Geometry & Topology 11 (2007) 2075-2115 2075

Constructing Lefschetz-type fibrations on four-manifolds

DAvID T GAY
ROBION KIRBY

We show how to construct broken, achiral Lefschetz fibrations on arbitrary smooth,
closed, oriented 4-manifolds. These are generalizations of Lefschetz fibrations
over the 2—sphere, where we allow Lefschetz singularities with the non-standard
orientation as well as circles of singularities corresponding to round 1-handles. We
can also arrange that a given surface of square 0 is a fiber. The construction is easier
and more explicit in the case of doubles of 4-manifolds without 3— and 4-handles,
such as the homotopy 4—spheres arising from nontrivial balanced presentations of the
trivial group.

57M50; 57R17

1 Introduction

Theorem 1.1 Let X be an arbitrary closed 4—manifold and let F' be a closed surface
in X with F'- F = 0. Then there exists a broken, achiral Lefschetz fibration (BALF)
from X to S? with F as a fiber.

Recall that a (topological) Lefschetz fibration (LF) on a closed 4-manifold is a smooth
map to a closed surface with all singularities locally modelled by the complex map
(w, z) > w?+2z2. (We call these “Lefschetz singularities”.) An achiral LF (ALF) is one
in which we also allow singularities modelled by (w, z) — (w)? 4 z2, the same model
as above but with the opposite orientation on the domain. (We call these “anti-Lefschetz
singularities”.) All (anti-)Lefschetz singularities in this paper will be allowable, see
Definition 2.3. A broken LF (BLF) is one in which we also allow singularities modelled
by the map from S xR3 to S' xR given by (6, x, y,z) — (0, —x2 + y> +22). (We
call these “round 1-handle singularities”.) Such a fibration was called a “singular
LF” in Auroux—Donaldson—Katzarkov [4], and the singularities were called “indefinite
quadratic singularities” there. Finally, a broken achiral LF (BALF) is one in which all
three types of singularities are allowed.

This theorem can be compared to work of Auroux, Donaldson and Katzarkov [4] and
of Etnyre and Fuller [12]. In the first it is shown that if X4 has a near-symplectic form
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(which it does when b;‘ > 0), then X* is a broken Lefschetz pencil (BLP). This is
a generalization of Donaldson’s earlier results on Lefschetz pencils and symplectic
structures [9]. In particular, X blown up some number of times is a Lefschetz fibration
over each hemisphere of S? with different genus fibers, and then over the equator round
I-handles are added (independently) to the side with lower genus; also the Lefschetz
singularities can all (topologically) be placed over the high genus hemisphere. In our
paper, round 1-handles can also be added independently; see Addendum 1.3.

Etnyre and Fuller show that X# connected sum with a 2—sphere bundle over S? is an
achiral Lefschetz fibration (ALF); the connected sum occurs as the result of surgery
on a carefully chosen circle in X'. Baykur [6] has results relating this construction to
folded symplectic structures.

Conjecture 1.2 Not all closed, smooth, oriented 4—manifolds are BLFs. For example,
it is possible that C P? is necessarily achiral as a fibration (even though it does have a
Lefschetz pencil structure).

We also prove the following.

Addendum 1.3 (Addendum to Theorem 1.1) If we are given a collection of embed-
ded 2—spheres S1, ..., Sy, each intersecting F in a single positive intersection, then
we can construct the BALF so that each S; is a section. In particular, if the initial “fiber”
F has positive selt-intersection, we can blow up its intersection points, make a BALF
in which the exceptional divisors are sections, and then blow down these sections, to
get a broken, achiral Letschetz pencil (BALP) with F as a fiber.

We can arrange that the round 1-handle singularities all project to the tropics of Cancer
and Capricorn, with their high genus sides towards the equator and with all Lefschetz
and anti-Lefschetz singularities over the equator.

A significant section of this paper is devoted to proving a result (Theorem 5.2 and
Corollary 5.3) on the existence of “convex” BLFs on 4—manifolds built from 0—, 1—
and 2-handles, with prescribed boundary conditions. This is essential to the proof
of Theorem 1.1, but is also of independent interest as a natural generalization of Loi
and Piergallini’s result [28] (see also Akbulut and Ozbagci [3]) on the existence of
Lefschetz fibrations on Stein surfaces.

The virtues of Theorem 1.1 are as follows.

(1) It covers small 4—manifolds such as homology 4—spheres. In particular the Gluck
construction on a knotted 2—sphere K in S* is a possibly exotic homotopy
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4—sphere which is a BALF with K as a fiber. Also, the homotopy 4—spheres
arising from non-trivial presentations of the trivial group (see Kirby [25, Problem
5.1 and 5.2]) are seen by a simplified construction to be BALFs. CP? with
either orientation can be seen as a simple example of a BALF.

(2) The proof is fairly constructive, with the least constructive part coming from
the use of Giroux’s theorem that two open books on a 3—manifold are stably
equivalent if their 2—plane fields are isotopic [17] and Eliashberg’s theorem that
homotopic overtwisted contact structures are isotopic [11].

(3) Conceivably these BALFs can be used as LFs are used in Donaldson—Smith theory
[10] (and BLFs in Perutz’s generalization [30; 31; 32]) to find multisections
which are pseudoholomorphic curves, in the sense of Taubes’ program [34; 33]
on pseudoholomorphic curves in near-symplectic 4—manifolds.

(4) In a philosophical sense, this paper complexifies Morse functions as much as
possible, in the sense that it produces maps from arbitrary 4—-manifolds to C P!
which, locally, are as complex analytic as possible. This continues the long line
of results (obtaining pencils) from Lefschetz (X algebraic) to Donaldson (X
symplectic) to Auroux—Donaldson—Katzarkov (X near-symplectic).

This is an existence theorem, so of course there ought to be a uniqueness theorem,
which we hope will be the subject of a following paper.

Remark 1.4 After we posted our initial version of this paper, Perutz pointed out that
a simple argument in [4, Section 8.2, Example 3] can, with a reversal of orientations,
be used to turn an anti-Lefschetz singularity into a round 1-handle singularity at the
cost of blowing up the 4-manifold. Thus a corollary of Theorem 1.1 is that, after
some number of blowups, any closed 4—manifold has a BLF over S2. We will present
our version of this construction in Remark 6.2 at the end of the paper. Note here
that the exceptional divisors are not sections of the BLF, and that the round 1-handle
singularities do not all project to parallel copies of the equator, so this does not quite
recover the main result of [4]. However, this construction may be sufficient as input
into Perutz’s program to construct smooth invariants from BLFs.

We would especially like to thank the African Institute of Mathematical Sciences in
Cape Town for their hospitality during the final writing of this paper. We are also
grateful to the referee for catching some important and subtle errors.

David Gay was supported in part by NSF/DMS-0244558 and fellowships from CRM/
ISM and CIRGET. Robion Kirby was supported in part by NSF/DMS-0244558.
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1.1 Outline

We begin in Section 2 by giving precise definitions of the types of fibrations considered,
including control on behavior near singularities and along boundaries. While doing this,
we also show how to achieve the singularities and boundary behavior in terms of handle
additions, and we show how such handle additions affect the monodromies of fibrations
and open book decompositions (OBDs) on the boundaries. The two important types
of boundary behavior we define are “convexity” and “concavity” along boundaries,
conditions which mean that the fibrations restrict to OBDs on the boundary and that
concave boundaries can be glued to convex boundaries as long as the OBDs match. The
proof of Theorem 1.1 then boils down to constructing a concave piece and a convex
piece and arranging that the open books match.

In Section 3 we look in detail at an example from [4] of a BLF on § 4 breaking it
down into handles as in Section 2. The goal is to get the reader accustomed to the tools
and language we use in the rest of the paper, and to see various ways to split the BLF
into convex and concave pieces. In particular we show (Lemma 3.1) how to construct
a concave BLF on F x B? for any closed surface F.

In Section 4 we show how to construct a BALF on the double of any 4—dimensional
2-handlebody. This construction is more explicit than the general case because it does
not depend on Giroux’s work on open books or Eliashberg’s classification of overtwisted
contact structures. This section also includes a method (Lemma 4.5) for adding 1—
handles to a concave (BA)LF. At the end of the section we discuss the relationship
between doubles and the Andrews—Curtis conjecture about balanced presentations of
the trivial group.

Then in Section 5 we show that a 4-manifold X built from just 0—, 1- and 2-handles
is a convex BLF. Furthermore, if we are given a homotopy class of plane fields on
dX , we can arrange that the induced OBD on dX supports an overtwisted contact
structure in this homotopy class. (This is not true for ALFs.) In order to achieve this,
we need to be able to positively and negatively stabilize the OBD on d.X . (Stabilization
means plumbing on Hopf bands, positive being left-handed bands and negative being
right-handed bands.) Positive stabilization is easy to achieve; negative stabilization
is easy if we allow achirality, but to avoid achirality as much as possible we show in
Lemma 5.4 that we can negatively stabilize with round 1-handles instead of achiral
vanishing cycles. This section also includes a detailed analysis of almost complex
structures carried by BLFs.

Section 6 finishes off the proof of Theorem 1.1 and the addendum. We take the concave
BLF on F x B? from Section 3 and add enough 1-handles (as in Section 4) so that the
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complement is built with just 0—, 1—and 2-handles. This induces a particular OBD on
the boundary of this concave piece. We then construct a convex BLF on the complement
as in Section 5, inducing an OBD on its boundary which supports a contact structure
homotopic to the contact structure supported by the OBD coming from the concave
piece. We arrange that both contact structures are overtwisted, so by Eliashberg’s
classification of overtwisted contact structures [11] they are isotopic. By Giroux’s
work on open books [17] the two OBDs have a common positive stabilization, which
we already know we can achieve on the convex piece without introducing achirality.
(Note that at this point the two pieces are BLFs, not BALFs.) The only new tool
developed in this section is a trick for stabilizing OBDs on concave boundaries of
(BA)LFs; unfortunately, to achieve the positive stabilizations we are forced to introduce
anti-Lefschetz singularities (achirality).

Section 7 gives a list of questions.

1.2 Notation and conventions

Unless otherwise stated, all manifolds are smooth, compact, connected and oriented
(possibly with boundary), and all maps between manifolds are smooth. Whenever we
specify a local model for the behavior of a map, we imply that the local models respect
all orientations involved. All almost complex structures respect orientations and all
contact structures are positive and co-oriented.

