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The Extended Bloch Group
and the Cheeger–Chern–Simons Class

SEBASTIAN GOETTE

CHRISTIAN K ZICKERT

We present a formula for the full Cheeger–Chern–Simons class of the tautological
flat complex vector bundle of rank 2 over BSL.2;Cı/ . This improves the formula
by Dupont and Zickert [6], where the class is only computed modulo 2–torsion.

57R20, 11G55

Introduction

The Cheeger–Chern–Simons class yck is a natural refinement of the k th Chern class for
complex vector bundles with connection, and it takes values in the ring of differential
characters, see Chern–Simons [2] and Cheeger–Simons [1]. For a vector bundle with a
flat connection, this class becomes an ordinary .2k � 1/–cohomology class with coef-
ficients in C=Z.k/, where Z.k/D .2� i/kZ. Let BSL.n;Cı/ denote the classifying
space of the group SL.n;Cı/ with the discrete topology. The universal Cheeger–Chern–
Simons class yck 2H 2k�1.BSL.n;Cı/;C=Z.k// of the tautological flat complex vector
bundle over BSL.n;Cı/ gives rise to the Borel regulator in algebraic K–theory, and
yc2 is also related to invariants of hyperbolic 3–manifolds. One is interested in a
combinatorial description of this class yck 2 H 2k�1.BSL.n;Cı/;C=Z.k//. Dupont
derived an expression for yc2 2 H 3.BSL.2;Cı/;C=Z.2// modulo Q.2/ in [3]. A
similar formula for Re yc3 is due to Goncharov [7].

The homology of the classifying space of a discrete group is by definition the homol-
ogy of the group, and since C=Z.2/ is divisible, we can regard yc2 as a homomor-
phism H3.SL.2;C//!C=Z.2/. The natural map H3.SL.2;C//!H3.PSL.2;C//

has cyclic kernel of order 4, so we have a commutative diagram defining yc2 on
H3.PSL.2;C//:

H3.SL.2;Cı//
yc2
����! C=Z.2/??y ??y

H3.PSL.2;Cı//
yc2
����! C=�2Z
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An explicit formula for the lower map was obtained by Neumann [8], and extended by
Dupont and Zickert [6] to a formula for the upper map. However, the formula given in
[6] only computes the image of yc2 in C=2�2Z, thus only computing yc2 up to 2–torsion
(see [6, Remark 4.2] for a comment on the normalisation). In the present paper we
extend their result obtaining a formula computing the full Cheeger–Chern–Simons
class.

In both [8] and [6] the formulas are obtained by factoring yc2 through a version of the
extended Bloch group, an object defined by Neumann in [8]. There are two different
versions of the extended Bloch group. One version, denoted �B.C/ in Neumann’s paper
and �BPSL.C/ later on in this note, is generated by symbols ŒzIp; q� subject to a five
term relation and a transfer relation. It is isomorphic to H3.PSL.2;Cı//. The other
one, denoted EB.C/ in [8] and �BSL.C/ in the following, is generated by symbols
ŒzI 2p; 2q� and only subject to the five term relation. The latter version is called the
more extended Bloch group, and conjectured to be isomorphic to H3.SL.2;Cı// in
[8]. The role of the transfer relation is subtle and has caused some minor inaccuracies
in [8] and [6], see Remark 3.3 below. [8, Proposition 8.2 and Corollary 8.3] are only
correct if we include the transfer relation. Proposition 8.2 has been used in the proof
of [6, Proposition 4.15], so this result is also only correct if we include the transfer
relation. To the best of our knowledge these are the only problems in [8] and [6]. We
present corrections to these results as Theorem 3.4, Corollary 3.5 and Corollary 4.2,
and Remark 4.3 below. This paper can thus be viewed as an erratum and a refinement
of the papers [8] and [6].

To obtain the full class yc2 , we construct a lift of the function �LW �BSL.C/! C=2�2Z

defined by Dupont and Zickert [6] with values in C=4�2ZD C=Z.2/. Note that this
lift is not compatible with the transfer relation, see Remark 3.3. This observation was
the main motivation for the present note.

