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Knot Floer homology of Whitehead doubles

MATTHEW HEDDEN

In this paper we study the knot Floer homology invariants of the twisted and untwisted
Whitehead doubles of an arbitrary knot, K . A formula is presented for the filtered
chain homotopy type of bHFK .D˙.K; t// in terms of the invariants for K , where
D˙.K; t/ denotes the t –twisted positive (resp. negative)-clasped Whitehead double
of K . In particular, the formula can be used iteratively and can be used to compute
the Floer homology of manifolds obtained by surgery on Whitehead doubles. An
immediate corollary is that �.DC.K; t//D 1 if t < 2�.K/ and zero otherwise, where
� is the Ozsváth–Szabó concordance invariant. It follows that the iterated untwisted
Whitehead doubles of a knot satisfying �.K/ > 0 are not smoothly slice. Another
corollary is a closed formula for the Floer homology of the three-manifold obtained
by gluing the complement of an arbitrary knot, K , to the complement of the trefoil.

57M27; 57R58

1 Introduction

Satellite knots are frequently studied objects in the world of low-dimensional topology.
Among the most famous satellite knots are the Whitehead doubles, which have been at
the heart of many beautiful constructions (Akbulut–Matveyev [1; 2], Freedman–Quinn
[8] and Cochran–Gompf [4]). As discussed below, the untwisted double of an arbitrary
knot has classical invariants such as the Alexander polynomial and signature identical
to those of the unknot. Thus computing values for Whitehead doubles provides an
interesting test of any new knot invariant’s strength. Perhaps the Whitehead doubles
have shone most brightly in the study of knot concordance, where they provide examples
of knots which are topologically slice yet not smoothly slice. In this way the Whitehead
doubles showcase the remarkable distinction between the smooth and topological
categories in dimension four.

In recent years Ozsváth and Szabó have constructed a comprehensive and powerful set
of invariants for low-dimensional topological and geometric objects using the Floer
homology theory of pseudo-holomorphic curves. The purpose of this paper is to
study the knot invariants introduced in Ozsváth–Szabó [27] and Rasmussen [33] in
the context of Whitehead doubling. Our motivation is twofold: .1/ to obtain a better
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understanding of the .2C1/ dimensional topological quantum field theoretic properties
of the Ozsváth–Szabó invariants and .2/ to exploit the power of the invariants to answer
topological questions, particularly questions related to smooth knot concordance.
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Figure 1: The positive t –twisted Whitehead double, DC.K; t/ , of the left-
handed trefoil. Start with a twist knot, P , with t full twists embedded in a
solid torus, V . The “C" indicates the parity of the clasp of P . f identifies
V with the neighborhood of K , �K , in such a way that the longitude for V

is identified with the Seifert framing of K . The image of P under this identi-
fication is DC.K; t/ . The 3 extra full twists in the projection of DC.K; t/

shown arise from the writhe of the trefoil, �3 .

Suppose we have a knot P embedded in a solid torus, V . Letting K be an arbitrary
knot, we can identify a tubular neighborhood of K with V in such a way that the
longitude of V (the curve on @V generating H1.V;Z/ Š Z) is identified with a
longitude of K coming from a Seifert surface. The image of P under this identification
is a knot, S , called a satellite of K . The knot P is called the pattern for S , while
K is referred to as the companion. In this language, the positive t –twisted Whitehead
double of a knot K – denoted DC.K; t/ – is a satellite of K , where the pattern is a
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positive-clasped twist knot with t twists. See Figure 1 for an illustration. Whitehead
doubling in the context of Ozsváth–Szabó homology was first studied by Eftekhary in
[6]. For other results regarding knot Floer homology and satellite knots, see Hedden
[10; 11], Hedden–Ording [12], Ni [22] and Ording [23]. Before stating the main
theorem, recall that associated to an integer homology three-sphere, Y 3 , is the Ozsváth–
Szabó chain complex, denoted bCF .Y 3/ (see [29] for definitions and generalizations).
Ozsváth and Szabó showed that the homology of this chain complex is an invariant
of the smooth three-manifold. In [27; 33], it was shown that a knot K � Y 3 induces
a filtration of bCF .Y 3/, and that the filtered chain homotopy type of the resulting
filtered chain complex is an invariant of the knot .Y;K/. In the case where Y 3 D S3 ,
the three-dimensional sphere, K is a knot in the classical sense and the filtration of
bCF .S3/ is denoted F.K/. More explicitly, we have the following increasing sequence
of subcomplexes:

0D F.K;�i/� F.K;�i C 1/� : : :� F.K; n/DbCF .S3/:

We denote the quotient complexes F.K ;j/
F.K ;j�1/

WD bCFK .K; j /, and the homology of

these quotients, denoted bHFK .K; j /, are commonly referred to as the knot Floer
homology groups of K . It follows from the fact that the filtered chain homotopy type
of F.K/ is an invariant of K that the knot Floer homology groups are also knot
invariants. The following theorem suggests that the knot Floer homology groups can
be viewed as a “categorification” of the symmetrized Alexander–Conway polynomial,
in the same spirit that the Khovanov homology groups [13] are a categorification of the
Jones polynomial.

Theorem 1.1 (Ozsváth–Szabó [27], Rasmussen [33]) Let K � S3 be a knot and
�K .T / its Alexander–Conway polynomial. ThenX

i

�
� bHFK .K; i/

�
�T i
D�K .T /:

Suppose we look at a satellite S of a knot, K , where the pattern P in the construction
represents p times a generator of H1.V;Z/. We have the following classical formula
for the Alexander polynomial of S (see [15]),

�S .T /D�P .T / ��K .T
p/:

Since the twist knots used as pattern for the Whitehead double construction represent
zero in the first homology of the solid torus, we see that the Alexander polynomial
forgets the knot which we are doubling. Indeed, the Alexander polynomial of DC.K; t/

is given by
�DC.K ;t/.T /D�t �T C .2t C 1/� t �T �1;
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independent of K . In particular, the Alexander polynomial of the 0–twisted Whitehead
double of K is trivial. It is thus an interesting question to ask how, if at all, the knot
Floer homology of DC.K; t/ remembers the knot K . In order to state our theorem,
we remark that the knot Floer homology groups

L bHFK .K; i/ themselves have the
structure of a filtered chain complex, endowed with a differential induced from the
differential on bCFK . For a knot of Seifert genus one, bHFK .K; i/D 0 if ji j> 1, and
so this induced differential decomposes as a sum of three homomorphisms:

d1
1 W

bHFK�.K; 1/ �! bHFK��1.K; 0/;

d0
1 W

bHFK�.K; 0/ �! bHFK��1.K;�1/;

d2W bHFK�.K; 1/ �! bHFK��1.K;�1/:

(See Section 5 and Section 6 for more details.) In the following formulas and throughout
the paper, we let F denote the field with two elements ie we use Z=2Z coefficients.
The term �.K/ is the Ozsváth–Szabó concordance invariant (Ozsváth–Szabó [26] and
Rasmussen [33]) discussed below.

Theorem 1.2 Let K�S3 be a knot with Seifert genus g.K/Dg . Then for t �2�.K/

we have:

bHFK�.DC.K; t/; i/Š

8̂̂<̂
:̂

F
t�2g�2

.1/

Lg
jD�gŒH��1.F.K; j //�2 i D 1

F
2t�4g�3

.0/

Lg
jD�gŒH�.F.K; j //�

4 i D 0

F
t�2g�2

.�1/

Lg
jD�gŒH�C1.F.K; j //�2 i D�1:

Whereas for t < 2�.K/ the following holds:

bHFK�.DC.K; t/; i/Š8̂̂<̂
:̂

F
2�.K /�2g�2

.1/
˚ F

2�.K /�t

.0/

Lg
jD�gŒH��1.F.K; j //�2 i D 1

F
4�.K /�4g�4

.0/
˚ F

4�.K /�2t�1

.�1/

Lg
jD�gŒH�.F.K; j //�

4 i D 0

F
2�.K /�2g�2

.�1/
˚ F

2�.K /�t

.�2/

Lg
jD�gŒH�C1.F.K; j //�2 i D�1:

Furthermore, d2 D 0, regardless of t , and this together with the formulas above
determine the filtered chain homotopy type of F.DC.K; t//.

Remark 1.3 The precise way that d2 D 0 and our formula determine F.DC.K; t//
is discussed in Section 6. Since �.K/� g.K/, the reader may question what is meant
by a term such as F

2�.K /�2g�2

.1/
with negative exponent. By F�n

.1/
, for instance, we

mean the quotient of the remaining group by a subgroup of dimension n, supported in
homological grading 1.
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Letting K denote the reflection of a knot K (ie in a given projection for K , K is
obtained from K by changing each over-crossing to an under-crossing), we have the
following formula for the knot Floer homology (Ozsváth–Szabó [27, Proposition 3.7]),

(1) bHFK�.K; i/Š bHFK��.K;�i/:

In light of the equality,
DC.K;�t/DD�.K; t/

we see that Theorem 1.2 yields the complete answer for the negative-clasped doubles
as well.

One should compare Theorem 1.2 with the results of [12] and [6]. [12, Proposition 2.6]
computes the Floer homology of a specific Whitehead double of the .2; n/ torus knot
while [6] equates a particular knot Floer homology group of the 0–twisted Whitehead
double with another invariant, the longitude Floer homology. Theorem 1.2 is a signifi-
cant improvement over either of these results and over any other results concerning the
Floer homology of satellite knots. In fact, the above theorem is a complete answer to
the question of the knot Floer homology of Whitehead doubles: it handles all values of
the twisting parameter, t , and all the Floer homology groups. Moreover, we are able to
use our formula iteratively.

1.1 Concordance invariants

Whitehead doubles have played an interesting role in the study of knot concordance,
where they highlight the distinction between the smooth and topological four-ball
genus. Moreover, several fundamental open questions in the field of four-dimensional
topological surgery are equivalent to questions related to Whitehead doubling (see
Freedman–Quinn [8] and Freedman [7]).

