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Harmonic sections in sphere bundles, normal neighborhoods
of reduction loci, and instanton moduli spaces on definite
4-manifolds

ANDREI TELEMAN

In the first part of the paper we prove an existence theorem for gauge invariant
L?-normal neighborhoods of the reduction loci in the space A, (E) of oriented
connections on a fixed Hermitian 2-bundle E. We use this to obtain results on
the topology of the moduli space B,(E) of (non-necessarily irreducible) oriented
connections, and to study the Donaldson p—classes globally around the reduction
loci. In this part of the article we use essentially the concept of harmonic section in a
sphere bundle with respect to an Euclidean connection.

Second, we concentrate on moduli spaces of instantons on definite 4—manifolds with
arbitrary first Betti number. We prove strong generic regularity results which imply
(for bundles with “odd" first Chern class) the existence of a connected, dense open set
of “good" metrics for which all the reductions in the Uhlenbeck compactification of
the moduli space are simultaneously regular. These results can be used to define new
Donaldson type invariants for definite 4-manifolds. The idea behind this construction
is to notice that, for a good metric g, the geometry of the instanton moduli spaces
around the reduction loci is always the same, independently of the choice of g. The
connectedness of the space of good metrics is important, in order to prove that no
wall-crossing phenomena (jumps of invariants) occur. Moreover, we notice that,
for low instanton numbers, the corresponding moduli spaces are a priori compact
and contain no reductions at all so, in these cases, the existence of well-defined
Donaldson type invariants is obvious. Note that, on the other hand, there seems to
be very difficult to introduce well defined numerical Seiberg-Witten invariants for
definite 4—manifolds. For instance, the construction proposed by Okonek and the
author in [7] gives a Z—valued function defined on a countable set of chambers.

The natural question is to decide whether these new Donaldson type invariants yield
essentially new differential topological information on the base manifold, or have a
purely topological nature.
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Introduction

The main goal of this article is to study moduli spaces of instantons over 4—manifolds
with negative definite intersection form. The vanishing of b4 has an important conse-
quence on the geometry of the instanton moduli spaces: all line bundles admit ASD
connections (with respect to any metric) hence, as soon as a rank 2-bundle E splits
topologically, the corresponding instanton moduli space will always contain reductions.
In other words, “one cannot get rid of reductions by perturbing the metric”. On the
other hand, our main applications will concern 4—manifolds with b; > 0, and for
such manifolds the spaces of reductions are positive dimensional. Therefore, it is very
important to study carefully the global geometry of the moduli space of connections
around the loci of reductions. This will be our first goal.

To be more precise, let E be a rank 2—Hermitian bundle on a 4-manifold M , and denote
D :=det(E), d = ¢1(D). Consider the affine space A, (E) of connections 4 on E
which induce a fixed connection @ on D, and the moduli space B, (E) = A4(E)/GE,
where G is the gauge group I'(SU(E)).

Let / € H*(X,Z) such that /(d —[) = ¢, (E) and consider the set A = {/,d —/} (which
has either one or two elements). We denote by .A;‘ (E) the subspace of connections
A € A4(E), which are simply reducible of type A, that is, those which admit only two
parallel line subbundles whose Chern classes are /, d — /. Such a connection will be
called A-reducible. Af; (E) becomes a (locally closed) submanifold of the affine space
Aa(E) (after suitable Sobolev completions). Our first problem is the construction of
a gauge invariant L%—normal neighborhood of this submanifold. More precisely, we
will show that, denoting by N* the L2-normal bundle of AQ(E ), the restriction of
the natural map v: N » > A (E)toa sufficiently small gauge invariant neighborhood
U™ of the zero section is a diffeomorphism on its image. Moreover, the neighborhood
U* is defined by a inequality of the form ||| z.co < &(A) (on the fiber N4), where the
assignment A — e(A4) is gauge invariant and continuous (with respect to a sufficiently
fine Sobolev topology on the space of connections).

Although this statement is very natural, the proof is not easy. The difficulty comes
from the fact that infinite dimensional manifolds are not locally compact. Even the
fact the v is injective on a neighborhood of the zero section is not trivial. The main
difficulty is to characterize in a convenient way the connections which are “close” to
the reducible locus Aé (E), that is, those which are “almost” A-reducible.

Our argument is based on the following idea: A reduction A € Af; (E) admits a parallel
section in the sphere bundle S(su(E)). A connection which is close to being reducible
should admit an energy minimizing harmonic section in this sphere bundle. The precise
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meanings of the words “energy” and “harmonic” are the following: we associate to
any connection 4 € A,(E) the energy functional

Eq):=|da@)ll]>,  Ea: T(SGU(E))) — Rxo,

and we agree to call the critical points of this functional A—harmonic sections. After
proving these results about normal neighborhoods of reduction loci, we realized that
our problem can be naturally generalized in the following way: For an Euclidean
bundle F on an arbitrary compact Riemannian manifold, construct a gauge invariant
L?-normal neighborhood of the space of Euclidean connections d4: A°(F) — A (F)
with 1-dimensional kernel. Therefore, in Section 1 we will treat this more general
problem, which is of independent interest; the results concerning reducible Hermitian
connections will be easily deduced as applications, taking F = su(E).

Section 2 deals with the first consequences of our existence results for gauge invariant
L?—normal neighborhoods: a global description of the universal SO(3) bundle, explicit
formulae for the Donaldson p—classes around the reduction loci and an explicit de-
scription of the homotopy type of the whole moduli space B,(E). This space is much
more complex than its open subspace B} (E), which plays a central role in classical
gauge theory and whose rational homotopy type has been described by Donaldson
and Kronheimer [3]. Our description of B,(E) yields an easy method to compute the
cohomology of this space using the Mayer—Vietoris exact sequence.

Section 3 is dedicated to the geometry of the instanton moduli space around a reduction
locus. Using our existence results for normal neighborhoods, we show that in a
neighborhood of the reduction locus associated with a fixed topological splitting of the
bundle, the instanton moduli problem reduces to an abelian moduli problem, which is
very much similar to the Seiberg—Witten one. These abelian equations read

(1) Ff =3 =@rd)*,
(d;®2®av’ dlj_@z@aV)a =0,

which are equations for a pair (b, «), where b is a connection on a fixed Hermitian
line bundle L and o € A'(L®? @ DV). This result provides simple descriptions
of the linear spaces of harmonic spaces of the deformation elliptic complexes at the
reductions. It is very important to have a global description of these linear spaces.
Similar results are stated for the loci of twisted reductions (that is, instantons which are
locally reducible, but globally irreducible).

Our most important technical results are obtained in Section 3.3: we prove strong
generic regularity theorems at the reductions. Regularity at the reductions is an old,
classical problem in gauge theory (see Freed and Uhlenbeck [4], Donaldson and
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Kronheimer [3]) and one might wonder whether there are still unsolved questions
on this problem. The point is that Freed—Uhlenbeck’s generic regularity result is not
sufficient for our purposes. For our purposes, we need a connected, dense open set of
good metrics (metrics for which all reductions in the Uhlenbeck compactification are
regular). Our proof has two steps:

Step 1 Define a connected, dense open set of admissible C" —metrics, for which the
vanishing loci of the harmonic representatives of the classes

20—d, 1-(d—1)<cy(E)

have good geometric properties (see Section A.2). Our admissibility condition is
very natural: we require that the rank of the intrinsic derivative of these harmonic
representatives at any vanishing point is at least 2. The difficulty is to check that this
condition defines indeed a connected, dense set of metrics.

In particular, for our admissible metrics, the vanishing loci of all these harmonic
representatives have Hausdorff dimension at most 2. Note that this holds for any C*°—
metric by a result of Bir [1], but this result does not appear to generalize for C” —metrics.
For a metric for which this Hausdorff dimension bound holds, the statement in [4,
Lemma 4.16] holds, making possible the second step. This stronger version of [4,
Lemma 4.16] is proved in detail in Appendix A (as Corollary A.9).

Step 2 Regard the linear space formed by the second harmonic spaces at the reduc-
tions as the moduli space associated with an abelian moduli problem, and prove a
transversality theorem for this moduli problem with respect to variations of g (in the
space of admissible metrics). In other words, we will prove that the parameterized
moduli space (obtained by letting the metric vary in the set of admissible metrics) is
smooth away of the zero-section. Next we show that — for a bundle E with odd Chern
class — the projection map from the C* —quotient of this parameterized moduli space
(minus the zero-section) on the space of admissible metrics is Fredholm of negative
index < —2, hence its image has connected complement.

Section 4 deals with applications of our results. First we prove a simple geometric
property of a particular instanton moduli space on a 4-manifold which has the homology
type of a class VII surface with b, = 2: the two circles of reductions belong always
(for any metric!) to the same connected component. We continue with the construction
of a new class of Donaldson invariants; the new invariants are defined in two situations:

First we show that the topological data can be chosen such that the rank 2-bundles E’
with ¢, (E’) < ¢,(E) and ¢1(E’) = ¢1(FE) are all topologically non-decomposable;
in this case the Uhlenbeck compactification of M?SD(E ) contains no reduction, so
Donaldson invariants can be defined in the usual way. In particular, in the case when
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4cy(E)—cq(E)?* =0, one obtains a moduli space of SO(3)—representations of 71 (M),
modulo SU(2)—conjugation.

Second, one chooses the topological data such that the bundle E splits topologically,
4ey(E) —cy(E)? <3, and ¢(E) ¢ 2H*(M, 7) + Tors. In this case M45SP(E) is
compact for any metric, and our results concerning generic regularity at the reductions
apply. Therefore, for a generic metric, MQSD(E )* is a smooth manifold with a finite
number of cylindrical ends towards the reduction loci. Every end is a cylinder on a
projective bundle over a b; (M )—dimensional torus.

1 Harmonic sections, parallel sections

1.1 Harmonic sections in sphere bundles

Let (M, g) be a compact oriented Riemannian n—manifold and let F be a real rank
r vector bundle on M endowed with an inner product, and denote by S(F) the unit
sphere bundle of F. Let A be an Euclidean connection on F'. The energy functional
on the space of sections ['(S(F)) is defined by

Eq(u) = |lda)l} > = (dau, dqu).

The critical points of this functional will be called 4—harmonic sections.

Proposition 1.1 A section u € I'(S(F)) is harmonic if and only if it satisfies the
Euler-Lagrange equation
didqu—|dqu)*u =0,
Proof The section u € I'(S(F)) is a critical point of E 4 if and only if
(djdqu,v)p2=0

for every v € T,(I'(S(F))). This happens if and only if there exists a real function ¢
such that djd u = @u. On the other hand, the well-known identity

3 Alul? = (djdau, u) —|dqul?

shows that one must have ¢ = |du|?. |

For a fixed connection A4 the theory of A—harmonic sections is very much similar to
the theory of sphere valued harmonic maps. In particular, one has a parabolic evolution
equation given by the gradient flow of the functional E 4, and using this equation and its
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convergence properties, one can study the existence of an A—harmonic representative
in a given homotopy class of sections.
Two vectors a, b of an Euclidean vector space V define an endomorphism a Ay b €
so(V) given by a Ay b(h) = (a, h)b — (b, h)a. The subspace
{any b|beV}Cso(V)

coincides with the orthogonal complement so(a®)+ of so(aL) in so(V), and the map
at b+ aArybeso(at)?t is an isomorphism. Similarly, for a section u € A°(F)
and a form v € A!(F) we obtain a form u Ap v € A (so(F)).
Lemma 12 Let A€ A(F),ue'(S(F)) and Ag:= A—u Ap dqu. Then

(1) The section u is Ag—parallel.

(2) Ay is the unique connection making u parallel with A — Ay € A" (so(u?)71).

Proof (1) It holds that
dgou = dqu— (uANp dqu)(u) = dqu— (u, u)dqu + (u, dqu)u = 0,

because, since (u,u) = 1, one has (u,d4qu) = 0.
(2) If A— Ay € A'(so(ur)1), there exists a unique form v € A'(ut) such that
A— Ao =u AFv. The relation dy,u = 0 is equivalent to dqu = v. m]

Proposition 1.3 Let u € I'(S(F)) and A € A(F). The following conditions are
equivalent

(1) The section u is A—harmonic.
(2) Putting Ay := A—u A dqu, one has dA’f‘O(A —Ag) = 0.

Proof We write locally dqu = V;?u e! with respect to a local orthonormal frame (e;).
Therefore, taking into account that u is A¢ parallel (by Lemma 1.2) and (u, V;fu) =0,
one has

dy,(A—Ao) = (du,)* (u AF dau)
=uAf (da,)*dqu
=uAfp(dg—uArpdqu)*dqu
=uAp[djdqu+ *(u Ap dqu) * dqu]
= u Ap|didu+ xuAp Viue') « Viuel]
= uAp[didgu—(Viu, V]Au)u s (¢! A xel))

=uAp[didqu—|dqul?ul.
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Since djdqu — |dqu|?>u € A°(ut), the vanishing of u Ap [didqu — |dqu|?u] is
equivalent to the vanishing of d%d u —|d qulu. m|

Using Lemma 1.2 and Proposition 1.3 we obtain:

Corollary 1.4 Let u € I'(S(F)) be a A—harmonic section. Then there exists a unique
connection Ay € A(F) with the properties:

(1) A—Age A (so(ut)t).
(2) A is in Coulomb gauge with respect to Ay .
(3) wu isa Ag—parallel.

