Triangle inequalities in path metric spaces

MICHAEL KAPOVICH

We study side-lengths of triangles in path metric spaces. We prove that unless such a space X is bounded, or quasi-isometric to \mathbb{R}_+ or to \mathbb{R} , every triple of real numbers satisfying the strict triangle inequalities, is realized by the side-lengths of a triangle in X. We construct an example of a complete path metric space quasi-isometric to \mathbb{R}^2 for which every degenerate triangle has one side which is shorter than a certain uniform constant.

51K05

1 Introduction

Given a metric space X define

$$K_3(X) := \{(a, b, c) \in \mathbb{R}^3_+ : \text{ there exist points } x, y, z$$
 with $d(x, y) = a, \ d(y, z) = b, \ d(z, x) = c\}.$

Note that $K_3(\mathbb{R}^2)$ is the closed convex cone K in \mathbb{R}^3_+ given by the usual triangle inequalities. On the other hand, if $X = \mathbb{R}$ then $K_3(X)$ is the boundary of K since all triangles in X are degenerate. If X has finite diameter, $K_3(X)$ is a bounded set. We refer the reader to [3] and [6] for discussion of the sets $K_4(X)$.

Gromov [3, Page 18] (see also Roe [6]) raised the following question:

Question 1.1 Find *reasonable* conditions on path metric spaces X, under which $K_3(X) = K$.

It is not so difficult to see that for a path metric space X quasi-isometric to \mathbb{R}_+ or \mathbb{R} , the set $K_3(X)$ does not contain the interior of K, see Section 7. Moreover, every triangle in such X is D-degenerate for some $D < \infty$ and therefore $K_3(X)$ is contained in the D-neighborhood of ∂K .

Our main result is essentially the converse to the above observation:

Theorem 1.2 Suppose that X is an unbounded path metric space not quasi-isometric to \mathbb{R}_+ or \mathbb{R} . Then:

- (1) $K_3(X)$ contains the interior of the cone K.
- (2) If, in addition, X contains arbitrary long geodesic segments, then $K_3(X) = K$.

In particular, we obtain a complete answer to Gromov's question for geodesic metric spaces, since an unbounded geodesic metric space clearly contains arbitrarily long geodesic segments. In Section 6, we give an example of a (complete) path metric space X quasi-isometric to \mathbb{R}^2 , for which

$$K_3(X) \neq K$$
.

Therefore, Theorem 1.2 is the optimal result.

It appears that very little can be said about $K_3(X)$ for general metric spaces even under the assumption of uniform contractibility. For instance, if X is the paraboloid of revolution in \mathbb{R}^3 with the induced metric, then $K_3(X)$ does not contain the interior of K. The space X in this example is uniformly contractible and is not quasi-isometric to \mathbb{R} and \mathbb{R}_+ .

The proof of Theorem 1.2 is easier under the assumption that X is a proper metric space: In this case X is necessarily complete, geodesic metric space. Moreover, every unbounded sequence of geodesic segments $\overline{ox_i}$ in X yields a geodesic ray. The reader who does not care about the general path metric spaces can therefore assume that X is proper. The arguments using the ultralimits are then replaced by the Arcela–Ascoli theorem.

Below is a sketch of the proof of Theorem 1.2 under the extra assumption that X is proper. Since the second assertion of Theorem 1.2 is clear, we have to prove only the first statement. To motivate the use of *tripods* in the proof we note the following: Suppose that X is itself isometric to the tripod with infinitely long legs, i.e., three rays glued at their origins. Then it is easy to see that $K_3(X) = K$.

We define R-tripods $T \subset X$, as unions $\gamma \cup \mu$ of two geodesic segments $\gamma, \mu \subset X$, having the lengths $\geq R$ and $\geq 2R$ respectively, so that:

- (1) $\gamma \cap \mu = o$ is the end-point of γ .
- (2) o is distance $\geq R$ from the ends of μ .
- (3) o is a nearest-point projection of γ to μ .

The space X is called R-thin if it contains no R-tripods. The space X is called thick if it is not R-thin for any $R < \infty$.

We break the proof of Theorem 1.2 in two parts: Theorem 1.3 and Theorem 1.4.

Theorem 1.3 If X is thick then $K_3(X)$ contains the interior of $K_3(\mathbb{R}^2)$.

The proof of this theorem is mostly the coarse topology. The side-lengths of triangles in X determine a continuous map

$$L: X^3 \to K$$

Then $K_3(X) = L(X^3)$. Given a point κ in the interior of K, we consider an R-tripod $T \subset X$ for sufficiently large R. We then restrict to triangles in X with vertices in T. We construct a 2-cycle $\Sigma \in Z_2(T^3, \mathbb{Z}_2)$ whose image under L_* determines a nontrivial element of $H_2(K \setminus \kappa, \mathbb{Z}_2)$. Since T^3 is contractible, there exists a 3-chain $\Gamma \in C_3(T^3, \mathbb{Z}_2)$ with the boundary Σ . Therefore the support of $L_*(\Gamma)$ contains the point κ , which implies that κ belongs to the image of L.

Remark Gromov observed in [3] that *uniformly contractible* metric spaces X have large $K_3(X)$. Although uniform contractibility is not relevant to our proof, the key argument here indeed has the coarse topology flavor.

Theorem 1.4 If X is a thin unbounded path metric space, then X is quasi-isometric to \mathbb{R} or \mathbb{R}_+ .

Assuming that X is thin, unbounded and is not quasi-isometric to \mathbb{R} and to \mathbb{R}_+ , we construct three diverging geodesic rays ρ_i in X, i=1,2,3. Define $\mu_i\subset X$ to be the geodesic segment connecting $\rho_1(i)$ and $\rho_2(i)$. Take γ_i to be the shortest segment connecting $\rho_3(i)$ to μ_i . Then $\gamma_i\cup\mu_i$ is an R_i -tripod with $\lim_i R_i=\infty$, which contradicts the assumption that X is thin.

Acknowledgements During this work the author was partially supported by the NSF grants DMS-04-05180 and DMS-05-54349. Most of this work was done when the author was visiting the Max Plank Institute for Mathematics in Bonn. I am grateful to the referee for useful comments and corrections.

2 Preliminaries

Convention 2.1 All homology will be taken with the \mathbb{Z}_2 -coefficients.

In the paper we will talk about *ends of a metric space* X. Instead of looking at the noncompact complementary components of *relatively compact open subsets* of X as it is usually done for topological spaces, we will define ends of X by considering unbounded

complementary components of bounded subsets of X. With this modification, the usual definition goes through.

If x, y are points in a topological space X, we let P(x, y) denote the set of continuous paths in X connecting x to y. For $\alpha \in P(x, y)$, $\beta \in P(y, z)$ we let $\alpha * \beta \in P(x, z)$ denote the concatenation of α and β . Given a path α : $[0, a] \to X$ we let $\overline{\alpha}$ denote the reverse path

$$\overline{\alpha}(t) = \alpha(a-t).$$

2.1 Triangles and their side-lengths

We set $K := K_3(\mathbb{R}^2)$; it is the cone in \mathbb{R}^3 given by

$$\{(a, b, c) : a \le b + c, b \le a + c, c \le a + b\}.$$

We metrize K by using the maximum-norm on \mathbb{R}^3 .

By a *triangle* in a metric space X we will mean an ordered triple $\Delta = (x, y, z) \in X^3$. We will refer to the numbers d(x, y), d(y, z), d(z, x) as the *side-lengths* of Δ , even though these points are not necessarily connected by geodesic segments. The sum of the side-lengths of Δ will be called the *perimeter* of Δ .

We have the continuous map

$$L: X^3 \to K$$

which sends the triple (x, y, z) of points in X to the triple of side-lengths

Then $K_3(X)$ is the image of L.

Let $\epsilon \ge 0$. We say that a triple $(a, b, c) \in K$ is ϵ -degenerate if, after reordering if necessary the coordinates a, b, c, we obtain

$$a + \epsilon \ge b + c$$
.