The paper is organised as follows: In Section 1 we recall the definition of the extended
Bloch group. In Section 2 we define the modified extended Rogers dilogarithm. In
Section 3 we work out some relations in the extended Bloch group, and in Section 4 we
prove our main results that the extended Bloch group is isomorphic to H3.SL.2;Cı//

as conjectured by Neumann [8], and that �L computes the Cheeger–Chern–Simons
class. In Section 5, we have added some more relations in �P.C/ that might be of
interest elsewhere.
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1 The extended Bloch group

We follow Neumann’s description in [8] at the beginning of chapter 8. We first recall
the construction of the classical Bloch group. Define a set of five term relations

(1) FTD
��

x;y;
y

x
;
1� 1=x

1� 1=y
;
1�x

1�y

� ˇ̌̌̌
x ¤ y 2 C n f0; 1g

�
� .C n f0; 1g/5:

Consider the free Abelian groups generated by the elements of FT and C n f0; 1g and
the chain complex

(2) ZŒFT�
�

����! ZŒC n f0; 1g�
�

����! C� ^Z C�

with arrows defined on generators by

�.Œz0; : : : ; z4�/D Œz0�� Œz1�C Œz2�� Œz3�C Œz4�;

�.Œz�/D z ^ .1� z/�1:

Then P.C/DZŒCnf0; 1g�= im � is called the pre-Bloch group, and the middle homology
of the complex (2) above is called the Bloch group B.C/.

Let �C denote the universal Abelian cover of C n f0; 1g. To construct �C, we start with
Ccut D Cn ..�1; 0�[ Œ1;1//. For each x 2 .�1; 0/[ .1;1/, we add two boundary
points

x˙ 0i WD lim
t&0

x˙ t i

and put
Ccut D Ccut[fx˙ 0i j x 2 .�1; 0/[ .1;1/g:

We extend the principal branches of Log, Li2 and ArgD Im Log to Ccut .

In Ccut � .2Z/2 , identify

.xC 0i; 2p; 2q/� .x� 0i; 2pC 2; 2q/ for all x 2 .�1; 0/, and

.xC 0i; 2p; 2q/� .x� 0i; 2p; 2qC 2/ for all x 2 .1;1/
(3)

for all p , q 2 Z, obtaining �� W �C! C n f0; 1g. Equivalence classes will be denoted
.xI 2p; 2q/ or simply �x . Note that we could have dropped the factors 2 above and
worked in Ccut �Z2 instead, but we want to stay compatible with [6] and [8].
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As in [8], put

FTC D
˚
.z0; : : : ; z4/ 2 FT

ˇ̌
Im z0; : : : ; Im z4 > 0g:

Then .z0; : : : ; z4/ 2 FT belongs to FTC if and only if Im z1 > 0 and z0 is in the
interior of the Euclidean triangle spanned by 0, 1 and z1 . Let �FT denote the connected
component of ���1.FT/��C5 that contains

�FT
C
D
˚
..z0I 0; 0/; : : : ; .z4I 0; 0//

ˇ̌
.z0; : : : ; z4/ 2 FTC

	
:

Also, note that the functions

.zI 2p; 2q/ 7�! .Log zC 2� ip/ and .zI 2p; 2q/ 7�! .�Log.1� z/C 2� iq/

are holomorphic on �C. By [6], we can extend (2) to a chain complex

(4) Z
� �FT

� ��
����! Z

��C� ��
����! C^Z C

with arrows defined on generators by

��.Œ�z0; : : : ;�z4�/D Œ�z0�� Œ�z1�C Œ�z2�� Œ�z3�C Œ�z4�;��.ŒzI 2p; 2q�/D .Log zC 2� ip/^ .�Log.1� z/C 2� iq/:

1.1 Definition The extended pre-Bloch group �PSL.C/ is defined as the quotient
ZŒ�C�= im�� , and the extended Bloch group �BSL.C/ as the middle homology of the
complex (4).

2 The extended Rogers dilogarithm

The classical dilogarithm is given by

Li2.z/D
1X

kD1

zk

k2
D�

Z z

0

log.1� t/
dt

t

for all z with jzj< 1. It extends to a multivalued function on C with branch points at
0, 1 and 1. Recall that the Rogers dilogarithm LW .0; 1/! R is given by

L.x/D Li2.x/C 1
2

log x log.1�x/� �2

6
:

We extend L to a holomorphic function:

(5)
LW Ccut � .2Z/2 �! C

L.zI 2p; 2q/D Li2.z/C 1
2

�
Log zC 2� ip

��
Log.1� z/C 2� iq

�
�
�2

6
:
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2.1 Lemma The function L above induces a holomorphic function�LW �C! C=Z.2/

that satisfies the five term relation
4X

kD0

.�1/k�L.�zk/D 0

for all .�z0; : : : ;�z4/ 2 �FT.

