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Harmonic sections in sphere bundles, normal neighborhoods
of reduction loci, and instanton moduli spaces on definite

4–manifolds

ANDREI TELEMAN

In the first part of the paper we prove an existence theorem for gauge invariant
L2 –normal neighborhoods of the reduction loci in the space Aa.E/ of oriented
connections on a fixed Hermitian 2–bundle E . We use this to obtain results on
the topology of the moduli space Ba.E/ of (non-necessarily irreducible) oriented
connections, and to study the Donaldson �–classes globally around the reduction
loci. In this part of the article we use essentially the concept of harmonic section in a
sphere bundle with respect to an Euclidean connection.

Second, we concentrate on moduli spaces of instantons on definite 4–manifolds with
arbitrary first Betti number. We prove strong generic regularity results which imply
(for bundles with “odd" first Chern class) the existence of a connected, dense open set
of “good" metrics for which all the reductions in the Uhlenbeck compactification of
the moduli space are simultaneously regular. These results can be used to define new
Donaldson type invariants for definite 4–manifolds. The idea behind this construction
is to notice that, for a good metric g , the geometry of the instanton moduli spaces
around the reduction loci is always the same, independently of the choice of g . The
connectedness of the space of good metrics is important, in order to prove that no
wall-crossing phenomena (jumps of invariants) occur. Moreover, we notice that,
for low instanton numbers, the corresponding moduli spaces are a priori compact
and contain no reductions at all so, in these cases, the existence of well-defined
Donaldson type invariants is obvious. Note that, on the other hand, there seems to
be very difficult to introduce well defined numerical Seiberg-Witten invariants for
definite 4–manifolds. For instance, the construction proposed by Okonek and the
author in [7] gives a Z–valued function defined on a countable set of chambers.

The natural question is to decide whether these new Donaldson type invariants yield
essentially new differential topological information on the base manifold, or have a
purely topological nature.
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Introduction

The main goal of this article is to study moduli spaces of instantons over 4–manifolds
with negative definite intersection form. The vanishing of bC has an important conse-
quence on the geometry of the instanton moduli spaces: all line bundles admit ASD
connections (with respect to any metric) hence, as soon as a rank 2–bundle E splits
topologically, the corresponding instanton moduli space will always contain reductions.
In other words, “one cannot get rid of reductions by perturbing the metric”. On the
other hand, our main applications will concern 4–manifolds with b1 > 0, and for
such manifolds the spaces of reductions are positive dimensional. Therefore, it is very
important to study carefully the global geometry of the moduli space of connections
around the loci of reductions. This will be our first goal.

To be more precise, let E be a rank 2–Hermitian bundle on a 4–manifold M , and denote
D WD det.E/, d D c1.D/. Consider the affine space Aa.E/ of connections A on E

which induce a fixed connection a on D , and the moduli space Ba.E/DAa.E/=GE ,
where GE is the gauge group �.SU.E//.

Let l 2H 2.X;Z/ such that l.d�l/D c2.E/ and consider the set �Dfl; d�lg (which
has either one or two elements). We denote by A�a.E/ the subspace of connections
A 2Aa.E/, which are simply reducible of type �, that is, those which admit only two
parallel line subbundles whose Chern classes are l , d � l . Such a connection will be
called �–reducible. A�a.E/ becomes a (locally closed) submanifold of the affine space
Aa.E/ (after suitable Sobolev completions). Our first problem is the construction of
a gauge invariant L2 –normal neighborhood of this submanifold. More precisely, we
will show that, denoting by N � the L2 –normal bundle of A�a.E/, the restriction of
the natural map �W N �!Aa.E/ to a sufficiently small gauge invariant neighborhood
U� of the zero section is a diffeomorphism on its image. Moreover, the neighborhood
U� is defined by a inequality of the form k˛kL1 � ".A/ (on the fiber NA ), where the
assignment A 7! ".A/ is gauge invariant and continuous (with respect to a sufficiently
fine Sobolev topology on the space of connections).

Although this statement is very natural, the proof is not easy. The difficulty comes
from the fact that infinite dimensional manifolds are not locally compact. Even the
fact the � is injective on a neighborhood of the zero section is not trivial. The main
difficulty is to characterize in a convenient way the connections which are “close” to
the reducible locus A�a.E/, that is, those which are “almost” �–reducible.

Our argument is based on the following idea: A reduction A2A�a.E/ admits a parallel
section in the sphere bundle S.su.E//. A connection which is close to being reducible
should admit an energy minimizing harmonic section in this sphere bundle. The precise
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meanings of the words “energy” and “harmonic” are the following: we associate to
any connection A 2Aa.E/ the energy functional

EA.u/ WD kdA.u/k
2
L2 ; EAW �.S.su.E/// �! R�0;

and we agree to call the critical points of this functional A–harmonic sections. After
proving these results about normal neighborhoods of reduction loci, we realized that
our problem can be naturally generalized in the following way: For an Euclidean
bundle F on an arbitrary compact Riemannian manifold, construct a gauge invariant
L2 –normal neighborhood of the space of Euclidean connections dAW A

0.F /!A1.F /

with 1–dimensional kernel. Therefore, in Section 1 we will treat this more general
problem, which is of independent interest; the results concerning reducible Hermitian
connections will be easily deduced as applications, taking F D su.E/.

Section 2 deals with the first consequences of our existence results for gauge invariant
L2 –normal neighborhoods: a global description of the universal SO.3/ bundle, explicit
formulae for the Donaldson �–classes around the reduction loci and an explicit de-
scription of the homotopy type of the whole moduli space Ba.E/. This space is much
more complex than its open subspace B�a.E/, which plays a central role in classical
gauge theory and whose rational homotopy type has been described by Donaldson
and Kronheimer [3]. Our description of Ba.E/ yields an easy method to compute the
cohomology of this space using the Mayer–Vietoris exact sequence.

Section 3 is dedicated to the geometry of the instanton moduli space around a reduction
locus. Using our existence results for normal neighborhoods, we show that in a
neighborhood of the reduction locus associated with a fixed topological splitting of the
bundle, the instanton moduli problem reduces to an abelian moduli problem, which is
very much similar to the Seiberg–Witten one. These abelian equations read

(1)

(
FC

b
�

1
2
FCa D .˛^ x̨/C;

.d�
b˝2˝a_

; dC
b˝2˝a_

/˛ D 0;

which are equations for a pair .b; ˛/, where b is a connection on a fixed Hermitian
line bundle L and ˛ 2 A1.L˝2 ˝D_/. This result provides simple descriptions
of the linear spaces of harmonic spaces of the deformation elliptic complexes at the
reductions. It is very important to have a global description of these linear spaces.
Similar results are stated for the loci of twisted reductions (that is, instantons which are
locally reducible, but globally irreducible).

Our most important technical results are obtained in Section 3.3: we prove strong
generic regularity theorems at the reductions. Regularity at the reductions is an old,
classical problem in gauge theory (see Freed and Uhlenbeck [4], Donaldson and
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Kronheimer [3]) and one might wonder whether there are still unsolved questions
on this problem. The point is that Freed–Uhlenbeck’s generic regularity result is not
sufficient for our purposes. For our purposes, we need a connected, dense open set of
good metrics (metrics for which all reductions in the Uhlenbeck compactification are
regular). Our proof has two steps:

Step 1 Define a connected, dense open set of admissible Cr –metrics, for which the
vanishing loci of the harmonic representatives of the classes

2l � d; l � .d � l/� c2.E/

have good geometric properties (see Section A.2). Our admissibility condition is
very natural: we require that the rank of the intrinsic derivative of these harmonic
representatives at any vanishing point is at least 2. The difficulty is to check that this
condition defines indeed a connected, dense set of metrics.

In particular, for our admissible metrics, the vanishing loci of all these harmonic
representatives have Hausdorff dimension at most 2. Note that this holds for any C1–
metric by a result of Bär [1], but this result does not appear to generalize for Cr –metrics.
For a metric for which this Hausdorff dimension bound holds, the statement in [4,
Lemma 4.16] holds, making possible the second step. This stronger version of [4,
Lemma 4.16] is proved in detail in Appendix A (as Corollary A.9).

Step 2 Regard the linear space formed by the second harmonic spaces at the reduc-
tions as the moduli space associated with an abelian moduli problem, and prove a
transversality theorem for this moduli problem with respect to variations of g (in the
space of admissible metrics). In other words, we will prove that the parameterized
moduli space (obtained by letting the metric vary in the set of admissible metrics) is
smooth away of the zero-section. Next we show that – for a bundle E with odd Chern
class – the projection map from the C�–quotient of this parameterized moduli space
(minus the zero-section) on the space of admissible metrics is Fredholm of negative
index � �2, hence its image has connected complement.

Section 4 deals with applications of our results. First we prove a simple geometric
property of a particular instanton moduli space on a 4–manifold which has the homology
type of a class VII surface with b2 D 2: the two circles of reductions belong always
(for any metric!) to the same connected component. We continue with the construction
of a new class of Donaldson invariants; the new invariants are defined in two situations:

First we show that the topological data can be chosen such that the rank 2–bundles E0

with c2.E
0/ � c2.E/ and c1.E

0/ D c1.E/ are all topologically non-decomposable;
in this case the Uhlenbeck compactification of MASD

a .E/ contains no reduction, so
Donaldson invariants can be defined in the usual way. In particular, in the case when
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4c2.E/�c1.E/
2D0, one obtains a moduli space of SO.3/–representations of �1.M /,

modulo SU.2/–conjugation.

Second, one chooses the topological data such that the bundle E splits topologically,
4c2.E/� c1.E/

2 � 3, and c1.E/ 62 2H 2.M;Z/C Tors. In this case MASD
a .E/ is

compact for any metric, and our results concerning generic regularity at the reductions
apply. Therefore, for a generic metric, MASD

a .E/� is a smooth manifold with a finite
number of cylindrical ends towards the reduction loci. Every end is a cylinder on a
projective bundle over a b1.M /–dimensional torus.

1 Harmonic sections, parallel sections

1.1 Harmonic sections in sphere bundles

Let .M;g/ be a compact oriented Riemannian n–manifold and let F be a real rank
r vector bundle on M endowed with an inner product, and denote by S.F / the unit
sphere bundle of F . Let A be an Euclidean connection on F . The energy functional
on the space of sections �.S.F // is defined by

EA.u/D kdA.u/k
2
L2 D hdAu; dAui:

The critical points of this functional will be called A–harmonic sections.

Proposition 1.1 A section u 2 �.S.F // is harmonic if and only if it satisfies the
Euler–Lagrange equation

d�AdAu� jdAuj2uD 0:

Proof The section u 2 �.S.F // is a critical point of EA if and only if

hd�AdAu; viL2 D 0

for every v 2 Tu.�.S.F ///. This happens if and only if there exists a real function '
such that d�

A
dAuD 'u. On the other hand, the well-known identity

1
2
�juj2 D .d�AdAu;u/� jdAuj2

shows that one must have ' D jdAuj2 .

For a fixed connection A the theory of A–harmonic sections is very much similar to
the theory of sphere valued harmonic maps. In particular, one has a parabolic evolution
equation given by the gradient flow of the functional EA , and using this equation and its
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convergence properties, one can study the existence of an A–harmonic representative
in a given homotopy class of sections.

Two vectors a, b of an Euclidean vector space V define an endomorphism a^V b 2

so.V / given by a^V b.h/D .a; h/b� .b; h/a. The subspace

fa^V bj b 2 V g � so.V /

coincides with the orthogonal complement so.a?/? of so.a?/ in so.V /, and the map
a? 3 b 7! a^V b 2 so.a?/? is an isomorphism. Similarly, for a section u 2 A0.F /

and a form v 2A1.F / we obtain a form u^F v 2A1.so.F //.

Lemma 1.2 Let A 2A.F /, u 2 �.S.F // and A0 WDA�u^F dAu. Then

(1) The section u is A0 –parallel.

(2) A0 is the unique connection making u parallel with A�A0 2A1.so.u?/?/.

Proof (1) It holds that

dA0
uD dAu� .u^F dAu/.u/D dAu� .u;u/dAuC .u; dAu/uD 0;

because, since .u;u/� 1, one has .u; dAu/D 0.

(2) If A � A0 2 A1.so.u?/?/, there exists a unique form v 2 A1.u?/ such that
A�A0 D u^F v . The relation dA0

uD 0 is equivalent to dAuD v .

Proposition 1.3 Let u 2 �.S.F // and A 2 A.F /. The following conditions are
equivalent

(1) The section u is A–harmonic.

(2) Putting A0 WDA�u^F dAu, one has d�
A0
.A�A0/D 0.

Proof We write locally dAuDrA
ei

u ei with respect to a local orthonormal frame .ei/.
Therefore, taking into account that u is A0 parallel (by Lemma 1.2) and .u;rA

ei
u/D 0,

one has

d�A0
.A�A0/D .dA0

/�.u^F dAu/

D u^F .dA0
/�dAu

D u^F .dA�u^F dAu/�dAu

D u^F Œd
�
AdAuC�.u^F dAu/� dAu�

D u^F Œd
�
AdAuC�.u^F r

A
i uei/�rA

j uej �

D u^F Œd
�
AdAu� .rA

i u;rA
j u/u� .ei

^�ej /�

D u^F Œd
�
AdAu� jdAuj2u�:
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Since d�
A

dAu � jdAuj2u 2 A0.u?/, the vanishing of u ^F Œd�
A

dAu � jdAuj2u� is
equivalent to the vanishing of d�

A
dAu� jdAuj2u.

Using Lemma 1.2 and Proposition 1.3 we obtain:

Corollary 1.4 Let u 2 �.S.F // be a A–harmonic section. Then there exists a unique
connection A0 2A.F / with the properties:

(1) A�A0 2A1.so.u?/?/.

(2) A is in Coulomb gauge with respect to A0 .

(3) u is a A0 –parallel.

1.2 A normal neighborhood of the locus of Euclidean connections with
1–dimensional kernel

We define the locally closed subspace

A0.F / WD fA 2A.F / j dim.ker.dA//D 1g �A.F /:

Let S.F / be the space of trivial rank 1–subbundles of F . This space can be naturally
identified with �.S.F //=f˙1g, and becomes a smooth manifold after suitable Sobolev
completions. Two trivial rank 1–subbundles which are sufficiently C0 –close have
isomorphic complements, so they are conjugate modulo the action of the gauge group
Aut.F / D �.SO.F //. In other words, the action of Aut.F / on S.F / is locally
transitive. One has an obvious surjective map

wW A0.F /! S.F /; A 7! hker.dA/i;

where hker.dA/i D im.evW ker.dA/�M ! F / stands for the subbundle generated by
the line ker.dA/. We will use the subscript .�/k (for k 2N sufficiently large) to denote
Sobolev completion with respect to the L2

k
–norm.