For our purposes, an open book decomposition (OBD) on a closed 3—manifold M
is a smooth map f: M — B? such that f~!(dB?) is a compact 3—dimensional
submanifold on which £ is a surface bundle over S! = dB? and such that the closure
of f~1(B?\dB?) is a disjoint union of solid tori on each of which 1" is the projection
S! x B?2 — B?. The binding is B = f~!(0), and the page over z € S! is &, =
fYAz|0<A <1}, with B=0X,. The monodromy is the isotopy class (rel. boundary)
of the return map h: 31 — X for any vector field transverse to the interiors of all the
pages and meridinal near the binding. We will usually blur the distinction between the
isotopy class and its representatives. Positively (resp. negatively) stabilizing an OBD
f: M — B? means plumbing on a left-handed (resp. right-handed) Hopf band. Thus if
f': M — B? is the result of positively (resp. negatively) stabilizing f: M — B?, then
f': =M — B? is the result of negatively (resp. positively) stabilizing f: —M — B2.

When a knot K lies in a page of an open book decomposition or a fiber of a fibration
over S, we call the framing induced by the page the “page framing”, and abbreviate
it pf(K).
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2 Broken, achiral Lefschetz fibrations and pencils

We will be constructing and working with smooth surjective maps from compact
4-manifolds to compact surfaces with controlled behavior at singularities and along
boundaries, this control to be discussed below. When such a map f: X* — X2 is
defined on all of X we will call f a “fibration”, decorated with various adjectives
which characterize the allowed singularities and boundary behavior. When £ is defined
only on the complement of a discrete set B C X, near each point of which /" is locally
modelled by the canonical map C?\ 0 — CP!, we will call f a “pencil”, decorated
with the same adjectives; the points of B are called “base points”. Note that for a
pencil the target surface ¥ is necessarily S2. Also note that blowing up each base
point turns a pencil into a fibration, with the exceptional divisors becoming sections.
Similarly, blowing down square —1 sections of a fibration over S? yields a pencil. If
f: X\ B— X2 isapencil and p € S2, we abuse terminology slightly to say that
the “fiber” over p is f~!(p)U B, a compact surface, so that any two fibers intersect
transversely and positively at each base point.

Now we describe the adjectives which characterize the singularities, as well as inter-
pretations of the singularities in terms of handlebody decompositions and the effects of
the various singularities on monodromies of fibrations on boundaries. The relationships
between singularities, handles and monodromies are critical for all the constructions in
this paper.

Consider a general smooth map f from a 4-manifold X to a surface X.

Definition 2.1 A critical point p € X of f is a Lefschetz singularity if f is locally
modelled near p by the map g: (w,z) — w? + z2 from C? to C. If instead f is
locally modelled near p by got, where t(w, z) = (w, z) reverses orientation, then p
is an anti-Lefschetz singularity.

A Lefschetz singularity is the standard singularity in a Lefschetz fibration, corresponding
to the critical point of a vanishing cycle. The following remark is a standard result and,
if the reader finds it confusing, a more detailed exposition can be found in Gompf and
Stipsicz [20].

Remark 2.2 (Vanishing cycles as 2—handles) If [0, 1]x S is an annulus in ¥ with a
single Lefschetz singularity in f~1([0, 1]x S1), then f~1([0, 1]x S') is a cobordism
from My = f~1(0x S') to My = f~'(1 x S!) on which the projection to [0, 1]
is a Morse function with a single Morse critical point of index 2 (at the Lefschetz
singularity). The corresponding 2—handle is attached along a knot K in M, which
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in fact lies in a fiber of the fibration of M over S!, and the framing is one less than
the framing induced by the fiber, ie pf(K) — 1. Conversely, suppose we start with a
fibration f: X* — X2, where ¥ has nonempty boundary and f has no singularities
over dX. Now attach a 2-handle to X along a knot K in a fiber of the fibration
f~1(0%) — 0%, with framing pf(K) — 1, to make a new 4—manifold X’ D X . Then
f extends to a fibration of X’ over ¥ with exactly one new singularity, a Lefschetz
singularity, at the core of the 2—handle. Lastly, if the monodromy of the fibration on d.X
is & and the monodromy of the fibration on dX” is /', the relation is that 4’ = tx o h,
where g is a right-handed Dehn twist along K.

If instead we started with an anti-Lefschetz singularity, the 2—handle would be attached
with framing pf(K) + 1 and, conversely, if we attach a 2—handle as above but with
framing pf(K) + 1 rather than pf(K) — 1, we can extend the fibration creating a single
new anti-Lefschetz singularity, and the monodromy changes by a left-handed Dehn
twist (ie h' = 75! o h).

Definition 2.3 An (anti-)Lefschetz singularity is allowable if the attaching circle of
its vanishing cycle is homologically nontrivial in the fiber.

As preamble to the next definition, recall that a “round k—handle” is S! times a
k—handle. Thus a 4—dimensional round 1-handle is S! x B! x B? attached along
S1x S9x B2, ie attached along a pair of oriented framed knots. It is not hard to see
that the only important data is the relative orientation of the pair (if we reverse one
knot we should reverse the other) and the relative framing (if we increase one framing
by k we should decrease the other by k). A round 1-handle can also be thought
of as a 1-handle and a 2-handle, with the attaching circle for the 2—handle running
geometrically twice and algebraically zero times over the 1-handle. We will either
draw round 1-handles this way, or shrink the balls of the 1-handles down to small
solid black disks, so that we see two framed knots each decorated with a big black dot,
and a dashed line connecting the two dots. Drawn this latter way, it is important to
indicate the orientations with arrows. Since only the relative framing matters, we will
only label one of the two knots with a framing, implying that the other is 0—framed. If a
2-handle runs over a round 1-handle, we see its attaching circle as an arc or sequence
of arcs starting and ending on the attaching circles for the round 1-handle. Figure 1
gives two drawings of a handlebody decomposition of B* involving a 1-handle, a
round 1-handle and a 2-handle.

Definition 2.4 An embedded circle S C X of critical points of f is a round 1-

handle singularity if f is locally modelled near S by the map /: (8,x,y,z) —
(0, —x% + y>+2?) from S! xR3 to S! x R. Note that the genus of a fiber on one
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Figure 1: Two drawings of a handlebody decomposition of B* involving a
1-handle, a round 1-handle and a 2-handle; on the left the round 1-handle
is drawn as a 1-handle and a 2-handle.

side of f(.S) is one higher than the genus on the other side; we will refer to these as
the high-genus side and the low-genus side.

This type of singularity is called an “indefinite quadratic singularity” in [4], which in
principle also allows for a local model which is a quotient of the above model by a
Z/?2 action so that the annulus {y = z = 0} becomes a Mobius band. In this paper we
do not need this nonorientable model.

Remark 2.5 (Attaching round 1-handles) Let [0,1]x S! be an annulus in ¥ with a
single round 1-handle singularity S, and no other singularities, in f~1([0,1]x S!),
with £(S) =1/2x S, and with the low genus side over 0 x S! and the high genus
side over 1 x S'. Then f~1([0,1]x S') is a cobordism from My = f~1(0x S!) to
M; = f~1(1 x S') which is the result of attaching a round 1-handle to M, along
a framed, oriented pair of knots (K7, K,) each of which is a section of the fibration
over S, ie each one is transverse to all the fibers and wraps once around the fibration
in the positive direction. Conversely, if we start with a fibration f: X — X with no
singularities in f~1(dX), if we choose any such pair (K, K») in f~1(9%), and if
we attach a round 1-handle along (K, K,) to produce a new 4-manifold X’ D X,
then f extends to f’: X’ — ¥ with one new round 1-handle singularity the image
of which is parallel to X, and no other new singularities. The fibers in 0.X” are the
result of 0-surgery on the fibers in dX at the two points where K; and K, intersect
the fibers. To see how the monodromy changes, consider a vector field transverse to
the fibers in 0X with Ky and K, as closed orbits such that the return map / on a fiber
F fixes a disk neighborhood D; of each ' N K; and such that closed orbits close to
K1 and K, represent the framings with which we are to attach the round 1-handle.
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Let F’ be the new fiber obtained by replacing D; U D by [0, 1] x S'. Then the new
monodromy is equal to 2 on F \ (D U D,) and the identity on [0, 1] x ST.

Since a round 1-handle turned upside down is a round 2-handle, we could also
understand constructions with round 1-handle singularities in terms of round 2—handles.
However, in our proofs we do not seem to need this perspective.

Definition 2.6 The adjective “Lefschetz” is used to mean that a given map (fibration
or pencil) is allowed to have Lefschetz singularities. We add the adjective “achiral” to
“Lefschetz” to indicate that we allow both Lefschetz and anti-Lefschetz singularities
(recall that these are always allowable, as in Definition 2.3). The adjective “broken”
means that round 1-handle singularities are allowed. (This term is due to Perutz [30]
and Smith and has been chosen to indicate that the non-singular fibers change genus
when moving across the image in the base of a round 1-handle singularity; since the
singular circles disconnect the base, these singularities “break’ the fibration in a certain
sense.) If a type of singularity is not explicitly allowed then it is forbidden.

To summarize and abbreviate, we have four kinds of “fibrations’’: Lefschetz fibrations
(LFs), achiral Lefschetz fibrations (ALFs), broken Lefschetz fibrations (BLFs) and
broken achiral Lefschetz fibrations (BALFs), with containment as follows: LF C ALF,
LFCBLF,ALFCBALF and BLF C BALF . Replacing “fibration” with “pencil”
and “F” with “P” in the preceding sentence also works.

Now we describe the kind of boundary behavior we will allow for fibrations and pencils
on 4-manifolds with nonempty boundary. Again consider a general smooth map
/1 X*— X2, and now let M3 be a component of X .

Definition 2.7 We say that f is “flat” along M if f(M) is a component of 0¥ and
if f|ar is an honest fibration over this component. We say that f is “convex” along
M if f(M)=X = B? andif f|pr: M — B? is an open book decomposition of M .
We say that f is “concave” along M if f(M) is a disk B? in the interior of ¥ and
if f|as is an open book decomposition of M . If f is flat (resp. convex or concave)
along each component of dX, we simply say that f is flat (resp. convex or concave).