1.2 A normal neighborhood of the locus of Euclidean connections with
1-dimensional kernel

We define the locally closed subspace
A'(F):={A € A(F) | dim(ker(dy)) =1} C A(F).

Let S(F) be the space of trivial rank 1-subbundles of F. This space can be naturally
identified with T'(S(F))/{£1}, and becomes a smooth manifold after suitable Sobolev
completions. Two trivial rank 1-subbundles which are sufficiently C°®—close have
isomorphic complements, so they are conjugate modulo the action of the gauge group
Aut(F) = I'(SO(F)). In other words, the action of Aut(F) on S(F) is locally
transitive. One has an obvious surjective map

w: A'(F) = S(F), A (ker(dq)),

where (ker(dy)) = im(ev: ker(d4) x M — F) stands for the subbundle generated by
the line ker(d,4). We will use the subscript (-); (for k € N sufficiently large) to denote
Sobolev completion with respect to the L,zc—norm.

Proposition 1.5 The subset A'(F); C A(F)y is a submanifold, and the surjection
w: A'(F)x — S(F)g41 is a submersion.

Proof We omit Sobolev indices to save on notations. Let 4 € A'(F) and A =
(ker(d4)) € S(F). The fiber w~!(X) is obviously an affine subspace of A(F) which
can be identified with A(u"). The stabilizer H of A is a closed Lie subgroup H
of the gauge group Aut(F) whose Lie algebra h can be identified with A°(so(u")),
50 it has a topological complement h = A%(so(u)L). The restriction of the map
bt x w™I(A) = A(F) given by (h, B) — exp(h)(B) to a sufficiently small open
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neighborhood of (0, A) is an embedding which parameterizes a neighborhood of A4 in
A'(F). This gives the submanifold structure of A’(F). Using the local transitivity of
the gauge action on S(F), it follows that /1 — exp(/)(A) defines a local slice of w at
A, proving that w is a submersion at 4. |

The main goal of this section is to prove that

Theorem 1.6 The submanifold A'(F) C A(F) has a tubular, gauge invariant, L?—
normal neighborhood.

The idea is very simple and natural: construct a neighborhood of A’(F) consisting of
connections which admit an (up to sign) unique harmonic, energy minimizing section.

Let Ay € A'(F), and let u one of the two generators in I'(S(F)) of the line ker(d,).
The splitting F = (u) @ u™ defines an Ay—parallel splitting

so(F) = so(uJ‘) b so(uJ‘)J‘ = so(uJ‘) @uArput,

which gives an L2—orthogonal decomposition

Al(so(F)) =

Al (so(uh)) ® dgo[A° (o)D) @ ker[d : A'((sou)) — A% (so(uh) b)),
The geometric interpretations of the three factors in the decomposition above are the
following: the space A!(so(ul)) is the tangent space of the fiber w1 ((u)) at A4,

ny = (dg,)[A%(so(ur)1)] is the normal space at Ag of this fiber in the submanifold
A'(F), whereas the space

Ny, = ket[(d4y)*: A ((so(ut)F) — A°(so(ut)H)]
is the normal space at 4 of the submanifold A’(F) in the space of connections A(F).

Let N — A/(F) be the normal vector bundle of the submanifold A’(F), whose
fiber over A¢ € A'(F) is just the space N4, defined above. One has a natural map
v: N — A(F) given by

v(dg, ) = Ag+a VAge A(F), a€ Ny,

which is obviously a local isomorphism at every point of the form (Ag, 0). The map
v is equivariant with respect to the natural gauge actions on N, A'(F) and A(F).
For ¢ € A%(so(F)) = Lie(Aut(F)) we denote by ¢* the tangent field (the infinitesimal
transformation) of N associated with ¢ and by {4 the corresponding tangent field of
A(F). The equivariance property of v implies

2 AW go.a0)) = [Slo+ao = ddgtae(§) = day(§) + o, §]-

Geometry € Topology, Volume 11 (2007)



Harmonic sections, normal neighbourhoods of reduction loci, and moduli spaces 1689

Lemma 1.7 Let Ay € A'(F). There exists ¢(Ag) > 0 such that the differential
d(4y,00)V at (Ao, ) is an isomorphism for every oo € Ny, with |[ag| Lo < e(Ap).
The assignment Ay — €(Ag) can be chosen to be continuous and gauge invariant.

Proof The submersion w: A'(F) — S(F) induces a submersion w: N — S(F). Fix
(Ao, o) € N and choose ug € ker(d4,) N I'(S(F)). The subspace

€40y | £ € A0 )}

is a w-horizontal space at (Ag, ®g), that is, a topological complement of the vertical
tangent space RAO,aO)(ﬁ_l((uo)). This complement is isomorphic with Ao(so(u(J)-)J-).
A vertical tangent vector

U/ € T(A(),Ot()) ({5_1 ((Mo))

can be written as v’ = (b, B), where b € Al(so(uoL)) and S € Al(so(uOL)J-) satisfy
the equation
dy,B—*[b A xap] = 0.

(obtained by differentiating the relation djoao = 0 in the direction (Ag, ¢o) = (b, B)).
Therefore, one has an isomorphism

T(Ao,do) (N) =
{(b.B) € A" (so(ug)) @ A" (so(ug)™) | df B—*[b A ag] = 0} & A°(so(ug) ™).
Using (2) one obtains

dv(b,B.§) = b+ +ds,(5) +[ao. C].

The statement follows now directly from Lemma 1.8 below. O
Lemma 1.8 If ||ag]| oo is sufficiently small, then the operator

A'(so(ud)) @ A" (so(ug) 1) & A% (so(ud)H)pss —>
A'(s0(F)) ® A°(so(ug)H) 1

given by
(0. B.5) = (b+ B+ day(§) + 0. £1. dy B — [b A xexg])

is an isomorphism.

Proof We omit as usually the Sobolev indexes. Using the decomposition

Al (so(F)) = Al (so(ug)) @ A (so(uy)?t),
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the operator P can be written as

id 0 [wo,]
P = 0 id dy,
—* [ A *ag] djo 0

If (b, B, ) € ker(P), one obtains easily

b=—eo.2].
3) &5 B =~y dayl = *(b A xarg) = *(~[org. £ A atg).
At = #lloo. £ A arg].

On the other hand, since u is parallel and dim(ker(d4,)) = 1, one has
ker(dy,: Ao(su(ué‘)L) —A! (su(u(J)‘)J‘)) =ugArker(dy,: Ao(ué‘) —A! (u(J)‘)) ={0}

so the minimal eigenvalue 1(Ag) of Ay,: AO(su(u(J)-)J-) — Ao(su(ué-)l) is positive.
Therefore (3) implies { = 0 (hence ker(P) = 0) as soon as ||ap|| ioo is sufficiently
small with respect to 1(Ag). For surjectivity, note that the equation

4) P, B,8)=(c,y.n

becomes
btleodl=c.  Prdat=y.  djp—xlbrxao]=1.
Consider first the weaker equation (for the single unknown &)
Auy§ = #llao, §] A kag] = —x[c A ko] =+ dy

which is uniquely solvable if ||a || ioo is sufficiently small, so one gets a unique solution
e AO(so(ué-)J-)k_,_l for a triple (c, y, n) of Sobolev type (L2,L,2€, lec—l)' Then set
B:=y—dy,C, b:=c—Jap,{], and we get a solution of the equation (4) of Sobolev

type (LZ,L,%,L,%H). |

Lemma 1.9 Let A9 € A'(F) and uq € ker(d4) N T (S(F)). There exists ¢(Ag) > 0
such that forevery o € A! (so(u(J)-)J-) with dzo () =0 and ||||poo <&(Ag) the energy
functional E 4,14 on the space I'(S(F')) obtains its absolute minimum at £uo and

only at these sections. Moreover, the assignment A'(F) > Ag — &(Ag) can be chosen
to be continuous and gauge invariant.
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Proof Consider a section u € I'(S(F))), put v := u —ug, v’ := u + ug, and set
o :=1uygAfra,where a € Al(ué-). This implies |a|?> = 2|a|?. One has

ldao+att]® = | dag+atiol* = ldag+av]|* +2(da+atio, dag+av) =
ldaovll* + lle()|* + 2(dayv, @(v)) + 2{a (), dayv) + 2(ex(uo). (V).
But
dy,(@(uo)) = —* da,(xa(ug)) = — * du, (%) (uo) £ *(kat A dgytt0) =0

(because djo () =0 and d4,uo =0), so the term 2(x (1), d4,v) on the right vanishes.
On the other hand it holds pointwise

(a(ug),a(v)) = ((ug AF a)(ug), (ug AF a)(v)) =
(a. (uo, v)a—(a,v)ug) = la|*(ug, v) = Lot (uo, v),
1= [ug +v|* = |uol?,

2(uo. v) = —|v|*.

Therefore

2 2 2 2 1 2,12
ldag+atll"—lldag+atioll” = lldagvll”+lle(@)I” + 2{d4yv. 2(v))—3 /M || “v]
2 204,112
> ldggvll“—cy sup |allldgg vl L2 V]2 —c2 sup || *[lv]|7
Since the same computation also applies to —uq, we get

) Edgta)=Eag+a (o) = ldagV'[|1*—c1 sup e[| dao v’ |1Vl —¢2 sup e [v"]|?

2 24,112
Egota()=Egy+a(to) = |dagv]|"—cysup |aflday vl o] —c2 sup [e|[v]]

Since ||u||i2 = ||uo||i2 = Vol(M), one has (u —ug)Ly2(u + up), so the triangle
(1o, u, —ug) is L2—right at the vertex u, and one has

sin? Z(Rv, Rug) + sin? Z(Rv', Rug) = 1.

Therefore, either sin Z(Rv, Rug) > % or sin Z(Rv’, Rug) > \/LE Suppose we are in

the first case.

We get the inequality

2
2 2 2
Ivllz2 = 2llprg, vl = mlldA(v)ll :
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where PTRug- stands for the L2—orthogonal projection on the L?—orthogonal com-
plement of the line Ruy = ker(dy,) and A(Ay) is the first positive eigenvalue of
Ay, A°(F) — A°(F). In other words, Jﬁ is the norm of the inverse

G4, im(dy,) — ker(dAO)L
of d4, with respect to the L?—norms.

Using (5) we get an estimate of the form

Egy+a(u) — Eqp4a(uo) =
ldaqvll* — c1(Ao) sup [l da,v]|* — c2(Ao) sup |at| | d gy v]|*

for positive constants ¢{(A4g), ¢3(Ag). Taking

. 1 1
#(4o) = min (4c1(Ao)’ \/ 202(A0)) ’

we get for sup || < e(A4g)
EA()-}-Ol(u) - EA()-HX(MO) > %”don”2 z l)\(AO)HUHZ’

which is strictly positive unless v = 0, that is, # = uo. The same argument applies in
the case sin Z(Rv’, Rug) > % by replacing u with —ug and v with v’. O

The inequality |||z < &(A4g) as Ag varies in A'(F) defines a gauge invariant
neighborhood N of the zero section in the normal bundle N of this submanifold.

Corollary 1.10 The restriction of the natural map

v: N — A(F), v(Ag, ) := Ag+«
to N is injective.
Proof Indeed, if v(Ag, ) =v(By, B) = A, then one must have ker(d4,) =ker(dp,),
because the absolute minimum of £ 4 on I'(S(F)) is unique up to sign. By Corollary
1.4, we obtain Ay = By, so finally « = 8. |
Combining with Lemma 1.7, we get
Theorem 1.11 There exists a gauge invariant neighborhood U of the zero section in

the bundle N which (after suitable Sobolev completions) is mapped diffeomorphically
onto its image via the natural map v .
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Remark The map v, can be regarded as a system of “gauge equivariant polar
coordinates” around the submanifold A’(F).

Remark In the finite dimensional framework, one can prove easily that in general,
for any submanifold X of a Riemannian manifold Y there exists a neighborhood
of the zero section in the normal bundle Ny,y which is mapped diffeomorphically
via the exponential map onto a normal neighborhood of X . However, in the infinite
dimensional framework, the problem is much more difficult. Theorem 1.11 solves this
problem in the special case of the embedding A'(F) C A(F).

1.3 Normal neighborhoods of the reduction loci in the space of Hermitian
connections

Let E be a rank 2 Hermitian bundle over a 4 manifold M and denote D := det(E),
d :=c;(D). Consider the involution iz: x — d —x on H?*(M,Z). A congruence class
L€ H*(M,Z)/(ig) will be called a topological decomposition of E if it coincides
with the set of Chern classes of the terms of a splitting of E as direct sum of line
bundles (that is, when x(d —x) = ¢, (F) for x € 1).