Proposition 1.5 The subset A0.F /k � A.F /k is a submanifold, and the surjection
wW A0.F /k ! S.F /kC1 is a submersion.

Proof We omit Sobolev indices to save on notations. Let A 2 A0.F / and � D

hker.dA/i 2 S.F /. The fiber w�1.�/ is obviously an affine subspace of A.F / which
can be identified with A.u?/. The stabilizer H of � is a closed Lie subgroup H

of the gauge group Aut.F / whose Lie algebra h can be identified with A0.so.u?//,
so it has a topological complement h? D A0.so.u?/?/. The restriction of the map
h? � w�1.�/ ! A.F / given by .h;B/ 7! exp.h/.B/ to a sufficiently small open
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neighborhood of .0;A/ is an embedding which parameterizes a neighborhood of A in
A0.F /. This gives the submanifold structure of A0.F /. Using the local transitivity of
the gauge action on S.F /, it follows that h 7! exp.h/.A/ defines a local slice of w at
A, proving that w is a submersion at A.

The main goal of this section is to prove that

Theorem 1.6 The submanifold A0.F / � A.F / has a tubular, gauge invariant, L2 –
normal neighborhood.

The idea is very simple and natural: construct a neighborhood of A0.F / consisting of
connections which admit an (up to sign) unique harmonic, energy minimizing section.

Let A0 2A0.F /, and let u one of the two generators in �.S.F // of the line ker.dA0
/.

The splitting F D hui˚u? defines an A0 –parallel splitting

so.F /D so.u?/˚ so.u?/? D so.u?/˚u^F u?;

which gives an L2 –orthogonal decomposition

A1.so.F //D

A1.so.u?//˚ dA0
ŒA0.so.u?/?/�˚ kerŒd�A0

W A1..so.u?/?/!A0.so.u?/?/�:

The geometric interpretations of the three factors in the decomposition above are the
following: the space A1.so.u?// is the tangent space of the fiber w�1.hui/ at A,
nA WD .dA0

/ŒA0.so.u?/?/� is the normal space at A0 of this fiber in the submanifold
A0.F /, whereas the space

NA0
WD ker

�
.dA0

/�W A1..so.u?/?/!A0.so.u?/?/
�

is the normal space at A0 of the submanifold A0.F / in the space of connections A.F /.
Let N ! A0.F / be the normal vector bundle of the submanifold A0.F /, whose
fiber over A0 2 A0.F / is just the space NA0

defined above. One has a natural map
�W N !A.F / given by

�.A0; ˛/DA0C˛ 8A0 2A0.F /; ˛ 2NA0
;

which is obviously a local isomorphism at every point of the form .A0; 0/. The map
� is equivariant with respect to the natural gauge actions on N , A0.F / and A.F /.
For � 2A0.so.F //D Lie.Aut.F // we denote by �# the tangent field (the infinitesimal
transformation) of N associated with � and by �# the corresponding tangent field of
A.F /. The equivariance property of � implies

(2) d.�/.�#
.A0;˛0/

/D Œ�#�A0C˛0
D dA0C˛0

.�/D dA0
.�/C Œ˛0; ��:
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Lemma 1.7 Let A0 2 A0.F /. There exists ".A0/ > 0 such that the differential
d.A0;˛0/� at .A0; ˛0/ is an isomorphism for every ˛0 2NA0

with k˛0kL1 � ".A0/.
The assignment A0 7! ".A0/ can be chosen to be continuous and gauge invariant.

Proof The submersion wW A0.F /! S.F / induces a submersion zwW N ! S.F /. Fix
.A0; ˛0/ 2N and choose u0 2 ker.dA0

/\�.S.F //. The subspace

f�#
.A0;˛0/

j � 2A0.so.u?0 /
?/g

is a zw–horizontal space at .A0; ˛0/, that is, a topological complement of the vertical
tangent space T.A0;˛0/. zw

�1.hu0i/. This complement is isomorphic with A0.so.u?
0
/?/.

A vertical tangent vector
v0 2 T.A0;˛0/. zw

�1.hu0i/

can be written as v0 D .b; ˇ/, where b 2 A1.so.u?
0
// and ˇ 2 A1.so.u?

0
/?/ satisfy

the equation
d�A0

ˇ��Œb ^�˛0�D 0:

(obtained by differentiating the relation d�
A0
˛0 D 0 in the direction . PA0; P̨0/D .b; ˇ/).

Therefore, one has an isomorphism

T.A0;˛0/.N /D˚
.b; ˇ/ 2A1.so.u?0 //˚A1.so.u?0 /

?/
ˇ̌

d�A0
ˇ��Œb ^�˛0�D 0

	
˚A0.so.u?0 /

?/:

Using (2) one obtains

d�.b; ˇ; �/D bCˇC dA0
.�/C Œ˛0; ��:

The statement follows now directly from Lemma 1.8 below.

Lemma 1.8 If k˛0kL1 is sufficiently small, then the operator

A1.so.u?0 //k ˚A1.so.u?0 /
?/k ˚A0.so.u?0 /

?/kC1

P
�!

A1.so.F //k ˚A0.so.u?0 /
?/k�1

given by
.b; ˇ; �/ 7! .bCˇC dA0

.�/C Œ˛0; ��; d
�
A0
ˇ��Œb ^�˛0�/

is an isomorphism.

Proof We omit as usually the Sobolev indexes. Using the decomposition

A1.so.F //DA1.so.u?0 //˚A1.so.u?0 /
?/;
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the operator P can be written as

P D

24 id 0 Œ˛0; ��

0 id dA0

�� Œ� ^ �˛0� d�
A0

0

35
If .b; ˇ; �/ 2 ker.P /, one obtains easily

(3)

b D�Œ˛0; ��;

d�A0
ˇ D�d�A0

dA0
� D �.b ^�˛0/D �.�Œ˛0; ��^�˛0/;

�A0
� D �ŒŒ˛0; ��^�˛0�:

On the other hand, since u0 is parallel and dim.ker.dA0
//D 1, one has

ker.dA0
W A0.su.u?0 /

?/!A1.su.u?0 /
?//Du0^F ker.dA0

W A0.u?0 /!A1.u?0 //Df0g

so the minimal eigenvalue �.A0/ of �A0
W A0.su.u?

0
/?/!A0.su.u?

0
/?/ is positive.

Therefore (3) implies � D 0 (hence ker.P / D 0) as soon as k˛0k
2
L1

is sufficiently
small with respect to �.A0/. For surjectivity, note that the equation

(4) P .b; ˇ; �/D .c; 
; �/

becomes

bC Œ˛0; ��D c; ˇC dA0
� D 
; d�A0

ˇ��Œb ^�˛0�D �:

Consider first the weaker equation (for the single unknown � )

�A0
� ��ŒŒ˛0; ��^�˛0�D�� Œc ^�˛0�� �C d�A0


;

which is uniquely solvable if k˛0k
2
L1

is sufficiently small, so one gets a unique solution
� 2A0.so.u?

0
/?/kC1 for a triple .c; 
; �/ of Sobolev type .L2

k
;L2

k
;L2

k�1
/. Then set

ˇ WD 
 � dA0
� , b WD c � Œ˛0; ��, and we get a solution of the equation (4) of Sobolev

type .L2
k
;L2

k
;L2

kC1
/.

Lemma 1.9 Let A0 2A0.F / and u0 2 ker.dA/\�.S.F //. There exists ".A0/ > 0

such that for every ˛ 2A1.so.u?
0
/?/ with d�

A0
.˛/D 0 and k˛kL1 � ".A0/ the energy

functional EA0C˛ on the space �.S.F // obtains its absolute minimum at ˙u0 and
only at these sections. Moreover, the assignment A0.F / 3A0 7! ".A0/ can be chosen
to be continuous and gauge invariant.

Geometry & Topology, Volume 11 (2007)



Harmonic sections, normal neighbourhoods of reduction loci, and moduli spaces 1691

Proof Consider a section u 2 �.S.F ///, put v WD u � u0 , v0 WD uC u0 , and set
˛ WD u0 ^F a, where a 2A1.u?

0
/. This implies j˛j2 D 2jaj2 . One has

kdA0C˛uk2�kdA0C˛u0k
2
D kdA0C˛vk

2
C 2hdA0C˛u0; dA0C˛vi D

kdA0
vk2Ck˛.v/k2C 2hdA0

v; ˛.v/iC 2h˛.u0/; dA0
viC 2h˛.u0/; ˛.v/i:

But

d�A0
.˛.u0//D�� dA0

.�˛.u0//D�� dA0
.�˛/.u0/˙�.�˛^ dA0

u0/D 0

(because d�
A0
.˛/D0 and dA0

u0D0), so the term 2h˛.u0/; dA0
vi on the right vanishes.

On the other hand it holds pointwise

.˛.u0/; ˛.v//D ..u0 ^F a/.u0/; .u0 ^F a/.v//D

.a; .u0; v/a� .a; v/u0/D jaj
2.u0; v/D

1
2
j˛j2.u0; v/;

1D ju0C vj
2
D ju0j

2;

2.u0; v/D�jvj
2:

Therefore

kdA0C˛uk2�kdA0C˛u0k
2
D kdA0

vk2Ck˛.v/k2C 2hdA0
v; ˛.v/i�1

2

Z
M

j˛j2jvj2

� kdA0
vk2�c1 sup j˛jkdA0

vkL2kvkL2�c2 sup j˛j2kvk2
L2

Since the same computation also applies to �u0 , we get

(5)
EA0C˛.u/�EA0C˛.u0/� kdA0

v0k2�c1 sup j˛jkdA0
v0kkv0k�c2 sup j˛j2kv0k2

EA0C˛.u/�EA0C˛.u0/� kdA0
vk2�c1 sup j˛jkdA0

vkkvk�c2 sup j˛j2kvk2

Since kuk2
L2 D ku0k

2
L2 D Vol.M /, one has .u� u0/?L2.uC u0/, so the triangle

.u0;u;�u0/ is L2 –right at the vertex u, and one has

sin2
†.Rv;Ru0/C sin2

†.Rv0;Ru0/D 1:

Therefore, either sin†.Rv;Ru0/�
1p
2

or sin†.Rv0;Ru0/�
1p
2

. Suppose we are in
the first case.

We get the inequality

kvk2
L2 � 2kprRu?

0
vk2 �

2

�.A0/
kdA.v/k

2;
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where prRu?
0

stands for the L2 –orthogonal projection on the L2 –orthogonal com-
plement of the line Ru0 D ker.dA0

/ and �.A0/ is the first positive eigenvalue of
�A0
W A0.F /!A0.F /. In other words, 1p

�.A0/
is the norm of the inverse

GA0
W im.dA0

/! ker.dA0
/?

of dA0
with respect to the L2 –norms.

Using (5) we get an estimate of the form

EA0C˛.u/�EA0C˛.u0/�

kdA0
vk2� c1.A0/ sup j˛jkdA0

vk2� c2.A0/ sup j˛j2kdA0
vk2

for positive constants c1.A0/, c2.A0/. Taking

".A0/Dmin

 
1

4c1.A0/
;

s
1

2c2.A0/

!
;

we get for sup j˛j � ".A0/

EA0C˛.u/�EA0C˛.u0/�
1
2
kdA0

vk2 � 1
4
�.A0/kvk

2;

which is strictly positive unless v D 0, that is, uD u0 . The same argument applies in
the case sin†.Rv0;Ru0/�

1p
2

by replacing u with �u0 and v with v0 .

The inequality k˛kL1 < ".A0/ as A0 varies in A0.F / defines a gauge invariant
neighborhood N of the zero section in the normal bundle N of this submanifold.

Corollary 1.10 The restriction of the natural map

�W N �!A.F /; �.A0; ˛/ WDA0C˛

to N is injective.

Proof Indeed, if �.A0; ˛/D �.B0; ˇ/DA, then one must have ker.dA0
/D ker.dB0

/,
because the absolute minimum of EA on �.S.F // is unique up to sign. By Corollary
1.4, we obtain A0 D B0 , so finally ˛ D ˇ .

Combining with Lemma 1.7, we get

Theorem 1.11 There exists a gauge invariant neighborhood U of the zero section in
the bundle N which (after suitable Sobolev completions) is mapped diffeomorphically
onto its image via the natural map � .
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Remark The map �jU can be regarded as a system of “gauge equivariant polar
coordinates” around the submanifold A0.F /.

Remark In the finite dimensional framework, one can prove easily that in general,
for any submanifold X of a Riemannian manifold Y there exists a neighborhood
of the zero section in the normal bundle NX=Y which is mapped diffeomorphically
via the exponential map onto a normal neighborhood of X . However, in the infinite
dimensional framework, the problem is much more difficult. Theorem 1.11 solves this
problem in the special case of the embedding A0.F /�A.F /.

1.3 Normal neighborhoods of the reduction loci in the space of Hermitian
connections

Let E be a rank 2 Hermitian bundle over a 4 manifold M and denote D WD det.E/,
d WD c1.D/. Consider the involution id W x 7!d�x on H 2.M;Z/. A congruence class
� 2H 2.M;Z/=hid i will be called a topological decomposition of E if it coincides
with the set of Chern classes of the terms of a splitting of E as direct sum of line
bundles (that is, when x.d �x/D c2.E/ for x 2 �).

Fix a connection a 2 A.D/ and denote by Aa.E/ the affine space of connections
on E inducing a on D . Our gauge group is the group GE WD �.SU.E// of determi-
nant 1 unitary isomorphisms of E . A connection will be called simply reducible if
dim.ker.dAW A

0.su.E//!A1.su.E////D 1. Such a connection admits precisely two
parallel line subbundles (which, of course, might be isomorphic), and these subbundles
give an A–parallel orthogonal splitting of E . If A admits a parallel line bundle L

with 2c1.L/¤ d , then A is automatically simply reducible and L, L? are the unique
A–parallel line subbundles of E . In particular, if d 62 2H 2.M;Z/, then any reducible
connection on E is simply reducible. If we fix a line subbundle L ,!E , there exists
a natural bijection between the simply reducible connections on E for which L is
parallel, and the subspace A�.L/�A.L/ of abelian connections b 2A.L/ for which
b 6' a˝b_ . On has automatically A�.L/DA.L/ when 2c1.L/¤ d , whereas A�.L/
is the complement of 2b1.N / gauge orbits in A.L/ when 2c1.L/D d .

