauge theory.

A similar discussion holds in the Yang–Mills and G2 cases, when the connection
on the vector bundle E is compatible with a Hermitian metric. In the holomorphic
Chern–Simons case, I don’t see how to pick out a natural real slice.

4 Constructing forms on the moduli space of ribbon graphs

The construction comes from a kind of supersymmetric quantum mechanics on the
non-commutative manifold .M;A/. As is usual in quantum mechanics, points in the
space are replaced by functions on it. So the “Hilbert space” of the theory will be A.
Functions f 2A will evolve by the Hamiltonian H . Also these functions will interact;
any number of functions can interact at one time. The interaction is simply given by
the product of functions. The theory will give us forms on the space of metrised ribbon
graphs, or equivalently on the moduli space of Riemann surfaces. More generally, if
we consider ribbon graphs with n incoming and m outgoing external vertices, we find
a map from A˝n to forms on moduli space tensored with A˝m . (As always, tensor
product means the completed projective tensor product).

The simplest part of construction yields, for each rooted, metrised ribbon tree T with
n leaves, a map A˝n!A. Before I describe the construction in general, I will give
an informal description of this part of the theory.

We will consider the tree as defining a diagram for the interaction of n “particles” to
yield a single particle. At each leaf of T put a function in A. If the edge connecting
to this leaf is of length t , apply e�tH to the function. If a vertex has k incoming
edges, each edge labelled by a function in A, multiply all these functions together to
yield the function associated to the start of the outgoing edge. Then, to get the function
associated to the end of this outgoing edge, apply e�l.e/H . Repeating this procedure
for all vertices and edges associates to our n incoming functions a single function in
A. An example of this procedure is given in Figure 1.
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a

b

c

s

u
w

t

v

Figure 1: In this diagram, s; t;u; v; w 2 R>0 and a; b; c 2A . The output of
this diagram is

e�w4
��

e�u4
��

e�s4a
��

e�t4b
����

e�v4c
��

In the form version of the construction, the length of an edge does not lie in R>0 but
in the supermanifold R>0 �R0;1 . We will think of this as the odd tangent bundle of
R>0 , so that functions on this supermanifold will be identified with forms on R>0 . In
this situation, a function is propagated along an edge by

f 7! e�l.e/H f � dl.e/Q|e�l.e/H f 2A˝��.R>0/

At the vertices we simply multiply the incoming functions, as before.

When we use general graphs instead of trees, the edges are no longer oriented. In this
situation, the analog of the construction above is to put at each edge e of length l.e/,
connecting two vertices v1; v2 , the kernel

Kl.e/.x1;x2/� dl.e/Q
|
1
Kl.e/.x1;x2/

where Kt is the heat kernel for H ; and at each external incoming vertex an input
function in A. Then, at each vertex, we multiply the elements of A corresponding to
each germ of edge at that vertex, and apply the trace map TrW A! C. This is done
using the cyclic order at the vertex. This yields an element of the tensor product of the
space of forms on graphs, with the space A˝outgoing vertices .

4.1 Heat kernels

Let K 2A˝2 . K defines a convolution operator A!A, by

f 7!Kf
def
D .�1/p.A/jf j Try K.x;y/f .y/

The sign occurs so that kernels closed under QxCQy correspond to operators which
commute with Q. We will generally use the same symbol for a kernel and the associated
operator.
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Definition 4.1.1 A heat kernel for H is a an element

K 2 C1.R>0/˝A˝AD �.R>0 �M �M;AM �AM /

such that the convolution operator Kt W C
1.E/! C1.E/ behaves like e�tH , where

t is the coordinate on R>0 . That is,

d
dt

Ktf D�HKtf and lim
t!0

Ktf D f

The heat equation can be expressed more directly as

d
dt

Kt .x;y/D�HxKt .x;y/

and the second condition says that limt!0 Kt .x;y/D ıx;y is a delta distribution on
the diagonal.

The results of Gilkey [7] imply that H admits a heat kernel. This is a general property
of Laplacian operators which arise from elliptic complexes.

4.1.1 Identities satisfied by the heat kernel Let us consider the heat kernel Kt

as an operator on A. Viewing the operator Kt as e�tH , it is obvious that Kt is
self-adjoint, and that

ŒQ;Kt �D ŒQ
|;Kt �D 0 and ŒH;Kt �D 0

Let
Lt .x;y/D�Q|

xKt .x;y/

The kernel Lt represents the operator f 7! �Q|Ktf . Therefore Lt is self adjoint
and

ŒQ;Lt �D�HKt

In kernel terms, these identities become the following.

Proposition 4.1.2 The identities

QxKt .x;y/CQyKt .x;y/D 0

Q|
xKt .x;y/DQ|

yKt .x;y/

HxKt .x;y/DHyKt .x;y/

Kt .x;y/D .�1/p.A/Kt .y;x/

Lt .x;y/D .�1/p.A/Lt .y;x/

.QxCQy/Lt .x;y/D�HxKt .x;y/D
d
dt

Kt .x;y/

are satisfied.
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The proof, which is given in an appendix, is easy except for some awkwardness with
signs.

4.2 Categories of metrised graphs

Before I give the general construction of forms on the space of metrised ribbon graphs,
let me give a simple example. The theta graph is illustrated in Figure 2. This space of
metrics is a dense open subset of R3

�0
. Coordinates on the moduli space of metrics on

this graph are given r; s; t . Let us write, formally,

Kt C dtLt D

X
˛i ˝˛

0
i ˝ˇi.t/ 2A˝A˝��.R>0/

Then the form is defined byX
i;j ;k

Tr
�
˛i j̨˛k

�
Tr
�
˛0i˛
0
k˛
0
j

�
ˇi.r/ ǰ .s/ˇk.t/

(with appropriate signs).

r

s

t

Figure 2: The theta graph. r; s; t refer to coordinates on the moduli space of
metrics on this graph.