Note that, for a convex fibration, the fibers are surfaces with boundary. We use the
term “convex” because a convex Lefschetz fibration with “allowable” vanishing cycles
(homologically nontrivial in the fiber) naturally carries a symplectic structure (in fact,
a Stein structure) which has convex boundary. Likewise, a concave Lefschetz pencil
carries a symplectic structure with concave boundary; in this case some fibers are
closed and some are compact with boundary. The term “flat” is similarly motivated;
here the fibers are all closed.
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The typical example of a convex (BA)LF is F x B? where F is a surface with nonempty
boundary, together with vanishing cycles (maybe of both kinds) and round 1-handles.

Remark 2.8 (Convex 1-handles and concave 3-handles) Suppose that f: X — B?
is a convex fibration and that X" is the result of attaching a 1-handle to X at two balls
By, By which are “strung on the binding” of the induced OBD on dX in the sense
that f'|p, is the standard projection B3 — B?. Then f extends to a convex fibration
f': X' = B? with no new singularities. Each fiber F’ of f is diffeomorphic to a
fiber F' of f with a 2—dimensional 1-handle attached along the two intervals dF N By
and dF N By, and the same relation holds between the pages of the new OBD on 90X’
and the pages of the old OBD on 0X. The new monodromy is the old monodromy
extended by the identity across the 1-handle.

Dually, if f: X — %2 is a concave fibration and X is the result of attaching a 3—
handle to X along a 2—sphere S such that f|g is the standard projection S? — B2,
then f extends to a concave fibration f’: X’ — ¥ with no new singularities. Each
page F’ of the new OBD on dX” is diffeomorphic to a page F of dX cut open along
the arc S N F. Implicit here is that the old monodromy was trivial in a neighborhood
of this arc, and so the new monodromy is just the old monodromy restricted to F’. The
fibers of f” are related to the fibers of f as follows: If f(0X) = B? C X, then the
fibers over X\ B? do not change, while the fibers of f” over points in B? are obtained
from the fibers of f over the same points by attaching 2—dimensional 1-handles.
The subtle point here is that each fiber of the fibration inside the 4—manifold gains a
1-handle while each fiber of the OBD on the boundary loses a 1-handle.

Remark 2.9 Some other handle attachments that are not used in this paper but that
can help develop the reader’s intuition are as follows: If one attaches 2—handles to
a convex (BA)LF, with one 2-handle attached along each component of the binding
of the induced open book, with framings 0 relative to the pages, one produces a flat
(BA)LF. Using +1 framings instead produces a concave (BA)LP (Gay [15]).

Remark 2.10 (From flat to concave) One way to construct a concave (BA)LF is
to start with a flat (BA)LF and attach one or more 2—handles along sections of the
surface bundle induced on the boundary. More concretely, suppose that f: X — X
is flat along a boundary component M C dX and that K1, ..., K, are framed knots
in M which are sections of the induced fibration f: M — S C9%. Let X' D X
be the result of attaching 2—handles along K, ..., K, to X, and let M’ be the new
boundary component coming from surgery on M . Then f extendsto f’: X' — ¥/,
where Y’ is the result of attaching a disk D to the relevant component of 0%, so that
f’ is concave along M’. The cores of the 2—handles become sections of f’ over D,
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which extend as sections over all of X” as long as the knots K; extend as sections of |’
over all of X'. A concave (BA)LF which is used later in this paper is obtained simply
from F x B?, F aclosed surface, together with a 2—handle added to point x S! with
framing 0.

In this process we transform a surface bundle over S! on dX into an OBD on 9X".
Each page of the new OBD is diffeomorphic to a fiber of the fibration on dX with a
disk removed at each point of intersection with the sections Ky, ..., K. If we choose
a vector field V transverse to the fibers in dX such that each K; is a closed orbit with
a neighborhood v; of closed orbits realizing the given framing of K;, and if / is the
return map on a fiber F for flow along V', then the monodromy of the new OBD on
dX' is precisely A restricted to the new page F\ (D1 U---U D), where D; =v; N F.

Remark 2.11 (Glueing fibrations and pencils along boundaries) The point of spelling
out the above boundary conditions is that it should now be clear that fibrations and
pencils can be glued along common boundaries as long as we either

(1) glue flat boundaries to flat boundaries via orientation reversing diffeomorphisms
respecting the induced fibrations over S or

(2) glue convex boundaries to concave boundaries via orientation-reversing diffeo-
morphisms respecting the induced open book decompositions.

3 The Auroux-Donaldson-Katzarkov 4—sphere

In [4, Section 8] on singular (or broken) Lefschetz fibrations, Auroux, Donaldson and
Katzarkov construct a BLF f: S* — S2. The fiber over the north pole is S?, and
over the south pole is 7'2. Over the polar caps are S? x B% and T2 x B2. A round
1-handle is attached to S? x B?, giving a new boundary equal to 7% x S! — S,
Now this is glued to 72 x B?> — B? by a diffeomorphism of 72 x S! which rotates
T? along a meridian as S! is traversed, ie by a matrix of the form

101 s s+ 6
ot1o0lls]l=| ¢ |, 6est.
001/ \# 0

The complement of the preimage S? x B? of the arctic cap is an interesting BLF for
B3 x S' — B? restricting to S2xS! — S on the boundary; it is made from 7% x B>
by adding a round 2-handle in the right way.

However, it is more useful to describe the BLF in a somewhat different way. If
we pick the 0-handle and one of the 1-handles in T2, then its thickening gives
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[0,1]x S! x B> — B?, a convex fibration with fiber an annulus. The base B? will
become the southern hemisphere Dg of S2. The complement in S must be S x B2,
with a smaller S? x B? in its interior mapped by projection S? x B> — B? into
the northern hemisphere Dy . The fibration on this smaller S? x B? is then flat
along its boundary, inducing the fibration S? x S — S!. The cobordism in between,
S2 x S x I, will be mapped into S? in a way described below, with one concave
boundary component and one flat boundary component which match the convex and
flat boundaries of the two pieces constructed above.

The cobordism S2 x S! x I can be written as a cancelling 1-2-handle pair and a
cancelling 2—3—handle pair, attached to S? x B? and not changing its diffeomorphism
type. The 1-handle from the first pair and the 2—handle from the second pair will form a
round 1-handle, attached trivially along a pair of circles {p;, p2}x dB? C 3(S? x B?),
and mapping down to Dp . (The fibration extends over this 1-handle as in Remark
2.5).

The remaining 2-handle and 3—handle in fact make up a round 2—handle, or dually a
round 1-handle attached to the thickened annulus [0, 1]xS ! x B2, since the complement
of an annulus in 7'? is an annulus, and adding an annulus is the same as adding a round
1-handle. However, we do not use it as a round 2-handle here, but rather we map the
2-handle and 3-handle down to Dg as follows.

A handlebody picture of the process is given in Figure 2. The 2—handle labelled H
is the 2—handle of the round 2-handle in the preceding paragraph, and in the figure
we see that its attaching map is a section of the fibration over S!, so that fibration
will extend over H exactly as in Remark 2.10. Here, the framings of the 2—handles
are chosen so that when the 2-handle in the round 1-handle is slid twice over H
(see Figure 3), then it becomes an unknot, separated from the other components, with
framing 0, so that it defines a 2—sphere to which the 3—handle (in the round 2-handle)
is attached. H then cancels the remaining 1-handle.

There are several features about this construction that should be noted. First, the
concave piece has been constructed by adding the 2—handle H = B? x B? along a
section of T2 x S! — S = 9Dx which does not (in this case) extend over Dy, and
which maps to Dg by projection on the first factor. The fact that the section does not
extend to Dy is necessary for otherwise S* would contain a hyperbolic pair, the fiber
and the global section. This is a key to finding BALFs for all homology 4—spheres.
In particular, Theorem 1.1 shows that any knotted 2—sphere K in S* can be made
the fiber of a BALF on S*. Then, after performing the Gluck construction on K, the
resulting homotopy 4—sphere is seen to be a BALF with fiber still equal to K.
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S2x0 S2x1~8%2x%x0

Figure 2: Finding an H.

Figure 3: Sliding twice over H .

Second, the 3—handle of the round 2—handle (the 2—handle being H) is in a sense
attached upside down to the concave side, as in Remark 2.8; the attaching 2—sphere
consists of a pair of disks parallel to A and a cylinder S' x I which is attached to a
circle family of arcs in the fibers of 72 x S! — 9Dy .

Third, it is not necessary to begin building the concave piece with a 2—sphere fiber.
Instead begin with F2 x B> — B? = Dy, where F is a closed surface of genus
g . Pick a pair of points pq, p» € F and attach a round 1-handle along the sections
{p1. p2}x3B? over Dy . Now add H and the 3-handle as before, and all the handles
cancel topologically. (Figure 2 and Figure 3 are the same except that the squares at
either end represent disks in F'.) We have thus proved the following lemma.
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Lemma 3.1 Given any closed surface F there exists a concave BLF f: Fx B> — S?.

Note, however, that this statement of the result is deliberately vague about the resulting
OBD on F x S' = 9(F x B?); this is because we will not need to know anything
about the OBD when we use it later. However, in this S* example, it is important to
see the OBD, and it is instructive to think about what happens with higher genus fibers.

Before adding the 3—handle, the boundary is an open book with a once-punctured fiber
of genus g + 1, called Fy. This open book does not have trivial monodromy when
g + 1 > 2, a fact that needs explaining. It is easiest to understand the monodromy
after attaching H if H is added to a circle which corresponds to a fixed point of the
monodromy before attaching H ; see Remark 2.10. In this case, the initial monodromy
is trivial, but H is added to a curve representing the sum of the class of {p} x S! in
(F#(S! x S1)) x S! and the class of a curve running over the first factor in S' x S!,
which we call «. To adjust for this fact, monodromy is introduced along two curves
oy, and o g parallel to o which have the point p between them, with a left twist 7, Ll
on one and a right twist 74, on the other. Then the open book can be represented, as in
Figure 4, by a fixed surface F (obtained by removing a disk neighborhood of p from
Fi(S! x S1)) with twists along the curves a7, and ag drawn. When g = 0 as in the
case of S* above, then oy, and ap are isotopic in Fy so that the two twists cancel and
the monodromy is still trivial after attaching H. But when g > 0, oy, and ag are not
isotopic in Fy, so this construction gives a concave BLF whose boundary is an open
book with non-trivial monodromy. The 3-handle is then attached along the 2—sphere
which intersects each page in the arc y, so that o7, and ag become boundary parallel
Dehn twists. It follows that the convex piece, in order to fit with the concave piece,
cannot be just a (g + 1)—genus surface minus an annulus, crossed with B?, for that
has trivial monodromy on its boundary. However, if two vanishing cycles were added
to the convex side along o7, and ag (one framed pf+1 and one framed pf—1), this
would produce a convex piece which would “dock” into the concave piece.