Let � be a topological decomposition of E and denote by A�a.E/ the subspace of simple
reducible connections A 2Aa.E/ with the property that the set of the Chern classes of
the two A–parallel line subbundles of E coincides with �. Such a connection will be
called �–reducible. Denote also by ��.S.su.E/// the set of sections u2�.S.su.E///
with the property that the set c.u/ of Chern classes of the eigen line subbundles of u

coincides with �. Putting

(6) Lu WD ker
�
u�

i
p

2
idE

�
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these eigen line subbundles are L˙u . One has a natural surjection

wW A�a.E/ �! ��.S.su.E///
ı
f˙1g

which associates to every connection A 2A�a.E/ the unordered pair of sections of the
sphere bundle S.su.E// which are A–parallel.

For sufficiently large Sobolev index k , the space �.S.su.E///kC1 becomes a Banach
manifold and the subset ��.S.su.E///kC1 is open and closed in �.S.su.E///kC1 ,
so it is a union of connected components. The gauge group GE;kC1 acts smoothly on
�.S.su.E///kC1 , leaving invariant ��.S.su.E///kC1 ; on ��.S.su.E///kC1=f˙1g

this gauge group acts transitively. The same arguments as in the proof of Proposition
1.5 show that

Proposition 1.12 The subset A�a.E/k � Aa.E/k is a submanifold, which is a
locally trivial affine bundle over ��.S.su.E///kC1=f˙1g. The fiber over a class
Œu� 2 �.S.su.E///kC1=f˙1g can be naturally identified with the space of abelian
connections A�.Lu/k .

Fix a reducible connection A 2 A�a.E/ with w.A/ D Œu�. Put Su WD .L
˝2
u ˝D_/.

The bundle su.E/ splits as an orthogonal sum of A–parallel summands

su.E/D .M �Ru/˚Su D so.u?/˚ so.u?/?;

and, as in Section 1.2, we obtain the following L2 –orthogonal decomposition of the
tangent space TA.Aa.E//DA1.su.E// at A:

A1.su.E//DA1.M;R/u˚A1.Su/D

A1.M;R/u˚ dAŒA
0.Su/�˚ ker

�
d�AW A

1.Su/!A0.Su/
�
:

The first summand A1.M;R/u is the tangent space of the fiber w�1.u/'A�.Lu/ at
A, nA WD dAŒA

0.Su/� is the normal space at A of this fiber in the submanifold A�a.E/,
whereas the space NA WD ker

�
d�

A
W A1.Su/!A0.Su/

�
is the normal space at A of

A�a.E/ in the space of connections Aa.E/.

We denote by N �!A�a.E/ the L2 –normal vector bundle of the submanifold A�a.E/,
whose fiber over A 2A�a.E/ is NA .

Using Theorem 1.11 we obtain the following important result, which gives an L2 –
normal neighborhood of the submanifold A�a.E/ of simple reductions of type �, and
a system of polar coordinates around this submanifold.
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Theorem 1.13 There exists a gauge invariant neighborhood U� of the zero section in
the normal bundle N �!A�a.E/ which (after suitable Sobolev completions) is mapped
diffeomorphically onto its image via the natural map

�W N �
!Aa.E/; .A0; ˛/ 7!A0C˛:

The elements of the orthogonal slice �.N �
A0
\U�/�Aa.E/ through A0 2A�a.E/ are

connections A for which the two elements of

ker.dA0
W A0.su.E//!A1.su.E///\�.S.su.E///

(which are A0 –parallel) are the unique energy-minimizing A–harmonic sections in
�.S.su.E///.

From now on we will always assume that U� is defined by an inequality of the form
k˛kL1 � ".A0/, where A0 7! ".A/ is continuous and gauge invariant (see Lemma
1.7 and Lemma 1.9).

1.4 Twisted reductions

When the base manifold has nontrivial first homology group H1.M;Z/, one also has to
take into account the twisted reductions, that is, the connections which are irreducible
but whose pull-back on a double cover of M become reducible. Although the stabilizer
GE;A of such a connection is just the center f˙idEg of the gauge group, these loci
of twisted connections and the geometry of the instanton moduli spaces around these
loci must be studied in detail; the reason is simple: the classical transversality results
with respect to metric variations (see Donaldson and Kronheimer [3]) fails not only at
a reduction, but also at a twisted reduction, so it is not clear whether one can achieve
regularity of an instanton moduli space at such a point by perturbing the metric.

Let �W �1.M;x0/! f˙1g be a group epimorphism and denote by ��W M� ! M

the double cover associated with ker.�/. The tautological involution of M� will be
denoted by �. A connection A 2 Aa.E/ will be called �–twisted reducible (or a
�–twisted reduction) if it is irreducible, but its pullback ��� .A/ 2 A��� .a/.�

�
� .E//

is reducible. For such a connection one has an orthogonal ��� .A/–parallel splitting
��� .E/ D L0 ˚L00 and an isomorphism L00 ' ��.L0/. L0 and L00 are the unique
��� .A/–parallel subbundles of E , because, if not, the SO.3/–connection associated
with ��� .A/ would be trivial. In this case A will be projectively flat and the holonomy
of A acts on the projective line P.Ex0

/ by an involution. Therefore, A would admit (at
least) two parallel line subbundles, contradicting the assumption that A was irreducible.
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In other words ��� .A/ must be simply reducible of type �D .l; ��.l//, where l is a
solution in H 2.M�;Z/ of the system

(7) l C ��.l/D ��� .d/; l � ��.l/D 2c2.E/:

For a �–twisted reduction A the SO.3/–bundle su.E/ has an A–parallel splitting

su.E/DR�˚F;

where R� is the Euclidean real line subbundle of su.E/ consisting of trace-free anti-
Hermitian endomorphisms ux 2 su.Ex/ whose eigen lines are L0

zx
, L00
zx
D L0

�.zx/
,

where zx is a lift of x 2M in M� , and L0 , L00 are the ��� .A/–parallel line subbundles
of ��� .E/. R� is isomorphic with the non-orientable Euclidean real line bundle
associated with the representation �W �1.M;x0/!O.1/. The second term F is an
O.2/–bundle with det.F / ' R� , whose pull-back to M� has two SO.2/ D U.1/–
reductions, isomorphic with ŒL0�_˝L00 and ŒL00�_˝L0 .

We fix a topological decomposition �D fl; ��.l/g of ��� .E/ and we denote by A�a.E/
the subspace of �–twisted reductions A 2 Aa.E/ with the property that ��� .A/ is
simply reducible of type �.

Denote by ��.S.su.��� .E//// the set of sections u of the sphere bundle of su.��� .E//
satisfying the property ��.u/D �u and denote by ��� .S.su.��� .E//// the subset of
��.S.su.��� .E//// consisting of sections u, such that the Chern classes of the eigen
line sub-bundles of ��� .u/ are l , ��.l/.

In the same way as in the case of non-twisted connections one gets a locally trivial,
gauge equivariant fibration

wW A�a.E/ �! ��� .S.su.��� .E////
ı
f˙1g;

and the fiber over a class Œu� can be identified with the subspace

A�� .L��� .u//�A.L��� .u//

of abelian connections b 2A.L��� .u// satisfying

b˝ ��.b/D ��.a/ (via the obvious isomorphism L˝ ��.L/' ��� .D/) ; b 6' ��.b/:

The second condition is superfluous when l ¤ ��.l/. The space A1.su.E// splits as

A1.su.E//DA1.R�/˚ dAŒA
0.F /�˚ ker

�
d�AW A

1.F /!A0.F /
�
;

where the third term can be identified with the normal space N �
A

at A of the submanifold
A�a.E/ of �–twisted connections of type �.
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Using similar methods as in the proofs of Theorems 1.11, 1.13 one gets easily the
following existence theorem for L2 –normal neighborhoods of the loci of twisted
reductions.

Theorem 1.14 There exists a gauge invariant neighborhood U� of the zero section in
the normal bundle N �!A�a.E/ which (after suitable Sobolev completions) is mapped
diffeomorphically onto its image via the natural map

�W N �
!Aa.E/; .A0; ˛/ 7!A0C˛:

The elements of the orthogonal slice �.NA0
\U�/�Aa.E/ through A0 2A�a.E/ are

connections A 2Aa.E/ for which the two elements of the intersection

ker.d��� .A0/
W A0.su.��� .E///!A1.su.��� .E////\��.S.su.��� .E////

(which are ��� .A0/–parallel) are the unique energy-minimizing ��� .A/–harmonic
sections in �.S.su.��.E////.

As in the non-twisted case we will suppose that U� is defined by an inequality of the
form k˛kL1 � ".A/, where the assignment A�a.E/ 3 A 7! ".A/ is gauge invariant
and continuous.

2 The Donaldson �–classes around the reductions and the
homotopy type of Ba.E/

2.1 The universal bundle around reductions

The structure of the universal bundle around a single reduction is well-known. A
complete description can be found in Donaldson and Kronheimer [3, pages 186–187].
However, for our purposes, this classical result is not sufficient, because we will need the
structure of the universal bundle around positive dimensional subspaces of reductions.

We recall that the universal SO.3/–bundle on B�a.E/�M is defined as

F WD
�
A�a.E/� su.E/

�ı
xGE ;

where xGE WD GE=f˙1g acts in the natural way on both factors. Alternatively, one can
let xGE act from the right and define F to be the bundle with fiber su.E/ over B�a.E/
which is associated with the principal xGE –bundle A�a.E/!B�a.E/. Let �Dfl; d�lg

be a topological decomposition of E . We will assume for simplicity that 2l ¤ d

which assures that A.L/DA�.L/ for every Hermitian line bundle of Chern class l ; in
particular the fiber of the fibration wW A�a.E/! ��.S.su.E//=f˙1g over f˙ug can
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be identified with the affine space A.Lu/ (see Section 1.3). We will identify A.Lu/

with its image in Aa.E/.

We will omit the upper script � in the notations N � , U� introduced in the previous
section and we denote by N � , U� the complement of the zero section in N and U (see
Theorem 1.13). Replacing U be a smaller gauge invariant neighborhood if necessary,
we may assume that �.U�/�A�a.E/. We put

V WD �.U/
ı
xGE � Ba.E/; V� WD �.U�/

ı
xGE � B�a.E/:

V is a neighborhood of the moduli space of �–reductions B�a.E/ WDA�a.E/=GE . Fix
a section u 2 ��.S.su.E/// and denote by Gu the subgroup of GE consisting of
elements g 2 G which leave Lu invariant. We have a natural isomorphism Gu ' G ,
where G WD C1.M;S1/. Put

xG WD G
ı
f˙1gI xGu WD Gu

ı
f˙1g � xGE ;

and denote by Gx0 , Gx0

E
, Gx0

u the subgroups of G (respectively GE , Gu ) of elements
f with f .x0/D 1. Note that these subgroups are mapped injectively into xG , xGE , xGu ,
so we will use the same notations for the corresponding subgroups of these groups.

The main point which will be used in our computation is that the fixing of the section u

defines a xGu –reduction of the restriction of the principal xGE –bundle A�a.E/!B�a.E/
to the subspace V� � B�a.E/.

Proposition 2.1 Suppose � D fl; d � lg with 2l ¤ d . Let u 2 ��.S.su.E/// and
let Nu � A.Lu/ � A1.Su/ be the restriction of the normal bundle N to the fiber
w�1.Œu�/'A.Lu/. Then

(1) �.Nu\U/ is the submanifold of the normal neighborhood �.U/ consisting of
connections for which ˙u are harmonic and energy minimizing.

(2) The embedding �jNu\U W Nu\U ,!Aa.E/ induces isomorphisms

V '
�
Nu\U

�ı
xGu; V� '

�
N �u \U

�ı
xGu:

(3) The map � induces an isomorphism between V and the cone bundle over the
projectivization P. xNu/ of the vector bundle

xNu WDNu

ı
Gx0

u

over B.Lu/ D A.Lu/
ı
Gx0

u , and V� is identified with the complement of the
vertex section in this cone bundle. In particular one has a homotopy equivalence

(8) V�
h
' P. xNu/�A.Lu/�Gx0

u
P.A1.Su//:
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(4) �.Nu \ U�/ is a xGu –reduction of the restriction of the principal xGE –bundle
A�a.E/! B�a.E/ to V� .

Proof The first statement follows easily from Theorem 1.13. The second and the third
statements are obvious. For the fourth, it suffices to prove that the xGE –orbit of a point
�.t/ 2 �.U�/ intersects �.Nu \ U�/ along a xGu –orbit; since � is injective on U , it
suffices to show that the xGE –orbit of t D .b; ˛/ 2N � intersects N �u along a xGu –orbit.
Since xGE acts transitively on ��.S.su.E///=f˙1g, we see that t � xGE \N �u ¤∅, so
we can suppose t 2N �u . If an element g 2 GE maps t into N �u , then g.b/ 2A.Lu/�

Aa.E/, that is, u is both b–parallel and g.b/–parallel. This implies adg.u/D˙u.
Since we assumed that l ¤ d � l , we have Lu 6'L�u , so necessarily adg.u/D u that
is, g 2 Gu .

Corollary 2.2 The open subspace V� � B�a.E/ has the homotopy type of the product
ŒS1�b1.M / �P1 .

Proof Let g be a Riemannian metric on M . The moduli space MYM
g .Lu/ of

Yang–Mills connections on Lu with respect to g is isomorphic to

iH 1.X;R/
ı

2� iH 1.M;Z/' ŒS1�b1.M /

and the inclusion MYM
g .Lu/ ,!B.Lu/ is a homotopy equivalence. On the other hand,

since MYM
g .Lu/ is compact, the restriction of the infinite rank vector bundle xNu to

this subspace is trivial. This completes the proof.

The decomposition
su.E/D ŒM � .iR/�˚Su

is Gu –invariant. Therefore

Corollary 2.3 The restriction FjV��M decomposes as a direct sum

FjV��M ' Œ.V� �M /� iR�˚Su;

where Su is the complex line bundle on V� �M defined by

Su WD
�
�.Nu\U�/�Su

�ı
xGu:

In particular p1.F/D c1.Su/
2 .