Definition 4.2.1 A graph  is a compact one dimensional cell complex. The 0 cells
are called vertices, V . /, and the one cells the edges, E. /.

A ribbon graph is a graph with a cyclic order on the set of germs of edges emanating
from each vertex.

Let �.n;m/ be the space of metrised ribbon graphs with n incoming and m outgoing
labelled external vertices. These external vertices are uni-valent; all other vertices are
at least tri-valent. These graphs need not be connected.

An edge is called internal if neither of its ends are an external vertex, otherwise the
edge is external. To each edge of a graph  2 �.n;m/ is assigned a length l.e/ 2R�0 .
Let Œn�; Œm�� V . / denote the sets of incoming and outgoing vertices.

The following two conditions are imposed on these metrised graphs.

(1) Every closed loop of edges in  is of positive length.
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1

2

4

2

3

1

3

Figure 3: A typical ribbon graph, with 4 incoming vertices (on the left) and
3 outgoing vertices.

(2) Every path of edges in  which starts and ends at different outgoing external
vertices is of positive length.

If e is an internal edge of  of length zero, then we identify  with =e , the graph
obtained by contracting e .

We allow connected components of graphs to be of the following exceptional types.

(1) A graph with two external vertices, one edge, and no internal vertices. The
external vertices can be any configuration of incoming or outgoing.

(2) A graph with two internal vertices, and two edges between them. As these
internal vertices are not trivalent, this violates the conditions above.

The space �.m; n/ is closely related to moduli spaces of Riemann surfaces with open
boundary, as I will discuss later.

There are continuous gluing maps

�.m; l/��.n;m/! �.n; l/

The conditions on the allowed lengths of tails are imposed so that when we glue two
graphs, we never end up with a cycle of zero length.
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There are disjoint union maps

�.s; r/��.n;m/! �.sC n;mC r/

This structure makes the spaces �.n;m/ into the morphisms in a topological symmetric
monoidal category whose objects are the non-negative integers Z�0 . The units in this
category are given by graphs each of whose connected components has one incoming
and one outgoing vertex, and no other vertices. Let us denote this category by � .

4.3 A local system on �.n; m/

We want to take chains on �.n;m/ with coefficients in a certain local system.

Let det be the graded local system on �.n;m/ whose fibre at a metrised graph  is

det. /D…m��./ det.H�.; Œm�//

that is, det. / is the determinant of the relative cohomology group. The notation
…m��./ refers to a change of parity.

We can describe this more explicitly. A trivialisation of the line det is given by an
ordering on the set V . /n Œm�, an ordering on the set of edges E. /, and an orientation
on each edge. If we change the orientation of an edge we change this element by a
sign. If we change the orderings we change by a sign given by the signature of the
permutation.

Under the composition map

�.m; l/��.n;m/! �.n; l/

the pullback of the local system det is canonically isomorphic to det � det, in an
“associative” fashion. That is, under the map for the composition of three morphisms in
� , the two isomorphisms between the pullback of det and det�3 coincide.

The local system det is similarly well behaved under disjoint union maps.

Recall that there is a notion of boundary cycle in a ribbon graph, corresponding to
boundaries of Riemann surfaces. Let �g;h � �.0; 0/ be the subspace of graphs of
genus g with h boundary cycles. More generally, let �g;h;n � �.n; 0/ be the space of
such ribbon graphs which have n external vertices, with the property that the lengths
of the edges attached to the external vertices is 0, and that the external vertices are a
non-zero distance apart. We only consider these spaces when 2g� 2C hC 1

2
n> 0.

Lemma 4.3.1 �g;h is homeomorphic to the space Mh
g of Riemann surfaces of genus

g with h unordered boundaries. Also �g;h;n is homeomorphic to the space Mh;n
g of
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Riemann surfaces † of genus g , with h boundary components, and with n distinct
ordered points in @†.

Proof Let �Mh
g be the moduli space of Riemann surfaces of genus g with h unordered

punctures, with each puncture labelled by an element in R>0 . The standard ribbon
graph decomposition says that �g;h.0; 0/ is homeomorphic to �Mh

g . It suffices to show
that �Mh

g is homeomorphic to Mh
g .

Each † 2 Mh
g has a canonical hyperbolic metric with geodesic boundary. This

induces a parameterisation up to rotation on the boundary of †, given by arc-length.
If † 2Mh

g , let †0 be the space obtained from gluing a copy of the punctured disc
fz 2 C j 0 < jzj � 1g onto each boundary component. This gluing is performed
using the standard parameterisation on the boundary of the disc, and the arc-length
parameterisation on the boundary of †. This is well-defined as the parameterisation on
the boundary of the disc is rotation invariant. †0 is a surface with h punctures; label
these punctures by the lengths of the corresponding boundary components of †.

Sending † to †0 with these labels defines a map of orbifolds Mh
g!

�Mh
g . It is easy

to check that this is a homeomorphism. Indeed, using Fenchel–Nielsen coordinates on
Teichmuller space, it suffices to check the case when g D 0 and hD 3.

The homeomorphism �g;h;n ŠMh;n
g can be proved by a similar argument.

Lemma 4.3.2 On the manifold �g;h;n , det is naturally isomorphic to the orientation
sheaf, with parity 2g� 2C h.

Proof The fibres of the map �g;h;n! �g;h given by forgetting all the external tails,
are naturally oriented. Also the sheaf det on �g;h;n is pulled back from �g;h . Therefore
it suffices to prove the result for �g;h .

We’ve seen above that the space �g;h is homeomorphic to the space of Riemann
surfaces of genus g with h boundary components, or equivalently to the space of
surfaces of genus g , with h punctures, and a map from the set of punctures to Rh

>0
.

The punctures are unordered.

The space of surfaces with punctures is naturally oriented, as it is a complex manifold.
Therefore the orientation sheaf is naturally isomorphic to det.Rh/.