Therefore every ϵ -degenerate triple is within distance $\leq \epsilon$ from the boundary of K. A triple which is not ϵ -degenerate is called ϵ -nondegenerate. A triangle in a metric space X whose side-lengths form an ϵ -degenerate triple, is called ϵ -degenerate. A 0-degenerate triangle is called degenerate.

2.2 Basic notions of metric geometry

For a subset E in a metric space X and $R < \infty$ we let $N_R(E)$ denote the metric R-neighborhood of E in X:

$$N_R(E) = \{x \in X : d(x, E) \le R\}.$$

Definition 2.2 Given a subset E in a metric space X and $\epsilon > 0$, we define the ϵ -nearest-point projection $p = p_{E,\epsilon}$ as the map which sends X to the set 2^E of subsets in E:

$$y \in p(x) \iff d(x, y) \le d(x, z) + \epsilon, \quad \forall z \in E.$$

If $\epsilon = 0$, we will abbreviate $p_{E,0}$ to p_E .

2.2.1 Quasi-isometries Let X, Y be metric spaces. A map $f: X \to Y$ is called an (L, A)-quasi-isometric embedding (for $L \ge 1$ and $A \in \mathbb{R}$) if for every pair of points $x_1, x_2 \in X$ we have

$$L^{-1}d(x_1, x_2) - A \le d(f(x_1), f(x_2)) \le Ld(x_1, x_2) + A.$$

A map f is called an (L, A)-quasi-isometry if it is an (L, A)-quasi-isometric embedding so that $N_A(f(X)) = Y$. Given an (L, A)-quasi-isometry, we have the quasi-inverse map

$$\bar{f}\colon Y\to X$$

which is defined by choosing for each $y \in Y$ a point $x \in X$ so that $d(f(x), y) \leq A$. The quasi-inverse map \overline{f} is an (L, 3A)-quasi-isometry. An (L, A)-quasi-isometric embedding f of an interval $I \subset \mathbb{R}$ into a metric space X is called an (L, A)-quasi-geodesic in X. If $I = \mathbb{R}$, then f is called a *complete* quasi-geodesic.

A map $f: X \to Y$ is called a *quasi-isometric embedding* (resp. a *quasi-isometry*) if it is an (L, A)-quasi-isometric embedding (resp. (L, A)-quasi-isometry) for some $L \ge 1, A \in \mathbb{R}$.

Every quasi-isometric embedding $\mathbb{R}^n \to \mathbb{R}^n$ is a quasi-isometry, see for instance Kapovich–Leeb [5].

2.2.2 Geodesics and path metric spaces A *geodesic* in a metric space is an isometric embedding of an interval into X. By abusing the notation, we will identify geodesics and their images. A metric space is called *geodesic* if any two points in X can be connected by a geodesic. By abusing the notation we let \overline{xy} denote a geodesic connecting x to y, even though this geodesic is not necessarily unique.

The length of a continuous curve $\gamma: [a, b] \to X$ in a metric space, is defined as

length(
$$\gamma$$
) = sup $\Big\{ \sum_{i=1}^{n} d(\gamma(t_{i-1}), \gamma(t_i)) : a = t_0 < t_1 < \dots < t_n = b \Big\}.$

A path γ is called *rectifiable* if length(γ) < ∞ .

A metric space X is called a *path metric space* (or a *length space*) if for every pair of points $x, y \in X$ we have

$$d(x, y) = \inf\{ \text{length}(\gamma) : \gamma \in P(x, y) \}.$$

We say that a curve $\gamma: [a, b] \to X$ is ϵ -geodesic if

length(
$$\gamma$$
) $\leq d(\gamma(a), \gamma(b)) + \epsilon$.

It follows that every ϵ -geodesic is $(1, \epsilon)$ -quasi-geodesic. We refer the reader to Burago-Ivanov [2] and Gromov [3] for the further details on path metric spaces.

2.3 Ultralimits

Our discussion of ultralimits of sequences of metric space will be somewhat brief, we refer the reader to Burago–Ivanov [2], Gromov [3], Kapovich [4], Kapovich–Leeb [5] and Roe [6] for the detailed definitions and discussion.

Choose a nonprincipal ultrafilter ω on \mathbb{N} . Suppose that we are given a sequence of pointed metric spaces (X_i, o_i) , where $o_i \in X_i$. The *ultralimit*

$$(X_{\omega}, o_{\omega}) = \omega - \lim(X_i, o_i)$$

is a pointed metric space whose elements are equivalence classes x_{ω} of sequences $x_i \in X_i$. The distance in X_{ω} is the ω -limit:

$$d(x_{\omega}, y_{\omega}) = \omega - \lim d(x_i, y_i).$$

One of the key properties of ultralimits which we will use repeatedly is the following. Suppose that (Y_i, p_i) is a sequence of pointed metric spaces. Assume that we are given a sequence of (L_i, A_i) -quasi-isometric embeddings

$$f_i \colon X_i \to Y_i$$

so that ω -lim $d(f(o_i), p_i)$ < ∞ and

$$\omega$$
-lim $L_i = L < \infty$, ω -lim $A_i = 0$.

Then there exists the ultralimit f_{ω} of the maps f_i , which is an (L,0)-quasi-isometric embedding

$$f_{\omega} \colon X_{\omega} \to Y_{\omega}$$
.

In particular, if L=1, then f_{ω} is an isometric embedding.

2.3.1 Ultralimits of constant sequences of metric spaces Suppose that X is a path metric space. Consider the constant sequence $X_i = X$ for all i. If X is a proper metric space and o_i is a bounded sequence, the ultralimit X_{ω} is nothing but X itself. In general, however, it could be much larger. The point of taking the ultralimit is that some properties of X improve after passing to X_{ω} .

Lemma 2.3 X_{ω} is a geodesic metric space.

Proof Points x_{ω} , y_{ω} in X_{ω} are represented by sequences (x_i) , (y_i) in X. For each i choose a $\frac{1}{i}$ -geodesic curve γ_i in X connecting x_i to y_i . Then

$$\gamma_{\omega} := \omega - \lim \gamma_i$$

is a geodesic connecting x_{ω} to y_{ω} .

Similarly, every sequence of $\frac{1}{i}$ -geodesic segments $\overline{yx_i}$ in X satisfying

$$\omega$$
-lim $d(v, x_i) = \infty$,

yields a geodesic ray γ_{ω} in X_{ω} emanating from $y_{\omega} = (y)$.

If $o_i \in X$ is a bounded sequence, then we have a natural (diagonal) isometric embedding $X \to X_{\omega}$, given by the map which sends $x \in X$ to the constant sequence (x).

Lemma 2.4 For every geodesic segment $\gamma_{\omega} = \overline{x_{\omega} y_{\omega}}$ in X_{ω} there exists a sequence of 1/i –geodesics $\gamma_i \subset X_i$, so that

$$\omega$$
-lim $\gamma_i = \gamma_\omega$.

Proof Subdivide the segment γ_{ω} into n equal subsegments

$$\overline{z_{\omega,j}z_{\omega,j+1}}, \quad j=1,\ldots,n,$$

where $x_{\omega} = z_{\omega,1}$, $y_{\omega} = z_{\omega,n+1}$. Then the points $z_{\omega,j}$ are represented by sequences $(z_{k,j}) \in X$. It follows that for ω -all k, we have

$$\left| \sum_{j=1}^{n} d(z_{k,j}, z_{k,j+1}) - d(x_k, y_k) \right| < \frac{1}{2i}.$$

Connect the points $z_{k,j}$, $z_{k,j+1}$ by $\frac{1}{2i}$ -geodesic segments $\alpha_{k,j}$. Then the concatenation

$$\alpha_n = \alpha_{k,1} * \cdots * \alpha_{k,n}$$

is an $\frac{1}{i}$ -geodesic connecting x_k and y_k , where

$$x_{\omega} = (x_k), \quad y_{\omega} = (y_k).$$

It is clear from the construction, that, if given i we choose sufficiently large n = n(i), then

$$\omega$$
-lim $\alpha_{n(i)} = \gamma$.