Fix a connection a € A(D) and denote by A,(E) the affine space of connections
on E inducing ¢ on D. Our gauge group is the group Gg := I'(SU(E)) of determi-
nant 1 unitary isomorphisms of E. A connection will be called simply reducible if
dim(ker(dyq: A°(su(E)) — A'(su(E)))) = 1. Such a connection admits precisely two
parallel line subbundles (which, of course, might be isomorphic), and these subbundles
give an A-—parallel orthogonal splitting of E. If A admits a parallel line bundle L
with 2¢{ (L) # d, then A is automatically simply reducible and L, L' are the unique
A-parallel line subbundles of E . In particular, if d ¢ 2H?(M, Z), then any reducible
connection on E is simply reducible. If we fix a line subbundle L — FE, there exists
a natural bijection between the simply reducible connections on E for which L is
parallel, and the subspace A*(L) C A(L) of abelian connections b € A(L) for which
b#a®bY. On has automatically A*(L) = A(L) when 2¢{(L) # d , whereas A*(L)
is the complement of 221(N) gauge orbits in A(L) when 2¢y(L) =d.

Let A be a topological decomposition of £ and denote by Aé‘ (E) the subspace of simple
reducible connections 4 € A,(E) with the property that the set of the Chern classes of
the two A—parallel line subbundles of E coincides with A. Such a connection will be
called A—-reducible. Denote also by I'*(S(su(E))) the set of sections u € I'(S(su(E)))
with the property that the set ¢(u) of Chern classes of the eigen line subbundles of u
coincides with A. Putting

(6) Ly = ker(u - %id E)
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these eigen line subbundles are L, . One has a natural surjection
w: AL(E) — TH(S(su(E))) {1}

which associates to every connection A € A;‘ (E) the unordered pair of sections of the
sphere bundle S(su(£)) which are A—parallel.

For sufficiently large Sobolev index &, the space I'(S(su(£)))x41 becomes a Banach
manifold and the subset FK(S(su(E)))kH is open and closed in I'(S(su(E)))x+1.
so it is a union of connected components. The gauge group Gg x4 acts smoothly on
['(S(su(E)))k+1. leaving invariant T*(S(su(E)))g41; on T*(S(su(E)))g41/{£1}
this gauge group acts transitively. The same arguments as in the proof of Proposition
1.5 show that

Proposition 1.12 The subset Aé(E)k C Au(E) is a submanifold, which is a
locally trivial affine bundle over FK(S(su(E)))kH/{j:l}. The fiber over a class
[u] € I'(S(Su(E)))k+1/{£1} can be naturally identified with the space of abelian
connections A*(Ly) .

Fix a reducible connection A4 € .A)a‘(E) with w(A4) = [u]. Put S, := (L®> ® DV).
The bundle su(E) splits as an orthogonal sum of A—parallel summands
Su(E) = (M xRu)® S, = so(uJ‘) @ so(uJ‘)J‘,

and, as in Section 1.2, we obtain the following L?—orthogonal decomposition of the
tangent space T4(Aq(E)) = Al (su(E)) at A4:
Alsu(E)) = AY(M, Ryu @ A'(S,) =

AY (M, Ryu @ d4[A°(Su)] @ ker[d: A'(Su) — A°(Sw)].
The first summand A!(M, R)u is the tangent space of the fiber w1 (u) ~ A*(L,) at
A, ny:=d4[A°(S,)] is the normal space at A of this fiber in the submanifold Aé (E),

whereas the space Ny := ker [d%: A'(S,) — A°(S,)] is the normal space at A of
AX(E) in the space of connections A, (E).

We denote by N* — .AZ; (E) the L?-normal vector bundle of the submanifold .Aﬁ (E),
whose fiber over 4 € .Aé (E) is Ny4.

Using Theorem 1.11 we obtain the following important result, which gives an L%—
normal neighborhood of the submanifold Az‘ (E) of simple reductions of type A, and
a system of polar coordinates around this submanifold.

Geometry € Topology, Volume 11 (2007)



Harmonic sections, normal neighbourhoods of reduction loci, and moduli spaces 1695

Theorem 1.13 There exists a gauge invariant neighborhood U* of the zero section in
the normal bundle N* — Aé (E) which (after suitable Sobolev completions) is mapped
diffeomorphically onto its image via the natural map

v: N* > AL(E), (Ag, o) — Ay + .

The elements of the orthogonal slice v(N j‘o NU*) C Aq(E) through Ay € .Aé” (E) are
connections A for which the two elements of

ker(dy,: A°(su(E)) — A'(su(E))) NT(S(su(E)))

(which are Ay—parallel) are the unique energy-minimizing A—harmonic sections in
I'(S(su(E))).

From now on we will always assume that I/* is defined by an inequality of the form
||| < e(Ag), where Ag — e(A) is continuous and gauge invariant (see Lemma
1.7 and Lemma 1.9).

1.4 Twisted reductions

When the base manifold has nontrivial first homology group Hi (M, Z), one also has to
take into account the twisted reductions, that is, the connections which are irreducible
but whose pull-back on a double cover of M become reducible. Although the stabilizer
GE,4 of such a connection is just the center {+idg} of the gauge group, these loci
of twisted connections and the geometry of the instanton moduli spaces around these
loci must be studied in detail; the reason is simple: the classical transversality results
with respect to metric variations (see Donaldson and Kronheimer [3]) fails not only at
a reduction, but also at a twisted reduction, so it is not clear whether one can achieve
regularity of an instanton moduli space at such a point by perturbing the metric.

Let p: m1(M, xo) — {£1} be a group epimorphism and denote by m,: M, — M
the double cover associated with ker(p). The tautological involution of M, will be
denoted by ¢. A connection A € A,(E) will be called p—twisted reducible (or a
p—twisted reduction) if it is irreducible, but its pullback 7, (A4) € Ayx(q) (7, (E))
is reducible. For such a connection one has an orthogonal n;" (A)—parallel splitting
ny(E) = L' @ L" and an isomorphism L” ~ (*(L’). L’ and L" are the unique
n;‘ (A)—parallel subbundles of E, because, if not, the SO(3)—connection associated
with n;f (A) would be trivial. In this case 4 will be projectively flat and the holonomy
of A acts on the projective line °(E,) by an involution. Therefore, A would admit (at
least) two parallel line subbundles, contradicting the assumption that 4 was irreducible.
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In other words n;‘ (A) must be simply reducible of type A = (/,(*(/)), where [ is a
solution in H? (M), Z) of the system

7 [+ (1) = 7, (d), [-*() =2¢y(E).
For a p—twisted reduction 4 the SO(3)-bundle su(E) has an A—parallel splitting
sSu(E)=R,®F,

where R, is the Euclidean real line subbundle of su(E) consisting of trace-free anti-

Hermitian endomorphisms u € su(Ey) whose eigen lines are L%, L% = L] @)’

where X is alift of x € M in My, and L', L" are the 7 (A)—parallel line subbundles
of n;‘ (E). R, is isomorphic with the non-orientable Euclidean real line bundle
associated with the representation p: w1 (M, xg) — O(1). The second term F is an
O(2)-bundle with det(F) >~ R,, whose pull-back to M, has two SO(2) = U(1)-
reductions, isomorphic with [L']Y ® L” and [L"]Y ® L’.

We fix a topological decomposition A = {/, (*(/)} of 7, (E) and we denote by Afl‘ (E)
the subspace of p—twisted reductions A4 € A,(E) with the property that n;)" (A4) is
simply reducible of type A.

Denote by [,(S (su(n;(E )))) the set of sections u of the sphere bundle of su(n; (E))
satisfying the property ¢*(#) = —u and denote by F[)‘ (S (su(JT;< (E)))) the subset of
r.(S(su(r ; (E)))) consisting of sections u, such that the Chern classes of the eigen
line sub-bundles of 77 (u) are /, *(I).

In the same way as in the case of non-twisted connections one gets a locally trivial,
gauge equivariant fibration

w: AG(E) — TH(S(u(y (E)) /{£1,
and the fiber over a class [u] can be identified with the subspace
AT (L)) C ALy (u))
of abelian connections b € A(Lyx () satisfying
b ®1*(b) = 1*(a) (via the obvious isomorphism L ® 1*(L) ~ n;(D)), b % *(b).
The second condition is superfluous when / # (*(). The space A!(su(E)) splits as
A'(su(E)) = A'(Ry) ® d4[A°(F) @ ker[d}: A (F) — A°(F)],

where the third term can be identified with the normal space N j‘ at A of the submanifold
AX(E) of p—twisted connections of type A.
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Using similar methods as in the proofs of Theorems 1.11, 1.13 one gets easily the
following existence theorem for L?-normal neighborhoods of the loci of twisted
reductions.

Theorem 1.14 There exists a gauge invariant neighborhood U* of the zero section in
the normal bundle N* — Aﬁ (E) which (after suitable Sobolev completions) is mapped
diffeomorphically onto its image via the natural map

v: N* > A4(E). (Ag, o) — Ay + .

The elements of the orthogonal slice v(N4, N U*) C Aq(E) through Ag € Af; (E) are
connections A € A,(E) for which the two elements of the intersection

ker(dyx 4): A°(su(; (E))) — A' (su(r; (E))) N Tp(S(su(y (E))))

(which are n;‘ (Ag)—parallel) are the unique energy-minimizing ;‘ (A)—harmonic
sections in T'(S(su(m,(E)))).

As in the non-twisted case we will suppose that I/ * is defined by an inequality of the
form ||o||peo < &(A4), where the assignment .A’a\ (E) > A e(A) is gauge invariant
and continuous.

2 The Donaldson p-—classes around the reductions and the
homotopy type of B,(E)

2.1 The universal bundle around reductions

The structure of the universal bundle around a single reduction is well-known. A
complete description can be found in Donaldson and Kronheimer [3, pages 186—187].
However, for our purposes, this classical result is not sufficient, because we will need the
structure of the universal bundle around positive dimensional subspaces of reductions.

We recall that the universal SO(3)—bundle on B} (E) x M is defined as
F:= (A%(E)xsu(E))/GE,

where Gg := Gg/{%1} acts in the natural way on both factors. Alternatively, one can
let G act from the right and define F to be the bundle with fiber su(E) over B} (E)
which is associated with the principal Gg—bundle A% (E) — B (E). Let A ={/,d —[}
be a topological decomposition of E. We will assume for simplicity that 2/ # d
which assures that A(L) = A*(L) for every Hermitian line bundle of Chern class /; in
particular the fiber of the fibration w: Aé (E) — TM(S(su(E))/{*£1} over {£u} can
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be identified with the affine space A(L,) (see Section 1.3). We will identify A(L,)
with its image in A, (FE).

We will omit the upper script A in the notations N * U* introduced in the previous
section and we denote by N *, U* the complement of the zero section in N and U/ (see
Theorem 1.13). Replacing U/ be a smaller gauge invariant neighborhood if necessary,
we may assume that v(U*) C A%(E). We put

V:i=vU)/Gg CB«(E), V*:=vU*)/GE CB}(E).

V is a neighborhood of the moduli space of A-reductions Bf; (E):= Aé (E)/GE. Fix
a section u € T*(S(su(E))) and denote by G, the subgroup of Gg consisting of
elements g € G which leave L, invariant. We have a natural isomorphism G, >~ G,
where G :=C>®(M, S!). Put

G:=G/{x1}; Gu:=Gu/{£1}CGE,

and denote by G*0, on s gjfo the subgroups of G (respectively Gg, G, ) of elements
f with f(xo) = 1. Note that these subgroups are mapped injectively into G, Gg, Gu,
so we will use the same notations for the corresponding subgroups of these groups.

The main point which will be used in our computation is that the fixing of the section u
defines a G, —reduction of the restriction of the principal Gg—bundle A%(E) — B} (E)
to the subspace V* C B} (E).

Proposition 2.1 Suppose A = {/,d —1} with 2] # d. Let u € T*(S(su(E))) and
let N, C A(Ly) x A'(S,) be the restriction of the normal bundle N to the fiber
w~([u]) ~ A(L,). Then

(1) v(N, NU) is the submanifold of the normal neighborhood v(U{) consisting of
connections for which =u are harmonic and energy minimizing.

(2) The embedding v|p ry: NuNU — Ag(E) induces isomorphisms
Vo (NeNU) /G, V= (NS NU)/Gu.

(3) The map v induces an isomorphism between V' and the cone bundle over the
projectivization P(N,,) of the vector bundle

Ny:= N, /Gy

over B(Ly) = A(L,)/Gy", and V* is identified with the complement of the
vertex section in this cone bundle. In particular one has a homotopy equivalence

®) V* X P(N) C A(Lu) o P(A1(S0)).
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4) v(N, NU*) is a G, —reduction of the restriction of the principal G —bundle
A*(E) — BX(E) to V*.

Proof The first statement follows easily from Theorem 1.13. The second and the third
statements are obvious. For the fourth, it suffices to prove that the G —orbit of a point
v(t) € v(U*) intersects v(N, NU*) along a G, —orbit; since v is injective on U, it
suffices to show that the g_ E—orbit of 1 = (b, ) € N* intersects N; along a g_,, —orbit.
Since G acts transitively on I'*(S(su(E)))/{%1}, we see that £ -Gg N N # @, s0
we can suppose ¢ € N, If an element g € Gg maps ¢ into N, then g(b) € A(L,) C
Aq(E), that is, u is both b—parallel and g(b)—parallel. This implies adg (1) = tu.
Since we assumed that / # d —1I, we have L, % L_,, so necessarily adg (1) = u that
is, g€gy,. |

Corollary 2.2 The open subspace V* C B (E) has the homotopy type of the product
[S1101(M) x poo,

Proof Let g be a Riemannian metric on M . The moduli space MZ,/M (Ly) of
Yang—Mills connections on L, with respect to g is isomorphic to

iH'(X.R)/27i H' (M. Z) ~ [S']1 D)

and the inclusion MgM (Ly) = B(L,) is a homotopy equivalence. On the other hand,
since M?M (L,) is compact, the restriction of the infinite rank vector bundle N, to
this subspace is trivial. This completes the proof. |

The decomposition
su(E) =[M x (iR)]| & S,

is G, —invariant. Therefore

Corollary 2.3 The restriction [F|y«, ), decomposes as a direct sum
Flysxar = [V x M) xiR] & Sy,
where S, is the complex line bundle on V* x M defined by
Su = (v(Nu NU*) x Su) [ Gu.