The sheaf det can be viewed as the determinant of the cohomology of the fibre of the
universal surface on the space of surfaces with punctures. Let † denote the universal
surface, and S† be the compactification of † by filling in the punctures.
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The cohomology H 1.S†/ is naturally oriented, as it is a symplectic vector space. It
follows that the determinant line det H�.S†/ is naturally trivial.

From the sequence relating the cohomology of † with that of S† we see that det H�.†/

is naturally isomorphic to det Rh˝ det H�..S1/h/, which is naturally isomorphic to
det Rh .

4.4 Cellular differential forms

The space �.n;m/ has a natural decomposition into non-compact orbi-cells. For
each graph  , without a metric, with n incoming and m outgoing external edges, let
Met. /� R

E. /
�0

be the space of allowed metrics on  . The orbi-cells of �.n;m/ are
by definition the images of the spaces Met. /.

If e is an internal edge of  which isn’t a loop, there is an embedding

Met.=e/ ,!Met. /

as the subspace of metrics which give e length zero.

Definition 4.4.1 The space �i
cell.�.n;m// of cellular differential forms is defined as

follows. An element ! 2�i
cell.�.n;m// consists of a form form ! 2�

i.Met. /;C/,
for each graph  as above, which is Aut. / equivariant, and such that, for each edge
e of  which is not a loop,

!=e D ! jMet.=e/

The complex �i
cell.�.n;m//, with the de Rham differential, computes the cohomology

of �.n;m/.

The composition maps �.m; l/��.n;m/! �.n; l/ induce coproduct maps

��cell.�.n; l//!��cell.�.m; l/��.n;m//D�
�
cell.�.m; l//˝�

�
cell.�.n;m//

where as usual ˝ refers to the completed projective tensor product.

Denote by C�.�.n;m// the subcomplex of normalised singular simplicial chains on
�.n;m/, spanned by simplices which lie entirely in one of the closed cells, and which
are C1 .

The complexes C�.�.n;m// form the morphisms in a differential graded symmetric
monoidal category C�.�/, whose objects are the non-negative integers.

Because of the compatibility between the local system det and the composition and
disjoint union maps, we can form a twisted dg category C�.�; det/ whose morphism
complexes are singular chains with local coefficients C�.�.n;m/; det/.
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Note there is an integration pairing

Ci.�.n;m//˝�
i
cell.�.n;m//! C

The composition on C�.�/ and the coproduct on ��.�/ are of course dual under this
pairing.

4.5 Forms on moduli of graphs

Let  be a graph with n incoming and m outgoing external edges, but without a metric.
As before, let Met. / be the space of allowed metrics on  .

Recall that Œm�� V . / is the set of outgoing external vertices. Let us pick an ordering
on the sets V . / n Œm� and E. /, and an orientation of each edge. This gives a
trivialisation of the local system det.

Let f D f1˝ : : : fn 2A˝n .

For each e , define

!e DKl.e/C dl.e/Ll.e/ 2�
�.Met. //˝A˝2

if e is not an incoming external edge, and

!e D .�1/p.A/jf j.Kl.e/C dl.e/Ll.e//fi 2��.Met. //˝A˝2

if e is an incoming external edge, attached to the incoming external vertex i . The bar
indicates that !e is an element of a distributional completion of ��.Met. //˝A˝2 .

If e is an edge, let H.e/ be the two-element set of half-edges of e . Since e is oriented,
H.e/ is equipped with an isomorphism to f0; 1g, and thus we can think of !e as an
element

!e 2��.Met. //˝A˝H .e/

Changing the orientation of e changes the sign of !e by .�1/p.A/ .

Define
zK .f /D˝e2E. /!e 2��.Met. //˝A˝H . /

where H. / is the set of half-edges of  . This is an element of the distributional
completion of ��.Met. //˝A˝H . / . It is singular, because the heat kernel acquires
singularities at t D 0.

If v 2V . / is a vertex, and Hv. / is the set of half-edges of  at v , then multiplication
in the cyclic order on Hv. /, combined with the trace map TrW A! C, defines a map

TrvW A˝Hv. /! C
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We can take the tensor product

˝v2V . /nŒm� TrvW A˝H . /nŒm�
! C

where the tensor product is taken in the chosen ordering on the set V . / n Œm�.

This construction results in an element

K .f /D˝v2V . /nŒm� Trv zK .f /

A priori, this is an element of the distributional completion of ��.Met. //˝A˝m .

Lemma 4.5.1 K .f / is non-singular. So we have a map

K W A˝n
!��.Met. //˝A˝m

This map commutes with the differentials.

Proof The possible singularities come from the fact that the heat kernel Kt becomes
a distribution as t ! 0. The conditions on the allowable metrics on  , namely that
no loop or path spanning outgoing vertices has zero length, imply that zK .f / is
non-singular.

The heat equation implies that each ��e Kl.e/C dl.e/��e Ll.e/ is closed, which implies
that K commutes with differentials.

Note that although K as above is only defined on decomposable elements of A˝n ,
the definition extends to all elements without difficulty.

Now if we change the orientation on an edge of  , then K changes sign by .�1/p.A/ .
Similarly if we change the ordering on the sets E. /;V . /n Œm�, K changes sign by
the sign of the permutation to the power of p.A/.

Thus we find that K .f / defines an element of .��.Met. /; detp.A//˝A˝m , inde-
pendently of the choice of the ordering on V . / and E. /. Here det is the rank one
Z=2 graded local system on Met. / defined earlier.

It is easy to check that the parity of K .f / is the same as that as f , that is, the map
K is an even map. The Z=2 grading in the local system det cancels out the odd parity
introduced from the fact that when p D 1, the heat kernel Kt is odd.