Before going further, recall that the smooth four-ball genus, denoted g4.K/, of a knot
K is the minimum genus of any smoothly properly embedded surface, .F; @F /, in the
four-dimensional ball whose restriction to @F is the given knot in S3 . A knot is said to
be smoothly slice if its smooth four-ball genus is zero. Two knots, K1;K2 are said to
be smoothly concordant if K1#�K2 is smoothly slice. Here �K denotes the knot K

with reversed orientation. It can be shown that concordance is an equivalence relation
on the set of knots and that under this equivalence the set of knots has the structure
of an abelian group, the group operation being connected sum, K1#K2 . We denote
this group, the smooth concordance group of knots, by C . We can repeat all the above
definitions in the topological category, where we require surfaces to be topologically
locally flatly embedded. In this case we denote the (topological) four-ball genus and
concordance group by g

top
4
.K/ and Ctop , respectively.

Geometry & Topology, Volume 11 (2007)



2282 Matthew Hedden

Whitehead doubling is an easy way to produce non-trivial topologically slice knots, as
indicated by the following theorem.

Theorem 1.4 (Freedman [8]) Let K�S3 be knot which satisfies �K .T /D 1. Then
K is topologically slice. That is, g

top
4
.K/D 0.

As mentioned, the 0–twisted Whitehead double of any knot satisfies �D˙.K ;0/
.T /D 1,

and hence these knots are topologically slice. While it is easy to see that the Whitehead
double of a smoothly slice knot is also smoothly slice, it was shown by several authors
that many Whitehead doubles are not smoothly slice (Akbulut–Matveyev [1], Gompf–
Stipsicz [4] and Rudolph [35]). The existence of a topologically slice knot which is
not smoothly slice is interesting in its own right, as it implies the existence of an exotic
smooth structure on R4 (see [9] for a proof). It is an open question (see Kirby’s list
[14, Problem 1.38]) whether the Whitehead double of K is smoothly slice only when
K is smoothly slice.

From the knot Floer homology filtration, we can produce an integer-valued knot invariant
�.K/ useful for the study of smooth knot concordance. To define it, recall that the Floer
homology of the three-sphere is isomorphic to F, supported in homological grading
zero. Thus, one can define the following:

�.K/Dminfj 2 Zji�W H�.F.K; j // �!H�.bCF .S3// is non-trivialg:

Ozsváth and Szabó [26] and Rasmussen [33] showed that �.K/ is an invariant of the
smooth concordance class of K , and that it provides a bound for the smooth 4–genus
of K :

j�.K/j � g4.K/:

Moreover, �.K/ is additive under connected sum of knots, and hence provides a
homomorphism C! Z. It is important to note that the knot Floer homology groups of
K are in general not sufficient to determine �.K/ since its definition relies on a more
detailed knowledge of the knot filtration F.K/.

Theorem 1.2 indicates that the dependence of the Floer homology of DC.K; t/ on the
twisting parameter is determined by �.K/. In fact, a key ingredient used to determine
the filtered chain homotopy type of F.DC.K; t// is the following Theorem.

Theorem 1.5

�.DC.K; t//D

(
0 for t � 2�.K/

1 for t < 2�.K/:
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As a corollary, we can determine the iterated 0–twisted Whitehead doubles which � can
be used to show are not smoothly slice. We let Di

C.K/ denote the i th iterated 0–twisted
Whitehead double of K ie D1

C.K/DDC.K; 0/ and Di
C.K/DDC.D

i�1
C .K/; 0/.

Corollary 1.6 �.Di
C.K// ¤ 0 if, and only if, �.K/ > 0. Hence, if �.K/ > 0 then

Di
C.K/ is not smoothly slice for every i .

The above theorem and corollary should be compared with results of Livingston–Naik
[19] which determine �.DC.K; t// for all t outside a finite interval. Using the Floer
homology of the branched double cover of DC.K; 0/, Manolescu–Owens [20] are
able to show that DC.K; 0/ is not slice if �.K/ > 0. However, they were unable to
determine whether iterated doubles were slice since � of these knots was unknown
except in the cases computed by Livingston and Naik.

We should also remark that in the case where the companion knot is the .2; n/ torus
knot, the above result follows from Hedden–Ording [12]. Indeed the main purpose of
[12] was to show that �.K/ does not equal half the Rasmussen concordance invariant,
s.K/ [34]. We believe that Whitehead doubles of knots with �.K/¤ 0 will provide
further examples of knots with 2�.K/¤ s.K/.

In a related direction, the results of [19] and [12] indicate that there are two invariants
associated to a knot:

ts.K/Dminft 2 Zjs.DC.K; t/D 0g:

t� .K/Dminft 2 Zj�.DC.K; t/D 0g:

It follows from the fact that s and � are smooth concordance invariants that ts; t� are
also invariants of the smooth concordance class of K . However, Theorem 1.5 shows
that t� .K/D 2�.K/, and hence provides no new information. Preliminary calculations
indicate that this is not the case with ts and we consider the question of the behavior
of ts interesting.

1.2 Applications and Examples: Gluing knot complements

In the final section of the paper we use our formula for a few simple applications. For
both its own interest, and to illuminate our theorem, we first present a closed formula
for the Floer homology of the iterated 0–twisted doubles of the figure-eight knot.

Perhaps more interesting, we use our formula in conjunction with a theorem of
Ozsváth and Szabó to determine the Floer homology, bHF .S3

C1
.DC.K; t//, where

S3
C1
.DC.K; t// is the three-manifold obtained by C1 Dehn surgery on DC.K; t/.
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These manifolds are of particular interest, since some can also be obtained by a gluing
of knot complements. Indeed, if we let T denote the right-handed trefoil, then C1

surgery on DC.K;�1/ is the same manifold as that obtained from S3�K and S3�T

by identifying their boundary tori via the identification:

�K $ �T �K $ �T ;

where �K ; �K (resp. �T ; �T ) are the meridian and longitude for K (resp. T ). Our
result provides the first closed formula for the Ozsváth–Szabó Floer homology of any
family of manifolds obtained from this type of gluing operation (though see Eftekhary
[5] for some partial results).

Organization The next section of the paper is devoted to finding an efficient Heegaard
diagram for Whitehead doubles. In Section 3 we analyze this diagram and prove that a
particular Floer homology group of the Whitehead double is isomorphic to the Floer
homology of the meridian of K , viewed as a knot in the manifold obtained by t –surgery
on K . Section 4 computes these groups for sufficiently large values of the twisting
parameter, determining bHFK .DC.K; t/; 1/ for large jt j. We then use the skein exact
sequence for knot Floer homology to calculate bHFK .DC.K; t/; 1/ for the remaining t .
In the course of applying the skein sequence, we will determine �.DC.K; t//. Section
6 studies the remaining Floer homology group, and the “higher differentials” involved in
determining the filtered chain homotopy type of F.DC.K; t//, thus proving Theorem
1.2. The final section of the paper is dedicated to examples and applications of the
main theorem.

Acknowledgments I wish to thank Eaman Eftekhary, Philip Ording, Peter Ozsváth,
Jacob Rasmussen, and Zoltan Szabó for interesting conversations. I am also deeply
indebted to the referee for a careful reading and many useful suggestions and comments.

2 A Heegaard diagram for Whitehead doubles

In this section we recall the definition of a compatible Heegaard and introduce an
efficient Heegaard diagram for the Whitehead doubles. We do not review the basics of
knot Floer homology (in particular we assume familiarity with the boundary operator,
the definition of the knot filtration, etc). For an introduction to Heegaard diagrams for
knots and computing knot Floer homology from Heegaard diagrams, see Hedden [11,
Chapter 2].
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Definition 2.1 A compatible doubly-pointed Heegaard diagram for a knot .Y 3;K/

(or simply a Heegaard diagram for .Y 3;K/) is a collection of data

.†; f˛1; : : : ; ˛gg; fˇ1; : : : ; ˇgg; w; z/;

where

� † is an oriented surface of genus g , the Heegaard surface,

� f˛1; : : : ; ˛gg are pairwise disjoint, linearly independent embedded circles (the
˛ attaching circles) which specify a handlebody, U˛ , bounded by †,

� fˇ1; : : : ;ˇgg are pairwise disjoint, linearly independent embedded circles which
specify a handlebody, Uˇ , bounded by † such that U˛ [† Uˇ is diffeomorphic
to Y 3 ,

� K is isotopic to the union of two arcs joined along their common endpoints w
and z . These arcs, t˛ and tˇ , are properly embedded and parallel to † in the ˛
and ˇ–handlebodies, respectively.

Remark 2.2 This definition is slightly different than what was originally given in
Ozsváth–Szabó [27]. For a leisurely discussion of Heegaard diagrams, the two defini-
tions and their equivalence, see Hedden [11]. Note, too, that we are thinking of knots
which may not be embedded in the three-sphere, S3 . If we refer to a knot in S3 we
will drop Y 3 from the notation.

2.1 A diagram for Whitehead doubles

Knot Floer homology is defined in terms of the doubly-pointed Heegaard diagram
described above. Thus, in order to study Whitehead doubles, we first find a compatible
diagram.