In particular py(F) = ¢1(Su)>.

The cohomology algebra of V* can be easily described explicitly using Corollary 2.2.
The construction below yields generators with explicit geometric interpretation.
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Put L=L,,S=S,=L%®DV,S =3, to save on notations. The subbundle
N, C A(L) x A1(S) has an intrinsic interpretation in terms of L: it is just the bundle
KC = ker § of kernels of the family of operators

8= (dygaggev )b AL)

and U, :=UNN, isa G —invariant neighborhood U, of the zero section in this bundle.
The bundle /C descends to a bundle K := [C/G*® over B(L). Using the isomorphism
V* >~ Uy / G induced by v, one can identify S with the line bundle

UsxS)/G— (UF)G)x M C (K*/G)x M = (K*/S") x M.

Therefore, S can be identified (via v) to the restriction to [U; /G] x M of the line
bundle B
S:= (AL) x (4'(S)\{0}) x S) /G
on B (E) x M, where B;;(E) is the quotient
By(E) = (A(L) x (4" ($)\ {0})) /G = A(L) xgo [Rs0 x P(4" (S)],

which can be regarded as a locally trivial bundle over B(L) with fiber R.oxP(4(S)).
The space B} (E) is very much similar to the infinite dimensional gauge quotient of
the space of irreducible configurations in Seiberg—Witten theory. More precisely, let in
general V' be a line bundle and W a complex vector bundle on M . The natural map

prw: BXV. W) = (A(V) x[A°(W)\ {0}]) /G — B(V)

is a locally trivial bundle over B(V) with fiber Rso x P(4°(W)). On the product
B(V') x M one has a tautological line bundle Vy, defined by

Vi = (A(V) x [A°(W)\ {0}] x V) /G.
Lemma 2.4 With the notations and assumptions above one has
(1) There exists a natural isomorphism
Sy: H((M,Z) — H (B(V))
which induces an isomorphism H*(B*(V),Z) ~ A*(H{(M, Z)).
(2) The morphism pl*,’W o 8y induces an isomorphism
H*(B*(V.W),Z) ~ N*(H{(M, Z)) ® ZIhyw].

where hyw is a degree 2—cohomology class defined as the Chern class of the
principal S!-bundle

(A(V) x[A°(W)\ {0}]) /G*0 — (A(V) x[A°(W)\ {0}]) /G = B*(V. W).
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This class restricts to the canonical (tautological) class of the fibers of the map
py.w: B¥*(V, W) — B(V) (which are homotopically equivalent to P(A°(W))).

(3) The Chern class of the tautological line bundle Vyy on B*(V, W) x M is
c1(Vw) = pi(hyw) ® 1 + 8y +1® p3(c1(V)).

Here we denoted by the same symbol 8y the elementin H' (B(V))® H' (M, Z)
defined by this morphism, as well as the pullback of this element via the projec-
tion B*(V,W)x M — B(V)x M .

Proof The proof uses the same arguments which are used for the computation of
the cohomology algebra of the moduli space of irreducible configurations in Seiberg—
Witten theory (see for instance Okonek and Teleman [6]). O

Corollary 2.5 The line bundle S can be identified with the pull-back of S y1gg Vvia
the composition
BX(E) — B*(S,A'®S)

induced by
A(L) x[A"($)\{0}] 3 (b.a) > (b®* ®a"” . ) € A(S) x[4"(S) \ {0}].
In particular one has
c1(S) = py(hy) ® 14281 + p3(c1(S)),
where h,, is the Chern class of the principal G/G*0 = S —bundle
(A(L) x (4'(S)\{0})) /G*° — (A(L) x (4" (S)\{0})) /G = By (E).

Proof The map (b, o) — (h®? ® @V, ) induces an isomorphism « which fits in the
diagram

B(E) = (A(L) x[A°(A' ® $)\ {0}]) /G — (A(S) x[4°(A' ® 5)\ {0}]) /G2
2 (A(S) x[A°(A' @ $)\{0}])) /G = B*(S,A' ® S),

where v is the obvious epimorphism. The map

AL) x[AY(S)\ {0} x S 3 (b, o, 5) — (b®* ®aV,a,5) € A(S) x [A1(S)\ {0}] x S

induces an isomorphism S 2~ (vou xidas)*(Sp1gs). It suffices to notice that

Wou)* (hsprps) =hus  (vou)*(ss) =261 o
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Corollary 2.6 Suppose that b (M) =0. The restrictions of the Donaldson p—classes
to V* are given by the formulae

(k) = —(8 Ups c1(S). 1) € H' (V*,Z) VA€ Hy(M.Z),
w(x) = —3(c1(S), x)h, € H*(V*, Q) Vx € Hy(X,2),
w(o) = =8 (c)Uh, € H3(V*,7) Vo € Hi(X,Z),

vi=pu(x) = —1hie HY(V*, Q).

Proof Every monomial of the form a U b, with a, b € H'(B,Z) satisfies the
relation (@ U b)> = 0 so, since we supposed b, (M) = 0, one gets easily that
aUb e Tors(H?*(M, 7)). Therefore

im(U: HY(M,Z)® H'(M,7) - H*(M,Z)) C Tors(H*(M, Z)).

This implies 52 = 0. Therefore

1 p1(Fly) = —5c1(5)?
= —1[pF(h2)®1 +4p} (hu) UL +2pF (hy) U p3(c1(S))
+48L U p5(c1(S) + p3(c1(S)P)].

Using Donaldson’s formula p(x) = —% p1(F)/x for x € Hy(X,7Z), one gets easily
the claimed formulae. O

2.2 The topology of the moduli space B,(E)

Describing the weak homotopy type of the moduli space B (E) of irreducible con-
nections is a well-known classical problem in gauge theory. This problem is treated in
detail in Donaldson and Kronheimer [3], where the authors also compute the rational
cohomology algebra of this space. Surprisingly, describing the weak homotopy type
of the whole moduli space B,(E) of connections is a delicate problem, which, to our
knowledge, cannot be solved with similar methods.

Our result concerning the existence of L2—normal neighborhoods of the reduction loci,
gives a solution to this problem. Suppose for simplicity that d := ¢ (D) is not divisible
by 2 in H%(M,7), so that any reducible connection 4 € A, (L) is simply reducible.
Let A g be the set topological decomposition of E, that is, the set of unordered pairs
A={l,d—1} with I(d —1) = c3(E).
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Using the notations and conventions of Section 2.1, we get the following decomposition
of the space B,(FE) as a fibered sum

Ba(E)

9) B:(E) [[lrea, V]

[, V]

where V* := (f* / GE is the gauge quotient of the gauge invariant L2—normal neigh-
borhood U* of the reduction locus A;‘ (E) constructed in Section 1.3. In this diagram
the homotopy types of the terms are known (see Corollary 2.2). Choosing a Hermitian
line bundle L with ¢ (L) € A, one has

VAR B(L) R[S POD, L[S  peo,

this description determines the homotopy type of the space B, (E). In particular one
can compute the cohomology of this space using the Mayer—Vietoris exact sequence.

Example 1 Suppose that H{(M,Z) ~ Z, by(M) = b, (M) = 2. The intersection
form of M 1is diagonalizable over Z (since b, (M) = 2, this follows from the classifica-
tion of unimodular symmetric bilinear forms, but can also be obtained as a special case
of Donaldson’s first theorem). Therefore, one can find a basis (e;,e,) in H?(M,Z)
such that el.2 = —1, ey Uepy = 0. It follows that d := e + e, is an integral lift of
the Stiefel-Whitney class w,(M). Let now E be a rank 2—Hermitian bundle with
c1(E)=d, c;(E) =0 and put again D = det(FE).

Our problem is to compute the degree k —cohomology of the space B, (E), for 1 <k <4
using the Mayer—Vietoris sequence applied to the decomposition (9). The set A g has
two elements:

)\0 = {O,d}, )\1 = {61,62}.

Denote by Vo, Vi, Vg, Vi the corresponding subspaces of B,(E), and put V :=
Vo UVy, V*:= V5 UVY. We get exact sequences

o — H TN BHE) @ H'™' (V) — H'T'(V*) — H' (Ba(E))
— H(BX(E) @ H' (V) — H'(V*) —> ---
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Using the standard description of the cohomology of B} (E) (see Donaldson and
Kronheimer [3]), we obtain

H'(B(E) = (u(ho))a =Q,  H*(B,(E)) = (n(/1), u(/2))e = Q%

where A is a generator of H3(M, Z) and f; :=PD(e;). Since we assumed b1 (X) =1,
we obtain easily using Poincaré duality that

im(U: H'(M)® H*(M) - H*(M)) =0

hence, by Corollary 2.6, we obtain (A¢)|y« = 0. Note also that the restriction
morphism H?(V) — H'(V*) is an isomorphism for i = 0, 1 and is injective for all i.
The exact sequence above for i =1 yields

H'(Ba(E)) =ker(H (BX(E)) ® H' (V) - H'(V*)) = ((11(ho), 0)) @ ~ Q.

Therefore, the cohomology class defined by the Chern—Simons functional [3] associated
with a hypersurface representing Ao extends to the whole moduli space B, (E). This
is a general phenomenon. For i = 2, we obtain

H? (Ba(E)) = ker(H* (B3 (E)) — H*(V")).
On the other hand by Corollary 2.6

w(flye = gler +ea, fidYhug,  w(Dlvr = 5lea—er, fidhuy,

where u; € I'(S(su(E))) are chosen such that ¢;(Ly,) = 0, ¢;(Ly,) = e; (so
Ly, is a line bundle representing the topological decomposition A;) . Therefore
H?(B,4(E), Q) = 0. Taking into account that the restriction morphism H?(B}(E)) —
H?(V*) is surjective and H3 (V) = 0, the same exact sequence for i = 3 yields:

H*(Bo(E)) = ket[ H* (BX(E)) — H*(V*) = H* (V) @ H (V)]

The space H? (V) is generated by 87,,(09) Uhy, , where oy is a generator of H(M,Z),
whereas

H (B3 (E)) = (1(00), £ (ho) (f1) (ho) (f2)) -
By Corollary 2.6 one has ,Uv(Uo)|vl.* = —81,(00)h4; and we have seen that t(Ao)|y+ =
0. This shows that

H? (Ba(E)) = {n(ho) e (/1), p(ho)e(f2))a = Q.

The cohomology space H*(B,(E)) fits in the exact sequence
H3(V§) @ H? (V)
((5L0 (OO)huo s 8L1 (GO)hul )>

00—

— H*(BJ(E)) — H*(B}(E)) — H*(V*).
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The space H*(B(E)) is freely generated by the five classes

nx), w1 w(HL)?A w(fur(f),  wo)p(oo),

whereas H*(V*) is freely generated by /2 , and hil . This shows that

ker(H*(B;(E)) — H*(V*)) =
(C) + ()2 () + r(f2)*, m(ho)n(oo))a =~ @°.

The quotient on the left in the exact sequence above is 1-dimensional, so H*(B,(E)) ~
Q4.

Remark A similar method can be used to compute the cohomology of the pair
(B;(E).V*), where V = [ [11cg, V¥ is a normal neighborhood of the reducible
locus in B,(E).

Example 2 Let M be a 4-manifold with the topological properties considered in the
example above. The exact sequence of the pair (B} (E), V*)

— H'™N (B3 (E)) » H'™'(V*) > H'(B;(E), V*) » H' (B, (E)) — H' (V") —

written for i = 4 shows that the natural morphism H*(B}(E), V*) — H*(B,(E))
(induced by the restriction morphism H*(B,(E),V) — H*(Bs(E)) and the excision
isomorphism H*(B,(E),V) — H*(B}(E),V*) is an isomorphism.

3 The instanton moduli space around the reductions

We denote by M4SP(E) C B,(E) the moduli of projectively ASD a—oriented con-
nections in E, that is, the moduli space

M@ (E) = Ag™P(E) [Ge.  AQP(E):={A € A(E)| (F)* =0}

In the first subsection we will study the intersection of this moduli space with a normal
neighborhood V* of the reduction locus B();(E )= Af; (E)/GE. We will see that, in a
neighborhood of a reduction locus, the instanton moduli problem is equivalent to an
abelian moduli problem, which is very much similar to the Seiberg—Witten moduli
problem. We will denote by M;‘ (E) the subspace /\/l;‘ (E):= M2P(E)n B;‘ (E) of
A-reducible instantons.
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3.1 An abelian gauge theoretical problem

Let L be a Hermitian line bundle which is isomorphic to a line subbundle of £, and
put S := L®2® DV. Consider the moduli space M, (L) of solutions of the system

(10) {F;—%FJ =(@ra@)?t

(dl;k@z@av ’ dlj_@z@av)a =0

for pairs (b, o) € A(L) x A'(S), modulo the abelian gauge group G = C®(M, S1).
This system is very much similar to the Seiberg—Witten system; indeed, the left hand
operator in the first equation is elliptic and can be written as coupled Dirac operator.
The main difference is that in general there is no a priori bound for the «—component on
the space of solutions of this system and, in general, the moduli space is not compact.