Now K is clearly Aut. / equivariant. If f 2 A˝n , we want to show that K .f /

for varying  defines an element of the space of twisted cellular differential forms on
the moduli space of graphs, tensored with A˝m . This is guaranteed by the following
lemma.
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Lemma 4.5.2 For all f 2A˝n ,

K .f /jMet.=e/ DK=e.f /

Proof When t ! 0, Kt becomes the delta distribution along the diagonal. Now
Met.=e/ ,!Met. / is the subspace of metrics which give edge e length zero. Adding
on an edge with the delta distribution on it has no effect.

Thus, K for varying  defines a chain map

KW A˝n
!��cell.�.n;m/; detp.A//˝A˝m

Next we need to check how this behaves with respect to gluing. Let 1; 2 be graphs,
again without metrics, such that 1 has n incoming and m outgoing, 2 has m

incoming and l outgoing edges. Then there is a map

Met.2/�Met.1/!Met.2 ı 1/

Lemma 4.5.3 For each f 2A˝n , the pull back under this map of K2ı1
.f / is

K2
.K1

.f // 2��.Met.2/�Met.1/; detp.A//˝AM l

Similarly, under the disjoint union map, K behaves well. Thus we have proved the
following theorem.

Theorem 4.5.4 There is a symmetric monoidal functor from C�.�; detp.A// to the
category CompC of chain complexes over C, sending n 7! A˝n , and a chain ˛ 2
C�.�.n;m/; detp.A// to the map

A˝n
!A˝m

I f 7!

Z
˛

K.f /

4.5.1 Extension to infinite length edges Let x�.n;m/ be the partial compactification
of �.n;m/ obtained by allowing the edges to have infinite length.

Lemma 4.5.5 The operation K extends to a map

KW A˝n
!��cell.

x�.n;m/; detp.A//˝A˝m

Proof The operator H is a self-adjoint elliptic operator (self-adjoint for the Hermitian
pairing on A). Therefore, in the L2 completion of A, there is a basis of eigenvectors
ei , with corresponding real eigenvalues �i � 0. Therefore, the limit as t !1 of
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e�tH is the L2 projection onto Ker H . It follows that the t !1 limit of the heat
kernel Kt is the kernel for projection onto Ker H .

Also Q|t�ke�tH ! 0 as t!1, for all k � 0, as Q| is zero on harmonic elements of
A. Therefore the kernel t�kLt , which represents the operator Q|t�ke�tH , converges
to 0 as t !1. This implies that dtLt is zero at t D1.

5 Topological conformal field theories

Let me discuss how this construction fits into the more theoretical framework of [5].
To be self contained, I will start by briefly recalling the definitions of open and closed
TCFT.

Let MO.r; s/ be the moduli space of Riemann surfaces with r incoming and s outgoing
open boundaries. These surfaces are possibly disconnected. There are gluing maps
MO.r; s/�MO.q; r/!MO.q; s/, which make these spaces into the morphisms of
a topological category, whose objects are Z�0 . This category does not have strict
units; however, the disc with one incoming open and one outgoing open boundary is an
approximate unit. We can visualise this disc as a strip with an open boundary on either
end. In order to make MO.r; s/ into a unital category, we allow infinitely short strips.

We impose the stability condition, that no connected component of a surface in MO.r; s/

can be a disc with < 2 open boundaries. By moduli space I mean coarse moduli space.

Let MC.r; s/ be the moduli space of Riemann surfaces with r incoming and s outgoing
closed boundaries. As above, these surfaces may be disconnected. We require that
every connected component has at least one incoming boundary. We disallow surfaces
which have a connected component which is a disc. As above, these spaces form the
morphisms in a topological category, whose objects are Z�0 . This category as defined
is not strictly unital; in order to make it strictly unital, we allow infinitely thin annuli.

Remark Here we are considering the non-unital version of the theory, as described in
[5, Section 1.6]. The non-unital version of the theory imposes stronger conditions on
the surfaces allowed; the unital version allows discs with � 1 open boundary, and discs
with one closed boundary. The non-unital version corresponds of course to non-unital
cyclic A1 categories.

One can show (with a small amount of technical fiddling) that if A is a unital algebra,
as it always is in practise, then the open TCFT we construct is also unital.
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To these topological symmetric monoidal categories we can associate differential graded
symmetric monoidal categories. Let C� denote normalised singular simplicial chains,
and let O be the category whose objects are Z�0 and whose morphisms are

O.r; s/D C�.MO.r; s//

We similarly define a dg symmetric monoidal category C.

Definition 5.0.6 A (non-unital) open TCFT (over C) is a dg symmetric monoidal
functor O! CompC to chain complexes over C. A (non-unital) closed TCFT is a dg
symmetric monoidal functor C! CompC .

To deal with odd dimensional theories, for example coming from odd-dimensional
Calabi–Yaus, we need to use coefficients in a certain local system det on these moduli
spaces. Let Op;Cp denote chains with coefficients in detp .

Proposition 5.0.7 The topological symmetric monoidal category � is rationally
weakly equivalent to the category MO .

Therefore C�.�/ is quasi-isomorphic to O. More generally C�.�; detp/ is quasi-
isomorphic to Op .

Proof The fact that the space �.m; n/ is homotopy equivalent to MO.m; n/ follows
from the standard ribbon graph decomposition of moduli spaces. One can check that
this homotopy equivalence can be made compatible with gluing. The easiest way to see
this is to use the conformal approach to the ribbon graph decomposition, as opposed
to the hyperbolic approach. For each metrised ribbon graph, the associated surface
is obtained as follows. Replace each edge e by Œ�1; 1�� Œ0; l.e/�. These are glued
together at each vertex, to yield a surface with a flat metric with singularities at the
vertices. This surface has a well-defined conformal structure, and gives a surface with
boundary. This map defines a weak rational homotopy equivalence between the space
of metrised ribbon graphs and the space of surfaces with boundary, compatible with
gluing.