Note that �L lifts Dupont and Zickert’s function �L in [6] from C=2�2Z to C=4�2ZD

C=Z.2/.

Proof Because Li2.z/ has no singularity at z D 0 and .zIp; q/ 7! Log zC 2� ip is
holomorphic on �C, the function L extends holomorphically across .�1; 0/� .2Z/2

in �C.

If we extend Li2 and Log.1� z/ to z˙ 0i for z > 1, then

Li2.zC 0i/D Li2.z� 0i/C 2� i Log z

Log.1� .zC 0i//D Log.1� .z� 0i//� 2� i:

Hence

L.zC 0i I 2p; 2q/DL.z� 0i I 2p; 2qC 2/C 4�2p;

so the extension �L of L mod 4�2 is well-defined.

By Neumann [8], we have a five term relation

4X
kD0

.�1/kL.�zk/D 0 2 C

for all .�z0; : : : ;�z4/2 �FT
C

. Because �FT is a connected complex manifold, the five term
relation for �L holds in C=Z.2/ for all .�z0; : : : ;�z4/ 2 �FT by analytic continuation.

2.2 Remark Along the commutator of a small loop around 0 and a small loop around
1 in C n f0; 1g, the holomorphic continuation of the Rogers dilogarithm changes by
4�2 . This shows that we cannot lift L to a holomorphic function on �C with values in
C=A, with A� Z.2/ a proper subgroup.

2.3 Corollary The function �L induces homomorphisms�LW �PSL.C/! C=Z.2/ and �LW �BSL.C/! C=Z.2/:
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3 Relations in the extended Bloch group

Following Neumann [8], we find relations among elements of the extended pre-Bloch
group. We then parameterise the kernel of the forgetful maps �PSL.C/! P.C/ and�BSL.C/ ! B.C/ induced by the projection �� W �C ! C. In the following, we will
identify z 2 .�1; 0/[ .1;1/ with zC 0i .

As explained by Dupont and Zickert in the appendix of [6]:

(6) ���1.FTC/\ �FTD
n��

z0I 2p0; 2q0

�
;
�
z1I 2p1; 2q1

�
;
�
z2I 2.p1�p0/; 2q2

�
;�

z3I 2.p1�p0C q1� q0/; 2.q2� q1/
�
;
�
z4I 2.q1� q0/; 2.q2� q1�p0/

��
ˇ̌̌
.z0; : : : ; z4/ 2 FTC and p0;p1; q0; q1; q2 2 Z

o
:

For other choices of .z0; : : : ; z4/ 2 FT, a few of the pk , qk have to be adjusted by
˙1.

Subtracting two instances of the five term relation and using (1) and (6), we obtain
Neumann’s cycle relation

ŒxI 2p0; 2q0� 2�� ŒyI 2p1; 2q1� 2�C
hy

x
I 2p1� 2p0; 2q2� 2

i
D ŒxI 2p0; 2q0�� ŒyI 2p1; 2q1�C

hy

x
I 2p1� 2p0; 2q2

i
;

for all x , y such that
�
x;y; y

x
; 1�1=x

1�1=y
; 1�x

1�y

�
2 FTC . If we vary x and y continuously,

then some of the integers in this relation may jump. Thus, we obtain

(7) ŒxI 2p0; 2q0� 2�� ŒxI 2p0; 2q0�� ŒyI 2p1; 2q1� 2�C ŒyI 2p1; 2q1�

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�y
x
I 2p1� 2p0� 2; 2q2� 2

�
�
�y
x
I 2p1� 2p0� 2; 2q2

� if Arg y �Arg x � ��;

hy

x
I 2p1� 2p0; 2q2� 2

i
�

hy

x
I 2p1� 2p0; 2q2

i if �� < Arg y �Arg x � �;

hy

x
I 2p1� 2p0C 2; 2q2� 2

i
�

hy

x
I 2p1� 2p0C 2; 2q2

i if � < Arg y �Arg x:

Subtracting two instances of (7) gives

(8) ŒxI 2p; 2.q� 1/�� ŒxI 2p; 2q�D ŒxI 2p; 2.q0� 1/�� ŒxI 2p; 2q0�
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for all x 2 Ccut . Similarly, one can prove

(9) ŒxI 2.p� 1/; 2q�� ŒxI 2p; 2q�D ŒxI 2.p0� 1/; 2q�� ŒxI 2p0; 2q�

and

(10) ŒxI 2.pC 1/; 2.q� 1/�� ŒxI 2p; 2q�D ŒxI 2.p0C 1/; 2.q0� 1/�� ŒxI 2p0; 2q0�

for all x 2 Ccut and all p , q , p0 , q0 2 Z such that p0C q0 D pC q . See Neumann [8]
for a more geometric derivation of these relations.