The cohomology algebra of V� can be easily described explicitly using Corollary 2.2.
The construction below yields generators with explicit geometric interpretation.
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Put L D Lu , S D Su D L˝2˝D_ , S D Su to save on notations. The subbundle
Nu �A.L/�A1.S/ has an intrinsic interpretation in terms of L: it is just the bundle
KD ker ı of kernels of the family of operators

ı WD .d�
b˝2˝a_

/b2A.L/

and Uu WD U \Nu is a xG–invariant neighborhood Uu of the zero section in this bundle.
The bundle K descends to a bundle xK WDK=Gx0 over B.L/. Using the isomorphism
V� ' U�u

ı
xG induced by � , one can identify S with the line bundle�
U�u �S

�ı
xG �!

�
U�u
ı
xG
�
�M �

�
K�
ı
xG
�
�M D

�
xK�
ı

S1
�
�M:

Therefore, S can be identified (via � ) to the restriction to ŒU�u = xG��M of the line
bundle

S WD
�
A.L/� .A1.S/ n f0g/�S

�ı
xG

on B�u.E/�M , where B�u.E/ is the quotient

B�u.E/ WD
�
A.L/� .A1.S/ n f0g/

�ı
xG DA.L/�Gx0 ŒR>0 �P.A1.S/�;

which can be regarded as a locally trivial bundle over B.L/ with fiber R>0�P.A1.S//.
The space B�u.E/ is very much similar to the infinite dimensional gauge quotient of
the space of irreducible configurations in Seiberg–Witten theory. More precisely, let in
general V be a line bundle and W a complex vector bundle on M . The natural map

pV;W W B�.V;W / WD
�
A.V /� ŒA0.W / n f0g�

�ı
G �! B.V /

is a locally trivial bundle over B.V / with fiber R>0 �P.A0.W //. On the product
B.V /�M one has a tautological line bundle VW defined by

VW WD
�
A.V /� ŒA0.W / n f0g��V

�ı
G:

Lemma 2.4 With the notations and assumptions above one has

(1) There exists a natural isomorphism

ıV W H1.M;Z/!H 1.B.V //

which induces an isomorphism H�.B�.V /;Z/'ƒ�.H1.M;Z//.

(2) The morphism p�
V;W
ı ıV induces an isomorphism

H�.B�.V;W /;Z/'ƒ�.H1.M;Z//˝ZŒhV W �;

where hV W is a degree 2–cohomology class defined as the Chern class of the
principal S1 –bundle�
A.V /� ŒA0.W / n f0g�

�ı
Gx0 �!

�
A.V /� ŒA0.W / n f0g�

�ı
G D B�.V;W /:
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This class restricts to the canonical (tautological) class of the fibers of the map
pV;W W B�.V;W /! B.V / (which are homotopically equivalent to P.A0.W //).

(3) The Chern class of the tautological line bundle VW on B�.V;W /�M is

c1.VW /D p�1 .hV W /˝ 1C ıV C 1˝p�2 .c1.V //:

Here we denoted by the same symbol ıV the element in H 1.B.V //˝H 1.M;Z/

defined by this morphism, as well as the pullback of this element via the projec-
tion B�.V;W /�M ! B.V /�M .

Proof The proof uses the same arguments which are used for the computation of
the cohomology algebra of the moduli space of irreducible configurations in Seiberg–
Witten theory (see for instance Okonek and Teleman [6]).

Corollary 2.5 The line bundle S can be identified with the pull-back of Sƒ1˝S via
the composition

B�u.E/ �! B�.S; ƒ1
˝S/

induced by

A.L/� ŒA1.S/ n f0g� 3 .b; ˛/ 7! .b˝2
˝ a_; ˛/ 2A.S/� ŒA1.S/ n f0g�:

In particular one has

c1.S/D p�1 .hu/˝ 1C 2ıLCp�2 .c1.S//;

where hu is the Chern class of the principal xG=Gx0 D S1 –bundle�
A.L/� .A1.S/ n f0g/

�ı
Gx0 �!

�
A.L/� .A1.S/ n f0g/

�ı
xG D B�u.E/:

Proof The map .b; ˛/ 7! .b˝2˝ a_; ˛/ induces an isomorphism u which fits in the
diagram

B�u.E/D
�
A.L/� ŒA0.ƒ1

˝S/ n f0g�
�ı
xG u
�!

�
A.S/� ŒA0.ƒ1

˝S/ n f0g�
�ı
G2

v
�!

�
A.S/� ŒA0.ƒ1

˝S/ n f0g�
�ı
G D B�.S; ƒ1

˝S/;

where v is the obvious epimorphism. The map

A.L/� ŒA1.S/ n f0g��S 3 .b; ˛; s/ 7! .b˝2
˝ a_; ˛; s/ 2A.S/� ŒA1.S/ n f0g��S

induces an isomorphism S' .v ıu� idM /�.Sƒ1˝S /. It suffices to notice that

.v ıu/�.hS;ƒ1˝S /D hu; .v ıu/�.ıS /D 2ıL:
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Corollary 2.6 Suppose that bC.M /D 0. The restrictions of the Donaldson �–classes
to V� are given by the formulae

�.�/D�hıL[M c1.S/; �i 2H 1.V�;Z/ 8� 2H3.M;Z/;

�.x/D�1
2
hc1.S/;xihu 2H 2.V�;Q/ 8x 2H2.X;Z/;

�.�/D�ıL.�/[ hu 2H 3.V�;Z/ 8� 2H1.X;Z/;

� WD �.�/D�1
4
h2

u 2H 4.V�;Q/:

Proof Every monomial of the form a [ b , with a, b 2 H 1.B;Z/ satisfies the
relation .a [ b/2 D 0 so, since we supposed bC.M / D 0, one gets easily that
a[ b 2 Tors.H 2.M;Z//. Therefore

im.[W H 1.M;Z/˝H 1.M;Z/!H 2.M;Z//� Tors.H 2.M;Z//:

This implies ı2
L
D 0. Therefore

�
1
4
p1.FjV�/D�

1
4
c1.S/

2

D�
1
4

�
p�1 .h

2
u/˝1C 4p�1 .hu/[ ıLC 2p�1 .hu/[p�2 .c1.S//

C 4ıL[p�2 .c1.S//Cp�2 .c1.S/
2/
�
:

Using Donaldson’s formula �.x/D �1
4
p1.F/=x for x 2 H�.X;Z/, one gets easily

the claimed formulae.

2.2 The topology of the moduli space Ba.E/

Describing the weak homotopy type of the moduli space B�a.E/ of irreducible con-
nections is a well-known classical problem in gauge theory. This problem is treated in
detail in Donaldson and Kronheimer [3], where the authors also compute the rational
cohomology algebra of this space. Surprisingly, describing the weak homotopy type
of the whole moduli space Ba.E/ of connections is a delicate problem, which, to our
knowledge, cannot be solved with similar methods.

Our result concerning the existence of L2 –normal neighborhoods of the reduction loci,
gives a solution to this problem. Suppose for simplicity that d WD c1.D/ is not divisible
by 2 in H 2.M;Z/, so that any reducible connection A 2Aa.L/ is simply reducible.
Let ƒE be the set topological decomposition of E , that is, the set of unordered pairs
�D fl; d � lg with l.d � l/D c2.E/.
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Using the notations and conventions of Section 2.1, we get the following decomposition
of the space Ba.E/ as a fibered sum

(9) B�a.E/
�`

�2ƒE
V�
�

Ba.E/

B�a.E/

??

��
��

��
��

��
�
Ba.E/

�`
�2ƒE

V�
�

__

??
??

??
??

??

�`
�2ƒE

V��
�

__

??
??

??
??

??

�`
�2ƒE

V��
�

??

��
��

��
��

��

where V� WD U�
ı
GE is the gauge quotient of the gauge invariant L2 –normal neigh-

borhood U� of the reduction locus A�a.E/ constructed in Section 1.3. In this diagram
the homotopy types of the terms are known (see Corollary 2.2). Choosing a Hermitian
line bundle L with c1.L/ 2 �, one has

V�
h
' B.L/

h
' ŒS1�b1.M /; V��

h
' ŒS1�b1.M /

�P1;

this description determines the homotopy type of the space Ba.E/. In particular one
can compute the cohomology of this space using the Mayer–Vietoris exact sequence.

Example 1 Suppose that H1.M;Z/ ' Z, b2.M / D b�
2
.M / D 2. The intersection

form of M is diagonalizable over Z (since b2.M /D 2, this follows from the classifica-
tion of unimodular symmetric bilinear forms, but can also be obtained as a special case
of Donaldson’s first theorem). Therefore, one can find a basis .e1; e2/ in H 2.M;Z/

such that e2
i D �1, e1 [ e2 D 0. It follows that d WD e1 C e2 is an integral lift of

the Stiefel–Whitney class w2.M /. Let now E be a rank 2–Hermitian bundle with
c1.E/D d , c2.E/D 0 and put again D D det.E/.

Our problem is to compute the degree k –cohomology of the space Ba.E/, for 1�k�4

using the Mayer–Vietoris sequence applied to the decomposition (9). The set ƒE has
two elements:

�0 WD f0; dg; �1 WD fe1; e2g:

Denote by V0 , V1 , V�
0

, V�
1

the corresponding subspaces of Ba.E/, and put V WD
V0[V1 , V� WD V�

0
[V�

1
. We get exact sequences

� � � �!H i�1.B�a.E//˚H i�1.V/ �!H i�1.V�/ �!H i.Ba.E//

�!H i.B�a.E//˚H i.V/ �!H i.V�/ �! � � �

Geometry & Topology, Volume 11 (2007)



1704 Andrei Teleman

Using the standard description of the cohomology of B�a.E/ (see Donaldson and
Kronheimer [3]), we obtain

H 1.B�a.E//D h�.�0/iQ 'Q; H 2.B�a.E//D h�.f1/; �.f2/iQ 'Q2;

where �0 is a generator of H3.M;Z/ and fi WDPD.ei/. Since we assumed b1.X /D 1,
we obtain easily using Poincaré duality that

im.[W H 1.M /˝H 2.M /!H 3.M //D 0

hence, by Corollary 2.6, we obtain �.�0/jV� D 0. Note also that the restriction
morphism H i.V/!H i.V�/ is an isomorphism for i D 0, 1 and is injective for all i .
The exact sequence above for i D 1 yields

H 1.Ba.E//D ker.H 1.B�a.E//˚H 1.V/!H 1.V�//D h.�.�0/; 0/iQ 'Q:

Therefore, the cohomology class defined by the Chern–Simons functional [3] associated
with a hypersurface representing �0 extends to the whole moduli space Ba.E/. This
is a general phenomenon. For i D 2, we obtain

H 2.Ba.E//D ker.H 2.B�a.E//!H 2.V�//:

On the other hand by Corollary 2.6

�.fi/jV�
0
D

1
2
he1C e2; fiihu0

; �.fi/jV�
1
D

1
2
he2� e1; fiihu1

;

where ui 2 �.S.su.E/// are chosen such that c1.Lu0
/ D 0, c1.Lu1

/ D e1 (so
Lui

is a line bundle representing the topological decomposition �i ) . Therefore
H 2.Ba.E/;Q/D 0. Taking into account that the restriction morphism H 2.B�a.E//!
H 2.V�/ is surjective and H 3.V/D 0, the same exact sequence for i D 3 yields:

H 3.Ba.E//D ker
�
H 3.B�a.E//!H 3.V�/DH 3.V�0 /˚H 3.V�1 /

�
:

The space H 3.V�i / is generated by ıLi
.�0/[hui

, where �0 is a generator of H1.M;Z/,
whereas

H 3.B�a.E//D h�.�0/; �.�0/�.f1/; �.�0/�.f2/iQ:

By Corollary 2.6 one has �.�0/jV�
i
D�ıLi

.�0/hui
and we have seen that �.�0/jV� D

0. This shows that

H 3.Ba.E//D h�.�0/�.f1/; �.�0/�.f2/iQ 'Q2:

The cohomology space H 4.Ba.E// fits in the exact sequence

0 �!
H 3.V�

0
/˚H 3.V�

1
/

h.ıL0
.�0/hu0

; ıL1
.�0/hu1

/i
�!H 4.Ba.E// �!H 4.B�a.E// �!H 4.V�/:
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The space H 4.B�a.E// is freely generated by the five classes

�.�/; �.f1/
2; �.f2/

2; �.f1/�.f2/; �.�0/�.�0/;

whereas H 4.V�/ is freely generated by h2
u0

and h2
u1

. This shows that

ker.H 4.B�a.E//!H 4.V�//D

h�.�/C�.f1/
2; �.�/C�.f2/

2; �.�0/�.�0/iQ 'Q3:

The quotient on the left in the exact sequence above is 1–dimensional, so H 4.Ba.E//'

Q4 .

Remark A similar method can be used to compute the cohomology of the pair
.B�a.E/;V�/, where V D

`
ŒL�2RE

VL is a normal neighborhood of the reducible
locus in Ba.E/.

Example 2 Let M be a 4–manifold with the topological properties considered in the
example above. The exact sequence of the pair .B�a.E/;V�/

!H i�1.B�a.E//!H i�1.V�/!H i.B�a.E/;V�/!H i.B�a.E// �!H i.V�/!

written for i D 4 shows that the natural morphism H 4.B�a.E/;V�/! H 4.Ba.E//

(induced by the restriction morphism H�.Ba.E/;V/!H�.Ba.E// and the excision
isomorphism H�.Ba.E/;V/!H�.B�a.E/;V� ) is an isomorphism.