We denote by Mﬁfd (L), M} (L) the subspaces of reducible (respectively irreducible)
solutions. As in Seiberg—Witten theory “reducible pair” means “pair with trivial a—
component”. Therefore one has a natural identification

MEYL) =~ Ta(L) := Aa(L) /G, where Aq(L):=1{be A(L)| F;} = 1F;]}.

The space T,(L) is either empty, or a b; (M )—dimensional torus (when the harmonic
representative of ¢{(S) = 2¢1(L) —c1(D) is ASD).

Put / :=¢;(L) and A = {/,d — 1} and fix an isomorphism £ = L & (D ® LY). The
map
Vi (b,a) > Ap g = (db_ * ) e A4(E)

—a da®b\/

descends to a map M,(L) — MASP(E). The image of this map is the subspace
consisting of those instantons which can be brought in Coulomb gauge with respect to
a A-reducible connection. Suppose again that 2/ # d (such that any reduction having a
parallel line subbundle of Chern class / is simple), and consider the continuous, gauge
invariant function &: A;‘ (E) — R~ defining the normal neighborhood U/ A of Aé (E)
(see Section 1.3). For b € A(L) put

e(b) := e(Ap), where Ay :=b® (a®bY) € AX(E),
and denote W* the G—invariant subspace of the configuration space A(L) x A'(S)

defined by the inequality ||a||z < &(b), and by Z* its G—quotient.

Proposition 3.1 The restriction of the instanton moduli problem to the normal neigh-
borhood v(UU*) of Aé‘(E ) and the restriction of the abelian moduli problem (10) to the
neighborhood WA of A(L) x {0} are equivalent moduli problems.
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In particular, the map induced by v applies M,(L) N Zh isomorphically onto the
neighborhood MASP(E)N V* of the subspace Mg;(E ) of A-reducible instantons, and
induces an isomorphism Mraed(L) o~ ./\/lﬁ(E ).

Proof This follows directly from (2) in Proposition 2.1. O

Corollary 3.2 Let b € Ay(L). The deformation elliptic complex C4, at the corre-

sponding reduction Ay, splits as a direct sum C4, = C(;r (M) & C:®2®av (S), where
CSL (M) is the standard d ™ —elliptic complex for i R—valued forms and C;@ Rav (S) is

the d+ —elliptic complex for S —valued forms associated with the connection b®?®a" .

+
b®2®aV

inde(CF(8)) = ¢} (S) + (b+(M) = by (M) +1).

Remark The complex index of the elliptic complex C (S) is given by

3.2 A twisted abelian gauge theoretical problem

Let p: m{(M, x9) = Z, be a group epimorphism and consider the associated objects
o My — M, 1: M, — M, introduced in Section 1.4.

Let L be a Hermitian line bundle on M, whose Chern class / is a solution of the
system (7) and put A = {/,¢*(/)}. In this section we will assume that / # (*(/). We
fix an isomorphism Jt;‘ (E)=L®*(L). We denote by A,(L) the subspace of A(L)
consisting of connections b € A(L) such that b ® t*(b) = n; (a). The natural gauge
group acting on this space of connections is

Goi=1{f eC®(M,, S") | *(f) = f}

The Lie algebra of this group can be identified with A°(R p), Where R, is the real line
bundle associated with the representation p. One has a natural embedding G, — gn; (E)
factorizes through an embedding G, — G .

One has a G,—equivariant map A,(L) — .Af; (E) given by b+ Aj, where Ay is the
unique p—twisted connection of type A whose pull-back to M, is b @ 1*(b).

Put S = L ®*(L)Y = L®? ® 7, (D). This Hermitian line bundle comes with a
tautological isomorphism (*(S) = S = §. We introduce the spaces of (—twisted
S —valued forms by

Ak (8) = {a € 4%(S) | * () = —a).
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Note that, for a connection b € A,(L), one has Fp — %n[’f(Fa) € A2(S). Endow M,
with the pull-back metric ; (g). Our abelian moduli problem is now

(an {F: — 5 (Fa)t =@r@)*
* + —
(db®2®7r;‘ @)V’ db®2®n;)k (a)v)a =0.

for pairs (b, ) € A, (L) x A}(S), modulo the abelian gauge group G, .

The stabilizer of any pair (b, ) € A,(L) x AL(S) is {£1} C G,, so, in fact, this
twisted abelian moduli problem has no reductions at all. However, the moduli space
Mg, (L) of solutions has two distinguished gauge invariant subspaces /\/lff"f(L),
M (L) consisting of classes of solutions with vanishing (respectively, non-vanishing)
a—component. As in the previous section we obtain a map ¥: Mg (L) — Mfs D(E)
which applies isomorphically M™4(L) onto the space Mé(E ) of p—twisted reducible

a,
instantons of type A.

The space ./\/lﬁf‘z (L) has a simple geometric interpretation: one has an obvious identifi-
cation

MENL) = (A (0 (L) N A(L)) /G, € ML ) (L)

which shows that /\/lffff(L) is the subspace of Mfg @ (L) defined by the equation
[b ® *(b)] = [a]. If the harmonic representative of ¢ (S) is not ASD (with respect
to the pull-back metric), the space Mﬁff} (L) will be empty. When this representative
is ASD, M;"g (a)(L) will be a (non-empty!) subtorus of the torus /\/lr;pﬂ (a)(L); this
subtorus is (non-canonically) isomorphic to the quotient

iH (M,,R), /2ni H (M, Z),,

where the symbol (—), means (—twisted, that is, the subspace of (—) consisting of
solutions of the equation ¢*(x) = —x. In particular, if (*: H'(M,,7) — H'(M,,7)
is the identity and b4 (M),) = 0, this space consists of a single point.

Consider the continuous, gauge invariant function &: .Aﬁ; (E) — R~ ¢ defining the normal
neighborhood U/ (see Section 1.4) of Af; (E) and, for b € A(L) put e(b) :=¢e(Ap).
As in the previous section we introduce the space Wh c A(L) x AL(S) defined by
the inequality |||z < &(b) and its gauge quotient Z* = W /G,. We obtain:

Proposition 3.3 The restriction of the instanton moduli problem to the normal neigh-
borhood v(U*) of the space of p—twisted, type A —reductions Af; (E) and the restriction
of the abelian moduli problem (11) to the neighborhood W of A(L) x {0} are
equivalent moduli problems.
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In particular, the map induced by  applies Mg,(L) N Z* isomorphically onto the
neighborhood /\/laASD(E ) N V* of the subspace /\/lﬁ(E ) of p—twisted, A-reducible

instantons, and induces an isomorphism /\/lfl";‘f(L) ~ /\/lf;(E).

Corollary 3.4 Let b € Ayxq)(L) N A(L). The deformation complex C4, at the
corresponding p—twisted reduction Ay splits as a direct sum Cy, = C;r (M) &
C;@L*(b)V,L(S)’ where CSL’L(M,,) is the d* —elliptic complex

d+
0— iA)(Mp) — iA! (My) — iA% (M) — 0
of imaginary (—twisted forms, and C;'@* b [(S) is the d + —elliptic complex of 1—

twisted S —valued forms associated with the connection b @ (*(b)V .

The indices of the two elliptic complexes can be computed easily: The dimension hf‘
of the k th harmonic space of C(;r [(M)) is

h=0,  hl=b(Mp)—bi(M), I =bs(Mp)—bir(M),
Taking into account that ind(CaL (M))) = Zind(Car (M)), we get

ind(Cy ) (Mp) = b1(Mp) — by (Mp) — (b (M) —by(M)) = b (M) —by (M) + 1.

+

For the complex C;r® (b)Y ,(S), note that the complex C, Y

sum

*(b)V (S) splits as a direct

+ _ ot +

Coaird)v () = Cpgrepyv,0(S) ® Cpgpe v o (S)
where CEL@L*([))V o(S) isthe d *_complex of S-valued forms o on M, satisfying the
relation ¢*(«) = &. Multiplication by i defines a real isomorphism C;'@* B 0(S) =
C;@L*(b)v,t(s)' Therefore

ind[Cg i (pyv., ()] = IndeCH(S) = ¢} (S) +2(b+ (M) —b1 (M) + 1),

3.3 Generic regularity at the reductions

The purpose of this section is to prove a strong generic regularity result for reducible
instantons. We agree to call regular any solution 4 € .AaASD (FE) (irreducible or reducible)
with [H]f‘1 = 0. Our result allows to prove that, under certain cohomological conditions
on our data, there exists a connected, dense, open set of metrics for which no irregular
reduction appears in the moduli space. This will allow us in the next section to introduce
Donaldson type invariants for definite manifolds, even in the cases when non-empty
reduction loci are present in the moduli space.
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Let M be a 4—manifold with b4 (M) =0, and E a Hermitian bundle of rank 2 on M ;
putasusual D:=det(E), d :=c¢1(D), c =c(E). Let A ={l,d —1} be a topological
decomposition of E with 2/ # d. The second cohomology of the deformation elliptic
complex of a A-reducible instanton reduces to the second cohomology of the elliptic

complex C;r®2®av (S), where S = L®2® DV.

Denote by Met (Met") the space of smooth (respectively class C”) Riemannian
metrics on M , where r >> k. Our first result is a transversality theorem (with respect
to variations of the metric g) for the complement H, (S)* of the zero section in the
complex linear space

He(S):= ] [HCT*(S) @H(Co*(S)]
[o]emASDe ()

over the torus MASPe(S). Unfortunately this transversality result can be proved only
for metrics having the following property

H(S) : The vanishing locus of the gy harmonic representative of cll)R(S ) has Hausdorff
dimension < 2.

This condition is satisfied by any C°—metric by a result of Bir [1], and any ¢;(S)—
admissible metric g € MetL,(cPR(S)) (see Section A.2 in Appendix A).

The space Hg(S)* can be identified with the G, —quotient of the space of solutions
of the system

Ffe =0
(12) .
dot +dn =0

for triples (0,¢,n) € A(S) x [(4°(S) ® Aig (S))\ {0}].

Regard (12) as an equation for systems (g, 0, ¢, n), where g € Met”, o0 € A(S), and
&, n) e[(A°(S)r ® Aig (S)%) \ {0}]. Therefore our configuration space is now

Af = Ak x [A°(S)k & AL (S,

where A%(S)y is the trivial bundle Met” x A°(S); over Met”, Aﬁ_(S)k is the
bundle of S-valued selfdual forms over Met” (see Section A.1 in the Appendix), and
the symbol [ - * on the right stands for the complement of the zero-section. Regarding
Aj as alocally trivial Banach bundle over the Banach manifold Me:?", and denoting
by p: A}: — Met” the obvious projection, we see that the left hand terms of the
equations (12) define sections u, v in the bundles p*(i [Ai]k_l) and A} x AV ()i
over A7.
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Theorem 3.5 The section (u,v) in the bundle [ p* (i [Aﬁ_]k_l)] ® AY(S)r_; over
Ay, is submersive at any solution (gg, 0, o, o) Where g¢ has the property H(S) and

(S0-m0) # 0.