We begin by outlining our strategy for producing a diagram for Whitehead doubles (or
more general satellites). This construction will be similar to that used by Eftekhary
in [6]. We begin with two Heegaard diagrams, one corresponding to the pattern knot
and one to the companion, see Figure 2 and Figure 4. On the genus 2 diagram for
the pattern, we have 3 ˛ attaching curves, chosen so that the diagram with only ˛1

present specifies a solid torus, V . The remaining two ˛ curves (labeled �P and �P

in Figure 2) specify a meridian/longitude framing of the boundary of V . On the genus
g diagram for the companion knot, K , we have gC 1 ˛ attaching curves. These
˛ curves are chosen so that the diagram with ˛0

1
; : : : ; ˛0

g�1
specifies S3 �K . The

remaining two ˛ curves (labeled �K and �K in Figure 4) specify a meridian/longitude
framing for K . As the pairs .�P ; �P / and .�K ; �K / are framings for the boundary
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tori of V and S3 �K , respectively, they necessarily intersect in a single point, ie
�P \�P D f1 pointg; �K \�K D f1 pointg. We form the connected sum of the two
Heegaard diagrams near these points, in the sense that we take the connected sum
of both the surfaces and the framing curves, see Figure 5. The connected sum of
diagrams corresponds to identifying the boundary tori of the two three-manifolds. The
homeomorphism identifying the tori depends both on the ˛ curves used in the framing,
and how they are connected. For the calculations of knot Floer homology found later
in the text, it will be beneficial to treat the Heegaard diagrams discussed in this section
as specifying two different manifolds each. This can be done by deleting one or the
other of the ˛ curves parameterizing each boundary torus. The resulting diagram can
then be viewed as a Heegaard diagram for a closed three-manifold. The chain complex
for the Floer homology of the Whitehead double will decompose nicely along the
chain complexes associated to the Heegaard diagrams obtained by deleting the various
framing curves �P ; �P ; �K ; �K . With the idea in place, we begin.

Figure 2 depicts the Heegaard diagram associated to the pattern knot, P . As mentioned
above we can interpret the diagram as two diagrams:

hd.P /D .†2; f˛1; ˛2 D �P g; fˇ1; ˇ2 D �g; w; z/

hd.Hopf/D .†2; f˛1; ˛2 D �P g; fˇ1; �g; w; z/:

Note that hd.P / specifies the pattern knot in S3 , while the diagram hd.Hopf/ specifies
the knot in S1 �S2 shown in Figure 3. Note also that �P \�P D f1 pointg, which
we draw on the diagram as a black hole. (The terminology hd.Hopf/ is explained as
follows: In [27], Ozsváth and Szabó describe a way to associate a null-homologous
knot .#jLj�1S1 � S2; k.L// to a link .S3;L/ of jLj components. Our notation is
explained by the fact that the Heegaard diagram specifies the knot .S1 �S2; k.L//

associated to the two-component Hopf link.)

We now consider a Heegaard diagram for the companion knot, K . See Figure 4. In
addition to the requirements of Definition 2.1, for this diagram we require that one
of the ˛ attaching curves, �K , is a meridian for K (so that the diagram without �K

specifies the knot complement S3�K ). This added requirement allows us to draw a
framed longitude for K embedded on the Heegaard surface as follows: connect z0 to
w0 by a small arc, t˛ , which intersects only �K and an arc tˇ which only intersects
the ˛ curves. The union �K D t˛ [fz0;w0g tˇ is a longitude for the companion knot.
It is clearly embedded on the surface and hence we view it as an attaching curve for
the ˛–handlebody. With this extra curve, the genus g diagram has too many ˛ curves,
since �K and �K are really a meridian/longitude framing of the boundary of S3�K .
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��

ˇ2 D �

�P

�P

ˇ1

z

w

y

x
a1

a2

a3

a4

˛1

Figure 2: Genus 2 Heegaard diagram for the pattern knot in the Whitehead
double construction. It can be viewed as two Heegaard diagrams, as described
in the text, depending on whether we use the ˛ curve �P or �P . Note the
large black disc where �P intersects �P – the Heegaard diagram for the
companion knot will be connected to this diagram along the black disc.

As above, we view the diagram as two diagrams:

hd.K/D .†g; f˛
0
1; : : : ; ˛

0
g D �K g; fˇ

0
1; : : : ; ˇ

0
gg; w

0; z0/

hd.S3
t .K/; �K /D .†g; f˛

0
1; : : : ; ˛

0
g D �K g; fˇ

0
1; : : : ; ˇ

0
gg; w

0; z00/:

hd.K/ is simply a diagram for the companion knot in S3 with the last ˛ curve a
meridian for K . The second diagram no longer specifies S3 , but instead the manifold
obtained by t –surgery on the companion knot, S3

t .K/, where t is the framing of the
longitude �K , see Figure 3. We can vary the framing by letting �K circle more or
fewer times around the meridian, but �K \�K D f1 pointg, regardless of the framing.
Note, however, that in order to specify t as an integer, we must decide which longitude
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0

Hopf
�K

t

Figure 3: The “knotification” of the two-component positive Hopf link, and
the knot .S3

t .K/; �K / .

�K

�K

p

ˇ0g

w0

z0 z00

x0

: : :
˛0i

†g

Figure 4: Heegaard diagram for an arbitrary companion knot, K , in the
Whitehead double construction. We show only the last segment of the diagram
which includes a meridian for K . As before, it is actually two Heegaard
diagrams depending on whether we use the ˛ curve �K or �K . Again we
denote with a large black disc the intersection of �K and �K .

should be called the 0–framed longitude. We adopt the standard convention that the
0–framing is the one specified by a Seifert surface.

The notation hd.S3
t .K/; �K / is explained by the fact that the knot in S3

t .K/ de-
termined by w0 and z00 is the meridian of K . Again, see Figure 3. To see this,
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simply connect w0 to z00 by arcs in the ˛ and ˇ handlebodies for hd.S3
t .K/; �K /

to recover a knot isotopic to �K . It should be noted that .S3
t .K/; �K / is not a null-

homologous knot. However, when t ¤ 0, .S3
t .K/; �/ is rationally null-homologous

ie Œ��D 0 2H1.S
3
t .K/;Q/. In this case Ozsváth and Szabó have defined knot Floer

homology groups associated to .S3
t .K/; �K /, see Ozsváth–Szabó [31].

Out of the four Heegaard diagrams hd.P /; hd.Hopf/; hd.K/; hd.S3
t .K/; �/ we form

a single diagram for the t –twisted Whitehead double DC.K; t/ by the following
construction, which can be found in Eftekhary [6].

We first describe the surface. Start by embedding the genus two surface for P inside
the ˛ handlebody specified by hd.K/. This is shown in Figure 5.

Next form the connected sum of the outside surface with the inside surface. We form
the connected sum in a neighborhood of the intersection points �P \�P and �K \�K ,
respectively. The resulting surface has genus g C 2, where g is the genus of the
diagram for K .

Remark 2.3 In order to form the connected sum of surfaces in this way, we must be
careful to discuss the orientations on the inner and outer surfaces. In particular, since
one surface is embedded inside the other, the orientations of the two surfaces with
respect to the page will be different. That is, the orientation for the outer (companion
knot) Heegaard surface is such that it agrees with the standard orientation of the page in
Figure 4. The orientation for the inner (pattern knot) surface is such that it is opposite
the standard orientation of the page in Figure 2. This orientation convention in turn
forces the convention on multiplicities for domains of Whitney disks, as shown in
Figure 6.

Let us now specify the attaching curves. The ˇ attaching curves will be exactly the ˇ
curves present on the original diagrams. The ˛ curves will also be those present on the
original diagrams, except that we connect the longitude and meridian curves, ie �P #�K

and �P #�K . We do this so that the attaching disks for �P #�K and �P #�K “fill in”
the space between the boundary tori associated to the solid torus V and to S3 �K

which is left after forming the connect sum of †g and †2 . Finally, for the basepoints
we use the points z and w from the pattern. Summarizing, we have a diagram:

hd.DC.K; t//D

.†gC2; f˛1; ˛
0
1 : : : ; ˛

0
g�1; �P #�K ; �P #�K g; fˇ1; �; ˇ

0
1 : : : ; ˇ

0
gg; w; z/:

It must be verified that the diagram is compatible with DC.K; t/. We first observe
that the three-manifold specified by the diagram is S3 . This is proved by the sequence
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�P #�K

�P #�K

†P #†K

†K

†P

�

w

z

Figure 5: Depiction of the connected sum of diagrams used to obtain a
Heegaard diagram for DC.K; t/ . The left side of the figure shows the
connected sum of the surfaces for P and K along the black discs, with
the diagram for P (Figure 2) embedded in the ˛ handlebody for K (Figure
4). All curves have been omitted except the meridian for the Whitehead
double, � . The right side of the figure is a closer look at the connect sum
tube, and illustrates how the meridian/longitude ˛–framing curves for each
diagram are connected. All other ˛ and ˇ curves are omitted, as they are
inherited without modification from the diagrams for P and K .

of Heegaard moves shown in Figure 7. Indeed, by removing the basepoint z , we are
free to perform the sequence of isotopies, handleslides and destabilizations shown
in the figure which take us from hd.DC.K; t// (without z ) to hd.K/ (with a single
basepoint, w ). Removing the z basepoint is justified since here we focus solely on
the three-manifold, and z is relevant only for specifying the knot. Since hd.K/ is a
diagram for a knot in S3 , by assumption, this demonstrates that the three-manifold
specified by hd.DC.K; t// is S3 .

It remains to see that hd(DC.K; t/) specifies the Whitehead double. However, this can
be easily verified by drawing a longitude for the knot specified by hd(DC.K; t/) in
the same way longitudes were drawn for the various diagrams used in the construction.
Indeed, the longitude �P for the solid torus V in which P was embedded is now
isotopic to a t –framed longitude for the companion �K via an isotopy along the
attaching disk for �K #�P . It follows that the knot is isotopic to the t –twisted Whitehead
double of K . This completes the construction of the Heegaard diagram for DC.K; t/.
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Companion

1

˛1˛2

ˇ1

ˇ2

x1

x2 y1

y2

Pattern

1

˛1˛2

ˇ1

ˇ2

x1

x2 y1

y2

Figure 6: Orientation conventions for domains of Whitney disks. Shown
is the domain of a Whitney disk with multiplicity one. If this domain were
present on the subsurface of the Heegaard diagram coming from the com-
panion knot, the induced orientation on the boundary of the domain would
be the standard counterclockwise orientation. This in turn would force the
corresponding Whitney disk to connect xD fx1;x2g to yD fy1;y2g . If, on
the other hand, the domain were present on the pattern knot subsurface, its
boundary would have the clockwise orientation. This, in turn, would force
the disk to connect yD fy1;y2g to xD fx1;x2g .