Having given the construction for S*#, it is now easy to describe a BALF on CP2.
Simply take the above BLF for S* and add a +1—framed 2-handle to the 72 x B?
along a nontrivial circle in the fiber on the boundary. This produces a single anti-

Lefschetz singularity. The same construction with —1 gives us a BLF on CP2. This is
interesting because CP? is symplectic (and is therefore a Lefschetz pencil) but seems

to require achirality when described as a fibration, while C P2 is far from symplectic
but can be described as a fibration without using anti-Lefschetz singularities.
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g tori

g

Figure 4: Monodromy after attaching H .

4 Doubled 4-manifolds as BALF's

In this section we will prove a simpler version of Theorem 1.1, namely that the double
DX of any 4—dimensional 2—handlebody X is a BALF over S2. Along the way
we prove some important lemmas needed for the full proof of Theorem 1.1, but this
simpler result has the nice feature of being more explicit than the full result in the sense
that it does not rely on Giroux’s work on open books or Eliashberg’s classification of
overtwisted contact structures.

The first tool we need is standard (see [3], for example).

Lemma 4.1 Suppose that f: X — B? is a convex fibration and that A is a properly
embedded arc in a page of the induced OBD on 0X . First attach a 1 -handle to X at
the two endpoints of A and extend f across the 1-handle as in Remark 2.8. Let K be
the knot lying in a page obtained by connecting the endpoints of A by going over the 1—
handle, and now attach a 2—handle along K with framing pf(K) — 1 (resp. pf(K) + 1)
and extend f across the 2—handle as in Remark 2.2. Since the 2—handle cancels the
1—handle we get a new BALF on X with one more Lefschetz (resp. anti-Lefschetz)
singularity (and different fibers). Then the new OBD on 0X is the original OBD with a
left-handed (resp. right-handed) Hopf band plumbed on along A.

For clarification, recall that a Lefschetz singularity corresponds to a right-handed Dehn
twist, which in the lemma above corresponds to a left-handed Hopf band (positive
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stabilization). Similarly, an anti-Lefschetz singularity corresponds to a left-handed
Dehn twist, which in the lemma above corresponds to a right-handed Hopf band
(negative stabilization).

Definition 4.2 Given a handlebody decomposition of a manifold X', let X ;) denote
the union of handles of index less than or equal to k. We call X a k-handlebody if
X=X k) -

We will make essential use of the following proposition.

Proposition 4.3 (Harer [21], Akbulut—-Ozbagci [3]) Given a 4—dimensional 2—
handlebody X, let L be the attaching link for the 2—-handles in dX(;). Then there
exists a convex LF f: X(1) — B? such that L lies in the interior of a single page F of
the induced open book decomposition of 0.X(yy. Furthermore, it can be arranged that
each component K of L can be connected to OF by an arc A C F avoiding L (ie the
interior of A is disjoint from L ).

Proof We do not need the full strength of the result in [3], so here we provide a
streamlined proof of the result as we need it. The key fact we need is that if the page
of an OBD of S3 is obtained by plumbing left-handed Hopf bands onto a disk [22],
then this OBD is induced by a Lefschetz fibration on B*. (Start with the fibration
B* = B? x B> — B? and plumb on the Hopf bands using Lemma 4.1.) Figure 5 is an
example illustrating the following construction.

Consider a standard balls-and-link diagram in R = $3\ {oo} (balls for the 1-handles,
a link for the 2-handles) for the given handlebody decomposition of X . Let I' be the
graph in R? C R? which is the projection of the diagram, with crossings for L and
balls for 1-handles made into vertices, and with dotted lines for 1-handles made into
edges. By an isotopy of L we can always assume I' is connected. Thus we have two
types of vertices: 4—valent vertices for crossings and two (n + 1)—valent vertices for
each 1-handle which has » strands of the link running over it.

By plumbing left-handed Hopf bands onto a disk, one can easily construct a surface
S which is made up of one disk neighborhood in R? of each vertex of I and one
(sometimes twisted) band neighborhood in R3 of each edge of I'. (Start with a disk
neighborhood of a spanning tree and then plumb on one Hopf band for each remaining
edge.) At each 4—valent vertex corresponding to a crossing, plumb on an extra left-
handed Hopf band along an arc at right angles to one of the over-passing incident
edges, underneath the surface. Now S is the page of an open book decomposition of
S? induced by a Lefschetz fibration on B*.
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Figure 5: Constructing a Lefschetz fibration as in Proposition 4.3.

At this point, if there were no 1-handles, we would be done, since we could resolve
the crossings of I" to reconstruct the link simply by letting the under-crossing strand at
each crossing go over the extra Hopf band at that crossing. To deal with the 1-handles,
at each 1-handle vertex, string the foot of the 4—dimensional 1-handle on the binding
near that vertex (as in Remark 2.8) and now pass all the strands entering that vertex
over the 1-handle, remaining in the page the whole time. |

To construct our BALF on the double DX of a 2-handlebody X', we will use Proposi-
tion 4.3 on X(q) so that the 2-handles lie in a page with some framing. Recall that DX
is constructed from X by attaching, for each 2—handle of X', a dual 2—handle along a
small linking circle with framing 0 (and then attaching 3— and 4-handles). Thus if we
slide a 2—handle from X over its dual 2—handle we can change its framing by +2,
so we see that the framings of the 2—handles of X can be changed by £2 without
changing DX . Use this technique to change each framing to pf —1 or pf—2 (sliding
over the dual changes the framing by £2 and does not change L otherwise). If pf —2,
then plumb on one more left-handed Hopf band along a short boundary-parallel arc in
a page and run the attaching circle over the band so that the framing becomes pf —1.
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Note that we have now expressed DX as equal to DX’ where X’ has the same
0- and 1-handles as X and has 2-handles attached along the same link but with
different framings than X. We now forget about the original X and work with X”,
which we simply call X'. In addition, the LF on X(q), with fiber F', in fact gives a
more complicated handlebody decomposition of X1y, where the 1-handles are those
needed to build F x B2, and the 2—handles are the vanishing cycles needed to turn
F x B? into X, (1)- We now use this, together with the rest of the 2-handles needed to
make X, as our handlebody decomposition of X, and forget the previous handlebody
decomposition. Thus DX is expressed as F x B? together with n 2—handles attached
along knots in a page with framing pf —1 and » more dual 2-handles attached along
small linking circles with framing 0.

Now if we slide each dual over the 2—handle it comes from, it becomes a parallel
2-handle, lying in a page with framing pf +1. Thus (DX)(y) is expressed as a convex
ALF over B2 with n Lefschetz singularities and n anti-Lefschetz singularities, inducing
an OBD on 9(DX) ;) with trivial monodromy, since each right-handed Dehn twist has
a corresponding parallel left-handed Dehn twist. (Note that at this stage we have not
used any round 1-handles.)

To finish the construction, we will construct a concave BLF on the union of the 3— and
4-handles of DX inducing the same open book as above. The concave structure we
need, after turning things upside down, is given by the following two results.

Lemma 4.4 There exists a concave BLF f: B* — S? which restricts to S3 = 0B*
to give the standard OBD with disk pages.

Proof Take the ADK 4—sphere, discussed in Section 3 above, and remove from S* a
4-ball consisting of a neighborhood of a section over Dg ; that is, remove the 0—handle
of each torus fiber over Dg. The result is the desired concave BLF. O

(We could equally well remove the 0—handle of each sphere fiber over Dg. However,
the final BALF constructed on DX will have the undesirable feature that, as we move
the torus fiber over the south pole to the north pole, the genus of the fibers decreases
from 1 to 0, then increases. If we use the construction given in the proof above,
however, the genus will strictly increase as we move from one pole to the other. When
we finally prove Theorem 1.1, the genus will strictly increase as we move from each
pole to the equator, but will not have more than one “local maximum”.)

Lemma 4.5 (Attaching a 1-handle to a concave boundary) Suppose that f: X — X
is a concave fibration and that X' is the result of attaching a 1-handle to X . Then,
after changing the handlebody decomposition of the cobordism from 0X to dX’, we
can extend f to a concave fibration f’: X' — X with the following properties.
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(1) Each page of the new OBD on 0X’ is diffeomorphic to a page of the OBD on
dX with a 2—dimensional 1-handle attached along two intervals in the binding.
(The locations of these intervals can be chosen in advance.)

(2) The monodromy of the new OBD is the monodromy of the old OBD extended
by the identity across the 2—dimensional 1—handle.

(3) The only singularity in f’: X’ — X thatisnotin f: X — X is a single round
1 —handle singularity.

Proof Let Iy and /; be the two intervals in the binding along which the 2—dimensional
1-handle is to be attached. Move one foot of the 4—dimensional 1-handle into a ball
neighborhood By of Iy and the other into a ball neighborhood B; of I;. Inside
By introduce a cancelling 2—3-handle pair so that the 2—handle is attached along a
O—framed unknot K and the 3-handle is attached along a 2—sphere S made of the
Seifert disk for K and the core disk of the 2—handle. Now slide an arc of K over
the 1-handle so that we see one unknotted loop of K sticking out of the 1-handle in
the ball By and another unknotted loop sticking out of the 1-handle in the ball B;.
Now push each loop across the binding, and the 1-handle together with the 2—handle
becomes a round 1-handle as in Remark 2.5, across which the fibration f extends.
This much is illustrated in Figure 6.

Figure 6: Attaching a 1-handle to a concave boundary.

Now observe that the page has changed by removing a disk near Iy and a disk near 7
and replacing with [0, 1] x S!, with the monodromy extended by the identity across
[0,1]x S, as illustrated in Figure 7.

The 3-handle can then be seen to be attached along the 2—sphere which intersects each
page in the arc A drawn in Figure 7. Thus the fibration extends across the 3—handle as
in Remark 2.8. The page has now changed by cutting open along 4, which amounts to
attaching a 2—dimensional 1-handle to the original page of f at the two intervals I
and /. O

Geometry & Topology, Volume 11 (2007)



2094 David T Gay and Robion Kirby

Figure 7: How the page changes after attaching a 1-handle to a concave boundary.