Proof Note first that, under our assumptions, the connection o cannot admit nontrivial
parallel sections, so applying d:,"o to the second equation, we get {o = 0. The hypothesis
gives 1o # 0. Use the metric g¢ as a background metric to parameterize the manifold
Met" and to trivialize the bundles i[Ai]k_l , Ai (S)x over this manifold (see Section
A.1). The system (12) is equivalent with

{[(/rl)*(Fa)]+ =0
Aol —*g,do [N*(n)] =0

where now the upper script + is used for the selfdual projection with respect to gg,
and n € A%,_(S )k - The left hand terms of the equations define a smooth map

(13)

I(Sym™ (Tag. g0)) X A(S) i x[(A°(S)e x A2 ()00 L2 1142 1y x4 ()i

Our task is to prove that the differential of this map at (id, 0¢, 0, 19) is surjective. Let
(. B) € i[A%]k—1 x A'(S)k—1 be a pair which is L2-orthogonal to the range of this
differential. Using variations of the variables ¢ and 71 (for 4 = id) we get

(14) dyB=0  dfp=0.
Using the notations of Section A.1 in Appendix, one has
U +
I 00 =-mZ(0Fe). 5o (X) = = dgy (m(X)70)-
(id,UO,OJIO) (id,UO,OJIO)

for any go—symmetric endomorphism x. For the second formula we used the fact that
dgono = 0 (recall that o = 0 and *19 = 19 ), so the term containing the differential of
*g, with respect to /& vanishes. Therefore, using variations y € A°(Sym(Tay, g0))"
of / with the property

mT () (Fsy) =0,
and noting that m7 (x) = [m* (x)]* (see Section A.1), we obtain for any such x

(15) 0= (xdgo(m()n0), B)r2 = —(m()No, *deyB) 2 =
(Mm% (X)M0. dooB) 2 = (ImF (OI* no. doy B) 2

Here we used the fact that the 2—form dy, B is ASD. In all these formulae (-,-) stands

for the real (Euclidean) inner product. By Lemma A.1 in Appendix we see that any

homomorphism m € A°(Hom(A?2, Ai))’ can be written as m™ (x) for a certain
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symmetric endomorphism y. Therefore (15) holds for any such section m for which
m(Fg,) = 0. Now regard B as an element in A°(Homgp(Sy,A%))x_1, no as an
element in A°(Homg(Sy, A3 )k, and denote by [no] € A°(Homg(AZ, S¥))k its
adjoint with respect to the obvious real inner products. Changing the position of 7¢ in
(15) we obtain
(WI*’ dU():B o [UO]ﬂz)Lz =0,

for every m € A°(Hom(A?2, Ai))’ for which m(Fy,) =0. The condition m(Fg,) =0
is equivalent to the condition im(m™*) C F, j(') . Let U be the complement of the vanishing
locus of Fg,. We conclude that dy, o [0l ! U is L?—orthogonal on the whole space of
‘ v A2 ‘ U
depBo [no][’ﬁ‘ y takes values in the real line bundle generated by Fy,. This implies that
either there exists a non-empty open subset V' C U on which ng has (real) rank at most
1, or dg,p ‘ y takes values in real line bundle generated by Fo, } - In the first case we
obtain 19 = 0 by Proposition A.10 in the Appendix. This contradicts the assumption.
In the second case one gets 8 = 0 by Corollary A.9 (which applies because g has the
property H(.S)). Finally, using variations of ¢ and the assumption b (M) =0, we
obtain o = 0. d

compactly supported F, jo —valued bundle homomorphisms Ai Therefore

Denote by Met/ (1) the subspace of metrics for which there exists a non-regular
A-reducible instanton. Let U C Met” be any open subset of metrics satisfying the
property H(S).

Theorem 3.6 Suppose that (2/ —d)* <0. Then Met! (A)NU is closed and nowhere
dense in U and the natural morphism

i (U \ Metyyq (1)) — i (U)
is bijective for any i in the range 0 <i < —2(2] —d)? 4+ by (M) — 2 and surjective for
i=-202l—d)?*+b(M)—1.

Proof By Theorem 3.5 it follows that the section (u, v) is transversal at any solution
with metric component in U, so the vanishing locus Z(u, v) N p~1(U) is a smooth
Banach manifold over U . The gauge quotient

HS)*| = (Zw.v) N p~' (U)) /Gr+1,x0

will also be a smooth manifold, and the natural projection H(S)*|y; — Met" is
Fredholm of real index 2[c;(S)? + (1 —=by (M )]+ b1 (M) = 2¢1(S)?> —b (M) + 2.
One has a natural C*—action on H(.S)*, and the projection

H(S)* /C* —> Met"
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will be Fredholm of real index 2¢;(S)? — by (M). It suffices to apply Lemma A.7 in
the Appendix. |

The same arguments can be used to prove regularity at a locus of twisted reductions
(see Sections 1.4 and 3.2). However, there is an important detail here which should
be taken into account carefully: in general, for an epimorphism 7 (M) — Z,, the
condition b4 (M) = 0 does not imply b4 (M,) = 0. When by (M,) = 0, one has
h? =0, h! =b;(M)—1 (see Section 3.2), and one can obtain generic regularity at the
p—twisted reduction in the same way as for non-twisted reductions, by extending our
proofs to the twisted case. The main difference is that the “normal” elliptic complex”
le@ () has no complex structure.

In the twisted case, one has a Hermitian line bundle S on M, which comes with an
isomorphism (*(S) ~ S'; and for any metric g on M the 7p(g)—harmonic represen-
tative of ¢1(S) =1 —1*(/) is p—equivariant, so the condition H(S) has sense for g.
Put A :={/,/*(/)} and denote by Met. ,(A) the space of C" —metrics for which there
exists a non-regular p—twisted reducible instanton of type A. The result for the twisted
case is

Proposition 3.7 Suppose that by (M) = by (M) = 0 and let | € H*(M,,Z) a
solution of the system (7) with (I —t*(1))> < 0. Put A := {/,.*(])} and Iet U C Met"
an open set of metrics having the property H(S). Then Met! (A) N U is closed and
the natural morphism

i (U \ Met}4(X)) = 7 (U)
is bijective for any i in the range 0 <i < —(I —*(I))?> + by (M) — 2, and surjective
fori =—( —*(1))>+b;(M)—1.

Remark Note that —(/ —:*(/))? = 2[4c2(E) —c; (E)?], hence under our assumptions
one has —(I —1*(/))* > 2.

Corollary 3.8 Let M be a 4—manifold and E a Hermitian rank 2 bundle on M .
(1) Suppose that

(16) by(M)=0andc(E)¢2H*(M,Z) + Tors.

There exists a connected, dense, open subset /\/letgood(E) C Met" such that,
r

for any g € /\/lelg od(E), the reductions in the Uhlenbeck compactification of

the moduli space MaA’SgD

(2) Suppose that (16) holds and for every epimorphism p: w1 (M, xo) — Z5

(8]
(E) of g—instantons are all regular.

(17) by (Mp) =0 and 7t} (c(E)) ¢ 2H* (M), Z) + Tors.
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There exists a connected, dense, open subset Met! .(E) C Met” such that, for

vgood
any g € Met], .(E), the reductions and the twisted reductions in the Uhlenbeck

VZ0O!
compactification of the moduli space MaA’SgD(E ) of g—instantons are all regular.

Proof (1) Denote by A(c) the finite set of unordered pairs A = {/,d — [} satisfying
l-(d—=1)<c. For c =c,(F), this set is the set of all topological decompositions
of all bundles E’ which must be considered in the construction of the Uhlenbeck
compactification of M4SP(E). Put

Metlyog(E) = Metlgn()\ | (] Metly(h)
LEA(C)

(see Section A.2 in the Appendix).

adm
Met! ;. (c) (see Section A.2) and removing the bad loci associated with all twisted

and non-twisted reductions of bundles E’ with det(E’) = det(E), c2(E’) <c,(E). O

(2) One may define Metvrgood(E ) in a similar way by replacing Met, (c) with

Remark Suppose that by (M) = 0, by(M) > 0, and by (M,) = 0 for any epi-
morphism p: 71(M, xg) — Z,. Let d be an integral lift of w,(M). Then d ¢
2H?*(M,7) + Tors and 7, (d) ¢ 2H?*(M,,7) + Tors(H?(M,, Z)) for every epimor-
phism p, so Corollary 3.8 (2) applies for any bundle E with ¢{(E) =d.

Proof By Donaldson first theorem, the intersection form on H?(M. ,Z)/Tors is trivial
over Z. Choosing an orthonormal basis (¢;);<;<p,(ar) in this lattice, one obtains
d-ej = eiz = —1 mod 2, so d cannot be divisible by 2 in H?(M,Z)/Tors.

On the other hand, the class 7 (d) is an integral lift of 77 (wa(M)) = wa(M)).
Since b4 (Mp) = b4 (M) = 0, one gets easily (comparing the signatures and the
Euler characteristics of the two manifolds) that by (M) =2by(M)—1 and by(M,) =
2b5(M)) > 0. Therefore the same argument applies for M, proving that n;‘ (d) cannot
be divisible by 2 in H?(M,, Z)/Tors. |

Remark Similar generic regularity results can be obtained using abstract perturbations
of the ASD-equations around the reduction loci (see [3, page 156]). However, since in
our general framework the reductions are not necessarily isolated points in the moduli
space, this method is more complicated than in the classical case. Moreover, for our
purposes (see Section 4) one must check that the perturbed moduli space still has a
natural compactification, and that the “cobordism type” of this compactification is well
defined.
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Combing Corollary 3.8 with the classical transversality theorem for irreducible in-
stantons (see Donaldson and Kronheimer [3], Freed and Uhlenbeck [4]) one shows
that

Lemma 3.9 The set Met‘;good(E) C Metv’good(E) of metrics for which MaA,SgD(E)
contains only regular solutions is dense of the second Baire category. This set is also
open (but in general non-connected!) when A(E) 1= 4c,(E) —ci(E)* < 3.

Proof The condition A(E) <3 implies that the projection MQSD(E ) — Met" of the
parameterized instanton moduli space on the space of metrics is proper. The openness
of Met! . (E) in Me (E) follows by elliptic semicontinuity. |

tr
wgood vgood

4 Applications

4.1 Geometric properties of instanton moduli spaces on manifolds with
b+ = 0

We will see that using our regularity results combined with the topological results
obtained in Sections 2.1 and 2.2 one can obtain important information about the
geometry of the ASD moduli spaces.

The purpose of this section is not to give an exhaustive list of all possible applications
of this type, but only to illustrate the method with an explicit example, which came
to my attention when I began to work on the classification of class VII surfaces with
by, =2 [12].

Let M be a 4-manifold with the topological properties considered in the examples
studied in Section 2.2: H{(M,Z7) ~ 7, b,(M) = b_(M) = 2. Consider again a
rank 2-Hermitian bundle £ on M with ¢{(E) = d = e; + e, (where (eq,¢e;) is
an orthonormal basis of H?(M,Z) ~ 7Z®?) and c,(E) = 0. As in Section 2.2 put
Ao :=1{0,d}, A1 :={e1, ez} and note that A g = {Ag,A}. Let Ly, L be Hermitian
line bundles with Chern classes c¢; (L) =0, ¢1(L{) = ey, and put S; := ngz ® DV.
The expected dimension of the instanton moduli space MQSD(E ) is 4 and, since
A(E) := 4cy(E) — ¢ (E)? < 4, this moduli space is compact. MASP(E) contains
two circles of reductions M?}"(E ) and M?,” (E). An interesting application of our
results is the following:

Theorem 4.1 For every Riemannian metric g on M and abelian connection a €
A(det(E)), the two circles of reductions M;‘O (E), Mél (E) belong to the same
connected component of the moduli space M4SP(E).

Geometry & Topology, Volume 11 (2007)



1716 Andrei Teleman

Proof For a metric g € Met; ., (E) the moduli space MESP(E) contains only

regular solutions. Regularity at the reductions implies that the linear spaces

Hi= | H(Clarge (5)) = Ta(L) =~ M5 (E)
[b]€T4(L)

are rank 2 complex vector bundles (see Section 3.1). Mf{i (E) has a neighborhood
v; which can be identified with the S!—quotient of an S!—invariant neighborhood of
the zero section of Hil . Let o be a generator of Hy(M, Z). By Corollary 2.6 we see
that the restriction of the Donaldson class (o) to the boundary d(v;) coincides (up to
sign) with the fundamental class of this 3—manifold. More precisely, if we choose an
orientation of the moduli space as in Donaldson and Kronheimer [3, page 283], and we
endow 9(v;) with the boundary orientations, we see that w1(0)|y,) = £[0(vo)] and
n(@)law,) = Fl0(v1)]. Therefore d(v;) cannot be homologically trivial in B;(E).
This shows that the two boundaries (hence also the corresponding circles) belong to
the same connected component.

To complete the proof for an arbitrary metric g, we use the density of the space
/\/lel;)goo 4(E) and note that if the reduction circles Mf}" (E) belonged to different

connected components, the same would happen for any metric g’ sufficiently close to
g- d

Example Consider the 4-manifold M = (S! x S3)#P2#P2. This manifold has
the differentiable type of a Hopf surface blown up at two points. It is convenient to
endow M with the complex structure of a minimal class VII surface with b, = 2.
Choosing the Gauduchon metric in a convenient way and using the Kobayashi—Hitchin
correspondence to identify instantons with polystable bundles, one obtains (see [12]):

MASP(E) ~ S,

so (despite the presence of the reductions) the moduli space gets an obvious smooth
structure on the moduli space. The two reduction circles Mé" (£) are smoothly
embedded in the sphere.

4.2 New Donaldson invariants

In this section we introduce a new class of Donaldson type invariants, which are defined
for definite 4—manifolds. Note that Donaldson type invariants for Z[Z] homology
S1xS3 _manifolds have already been considered by Ruberman and Savaliev [9] and
by Furuta and Ohta [5]. Moreover, Ruberman and Savaliev introduced recently a new
differential topological invariant — based on the Dirac equation — for a special class of
4-manifolds with b, = 0 and by = 1 [10].
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4.2.1 Low energy Donaldson invariants and Casson type invariants Let M be
a negative definite 4-manifold, and let (ey,...,ep,(pr)) be an orthonormal basis in
H?(M,Z)/Tors. Let d € H?(M,Z) be alift of e; +--- + ep,(ar) and denote by d
its image in H?(X,Z,). Note that one must have d = w,(M), when H*(M,Z) is
torsion free.

Let £ be a Hermitian 2-bundle on M with ¢;(E) = d and put as usual D :=det(FE).
If {/,d —1} is a topological decomposition of E, then, writing / =>_ /;e;, with [; € Z,
one gets

c2(E) =) li(li=1)=0.
Therefore, for ¢,(E) < 0, the bundle £ admits no topological decomposition. On the
other hand the expected dimension of the Donaldson moduli space M45P(E) is

§=2(4c2(E)+ by (M) +3(by(M)—1).