Remark 2.4 Lipshitz’s [17] thesis develops a Heegaard Floer invariant for three-
manifolds with parameterized boundary. We can understand the diagrams presented
here from his perspective as follows. By removing a disc from each Heegaard surface
in a neighborhood of the intersection point between the final two ˛ curves (the black
hole in Figure 2 and Figure 4) we obtain a Heegaard surface with boundary. The final
two ˛ curves parameterizing our boundary then become properly embedded essential
arcs on the punctured Heegaard surface. This is the diagram used by Lipshitz to define
his invariant.

3 Identification of 2HFK.DC.K;t/;1/ with 2HFK.S 3
t .K/;�K/

In this section we examine the Heegaard diagram for the Whitehead doubles constructed
in the previous section. The discussion begins by examining the generators of the
knot Floer homology chain complex and separating them into their respective filtration
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�� ��
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A

�

�P #�K

�P #�K

ˇ1

w

y

B

�

�P #�K

�P #�K

ˇ1

w

y

C

�

�P #�K

�P #�K

ˇ1

w

y

D

�

�P #�K

�P #�K

ˇ1

w

y

E

�P #�K

�P #�K

ˇ1

w

y

F �P #�K

w

Figure 7: Heegaard moves demonstrating that hd.DC.K; t// specifies S3

(note that we have omitted the basepoint, z , as discussed in the text). (A)
Begin with hd(DC.K; t/). (B) Handleslide ˇ1 over � . (C) Perform an
isotopy. (D) Another handleslide of ˇ1 over � and isotopy of ˇ1 . (E)
Destabilization (handle-cancellation) of � and ˛1 . (F) Destabilization of ˇ1

with �P #�K . All Heegaard moves occur in the complement of the basepoint
w , useful for determining gradings in Section 4.

levels. Focusing attention on the top filtration level, there will be a natural identification
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of the chain complexes:

bCFK .DC.K; t/; 1/D
M

fsi2Spinc.S3
t .K /g

bCFK .S3
t .K/; �K ; si/;

where the second chain complex is the direct sum of the knot Floer homology chain
complexes associated to the meridian of the companion knot, �K , viewed as a knot in
the manifold obtained by t –framed Dehn surgery on K , S3

t .K/. For our purposes, it
will be sufficient to examine the cases t ¤ 0, since the Floer homology of the 0–twisted
Whitehead double will be obtained from the skein exact sequence in Section 5. Note
that the direct sum above is taken over Spinc structures on S3

t .K/ and over filtration
levels induced by relative Spinc structures on S3

t .K/��K . Let us begin.

Our first observation is that the generators of the chain complex naturally split into
two types, where the splitting is in terms of the four diagrams used to construct
hd(DC.K; t/). The types are of the form:

(1) fx;yg �p 2 bCFK .P /� bCFK .K/

(2) fx; aig �q 2 bCFK .S1 �S2;Hopf/�bCF .S3
t .K//, i D 1; 2; 3; 4:

The splitting occurs because the generators correspond to .gC2/–tuples of intersection
points between the ˛ and ˇ attaching curves, with each ˛ and ˇ curve used exactly
once. Since �P #�K and �P #�K are the only two attaching curves which pass through
the connect sum region, the splitting is determined by the surface, †2 or †g , where
the �P #�K component of the .gC 2/–tuple lies.

Note Since the intersection point fxg occurs as part of the 2–tuple corresponding to
any generator of bCFK .P / or bCFK .S1 �S2;Hopf/, it will subsequently be dropped
from the notation eg fyg WD fx;yg.

We turn our attention to understanding the relative filtration difference between pairs
of generators. To do this, we identify Whitney disks connecting pairs of generators
in the .gC 2/–fold symmetric product of the Heegaard surface (recall the Heegaard
surface has genus gC2, where g is the genus of the diagram for the companion knot).
In fact, it will be more convenient to identify the domains of Whitney disks, by which
we mean 2–chains lying in †gC2 with boundary in the attaching curves, and corner
points contained in the .gC2/–tuple of intersection points representing the generators.
For the equivalence of these methods, see Hedden [11], Lipshitz [16] and Rasmussen
[33]. Before beginning, recall the following definition, found in Ozsváth–Szabó [29].
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Definition 3.1 A periodic domain is a 2–chain, P �†, such that the boundary of P
consists of a linear combination of attaching circles and so that the local multiplicity at
w is zero i.e @P D†g

iD1
Œni˛i Cmiˇi �; ni ;mi 2 Z and nw.P/D 0.

If H1.Y;Q/D 0, it follows that there will not exist any periodic domains. Indeed, since
hd(DC.K; t/) is a diagram for S3 it will not contain any periodic domains. However,
the diagram hd.Hopf/ which went into the construction of hd(DC.K; t/) represented
S1 �S2 , and this diagram contains periodic domains. A generator for the space of
periodic domains on hd.Hopf/ is shown in Figure 8. We will subsequently refer to this
generator as P .

Front Back

ˇ2 D �

�P

�Pˇ1

z

w1
1

�1

�1

�1

�1

Figure 8: Illustration of the generator for the space of periodic domains for
the diagram hd.Hopf/ . Non-zero multiplicities of the two-chain are indicated
with shading. Dark (red) shading indicates multiplicity �1 , while light (blue)
shading indicates multiplicity 1 .

To begin, we determine the filtration difference between pairs of points of Type .1/.

Lemma 3.2 Suppose fyg �pi ; fyg �pk ;2 bCFK .P /� bCFK .K/. Then

F.fyg �pi/�F.fyg �pk/D 0:

Proof We first note that since pi and pk can be viewed as generators of bCFK .K/, they
can be connected by a Whitney disk, � , with domain contained in hd.K/. However, if
pi and pk (viewed as generators of bCFK .K/) lie in different filtration levels, then the
boundary of � must contain the meridian �K with non-zero multiplicity (this follows
from the definition of the filtration). We can complete the domain of such a Whitney
disk for pi ;pk 2

bCFK .K/ to the domain of a disk connecting fyg�pi to fyg�pk in
hd(DC.K; t/) by forming the boundary sum of � with n �P , where n is the filtration
difference of pi and pk . The lemma follows because nz.P/D nw.P/D 0.

Next, we handle the filtration difference of pairs of points of Type .2/.
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Lemma 3.3 Suppose faig � qj ; faig � qk ;2 bCFK .S1 � S2;Hopf/ �bCF .S3
t .K//

Then
F.faig �qj /�F.faig �qk/D 0:

Proof At first sight it appears the method used in the proof of the preceding lemma
is hopeless. Since H 2.S3

t .K/;Z/¤ 0, arbitrary pairs of generators for bCF .S3
t .K//

cannot be connected by a Whitney disk: qj and qk could represent different Spinc

structures on S3
t .K/. However, the obstruction to finding a Whitney disk connecting

qj to qk lies in H 2.S3
t .K/;Z/ŠH1.S

3
t .K/;Z/ which is generated by the meridian

of K , �K . Thus, if Whitney disks are allowed whose boundary contains �K (not
an attaching curve for hd(S3

t .K/), but present on the diagram for DC.K; t/) then qj

and qk can be connected regardless of their Spinc structure. The lemma is proved by
completing the domains of these Whitney disks with periodic domains, as in the proof
of the previous lemma.

Now we examine the effect of varying the generator on the diagram, hd.Hopf/.

Lemma 3.4 For all p 2bCF .S3
t .K// we have:

F.fa1g �p/�F.fa4g �p/D 1;

F.fa2g �p/�F.fa1g �p/D�1;

F.fa3g �p/�F.fa4g �p/D�1;

F.fa2g �p/�F.fa3g �p/D 1:

Furthermore, there exists a pair q 2 bCFK .K/ and p 2bCF .S3
t .K// so that:

F.fyg �q/�F.fa4g �p/D 0:

Proof We prove the lemma by explicitly identifying the domains of Whitney disks
connecting generators of the above form. The discussion will be aided by Figures 9,
10, 11 and 12.

Restricting attention to the Heegaard diagram hd.Hopf/, pairs of generators faig and
faj g can be connected by Whitney disks whose domains are topologically annuli. These
annuli can be completed to domains on hd(DC.K; t/) by extending the annulus on
hd.Hopf/ by the domain on hd.S3

t .K// which has multiplicity zero everywhere. See
Figure 9 and Figure 10 for illustrations. The first four rows in the table below describe
the annuli. The fourth column lists the Maslov index of the disk, which will be needed
when gradings are discussed in the next section. The last two columns indicate the
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Front Back

ˇ2 D �

�P

�P

ˇ1 z

w

y

1
1

a1

a2

a3

a4

Figure 9: Illustration of the domain of a Whitney disk connecting a2 to a3

satisfying nw.�/D 0 , nz.�/D 1 . It is topologically an annulus, and can be
shown to admit a unique holomorphic representative. This fact will be used
in Section 6. Recall from Remark 2.3 that the orientation of this part of the
Heegaard surface is opposite the standard orientation of the plane of the page.
However, since the “back” side of the diagram displays the mirror image, the
orientation of this side agrees the usual right-handed orientation of the page.

Front Back

ˇ1

a1

a2

a3

a4

1
z

w
1

ˇ2 D �

�P

�P

y

1

1

Figure 10: Illustration of the domain of a Whitney disk connecting a2 to a1

satisfying nw.�/D 1 , nz.�/D 0 . It is topologically an annulus.

multiplicities of the domains at the points z and w . The existence and topology of the
annuli completes the first four parts of the lemma.