5.1 Equivalence of two open TCFTs

We constructed above a symmetric monoidal functor C�.�; det˝p.A/
! CompC . It

follows that for a Calabi–Yau elliptic space .M;A/ with a metric, we get an open
TCFT.

In [5] I showed that open TCFTs are the same as a kind of non-unital cyclic (or Calabi–
Yau) A1 category. One can apply the explicit form of the homological perturbation
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lemma to the algebra A, as in Merkulov [19], Kontsevich and Soibelman [13] and Markl
[17], to yield a cyclic A1 structure on H�.A/. The fact that this A1 algebra is cyclic
was proved by Kajiura [8] in his thesis. The condition needed is that the homotopy
between the projector and the identity is skew self adjoint. (This was explained to me
by Ezra Getzler.) To this cyclic A1 algebra is associated an open TCFT.

Proposition 5.1.1 These two open TCFTs are quasi-isomorphic.

Sketch of proof It suffices to show that the two associated cyclic A1 algebras are
quasi-isomorphic. One is obtained by applying the homological perturbation lemma to
A, the other by considering the tree level part of our construction.

We can compactify the moduli space of ribbon trees by allowing infinite length edges.
The t!1 limit of the heat kernel is the operator of projection onto harmonic elements
of A, that is, the cohomology of A. As we saw in Lemma 4.5.5, the forms extend to
these compactifications.

Consider the chain given by all ribbon trees with n incoming vertices, one outgoing
vertices, with all external edges of infinite length. When this is oriented correctly,
sending mn to this chain gives a quasi-isomorphism between the A1 operad and the
chain operad associated to the moduli space of rooted ribbon trees.

The integral of our form over this cycle is an operator from H˝n!H , where H is
the space of harmonic elements of A. This is because t !1 limit of the heat kernel
is the operator of projection onto harmonic elements of A.

This integral yields precisely the formula for mn given by the explicit form of the
homological perturbation lemma. The point is that the integralZ 1

tD0

dtKt

gives the Green’s operator. The integralZ 1
tD0

dtLt D�

Z 1
tD0

dtQ|Kt D�Q|G

gives the homotopy between the identity map and this projector. The projector and
the homotopy are the data needed to construct the explicit version of the homological
perturbation lemma; this formula is given by a sum over trees, where at each internal
edge we place the homotopy, and each external edge the projector. This is precisely
the same as what we get by integrating our form.
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It follows that the class in H�.Mh
g/ associated to a Calabi–Yau elliptic space .M;A/

are the same as those given by Kontsevich’s construction [10] applied to cyclic A1
algebra H�.A/, when p.A/D 0. One can see this in more down to earth terms as
well. Let Dg;h �

x�g;h be the subspace of metrised graphs such that when we cut along
all the infinite length edges, what is left is a disjoint union of trees. The inclusion
Dg;h �

x�g;h is a weak homotopy equivalence; this follows from the results of [4], but
it is also easy to prove this directly.

If  2Dg;h , let C. / be the graph obtained by collapsing all edges of  which are
not infinite. Note that C. / is obtained from  by collapsing a disjoint union of trees.
Dg;h is a compact orbi-cell complex; metrised graphs ;  0 are in the same cell if
C. /D C. 0/. Thus, the cells of Dg;h are labelled by ribbon graphs.

If  is a ribbon graph let

D D f
0
2Dg;h with an isomorphism C. 0/Š  g

be the corresponding cell. Then the integralZ
D

Kg;h

converges. These integrals define a cellular cocycle on Dg;h . The complex of such
cellular cochains is just the ribbon graph complex studied in [10]. This cocycle is the
same as that obtained by applying Kontsevich’s construction to A1 algebra H�.A/,
with the A1 structure given by the explicit form of the homological perturbation
lemma.

5.2 Constructing closed TCFTs from open

The results of [5] construct for each open TCFT a closed TCFT. A different construction
of closed TCFTs, staring with a cyclic A1 algebra, was previously given by Kontsevich
and Soibelman [11; 12; 14]. Recent work of Tradler and Zeinalian [24] and Kaufmann
[9] give new approaches to this problem.

I will discuss the approach taken in [5], which is more abstract than the other construc-
tions. Let FM W C! CompC be the closed TCFT associated to an open TCFT. The
results of [5] show that

H�.FM .n//DHH�.A/˝n

Here HH� can be defined using either the completed projective or ordinary tensor
product. We get the same answer, because A has finite dimensional homology with
respect to the operator Q. One technical point is that as we are working with non-unital
TCFTs, as in [5, Section 1.6], by Hochschild homology we mean the natural Hochschild
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homology for non-unital algebras. This is constructed by formally adjoining a unit and
then working relative to the subalgebra given by the unit.

The construction of the closed TCFT associated to an open one in [5] is abstract; we
define a homotopy-universal open closed theory, and restrict to the closed part of it.
For the reader not familiar with [5], here is a description of this universal procedure.

Free

Open

Closed

Figure 4

Consider a Riemann surface with open and closed boundaries, as in Figure 4. The open
boundaries are a disjoint set of closed intervals in @†, and the closed boundaries are a
disjoint set of parameterised circles in @†. The free boundary of † is the remainder
of the boundary of †.

Let us suppose, as in the picture, that the open boundary intervals are all incoming,
and the closed boundary circles are all outgoing. Then one can think of such a surface
as describing some open strings joining up to become closed strings. The initial open
strings are given by the open boundary components of the surface. The free boundary
can be thought of as the open string endpoints; this is the part of † that is constrained
to lie on a D–brane. Note, however, that some boundary components of † may consist
entirely of free boundary.

Let us denote the moduli space of such surfaces, with m incoming open and n outgoing
closed boundaries, by MOC.m; n/. We require that each connected component of
the surfaces have at least one free boundary, and we disallow surfaces which have
a connected component which an annulus with one closed boundary and no open
boundaries. Let us write

OC.m; n/D C�.MOC.m; n//

Now suppose we have an open TCFT, given by a symmetric monoidal functor HO W O!