Using these two lemmas, build a concave BLF on the union of the 3— and the 4-
handles which has an OBD on its boundary with trivial monodromy and with pages
diffeomorphic to the pages coming from the convex BLF on (DX)(;). This can be
done because the number of 3—handles in DX equals the number of 1-handles in DX
which equals the number of 1-handles in each page on d(DX)(y); also Lemma 4.5
gives us the freedom to attach the 2—dimensional 1-handles to the pages so as to get
the right number of boundary components.

Now glue the two pieces together using the diffeomorphism we get by identifying their
open books. This gives X for the following reason: The 4 and 3-handles of X form
a boundary connected sum of S! x B3s. By a classical theorem of Laudenbach and
Poenaru [26] it does not matter which diffeomorphism of a connected sum of STxS2%s
is used to glue on the 4— and 3-handles; the resulting 4-manifolds are diffeomorphic.
Thus, in gluing trivial open book to trivial open book above, we must obtain X .

Thus we have proved the following proposition.

Proposition 4.6 If X* is a 2—handlebody then its double DX has a BALF f: DX —
S2.

4.1 The Andrews—Curtis conjecture

One way of constructing smooth, homotopy 4—spheres which may not be diffeomorphic
to S* (they are homeomorphic, see Freedman [14]) is to use balanced presentations of
the trivial group which are not known to satisfy the Andrews—Curtis Conjecture.

If a finite presentation of a group G is described by attaching 1— and 2-handles to an
n—ball, then sliding handles over handles and introducing or cancelling 1-2-handle
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pairs correspond to what are called Andrews—Curtis moves on the presentation. The
Andrews—Curtis conjecture is that any balanced presentation of the trivial group can
be reduced to the trivial presentation using only these moves. The point is that you
“can’t remember”’, meaning that at any moment the only relations available for use are
those of current 2—-handles. (When one 2-handle slides over another the old relation
represented by the old 2—handle is lost.)

A balanced presentation P = {x1,...,X,]||r1,..., 7} of the trivial group determines
uniquely a homotopy 4—sphere by attaching » 1-handles to the 5-ball, and then n
2-handles whose attaching maps read off the relations {rq, ..., r,}. If two attaching
maps represent the same relation, then they are homotopic, and homotopic circles in
dimension 4 are isotopic. Hence this 5-manifold V3 is unique up to diffeomorphism
and is contractible. Its boundary dV = Sp, is the homotopy 4—sphere associated with
the presentation P.

Given P, we can also build 4—manifolds X which are contractible by adding n 1-
handles to the 4-ball and then n 2—handles corresponding to the relations. This involves
choices because different attaching maps which are homotopic are not necessarily
isotopic, so there are many possible choices of X corresponding to P. However in
all cases, X x I is diffeomorphic to V3 because with the extra dimension homotopic
attaching maps are isotopic. We have shown the following lemma.

Lemma 4.7 Our homotopy 4—sphere dV is diffeomorphic to d(X x I) and hence
diffeomorphic to the double DX which is known to be a BALF.

Question 4.8 s the fact that 0V is known to be a BALF helpful in showing that dV
is, or is not, diffeomorphic to .S 49

Remark 4.9 If a presentation P can be reduced to the trivial presentation by Andrews—
Curtis moves, then these moves can be mirrored geometrically in handle slides, and
then V3 = B3 so DX is S*.

But it is possible that DX is diffeomorphic to S* even though P cannot be reduced
to the trivial presentation by Andrews—Curtis moves. This would have to be the case
if the Andrews—Curtis Conjecture is false (as is expected by many experts) and the
smooth 4—dimensional Poincaré Conjecture is true.

The authors know of only one presentation P, namely {x, y[xyx = yxy, x* = y°},
which is not known to satisfy the Andrews—Curtis Conjecture but is known to give
S*. The latter was shown in Akbulut and Kirby [1; 2] with a beautiful denouement by
Gompf in [18].

There are many tantalizing presentations to play with. A full discussion appears in
Hog-Angeloni and Metzler [23].
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S The general construction of convex 2—-handlebodies

To prove Theorem 1.1 we will need a general construction of convex BLFs on 2—
handlebodies, with prescribed boundary conditions. As a warm-up we prove a simple
version without the boundary conditions.

Proposition 5.1 (Quick and easy recipe for convex BLFs) Every 4-dimensional
2-handlebody X can be given the structure of a convex BLF.

Proof Let f: X() — D? be the LF whose existence is asserted by Proposition 4.3.
The idea now is to turn each 2-handle (whose attaching circle lies in a page of the
open book on dX(p)) into a round 1-handle whose attaching circles are transverse
to the pages of the open book. For each such attaching circle K of a 2-handle H,
consider a neighborhood U of the arc A mentioned in Proposition 4.3, in which we
see only an arc of the binding B and an arc of K lying in a half-disk of the page F.
The following construction is illustrated in Figure 8.

First introduce a cancelling 1—-2-handle pair inside U so that the feet of the 1-handle
intersect F' in small disks, so that the attaching circle of the cancelling 2—-handle runs
from one foot straight to the other staying in F* with framing —1 with respect to this
picture. Next, slide a small loop of K over the 1-handle, and now H together with
the 1-handle form a round 1-handle H’; the two attaching circles of H’ are a small
unknot U near B and a copy K’ of the original knot K. Now push U across B
to become a small meridinal loop, hence transverse to the pages of the open book.
Likewise, push a small finger out from K’ and across B and then tilt the rest of K’
out of the page F so that K’ also becomes transverse to the pages. Thus the two
feet of this round 1-handle wrap once around the binding and the broken Lefschetz
fibration extends across the round 1-handle. Lastly note that the cancelling —1-framed
2-handle now lies in the extended page (after attaching the round 1-handle) and has
framing pf —1, so the fibration also extends across these 2—handles. |

For the more general result we need to keep track of almost complex structures and
homotopy classes of plane fields associated to fibrations and OBDs.

Given a B(A)LF f: X — X, we will use Ry to denote the union of the round 1-
handle singularities. Given a 4—manifold X, let 7 (X') be the set of all almost complex
structures on X modulo homotopy. Given a 3—manifold M let Z(M) be the set of
all co-oriented plane fields on M modulo homotopy. (This is of course equivalent
to the set of all nowhere-zero vector fields modulo homotopy, but we take the plane
field perspective because of the connections with contact topology.) First note the
following facts relating Lefschetz fibrations, almost complex structures, open book
decompositions and homotopy classes of plane fields.
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Figure 8: Turning a 2—handle into a round 1-handle (proof of Proposition 5.1).

A BLF f ona 4-manifold X determines a homotopy class j(f) € J(X \ Ry),
characterized by having a representative J € j( f) such that the fibers of f are
J —holomorphic curves.

An OBD f on a 3-manifold M determines a homotopy class z(f) € Z(M),
characterized by having a representative which is positively transverse to a vector
field V' which in turn is positively transverse to the pages of f and positively
tangent to the binding of f. This is the same as the homotopy class of the
unique isotopy class of positive contact structures supported by f in the sense
of Giroux [17].

If X is a 4—manifold and M = 0X , then a homotopy class j € 7 (X) determines
ahomotopy class z(j) € Z(M ) characterized by having a representative £ which
is the field of J—complex tangencies to M for some J € j.

If f is aconvex BLF on a 4—manifold X, inducing the OBD f|pr on M =0X,
then z(j (/) =z(fIm)-

Theorem 5.2 Let X be a 4—dimensional 2—handlebody, let C be a nonempty finite
disjoint union of points and circles in the interior of X and let J be an almost complex
structure on X \ C. Let N be a given open neighborhood of C. Then there exists a
convex BLF f: X — B? with the following properties.

The union of the round 1-handle singularities Ry is contained in N .

For any almost complex structure J' € j(f), J and J' will be homotopic on
X\N.
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e The positive contact structure supported by f|ax is overtwisted.

At this point it is worth emphasizing that, to prove Theorem 1.1, we would be satisfied
if Theorem 5.2 produced a BALF. However, we feel it is of independent interest that
we are able to avoid achirality on the convex half of the construction. Before we prove
Theorem 5.2, the corollary that we will actually use is the following.

Corollary 5.3 Given any 4—dimensional 2—handlebody X and any OBD g: 0X —
B? which supports an overtwisted contact structure £, there exists a convex BLF
f: X — B? such that the open book f|yx is obtained from g by a sequence of
positive stabilizations.

Proof The homotopy class of plane fields z(g) on dX determines a homotopy class
of almost complex structures on a collar neighborhood of 0.X ', which extends across
all of X except perhaps a finite disjoint union of points and circles. (This is because
the space of almost complex structures on R* respecting a given metric is S2, so we
only see obstructions to extending almost complex structures when we reach the 3—
skeleton.) Then Theorem 5.2 produces a BLF f”, such that £ € z( f’|5x). Eliashberg’s
classification of overtwisted contact structures [11] tells us that the contact structure
supported by f”|5x is isotopic to &, and Giroux’s results on contact structures and open
books then tell us that f”|5y and g have a common positive stabilization 4: X — B?
(where stabilization is plumbing on left-handed Hopf bands). Lastly each stabilization
of f’|ax required to produce /1 can be implemented using Lemma 4.1, to produce a
BLF f: X — B? such that f|yy = h. m|

To prove Theorem 5.2 (producing a BLF rather than a BALF) we need a way of
negatively stabilizing OBDs on convex boundaries without introducing anti-Lefschetz
singularities. Figure 9 shows a modification of an OBD involving plumbing one right-
handed Hopf band along an arc A in a page, one left-handed Hopf band along a parallel
copy of A, and one more left-handed Hopf band along a short arc transverse to this
parallel copy. We will now show that this modification can be achieved using round
I-handles but no anti-Lefschetz singularities. One should think of the following lemma
as giving us the freedom to plumb on right-handed Hopf bands wherever we want,
avoiding achirality, at the expense of introducing extraneous left-handed Hopf bands.

Lemma 5.4 Given a convex (BA)LF f: X — B? and an arc A in a page of the OBD
on dX , there exists a B(A)LF f': X — B? inducing the OBD indicated in Figure 9,
which agrees with [ outside a neighborhood U of A and which has one Lefschetz
singularity and one round 1-handle singularity inside U .
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Figure 9: Plumbing on one right-handed Hopf band along an arc A4, together
with a left-handed Hopf band plumbed along a parallel copy of A4 and a
left-handed Hopf band plumbed along a short arc transverse to this parallel

copy.