For the last, it is possible to connect fyg�q to fa4g�p by a domain whose multiplicities
are shown in the table, provided that q and p are chosen carefully. Indeed, the
topology of the domain depends in this case on the framing, t . More precisely, any
intersection point in bCFK .K/ is of the form q D fx0; xg, where x0 2 �K \ ˇ

0
g is

the unique intersection point in �K lying on the diagram for the companion, and x
is some .g � 1/–tuple of intersection points on the diagram for the companion, see
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ˇ1

z

Pattern Front

Companion

ˇ0g

w

1 2

1 2

�

x

�K #�P

�K #�P

x1 x0

Pattern Back

a4

xk xk�1

k

�kC1 k�1

k

�kC1

k�1

k�1

k�3

k�2
k�1

k

k�3 k�2 k�1

Figure 11: Illustration of domain of disk connecting fyg�fx0; xg to fa4g�

fxk ; xg for negative twisting, t < 0 . Shown are sections of the Heegaard
diagram coming from the pattern and companion knots. The piece from the
companion knot is the cylindrical region where the connect sum of diagrams
was performed. Note that while the slope of the longitude �K appears
positive, it is part of an ˛ curve and hence negative. Here x0 is the unique
intersection point in �K #�P \ ˇ

0
g , and x1; : : : ;xk are intersection points

in �K #�P \ ˇ
0
g . The small triangle with vertices x0;xk and the connect

sum disk is completed to the domain of a Whitney disk, �y;a4
. This disk

satisfies nz.�y;a4
/D nw.�y;a4

/D 0 . Note that each region which comprises
the domain of �y;a4

is a disk with 4 corners, with the exception of the region
with multiplicity marked k-1, which is a disk with 8 corners. This fact is used
in calculating that the Maslov index of �y;a4

is equal to 1 .

Figure 11. Furthermore, since we have assumed t ¤ 0, there are intersection points
x1; : : : ;xk 2 �K \ ˇ

0
g and small triangles connecting x0 to xk . Let p D fxk ; xg.

Extending the domain of the triangle by zero to the rest of the diagram for the companion,
we can complete the triangle to the domain of a Whitney disk, �y;a4

connecting fyg�q
to fa4g�p. This is shown for t < 0 in Figure 11. Note that nz.�y;a4

/Dnw.�y;a4
/D 0.

For t > 0, the same procedure produces a Whitney disk �a1;y connecting fa1g � p
to fyg � q with nz.�a1;y/ D 1; nw.�a1;y/ D 0, see Figure 12. By additivity of the
filtration under concatenation of Whitney disks we have in either event that

F.fyg �q/�F.fa4g �p/D 0;
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Pattern Front

1
z �

w
x

a1

y

Pattern Back

1

1 2

1 2
xk xk�1

Companion

x1 x0

k

“k”

�kC1

k�1

k

�kC1

k�1

“k”
k�3 k�2

k�1

“k”k�2 k�1

Figure 12: Illustration of the domain of a disk, �a1;y , connecting fa1g �

fxk ; xg to fyg � fx0; xg for t > 0 . All regions comprising the domain of
�a1;y are disks with 4 corners, except for the regions whose multiplicities
are marked by k - 1, 1, or “k”. Each of these regions is a disk with 6 corners.

as claimed.

Start Pt End Pt t �.�/ nz.�/ nw.�/

fa1g fa4g all 1 1 0

fa2g fa1g all 1 0 1

fa3g fa4g all 1 0 1

fa2g fa3g all 1 1 0

fyg fa4g t < 0 1 0 0

fa1g fyg t > 0 1 1 0

Thus the lemma is proved.

3.1 Maslov Indices

For the purposes of separating the generators of the chain complex coming from
hd.DC.K; t// into their respective filtration levels, the preceding lemmas provide
sufficient information. However, to establish the homological gradings of the generators,
we will require the Maslov indices of the disks constructed in Lemma 3.4. For this,
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it will be useful to call upon Lipshitz [16, Corollary 4.3 and Proposition 4.8], which
together present a formula for the Maslov index of a Whitney disk in terms of the
geometry of its domain. To state the formula we must develop some terminology. First,
let us call each connected component of †� ˛1 � � � � � ˇg a region. Topologically,
each region is a surface with boundary, and we denote regions by D . Given a Whitney
disk, � , we can express its domain, which here we will denote D� , as a weighted sum
of the different regions D� D

Pm
iD0 niDi . In terms of this data, we can define the

Euler measure of the domain of the Whitney disk, denoted b� , by

b�.D�/D mX
iD0

ni

�
�.int Di/�

1
4
.# corner points of Di /

�
;

where � is the ordinary Euler characteristic, and where the corner points of each region
Di are counted with multiplicity. By multiplicity we mean the following: as we make
a full traversal of each boundary component of Di , points are encountered where we
switch from being on an ˛ curve to being on a ˇ curve. Each time such points are
encountered we add one to the corner point count, even if we encounter a given point
multiple times throughout the traversal.

Given a point p 2 ˛i \ ǰ , define the local multiplicity of D� at p , denoted np.D�/,
to be the sum of the multiplicities of D� in the four regions surrounding p . That is to
say, for any intersection point p 2 ˛i \ ǰ there exist four (not necessarily distinct) D
which contain p . If p 2 fDi \Dj \Dk \Dlg then the local multiplicity np.D�/ is
the sum of the multiplicities, ni , of D� in these D :

np.D�/D ni C nj C nk C nl :

The point-measure, denoted �x , of D� at the intersection point xD fx1; : : : ;xgg is
defined to be the weighted sum of the local multiplicities of each xi 2 x:

�x.D�/D 1
4

X
xi2x

nxi
.D�/:

In terms of these quantities, the following formula determines the Maslov index of a
Whitney disk, � , connecting x to y (Lipshitz [16, Corollary 4.3 and Proposition 4.8]):

(2) �.�/D b�.D�/C�x.D�/C�y.D�/:

Using this formula, we can easily establish the following Proposition.

Proposition 3.5 For the disks �y;a4
; �a1;y of Lemma 3.4,

�.�y;a4
/D �.�a1;y/D 1;
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independent of which intersection points pD fxk ; xg, qD fx0; xg are chosen in the
construction.

Proof First note that D which are disks with four corners contribute nothing to b�.D�/.
For �y;a4

, the only region which is not a disk with four corners is the region whose
multiplicity is marked by k-1. This region is a disk with 8 corners, and thus

b�.D�y;a4
/D .k � 1/ � .1�

8

4
/D�kC 1:

The point measure of �y;a4
at fx;yg � fx0; xg is given by

1

4
.ny C nx0

/D
kC k � 1

4
C

kC k � 1

4
D

2k � 1

2
:

Note that for the point measure, we must include the point x 2 ˛1\� which we have
been excluding from the notation. However, the local multiplicities of the domain of
�y;a4

at x , like those at the points in the .g� 1/–tuple, x, are 0. The point measure
at fx; a4g � fxk ; xg is

1

4
.na4
C nxk

/D
k � kC 1

4
C

1

4
D

1

2
:

Applying Formula (2) immediately yields �.�y;a4
/D 1. The case of �a1;y follows

similarly.

Having established the Maslov indices of all relevant Whitney disks, let us return to
the filtration. Lemmas 3.2–3.4 are enough to determine the relative filtration difference
between any two generators. It follows that the chain complex for DC.K; t/ splits into
three distinct filtration levels of the following form:

bCFK.DC.K; t/; 1/� fa1g �
bCF .S3

t .K//

bCFK.DC.K; t/; 0/� Œfa2g �
bCF .S3

t .K//�˚

Œfa4g �
bCF .S3

t .K//�˚ Œfyg �
bCFK.K/�

bCFK.DC.K; t/;�1/� fa3g �
bCF .S3

t .K//;

where the symbol � means that there is a bijection between the generators of eg
bCFK .DC.K; t/; 1/ and fa1g �

bCF .S3
t .K//. It remains to understand the boundary

operator for the chain complexes. Let us direct attention to the top filtration level for
DC.K; t/. We claim that, while a priori the chain complex bCFK .DC.K; t/; 1/ looks
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like bCF .S3
t .K// as stated above, it is in fact chain homotopy equivalent to the chain

complex M
fsi2Spinc.S3

t .K /g

bCFK .S3
t .K/; �K ; si/:

In other words, we have the following Theorem.

Theorem 3.6 Let K be a knot in S3 . Then

bHFK .DC.K; t/; 1/Š
M

fsi2Spinc.S3
t .K /g

bHFK .S3
t .K/; �K ; si/;

Where the latter summation is taken over Spinc structures on S3
t .K/Š Z=tZ and over

filtration levels induced by .S3
t .K/; �K /:

Remark 3.7 The groups
L bHFK .S3

t .K/; �K ; si/ have a well-defined absolute Q–
grading which is a lift of a relative Z–grading. The isomorphism stated above does
not, in general, hold on the level of graded abelian groups. The graded statement is
obtained in the next section.

Proof As previously noted, the generators of bCFK .DC.K; t/; 1/ are of the form
fa1g �

bCF .S3
t .K//. By definition of the knot filtration, this implies fa1g � p to

fa1g �q can be connected by a Whitney disk, � , for any p;q 2bCF .S3
t .K//. If we

additionally require that nz.�/D nw.�/D 0, then � will be unique. Recall that the
Heegaard diagram hd..S3

t .K/; �K / which went into the construction of hd.DC.K; t//
came equipped with two basepoints, z00; w0 . As described in Ozsváth–Szabó [29], the
point w0 induces a map

sw0 W bCF .S3
t .K//! Spinc.S3

t .K//;

which assigns to each generator in the chain complex a Spinc structure. We first claim
that if sw0.p/¤ sw0.q/ then the Whitney disk connecting fa1g � p to fa1g � q will
not admit any pseudo-holomorphic representatives. This follows from the discussion
in the proof of Lemma 3.3: since sw0.p/¤ sw0.q/, the domain of the Whitney disk
connecting fa1g � p to fa1g � q must contain the meridian �K in its boundary a
non-zero number of times. Since there are no corner points for the Whitney disk on
the Heegaard diagram for the pattern (the disk has only degenerate corners at fx; a1g

on hd.Hopf/), the domain of � restricted to hd.Hopf/ is simply n �P , n¤ 0 (where,
as above P indicates the periodic domain for hd.Hopf/). Since P has both positive
and negative multiplicities (Figure 8) the disk cannot admit any pseudo-holomorphic
representatives.
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It follows that the boundary operator on bCFK .DC.K; t/; 1/ respects the splitting along
Spinc structures that it inherits as a set from bCF .S3

t .K//. It remains to understand
the boundary operator for each Spinc structure. Under the bijection between gener-
ators of bCFK .DC.K; t/; 1/ and bCF .S3

t .K//, we claim that boundary operator on
bCFK .DC.K; t/; 1/ is precisely the operator obtained from bCF .S3

t .K// by requiring
nz00.�/D 0, in addition to nw0.�/D 0. Since the Heegaard diagram for S3

t .K/ with
both basepoints z00; w0 is a compatible diagram for the knot .S3

t .K/; �K /, the theorem
will follow from our claim and the definition of

L
fsi2Spinc.S3

t .K /g

bHFK .S3
t .K/; �K ; si/.