By [8, Lemma 7.3], we also have the relation

(11) ŒzI 2p; 2q�C Œ1� zI �2q;�2p�D 2
�

1
2
I 0; 0

�
;

which is of course compatible with (8)–(10).

Let us define
fzI 2pg D ŒzI 2p; 2q�� ŒzI 2p; 2.q� 1/�;

which is independent of q by (8).

3.1 Lemma For all z , w 2 Ccut with zw ¤ 1, we have the relation

fzI 2pgC fwI 2rg D

8̂<̂
:
fzwC 0i I 2.pC r � 1/g if Arg zCArgw � �� ,

fzwC 0i I 2.pC r/g if �� < Arg zCArgw � � and

fzwC 0i I 2.pC r C 1/g if � < Arg zCArgw.

Proof This is immediate from (7).

3.2 Lemma The element �� D fzI 2pg � fzI 2.p � 1/g 2 �PSL.C/ is independent of
z 2 C n f0; 1g and p 2 Z, and of order 2 in �PSL.C/.

Proof Independence of p follows from (9) and independence of z is immediate from
Lemma 3.1. To prove that �� is of order two, use (8) and (11) to write

�� D ŒzI 2; 0�� ŒzI 2;�2�� ŒzI 0; 0�C ŒzI 0;�2�

D�Œ1� zI 0;�2�C Œ1� zI 2;�2�C Œ1� zI 0; 0�� Œ1� zI 2; 0�

D f1� zI 0g� f1� zI 2g D ���:
To show that �� ¤ 0, we compute

(12) �L.��/D �L.zI 2; 2/��L.zI 2; 0/��L.zI 0; 2/C�L.zI 0; 0/D�2�2;

and �2�2 ¤ 0 in C=Z.2/.
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3.3 Remark Neumann has implicitly assumed that �� D 0 in [8, Section 8], and his
conclusions have then been used by Dupont and Zickert in [6, Proposition 4.15]. More
precisely, Neumann introduces a “transfer relation”

ŒzIp; q�C ŒzIp0; q0�D ŒzIp; q0�C ŒzIp; q0� for all p , q , p0 , q0 2 Z

in the definition of his extended Bloch group. The analogous relation in our context
would read

ŒzI 2p; 2q�C ŒzI 2p0; 2q0�D ŒzI 2p; 2q0�C ŒzI 2p; 2q0� for all p , q , p0 , q0 2 Z:

In analogy with [8, Proposition 7.2], one can show that the effect of the transfer relation
above is equivalent to dividing by the subgroup of order two that is generated by �� .

We have just computed �L.��/ D �2�2 2 C=4�2Z in (12). This explains that if one
includes the transfer relation, then �L is well-defined only modulo 2�2Z as in [6].

Assuming that��D 0, one finds that fzI 2pg becomes independent of p . This allows the
definition of a homomorphism C�! �PSL.C/=h��i with z 7! fzI 0g, see [8, Proposition
8.2].

Starting from Neumann’s map, we obtain a pullback square

C�
��

����! �PSL.C/??y ??y
C� ����! �PSL.C/=h��i:

Here the left vertical arrow maps z to z2 , and �� is given by

(13) ��.z/D
8̂̂̂̂
<̂
ˆ̂̂:

0 if z D 1,�� if z D�1,

fz2C 0i I 0g if Arg z 2
�
�
�
2
; �

2

�
and z ¤ 1, and

fz2C 0i I 2g if Arg z …
�
�
�
2
; �

2

�
and z ¤�1.

3.4 Theorem The map �� is a homomorphism, and the sequence

0 ����! C�
��

����! �PSL.C/ ����! P.C/ ����! 0

is exact and split, where the right arrow is induced by �� W �C! C n f0; 1g.

Proof First of all we note that by the definition of �� and Lemma 3.2,

fz2
I 2pgC�� D fz2

I 2pC 2g D fz2
I 2p� 2g;
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which implies that ��.z/C��.�1/ D ��.�z/, and that fz2; 2p C 4g D fz2I 2pg. By
Lemma 3.1, we have ��.z/C��.w/D��.zw/ for almost all choices of z , w 2 C� . The
remaining cases are easily checked.