Therefore we take $\gamma_i := \alpha_{n(i)}$.

2.4 Tripods

Our next goal is to define *tripods* in X, which will be our main technical tool. Suppose that x, y, z, o are points in X and μ is an ϵ -geodesic segment connecting x to y, so that $o \in \mu$ and $o \in p_{\mu,\epsilon}(z)$. Then the path μ is the concatenation $\alpha \cup \beta$, where α, β are ϵ -geodesics connecting x, y to o. Let γ be an ϵ -geodesic connecting z to o.

Definition 2.5 (1) We refer to $\alpha \cup \beta \cup \gamma$ as a *tripod T* with the vertices x, y, z, legs α, β, γ , and the center o.

(2) Suppose that the length of α , β , γ is at least R. Then we refer to the tripod T as (R, ϵ) -tripod. An (R, 0)-tripod will be called simply an R-tripod.

The reader who prefers to work with proper geodesic metric spaces can safely assume that $\epsilon=0$ in the above definition and thus T is a geodesic tripod.

Definition 2.6 Let $R \in [0, \infty)$, $\epsilon \in [0, \infty)$. A metric space is called (R, ϵ) -thin if it contains no (R, ϵ) -tripods. We will refer to (R, 0)-thin spaces as R-thin. A metric space which is not (R, ϵ) -thin for any $R < \infty$, $\epsilon > 0$ is called *thick*.

Therefore, a path metric space is thick if and only if it contains a sequence of (R_i, ϵ_i) – tripods with

$$\lim_{i} R_i = \infty, \quad \lim_{i} \epsilon_i = 0.$$

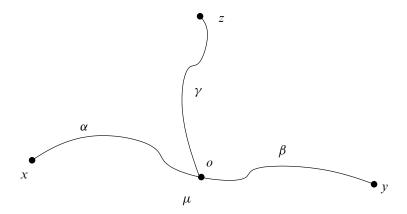


Figure 1: A tripod

2.5 Tripods and ultralimits

Suppose that a path metric space X is thick. Thus, X contains a sequence of (R_i, ϵ_i) – tripods T_i with

$$\lim_{i} R_i = \infty, \quad \lim_{i} \epsilon_i = 0,$$

so that the center of T_i is o_i and the legs are $\alpha_i, \beta_i, \gamma_i$. Then the tripods T_i clearly yield a geodesic $(\infty, 0)$ -tripod T_{ω} in $(X_{\omega}, o_{\omega}) = \omega - \lim(X, o_i)$. The tripod T_{ω} is the union of three geodesic rays $\alpha_{\omega}, \beta_{\omega}, \gamma_{\omega}$ emanating from o_{ω} , so that

$$o_{\omega} = p_{\mu_{\omega}}(\gamma_{\omega}).$$

Here $\mu_{\omega} = \alpha_{\omega} \cup \beta_{\omega}$. In particular, X_{ω} is thick.

Conversely, in view of Lemma 2.4, we have:

Lemma 2.7 If X is (R, ϵ) —thin for $\epsilon > 0$ and $R < \infty$, then X_{ω} is R'—thin for every R' > R.

Proof Suppose that X_{ω} contains an R'-tripod T_{ω} . Then T_{ω} appears as the ultralimit of $\left(R' - \frac{1}{i}, \frac{1}{i}\right)$ -tripods in X. This contradicts the assumption that X is (R, ϵ) -thin. \square

Let $\sigma \colon [a,b] \to X$ be a rectifiable curve in X parameterized by its arc-length. We let d_{σ} denote the path metric on [a,b] which is the pull-back of the path metric on X. By abusing the notation, we denote by d the restriction to σ of the metric d. Note that, in general, d is only a pseudo-metric on [a,b] since σ need not be injective. However, if σ is injective then d is a metric.

We repeat this construction with respect to the tripods: Given a tripod $T \subset X$, define an abstract tripod T_{mod} whose legs have the same length as the legs of T. We have a natural map

$$\tau \colon T_{\text{mod}} \to X$$

which sends the legs of $T_{\rm mod}$ to the respective legs of T, parameterizing them by the arc-length. Then $T_{\rm mod}$ has the path metric $d_{\rm mod}$ obtained by pull-back of the path metric from X via τ . We also have the restriction pseudo-metric d on $T_{\rm mod}$:

$$d(A, B) = d(\tau(A), \tau(B)).$$

Observe that if $\epsilon = 0$ and X is a tree then the metrics d_{mod} and d on T agree.

Lemma 2.8 $d \leq d_{\text{mod}} \leq 3d + 6\epsilon$.

Proof The inequality $d \le d_{\text{mod}}$ is clear. We will prove the second inequality. If $A, B \in \alpha \cup \beta$ or $A, B \in \gamma$ then, clearly,

$$d_{\text{mod}}(A, B) \le d(A, B) + \epsilon$$
,

since these curves are ϵ -geodesics. Therefore, consider the case when $A \in \gamma$ and $B \in \beta$. Then

$$D := d_{\text{mod}}(A, B) = t + s,$$

where $t = d_{\nu}(A, o), s = d_{\beta}(o, B)$.

Case 1 $t \ge \frac{1}{3}D$. Then, since $o \in \alpha \cup \beta$ is ϵ -nearest to A, it follows that

$$\frac{1}{3}D \le t \le d(A, o) + \epsilon \le d(A, B) + 2\epsilon.$$

Hence

$$d_{\text{mod}}(A, B) = \frac{3D}{3} \le 3(d(A, B) + 2\epsilon) = 3d(A, B) + 6\epsilon,$$

and the assertion follows in this case.

Case 2 $t < \frac{1}{3}D$. By the triangle inequality,

$$D - t = s \le d(o, B) + \epsilon \le d(o, A) + d(A, B) + \epsilon \le t + 2\epsilon + d(A, B).$$

Hence

$$\frac{1}{3}D = D - \frac{2}{3}D \le D - 2t \le 2\epsilon + d(A, B),$$

and

$$d_{\text{mod}}(A, B) = \frac{3D}{3} \le 3d(A, B) + 6\epsilon.$$

3 Topology of configuration spaces of tripods

We begin with the model tripod T with the legs α_i , i = 1, 2, 3, and the center o. Consider the configuration space $Z := T^3 \setminus diag$, where diag is the small diagonal

$$\{(x_1, x_2, x_3) \in T^3 : x_1 = x_2 = x_3\}.$$

We recall that the homology is taken with the \mathbb{Z}_2 -coefficients.

Proposition 3.1 $H_1(Z) = 0$.

Proof T^3 is the union of cubes

$$Q_{ijk} = \alpha_i \times \alpha_j \times \alpha_k$$

where $i, j, k \in \{1, 2, 3\}$. Identify each cube Q_{ijk} with the unit cube in the positive octant in \mathbb{R}^3 . Then in the cube Q_{ijk} $(i, j, k \in \{1, 2, 3\})$ we choose the equilateral triangle σ_{ijk} given by the intersection of Q_{ijk} with the hyperplane

$$x + y + z = 1$$

in \mathbb{R}^3 . We adopt the convention that if exactly one of the indices i, j, k is zero (say, i), then σ_{ijk} stands for the 1-simplex

$$\{(0, y, z): y + z = 1\} \cap \{o\} \times \alpha_i \times \alpha_k$$
.

Therefore,

$$\partial \sigma_{ijk} = \sigma_{0jk} + \sigma_{i0k} + \sigma_{ij0}.$$

Define the 2-dimensional simplicial complex

$$S:=\bigcup_{ijk}\sigma_{ijk}.$$

This complex is homeomorphic to the link of (o,o,o) in \mathbb{T}^3 . Therefore \mathbb{Z} is homotopy-equivalent to

$$W := S \setminus (\sigma_{111} \cup \sigma_{222} \cup \sigma_{333}).$$

Consider the loops $\gamma_i := \partial \sigma_{iii}$, i = 1, 2, 3.