Proof Attach two cancelling 1-2-handle pairs as on the left in Figure 10 (so we
have not changed the 4-manifold). Then observe, as on the right in Figure 10, that
this configuration can also be seen as a 1-handle with feet strung on the binding, a
round 1-handle with feet wrapping once around the binding and a 2—handle whose
foot is a knot in a page running over the round 1-handle, with framing pf —1. The
monodromy of the new open book decomposition is indicated on the left in Figure 11.
To see this, note that we would like to see both feet of the round 1-handle as given by
fixed points of the monodromy, but the left foot goes over the 1-handle. However, if
we introduce a left-handed Dehn twist and a right-handed Dehn twist along parallel
curves that go along the arc A and over the 1-handle (the product of which is isotopic
to the identity), the section determined by a fixed point in between the two twists is
in fact the same as the left foot of the round 1-handle. The extra right-handed Dehn
twist in Figure 11 comes from the —1 framed vanishing cycle 2—handle. Figure 11
then shows a two-step isotopy so that we see that the resulting monodromy agrees
with the monodromy for Figure 9. (In these figures the indicated monodromy should
be understood to be composed with any pre-existing monodromy coming from the
initial open book decomposition.) Thus the new page is isotopic to that in Figure 9.
(To go from a statement about the monodromy of an open book to a statement about
the isotopy class of an open book is not safe in general. Here, however, we have the
fact that the operation in question amounts to a Murasugi sum with an open book
decomposition of S3, and in S3 open book decompositions are completely determined
up to isotopy by their monodromy, since the mapping class group of S3 is trivial.) O
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Figure 10: Two cancelling 1-2-handle pairs becoming a 1-handle, a round
I-handle and a 2-handle.

Figure 11: Three equivalent descriptions of the monodromy corresponding
to Figure 10.

The last techniques we need to develop before the proof of Theorem 5.2 are techniques
for computing Chern classes of almost complex structures and invariants of co-oriented
plane fields in terms of BLFs and OBDs. We begin by collecting some relevant facts.

First, note that there is a well-defined connected sum operation # on {(M3,z)|z €
Z(M)}, since any two plane fields are locally homotopic. Likewise there is a well-
defined boundary connected sum operation  on {(X*, j)|j € J(X)} which induces
the connected sum on the boundary. (These extend in the obvious way to self-connect
sums and boundary self-connect sums.) If one attaches a 1-handle from one convex
BLF (X7, f1) to another one (X5, f>) such that the feet are strung on the bindings as
in Remark 2.8, giving a BLF /" on X7{.X;, the resulting j(f) € J((X10X2)\ Ry) is
equal to the boundary connect sum j( f1)lj(f2), and z(f) € Z(0X11#0X>) is equal
to z(fD)iz(f2).

Next, we summarize some results from [19]; a useful exposition can also be found in
Ding, Geiges and Stipsicz [8].
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There are two invariants d, and d3 of Z(M), which as a pair constitute a complete
invariant. The “2-dimensional invariant” d, of a given z € Z(M) is simply the spin®
structure determined by z; in the case where H?(M;Z) has no 2—torsion, this is
completely characterized by c;(z) € H?>(M;Z). In general, the set S(M) of spin®
structures on M is an affine space for H?(M;Z), and the action of H?(M;Z) on
S(M) has the property that ¢q(a-s) = 2a + ci(s) fora € H*(M:;Z) and s € S(M).
The “3—dimensional invariant” d3(z) lies in an affine space for a cyclic group; the key
properties of d3 that we need are summarized in the following two items.

Focusing on the case of M = S3 (in which case there is only one spin® structure
and so we need only pay attention to d3) suppose that z;,z, € Z(S3) and that
S3 =0X; = 03X, with j; € J(X;) such that j;| g3 = z;, for i = 1,2. Then ¢ (j;)*—
2x(X1)=30(X1)=c1(j2)?>—2x(X>2)—30(X>) if and only if d3(z1) = d3(z,) (ieif and
only if z; = z,). Hence, in the case of S3, we identify d3(z) with (¢;(j)? —2x(X)—
30(X))/4€7Z—1/2, where j is any extension of z over a 4—manifold X . Now, for
a general 3—manifold M , if z1,z, € Z(M) and d,(z1) = d»(z3), then there exists a
z € Z(S3) such that d3(z5) = d3(z1#z). In particular, (M, z5) = (M, z;)#(S3,z). If
M = S3, then d3(z5) = d3(z1) +d3(z) +1/2.

Now we summarize a discussion in Gay and Kirby [16] on constructing almost complex
structures in prescribed homotopy classes.

Given an almost complex structure J on a smooth manifold X, J can always be
trivialized over the 1-skeleton of X'. Then ¢;(J) is represented by the cocycle whose
value on a 2—cell e is the obstruction to extending this trivialization across e, as an
element of 71 (GL,(C)) = Z. Any two almost complex structures can be made, via a
homotopy, to agree on the 1-skeleton. Given two almost complex structures J; and
Jo over the 2—skeleton which agree on the 1—skeleton, if their obstruction cocycles
are equal for a given trivialization over the 1—skeleton then J; is homotopic to J, on
all of the 2—skeleton. Thus, if we wish to construct a given almost complex structure
up to homotopy on a 2—handlebody, we must be able to construct an almost complex
structure J; on the 1-skeleton with a trivialization and then, for any given cocycle c,
be able to extend J; to an almost complex structure J on the 2—skeleton with ¢ as
its obstruction cocycle. In the absence of 2—torsion in H?(X;Z), this just amounts
to getting c¢;(J) correct, but when there is 2—torsion, there will be different cocycles
representing a fixed ¢y but corresponding to different almost complex structures.

Next we combine some standard contact and symplectic topology and some results
from [8] to relate the above facts to surgery and handle addition:

Given a 3—manifold M and a homotopy class z € Z(M), suppose that £ € z and that
K is aknotin M tangent to £. Then K comes with a canonical framing ¢ given by &;
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let M’ be the result of ¢ & 1 surgery on K. Then there is a well-defined z’ € Z(M")
which can be characterized in either of the following two equivalent ways.

ey

@)

Homotope &, remaining fixed along K, to be positive contact in a neighborhood
of K. Then there is a unique contact +1 surgery along K, producing & on
M’ and we let z’ be the homotopy class of &’.

Express a neighborhood N of K as S!x[—1,1]x[~1, 1], with K = ST x0x0
and with £ tangent to S! x [—1, 1] x 0 along K. Now homotope £, remaining
fixed along K, to be tangent to the foliation S! x[—1,1]x ¢ on all of N. As in
Lickorish [27], ¢ £ 1 surgery along K can be viewed as cutting M open along
S1x[—1,1]x 0 and reglueing via a left/right-handed Dehn twist along K. Thus
the surgered neighborhood N’ in M’ naturally inherits a foliation by annuli,
and we let £ be tangent to this foliation inside N’ and be equal to £ outside
the surgery. Then we define z’ to be the homotopy class of &’.

Now suppose that X is a 4—manifold with dX = M and with a given j € J(M)
restricting to z € Z(M). Let £ € z with K tangent to £ as above, with canonical
framing ¢. Let X’ be the result of attaching a 2—handle H along K with framing
¢+ 1, sothat 0X’ = M’ as above, and let z/ € Z(M') be as above. Then, in the case
of ¢ — 1 framing, there is a canonical extension j’ of j across H so that j'|p; = 2/,
and in the case of ¢ 4 1 framing, there is a canonical extension j’ of j across H \ B,
where B is a small ball in the interior of H, so that j’|p;s = z’. These extensions can
be characterized as follows.

)

@)

In the case of ¢ — 1 framing, identify H = D? x D? as a subset of C? via the
orientation-preserving map D? x D? 3 ((x1, X2), (31, y2)) = (x1 +iy1, x2 —
iyy) = (z1,22) € C2. Then j' is represented by an almost complex structure
J' € j" which equals the standard integrable complex structure on H C C? and,
when restricted to X = X'\ H, represents j. In particular, the fibers of the
map (zq,23) — Zf + Z% in H C C? are J’-holomorphic.

In the case of ¢ + 1 framing, identify H = D? x D? as a subset of C? via the
orientation-reversing map D? x D? 5 ((x1,x2), (¥1. y2)) — (x1 +iyi, x2 +
iy;) = (21,z2) € C2. Then j' is represented by an almost complex structure
J’ € j' defined everywhere except at (0,0) € H which, when restricted to
X = X'\ H, represents j and which is characterized on H by the fact that the
fibers of the map (zy, z) > z7 + z3 are J’'-holomorphic except at (0,0). The
ball B is then a small ball around (0, 0). Although j’ does not extend across
B, if we replace B with CP?\ B* (ie connect sum with CP?), then j’ does
extend across CP?\ B* so as to agree with the standard complex structure on
cp2.

Geometry € Topology, Volume 11 (2007)



Constructing Lefschetz-type fibrations on four-manifolds 2103

Now suppose that, in the setting of the preceding paragraph, we are also given a
trivialization of £ in a neighborhood of K (ie a non-vanishing section v of &). This
gives K a rotation number rot(K) (the winding number of 7K inside & relative to the
trivialization). Suppose that J € j so that £ is the field of J-complex tangencies to
M ; then we naturally get a trivialization (v,n) of J in a neighborhood of K, where n
is the outward normal to M . Let J' € j’ agree with J on X . Then, in both the case
of ¢ — 1 framing and ¢ 4 1 framing, the obstruction to extending this trivialization
of J to a trivialization of J’, as an element of 71 (GL,(C)) = Z, is precisely rot(K).
(In [8] this is proved in the case where X = B*, & is the standard contact structure on
S3, v is defined on all of S, and ¢ # 0. Note, however, that our assertion is purely
local to K and H, and that, given any & on S x B2 which is tangent to S! x {0},
with any trivialization v of &, after a homotopy of £ fixed along K there exists an
embedding of S! x B? into S? carrying £ to the standard contact structure on S3,
taking S! x {0} to a Legendrian knot with tb # 0, and taking v to a trivialization
which extends over all of S3.)

Finally, if X is equipped with a convex (BA)LF f: X — B? and if (X', f”) is the
(BA)LF resulting from attaching a 2—handle along a knot in a page of the induced OBD
on 0X with framing pf£1, then j(f’) = j(f) in the sense that j(f”) is precisely
the canonical extension of j( /) discussed above.