The right arrow maps fzI 2pg D ŒzI 2p; 2�� ŒzI 2p; 0� to Œz�� Œz�D 0, so the sequence
above is a chain complex. To prove injectivity of �� consider the composition �L ı��.
For z 2 C� let p D 0 if Arg z 2

�
�
�
2
; �

2

�
and p D 1 if Arg z …

�
�
�
2
; �

2

�
. Then

Log.z2
C 0i/C 2� ip � 2 Log z modulo 2� iZ;

and

(14) .�L ı��/.z/D 1
2

�
.Log z2

C 2� ip/.Log.1� z2/C 2� i/

� .Log z2
C 2� ip/Log.1� z2/

�
D 2� i Log z 2 C=Z.2/;

and this even holds for z D˙1 by (12), (13). Hence �� is injective.

It remains to show that im��D ker.�PSL.C/! P.C//. Relations (8) and (9) allow us
to represent each generator of �PSL.C/ as

ŒzI 2p; 2q�D pqŒzI 2; 2��p.q� 1/ŒzI 2; 0�� .p� 1/qŒzI 0; 2�C .p� 1/.q� 1/ŒzI 0; 0�;

see [8, Lemma 7.1]. Using (11), we see that the kernel of �PSL.C/!P.C/ is generated
by elements of the form

ŒzI 2p; 2q�� ŒzI 0; 0�D pqfzI 2g� .p� 1/qfzI 0gCpf1� zI 0g 2 im��:
By (14), a splitting of the sequence is given by the homomorphism

exp ı
�L

2� i
W �PSL.C/! C�:

3.5 Corollary cf Neumann [8, Theorem 7.5] The sequence

0 ����! Q=Z
˛ 7!��.e2�i˛/
��������! �BSL.C/ ����! B.C/ ����! 0

is exact and
1

.2� i/2
�L���.e2� i˛/

�
D ˛:
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4 The Cheeger–Chern–Simons class and H3.SL.2 ;Cı//

Recall that Dupont and Zickert have constructed a map ��W H3.SL.2;Cı//! �BSL.C/

in [6, Section 3] without using the transfer relation. Following [6], we prove that�L ı��D yc2 2 C=Z.2/ and conclude from this that �� is an isomorphism.

Note that because C=Z.2/ is divisible, there is a canonical isomorphism

H 3
�
SL.2;Cı/;C=Z.2/

�
Š HomZ

�
H3.SL.2;Cı//;C=Z.2/

�
:

Let yc2 2H 3.SL.2;Cı/;C=Z.2// denote the second Cheeger–Chern–Simons class of
the tautological flat complex vector bundle of rank 2 over BSL.2;Cı/. Here, we are
using the same normalisation as Neumann [8]. Dupont and Zickert consider the class

1
.2� i/2

yc2 2H 3.SL.2;Cı/;C=Z/, see [6, Remark 4.2].

4.1 Theorem cf Dupont and Zickert [6, Theorem 4.1] Under the isomorphism
above,

yc2 D
�L ı��:

Proof By [6, Theorem 4.1], we have that

2yc2 D 2�L ı�� 2 HomZ

�
H3.SL.2;Cı//;C=Z.2/

�
in our normalisation. Because H3.SL.2;Cı// is divisible, this implies our claim.

4.2 Corollary cf [6, Theorem 4.15] The map��W H3.SL.2;Cı//! �BSL.C/ is an
isomorphism.

Proof Consider the commutative diagram

0 ����! Q=Z
�

����! H3.SL.2;Cı//
�

����! B.C/ ����! 0


 ??y�� 



0 ����! Q=Z

��.e2�i �/
�����! �BSL.C/ ����! B.C/ ����! 0:

Exactness of the upper row has been established by Dupont and Sah in [5]. The lower
row is just Corollary 3.5. Commutativity of the right hand square has been established
in [6, Section 3].

Let ˛ 2 Q, then 1
.2�i/2

.yc2 ı �/.˛/ D ˛ by Dupont [4, Theorem 10.2]. Theorem 4.1
implies that

1

.2� i/2
�L�.� ı �/.˛/�D 1

.2� i/2
.yc2 ı �/.˛/D ˛;

Geometry & Topology, Volume 11 (2007)



The Extended Bloch Group 1633

and .� ı �/.˛/ 2 ker
��BSL.C/! B.C/

�
by commutativity of the right hand square. On

the other hand, Corollary 3.5 implies that

1

.2� i/2
�L���.e2� i˛/

�
D ˛;

and that �L is injective on ker
��BSL.C/ ! B.C/

�
. Thus the left hand square also

commutes. Our claim now follows from the five-lemma.