3 The instanton moduli space around the reductions

We denote by MASD
a .E/ � Ba.E/ the moduli of projectively ASD a–oriented con-

nections in E , that is, the moduli space

MASD
a .E/ WDAASD

a .E/
ı
GE ; AASD

a .E/ WD fA 2Aa.E/j .F
0
A/
C
D 0g:

In the first subsection we will study the intersection of this moduli space with a normal
neighborhood V� of the reduction locus B�a.E/ WDA�a.E/=GE . We will see that, in a
neighborhood of a reduction locus, the instanton moduli problem is equivalent to an
abelian moduli problem, which is very much similar to the Seiberg–Witten moduli
problem. We will denote by M�

a.E/ the subspace M�
a.E/ WDMASD

a .E/\B�a.E/ of
�–reducible instantons.
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3.1 An abelian gauge theoretical problem

Let L be a Hermitian line bundle which is isomorphic to a line subbundle of E , and
put S WDL˝2˝D_ . Consider the moduli space Ma.L/ of solutions of the system

(10)

(
FC

b
�

1
2
FCa D .˛^ x̨/C

.d�
b˝2˝a_

; dC
b˝2˝a_

/˛ D 0

for pairs .b; ˛/ 2A.L/�A1.S/, modulo the abelian gauge group G D C1.M;S1/.
This system is very much similar to the Seiberg–Witten system; indeed, the left hand
operator in the first equation is elliptic and can be written as coupled Dirac operator.
The main difference is that in general there is no a priori bound for the ˛–component on
the space of solutions of this system and, in general, the moduli space is not compact.

We denote by Mred
a .L/, M�a.L/ the subspaces of reducible (respectively irreducible)

solutions. As in Seiberg–Witten theory “reducible pair” means “pair with trivial ˛–
component”. Therefore one has a natural identification

Mred
a .L/' Ta.L/ WDAa.L/

ı
G; where Aa.L/ WD

˚
b 2A.L/j FC

b
D

1
2
FCa

	
;

The space Ta.L/ is either empty, or a b1.M /–dimensional torus (when the harmonic
representative of c1.S/D 2c1.L/� c1.D/ is ASD).

Put l WD c1.L/ and �D fl; d � lg and fix an isomorphism E DL˚ .D˝L_/. The
map

 W .b; ˛/ 7!Ab;˛ WD

�
db ˛

�x̨ da˝b_

�
2Aa.E/

descends to a map Ma.L/!MASD
a .E/. The image of this map is the subspace

consisting of those instantons which can be brought in Coulomb gauge with respect to
a �–reducible connection. Suppose again that 2l ¤ d (such that any reduction having a
parallel line subbundle of Chern class l is simple), and consider the continuous, gauge
invariant function "W A�a.E/! R>0 defining the normal neighborhood U� of A�a.E/
(see Section 1.3). For b 2A.L/ put

".b/ WD ".Ab/; where Ab WD b˚ .a˝ b_/ 2A�a.E/;

and denote W� the G–invariant subspace of the configuration space A.L/�A1.S/

defined by the inequality k˛kL1 � ".b/, and by Z� its G–quotient.

Proposition 3.1 The restriction of the instanton moduli problem to the normal neigh-
borhood �.U�/ of A�a.E/ and the restriction of the abelian moduli problem (10) to the
neighborhood W� of A.L/� f0g are equivalent moduli problems.
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In particular, the map induced by  applies Ma.L/\Z� isomorphically onto the
neighborhood MASD

a .E/\V� of the subspace M�
a.E/ of �–reducible instantons, and

induces an isomorphism Mred
a .L/'M�

a.E/.

Proof This follows directly from (2) in Proposition 2.1.

Corollary 3.2 Let b 2 Aa.L/. The deformation elliptic complex CAb
at the corre-

sponding reduction Ab splits as a direct sum CAb
D CC

0
.M /˚ CC

b˝2˝a_
.S/, where

CC
0
.M / is the standard dC–elliptic complex for iR–valued forms and CC

b˝2˝a_
.S/ is

the dC–elliptic complex for S –valued forms associated with the connection b˝2˝a_ .

Remark The complex index of the elliptic complex CC
b˝2˝a_

.S/ is given by

indC.C
C.S//D c2

1.S/C .bC.M /� b1.M /C 1/:

3.2 A twisted abelian gauge theoretical problem

Let �W �1.M;x0/! Z2 be a group epimorphism and consider the associated objects
��W M�!M , �W M�!M� introduced in Section 1.4.

Let L be a Hermitian line bundle on M� whose Chern class l is a solution of the
system (7) and put �D fl; ��.l/g. In this section we will assume that l ¤ ��.l/. We
fix an isomorphism ��� .E/DL˚ ��.L/. We denote by A�.L/ the subspace of A.L/
consisting of connections b 2A.L/ such that b˝ ��.b/D ��� .a/. The natural gauge
group acting on this space of connections is

G� WD ff 2 C1.M�;S
1/ j ��.f /D xf g:

The Lie algebra of this group can be identified with A0.R�/, where R� is the real line
bundle associated with the representation � . One has a natural embedding G�!G��� .E/
factorizes through an embedding G� ,! GE .

One has a G�–equivariant map A�.L/!A�a.E/ given by b 7!Ab , where Ab is the
unique �–twisted connection of type � whose pull-back to M� is b˚ ��.b/.

Put S D L˝ ��.L/_ D L˝2 ˝ ��� .D/. This Hermitian line bundle comes with a
tautological isomorphism ��.S/ D S_ D xS . We introduce the spaces of �–twisted
S –valued forms by

Ak
� .S/ WD f˛ 2Ak.S/ j ��.˛/D�x̨g:
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Note that, for a connection b 2A�.L/, one has Fb �
1
2
��� .Fa/ 2A2

� .S/. Endow M�

with the pull-back metric ��� .g/. Our abelian moduli problem is now

(11)

(
FC

b
�

1
2
��� .Fa/

C D .˛^ x̨/C

.d�
b˝2˝��� .a/_

; dC
b˝2˝��� .a/_

/˛ D 0:

for pairs .b; ˛/ 2A�.L/�A1
� .S/, modulo the abelian gauge group G� .

The stabilizer of any pair .b; ˛/ 2 A�.L/ � A1
� .S/ is f˙1g � G� , so, in fact, this

twisted abelian moduli problem has no reductions at all. However, the moduli space
Ma;�.L/ of solutions has two distinguished gauge invariant subspaces Mred

a;�.L/,
M�a;�.L/ consisting of classes of solutions with vanishing (respectively, non-vanishing)
˛–component. As in the previous section we obtain a map  WMa;�.L/!MASD

a .E/

which applies isomorphically Mred
a;�.L/ onto the space M�

a.E/ of �–twisted reducible
instantons of type �.

The space Mred
a;�.L/ has a simple geometric interpretation: one has an obvious identifi-

cation
Mred

a;�.L/'
�
A��� .a/.L/\A�.L/

�ı
G� �Mred

��� .a/
.L/

which shows that Mred
a;�.L/ is the subspace of Mred

��� .a/
.L/ defined by the equation

Œb˝ ��.b/� D Œa�. If the harmonic representative of c1.S/ is not ASD (with respect
to the pull-back metric), the space Mred

a;�.L/ will be empty. When this representative
is ASD, Mred

��� .a/
.L/ will be a (non-empty!) subtorus of the torus Mred

��� .a/
.L/; this

subtorus is (non-canonically) isomorphic to the quotient

iH 1.M�;R/�
ı

2� iH 1.M�;Z/�;

where the symbol .�/� means �–twisted, that is, the subspace of .�/ consisting of
solutions of the equation ��.x/D�x . In particular, if ��W H 1.M�;Z/!H 1.M�;Z/

is the identity and bC.M�/D 0, this space consists of a single point.

Consider the continuous, gauge invariant function "W A�a.E/!R>0 defining the normal
neighborhood U� (see Section 1.4) of A�a.E/ and, for b 2A.L/ put ".b/ WD ".Ab/.
As in the previous section we introduce the space W� �A�.L/�A1

� .S/ defined by
the inequality k˛kL1 < ".b/ and its gauge quotient Z� DW�=G� . We obtain:

Proposition 3.3 The restriction of the instanton moduli problem to the normal neigh-
borhood �.U�/ of the space of �–twisted, type �–reductions A�a.E/ and the restriction
of the abelian moduli problem (11) to the neighborhood W� of A.L/ � f0g are
equivalent moduli problems.
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In particular, the map induced by  applies Ma;�.L/\Z� isomorphically onto the
neighborhood MASD

a .E/\ V� of the subspace M�
a.E/ of �–twisted, �–reducible

instantons, and induces an isomorphism Mred
a;�.L/'M�

a.E/.

Corollary 3.4 Let b 2 A��� .a/.L/\A�.L/. The deformation complex CAb
at the

corresponding �–twisted reduction Ab splits as a direct sum CAb
D CC

0;�
.M�/ ˚

CC
b˝��.b/_;�

.S/, where CC
0;�
.M�/ is the dC–elliptic complex

0 �! iA0
� .M�/ �! iA1

� .M�/
dC

�! iA2
C;�.M�/ �! 0

of imaginary �–twisted forms, and CC
b˝��.b/_;�

.S/ is the dC–elliptic complex of �–
twisted S –valued forms associated with the connection b˝ ��.b/_ .

The indices of the two elliptic complexes can be computed easily: The dimension hk
�

of the k th harmonic space of CC
0;�
.M�/ is

h0
� D 0; h1

� D b1.M�/� b1.M /; h2
� D bC.M�/� bC.M /;

Taking into account that ind.CC
0
.M�//D 2ind.CC

0
.M //, we get

ind.CC
0;�
/.M�/D bC.M�/� b1.M�/� .bC.M /� b1.M //D bC.M /� b1.M /C 1:

For the complex CC
b˝��.b/_;�

.S/, note that the complex CC
b˝��.b/_

.S/ splits as a direct
sum

CC
b˝��.b/_

.S/D CC
b˝��.b/_;0

.S/˚ CC
b˝��.b/_;�

.S/

where CC
b˝��.b/_;0

.S/ is the dC–complex of S –valued forms ˛ on M� satisfying the

relation ��.˛/D x̨ . Multiplication by i defines a real isomorphism CC
b˝��.b/_;0

.S/'

CC
b˝��.b/_;�

.S/. Therefore

indŒCC
b˝��.b/_;�

.S/�D indCCC.S/D c2
1.S/C 2.bC.M /� b1.M /C 1/:

3.3 Generic regularity at the reductions

The purpose of this section is to prove a strong generic regularity result for reducible
instantons. We agree to call regular any solution A2AASD

a .E/ (irreducible or reducible)
with H2

A
D 0. Our result allows to prove that, under certain cohomological conditions

on our data, there exists a connected, dense, open set of metrics for which no irregular
reduction appears in the moduli space. This will allow us in the next section to introduce
Donaldson type invariants for definite manifolds, even in the cases when non-empty
reduction loci are present in the moduli space.
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Let M be a 4–manifold with bC.M /D 0, and E a Hermitian bundle of rank 2 on M ;
put as usual D WD det.E/, d WD c1.D/, cD c2.E/. Let �Dfl; d� lg be a topological
decomposition of E with 2l ¤ d . The second cohomology of the deformation elliptic
complex of a �–reducible instanton reduces to the second cohomology of the elliptic
complex CC

b˝2˝a_
.S/, where S DL˝2˝D_ .

Denote by Met (Metr ) the space of smooth (respectively class Cr ) Riemannian
metrics on M , where r � k . Our first result is a transversality theorem (with respect
to variations of the metric g ) for the complement Hg.S/

� of the zero section in the
complex linear space

Hg.S/ WD
a

Œ��2MASDg .S/

ŒH0.CCg

� .S//˚H2.CCg

� .S/�

over the torus MASDg.S/. Unfortunately this transversality result can be proved only
for metrics having the following property

H.S/ W The vanishing locus of the g0 harmonic representative of cDR
1
.S/ has Hausdorff

dimension � 2.

This condition is satisfied by any C1–metric by a result of Bär [1], and any c1.S/–
admissible metric g 2Metr

�2
.cDR

1
.S// (see Section A.2 in Appendix A).

The space Hg.S/
� can be identified with the Gx0

–quotient of the space of solutions
of the system

(12)

(
F
Cg

� D 0

d��C d
�g

� � D 0

for triples .�; �; �/ 2A.S/� Œ.A0.S/˚A2
Cg
.S// n f0g�.

Regard (12) as an equation for systems .g; �; �; �/, where g 2Metr , � 2A.S/k , and
.�; �/ 2 Œ.A0.S/k ˚A2

Cg
.S/k/ n f0g�. Therefore our configuration space is now

A�k WDA.S/k � ŒA
0.S/k ˚A2

C.S/k �
�;

where A0.S/k is the trivial bundle Metr �A0.S/k over Metr , A2
C.S/k is the

bundle of S –valued selfdual forms over Metr (see Section A.1 in the Appendix), and
the symbol Œ � �� on the right stands for the complement of the zero-section. Regarding
A�

k
as a locally trivial Banach bundle over the Banach manifold Metr , and denoting

by pW A�
k
!Metr the obvious projection, we see that the left hand terms of the

equations (12) define sections u, v in the bundles p�.i ŒA2
C�k�1/ and A�

k
�A1.S/k�1

over A�
k

.
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Theorem 3.5 The section .u; v/ in the bundle
�
p�.i ŒA2

C�k�1/
�
˚A1.S/k�1 over

Ak is submersive at any solution .g0; �0; �0; �0/ where g0 has the property H.S/ and
.�0; �0/¤ 0.