If ¢, (E) is chosen such that A(E) =4c,(E)+b(M) €40, 1,2, 3} the corresponding
moduli space will be a priori compact (that is, compact independently of the metric).
When b, (M) > 4, the corresponding values of ¢, (E) are negative. When b (M) > 1
the corresponding expected dimension will be non-negative. Therefore:

Remark Suppose that 5; (M) > 1 and by(M) > 4, and choose ¢, (E) := —[%].
The corresponding moduli space will be a priori compact, of non-negative expected
dimension 2A(E) 4 3(b; — 1) and will contain no reduction.

In other words, for this special value of ¢, (E), one can define very easily Donaldson
type invariants by evaluating products of classes of the form (%) on the virtual
fundamental class of the moduli space (see Brussee [2]). In this case, one does not
really need regular moduli spaces, because the formalism of virtual fundamental classes
gives directly a well defined homology class in the space B} (E).

A very interesting case is when b, (M) > 4 is divisible by 4. In this case this special
value of ¢, (FE) is —w
fore, in this case MASP(E) coincides with the moduli space of PU(2)—representations
of m1(M, xo) with fixed Stiefel-Whitney class d, modulo SU(2)—conjugation. The
invariants associated with such a moduli space should be called four-dimensional
Casson type invariants. They should be regarded as an extension of the similar SU(2)—
invariant defined for Z[Z]-homology S! x S3-manifolds (see Furuta and Ohta [5],
Ruberman and Savaliev [9]) to our new class of homology types. Note that, because

and the corresponding discriminant A(E) vanishes. There-

of the absence of reductions in our moduli space, the definition of the invariant in our
case is much easier.

Geometry & Topology, Volume 11 (2007)



1718 Andrei Teleman

Note the following simple vanishing result, which shows that, if non-trivial, this Casson
type invariants can be regarded as obstructions to the representability of the basis
elements e; by 2—spheres.

Remark Suppose that b, (M) is divisible by 4 and one of the basis elements e; is
represented by a continuous map S? — M . Then the moduli space associated with
the Chern class ¢, (E) = —% is empty. In particular, the corresponding Casson
type invariants vanish.

Proof If f: S — M represents ¢; (for an oriented closed surface S'), one has
(f*(d).[S]) = (d. f+(SD) = (d. f«([S]) mod 2 = (d.e;) mod 2 = 1.

Let xo € S, and p: 71(M, f(xo)) = PU(2) arepresentation of Stiefel-Whitney class

d . The composition 71 (S, xo) = 71(M, f(x9)) — PU(2) will be a representation
with Stiefel-Whitney class f*(d) # 0, so S cannot be simply connected. |

Interestingly, one has:

Remark There exist definite negative 4—manifolds, with the property that no element
e € H*(M,Z)/Tors with e?> = —1 can be represented by a continuous map f: S? —
M.

Indeed, it suffices to consider a fake projective plane (see for instance Prasad and Yeung
[8]) with reversed orientation. Since the universal cover of such a 4-manifold is the
complex 2-ball, we see that the generator of its homology cannot be represented by a
continuous map f: S? — M.

e2(E) € (— [bzaM)} ,—1].

In this range, one loses “a priori compactness”, but has moduli spaces with no reductions
in their Uhlenbeck compactifications. In this range, one uses Donaldson’s method [3]
to define the invariants geometrically: one uses metrics for which all strata are regular,
constructs distinguished cycles representing the p—classes (and which extends to the
Uhlenbeck compactification) and defines the invariants by intersecting the moduli space
with systems of such cycles (which can be chosen so that they intersect transversally in
the main stratum).

Consider now the case
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4.2.2 Invariants associated with classes in H*(B*,V*) and invariants defined
using the cobordism type of the moduli space We illustrate these types of invariants
in the concrete situation considered in Sections 2.2 and 4.1: a negative definite 4—
manifold with H{(M,Z)~7Z, by(M) =b_(M) =2 endowed with a rank 2-Hermitian
bundle £ on M with ¢{(E) =d = e; + ¢, (where (e7, e;) is an orthonormal basis
of H*(M,7) ~7%?) and c,(E) = 0.

The moduli space is a priori compact, but it always contains two circles of reductions.
We have two ways to define invariants in this situation:

(1) Use a generic metric in the sense of Donaldson and Kronheimer [3], for which
the irreducible part of the moduli space is regular. Regard the (oriented) moduli space
MESP(E)* of irreducible instantons as a cycle in the relative homology H,(B*, V*).
On the other hand, we have seen in Section 2.2 that the relative rational cohomology
H*(B*,V*) ~ Q* and that this group fits in a short exact sequence

H3 (V) ® H3 (V)
(((SL() (UO)hu() s 8L1 (UO)hul ))
—> (1 () + (/1) w() + 1(f2)%, (o) 1t(00))a — 0.

(18) 0— — H*(B*, V%)

Evaluating classes in H*(B*, V*) on the relative homology class given by MASP(E)*,
one gets well-defined invariants. Note however that, since the exact sequence (18) does
not split canonically, one cannot parameterize this set of invariants in an obvious way.

(2) For a metric g € /\/letvrvgood(E ) all solutions (including the reductions) in the
moduli space are regular (see Lemma 3.9). The main observation here is that each
reduction circle M;‘f (E) has a neighborhood isomorphic to the S'—quotients of a
neighborhood of the zero section in a rank 2 complex bundle Hl-l over ./\/lé”" (E) (see
Section 4.1). But such a quotient is a locally trivial K—bundle over a circle, where
K is the cone over P! ~ S2, so it has a natural manifold structure. Therefore, for
g€ Met! (E), MASP(E) is a compact 4—manifold, which can be oriented as in

wgood

classical Donaldson theory [3, page 283].

The signature of this 4-manifold will be an invariant 6(M) of the base 4—manifold
(endowed with the usual orientation data). Indeed, the main point here is that the set
Metvrgood(E) is connected. For two choices gg, g1 € Metv’vgood(E), consider a path

y:[0,1] — Metvrgood(E ) connecting these metrics. A generic deformation (with fixed
ends) of y will define a cobordism between the moduli spaces associated with g;.

Note that the cobordism constructed in this way is always trivial around the reductions.
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Remark In the example given in Section 4.1, one has MASP(E) ~ S*, so the
0 —invariant vanishes.

This shows that, if non-trivial, this invariant can also be regarded as an obstruction to
the representability of the elements of the orthonormal basis {eq, ¢;} by embedded
spheres.

Appendix A

A.1 Metric-dependent spaces of selfdual and anti-selfdual forms

Let M a compact oriented connected 4—manifold and E a vector bundle. For every
Riemannian metric g on M one has two associated spaces of E —valued (anti)selfdual
forms Aig (E). It is convenient to complete the space Met of metrics with respect to

the C" topology and the spaces Aig (E£) with respect to a Sobolev norm Li (where

r > k). In this way one gets Banach vector bundles [.,42jE (E)]x on the Banach manifold
Met" of C" —metrics.

One can trivialize globally these bundles in the following way. Fix a C"—metric
go. The space Met” can be identified with the space of positive go—symmetric
automorphisms of the tangent bundle T, via the diffeomorphism 4+ g, := h*(go).
We get homeomorphisms

L (Sym* (T, g0)) x[4%, (E)k — [AL(E)k

givenby (4, n) > (gp, h*(n)). Itis important to notice that homeomorphisms associated
with different metrics g¢ are pairwise differentiable compatible. Therefore one can use
these homeomorphisms to define structures of Banach manifolds on the total spaces

[AZ(E)k.

A positive symmetric automorphism / € T'(Sym™ (Ts, go))” defines a class C” posi-
tive go—symmetric automorphism A2/ of the bundle AJZW, given by A — h*(1). Using
the go—orthogonal decomposition AJZW = Aigo @ Aigo , the automorphism A2/ can

+ +
2, _ (w3 u_(h))
wh= (it et )

where p,i(h) are symmetric endomorphisms of Aig and ,u%(h): A%Fgo — Aig
0 0

be written as

have the property ut (h)* = u7 (). The tangent space of I'(Sym™ (Tas. g0))" at id
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can be identified with A°(Sym(Ts, g¢))" . For a symmetric endomorphism x we put

dpu(h It (h IpnE(h
mioi= 0 G = 2 &
id

(0)-

xX).  mE():=
d id

i

Since m() is symmetric, one has m* (x)* = my(x).

Lemma A.1 The map x — m$( x) defines an isomorphism
A°(Symo(Tar. g0))" ~ A°(Hom(A%, AY))",
where Sym(Tas, go) denotes the bundle of trace free go—symmetric endomorphisms
of Ty .
This can be checked easily by diagonalizing y in an orthonormal frame.

The space A°(Sym(Tas. go))" can be regarded as the space of infinitesimal variations
of C" —metrics, whereas A°(Symy(7az, g0))" is the space of infinitesimal variations
of C" —conformal structures.

A.2 Admissible metrics

Consider an oriented compact connected manifold M and a cohomology class / €
HSR(M ), where 1 < p <n—1. For a Riemannian metric g on M we will denote by
l¢ the unique g—harmonic representative of /.

Let M a 4-manifold. The family of vector spaces
(Aigjx)gEMetr,xeM

defines a bundle ¥ on the product space Met” x M . Suppose now that by (M) =0.
In this case any harmonic 2—form is ASD. For a de Rham 2—cohomology class /, the
assignment Met” x M > (g, x) > lg(x) defines a universal C"~¢ section A in the
bundle Q™ over Met" x M .

Lemma A.2 Suppose that b+ (M) =0 and | € HI%R(M, R) \ {0}. The associated
universal section A is submersive at every vanishing point.

Proof Let (gg, xo) be aa vanishing point of A. We use the metric g¢ to simultaneously
parameterize the space of metrics (using positive go—symmetric endomorphisms) and
to trivialize the bundles Q¥ . In this way, our section gives rise to a map

L(Sym* (Tar. £0))" x M 3 (h,x) > wp(x) € AZ .
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where y, := [(h)"1*(lg,) € AZ(M). Put wg := wiq = lg, . Writing I, = wq +day,
(with a, L2 Z1), one gets for the derivative d@(y) := Z_ﬂ-d (x) the equation
1

Pt [=m(0)* (@o) + da(x)] =0,
which gives the solution
a(x) =G m(0 (o)),

where G is the [Z ']+ —valued inverse of the operators dt. Here Z' ¢ A1(M)
denotes as usually the space of closed 1-forms. Therefore

d
G| 00 =G 0 0o ~ () (w0) = 4G 0 (0 w0) = m= (0 en)
Therefore 5

A () =d G o (o) (o),

(id,x0)
because wg(xo) = 0. Suppose now that v € [A} | is orthogonal on the range of this
partial derivative.

The vector v defines a Dirac type ASD degree 2—current vy, . Since any element of
m € A°(Hom(AZ%, A?)) has the form m™ (x), we obtain that for any such m

(19) 0= (v,d =G (m(wo))(x0)) = (vxy, d~ G (m(wp)))-
The assignment
Y (v d =G ()

defines a self-dual degree 2-current, and the identity (19) implies that this current
vanishes on M \ Z(wg). This current has the following important properties:

(1) One has d(§) = d(vx,)-
(2) & is supported at xg.

(1) Indeed, to prove the first claim, consider a test 1-form «, and compute
(6, da) = (vxo,d_G+d+a) = (vxg, d pr () = (vxg. d~ ) = (vx,, dax).

(2) Using the fact that d is overdetermined elliptic on Ai(M ), it follows from the
first statement that 8|\ ¢x,3 is smooth. On the other hand, by (19), § vanishes on the
dense open set M \ Z(wg). Therefore 6 must vanish everywhere on M \ {xg}.

The statement follows now from the following Lemma. O

Geometry & Topology, Volume 11 (2007)



Harmonic sections, normal neighbourhoods of reduction loci, and moduli spaces 1723

Lemma A.3 Let u be a A% -valued distribution on R* which is supported at the origin
and is closed. If u~ has order O, then u = 0.

Proof If du = 0 and u~ has order 0, then T must also have order 0, because, if

not, taking the sum u; of all terms of highest order k¥ > 1 in the decomposition of

—+

u™ as sum of partial derivatives of Dirac type distributions, one would have du,‘: =0.

Therefore u: would be singular harmonic self-dual form, which is impossible.

Therefore, u is an order zero Dirac type distribution, so it can be written as u =
> i<jaijdoe’ Ae’, where dy is the standard Dirac distribution. We get

0 d 0 i C ok
du=.Z (ajka—mk)—aikgjb-{-aijab)el/\ej/\6 s
i<j<k
and the relation du = 0 implies obviously a;; =0 forall i < j. |

Definition A4 Let M be a 4-manifold with (M) =0 and / € H3 (M) \ {0}. A
metric g € Met” will be called

(1) strictly /—admissible, if /¢ is submersive (transversal to the zero section) at any
vanishing point.

(2) [-admissible, if the intrinsic derivative of the section /, € F(Ai,g) at any
vanishing point has rank at least 2.

Denote by Met; (/) and MetZ,(/) the space of (strictly) admissible C” —metrics.