4.3 Remark Let �BPSL.C/Š H3.PSL.2;C// denote Neumann’s extended Bloch
group in [8]. Then the diagram

0 0??y ??y
Z=4Z Z=4Z??y ��.i/�??y

0 ����! Q=Z
��.e2�i �/
�����! �BSL.C/ ����! B.C/ ����! 0

4�

??y b

??y 



0 ����! Q=Z

�.e2�i �/
�����! �BPSL.C/ ����! B.C/ ����! 0??y ??y

0 0

commutes and has exact rows and columns. Here the map bW �BSL.C/! �BPSL.C/

sends a generator Œz; 2p; 2q� to the same generator in �BPSL.C/, and � has been
defined in [8, Proposition 7.4]. This is proved in analogy with in [8, Corollary 8.3].
For example, commutativity of the lower left hand square follows from

.b ı��/.z/D Œz2
I 2p; 2�� Œz2

I 2p; 0�

D 2
�
Œz2
I 2p; 1�� Œz2

I 2p; 0�
�
D 2�.z2/D 4�.z/ 2 �PPSL.C/:

This also shows that ker b is spanned by ��.i/D f�1I 0g.

5 More relations in the extended pre-Bloch group

By Dupont and Sah [5], one has the relations

Œz�D

�
1

1� z

�
D

�
1�

1

z

�
D�

�
1

z

�
D�Œ1� z�D�

�
�

z

1� z

�
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in the pre-Bloch group P.C/. If we interpret z as the cross-ratio of a generic configu-
ration of four points in CP1 , then these relations say that up to orientation, the order
of the points is not important. Note that Im yc2 is already well-defined on B.C/.

Similar relations hold in Neumann’s extended pre-Bloch group �PPSL.C/ by [8, Propo-
sition 13.1]. As a consequence, unordered oriented simplices are also sufficient to
compute Re yc2 up to some finite ambiguity. Unfortunately, these relations become
more complicated in �PSL.C/. Let 4

p
z denote the standard fourth root of z with

Arg 4
p

z 2
�
�
�
4
; �

4

�
.

5.1 Proposition Let Im z > 0. Then�
1

z
I �2p; 2pC 2q

�
D�ŒzI 2p; 2q�C���ip 4

p
z
�
;(1) �

1�
1

z
I �2p� 2qI 2p

�
D ŒzI 2p; 2q�����e

�
�i
12
.1�6p/ 4

p
z
�
;(2) �

�
z

1� z
I 2pC 2q;�2q

�
D�ŒzI 2p; 2q�C���e

�
�i
12
.1C6q/ 4

p
z� 1

�
;(3) �

1

1� z
I 2q;�2p� 2q

�
D ŒzI 2p; 2q�����e

�
�i
12
.2C6q/ 4

p
z� 1

�
;(4)

Œ1� zI �2q;�2p�D�ŒzI 2p; 2q�C���e
� i
12

�
:(5)

Proof The involutions

ŒzI 2p; 2q� 7! Œ1� zI �2q;�2p� and ŒzI 2p; 2q� 7!

�
1

z
I �2pI 2pC 2q

�
generate an action of S.3/ on �C. Using Im

�
1� 1

z

�
>0 and Im 1

1�z
>0, it is now easy to

see that the five relations above follow from (1) and (5). Note that by [5], both relations
are true modulo ker

��PSL.C/! P.C/
�
D im��. Because the Rogers dilogarithm �L is

injective on im�� by (14), it suffices to check both relations after applying �L. This can
be done using some elementary facts about the classical dilogarithm, and is thus left to
the reader.

5.2 Remark The relations in [8] look somewhat nicer, since the correction term
does not involve the variable z . This is possible because in Neumann’s definition of�PPSL.C/, odd integers are allowed, so that one can consider the involution ŒzIp; q� 7!
Œ1=zI �p; 1CpC q�.

Following [8], the various terms on the left hand side of the equations in Proposition 5.1
correspond to flattenings of a given oriented simplex with different orderings of vertices.
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Thus the proposition seems to indicate that it is not enough to consider unordered
oriented simplices if one wants to compute the full class yc2 .

For higher classes yck , not many formulas are available. The only formula known to
the authors is Goncharov’s formula for Re yc3 in [7], which uses unordered oriented
simplices.
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