Proof Note first that, under our assumptions, the connection � cannot admit nontrivial
parallel sections, so applying d��0

to the second equation, we get �0D0. The hypothesis
gives �0 ¤ 0. Use the metric g0 as a background metric to parameterize the manifold
Metr and to trivialize the bundles i ŒA2

C�k�1 , A2
C.S/k over this manifold (see Section

A.1). The system (12) is equivalent with

(13)

(
Œ.h�1/�.F� /�

C D 0

d�� ��gh
d� Œh

�.�/� D 0

where now the upper script C is used for the selfdual projection with respect to g0 ,
and � 2A2

C.S/k . The left hand terms of the equations define a smooth map

�.SymC.TM ;g0//
r
�A.S/k�Œ.A0.S/k�A2

C.S/k/nf0g�
.U;V /
�! i ŒA2

C�k�1�A1.S/k�1:

Our task is to prove that the differential of this map at .id; �0; 0; �0/ is surjective. Let
.˛; ˇ/ 2 i ŒA2

C�k�1 �A1.S/k�1 be a pair which is L2 –orthogonal to the range of this
differential. Using variations of the variables � and � (for hD id) we get

(14) d��0
ˇ D 0; dC�0

ˇ D 0:

Using the notations of Section A.1 in Appendix, one has

@U

@h

ˇ̌̌̌
.id;�0;0;�0/

.�/D�mC� .�/.F�0
/;

@V

@h

ˇ̌̌̌
.id;�0;0;�0/

.�/D�� d�0
.m.�/�0/:

for any g0 –symmetric endomorphism �. For the second formula we used the fact that
d�0

�0D 0 (recall that �0D 0 and ��0D �0 ), so the term containing the differential of
�gh

with respect to h vanishes. Therefore, using variations � 2A0.Sym.TM ;g0//
r

of h with the property
mC� .�/.F�0

/D 0;

and noting that m�C.�/D Œm
C
� .�/�

� (see Section A.1), we obtain for any such �

(15) 0D h�d�0
.m.�/�0/; ˇiL2 D�hm.�/�0;�d�0

ˇiL2 D

hm�C.�/�0; d�0
ˇiL2 D hŒmC� .�/�

��0; d�0
ˇiL2 :

Here we used the fact that the 2–form d�0
ˇ is ASD. In all these formulae h�; �i stands

for the real (Euclidean) inner product. By Lemma A.1 in Appendix we see that any
homomorphism m 2 A0.Hom.ƒ2

�; ƒ
2
C//

r can be written as mC� .�/ for a certain
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symmetric endomorphism �. Therefore (15) holds for any such section m for which
m.F�0

/ D 0. Now regard ˇ as an element in A0.HomR.S
_
R ; ƒ

2
�//k�1 , �0 as an

element in A0.HomR.S
_
R ; ƒ

2
C//k , and denote by Œ�0�

�
R 2 A0.HomR.ƒ

2
C;S

_
R //k its

adjoint with respect to the obvious real inner products. Changing the position of �0 in
(15) we obtain ˝

m�; d�0
ˇ ı Œ�0�

�
R

˛
L2 D 0;

for every m2A0.Hom.ƒ2
�; ƒ

2
C//

r for which m.F�0
/D0. The condition m.F�0

/D0

is equivalent to the condition im.m�/�F?�0
. Let U be the complement of the vanishing

locus of F�0
. We conclude that d�0

ˇ ı Œ�0�
_
R

ˇ̌
U

is L2 –orthogonal on the whole space of
compactly supported F?�0

–valued bundle homomorphisms ƒ2
C

ˇ̌
U
! ƒ2

�

ˇ̌
U

. Therefore
d�ˇ ı Œ�0�

�
R

ˇ̌
U

takes values in the real line bundle generated by F�0
. This implies that

either there exists a non-empty open subset V �U on which �0 has (real) rank at most
1, or d�0

ˇ
ˇ̌
U

takes values in real line bundle generated by F�0

ˇ̌
U

. In the first case we
obtain �0 D 0 by Proposition A.10 in the Appendix. This contradicts the assumption.
In the second case one gets ˇD 0 by Corollary A.9 (which applies because g0 has the
property H.S/). Finally, using variations of � and the assumption bC.M /D 0, we
obtain ˛ D 0.

Denote by Metr
bad.�/ the subspace of metrics for which there exists a non-regular

�–reducible instanton. Let U �Metr be any open subset of metrics satisfying the
property H.S/.

Theorem 3.6 Suppose that .2l�d/2<0. Then Metr
bad.�/\U is closed and nowhere

dense in U and the natural morphism

�i.U nMetr
bad.�//! �i.U /

is bijective for any i in the range 0� i ��2.2l �d/2C b1.M /� 2 and surjective for
i D�2.2l � d/2C b1.M /� 1.

Proof By Theorem 3.5 it follows that the section .u; v/ is transversal at any solution
with metric component in U , so the vanishing locus Z.u; v/\p�1.U / is a smooth
Banach manifold over U . The gauge quotient

H.S/�
ˇ̌
U
WD
�
Z.u; v/\p�1.U /

�ı
GkC1;x0

will also be a smooth manifold, and the natural projection H.S/�jU !Metr is
Fredholm of real index 2Œc1.S/

2C .1� b1.M //�C b1.M /D 2c1.S/
2� b1.M /C 2.

One has a natural C�–action on H.S/� , and the projection

H.S/�
ı

C� �!Metr
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will be Fredholm of real index 2c1.S/
2� b1.M /. It suffices to apply Lemma A.7 in

the Appendix.

The same arguments can be used to prove regularity at a locus of twisted reductions
(see Sections 1.4 and 3.2). However, there is an important detail here which should
be taken into account carefully: in general, for an epimorphism �.M /! Z2 , the
condition bC.M / D 0 does not imply bC.M�/ D 0. When bC.M�/ D 0, one has
h2
� D 0, h1

� D b1.M /�1 (see Section 3.2), and one can obtain generic regularity at the
�–twisted reduction in the same way as for non-twisted reductions, by extending our
proofs to the twisted case. The main difference is that the “normal” elliptic complex”
CC

b˝��.b/_;�
has no complex structure.

In the twisted case, one has a Hermitian line bundle S on M� which comes with an
isomorphism ��.S/' xS ; and for any metric g on M the ��.g/–harmonic represen-
tative of c1.S/D l � ��.l/ is �–equivariant, so the condition H.S/ has sense for g .
Put � WD fl; ��.l/g and denote by Metr

bad.�/ the space of Cr –metrics for which there
exists a non-regular �–twisted reducible instanton of type �. The result for the twisted
case is

Proposition 3.7 Suppose that bC.M / D bC.M�/ D 0 and let l 2 H 2.M�;Z/ a
solution of the system (7) with .l � ��.l//2 < 0. Put � WD fl; ��.l/g and let U �Metr

an open set of metrics having the property H.S/. Then Metr
bad.�/\U is closed and

the natural morphism
�i.U nMetr

bad.�//! �i.U /

is bijective for any i in the range 0 � i � �.l � ��.l//2C b1.M /� 2, and surjective
for i D�.l � ��.l//2C b1.M /� 1.

Remark Note that �.l� ��.l//2D 2Œ4c2.E/�c1.E/
2�, hence under our assumptions

one has �.l � ��.l//2 � 2.

Corollary 3.8 Let M be a 4–manifold and E a Hermitian rank 2 bundle on M .

(1) Suppose that

(16) bC.M /D 0 and c1.E/ 62 2H 2.M;Z/CTors:

There exists a connected, dense, open subset Metr
good.E/ �Metr such that,

for any g 2Metr
good.E/, the reductions in the Uhlenbeck compactification of

the moduli space MASD
a;g .E/ of g–instantons are all regular.

(2) Suppose that (16) holds and for every epimorphism �W �1.M;x0/! Z2

(17) bC.M�/D 0 and ��� .c1.E// 62 2H 2.M�;Z/CTors:
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There exists a connected, dense, open subset Metr
vgood.E/ �Metr such that, for

any g 2Metr
vgood.E/, the reductions and the twisted reductions in the Uhlenbeck

compactification of the moduli space MASD
a;g .E/ of g–instantons are all regular.

Proof (1) Denote by ƒ.c/ the finite set of unordered pairs �D fl; d � lg satisfying
l � .d � l/ � c . For c D c2.E/, this set is the set of all topological decompositions
of all bundles E0 which must be considered in the construction of the Uhlenbeck
compactification of MASD

a .E/. Put

Metr
good.E/ WDMetr

adm.c/ n

24 [
�2ƒ.c/

Metr
bad.�/

35
(see Section A.2 in the Appendix).

(2) One may define Metr
vgood.E/ in a similar way by replacing Metr

adm.c/ with
Metr

tadm.c/ (see Section A.2) and removing the bad loci associated with all twisted
and non-twisted reductions of bundles E0 with det.E0/D det.E/, c2.E

0/� c2.E/.

Remark Suppose that bC.M / D 0, b2.M / > 0, and bC.M�/ D 0 for any epi-
morphism �W �1.M;x0/ ! Z2 . Let d be an integral lift of w2.M /. Then d 62

2H 2.M;Z/CTors and ��� .d/ 62 2H 2.M�;Z/CTors.H 2.M�;Z// for every epimor-
phism � , so Corollary 3.8 (2) applies for any bundle E with c1.E/D d .

Proof By Donaldson first theorem, the intersection form on H 2.M;Z/=Tors is trivial
over Z. Choosing an orthonormal basis .ei/1�i�b2.M / in this lattice, one obtains
d � ei � e2

i ��1 mod 2, so d cannot be divisible by 2 in H 2.M;Z/=Tors.

On the other hand, the class ��� .d/ is an integral lift of ��� .w2.M // D w2.M�/.
Since bC.M�/ D bC.M / D 0, one gets easily (comparing the signatures and the
Euler characteristics of the two manifolds) that b1.M�/D 2b1.M /�1 and b2.M�/D

2b2.M /> 0. Therefore the same argument applies for M� , proving that ��� .d/ cannot
be divisible by 2 in H 2.M�;Z/=Tors.

Remark Similar generic regularity results can be obtained using abstract perturbations
of the ASD-equations around the reduction loci (see [3, page 156]). However, since in
our general framework the reductions are not necessarily isolated points in the moduli
space, this method is more complicated than in the classical case. Moreover, for our
purposes (see Section 4) one must check that the perturbed moduli space still has a
natural compactification, and that the “cobordism type” of this compactification is well
defined.
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Combing Corollary 3.8 with the classical transversality theorem for irreducible in-
stantons (see Donaldson and Kronheimer [3], Freed and Uhlenbeck [4]) one shows
that

Lemma 3.9 The set Metr
wgood.E/�Metr

vgood.E/ of metrics for which MASD
a;g .E/

contains only regular solutions is dense of the second Baire category. This set is also
open (but in general non-connected!) when �.E/ WD 4c2.E/� c1.E/

2 � 3.

Proof The condition �.E/� 3 implies that the projection zMASD
a .E/!Metr of the

parameterized instanton moduli space on the space of metrics is proper. The openness
of Metr

wgood.E/ in Metr
vgood.E/ follows by elliptic semicontinuity.

4 Applications

4.1 Geometric properties of instanton moduli spaces on manifolds with
bC D 0

We will see that using our regularity results combined with the topological results
obtained in Sections 2.1 and 2.2 one can obtain important information about the
geometry of the ASD moduli spaces.

The purpose of this section is not to give an exhaustive list of all possible applications
of this type, but only to illustrate the method with an explicit example, which came
to my attention when I began to work on the classification of class VII surfaces with
b2 D 2 [12].

Let M be a 4–manifold with the topological properties considered in the examples
studied in Section 2.2: H1.M;Z/ ' Z, b2.M / D b�.M / D 2. Consider again a
rank 2–Hermitian bundle E on M with c1.E/ D d D e1 C e2 (where .e1; e2/ is
an orthonormal basis of H 2.M;Z/ ' Z˚2 ) and c2.E/ D 0. As in Section 2.2 put
�0 WD f0; dg, �1 WD fe1; e2g and note that ƒE D f�0; �1g. Let L0 , L1 be Hermitian
line bundles with Chern classes c1.L0/D 0, c1.L1/D e1 , and put Si WDL˝2

i ˝D_ .

The expected dimension of the instanton moduli space MASD
a .E/ is 4 and, since

�.E/ WD 4c2.E/� c1.E/
2 < 4, this moduli space is compact. MASD

a .E/ contains
two circles of reductions M�0

a .E/ and M�1
a .E/. An interesting application of our

results is the following:

Theorem 4.1 For every Riemannian metric g on M and abelian connection a 2

A.det.E//, the two circles of reductions M�0
a .E/, M�1

a .E/ belong to the same
connected component of the moduli space MASD

a .E/.
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Proof For a metric g 2Metr
wgood

.E/ the moduli space MASD
a .E/ contains only

regular solutions. Regularity at the reductions implies that the linear spaces

H1
i WD

[
Œb�2Ta.L/

H1.CC
b˝2˝a_

.Si//! Ta.L/'M�i
a .E/

are rank 2 complex vector bundles (see Section 3.1). M�i
a .E/ has a neighborhood

�i which can be identified with the S1 –quotient of an S1 –invariant neighborhood of
the zero section of H1

i . Let � be a generator of H1.M;Z/. By Corollary 2.6 we see
that the restriction of the Donaldson class �.�/ to the boundary @.�i/ coincides (up to
sign) with the fundamental class of this 3–manifold. More precisely, if we choose an
orientation of the moduli space as in Donaldson and Kronheimer [3, page 283], and we
endow @.�i/ with the boundary orientations, we see that �.�/j@.�0/

D˙Œ@.�0/� and
�.�/j@.�1/

D �Œ@.�1/�. Therefore @.�i/ cannot be homologically trivial in B�a.E/.
This shows that the two boundaries (hence also the corresponding circles) belong to
the same connected component.

To complete the proof for an arbitrary metric g , we use the density of the space
Metr

wgood
.E/ and note that if the reduction circles M�i

a .E/ belonged to different
connected components, the same would happen for any metric g0 sufficiently close to
g .

Example Consider the 4–manifold M D .S1 � S3/#xP2#xP2 . This manifold has
the differentiable type of a Hopf surface blown up at two points. It is convenient to
endow M with the complex structure of a minimal class VII surface with b2 D 2.
Choosing the Gauduchon metric in a convenient way and using the Kobayashi–Hitchin
correspondence to identify instantons with polystable bundles, one obtains (see [12]):

MASD
a .E/' S4;

so (despite the presence of the reductions) the moduli space gets an obvious smooth
structure on the moduli space. The two reduction circles M�i

a .E/ are smoothly
embedded in the sphere.

4.2 New Donaldson invariants

In this section we introduce a new class of Donaldson type invariants, which are defined
for definite 4–manifolds. Note that Donaldson type invariants for ZŒZ� homology
S1�S3 –manifolds have already been considered by Ruberman and Savaliev [9] and
by Furuta and Ohta [5]. Moreover, Ruberman and Savaliev introduced recently a new
differential topological invariant – based on the Dirac equation – for a special class of
4-manifolds with b2 D 0 and b1 D 1 [10].
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4.2.1 Low energy Donaldson invariants and Casson type invariants Let M be
a negative definite 4–manifold, and let .e1; : : : ; eb2.M // be an orthonormal basis in
H 2.M;Z/=Tors. Let d 2H 2.M;Z/ be a lift of e1C � � � C eb2.M / and denote by xd
its image in H 2.X;Z2/. Note that one must have xd D w2.M /, when H 2.M;Z/ is
torsion free.