To prove the claim, examine the unique Whitney disk satisfying nz.�/D nw.�/D 0

connecting fa1g � p to fa1g � q for any p;q with sw0.p/ D sw0.q/. Since the disk
has no corner points on hd.Hopf/, it restricts to n �P on hd.Hopf/. However, in order
for � to admit a holomorphic representative, nD 0 since P has positive and negative
multiplicities. Thus, the multiplicities of � , like those of P , are zero in a neighborhood
of the region where we formed the connected sum in our construction of hd(DC.K; t/).
In particular, nz00.�/D nw0.�/D 0. Conversely, any holomorphic disk connecting p
to q in bCF .S3

t .K/; sw0.p// which satisfies nz00.�/ D nw0.�/ D 0 can be extended
to a disk connecting fa1g � p to fa1g � q. Thus the holomorphic disks that connect
fa1g�p to fa1g�q for p;q with sw0.p/D sw0.q/ correspond to holomorphic disks in
bCF .S3

t .K/; sw0.p// with nz00.�/D nw0.�/D 0 as claimed. (Here, the gluing theorem
for pseudo-holomorphic disks used to prove stabilization invariance of Heegaard Floer
homology is implicitly being used, [29, Section 11].)

4 Computation of 2HFK.DC.K; t/; 1/ for jtj � 0

In this section we compute bHFK .DC.K; t/; 1/ for all sufficiently large values of the
twisting parameter, t . This is done by showing that

L bHFK .S3
t .K/; �K ; si/ – which

was identified with bHFK .DC.K; t/; 1/ in the previous section – is determined by the
filtered chain homotopy type of CFK1.K/ in much the same way that bHF .S3

t .K/; si/

is. (Recall that Ozsváth and Szabó present a formula for bHF .S3
t .K/; si/ in terms of

the filtered chain homotopy type of CFK1.K/. This is summarized below but see
[27] and also Ozsváth–Szabó [30; 31] for further details.)

Before stating the first result of the section, let us establish some notation regarding
cobordisms and Spinc structures. Let Wt denote the cobordism from S3 to S3

t .K/

associated to the two-handle addition along K with framing t and �Wt denote the
same cobordism with reversed orientation. We can think of �Wt as either a cobordism
from �S3 to �S3

t .K/ or from S3
t .K/ to S3 - when we adopt the latter perspective
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we indicate it with a prime, �W 0t . With these conventions, Spinc structures on S3
t .K/

(resp. S3
�t .K/) can be labeled as follows: sm 2 Spinc.S3

t .K// (resp. Spinc.S3
�t .K//)

is determined by the condition that it can be extended over the cobordism �W 0t (resp.
W�t ) to yield a Spinc structure rm satisfying:

hc1.rm/; ŒS �iC t D 2m .resp:hc1.rm/; ŒS �i � t D 2m/:

In terms of this labeling, we have the following Theorem.

Theorem 4.1 Let K �S3 be a knot, and fix m2Z. Then there exists T D T .m/ > 0

such that for all t > T the following holds:

bHFK�.S3
t .K/; �K ; sm/ŠH�Cd� .m/

.F.K;m//˚H��2mCd� .m/
.F.K;�m� 1//

bHFK�.S3
�t .K/; �K ; sm/ŠH��d

C
.m/

�bCF .S3/

F.K;m/

�
˚

H��2m�d
C
.m/

� bCF .S3/

F.K;�m� 1/

�
;

where

d˙.m/D
� t � .2m˙ t/2

4t

�
:

Proof The theorem follows from an examination of [27, proof of Theorems 4.1 and
4.4]. Recall that these theorems yield isomorphisms for t > T .m/:

bHF�.S
3
t .K/; sm/ŠH�Cd�.m/.C fmax.i; j �m/D 0g/(3)

bHF�.S
3
�t .K/; �K ; sm/ŠH��dC.m/.C fmin.i; j �m/D 0g/;(4)

where C fmax.i; j �m/D 0g denotes the subquotient complex of the Z˚Z filtered
chain complex, CFK1.K/, generated by triples Œx; i; j � with i and j filtration indices
satisfying the specified constraint. The first isomorphism is induced by a chain map:

ˆrm
W bCF .S3

t ; sm/ �! C fmax.i; j �m/D 0g;

defined by counting pseudo-holomorphic triangles with appropriate boundary conditions
in the g–fold symmetric product of †g . The boundary conditions are determined
by a doubly-pointed Heegaard triple diagram .†; ˛; ˇ ; 
 ; w; z/ specifying the 2–
handle cobordism �W 0t . The three three-manifolds specified by the triple diagram are
Y˛;ˇDS3

t .K/, Y˛;
 D S3 , Yˇ;
 D #g�1S1�S2 (see Figure 13). The map is defined
by:

ˆrm
Œx�D

X
y2T˛\T


X
f 2�2.x;‚;y/

ˇ̌
nz . /�nw. /Dm�F.y/;�. /D0g

.#M. // � Œy;�nw. /;m� nz. /�;
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where ‚ is a top-dimensional generator for bHF .#g�1S1 � S2/. The second iso-
morphism is induced by a similar map which goes in the opposite direction. Since
nw. /; nz. /� 0 for holomorphic  , and the constraint on triples Œy; i; j � generating
CFK1.K/ is that

F.y/C .i � j /D 0;

it is clear that ˆrm
maps into C fmax.i; j �m/D 0g. Furthermore, the condition on

the homotopy classes of triangles,  , in the above map ensures that the map indeed
corresponds to rm . To see this, recall from [29, Section 8] that a choice of basepoint
determines a map:

swW �2.x; y; z/! Spinc.W˛;ˇ;
 /;

from homotopy classes of Whitney triangles  2 �2.x; y; z/ to Spinc structures on
the four-manifold specified by the triple diagram. Further recall that the knot Floer
homology filtration, F , can be thought of as a filtration by Spinc structures on S3

0
.K/.

To make this correspondence, Ozsváth and Szabó assign to each intersection point x
generating bCFK .K/, an intersection point zx generating a chain complex, bCF .S3

0
.K//.

The intersection point zx has an associated Spinc structure, s.zx/2Spinc.S3
0
.K//, which

we denote s.x/ WD s.zx/. Now the filtration of x is given by:

(5) hc1.s.x//; ŒbF �i WD 2F.x/:

where c1.s.x// 2 H 2.S3
0
.K/;Z/ Š Z is the first Chern class of s.x/ and ŒbF � 2

H2.S
3
0
.K/;Z/ is the homology class corresponding to a fixed Seifert surface of K ,

capped off by the meridian disk of the torus used in the zero-surgery. If we let ŒS �
denote the generator of H2.�W 0t ;Z/ we have the following analogue of [27, Equation
14]:

(6) hc1.s.x//; ŒbF �iC 2.nz. /� nw. //� t D hc1.sw. //; ŒS �i:

With the definition of the filtration given above, it follows from Equation (6) that a
homotopy class of triangles  satisfying nz. /�nw. /Dm�F.y/ must also satisfy

2m� t D hc1.sw. //; ŒS �i;

showing that ˆrm
corresponds to rm , as claimed.

We would like to refine Ozsváth and Szabó’s theorem to determine the knot Floer
homology of .S3

t .K/; �K /. In fact, there is a natural sequence of subcomplexes:

0� C fi < 0; j Dmg � C fmax.i; j �m/D 0g:

Viewing this sequence as a 2–step filtration, we claim that its filtered chain homotopy
type is equivalent to that of the filtration of bCF .S3

t .K/; sm/ induced by .S3
t .K/; �K /.
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Theorem 4.1 will follow immediately, since

C�fi < 0; j Dmg ' F��2m.K;�m� 1/

C�fmax.i; j �m/D 0g

C�fi < 0; j Dmg
' C�fi D 0; j �mg ' F�.K;m/;

by the discussion in [27, Section 3.5]. (Here ' indicates chain homotopy equivalence.)
The case when t < 0 is similar.

The key observation in proving the claim is that the triple diagram .†; ˛; ˇ ; 
 ; w; z/

used to define ˆrm
not only specifies a Heegaard diagram for the knot .S3;K/ but

also a diagram for .S3
t .K/; �K /, with the addition of a basepoint, z0 . See Figure 13,

which illustrates the local picture of the Heegaard triple diagram near the basepoints.
Indeed, .†; ˛; ˇ ; w; z0/ is a diagram for .S3

t .K/; �K / as was noted in the discussion
of the Heegaard diagram for the companion in Section 2.

Note Since this subsection deals exclusively with the surgery cobordism for the
companion knot, �W 0t , the notation here is independent from the previous two sections.
In particular, to translate between the triple diagrams for �W 0t shown in Figure 13,
Figure 14 and the similar-looking Heegaard diagrams for the companion, Figure 4 and
Figure 11 we must first switch the roles of the ˛ and ˇ curves on the triple diagram.
Then we remove all 
 curves on the triple diagram except 
g , which becomes the ˛
curve �K . Finally, we add a prime to each basepoint, so that z! z0; w!w0; z0! z00 .

An intersection point x 2 T˛ \Tˇ is said to be supported in the winding region if the
component of x in ˛g lies in the local picture of Figure 13. Intersection points in the
winding region are in t to 1 correspondence with intersection points y 2 T˛ \ T
 .
For t sufficiently large, the pigeonhole principle shows that there exist an entire Spinc

equivalence class of intersection points for bCF .S3
t .K// supported in the winding

region. Moreover, for fixed m the equivalence class of intersection points corresponding
to sm is supported in the winding region, provided that t is large enough. This follows
from Equation (6), which implies that the distance from x0 2 ˛g \ 
g to the ˇg

component of a point x supported in the winding region is proportional to jmj for the
Spinc structure, sm , which it represents.