CompC . For each n� 0, we have a complex of open states HO.n/. This is the complex
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associated to n open strings. We can assume, for simplicity, that HO.n/DHO.1/
˝n

for each n� 0.

We can think of OC as being acted on by the category O. Gluing open boundaries
of Riemann surfaces together induces maps OC.s; n/˝O.r; s/! OC.r; n/. Similarly,
gluing closed boundaries gives us maps C.n;m/˝OC.s; n/! OC.s;m/. This means
that we can think of OC as defining a C�O bimodule.

Then we define
HC .n/D OC.�; n/˝L

OHO

The bimodule structure on OC implies that these spaces carry a natural action of C.

This is a tensor product of co- and contravariant functors from the category O. However
such tensor products are defined in exactly the same way as tensor products of right
and left modules over an algebra.

Intuitively, we can think of this construction as follows. The space HC .n/ is associated
to n closed strings. Suppose we have a Riemann surface with m incoming open and n

outgoing closed boundaries, together with an element of HO.m/, the space associated
to m open strings. Then we get an element of HC .n/. More generally, singular chains
in the moduli space of such surfaces, labelled in the same way by elements of HO.m/,
yield elements of HC .n/ in the same way. Finally we have to impose, in a “derived”
sense, some natural relations expressing compatibility with gluing surfaces with only
open boundary intervals.

One of the results of [5] is that when we do this, the homology of the space HC .n/ is
the n’th tensor power of the Hochschild homology of the A1 algebra associated to
the open theory.

6 Chern–Simons type gauge theories

6.1 Functional integrals over complex vector spaces

Let V be a finite dimensional complex Z=2 graded vector space, with a non-degenerate,
symmetric, complex linear inner product h i. Let f be an even (in the Z=2 graded
sense) polynomial function on V .

Let VR�V be a real subspace, such that VR˝R CDV , and such that the inner product
is real valued and positive definite on VR . Fix a real number � < 0. Let d� be any
Lebesgue measure on VR . Let

Z.�/D

Z
x2VR

e
1
2
hx;xi=�Cf .x/=�d�

�Z
x2VR

e
1
2
hx;xi=�d�
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Let’s suppose that the integrals converge. Wick’s lemma allows us to write Z.�/ as
a sum over graphs, in the standard way, each graph  labelled by ���./ . We will
think of Z.�/ as a formal series in �. This series is always defined, whether or not the
integral converges.

Lemma 6.1.1 The series Z.�/ is independent of the choice of real subspace VR � V .

Proof This follows from Wick’s lemma. Let

P 2 V ˝C V

be minus the inverse tensor to the pairing h i on V . If vi is a basis for V , and

P D
X

pijvi ˝ vj

then X
j

pij

˝
vj ; vk

˛
D�ıik

We can think of P as an element of

VR˝R VR � V ˝C V

Then, P plays the role of the propagator in the Feynman diagram expansion of the
integral defining hf i. The interaction at an i valent vertex is defined by the part of f
which is homogeneous of degree i .

Since both the propagator P 2 V ˝C V and the interactions are independent of the
choice of VR , so is Z.�/.

In general, we will use the notationZ
V

e
1
2
hx;xi=�Cf=�

�Z
x2V

e
1
2
hx;xi=�

to indicate the series obtained by the procedure above: picking any real subspace VR on
which h i is positive definite, and performing the integral. Performing the Feynman
rules complex linearly gives the expansion of this integral in powers of �. By this
I mean we think of the propagator P as an element of V ˝C V , the interactions as
complex linear maps V ˝Ck ! C, etc.

If V is infinite dimensional, we will attempt to define such integrals over V by their
Feynman diagram expansion, performed complex linearly.
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6.2 Formal functions

We want to consider various formal functions on the space HD Ker H of harmonic
elements of A. Let R be a non-unital nilpotent super-commutative ring. Such a formal
function can be described as something which assigns to each even element a2H˝R,
an element of R, and which is natural with respect to ring homomorphisms R!R0 .
In this section, whenever we notation like Z.a/, it is to be understood as a formal
function of a 2H in this sense.

6.3 Chern–Simons functional integrals

Let MatN .A/ denote the tensor product algebra A˝C MatN , where MatN is the
algebra of N �N complex matrices. The operators Q;Q| extend to MatN .A/ in the
obvious way,

Q.a˝C /DQa˝C and Q|.a˝C /DQ|a˝C:

There is a trace operator
TrW MatN .A/! C

defined by
Tr.a˝C /D Tr a Tr C

where Tr C is the usual matrix trace.

Now assume p.A/D 1. Consider the Chern–Simons type action on MatN .A/, defined
by

S.B/D 1
2

Tr BQBC 1
3

Tr B3

for B 2MatN .A/. S is an even functional on the space …MatN .A/.

Let a 2H , the space of harmonic elements of A. We will try to make sense of the
functional integral

ZCS .a; �;N /D

Z
B2… Im Q|

eS.BCa˝Id/=�
�Z

B2… Im Q|

eSk.B/=�

where Sk.B/D
1
2

Tr BQB . The integral is over the super-vector space … Im Q| �

…MatN .A/. This expression is not really meant to be understood as an analytic
integral. Instead it denotes a formal procedure, of expanding over Feynman diagrams,
and associating to each Feynman diagram a finite-dimensional integral. The result (if
these integrals converged) would be a formal function of a 2H , a formal series in �,
and an actual function of N .
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The condition that B 2 Im Q| in the integral is a kind of gauge fixing condition. There
is a direct sum decomposition

MatN .A/D Im Q|
˚Ker H ˚ Im Q

where the subspaces Im Q|; Im Q are isotropic with respect to the pairing Tr.BB0/.
The finite dimensional space Ker H of harmonic elements is orthogonal to both Im Q

and Im Q| .