Let E be a Hermitian 2–bundle on M with c1.E/D d and put as usual D WD det.E/.
If fl; d� lg is a topological decomposition of E , then, writing l D

P
liei , with li 2Z,

one gets
c2.E/D

X
li.li � 1/� 0:

Therefore, for c2.E/ < 0, the bundle E admits no topological decomposition. On the
other hand the expected dimension of the Donaldson moduli space MASD

a .E/ is

ı D 2.4c2.E/C b2.M //C 3.b1.M /� 1/:

If c2.E/ is chosen such that �.E/D 4c2.E/Cb2.M /2 f0; 1; 2; 3g the corresponding
moduli space will be a priori compact (that is, compact independently of the metric).
When b2.M /� 4, the corresponding values of c2.E/ are negative. When b1.M /� 1

the corresponding expected dimension will be non-negative. Therefore:

Remark Suppose that b1.M /� 1 and b2.M /� 4, and choose c2.E/ WD �
�b2.M /

4

�
.

The corresponding moduli space will be a priori compact, of non-negative expected
dimension 2�.E/C 3.b1� 1/ and will contain no reduction.

In other words, for this special value of c2.E/, one can define very easily Donaldson
type invariants by evaluating products of classes of the form �.h/ on the virtual
fundamental class of the moduli space (see Brussee [2]). In this case, one does not
really need regular moduli spaces, because the formalism of virtual fundamental classes
gives directly a well defined homology class in the space B�a.E/.

A very interesting case is when b2.M /� 4 is divisible by 4. In this case this special
value of c2.E/ is �b2.M /

4
and the corresponding discriminant �.E/ vanishes. There-

fore, in this case MASD.E/ coincides with the moduli space of PU.2/–representations
of �1.M;x0/ with fixed Stiefel–Whitney class xd , modulo SU.2/–conjugation. The
invariants associated with such a moduli space should be called four-dimensional
Casson type invariants. They should be regarded as an extension of the similar SU.2/–
invariant defined for ZŒZ�–homology S1 �S3 –manifolds (see Furuta and Ohta [5],
Ruberman and Savaliev [9]) to our new class of homology types. Note that, because
of the absence of reductions in our moduli space, the definition of the invariant in our
case is much easier.
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Note the following simple vanishing result, which shows that, if non-trivial, this Casson
type invariants can be regarded as obstructions to the representability of the basis
elements ei by 2–spheres.

Remark Suppose that b2.M / is divisible by 4 and one of the basis elements ei is
represented by a continuous map S2!M . Then the moduli space associated with
the Chern class c2.E/D �

b2.M /
4

is empty. In particular, the corresponding Casson
type invariants vanish.

Proof If f W S !M represents ei (for an oriented closed surface S ), one has

hf �.xd/; ŒS �i D hxd ; f�.ŒS �/i D hd; f�.ŒS �/i mod 2D hd; eii mod 2D 1:

Let x0 2S , and �W �1.M; f .x0//!PU.2/ a representation of Stiefel–Whitney class
xd . The composition �1.S;x0/! �1.M; f .x0//! PU.2/ will be a representation
with Stiefel–Whitney class f �.xd/¤ 0, so S cannot be simply connected.

Interestingly, one has:

Remark There exist definite negative 4–manifolds, with the property that no element
e 2H 2.M;Z/=Tors with e2 D�1 can be represented by a continuous map f W S2!

M .

Indeed, it suffices to consider a fake projective plane (see for instance Prasad and Yeung
[8]) with reversed orientation. Since the universal cover of such a 4–manifold is the
complex 2–ball, we see that the generator of its homology cannot be represented by a
continuous map f W S2!M .

Consider now the case

c2.E/ 2

�
�

�
b2.M /

4

�
;�1

�
:

In this range, one loses “a priori compactness”, but has moduli spaces with no reductions
in their Uhlenbeck compactifications. In this range, one uses Donaldson’s method [3]
to define the invariants geometrically: one uses metrics for which all strata are regular,
constructs distinguished cycles representing the �–classes (and which extends to the
Uhlenbeck compactification) and defines the invariants by intersecting the moduli space
with systems of such cycles (which can be chosen so that they intersect transversally in
the main stratum).

Geometry & Topology, Volume 11 (2007)



Harmonic sections, normal neighbourhoods of reduction loci, and moduli spaces 1719

4.2.2 Invariants associated with classes in H�.B�;V�/ and invariants defined
using the cobordism type of the moduli space We illustrate these types of invariants
in the concrete situation considered in Sections 2.2 and 4.1: a negative definite 4–
manifold with H1.M;Z/'Z, b2.M /Db�.M /D2 endowed with a rank 2–Hermitian
bundle E on M with c1.E/D d D e1C e2 (where .e1; e2/ is an orthonormal basis
of H 2.M;Z/' Z˚2 ) and c2.E/D 0.

The moduli space is a priori compact, but it always contains two circles of reductions.
We have two ways to define invariants in this situation:

(1) Use a generic metric in the sense of Donaldson and Kronheimer [3], for which
the irreducible part of the moduli space is regular. Regard the (oriented) moduli space
MASD

a .E/� of irreducible instantons as a cycle in the relative homology H4.B�;V�/.
On the other hand, we have seen in Section 2.2 that the relative rational cohomology
H 4.B�;V�/'Q4 and that this group fits in a short exact sequence

(18) 0 �!
H 3.V�

0
/˚H 3.V�

1
/

h.ıL0
.�0/hu0

; ıL1
.�0/hu1

/i
�!H 4.B�;V�/

�! h�.�/C�.f1/
2; �.�/C�.f2/

2; �.�0/�.�0/iQ! 0:

Evaluating classes in H 4.B�;V�/ on the relative homology class given by MASD
a .E/�,

one gets well-defined invariants. Note however that, since the exact sequence (18) does
not split canonically, one cannot parameterize this set of invariants in an obvious way.

(2) For a metric g 2Metr
wgood.E/ all solutions (including the reductions) in the

moduli space are regular (see Lemma 3.9). The main observation here is that each
reduction circle M�i

a .E/ has a neighborhood isomorphic to the S1 –quotients of a
neighborhood of the zero section in a rank 2 complex bundle H1

i over M�i
a .E/ (see

Section 4.1). But such a quotient is a locally trivial K–bundle over a circle, where
K is the cone over P1 ' S2 , so it has a natural manifold structure. Therefore, for
g 2Metr

wgood.E/, MASD
a .E/ is a compact 4–manifold, which can be oriented as in

classical Donaldson theory [3, page 283].

The signature of this 4–manifold will be an invariant �.M / of the base 4–manifold
(endowed with the usual orientation data). Indeed, the main point here is that the set
Metr

vgood.E/ is connected. For two choices g0 , g1 2Metr
wgood.E/, consider a path


 W Œ0; 1�!Metr
vgood.E/ connecting these metrics. A generic deformation (with fixed

ends) of 
 will define a cobordism between the moduli spaces associated with gi .
Note that the cobordism constructed in this way is always trivial around the reductions.
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Remark In the example given in Section 4.1, one has MASD
a .E/ ' S4 , so the

� –invariant vanishes.

This shows that, if non-trivial, this invariant can also be regarded as an obstruction to
the representability of the elements of the orthonormal basis fe1; e2g by embedded
spheres.

Appendix A

A.1 Metric-dependent spaces of selfdual and anti-selfdual forms

Let M a compact oriented connected 4–manifold and E a vector bundle. For every
Riemannian metric g on M one has two associated spaces of E–valued (anti)selfdual
forms A2

˙g
.E/. It is convenient to complete the space Met of metrics with respect to

the Cr topology and the spaces A2
˙g
.E/ with respect to a Sobolev norm L2

k
(where

r� k ). In this way one gets Banach vector bundles ŒA2
˙
.E/�k on the Banach manifold

Metr of Cr –metrics.

One can trivialize globally these bundles in the following way. Fix a Cr –metric
g0 . The space Metr can be identified with the space of positive g0 –symmetric
automorphisms of the tangent bundle TM via the diffeomorphism h 7! gh WD h�.g0/.
We get homeomorphisms

�.SymC.TM ;g0//
r
� ŒA2

˙g0
.E/�k

'
�! ŒA2

˙.E/�k

given by .h; �/ 7!.gh; h
�.�//. It is important to notice that homeomorphisms associated

with different metrics g0 are pairwise differentiable compatible. Therefore one can use
these homeomorphisms to define structures of Banach manifolds on the total spaces
ŒA2
˙
.E/�k .

A positive symmetric automorphism h 2 �.SymC.TM ;g0//
r defines a class Cr posi-

tive g0 –symmetric automorphism ƒ2h of the bundle ƒ2
M

, given by � 7!h�.�/. Using
the g0 –orthogonal decomposition ƒ2

M
Dƒ2

Cg0
˚ƒ2

�g0
, the automorphism ƒ2h can

be written as

ƒ2hD

�
�CC.h/ �

C
� .h/

��C.h/ �
�
�.h/

�
;

where �˙
˙
.h/ are symmetric endomorphisms of ƒ2

˙g0

and �˙�.h/W ƒ
2
�g0
! ƒ2

˙g0

have the property �C� .h/
� D ��C.h/. The tangent space of �.SymC.TM ;g0//

r at id
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can be identified with A0.Sym.TM ;g0//
r . For a symmetric endomorphism � we put

m.�/ WD
@�.h/

@h

ˇ̌̌̌
id
.�/; m˙˙.�/ WD

@�˙
˙
.h/

@h

ˇ̌̌̌
ˇ
id

.�/; m˙�.�/ WD
@�˙�.h/

@h

ˇ̌̌̌
ˇ
id

.�/:

Since m.�/ is symmetric, one has mC� .�/
� Dm�C.�/.

Lemma A.1 The map � 7!m˙�.�/ defines an isomorphism

A0.Sym0.TM ;g0//
r
'A0.Hom.ƒ2

�; ƒ
2
˙//

r ;

where Sym0.TM ;g0/ denotes the bundle of trace free g0 –symmetric endomorphisms
of TM .

This can be checked easily by diagonalizing � in an orthonormal frame.

The space A0.Sym.TM ;g0//
r can be regarded as the space of infinitesimal variations

of Cr –metrics, whereas A0.Sym0.TM ;g0//
r is the space of infinitesimal variations

of Cr –conformal structures.

A.2 Admissible metrics

Consider an oriented compact connected manifold M and a cohomology class l 2

H
p
DR.M /, where 1� p � n� 1. For a Riemannian metric g on M we will denote by

lg the unique g–harmonic representative of l .

Let M a 4–manifold. The family of vector spaces

.ƒ2
˙g;x

/g2Metr ;x2M

defines a bundle �˙ on the product space Metr �M . Suppose now that bC.M /D 0.
In this case any harmonic 2–form is ASD. For a de Rham 2–cohomology class l , the
assignment Metr �M 3 .g;x/ 7! lg.x/ defines a universal Cr�� section � in the
bundle �� over Metr �M .

Lemma A.2 Suppose that bC.M / D 0 and l 2 H 2
DR.M;R/ n f0g. The associated

universal section � is submersive at every vanishing point.

Proof Let .g0;x0/ be a a vanishing point of �. We use the metric g0 to simultaneously
parameterize the space of metrics (using positive g0 –symmetric endomorphisms) and
to trivialize the bundles �˙ . In this way, our section gives rise to a map

�.SymC.TM ;g0//
r
�M 3 .h;x/ 7! !h.x/ 2ƒ

2
�;x :
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where !h WD Œ�.h/
�1��.lgh

/2A2
�.M /. Put !0 WD!idD lg0

. Writing lgh
D!0Cd˛h

(with ˛h?L2Z1 ), one gets for the derivative P̨ .�/ WD d˛
dh

ˇ̌̌
id
.�/ the equation

pC
�
�m.�/�.!0/C d P̨ .�/

�
D 0;

which gives the solution
P̨ .�/DGC.m.�/C� .!0//;

where GC is the ŒZ1�?–valued inverse of the operators dC . Here Z1 � A1.M /

denotes as usually the space of closed 1–forms. Therefore

d!h

dh

ˇ̌̌̌
id
.�/D dGC.mC� .�/.!0//�m.�/.!0/D d�GC.mC� .�/.!0//�m��.�/.!0/:

Therefore
@!h.x/

@h

ˇ̌̌̌
.id;x0/

.�/D d�GC.mC� .�/.!0//.x0/;

because !0.x0/D 0. Suppose now that v 2 Œƒ�x0
� is orthogonal on the range of this

partial derivative.

The vector v defines a Dirac type ASD degree 2–current vx0
. Since any element of

m 2A0.Hom.ƒ2
�; ƒ

2
C// has the form mC� .�/, we obtain that for any such m

(19) 0D hv; d�GC.m.!0//.x0/i D hvx0
; d�GC.m.!0//i:

The assignment

 
ı
7! hvx0

; d�GC. C/i

defines a self-dual degree 2-current, and the identity (19) implies that this current
vanishes on M nZ.!0/. This current has the following important properties:

(1) One has d.ı/D d.vx0
/.

(2) ı is supported at x0 .

(1) Indeed, to prove the first claim, consider a test 1-form ˛ , and compute

hı; d˛i D hvx0
; d�GCdC˛i D hvx0

; d�pr
Z1?.˛/i D hvx0

; d�˛i D hvx0
; d˛i:

(2) Using the fact that d is overdetermined elliptic on A2
C.M /, it follows from the

first statement that ıjMnfx0g
is smooth. On the other hand, by (19), ı vanishes on the

dense open set M nZ.!0/. Therefore ı must vanish everywhere on M n fx0g.

The statement follows now from the following Lemma.
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Lemma A.3 Let u be a ƒ2 –valued distribution on R4 which is supported at the origin
and is closed. If u� has order 0, then uD 0.

Proof If du D 0 and u� has order 0, then uC must also have order 0, because, if
not, taking the sum uC

k
of all terms of highest order k � 1 in the decomposition of

uC as sum of partial derivatives of Dirac type distributions, one would have duC
k
D 0.

Therefore uC
k

would be singular harmonic self-dual form, which is impossible.

Therefore, u is an order zero Dirac type distribution, so it can be written as u DP
i<j aijı0ei ^ ej , where ı0 is the standard Dirac distribution. We get

duD
X

i<j<k

�
ajk

@

@xi
j0� aik

@

@xj
j0C aij

@

@xk

j0

�
ei
^ ej
^ ek ;

and the relation duD 0 implies obviously aij D 0 for all i < j .

Definition A.4 Let M be a 4–manifold with bC.M /D 0 and l 2H 2
DR.M / n f0g. A

metric g 2Metr will be called

(1) strictly l –admissible, if lg is submersive (transversal to the zero section) at any
vanishing point.