Lemma 3.2 (1) The homology classes $[\gamma_i]$, i = 1, 2, 3 generate $H_1(W)$.

(2)
$$[\gamma_1] = [\gamma_2] = [\gamma_3]$$
 in $H_1(W)$.

Proof of Lemma 3.2 (1) We first observe that S is the 3-fold join of a 3-element set with itself and, therefore, is simply-connected. Alternatively, note that S a 2-dimensional spherical building. Hence, S is homotopy-equivalent to a bouquet of 2-spheres (see Brown [1, Theorem 2, page 93]), which implies that $H_1(S) = 0$. Now the first assertion follows from the long exact sequence of the pair (S, W).

(2) Let us verify that $[\gamma_1] = [\gamma_2]$. The subcomplex

$$S_{12} = S \cap (\alpha_1 \cup \alpha_2)^3$$

is homeomorphic to the 2–sphere. Therefore $S_{12} \cap W$ is the annulus bounded by the circles γ_1 and γ_2 . Hence $[\gamma_1] = [\gamma_2]$.

Lemma 3.3

$$[\gamma_1] + [\gamma_2] + [\gamma_3] = 0$$

in $H_1(W)$.

Proof of Lemma 3.3 Let B' denote the 2-chain

$$\sum_{\{ijk\}\in A} \sigma_{ijk},$$

where A is the set of triples of distinct indices $i, j, k \in \{1, 2, 3\}$. Let

$$B'' := \sum_{i=1}^{3} (\sigma_{ii(i+1)} + \sigma_{i(i+1)i} + \sigma_{(i+1)ii})$$

where we set 3 + 1 := 1. We note that

$$\gamma_1 + \gamma_2 + \gamma_3 = \partial \Delta$$
,

where

$$\Delta = \sum_{i=1}^{3} \sigma_{iii}.$$

Hence, the assertion of lemma is equivalent to

$$\partial (B' + B'' + \Delta) = 0.$$

To prove this, it suffices to show that every 1-simplex in S, appears in $\partial(B'+B''+\Delta)$ exactly twice. Since the chain $B'+B''+\Delta$ is preserved by the permutation of the indices i,j,k, it suffices to consider the 1-simplex σ_{ij0} where j=i+1 or i=j.

Suppose that j = i + 1. Then the 1-simplex σ_{ij0} appears in $\partial(B' + B'' + \Delta)$ exactly twice: in $\partial\sigma_{ijk}$ (where $k \neq i \neq j$) and in $\partial\sigma_{i(i+1)i}$.

Similarly, if i = j, then the 1-simplex σ_{ii0} also appears in $\partial(B' + B'' + \Delta)$ exactly twice: in $\partial\sigma_{iii}$ and in $\partial\sigma_{ii(i+1)}$.

By combining these lemmata we obtain the assertion of the theorem.

3.0.1 Application to tripods in metric spaces Consider an (R, ϵ) -tripod T in a metric space X and its standard parametrization $\tau \colon T_{\text{mod}} \to T$.

There is an obvious scaling operation

$$u \mapsto r \cdot u$$

on the space $(T_{\text{mod}}, d_{\text{mod}})$ which sends each leg to itself and scales all distances by $r \in [0, \infty)$. It induces the map $T_{\text{mod}}^3 \to T_{\text{mod}}^3$, denoted $t \mapsto r \cdot t$, $t \in T_{\text{mod}}^3$.

We have the functions

$$L_{\text{mod}} \colon T^3_{\text{mod}} \to K \qquad L_{\text{mod}}(x, y, z) = (d_{\text{mod}}(x, y), d_{\text{mod}}(y, z), d_{\text{mod}}(z, x)),$$

$$L \colon T^3_{\text{mod}} \to K \qquad L(x, y, z) = (d(x, y), d(y, z), d(z, x))$$

computing side-lengths of triangles with respect to the metrics d_{mod} and d.

For $\rho \ge 0$ set

$$K_{\rho} := \{(a, b, c) \in K : a + b + c > \rho\}.$$

Define

$$T^{3}(\rho) := L^{-1}(K_{\rho}), \qquad T^{3}_{\text{mod}}(\rho) := L^{-1}_{\text{mod}}(K_{\rho}).$$

Thus

$$T_{\text{mod}}^3(0) = T^3(0) = T^3 \setminus \text{diag.}$$

Lemma 3.4 For every $\rho \ge 0$, the space $T_{\text{mod}}^3(\rho)$ is homeomorphic to $T_{\text{mod}}^3(0)$.

Proof Recall that S is the link of (o, o, o) in T^3 . Then scaling defines homeomorphisms

$$T^3_{\text{mod}}(\rho) \to S \times \mathbb{R} \to T^3_{\text{mod}}(0).$$

Corollary 3.5 For every $\rho \ge 0$, $H_1(T^3_{\text{mod}}(\rho), \mathbb{Z}_2) = 0$.

Corollary 3.6 The map induced by inclusion

$$H_1(T^3(3\rho+18\epsilon)) \rightarrow H_1(T^3(\rho))$$

is zero.

Proof Recall that

$$d \leq d_{\text{mod}} \leq 3d + 6\epsilon$$
.

Therefore

$$T^3(3\rho+18\epsilon)\subset T^3_{\mathrm{mod}}(\rho)\subset T^3(\rho).$$

Now the assertion follows from the previous corollary.

4 Proof of Theorem 1.3

Suppose that X is thick. Then for every $R < \infty, \epsilon > 0$ there exists an (R, ϵ) -tripod T with the legs α, β, γ . Without loss of generality we may assume that the legs of T have length R. Let $\tau \colon T_{\text{mod}} \to T$ denote the standard map from the model tripod onto T. We will continue with the notation of the previous section.

Given a space E and map $f \colon E \to T^3_{\mathrm{mod}}$ (or a chain $\sigma \in C_*(T^3_{\mathrm{mod}})$), let \widehat{f} (resp. $\widehat{\sigma}$) denote the map $L \circ f$ from E to K (resp. the chain $L_*(\sigma) \in C_*(K)$). Similarly, we define $\widehat{f}_{\mathrm{mod}}$ and $\widehat{\sigma}_{\mathrm{mod}}$ using the map L_{mod} instead of L.

Every loop $\lambda \colon S^1 \to T^3_{\mathrm{mod}}$, determines the map of the 2-disk

$$\Lambda \colon D^2 \to T^3_{\text{mod}},$$

given by

$$\Lambda(r,\theta) = r \cdot \lambda(\theta)$$

where we are using the polar coordinates (r, θ) on the unit disk D^2 . Triangulating both S^1 and D^2 and assigning the coefficient $1 \in \mathbb{Z}_2$ to each simplex, we regard both λ and Λ as singular chains in $C_*(T^3_{mod})$.

We let a, b, c denote the coordinates on the space \mathbb{R}^3 containing the cone K. Let $\kappa = (a_0, b_0, c_0)$ be a δ -nondegenerate point in the interior of K for some $\delta > 0$; set $r := a_0 + b_0 + c_0$.

Suppose that there exists a loop λ in T_{mod}^3 such that:

(1) $\hat{\lambda}(\theta)$ is ϵ -degenerate for each θ . Moreover, each triangle $\lambda(\theta)$ is either contained in $\alpha_{\text{mod}} \cup \beta_{\text{mod}}$ or has only two distinct vertices.

In particular, the image of $\hat{\lambda}$ is contained in

$$K \setminus \mathbb{R}_+ \cdot \kappa$$
.

- (2) The image of $\hat{\lambda}$ is contained in K_{ρ} , where $\rho = 3r + 18\epsilon$.
- (3) The homology class $[\hat{\lambda}]$ is nontrivial in $H_1(K \setminus \mathbb{R}_+ \cdot \kappa)$.