Now the generators of the equivalence class corresponding to sm are in bijection
with generators of C fmax.i; j �m/ D 0g. As shown by Ozsváth and Szabó, this
bijection is induced by canonical “small” triangles supported entirely in the winding
region and which connect generators of the two complexes, see Figure 13. In fact
the pseudo-holomorphic representatives of these triangles constitute the highest order
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ˇg 
g

2

z w
1

‚

1 z0

x3 x2 x1 x0 2 x�1 1 x�2 x�3 ˛

 1  �2

Figure 13: Heegaard triple for �W 0
t near the basepoints (here t D 6). We

refer to this part of the Heegaard diagram as the “winding region”. To the
left of 
g , the domain of a small triangle  1 connecting x1 to x0 is shaded
(in blue). A small triangle  �2 connecting x�2 to x0 , with nw. �2/D 2 is
shaded (in red) to the right of 
g . Note that while the picture looks like the
diagram for hd.DC.K; t// near the connect sum region, this is a Heegaard
triple diagram, and for the moment we make no reference to the diagram for
the Whitehead doubles. Thus the notation here is independent of the previous
two sections.

terms of ˆrm
(with respect to the filtration given by negative area of triangles), and

subsequently induce the isomorphism on homology given by Equation (3).

From Figure 13 we see that there is a unique intersection point x0 2 ˛g \ 
g . The
multiplicity of each small triangle at the basepoints measures how far to the right or left
of x0 the ˛g component of the corresponding generator of bCFK .S3

t .K/; �K ; sm/ lies.
Suppose  2�2.x; ‚; y/ is a small triangle. If k D nz. /� 0 then the ˛g component
of x is xk , and Œx� is mapped by ˆrm

to the quotient complex, C f0; j � mg, of
C fmax.i; j �m/D 0g. If, on the other hand, l D nw. / > 0 the ˛g component of x
is x�l and Œx� is mapped to the subcomplex, C fi < 0; j Dmg.

Lemma 4.2 Let p;q 2 bCFK .S3
t .K/; �K ; sm/ be two generators supported in the

winding region, and let xi ;xj denote the ˛g components of the corresponding inter-
section points in T˛ \Tˇ . Then

F.p/�F.q/D
(
˙1 if xi ;xj lie on opposite sides of x0

0 otherwise.
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Proof Note that in terms of Figure 13, xi ;xj lie on opposite sides of x0 precisely
when i and j have opposite signs. We will construct a Whitney disk, �p;q 2 �2.p;q/,
which has the following two properties:

(1) The boundary of the domain of �p;q contains the arc, ı , connecting x1 and x�1

on ˇg if and only if xi ;xj lie on opposite sides of x0

(2) #ı � @�p;q D 1 if xi and xj are on opposite sides of x0 , and is 0 otherwise.

See Figure 14. Assuming the existence of such �p;q , the lemma follows immediately
from the definition of the filtration of bCFK .S3

t .K/; �K ; sm/.

To construct �p;q , note first that since p;q lie in the winding region, they correspond
uniquely to intersection points zp; zq 2 T˛ \ T
 . These intersection points can be
connected by a Whitney disk � with nw.�/D 0 and nz.�/D k for some k 2 Z. This
means that @� contains 
g with multiplicity k , which further implies that the distance
between xi ;xj is k , ie i � j D k . The domain of �p;q can then be obtained from
the domain of � by a simple modification in the winding region. This modification is
shown in Figure 14. It replaces the boundary component k �
g � @� by a simple closed
curve formed from an arc connecting xi to xj along ˛g followed by an arc connecting
xj to xi along ˇg , and which wraps k times around the neck of the winding region.
The enumerated properties of @�p;q are immediate.

The identification of the 2–step filtration of C fmax.i; j �m/D 0g with the filtration
induced by .S3

t .K/; �K / follows from the lemma and the paragraph preceding it.
Explicitly, under the bijection between generators induced by the small triangles, we
have the following identifications (here x2 bCFK .S3

t .K/; �K ; sm/ is a point supported
in the winding region):

x with ˛g component lying to the left of x0$ C fi D 0; j �mg

x with ˛g component lying to the right of x0$ C fi < 0; j Dmg:

The lemma identifies generators to the left of x0 with the top filtration level of
bCFK .S3

t .K/; �K ; sm/ and those to the right of x0 with the bottom filtration level.
This completes the proof of Theorem 4.1.

We have only shown that for fixed m, there exists a framing large enough so that
bHFK�.S3

t .K/; �K ; sm/ is given by the formula of Theorem 4.1. Since the Floer
homology of the Whitehead double involves the sum

L
m

bHFK�.S3
t .K/; �K ; sm/; it

will be necessary to prove the following refinement.
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ˇg 
g ı

2 2 2 2

z w

‚

z0

x3 x2 x1 x0 x�1 x�2 x�3 ˛g

2 2 2 2 2 2 1

z w

‚

z0

x3 x2 x1 x0 2 x�1 x�2 1 x�3

2 2 2 1 1

z w

‚

z0

x3 x2 2
x1 1

x0 1
x�1 x�2 x�3

Figure 14: Figure illustrating the process by which the domain of a disk
�p;q 2 �2.p;q/ , for p;q 2 T˛ \Tˇ in the winding region can be identified
with the domain of a disk, � 2 �2.zp; zq/ . Here zp; zq are the intersection
points in T˛ \ T
 corresponding to p;q under the t to 1 identification
of points supported in the winding region with points in T˛ \ T
 . Note
that the multiplicity with which the arc, ı , occurs in @�p;q is ˙1 if the ˛g

components of p;q lie on opposite sides of x0 , and 0 otherwise.
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ˇg 
g

z w

‚

1 z0

x3 x2 x1 x0 x�1 x�2 x�3 ˛g

z w

‚

z0

1

2

x3 x2 x1 x0x�1 x�2 x�3

Figure 15: Procedure by which we vary the placement of the quadruple
.
g; z; w; z

0/ to arrange that a single Spinc equivalence class of inter-
section points supported in the winding region can be used to calculate
bHFK �.S3

˙t .K/; �K ; sm/ for all sm . Note that the small triangle connecting
an intersection point, eg fx1; xg , in our equivalence class is modified upon
moving the basepoint. This implies, by Equation (6) and [24, Proposition
6.3], that the Spinc structure represented by our equivalence class changes as
described in the text.

Theorem 4.3 Let K � S3 be a knot. Then there exists T > 0 such that for all t > T

the following holds for all m:

bHFK�.S3
t .K/; �K ; sm/ŠH�Cd� .m/

.F.K;m//˚H��2mCd� .m/
.F.K;�m� 1//

bHFK�.S3
�t.K/; �K ; sm/ŠH��d

C
.m/

�bCF .S3/

F.K;m/

�
˚H��2m�d

C
.m/

� bCF .S3/

F.K;�m�1/

�
:

Proof The refinement is proved by the somewhat standard technique of “moving the
basepoint,” see Ozsváth–Szabó [28] and Rasmussen [32]. In the present context, this
has the following meaning: in the proof of Theorem 4.1, the framing parameter was
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increased so that the Spinc –equivalence class of intersection points corresponding to
sm 2 Spinc.S3

t .K// was represented by intersection points supported in the winding
region. In the Heegaard diagram, however, there were a number of Spinc –equivalence
classes which contained intersection points outside the winding region. By moving the
quadruple of data .
g; z; w; z

0/ one intersection point to the right of x�1 (see Figure
15), the Spinc –equivalence class of intersection points with which we started no longer
corresponds to sm . Instead, it represents smC1 , as can be seen (for instance) from
Equation (6), together with the formula for the Chern class of the Spinc structure associ-
ated to a Whitney triangle, Ozsváth–Szabó [24, Proposition 6.3]. Moving .
g; z; w; z

0/

to the left of x1 changes the Spinc structure to sm�1 . Despite the change in location
of 
g , there are still small triangles in the winding region that connect each intersection
point in our equivalence class to the corresponding intersection point in T˛\T
 . Thus
Theorem 4.1 applies, with the same T .m/, to yield the result for sm�1; smC1 . Varying
the placement of the meridian and basepoints throughout the winding region proves
the theorem for all s 2 Spinc.S3

t .K//.

4.1 Gradings

We conclude this section by determining, when jt j � 0, the absolute Maslov grading
of bHFK .DC.K; t/; 1/. We show the following Theorem.

Theorem 4.4 With notation as above, there are isomorphisms of absolutely Z–graded
abelian groups for all t > T :

bHFK�.DC.K; t/; 1/Š
mDb t

2
cM

mDb� t
2
cC1

�
H��1.F.K;m//˚H��1.F.K;�m� 1//�

bHFK�.DC.K;�t/; 1/Š

mDb t
2
cM

mDb� t
2
cC1

h
H�

�bCF .S3/

F.K;m/

�
˚H�

� bCF .S3/

F.K;�m� 1/

�i
:

Proof By a sequence of Heegaard moves, each of which occur in the complement
of the basepoint w , we can convert hd.DC.K; t// to hd.K/. See Figure 7. Since
these moves occur in the complement of w , the absolute grading of any generators
unaffected by the Heegaard moves is unchanged throughout the process. It follows that
intersection points of the form:

fyg �pi ;2 bCFK .P /� bCFK .K/

inherit the grading which pi has, thought of as a generator of bCFK .K/. As mentioned
in the proof of Theorem 4.1 above, intersection points pi 2 bCFK .K/ are in 1 to
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t correspondence with intersection points in the winding region, and hence with
intersection points of the form:

faj g �qi 2 faj g �
bCF .S3

t .K//;

where qi is supported in the winding region. More explicitly, each point of fyg �
bCFK .K/ is of the form fyg� fx0;pg, for some .g� 1/–tuple of intersection points,

p, while each point of faj g �
bCF .S3

t .K// in the winding region is of the form
faj g�fxk ;pg for some xk 2 ˇg\�K #�P , where k Db� t

2
cC1; : : : ; b t

2
c. In order to

determine the absolute gradings for the Floer homology of the Whitehead double, we
first understand the grading on the intersection points supported in the winding region.
These points are partitioned into two groups - those points whose ˇg component is
to the left of x0 (those with k > 0), and those whose ˇg component is to the right
(k < 0). We first handle points to the left of x0 .