(2) l –admissible, if the intrinsic derivative of the section lg 2 �.ƒ
2
�;g/ at any

vanishing point has rank at least 2.

Denote by Metr
3
.l/ and Metr

�2
.l/ the space of (strictly) admissible Cr –metrics.

Proposition A.5 (1) Suppose that the regularity class r is sufficiently large. The
space Metr

3
of l –strictly admissible metrics is open and dense in Metr .

(2) The space Metr
�2

of l –admissible metrics is open, dense and path connected in
Metr .

Proof The openness of the two sets is obvious taking into account the compactness
of the manifold, the continuity of the map g 7! lg with respect to the C1 topology on
the space of sections, and the fact that, in general, for any bundle E and fixed base
point x , the condition

s.x/D 0; rk.Dx.s//� k

is closed with respect to the C1 –topology on the space of sections in E .

To prove the density of the set of admissible metrics, note that the vanishing locus Z.�/

of the universal section � is a smooth codimension 3–submanifold of Metr �M , and
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the natural map qW Z.�/!Metr is Fredholm of index 1. Metr
3
.l/ is just the set of

regular values of q . Put Z WDZ.�/.

Therefore the larger set Metr
�2
.l/ will also be dense. In order to prove the fact that

this set is also path connected, consider – for two given metrics g0 , g1 2Metr
�2
.l/ –

a differentiable path 
 W Œ0; 1�!Metr joining them.

Consider that map
GW �.SL.TX //

r
� Œ0; 1� �!Metr

defined by G.h; t/ D h�.
 .t//. Since the partial derivative @G
@h

alone is surjective
at any point, we conclude that the map G is transversal to q , so the fibered product
P WD f.h; t; z/jG.h; t/D q.z/g is a smooth submanifold of �.SL.TX //

r � Œ0; 1��Z .
The natural map P ! �.SL.TX //

r is proper and Fredholm of index 2. By the Sard–
Smale theorem [11], in any neighborhood of id one can find a regular value h0 of this
map. Therefore, for such h0

P0 WD f.t; z/j G.h0; t; z/D q.z/g

is a smooth 2–dimensional submanifold of Œ0; 1��Z . Put g0t WD G.h0; t/. The fiber
over t 2 Œ0; 1� is contained in ftg�fg0tg�M and is identified with the vanishing locus
Z.lg0t / of the section lg0t under the projection on the third factor.

We claim that the path G.h0; �/ takes values in Metr
�2
.l/. Indeed, the Zariski tangent

space of Z.lg0t / at a point x is just the intersection of the tangent space of P0 at
.t;g0t ;x/ with the tangent space of the fiber ftg � fg0tg �M � P0 over t . But the
tangent space of P0 at any point is 2–dimensional, so the Zariski tangent space of
Z.lg0t / at x has dimension 1 or 2.

In order to complete the proof, is suffices to join g0 to g0
0

and g1 to g0
1

with paths
in Metr

�2
.l/. By the openness property of this space, it follows easily that ( if h0

is sufficiently close to id) the metrics G.idC s.h0 � id/; 0/, G.idC s.h0 � id/; 1/,
s 2 Œ0; 1� remain in Metr

�2
.l/ for every s 2 Œ0; 1�.

Note that we see no reason why the space Metr
3
.l/ should be connected. Indeed,

suppose that for two metrics g0 , g1 2Metr
3
.l/, the corresponding vanishing loci

(which are finite unions of pairwise disjoint embedded circles) have different number
of connected components. Then there is certainly no way to join the two metrics by a
path in Metr

3
.l/.

Remark If g 2Metr
�2
.l/, then any point x 2Z.lg/ has a neighborhood Ux �M

such that Z.lg/\U is contained in a closed submanifold Nx of Ux of dimension
1 or 2. In particular the vanishing locus Z.lg/ of the g–harmonic ASD form lg has
Hausdorff dimension � 2.
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Proof Indeed, consider a smooth map Rn � V
f
�! Rm whose rank at 0 2 V is k

and let E WD im.d0.f //. Then the composition pE ı f is a submersion at 0, so its
restriction on a sufficiently small neighborhood U of 0 will be a submersion. Note
that Z.f /�Z.pE ıf / and that Z.pE ıf /\U DZ..pE ıf /jU / is a codimension
k submanifold of U .

The results above can be extended for twisted de Rham cohomology classes: Let
�W �1.M /!Z2 be an epimorphism, and suppose that bC.M�/D 0 where ��W M�!

M is the corresponding double cover of M . Let l 2H 2
DR.M�/ n f0g be a de Rham

cohomology class with the property that ��.l/D�l , where � stands for the tautological
involution of M� . Then, for every metric g on M , the ��� .g/–harmonic representative
lg of l is an ASD form on M� satisfying the identity ��.lg/D�lg . In other words,
lg is a �–twisted ASD form on M . At any point x 2M , lg is defined up to sign.
Therefore, the vanishing locus Z.lg/�M and the rank of the intrinsic derivative at a
vanishing point are well-defined objects. In particular one can associate to l the sets of
metrics Metr

3
.l/, Metr

�2
.l/ as in the non-twisted case, and these sets also have the

properties stated in Proposition A.5.

Proposition A.6 Let M be a 4–manifold and d 2H 2.M;Z/

(1) Suppose that

(20) bC.M /D 0 and d 62 2H 2.M;Z/CTors:

Then, for every c 2H 4.M;Z/ the set

Metr
adm.c/ WD

\
l2H 2.M;Z/
l �.d�l/�c

Metr
�2.2l � d/

is open, dense and connected in Metr .

(2) Suppose that (20) holds and, for every epimorphism �W �1.M;x0/! Z2

(21) bC.M�/D 0 and ��� .d/ 62 2H 2.M�;Z/CTors:

Then the set

Metr
tadm.c/ WDMetr

adm.c/
\" \

�1.M;x0/
�

�Z2; l2H 2.M� ;Z/

lC��.l/D��� .d/; l ���.l/����.c/

Metr
�2.l � �

�.l//

#

is open, dense and connected in Metr .
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Proof The important point here is that, since the intersection form of M is negative
definite, the set of terms in the first intersection is finite. For the second intersection
note first that � varies in a finite set (isomorphic to the set of index 2 subgroups of
H1.M;Z/) and, under our assumption, for any fixed � , there are only finitely many
possibilities for l . To complete the proofs it suffices to note that the two properties in
Proposition A.5 have been obtained by applying the Sard–Smale theorem to certain
proper Fredholm maps, and using the fact that the set of regular values of such a map
is open and dense. A finite intersection of such sets will also be open and dense.

A.3 Analytic results

We begin with the following easy result concerning the range of a proper Fredholm
map f W V !W of negative index j .

Lemma A.7 Let V , W be separable Banach manifolds and f W V ! W a proper,
smooth, Fredholm map of negative index j � �1. Then

(1) The range f .V / of f is closed and nowhere dense,

(2) When j � �2 the natural map �i.W n f .V //! �i.W / is an isomorphism for
0� i � �j � 2 and is surjective for i D�j � 1.

Note that we do not assume that W is connected. The second statement claims that
W0 nf .V / is connected for every connected component W0 of W , and that the map
�i.W0nf .V /;x0/!�i.W0;x0/ is an isomorphism (respectively surjective) for every
x0 2W0 nf .V / and 0� i � �j � 2 (i D�j � 1).

Proof The first statement follows directly from the Sard–Smale theorem. Since
ind.f / < 0 a point w 2 W is a regular value for f if and only if w 62 f .V /. The
second statement is proved using standard transversality arguments (see Donaldson
and Kronheimer [3, Section 4.3.2]). We illustrate this method in the case i D 0. For
this case we have to prove that �0.W n f .V //! �0.W / is injective (the surjectivity
follows from (1)). Consider two points w0 , w1 2W n f .V / belonging to the same
component W0 of W and connect them with a smooth path 
 W Œ0; 1�!W0 . Using [3,
Proposition 4.3.10] we obtain a smooth path 
 0W Œ0; 1�!W0 with 
 0jf0;1g D 
 jf0;1g
arbitrary close to 
 which is transversal to f . Since ind.f /� �2, this transversality
condition implies im.
 0/\f .V /D∅.

The following proposition plays an important role in the proof of our regularity results.
This will allow us to refine the Freed–Uhlenbeck theorems [4] and to estimate the
codimension of the spaces of bad metrics.
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Proposition A.8 Let M be an n–dimensional compact manifold, E a real rank r

vector bundle and r a linear connection on E . Let U �M be an open set whose
complement † has Hausdorff dimension d � n� 2. Let ˛ 2A1.E/ and ' 2 �.U;E/
such that r' D ˛jU . Then ' extends smoothly to a section  2 �.M;E/ satisfying
r D ˛ .

The idea of the proof is to use the (classical) methods of characteristics to solve the
first order equation rf D ˛ : we integrate the family of ordinary equations obtained
by restricting our equation to an .n�1/–dimensional family of embedded paths which
define a local foliation. We choose the paths such that all starting points belong to U ,
and we use the values of ' at these points as initial conditions. The condition on the
Hausdorff dimension of † implies that a dense family of paths do not meet the set †
(where ' is not defined), so on these paths the sections f and ' coincide. In this way
one checks that the section f obtained by pathwise integration agrees with ' on the
intersections of their domains, providing a proper extension of ' .

Proof For every smooth path 
 W .�1; 1/!M , consider the connection 
 �.r/ on
the bundle 
 �.E/ on .�1; 1/ and the affine ordinary differential equation

(22) 
 �.r/g D 
 �.˛/

for sections g in the bundle 
 �.E/. Using the general theory of ordinary differential
equations, one gets, for every e 2E
.0/ , a unique solution

g
;e 2 �..�1; 1/; 
 �.E//

of the equation (22) satisfying the initial condition g
;e.0/D e . This solution depends
differentiably on the pair .
; e/, where e 2E
.0/ . Our hypothesis r' D ˛jU implies
' ı 
 D g
;'.
 .0// for every smooth path 
 W .�1; 1/! U .

Let  2 �.V;E/ be a maximal element of the ordered set of extensions of ' defined
on open subsets of M . The existence of such a maximal element follows by the Zorn
lemma. Since U is dense in M (so also in V ) one has

(23) r D ˛jV

which implies

(24)  ı 
 D g
; .
.0//

for every smooth path 
 W .�1; 1/! V . The complement †0 DM nV will also have
Hausdorff dimension � n� 2.
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We claim that V DM . Suppose not, and let x0 2M n V . Denoting by Bn�1 the
standard ball in Rn�1 consider a local parametrization

hW Bn�1
� .�1; 1/

'
�!W �M

of M such that
h.Bn�1

� f0g/� V; h.0; 1
2
/D x0:

The idea is to extend  on V [W using the solutions ghx ; .h.x;0// , x 2Bn�1 , where
hx denotes the path t 7! h.x; t/.

So put
f .x; t/D ghx ; .h.x;0//.t/; � WD f ı h�1:

We claim that �jW \V D  jW \V , which will complete the proof, because this would
yield a proper extension of  , contradicting its maximality.

Our claim is equivalent to

f jh�1.V / D  ı hjh�1.V / :

The two functions coincide on
�
Bn�1 n pr1.h

�1.†0//
�
� .�1; 1/, because, for any

x 2
�
Bn�1 n pr1.h

�1.†0//
�

the corresponding path hx is entirely contained in V so,
for such x , both sections

t 7! f .x; t/; t 7!  .h.x; t//

coincide with ghx ; .h.x;0// , by (24) and the definition of f . It suffices to notice that,
by our hypothesis, the set h�1.†0/ is of Hausdorff dimension at most n� 2, so its
projection on the .n� 1/ dimensional ball Bn�1 is also of Hausdorff dimension at
most n � 2. Therefore, this projection cannot contain any non-empty open set, so
its complement in Bn�1 is dense, so

�
Bn�1 n pr1.h

�1.†0//
�
� .�1; 1/� is dense in

Bn�1 � .�1; 1/, so the two functions coincide everywhere.

The following corollary shows that the statement of [4, Lemma 4.16] is true as soon as
the vanishing of the ASD curvature has Hausdorff dimension � 2. In particular this
statement is true for C1–metrics by the results of Bär [1] and for admissible metrics.

Corollary A.9 Let .M;g/ be a compact oriented Riemannian 4–manifold endowed
with a Cr –metric g , and S a Hermitian line bundle on M endowed with a non-flat ASD
connection � . Suppose that the vanishing of the curvature has Hausdorff dimension
� 2. Let ˇ 2A1.S/ such that

(1) d��ˇ D 0, dC� ˇ D 0,
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(2) The anti-selfdual S –valued form d�ˇ is a tensor multiple of F� at any point
x 2M for which F�;x ¤ 0.

Then ˇ D 0.

Proof Let U be the complement of the vanishing locus † of F� . By assumption we
can write d�ˇjU D F� ˝ � , for a section � 2 �.U;S/. We get

ŒF� jU �^ .ˇjU � d��/D d�d� .ˇjU � d��/D d� .d� ˇjU �F� ˝ �/D 0;

hence ˇjU � d�� D 0, since the wedge product with a non-trivial (real or purely
imaginary) ASD form is invertible on 1–forms. By Proposition A.8 and the assumption
on Z.F� /, the section � extends smoothly to a section � on M satisfying d�� D ˇ .
Since we assumed d��ˇ D 0, we get immediately ˇ D 0.

Proposition A.10 Let S be a Hermitian line bundle on an oriented Riemannian 4–
manifold .M;g/ and � a Hermitian connection on S . Let � 2A2

C.S/ with d��D 0.
Suppose that on an open set U �M , the form � (regarded as section in ƒ2

C˝S ) has
real rank 1. Then F� jU D 0.

Proof Supposing that U is simply connected, we can write � D ! ˝ � , where
! 2A2

C.U / is a real selfdual form, and � 2 �.U;S/. By assumption, both ! and �
are nowhere vanishing on U . Since d��D 0, we get

d!˝ �C! ^ d�� D 0;

hence ! ^ .� ˝ �Cd��/D 0, where � is the real form on U defined by d! D ! ^ � .
We get

d�� D��˝ �; F� ˝ � D�d�˝ �C � ^d�� D�d�˝ �� .� ^ �/˝ � D�d�˝ �:

This yields F� D�d� , in which the left hand term is purely imaginary and the right
hand term is real.
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