In the Batalin–Vilkovisky approach to quantisation (see Schwarz [20] and Alexandrov–
Kontsevich–Schwarz [1]) one integrates over a Lagrangian subspace in the space of
fields. On this Lagrangian, the action functional is non-degenerate. The choice of
Lagrangian is a gauge-fixing condition. The space Im Q| is almost a Lagrangian; it
deviates from being a Lagrangian by a finite dimensional subspace.

The integral we perform is a perturbation expansion around the critical point of the
action functional given by B D 0. This critical point is isolated. To see this, observe
that if "B is a critical point, where " is a parameter of square zero, then QB D 0.
However, Ker Q\ Im Q| D 0.

Therefore, the integral we consider is the purely “quantum” part of Chern–Simons
theory. Non-trivial critical points correspond to deformations of the theory, given by
deformations of the operator Q to QCB . For example, in the case when M is a
Calabi–Yau manifold and AD End.E/˝C1.M /�

0;� , for some holomorphic vector
bundle E on M , non-trivial critical points correspond to deformations of the vector
bundle E˝CN .

The propagator for the integral comes from the inverse to the isomorphism

QW Im Q|
! Im Q

This has the integral expression, for a˝C 2 Im Q�MatN .A/,

Q�1.a˝C /D

Z 1
tD0

Q|Kt .a/dt ˝C D�

Z 1
tD0

Lt .a/dt ˝C

To see this, observe thatZ 1
tD0

QQ|Kt .a/dt D

Z 1
tD0

HKt .a/dt D�

Z 1
tD0

d
dt

Kt .a/dt D a� lim
t!1

Kt .a/

The limit limt!1Kt is the kernel representing orthogonal projection onto Ker H �A.
Since a 2 Im Q, this is zero.

Thus, formally, the propagator is

P D�

Z 1
tD0

Lt ˝

X
Xij ˝Xji 2A˝A˝MatN ˝MatN DMatN .A/˝MatN .A/

Geometry & Topology, Volume 11 (2007)



Topological conformal field theories and gauge theories 1573

Here Xij 2MatN is the matrix whose ij entry is 1, and all other entries are zero. This
is only a formal expression, as

R1
tD0 Lt is singular.

Let

P" D�

Z 1
tD"

Lt ˝

X
Xij ˝Xji

This regularised propagator is non-singular. The definition of Lt implies that
R1

tD"Lt

lies in Im Q
|
1

. This expression is also anti-symmetric, which implies that the regularised
propagator P" lies in

Im Q|
˝ Im Q|

�MatN .A/˝MatN .A/

The usual Feynman rules, which are described very clearly in Looijenga [16] in the
matrix case we are using, show that the regularised Chern–Simons partition function
(using the regularised propagator) is

ZCS .a; �;N; "/D
X


���./N h. / 1

# Aut. /
w. /

The sum is over trivalent ribbon graphs  possibly with some one-valent external
vertices. The expression w. / is obtained in the usual way. On each internal edge we
put the propagator P" 2MatN .A/˝C MatN .A/. On each of the n external edges, we
put a on the end which connects to the main part of the graph, and ignore the other
end. This yields an element of

MatN .A/˝CH . /nŒn�

(we remove the n half-edges attached to external vertices). At each internal vertex, we
put the linear map

MatN .A/˝C3
! CI B1˝B2˝B3 7! Tr.B1B2B3/

Tensoring these together yields a linear map

MatN .A/˝CH . /nŒn�
! C

which we apply to the element constructed from the propagators.

It is easy to see that if  has n external vertices,

w. /D˙

Z
Met"

0
. /

K .a
˝n/
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where Met"0. / is the space of metrics on  in which no internal edge has length < ",
and every external edge has length 0. K .a

˝n/ is the form on this space with coeffi-
cients in the local system det constructed earlier. The expression

R
Met"

0
. /K .a

˝n/ is
to be understood as a formal function of a 2H in the sense described above.

Proposition 6.3.1 There is a unique isomorphism detŠOr of local systems on �g;h;n

such that sign in this formula is always C (for all CY elliptic spaces of odd parity).

Sketch of proof It’s clear that the sign ˙ above doesn’t depend on the particular CY
elliptic space we are using. We’ll construct an orientation with the correct sign for one
particular theory, which implies the sign is correct for all theories. I’ll only sketch the
proof for �g;h , the proof is similar when we use �g;h;n .

We have already seen (Lemma 4.3.2) that det and Or are isomorphic. Therefore to give
an isomorphism detŠOr is suffices to give it away from codimension 2 strata. That is,
it suffices to give, for each trivalent ribbon graph  , an isomorphism between det and
Or on Met. /, which is Aut. / equivariant, and which satisfies some compatibility
condition on ribbon graphs with a single 4 valent vertex.

To give the isomorphism for trivalent graphs, it suffices to give a real section of
�

6g�6C3hCn
cell .�g;h;n; det/, which never vanishes on the space Met. / for any trivalent

ribbon graph  .

To construct such a section we write down a simple real Calabi–Yau elliptic space,
of odd parity, such that the top degree component of the form on moduli space never
vanishes.

One such theory is given by taking M to be a point, and A D RŒx�=.x3/, where x

is of degree 1. The trace is given by Tr x3 D 1, and the differential is Qx D �x2 ,
Qxk D 0 unless k D 1. The operator Q| is Q|x2 D �x , and Q|xk D 0 unless
k D 2. The Hamiltonian H is Hx D x , Hx2 D x2 , H1DHx3 D 0. The resulting
Chern–Simons type action on …A1 D… Im Q| is �1

2
x2C

1
3
x3 .

Let us take the top-degree (in fact the only non-zero piece) of the form associated to
this theory, in �6g�6C3h

cell .�g;h; det/. It’s easy to calculate that this does not vanish on
Met. / for any trivalent graph  .