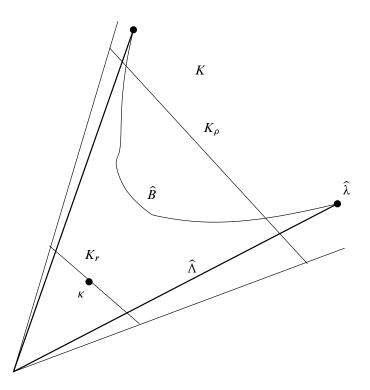


Figure 2: Chains $\hat{\Lambda}$ and \hat{B}

Lemma 4.1 If there exists a loop λ satisfying the assumptions (1)–(3), and $\epsilon < \delta/2$, then κ belongs to $K_3(X)$.

Proof We have the 2-chains

$$\hat{\Lambda}, \hat{\Lambda}_{\text{mod}} \in C_2(K \setminus \kappa),$$

with

$$\hat{\lambda} = \partial \hat{\Lambda}, \hat{\lambda}_{\text{mod}} = \partial \hat{\Lambda}_{\text{mod}} \in C_1(K_{\rho}).$$

Note that the support of $\hat{\lambda}_{\text{mod}}$ is contained in ∂K and the 2-chain $\hat{\Lambda}_{\text{mod}}$ is obtained by coning off $\hat{\lambda}_{\text{mod}}$ from the origin. Then, by Assumption (1), for every $w \in D^2$:

- (i) Either $d(\widehat{\Lambda}(w), \widehat{\Lambda}_{mod}(w)) \leq \epsilon$.
- (ii) Or $\hat{\Lambda}(w)$, $\hat{\Lambda}_{\text{mod}}(w)$ belong to the common ray in ∂K .

Since $d(\kappa, \partial K) > \delta \ge 2\epsilon$, it follows that the straight-line homotopy H_t between the maps

$$\hat{\Lambda}, \hat{\Lambda}_{\text{mod}}: D^2 \to K$$

misses κ . Since K_{ρ} is convex, $H_t(S^1) \subset K_{\rho}$ for each $t \in [0, 1]$, and we obtain

$$[\widehat{\Lambda}_{\text{mod}}] = [\widehat{\Lambda}] \in H_2(K \setminus \kappa, K_{\rho}).$$

Assumptions (2) and (3) imply that the relative homology class

$$[\hat{\Lambda}_{\text{mod}}] \in H_2(K \setminus \kappa, K_{\rho})$$

is nontrivial. Hence

$$[\hat{\Lambda}] \in H_2(K \setminus \kappa, K_{\rho})$$

is nontrivial as well. Since $\rho=3r+18\epsilon$, according to Corollary 3.6, λ bounds a 2-chain

$$B \in C_2(T^3(r)).$$

Set $\Sigma := B + \Lambda$. Then the absolute class

$$[\hat{\Sigma}] = [\hat{\Lambda} + \hat{B}] \in H_2(K \setminus \kappa)$$

is also nontrivial. Since T^3_{mod} is contractible, there exists a 3-chain $\Gamma \in C_3(T^3_{\text{mod}})$ such that

$$\partial \Gamma = \Sigma$$
.

Therefore the support of $\hat{\Gamma}$ contains the point κ . Since the map

$$L: T^3 \to K$$

is the composition of the continuous map $\tau^3 \colon T^3 \to X^3$ with the continuous map $L \colon X^3 \to K$, it follows that κ belongs to the image of the map $L \colon X^3 \to K$ and hence $\kappa \in K_3(X)$.

Our goal therefore is to construct a loop λ , satisfying Assumptions (1)–(3).

Let $T \subset X$ be an (R, ϵ) -tripod with the legs α, β, γ of the length R, where $\epsilon \leq \delta/2$. We let $\tau \colon T_{\text{mod}} \to T$ denote the standard parametrization of T. Let x, y, z, o denote the vertices and the center of T_{mod} . We let $\alpha_{\text{mod}}(s), \beta_{\text{mod}}(s), \gamma_{\text{mod}}(s) \colon [0, R] \to T_{\text{mod}}$ denote the arc-length parameterizations of the legs of T_{mod} , so that $\alpha(R) = \beta(R) = \gamma(R) = o$.

We will describe the loop λ as the concatenation of seven paths

$$p_i(s) = (x_1(s), x_2(s), x_3(s)), i = 1, \dots, 7.$$

We let $a = d(x_2, x_3), b = d(x_3, x_1), c = d(x_1, x_2).$

(1) $p_1(s)$ is the path starting at (x, x, o) and ending at (o, x, o), given by

$$p_1(s) = (\alpha_{\text{mod}}(s), x, o).$$

Note that for $p_1(0)$ and $p_1(R)$ we have c=0 and b=0 respectively.

- (2) $p_2(s)$ is the path starting at (o, x, o) and ending at (y, x, o), given by $p_2(s) = (\overline{\beta}_{mod}(s), x, o).$
- (3) $p_3(s)$ is the path starting at (y, x, o) and ending at (y, o, o), given by $p_3(s) = (y, \alpha_{\text{mod}}(s), o).$

Note that for $p_3(R)$ we have a = 0.

(4) $p_4(s)$ is the path starting at (y, o, o) and ending at (y, y, o), given by

$$p_4(s) = (y, \overline{\beta}_{\text{mod}}(s), o).$$

Note that for $p_4(R)$ we have c = 0. Moreover, if $\alpha * \overline{\beta}$ is a geodesic, then

$$d(\tau(x), \tau(o)) = d(\tau(y), \tau(o)) \Rightarrow \hat{p}_4(R) = \hat{p}_1(0)$$

and therefore $\hat{p}_1 * \cdots * \hat{p}_4$ is a loop.

- (5) $p_5(s)$ is the path starting at (y, y, o) and ending at (y, y, z) given by $(y, y, \overline{y}_{mod}(s))$.
- (6) $p_6(s)$ is the path starting at (y, y, z) and ending at (x, x, z) given by $(\beta_{\text{mod}} * \overline{\alpha}_{\text{mod}}, \beta_{\text{mod}} * \overline{\alpha}_{\text{mod}}, z).$
- (7) $p_7(s)$ is the path starting at (x, x, z) and ending at (x, x, o) given by $(x, x, \gamma_{\text{mod}}(s))$.

Thus

$$\lambda := p_1 * \cdots * p_7$$

is a loop.

Since $\alpha * \beta$ and γ are ϵ -geodesics in X, each path $p_i(s)$ determines a family of ϵ -degenerate triangles in (T_{mod}, d) . It is clear that Assumption (1) is satisfied.

The class $[\hat{\lambda}_{mod}]$ is clearly nontrivial in $H_1(\partial K \setminus 0)$. See Figure 3. Therefore, since $\epsilon \leq \delta/2$,

$$[\hat{\lambda}] = [\hat{\lambda}_{\text{mod}}] \in H_1(K \setminus \mathbb{R}_+ \cdot \kappa) \setminus \{0\},$$

see the proof of Lemma 4.1. Thus Assumption (2) holds.