This gives us the following algorithm for computing the invariants of a homotopy class
z € Z(M) associated to an open book decomposition on a closed 3—-manifold M in
terms of a factorization 4 = tj o---o 1, of the monodromy / into Dehn twists t; along
curves y; in the page F. (We hope some readers may find this algorithm useful in
other contexts; a similar algorithm is spelled out in [13].)

(1) Begin with a standard immersion of the page F in R? as a disk with 2—
dimensional 1-handles attached around the boundary.

(2) This gives a trivialization of TF coming from the standard trivialization of
T'R?. Together with the standard trivialization of TB?, we get a trivialization of
T (F x B?) which yields a trivialization of the standard almost complex structure
on F x B?.

(3) Each Dehn twist curve y; can be thought of as a curve in F x p;, where p; € S1;
with respect to the above trivialization, we get a rotation number rot(y;) which
is precisely the winding number of y; as an immersed curve in R?, seen via the
immersion of F in R?.

(4) Now interpret the Dehn twist curves as attaching circles for 2—handles attached
to F x D?, with framing pf —1 for each right-handed Dehn twist and framing
pf 41 for each left-handed Dehn twist. This describes an ALF on a 4-manifold
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X with an almost complex structure J on the complement of ¢ points, where
g is the number of left-handed Dehn twists, and J|yx induces the required
homotopy class z of plane fields on M = 0X .

(5) Then J extends to an almost complex structure J' on all of X' = X#9C P?
which is standard on each CP? summand, and we still have J'|3y: = J|sx
inducing z on M = 9X"’.

(6) Now read off ¢q(J’) as a cocycle from the rotation numbers of each y; and the
fact that ¢; evaluates to 3 on each generator of Hy(X’) coming from a CP?
summand.

(7) Now use the intersection form on X’ to identify the Poincaré dual of ¢{(J’)
and hence compute ¢{(J')[gx’ to get d»(z) and compute x(X'), o(X’) and
c1(J)? to get ds(z2) = (¢1(J)? —2x(X") — 30(X"))/4.

(8) The last two steps are equivalent to the following shortcut: Read off ¢;(J) from
the rotation numbers of each y;. Use the intersection form on X to identify
c1(J) and ¢ (J)|sx to get d»(z). Then compute x(X), o(X) and ¢;(J)? to
get d3(2) = (c1(J)* = 2x(X) —30(X))/4 +q.

Proof of Theorem 5.2 First we will prove the theorem when X = B* and C is a
point. Then we will prove it when X = S' x B3 and C = S x {0}. Finally we will
prove the general case.

Simplest case: X = B* and C is a single point In this case all we need to do is
to construct a broken Lefschetz fibration on B* inducing a given homotopy class of
plane fields on S3. Recall that Z(S?) is in one-to-one correspondence with Z —1/2
via the formula d3(z) = (c1(j)?> —2x(X) —30(X))/4, where j is an extension of z
over a 4-manifold X . Thus, suppose we are given n € Z, and we wish to construct a
convex BLF on B* inducing a given z € Z(S?) with d3(z) =n—1/2.

It is well known that plumbing on a left-handed Hopf band will not change d3 (in
fact it does not change the isotopy class of the contact structure [17; 35]), while
plumbing on a right-handed Hopf band increases d3 by one [35]. Furthermore the
trivial fibration B* = B? x B> — B? yields d3 = —1/2. Thus, using Lemma 5.4 we
can achieve our goal for any 7 > 0 (getting overtwistedness from the fact that we have
plumbed on at least one right-handed Hopf band). By the comments on connected
sums above, we now need only perform the construction for some negative value of n
to complete the proof when X = B*. (If we want d3(z) = n— 1/2 we should first
target d3(z) =n—1—1/2 and then plumb on an extra right-handed Hopf band using
Lemma 5.4 to get overtwistedness and d3(z) =n—1/2.)
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We give a construction explicitly in Figure 12 for n = —1, ie d3 = —3/2; the figure
should be interpreted as follows: The topmost diagram shows a page of an open book
decomposition of S3 involving 2 left-handed Hopf bands and 2 right-handed Hopf
bands plumbed in sequence onto a disk, so that the page is a 4—punctured disk. Each
right-handed Hopf band should really have an extra pair of left-handed Hopf bands
immediately adjacent, as in Figure 9, but we have suppressed this extra pair since
they play no further role in the construction. This open book decomposition of S*
(including the 4 extra left-handed Hopf bands not drawn) is thus the boundary of a
convex BLF, using Lemma 5.4 and Lemma 4.1. To this we add a 1-handle strung along
the binding, a round 1-handle which wraps around the binding once, and a 2—handle
on a page with framing pf —1 running over the round 1-handle, as in the Figure. This
gives a more complicated convex BLF on B*.

To see that we have achieved n = —1, we first analyze the monodromy of the new open
book decomposition of S, exactly as in the proof of Lemma 5.4, Figure 11. We need
to introduce pairs of right- and left-handed Dehn twists parallel to and on either side
of the two feet of the round 1-handle to compensate for the fact that the feet are not
initially described as fixed points of the monodromy. This is indicated in the middle
diagram in Figure 12. The Dehn twist curves are labelled and oriented for use in the
calculation to come. We now use this factorization of the monodromy into Dehn twists
to compute d3 as in the algorithm explained above. This describes a new 4—manifold
shown in the bottom diagram in the figure; each right- (resp. left-) handed Dehn twist
has become a 2—handle on a page with framing —1 (resp. +1), attached to an open
book with page a 6-punctured torus and monodromy equal to the identity. We note that
H,; is generated by A =c—a1—by—a,—by and B=d+ f—g—ay—bi—a,—b,,
with A2 =1 and B? = —1 and 4 - B = 0. Reading off rotation numbers we see that
¢1(A) =—3 and ¢{(B) = —5 so that ¢y is Poincaré dual to —34 + 5B and (:12 =—16.
Also, 0 =0, x = 3 and the number of left-handed Dehn twists is ¢ = 4. Thus a final
calculation gives d3 = (cl2 —2x—30)/4+qg=(—16—6)/4+4=-3/2.

Next simplest case: X = S! x B3 and C = S! x {0} Now we need to construct
a convex BLF on X = S! x B? inducing a given homotopy class of plane fields on
S! x S2. By the comments earlier on the 3—dimensional invariant and connected
sums of broken Lefschetz fibrations, if we get the 2—dimensional invariant correct
then we can use the case above for B* to get the 3—dimensional invariant correct (and
overtwistedness will come from the overtwistedness on B*). Thus we need to construct
aconvex BLF f on X suchthat ¢;(j(f)|sx)=2n forany given n€Z = H>(S'xS?).
Note that we do not need to worry about the potential sign ambiguities associated with
the identification of Z with H?(S! x S?) because there is an orientation-preserving
automorphism of S! x B3 which induces multiplication by —1 on H?(S! x S?).
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Figure 12: A broken Lefschetz fibration on B* for the case n = —1, ie d3 = —3/2.

So we can simplify the problem slightly to say that, given any non-negative integer
n, we should construct f so that |¢1(z(f|gx))| = 2n. If n = 0 the fibration is
St x[0,1]x D* - D?.

Figure 13 is an explicit example for #» > 0, and should be interpreted as follows: The left
diagram is a (round) handlebody decomposition of S! x B?, starting with §3 = 9B*
with the binding of the standard open book indicated by the heavy lines, and involving
2n 1-handles strung on this binding, 7 round 1-handles each wrapping once around
the binding, n 2-handles with framing pf—1 each running over one of the round
I-handles, and n — 1 2-handles with framing pf —1 each connecting one 1-handle to
another. (The framings are not indicated in the diagram.) This describes a convex BLF
f: X — D?. Again, using the techniques of Lemma 5.4, we compute the monodromy
which is indicated in the right diagram. Here the curves indicate Dehn twists but their
handedness is not indicated in the diagram. Their handedness is as follows: The curves
labelled a;, ¢, e; and f; are right-handed Dehn twists and the curves labelled b; and
d; are left-handed Dehn twists.
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Figure 13: A broken Lefschetz fibration on S! x B3.
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We will now compute ¢ = ¢1(z(f|gx)). Orient each curve (in the diagram on the
right in Figure 13) so that its leftmost straight line segment is oriented downwards.
With this orientation, we have that rot(e;) = —1 and rot(a;) = rot(b;) = rot(c;) =
rot(d;) = rot( f;) = +1. Now we convert the monodromy diagram into a handlebody
decomposition of a new 4—manifold so that the 1-handles of the page become 4—
dimensional 1-handles and the Dehn twist curves become attaching circles for 2—
handles, with a;, ¢;, e; and f; framed —1 and b; and d; framed +1. Then we see
that H, is generatedby Aq,..., Ay and Fy,..., F,—1 where A; =b;—a;+e;—d; and
F; = fi—d;—a;+1. All intersections between generators are 0 except for F;- F; = —1,
A;i-F; =+1 and A; - F; = —1. Thus H, of the boundary S' x §? is generated
by A= A; 4+ A, +---+ A,. Finally, we evaluate ¢ on A using the rotation numbers
above to get c(A) = c(A1) +c(42) + -+ c(Ap), with ¢(A4;) = rot(b;) —rot(a;) +
rot(e;) —rot(d;) = —2, so that ¢(A4) = —2n. Thus |c| =2n e H*>(S' x S?) =7.

General case Now we are given a general 2—handlebody X and a collection C C
(X \ 0X) of m points and n circles. Choose a handlebody decomposition of X
involving m O—handles, n copies of S! x B3 (ie n 0-handles and n 1-handles), and
then some more 1— and 2-handles, so that each of the m points is contained in one of
the m O-handles and each of the # circles is the core of one of the copies of ST x B3.
We apply the above cases to each of the m 0-handles and each of the n copies of
S1 x B3. This gives us a convex BLF on N = (II” B*) I (I"S! x B3) with the
correct almost complex structure, to which we must add 1— and 2-handles. Since
there is only one way to extend an almost complex structure across a 1-handle, we can
attach the 1-handles as 1-handles strung along the binding of the induced open book,
and the BLF then extends across the 1-handles. At this stage we have constructed a
convex BLF f(1) on the 1-handlebody X(;y D N D C, such that Ry, C N, such
that any almost complex structure J(qy € j(f(1)) is homotopic to J on X(;)\ N, and
such that the positive contact structure (1) supported by f(1)[ax,,, is overtwisted.