Proposition A.5 (1) Suppose that the regularity class r is sufficiently large. The
space Met; of | —strictly admissible metrics is open and dense in Met" .

(2) The space MetZ, of | -admissible metrics is open, dense and path connected in

Met".

Proof The openness of the two sets is obvious taking into account the compactness
of the manifold, the continuity of the map g +— /, with respect to the C! topology on
the space of sections, and the fact that, in general, for any bundle £ and fixed base
point x, the condition

s(x) =0, rk(Dx(s5)) <k

is closed with respect to the C! —topology on the space of sections in E .

To prove the density of the set of admissible metrics, note that the vanishing locus Z (1)
of the universal section A is a smooth codimension 3—submanifold of Met" x M , and
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the natural map ¢: Z(A) — Met" is Fredholm of index 1. Met] (/) is just the set of
regular values of ¢. Put Z := Z(A).

Therefore the larger set MetZ, (/) will also be dense. In order to prove the fact that
this set is also path connected, consider — for two given metrics go, g1 € MetZ, (/) -
a differentiable path y: [0, 1] = Met” joining them.

Consider that map
G:T(SL(Tx))" x[0,1] — Met"

defined by G(h,t) = h*(y(¢)). Since the partial derivative %—g alone is surjective
at any point, we conclude that the map G is transversal to g, so the fibered product
P :={(h,t,z)|G(h,t) =q(z)} is a smooth submanifold of I'(SL(Tx))" x[0,1]x Z.
The natural map P — I'(SL(Tx))" is proper and Fredholm of index 2. By the Sard-
Smale theorem [11], in any neighborhood of id one can find a regular value /¢ of this
map. Therefore, for such /¢

Py :=1{(t,2)| G(ho.t,2) = q(2)}

is a smooth 2—dimensional submanifold of [0, 1] x Z. Put g} := G(ho, ). The fiber
over ¢ €0, 1] is contained in {¢} x {g}} x M and is identified with the vanishing locus
Z(lg/) of the section /,/ under the projection on the third factor.

We claim that the path G (%o, -) takes values in MezZ, (7). Indeed, the Zariski tangent
space of Z (lg;) at a point x is just the intersection of the tangent space of P, at
(¢, g}, x) with the tangent space of the fiber {¢} x {g;} x M C P, over t. But the
tangent space of Py at any point is 2—dimensional, so the Zariski tangent space of
Z(lg) at x has dimension 1 or 2.

In order to complete the proof, is suffices to join go to g, and g; to g} with paths
in MetZ, (). By the openness property of this space, it follows easily that (if /o
is sufficiently close to id) the metrics G(id + s(hg —id),0), G(@id + s(hy —id), 1),
s €0, 1] remain in MetZ, (/) for every s € [0, 1]. O

Note that we see no reason why the space Met; (/) should be connected. Indeed,
suppose that for two metrics go, g1 € Met](/), the corresponding vanishing loci
(which are finite unions of pairwise disjoint embedded circles) have different number
of connected components. Then there is certainly no way to join the two metrics by a
path in Met; (1).

Remark If g € MetZ,(/), then any point x € Z(/g) has a neighborhood Uy C M
such that Z(/g) NU is contained in a closed submanifold Ny of Uy of dimension
1 or 2. In particular the vanishing locus Z(/g) of the g—harmonic ASD form /, has
Hausdorff dimension < 2.
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Proof Indeed, consider a smooth map R” O V i) R™ whose rank at 0 € V is k
and let £ :=1im(dy(f)). Then the composition pg o f is a submersion at 0, so its
restriction on a sufficiently small neighborhood U of 0 will be a submersion. Note
that Z(f) C Z(pgo f) andthat Z(pgo f)NU = Z((pg o f)|y) is a codimension
k submanifold of U . |

The results above can be extended for twisted de Rham cohomology classes: Let
p: w1 (M) — Z, be an epimorphism, and suppose that b (M,) =0 where m,: M, —
M is the corresponding double cover of M. Let [ € HéR(M ») \ {0} be a de Rham
cohomology class with the property that (*(/) = —/, where ¢ stands for the tautological
involution of M. Then, for every metric g on M , the n;)“ (g)-harmonic representative
lg of [ is an ASD form on M, satisfying the identity (*(/¢) = —/g. In other words,
lg is a p—twisted ASD form on M . At any point x € M, /g is defined up to sign.
Therefore, the vanishing locus Z(/g) C M and the rank of the intrinsic derivative at a
vanishing point are well-defined objects. In particular one can associate to / the sets of
metrics Met; (1), MetZ,(l) as in the non-twisted case, and these sets also have the
properties stated in Proposition A.5.

Proposition A.6 Let M be a 4-manifold and d € H*(M,7)

(1) Suppose that

(20) by(M)=0andd ¢ 2H?*(M,7) + Tors.
Then, for every ¢ € H*(M,Z) the set
Metlyn(©):= [ Metl,(2l—d)
leH?*(M,7)
l[-(d-I])=c

is open, dense and connected in Met" .

(2) Suppose that (20) holds and, for every epimorphism p: w1(M, x¢) — Z,
(21) by(Mp) =0and m}(d) ¢ 2H*(M), Z) + Tors.

Then the set

Metfygn(€) 1= Metiyn(e) () N MetL, (I - L*(l))}

71 (M.x0)5 22, 1€H2(M,,7)
l+t*(l)=7r;)" @), 1-v*()<mp*(c)

is open, dense and connected in Met" .
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Proof The important point here is that, since the intersection form of M is negative
definite, the set of terms in the first intersection is finite. For the second intersection
note first that p varies in a finite set (isomorphic to the set of index 2 subgroups of
H{(M, 7)) and, under our assumption, for any fixed p, there are only finitely many
possibilities for /. To complete the proofs it suffices to note that the two properties in
Proposition A.5 have been obtained by applying the Sard—Smale theorem to certain
proper Fredholm maps, and using the fact that the set of regular values of such a map
is open and dense. A finite intersection of such sets will also be open and dense. 0O

A.3 Analytic results

We begin with the following easy result concerning the range of a proper Fredholm
map f: V — W of negative index ;.

Lemma A.7 Let V, W be separable Banach manifolds and f: V — W a proper,
smooth, Fredholm map of negative index j < —1. Then

(1) Therange f(V) of f is closed and nowhere dense,

(2) When j < =2 the natural map w; (W \ f(V)) — m; (W) is an isomorphism for
0<i <—j—2 andis surjective fori = —j — 1.

Note that we do not assume that W is connected. The second statement claims that
Wo \ f(V) is connected for every connected component Wy of W, and that the map
i (Wo\ f(V), xo) = 7i (W, x¢) is an isomorphism (respectively surjective) for every
xoeWp\f(V)and 0<i<—j—-2({=—j—1).

Proof The first statement follows directly from the Sard—Smale theorem. Since
ind(f) < 0 a point w € W is a regular value for f if and only if w & f(V). The
second statement is proved using standard transversality arguments (see Donaldson
and Kronheimer [3, Section 4.3.2]). We illustrate this method in the case i = 0. For
this case we have to prove that wo(W \ f(V)) — mo(W) is injective (the surjectivity
follows from (1)). Consider two points wg, w; € W\ f(V) belonging to the same
component Wy of W and connect them with a smooth path y: [0, 1] — W,. Using [3,
Proposition 4.3.10] we obtain a smooth path y’: [0, 1] — W with y'|¢o 13 = ¥lg0,13
arbitrary close to y which is transversal to f. Since ind( f) < —2, this transversality
condition implies im(y") N f(V) = @. O

The following proposition plays an important role in the proof of our regularity results.

This will allow us to refine the Freed—Uhlenbeck theorems [4] and to estimate the
codimension of the spaces of bad metrics.
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Proposition A.8 Let M be an n—dimensional compact manifold, E a real rank r
vector bundle and V a linear connection on E. Let U C M be an open set whose
complement ¥ has Hausdorff dimension d <n—2. Let« € AY(E) and ¢ € T'(U, E)
such that Vo = a|y;. Then ¢ extends smoothly to a section € I'(M, E) satisfying
VY =a.

The idea of the proof is to use the (classical) methods of characteristics to solve the
first order equation V f = «: we integrate the family of ordinary equations obtained
by restricting our equation to an (n — 1)—dimensional family of embedded paths which
define a local foliation. We choose the paths such that all starting points belong to U,
and we use the values of ¢ at these points as initial conditions. The condition on the
Hausdorff dimension of ¥ implies that a dense family of paths do not meet the set
(where ¢ is not defined), so on these paths the sections f and ¢ coincide. In this way
one checks that the section f obtained by pathwise integration agrees with ¢ on the
intersections of their domains, providing a proper extension of ¢.

Proof For every smooth path y: (—1,1) — M, consider the connection y*(V) on
the bundle y*(E) on (—1, 1) and the affine ordinary differential equation

(22) y* Vg =y* ()

for sections g in the bundle y*(E). Using the general theory of ordinary differential
equations, one gets, for every e € E, (g, a unique solution

gy,e € F((_lv 1)7 V*(E))

of the equation (22) satisfying the initial condition g, .(0) = e. This solution depends
differentiably on the pair (y,e), where e € E,,(g). Our hypothesis V¢ = «|y; implies
® oY = gy o(y(0)) for every smooth path y: (=1,1) - U.

Let ¢ € I'(V, E) be a maximal element of the ordered set of extensions of ¢ defined
on open subsets of M . The existence of such a maximal element follows by the Zorn
lemma. Since U is dense in M (so also in V') one has

(23) VY = aly
which implies
(24) Vor =8yyxo)

for every smooth path y: (—1,1) — V. The complement X’ = M \ V will also have
Hausdorff dimension <n —2.
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We claim that ¥V = M . Suppose not, and let xo € M \ V. Denoting by B"~! the
standard ball in R”~! consider a local parametrization

h: B x(=1,1) — W C M

of M such that

h(B" 1 x {0}) C V, h(0, 1) = xo.
The idea is to extend ¥ on V U W using the solutions g v (h(x,0))» X € B"~!, where
h, denotes the path ¢ — h(x,1).

So put

S X 0) = gh o (h(x,00) (1), ni=foh.
We claim that 1|y~ = ¥ |wnp, which will complete the proof, because this would
yield a proper extension of i, contradicting its maximality.

Our claim is equivalent to

Sl=10ry = Vohlp—1(py-

The two functions coincide on [B"~!\ pr;(h~!(Z'))] x (=1, 1), because, for any
x e [B”_1 \pr; (A1 (2 ))] the corresponding path /i is entirely contained in V so,
for such x, both sections

t— f(x,1), t—>y(h(x, 1))

coincide with g v (h(x,0))» by (24) and the definition of /. It suffices to notice that,
by our hypothesis, the set #~!(X’) is of Hausdorff dimension at most n — 2, so its
projection on the (n — 1) dimensional ball B"~! is also of Hausdorff dimension at
most n — 2. Therefore, this projection cannot contain any non-empty open set, SO
its complement in B"~! is dense, so [B”_l \prl(h_l(E/))] x (=1, 1)] is dense in
B"~1 x (=1, 1), so the two functions coincide everywhere. a

The following corollary shows that the statement of [4, Lemma 4.16] is true as soon as
the vanishing of the ASD curvature has Hausdorff dimension < 2. In particular this
statement is true for C°°—metrics by the results of Bir [1] and for admissible metrics.

Corollary A.9 Let (M, g) be a compact oriented Riemannian 4—manifold endowed
with a C" —metric g, and S a Hermitian line bundle on M endowed with a non-flat ASD
connection o . Suppose that the vanishing of the curvature has Hausdorff dimension
<2.Let B € A(S) such that

(1) dzp=0.dfp=0,
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(2) The anti-selfdual S —valued form dyf is a tensor multiple of Fy at any point
x € M for which Fys x # 0.

Then B = 0.

Proof Let U be the complement of the vanishing locus ¥ of F,. By assumption we
can write dsB|y = Fs ® {, for asection { € I'(U, S). We get

[FolulA (Blu —dol) = dods (Bly — dsl) = ds(ds Bly — Fo ®¢) =0,

hence B|y —ds¢ = 0, since the wedge product with a non-trivial (real or purely
imaginary) ASD form is invertible on 1-forms. By Proposition A.8 and the assumption
on Z(Fy), the section ¢ extends smoothly to a section £ on M satisfying d,& = §.
Since we assumed d} = 0, we get immediately f = 0. m|

Proposition A.10 Let S be a Hermitian line bundle on an oriented Riemannian 4—
manifold (M, g) and o a Hermitian connectionon S . Let n € A%r(S) with den = 0.
Suppose that on an open set U C M , the form n (regarded as section in Ai ® S) has
real rank 1. Then Fs|y =0.

Proof Supposing that U is simply connected, we can write n = w ® {, where
w € Aﬁ_(U ) is a real selfdual form, and ¢ € I'(U, S). By assumption, both @ and ¢
are nowhere vanishing on U . Since d,n = 0, we get

do R+ wAds¢ =0,

hence w A (0 ® £+ dy¢) = 0, where 6 is the real form on U defined by dow = w A 6.
We get

del=—-0Q¢ Fy@L=—d0@L+0Adse=—-d0Qi—(ON0)RE=—-dIRL.

This yields Fy = —d6, in which the left hand term is purely imaginary and the right
hand term is real. |
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