Lemma 4.2 The image of $\hat{\lambda}$ is contained in the closure of $K_{\rho'}$, where

$$\rho' = \frac{2}{3}R - 4\epsilon.$$

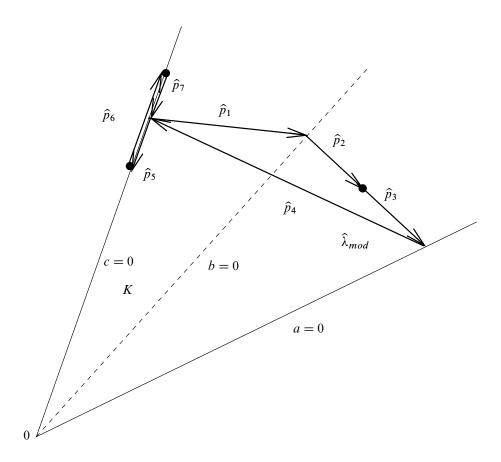


Figure 3: The loop $\hat{\lambda}_{mod}$

Proof We have to verify that for each $i=1,\ldots,7$ and every $s\in[0,R]$, the perimeter (with respect to the metric d) of each triangle $p_i(s)\in T^3_{\mathrm{mod}}$ is at least ρ' . These inequalities follow directly from Lemma 2.8 and the description of the paths p_i . \square

Therefore, if we take

$$R > \frac{9}{2}r - 33\epsilon$$

then the image of $\hat{\lambda}$ is contained in

$$K_{3r+18\epsilon}$$

and Assumption (3) is satisfied. Theorem 1.3 follows.

5 Quasi-isometric characterization of thin spaces

The goal of this section is to prove Theorem 1.4. Suppose that X is thin. The proof is easier if X is a proper geodesic metric space, in which case there is no need considering the ultralimits. Therefore, we recommend the reader uncomfortable with this technique to assume that X is a proper geodesic metric space.

Pick a base-point $o \in X$, a nonprincipal ultrafilter ω and consider the ultralimit

$$X_{\omega} = \omega - \lim(X, o)$$

of the constant sequence of pointed metric spaces. If X is a proper geodesic metric space then, of course, $X_{\omega} = X$. In view of Lemma 2.7, the space X_{ω} is R-thin for some R.

Assume that X is unbounded. Then X contains a sequence of 1/i-geodesic paths $\gamma_i = \overline{ox_i}$ with

$$\omega$$
-lim $d(o, x_i) = \infty$,

which yields a geodesic ray ρ_1 in X_{ω} emanating from the point o_{ω} .

Lemma 5.1 Let ρ be a geodesic ray in X_{ω} emanating from a point O. Then the neighborhood $E = N_R(\rho)$ is an end $E(\rho)$ of X_{ω} .

Proof Suppose that α is a path in $X_{\omega} \setminus B_{2R}(O)$ connecting a point $y \in X_{\omega} \setminus E$ to a point $x \in E$. Then there exists a point $z \in \alpha$ such that $d(z, \rho) = R$. Since X_{ω} contains no R-tripods,

$$d(p_{\rho}(z), O) < R$$
.

Therefore d(z, O) < 2R. Contradiction.

Set $E_1 := E(\rho_1)$. If the image of the natural embedding $\iota: X \to X_{\omega}$ is contained in a finite metric neighborhood of ρ_1 , then we are done, as X is quasi-isometric to \mathbb{R}_+ . Otherwise, there exists a sequence $y_n \in X$ such that:

$$\omega$$
-lim $d(\iota(y_n), \rho_1) = \infty$.

Consider the $\frac{1}{n}$ -geodesic paths $\alpha_n \in P(o, y_n)$. The sequence (α_n) determines a geodesic ray $\rho_2 \subset X_\omega$ emanating from o_ω . Then there exists $s \ge 4R$ such that

$$d(\alpha_n(s), \gamma_i) \geq 2R$$

for ω -all n and ω -all i. Therefore, for $t \ge s$, $\rho_2(t) \notin E(\rho_1)$. By applying Lemma 5.1 to ρ_2 we conclude that X_{ω} has an end $E_2 = E(\rho_2) = N_R(\rho_2)$. Since E_1, E_2 are distinct ends of X_{ω} , $E_1 \cap E_2$ is a bounded subset. Let D denote the diameter of this intersection.

Lemma 5.2 (1) For every pair of points $x_i = \rho_i(t_i)$, i = 1, 2, we have

$$\overline{x_1x_2} \subset N_{D/2+2R}(\rho_1 \cup \rho_2).$$

(2) $\rho_1 \cup \rho_2$ is a quasi-geodesic.

Proof Consider the points x_i as in Part 1. Our goal is to get a lower bound on $d(x_1, x_2)$. A geodesic segment $\overline{x_1x_2}$ has to pass through the ball $B(o_{\omega}, 2R), i = 1, 2$, since this ball separates the ends E_1, E_2 . Let $y_i \in \overline{x_1x_2} \cap B(o_{\omega}, 2R)$ be such that

$$\overline{x_i y_i} \subset E_i$$
, $i = 1, 2$.

Then

$$d(y_1, y_2) \le D + 4R,$$

$$d(x_i, y_i) \ge t_i - 2R,$$
 and
$$\overline{x_i y_i} \subset N_R(\rho_i), \qquad i = 1, 2.$$

This implies the first assertion of Lemma. Moreover,

$$d(x_1, x_2) \ge d(x_1, y_1) + d(x_2, y_2) \ge t_1 + t_2 - 4R = d(x_1, x_2) - 4R.$$

Therefore $\rho_1 \cup \rho_2$ is a (1, 4R)-quasi-geodesic.

If $\iota(X)$ is contained in a finite metric neighborhood of $\rho_1 \cup \rho_2$, then, by Lemma 5.2, X is quasi-isometric to \mathbb{R} . Otherwise, there exists a sequence $z_k \in X$ such that

$$\omega$$
-lim $d(\iota(z_k), \rho_1 \cup \rho_2) = \infty$.

By repeating the construction of the ray ρ_2 , we obtain a geodesic ray $\rho_3 \subset X_\omega$ emanating from the point o_ω , so that ρ_3 is not contained in a finite metric neighborhood of $\rho_1 \cup \rho_2$. For every t_3 , the nearest-point projection of $\rho_3(t_3)$ to

$$N_{D/2+2R}(\rho_1 \cup \rho_2)$$

is contained in

$$B_{2R}(o_{\omega})$$
.

Therefore, in view of Lemma 5.2, for every pair of points $\rho_i(t_i)$ as in that lemma, the nearest-point projection of $\rho_3(t_3)$ to $\overline{\rho_1(t_1)\rho_2(t_2)}$ is contained in

$$B_{4R+D}(o_{\omega})$$
.

Hence, for sufficiently large t_1, t_2, t_3 , the points $\rho_i(t_i)$, i = 1, 2, 3 are vertices of an R-tripod in X. This contradicts the assumption that X_{ω} is R-thin.

Therefore X is either bounded, or is quasi-isometric to a \mathbb{R}_+ or to \mathbb{R} .

6 Examples

Theorem 6.1 There exist an (incomplete) 2–dimensional Riemannian manifold M quasi-isometric to \mathbb{R} , so that:

- (1) $K_3(M)$ does not contain $\partial K_3(\mathbb{R}^2)$.
- (2) For the Riemannian product $M^2 = M \times M$, $K_3(M^2)$ does not contain $\partial K_3(\mathbb{R}^2)$ either.

Moreover, there exists $D < \infty$ such that for every degenerate triangle in M and M^2 , at least one side is $\leq D$.

Proof (1) We start with the open concentric annulus $A \subset \mathbb{R}^2$, which has the inner radius $R_1 > 0$ and the outer radius $R_2 < \infty$. We give A the flat Riemannian metric induced from \mathbb{R}^2 . Let M be the universal cover of A, with the pull-back Riemannian metric. Since M admits a properly discontinuous isometric action of \mathbb{Z} with the quotient of finite diameter, it follows that M is quasi-isometric to \mathbb{R} . The metric completion \overline{M} of M is diffeomorphic to the closed bi-infinite flat strip. Let $\partial_1 M$ denote the component of the boundary of \overline{M} which covers the inner boundary of A under the map of metric completions

$$\overline{M} \to \overline{A}$$
.

As a metric space, \overline{M} is CAT(0), therefore it contains a unique geodesic between any pair of points. However, for any pair of points $x,y\in M$, the geodesic $\gamma=\overline{xy}\subset\overline{M}$ is the union of subsegments

$$\gamma_1 \cup \gamma_2 \cup \gamma_3$$

where $\gamma_1, \gamma_3 \subset M$, $\gamma_2 \subset \partial_1 M$, and the lengths of γ_1, γ_3 are at most $D_0 = \sqrt{R_2^2 - R_1^2}$. Hence, for every degenerate triangle (x, y, z) in M, at least one side is $\leq D_0$.