The remaining task is to extend this BLF across the 2—handles, getting the almost
complex structure correct. One approach is to use the general principle that, once
one is free to plumb on right- and left-handed Hopf bands, one can arrange for any
framings and rotation numbers of knots lying in pages of open books; this principle
is exemplified in Etnyre and Fuller [12]. However, to use this principle, one should
note that each right-handed Hopf band introduces a new round 1-handle singularity
in a ball across which the almost complex structure does not extend, and so to keep
the almost complex structure correct one then needs to compensate by performing a
connected sum with an appropriately chosen BLF on B* as in the first part of this
proof. Here we present an easier argument that ultimately relies on the uniqueness part
of Giroux’s correspondence between OBDs and contact structures.
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We will stabilize the OBD  f(1)|yx,,, on dX(1) using only left-handed Hopf bands,
so that the attaching maps for the 2—handles all lie in a page, with handle framings
equal to pf —1, and with the rotation numbers relative to some fixed trivialization of
&1 correct. (Recall from the discussion preceding this proof that the desired almost
complex structure will determine rotation numbers for the attaching circles of the 2—
handles, and that if these rotation numbers are achieved and we extend the BLF across
the 2—handles as in Remark 2.2 then the almost complex structure will be correct.) If
we can find such a stabilization, then the stabilizations can be realized using Lemma
4.1, extending f(1) across a collar on d.X(;) without introducing new round 1-handle
singularities, and then f() can be extended across the 2—handles as in Remark 2.2.

The existence of this stabilization can be seen as follows: Suppose we are given an
overtwisted contact 3—manifold (M, &) with a supporting OBD g: M — B?. Because
& is overtwisted, any framed link L in (M, ) can be isotoped to a Legendrian link
with the given framing equal to one less than the contact framing (ie framing equal to
tb —1), and with any specified rotation number relative to a fixed trivialization of £.
(See in [16, Lemma 11], for example.) Now note that, for any Legendrian link L in
(M, &) there is an OBD g’ on M supporting & such that L lies in a page of g’ (and
therefore the contact framing is the page framing). This can be seen by first noting that
it is true in S3 with the standard tight contact structure £, as proved in [3]. Then note
that (M, &) is the result of £1 contact surgery (as in [8]) on some Legendrian link L’
in (S3,&), and that there is another Legendrian link L” in (S3, &) disjoint from L’
such that, after surgery, L” becomes the given link L in (M, £). Find the OBD on S
which contains " U L” in a page, then perform =+1 contact surgery on L’ and note
that this produces an OBD on (M, &) with L lying in a page. Note also that L then
lies in a page of any stabilization of g’. By Giroux’s uniqueness result, g’ and g have
a common stabilization g”, which therefore contains L in a page. Because L was a
fixed Legendrian knot throughout, and because L had the correct contact framing and
rotation number to begin with, L has the correct page framing and rotation number at
the end. d

6 Proof of the main result

We need one more trick to complete the proof of our main result, namely the ability to
stabilize OBDs on concave boundaries.

Lemma 6.1 Given a concave fibration f: X* — X and an arc A in a page of the

induced OBD f: 3X — B?. Let f': X — B? be the result of positively (resp.
negatively) stabilizing this OBD along A. Then f’ extends to a concave fibration
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/' X — X which agrees with f outside a ball neighborhood of A, inside which the
only singularities are a round 1 —handle singularity and a Lefschetz (resp. anti-Lefschetz)
singularity.

Proof Let oy and o7 be the endpoints of A. Now add a cancelling pair of 1— and
2-handles where the feet of the one handle lie on 4 near oy and «; and where the
attaching map of the 2-handle goes over the 1-handle once and follows A, with
framing pf —1 (resp. pf+1).

Now add a cancelling 2-3—handle pair and proceed as in the proof of Lemma 4.5 to
turn the one handle into a round 1-handle (adding a 7% to the fiber) whereupon the
3—handle removes an annulus from the page leaving the following: the page has had a
1-handle attached with a Dehn twist along «, right (left) handed if the framing was
page framing —1 (41). This is exactly the stabilization that was desired. |

Proof of Theorem 1.1 Split X as A U B where A is the result of attaching some
number of 1-handles to a neighborhood F x B? of F and B is a 2—handlebody.
Lemma 3.1 gives a concave BLF f: F x B?> — S, which we extend across the rest
of the 1-handles of A using Lemma 4.5. Use Lemma 6.1 to positively stabilize the
induced OBD f|54: 04 — B?. Now shift attention to B, where 0B = —dA, and
consider the problem of extending the given OBD on dA across B. First note that
the (positive) contact structure supported by this OBD on 9B is in fact overtwisted,
precisely because it resulted from a positive stabilization on dA4, which is a negative
stabilization on 3B = —9A. Thus Corollary 5.3 gives us a convex BLF g: B — B?
which induces on OBD on dB which is the result of positively stabilizing the given
OBD coming from —dA. Note that at this point we have a concave BLF on A4 and a
convex BLF on B, which do not quite match because we need to positively stabilize (in
the sense of the orientation coming from B) the OBD coming from A, ie we need to
negatively stabilize the OBD on dA. Thus we use Lemma 6.1 one more time, but finally
we are forced to introduce achirality, in order to achieve these negative stabilizations,
and then the BALF on A can be glued to the BLF on B. |

Note that if we could find a trick for negatively stabilizing the concave side without
introducing anti-Lefschetz singularities, we would be able to avoid achirality completely.
The authors did find some tricks analogous to Lemma 5.4 that work on the concave
side, but these always involved extraneous extra positive stabilizations which we could
not control.

Proof of addendum to Theorem 1.1 Here we are given the extra data of some 2—
spheres S, ..., S, which should become sections of the BALF. In this case split X as
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AU B where A4 is F x B? together with n 2—handles attached along sections p; x S
of Fx S!,and some extra 1-handles so that the complement is a 2—handlebody, and
so that the 2—handles give the spheres S;. Start with the flat fibration F x B2 — B2,
then attach the section 2—handles as in Remark 2.10, to get concave boundary, and
then attach the 1-handles as in Lemma 4.5. This gives the concave piece, and proceed
as in the proof above to put a convex BLF on the complement, and to make the open
books match by appropriate stabilizations.

To arrange that the round 1-handle singularities all lie over the tropics of Cancer and
Capricorn, notice that the only place in our construction where the attaching circles for a
round 1-handle might run over another round 1-handle is in the negative stabilizations
on the convex side (Lemma 5.4). However, if we do not try to keep the convex side
chiral, we can achieve these stabilizations with anti-Lefschetz singularities rather than
round 1-handle singularities. Then the round 1-handle singularities on the convex
side are independent and therefore can lie over the tropic of Capricorn, and those on
the concave side are also independent and can lie over the tropic of Cancer. Finally, on
each side, the vanishing cycle 2—handles can always be attached after attaching the
round 1-handles, so we can arrange for them to project to the equator. a

Remark 6.2 Here we explain our understanding of Perutz’s comment mentioned in
Remark 1.4 (based on an example in [4]) that, after blowing up, we can in fact get rid
of all the anti-Lefschetz singularities. A neighborhood of an anti-Lefschetz singularity
is a convex BLF as in Figure 14, where the total 4—manifold is B* represented as a
1-handle and a cancelling 2—handle, and where the OBD on the boundary S3 has
an annulus as page and a left-handed Dehn twisted about the core of the annulus as
monodromy. Figure 15 is a convex BLF where the total 4—manifold is W\ B*
represented as two O—handles and one round 1-handle. The OBD on the boundary
S3 is again an annulus with a left-handed Dehn twist about the core. Thus the first
BLF can be replaced by the second BLF, changing the 4-manifold by a blowup and
replacing the anti-Lefschetz singularity with a round 1-handle singularity.

7 Questions

Question 7.1 The most basic question is, “What is the uniqueness theorem?” Many
choices are made in the construction of a BALF; if different choices are made, what
is the set of moves relating the two BALFs? These should include, for example, the
positive and negative stabilizations used to match the convex and concave pieces, and
adding cancelling round 1-2-handle pairs. A critical ingredient would be a uniqueness
statement for the sequences of stabilizations coming from Giroux’s results.
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Figure 14: A neighborhood of an anti-Lefschetz singularity. (The bold lines
are the binding of the open book.)

Figure 15: A replacement for the anti-Lefschetz singularity. (Bold lines are
binding, and the two dashed squares are the two 0—handles.)

Question 7.2 Another question is whether achirality can be avoided. By the results in
[4], if b;r (X) > 0 and we blow up enough, then this can be done; but even in this case
we do not have a constructive proof.

Achirality could be avoided in general if we could find a way to positively and negatively
stabilize the concave side using only Lefschetz and round 1-handle singularities. If
this cannot be done, there ought to be an obstruction which lies in the set of equivalence
classes of OBDs on connected sums of S! x S2’s, where the equivalence relation is
derived from the basic moves in the uniqueness question above. Even better would be
to push this obstruction to the S* boundary of the 4—handle.
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Question 7.3 In [4] it is shown that a BLF supports a near-symplectic form as long as
there is a 2—dimensional cohomology class evaluating positively on the fibers. (This is a
closed 2—form vanishing identically along the round 1-handle singularities, symplectic
in their complement, and satisfying a certain transversality along the circles.) Does
this generalize meaningfully to the case of a BALF? What control on the 2—form can
we expect near the anti-Lefschetz singularities? Baykur [6] has used ALFs to construct
folded symplectic structures.

Question 7.4 To what extent does achirality destroy Perutz’s program [30; 31; 32] to
generalize the Donaldson—Smith—Usher [10; 36] results relating smooth 4—manifold
invariants to counts of multisections of Lefschetz fibrations? Perutz proposes to count
multisections of BLFs (some of which may limit on round 1-handle singularities); see
also [5].

Question 7.5 A smooth, simply-connected 5—dimensional 4—cobordism is a product
off of a contractible manifold, which is an s#—cobordism between two contractible
4-manifolds, Ay and A (Curtis et al [7], Kirby [24] and Matveyev [29]). These 4—
manifolds, called Akbulut’s corks, are constructed from a symmetric link of 0—framed
unknots by changing half the unknots to 1-handles (replacing the 0 by a dot), or the
other half to 1-handles. There is an involution A: 049 — dA; = dAo which does not
extend to a diffeomorphism from A4¢ to 4.

The question here is whether each of Ay and A4; are convex B(A)LFs such that
the involution / preserves the induced OBD on the boundary, so that the process of
surgering out A and replacing with A can be carried out on closed B(A)LFs without
changing the fibration outside 4.
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