The isomorphism detŠOr on the space of trivalent graphs is chosen so that the integral
of this form over any top-dimensional compact piece is always positive.

It remains to check the compatibility condition on ribbon graphs with a single 4 valent
vertex. This is a fairly simple calculation, which I will not perform here.
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Let �g;h��.0; 0/ be the space of connected metrised ribbon graphs with h unordered
boundary components and Euler characteristic �2gC2�h. More generally, let �g;h;n

be the space of such ribbon graphs which have n ordered external vertices, with the
property that the lengths of the edges attached to the external vertices is 0, and that
the external vertices are a non-zero distance apart. We only consider the case when
2g� 2C hC n

2
> 0.

Let �"
g;h;n

� �g;h;n be the subspace of graphs with no interior edges of length < ".
For a 2A, let us denote by Kg;h.a

˝n/ the restriction of the form K.a˝n/ in �.n; 0/
to �g;h;n .

The discussion above shows that

ZCS .a; �;N; "/D exp

 X
g;n�0h>0

2g�2ChCn
2
>0

�2g�2ChN h

Z
�"

g;h;n

Kg;h.a
˝n/=n!

!

This expression may not converge as "! 0. This is an equality of formal functions of
a 2H with values in formal series in �, for each value of N; ".

The space �g;h is homeomorphic to the space Mh
g of Riemann surfaces of genus g

with h unordered, unparameterised boundary components. We can formally set "D 0

and write down the equality of non-convergent expressions

ZCS .a; �;N /D exp

 X
g;n�0;h>0

2g�2ChCn
2
>0

�2g�2ChN h

Z
Mh;n

g

Kg;h.a
˝n/=n!

!

which we interpret as an identity between an open-string and a Chern–Simons partition
function.

7 Independence of choice of Hermitian metric

The whole construction is independent, up to homotopy, of deformations of the Hermit-
ian metric on A. The metric is encoded in a complex anti-linear Hodge star operator
�W A!A, such that �2 D˙1.

We will show that if we perturb �, then the deformation of the theory extends to one
over a contractible commutative differential algebra, so that we get a homotopic theory.
This implies that when we change �, all of our forms on moduli space change by the
addition of an exact form.

Geometry & Topology, Volume 11 (2007)



1576 Kevin Costello

So suppose s is an even infinitesimal parameter, s2 D 0, and we perturb � to

�s D �C s �0 :

Let us suppose this perturbed operator still satisfies all the necessary conditions.

Let " be an odd parameter, and consider the contractible algebra RD CŒs; "�=.s2; "s/,
with differential Qs D ". We want to show that the deformation of the theory over the
CŒs�=s2 extends to one over R.

All we do is set
�s;" D �s D �C s�0

Then, by assumption, this satisfies all the necessary conditions, so the theory extends.
We have

Q|
s;" DQ|

C sıQ|
DQ|

˙ s..�0/Q�C�Q.�0//

Qs;" DQC " @
@s

Hs;" D ŒQ;Q
|
s;"�DH C sŒQ; ıQ|�C "ıQ|

Note that the operator Hs;" admits a heat kernel if H did, because Hs;" is a perturbation
of H by nilpotent operators.

Appendix A

A.1 Identities satisfied by the heat kernel

Here we prove

Proposition A.1.1 (Proposition 4.1.2) The identities

QxKt .x;y/CQyKt .x;y/D 0(A.1.1)

Q|
xKt .x;y/DQ|

yKt .x;y/(A.1.2)

HxKt .x;y/DHyKt .x;y/(A.1.3)

Kt .x;y/D .�1/pKt .y;x/(A.1.4)

Lt .x;y/D .�1/pLt .y;x/(A.1.5)

.QxCQy/Lt .x;y/D�HxKt .x;y/D
d
dt

Kt .x;y/(A.1.6)

are satisfied.
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Proof Let A0 , A1 refer to the odd and even parts of A. I will prove these identities
in the case when p D 1; the even case is easier.

Let us write

Kt .x;y/DK
1;0
t .x;y/CK

0;1
t .x;y/ 2A1

˝A0
˚A0

˝A1

Let f 2A be a function.

.Ktf /.x/D .�1/jf j Try.K
1;0
t .x;y/CK

0;1
t .x;y//f .y/

Observe that

Try QyK1;0.x;y/f .y/D Try K1;0.x;y/Qyf .y/

Try QyK0;1.x;y/f .y/D Try K0;1.x;y/Qyf .y/

These identities use the fact that Q is skew self adjoint.

This shows that

.�1/jf j Try QyKt .x;y/f .y/D .�1/jf j Try Kt .x;y/Qyf .y/D�.KtQf /.x/

It is clear that

.QKtf /.x/D Try QxKt .x;y/f .y/

Since ŒKt ;Q�D 0 we see that

Try.QxCQy/Kt .x;y/f .y/D 0

as desired.

Similar arguments prove the second, third, and sixth identities. The different signs
arises as Q|;H are self adjoint instead of skew adjoint.

We will again prove the identity Kt .x;y/D .�1/pKt .y;x/ in the case p D 1. Let
K�t be the operator associated to the kernel Kt .y;x/. In more formal terms, let
� W A˝A!A˝A be the interchanging operator; then Kt .y;x/D �Kt .x;y/. It is
easy to see that for all a 2A˝A,

TrA˝A aD�TrA˝A �a
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that is, changing the order of integration affects things by a sign. Let f;g 2A, with
f 2A0 and g 2A1 . It follows that˝

f;K�t g
˛
D�TrA˝A f .x/Kt .y;x/g.y/

D TrA˝A f .y/Kt .x;y/g.x/

D�TrA˝A g.x/Kt .x;y/f .y/

D�hg;Ktf i

As Kt is self adjoint and even, we see that K�t D�Kt as desired.

The fact that Lt .x;y/D .�1/pLt .y;x/ follows from this and the second identity.
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