(2) We observe that the metric completion of M^2 is $\overline{M} \times \overline{M}$; in particular, it is again a CAT(0) space. Therefore it has a unique geodesic between any pair of points. Moreover, geodesics in $\overline{M} \times \overline{M}$ are of the form

$$(\gamma_1(t), \gamma_2(t))$$

where γ_i , i=1,2 are geodesics in \overline{M} . Hence for every geodesic segment $\gamma \subset \overline{M} \times \overline{M}$, the complement $\gamma \setminus \partial \overline{M}^2$ is the union of two subsegments of length $\leq \sqrt{2}D_0$ each. Therefore for every degenerate triangle in M^2 , at least one side is $\leq \sqrt{2}D_0$.

Remark The manifold M^2 is, of course, quasi-isometric to \mathbb{R}^2 .

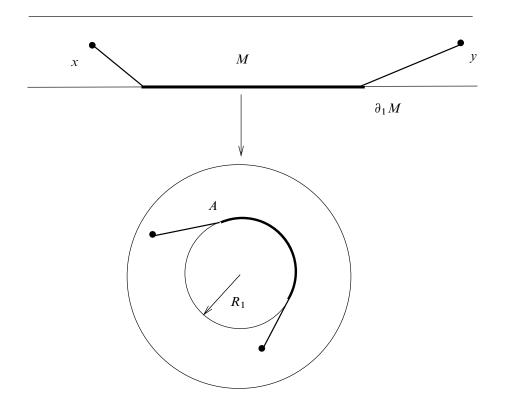


Figure 4: Geodesics in \overline{M}

Our second example is a graph-theoretic analogue of the Riemannian manifold M.

Theorem 6.2 There exists a complete path metric space X (a metric graph) quasi-isometric to \mathbb{R} so that:

- (1) $K_3(X)$ does not contain $\partial K_3(\mathbb{R}^2)$.
- (2) $K_3(X^2)$ does not contain $\partial K_3(\mathbb{R}^2)$.

Moreover, there exists $D < \infty$ such that for every degenerate triangle in X and X^2 , at least one side is $\leq D$.

Proof (1) We start with the disjoint union of oriented circles α_i of the length $1 + \frac{1}{i}$, $i \in I = \mathbb{N} \setminus \{2\}$. We regard each α_i as a path metric space. For each i pick a point $o_i \in \alpha_i$ and its antipodal point $b_i \in \alpha_i$. We let α_i^+ be the positively oriented arc of α_i connecting o_i to b_i . Let α_i^- be the complementary arc.

Consider the bouquet Z of α_i 's by gluing them all at the points o_i . Let $o \in Z$ be the image of the points o_i . Next, for every pair $i, j \in I$ attach to Z the oriented arc β_{ij} of the length

$$\frac{1}{2} + \frac{1}{4} \left(\frac{1}{i} + \frac{1}{i} \right)$$

connecting b_i and b_j and oriented from b_i to b_j if i < j. Let Y denote the resulting graph. We give Y the path metric. Then Y is a complete metric space, since it is a metric graph where the length of every edge is at least 1/2 > 0. Note also that the length of every edge in Y is at most 1.

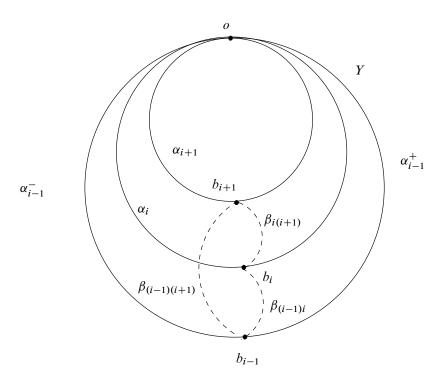


Figure 5: The metric space Y

The space X is the infinite cyclic regular cover over Y defined as follows. Take the maximal subtree

$$T = \bigcup_{i \in I} \alpha_i^+ \subset Y.$$

Every oriented edge of $Y \setminus T$ determines a free generator of $G = \pi_1(Y, o)$. Define the homomorphism $\rho: G \to \mathbb{Z}$ by sending every free generator to 1. Then the covering

 $X \to Y$ is associated with the kernel of ρ . (This covering exists since Y is locally contractible.)

We lift the path metric from Y to X, thereby making X a complete metric graph. We label vertices and edges of X as follows.

- (i) Vertices a_n which project to o. The cyclic group \mathbb{Z} acts simply transitively on the set of these vertices thereby giving them the indices $n \in \mathbb{Z}$.
- (ii) The edges α_i^{\pm} lift to the edges $\alpha_{in}^+, \alpha_{in}^-$ incident to the vertices a_n and a_{n+1} respectively.
- (iii) The intersection $\alpha_{in}^+ \cap \alpha_{i(n+1)}^-$ is the vertex b_{in} which projects to the vertex $b_i \in \alpha_i$.
- (iv) The edge β_{ijn} connecting b_{in} to $b_{j(n+1)}$ which projects to the edge $\beta_{ij} \subset Y$.

X

 $b_{j(n-1)}$ a_n α_n^+ b_{in} $\alpha_{n+1}^ a_{n+1}$ $b_{k(n+1)}$ a_{n+2} β_{ijn} β_{ikn}

Figure 6: The metric space X

Lemma 6.3 X contains no degenerate triangles (x, y, v), so that v is a vertex,

$$d(x, y) + d(y, y) = d(x, y)$$

and $\min(d(x, v), d(v, y)) > 2$.

Proof of Lemma 6.3 Suppose that such degenerate triangles exist.

Case 1 $(v = b_{in})$ Since the triangle (x, y, v) is degenerate, for all sufficiently small $\epsilon > 0$ there exist ϵ -geodesics σ connecting x to y and passing through v.

Since d(x, v), d(v, y) > 2, it follows that for sufficiently small $\epsilon > 0$, $\sigma = \sigma(\epsilon)$ also passes through $b_{j(n-1)}$ and $b_{k(n+1)}$ for some j, k depending on σ . We will assume that as $\epsilon \to 0$, both j and k diverge to infinity, leaving the other cases to the reader.

Therefore

$$d(x, v) = \lim_{j \to \infty} (d(x, b_{j(n-1)}) + d(b_{j(n-1)}, v)),$$

$$d(v, y) = \lim_{k \to \infty} (d(y, b_{k(n+1)}) + d(b_{k(n+1)}, v)).$$

Then

$$\lim_{j \to \infty} d(b_{j(n-1)}, v) + \lim_{k \to \infty} d(b_{k(n+1)}, v) = 1 + \frac{1}{2i}.$$

On the other hand, clearly,

$$\lim_{j,k\to\infty} d(b_{j(n-1)}, b_{k(n+1)}) = 1.$$

Hence

$$d(x, y) = \lim_{i \to \infty} d(x, b_{j(n-1)}) + \lim_{k \to \infty} d(y, b_{k(n+1)}) + 1 < d(x, y) + d(y, y).$$

Contradiction.

Case 2 $(v = a_n)$ Since the triangle (x, y, v) is degenerate, for all sufficiently small $\epsilon > 0$ there exist ϵ -geodesics σ connecting x to y and passing through v. Then for sufficiently small $\epsilon > 0$, every σ also passes through $b_{j(n-1)}$ and b_{kn} for some j, k depending on σ . However, since $j, k \geq 2$,

$$d(b_{j(n-1)}, b_{kn}) = \frac{1}{2} + \frac{1}{4j} + \frac{1}{4i} \le \frac{3}{4} < 1 = \inf_{i,k} (d(b_{j(n-1)}, v) + d(v, b_{kn})).$$

Therefore d(x, y) < d(x, v) + d(v, y). Contradiction.

Corollary 6.4 X contains no degenerate triangles (x, y, z), such that

$$d(x,z) + d(z,v) = d(x,v)$$

and $\min(d(x, z), d(z, y)) \ge 3$.

Proof of Corollary 6.4 Suppose that such a degenerate triangle exists. We can assume that z is not a vertex. The point z belongs to an edge $e \subset X$. Since length $(e) \le 1$, for one of the vertices v of e

$$d(z, v) < 1/2$$
.

Since the triangle (x, y, z) is degenerate, for all ϵ -geodesics $\sigma \in P(x, z)$, $\eta \in P(z, y)$ we have:

$$e \subset \sigma \cup \eta$$
,

provided that $\epsilon > 0$ is sufficiently small. Therefore the triangle (x, y, v) is also degenerate. Clearly,

$$\min(d(x, v), d(y, v)) \ge \min(d(x, z), d(y, z)) - 1/2 \ge 2.5.$$

This contradicts Lemma 6.3.

Hence part (1) of Theorem 6.2 follows.

(2) We consider $X^2 = X \times X$ with the product metric

$$d^{2}((x_{1}, y_{1}), (x_{2}, y_{2})) = d^{2}(x_{1}, x_{2}) + d^{2}(y_{1}, y_{2}).$$

Then X^2 is a complete path-metric space. Every degenerate triangle in X^2 projects to degenerate triangles in both factors. It therefore follows from part (1) that X contains no degenerate triangles with all sides ≥ 18 . We leave the details to the reader.

7 Exceptional cases

Theorem 7.1 Suppose that X is a path metric space quasi-isometric to a metric space X', which is either \mathbb{R} or \mathbb{R}_+ . Then there exists a (1, A)-quasi-isometry $X' \to X$.

Proof We first consider the case $X' = \mathbb{R}$. The proof is simpler if X is proper, therefore we sketch it first under this assumption. Since X is quasi-isometric to \mathbb{R} , it is 2-ended with the ends E_+, E_- . Pick two divergent sequences $x_i \in E_+, y_i \in E_-$. Then there exists a compact subset $C \subset X$ so that all geodesic segments $\gamma_i := \overline{x_i y_i}$ intersect C. It then follows from the Arcela-Ascoli theorem that the sequence of segments γ_i subconverges to a complete geodesic $\gamma \subset X$. Since X is quasi-isometric to \mathbb{R} , there exists $R < \infty$ such that $X = N_R(\gamma)$. We define the (1, R)-quasi-isometry $f : \gamma \to X$ to be the identity (isometric) embedding.

We now give a proof in the general case. Pick a non-principal ultrafilter ω on $\mathbb N$ and a base-point $o \in X$. Define X_ω as the ω -limit of (X,o). The quasi-isometry $f \colon \mathbb R \to X$ yields a quasi-isometry $f_\omega \colon \mathbb R = \mathbb R_\omega \to X_\omega$. Therefore X_ω is also quasi-isometric to $\mathbb R$.

We have the natural isometric embedding $\iota\colon X\to X_\omega$. As above, let E_+,E_- denote the ends of X and choose divergent sequences $x_i\in E_+,y_i\in E_-$. Let γ_i denote an $\frac{1}{i}$ -geodesic segment in X connecting x_i to y_i . Then each γ_i intersects a bounded subset $B\subset X$. Therefore, by taking the ultralimit of γ_i 's, we obtain a complete geodesic $\gamma\subset X_\omega$. Since X_ω is quasi-isometric to $\mathbb R$, the embedding $\eta\colon\gamma\to X_\omega$ is a quasi-isometry. Hence $X_\omega=N_R(\gamma)$ for some $R<\infty$.

For the same reason.

$$X_{\omega} = N_D(\iota(X))$$

for some $D < \infty$. Therefore the isometric embeddings

$$\eta: \gamma \to X_{\omega}, \quad \iota: X \to X_{\omega}$$

are (1, R) and (1, D)-quasi-isometries respectively. By composing η with the quasi-inverse to ι , we obtain a (1, R + 3D)-quasi-isometry $\mathbb{R} \to X$.

The case when X is quasi-isometric to \mathbb{R}_+ can be treated as follows. Pick a point $o \in X$ and glue two copies of X at o. Let Y be the resulting path metric space. It is easy to see that Y is quasi-isometric to \mathbb{R} and the inclusion $X \to Y$ is an isometric embedding. Therefore, there exists a (1, A)-quasi-isometry $h: Y \to \mathbb{R}$ and the restriction of h to X yields the (1, A)-quasi-isometry from X to the half-line.

Note that the conclusion of Theorem 7.1 is false for path metric spaces quasi-isometric to \mathbb{R}^n , $n \ge 2$.

Corollary 7.2 Suppose that X is a path metric space quasi-isometric to \mathbb{R} or \mathbb{R}_+ . Then $K_3(X)$ is contained in the D-neighborhood of ∂K for some $D < \infty$. In particular, $K_3(X)$ does not contain the interior of $K = K_3(\mathbb{R}^2)$.

Proof Suppose that $f: X \to X'$ is an (L, A)-quasi-isometry, where X' is either \mathbb{R} or \mathbb{R}_+ . According to Theorem 7.1, we can assume that L = 1. For every triple of points $x, y, z \in X$, after relabeling, we obtain

$$d(x, y) + d(y, z) \leq d(x, z) + D$$

where D = 3A. Then every triangle in X is D-degenerate. Hence $K_3(X)$ is contained in the D-neighborhood of ∂K .

Remark One can construct a metric space X quasi-isometric to \mathbb{R} such that $K_3(X) = K$. Moreover, X is isometric to a curve in \mathbb{R}^2 (with the metric obtained by the restriction of the metric on \mathbb{R}^2). Of course, the metric on X is not a path metric.

Corollary 7.3 Suppose that *X* is a path metric space. Then the following are equivalent:

- (1) $K_3(X)$ contains the interior of $K = K_3(\mathbb{R}^2)$.
- (2) X is not quasi-isometric to the point, \mathbb{R}_+ and \mathbb{R} .
- (3) X is thick.

Proof $(1) \Rightarrow (2)$ by Corollary 7.2. $(2) \Rightarrow (3)$ by Theorem 1.4. $(3) \Rightarrow (1)$ by Theorem 1.3.

Remark The above corollary remains valid under the following assumption on the metric on X, which is weaker than being a path metric:

For every pair of points $x, y \in X$ and every $\epsilon > 0$, there exists a $(1, \epsilon)$ -quasi-geodesic path $\alpha \in P(x, y)$.

References

- [1] **K S Brown**, *Buildings*, Springer, New York (1989) MR969123
- [2] **D Burago**, **Y Burago**, **S Ivanov**, *A course in metric geometry*, Graduate Studies in Mathematics 33, American Mathematical Society, Providence, RI (2001) MR1835418
- [3] **M Gromov**, *Metric structures for Riemannian and non-Riemannian spaces*, Progress in Mathematics 152, Birkhäuser, Boston (1999) MR1699320
- [4] **M Kapovich**, *Hyperbolic manifolds and discrete groups*, Progress in Mathematics 183, Birkhäuser, Boston (2001) MR1792613
- [5] **M Kapovich**, **B Leeb**, *On asymptotic cones and quasi-isometry classes of fundamental groups of 3–manifolds*, Geom. Funct. Anal. 5 (1995) 582–603 MR1339818
- [6] **J Roe**, *Lectures on coarse geometry*, University Lecture Series 31, American Mathematical Society, Providence, RI (2003) MR2007488

Department of Mathematics, University of California, Davis Davis CA 95616, USA

kapovich@math.ucdavis.edu

http://www.math.ucdavis.edu/~kapovich/

Proposed: Walter Neumann Received: 6 December 2006 Seconded: Yasha Eliashberg, Martin Bridson Accepted: 30 July 2007