Lemma 4.5 Let k > 0. Then for t � 0 we have

gr.fa1g � fxk ;pg/D gr.fyg � fx0;pg/C 1;

while for t � 0,
gr.fa1g � fxk ;pg/D gr.fyg � fx0;pg/:

Proof For k > 0, we can complete the small triangles connecting xk to x0 used in
the proof of Theorem 4.1 with domains on the diagram for P to obtain domains of
Whitney disks. This is shown in Figure 11 for t < 0 and Figure 12 for t > 0. For t > 0

the Whitney disk �a1;y connects fa1g�fxk ;pg to fyg�fx0;pg. For t < 0 we have a
Whitney disk �y;a4

connecting fyg�fx0;pg to fa4g�fxk ;pg. Section 3.1 calculated
�.�a1;y/ D �.�y;a4

/ D 1. For t � 0, the Lemma follows from the formula for the
absolute grading:

gr.fa1g � fxk ;pg/� gr.fyg � fx0;pg/D �.�a1;y/� 2nw.�a1;y/D 1:

For t � 0, we have

gr.fyg � fx0;pg/� gr.fa4g � fxk ;pg/D �.�y;a4
/� 2nw.�a1;y/D 1;

and

gr.fa1g � fxk ;pg/� gr.fa4g � fxk ;pg/D �.�a1;a4
/� 2nw.�a1;a4

/D 1;

where �a1;a4
is one of the four Whitney disks with annular domains discussed in the

proof of Lemma 3.4. The lemma follows from the additivity of the grading.
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Next we deal with the points to the right of x0 . Before stating the lemma, we remark
that each generator of bCFK .K/ is of the form x0 � p, and hence we can think of the
.g� 1/–tuple p as having a filtration, F.p/ inherited from the filtration of bCFK .K/.
Note also that each point in the winding region xk � p uniquely corresponds to an
intersection point x0 �p 2 bCFK .K/.

Lemma 4.6 Let �k < 0. Then for t � 0 we have

gr.fa1g � fx�k ;pg/D gr.fyg � fx0;pg/C 2F.p/C 1;

while for t � 0,

gr.fa1g � fx�k ;pg/D gr.fyg � fx0;pg/C 2F.p/:

Proof We handle only the second case, as the first is similar. We would like to complete
the small triangle  �k connecting fx�k ;pg to fx0;pg by a domain on hd.P /, as in
Figure 11. However, since the small triangle is now supported to the right of x0 , the
multiplicities of the domain of the triangle near the connect sum region (the black
hole) are not suitable for completion, see Figure 16. Thus we pick a homotopy class of
triangles connecting fx�k ;pg to fx0;pg which has multiplicity 0 in the two domains
on the right of the connect sum tube. This homotopy class is given by

 0
�k D  �k � k � Œ†��P3;

where Œ†� is the domain corresponding to the homology class of the Heegaard surface
and P3 is the generator of the space of triply periodic domains. The domain of  0

�k
is

illustrated in Figure 16. Since the multiplicities of  0
�k

are the same near the connect
sum region as the small triangles used in the previous lemma, it can be completed on
hd.P / to the domain of a Whitney disk � 2 �2.fyg � fx0;pg; fa4g � fxk ;pg/, as in
Figure 11. As with the previous lemma, the Maslov index of � will be one higher than
that of the triangle used to construct the domain:

�.�/D �. 0
�k/C 1:

(This calculation follows in the same spirit as the calculation of the Maslov indices in
Section 3.1). Assuming, for the moment, that �. 0

�k
/D�2F.p/, the second part of

the lemma follows. For we have:

gr.fyg � fx0;pg/� gr.fa4g � fxk ;pg/D �.�/� 2nw.�/D�2F.p/C 1;

gr.fa1g � fxk ;pg/� gr.fa4g � fxk ;pg/D �.�a1;a4
/� 2nw.�a1;a4

/D 1;

which together yield the second part of the lemma. Since both the procedure for
constructing a disk � and the calculation of �.�/ are the same for t � 0 we leave the
first part of the lemma for the reader. Thus it will suffice to verify �. 0

�k
/D�2F.p/.
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First note the effect of adding the domain of the Heegaard surface:

�. �k � k � Œ†�/D �. �k/� k ��.Œ†�/D �. �k/� 2k:

The effect of subtracting P3 can be determined from the definition of the absolute
grading of Floer homology for torsion Spinc structures, [24, Equation 12]:

(7) �. �P3/��. /D 1
4
..c1.sw. �P3//2� .c1.sw. //

2/:

In the above equation, sw. / denotes the Spinc structure on the two-handle cobordism
�W 0t associated to the triangle  via the basepoint w , and c1 denotes its first Chern
class. Now for an arbitrary homotopy class of triangles,  , Equations (5) and (6)
together imply:

2F.p/C 2.nz. /� nw. //� t D hc1.sw. //; ŒS �i;

and hence for the small triangle  �k this becomes:

2F.p/� 2k � t D hc1.sw. �k//; ŒS �i:

Subtracting P3 from  �k changes the Spinc structure associated to the triangle:

hc1.sw. �k �P3//; ŒS �i D hc1.sw. �k//�2PDŒS �; ŒS �i D hc1.sw. �k//; ŒS �iC2t:

We can now compute c2
1

for the Spinc structures associated to  �k and  �k �P3

and determine the difference in their Maslov indices using Equation (7):

�. �k�P3/��. �k/D
1

4

h.2F.p/� 2kC t/2

�t
�
.2F.p/� 2k � t/2

�t

i
D2.k�F.p//:

Thus, the Maslov index of  0
�k

is given by:

�. �k � k � Œ†��P3/D �. �k �P3/� 2k D 2.k �F.p//� 2k D�2F.p/;

as claimed.

For intersection points generating bHFK .DC.K; t/; 1/ which are supported in the
winding region, the two lemmas above are enough to complete the proof of Theorem
4.4. More explicitly, the isomorphism in Theorem 4.1,

bHFK�.S3
t .K/; �K ; sm/ŠH�Cd� .m/

.F.K;m//˚H��2mCd� .m/
.F.K;�m� 1//;

was proved by looking at intersection points in the winding region, with the F.K;m/
summand corresponding to those fxk ;pg 2 bCFK .S3

t .K// with xk to the left of x0 ,
and F.p/ � m. By Lemma 4.5 and the discussion at the beginning of the proof of
this theorem, the grading of the corresponding intersection points fa1g � fxk ;pg 2
bCFK .DC.K; t/; 1/ is the same as the grading of fx0;pg (or shifted up by 1, depending
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Figure 16: Illustration for Lemma 4.6. The first part of the Figure depicts
multiplicities of the small triangle  �2 . The second shows multiplicities
of the generator of the space of triply-periodic domains, P3 . The last part
shows multiplicities of  0

�2 D  �2� 2 � Œ†g ��P3 . The domain of  0
�2 can

be completed to the domain of a Whitney disk on the Heegaard diagram for
the Whitehead double, as in Figure 11. The case with t > 0 is analogous.

on whether t is positive or negative). Hence the homology class Œfa1g � fxk ;pg� 2
bCFK .DC.K; t/; 1/ inherits its grading from H�.F.K;m//. The correction factor

d
�
.m/ is missing since the Whitehead double is a knot in S3 and d

�
.m/ came from

the grading of S3
t .K/.

On the other hand, the F.K;�m� 1/ summand in Theorem 4.4 corresponds to those
fa1g � fx�k ;pg 2 bCFK .Hopf/ � bCFK .S3

t .K// with x�k to the right of x0 , and
F.p/ > m. Pick fa1g � fx�k ;pg. We wish to understand the induced grading of
Œfa1g � fx�k ;pg� 2 bHFK .DC.K; t/; 1/. By Lemma 4.6 and the discussion at the
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beginning of the proof,

gr.fa1g � fx�k ;pg/D gr.fyg � fx0;pg/C 2F.p/D gr.fx0;pg/C 2F.p/;

where the distinction between fyg� fx0;pg and fx0;pg is that the former intersection
point generates in bCFK .DC.K; t/; 1/ and the latter generates in bCFK .K/ (here we
treat the case t < 0 - the case t > 0 differs only by the addition of 1 to the right-hand
side). The proof of Theorem 4.1 made use of the bijection, B , between generators of
bCFK .K/D C fi D 0g and C fmax.i; j �m/D 0g. Restricted to C fi D 0; j >mg we

have the bijection

BW C fi D 0; j >mg ! C fi < 0; j Dmg:

Under B the gradings satisfy,

gr.B.fx0;pg//D gr.fx0;p/C 2F.p/;

By the discussion in [27, Section 3]. Thus, the grading of fa1g � fx�k ;pg in C fi <

0; j Dmg is given by:

gr.fa1g � fx�k ;pg/D gr.fx0;pg/C 2F.p/D
gr.B.fx0;pg//� 2F.p/C 2F.p/D gr.B.fx0;pg/;

ie the grading of Œfa1g � fx�k ;pg� 2 bHFK .DC.K; t/; 1/ is the same as the grading it
inherits as a homology class in H�.C fi < 0; j Dmg/.

Finally, we relied on the existence of a chain homotopy equivalence:

‰W C�fi < 0; j Dmg ! F��2m.K;�m� 1/:

This is the chain homotopy equivalence found in [27, Proposition 3.8], used to identify
the Floer homology of a knot K , and its reverse, �K . The factor of 2m appearing
in the grading shift for ‰ arises from the existence of the basepoint, w0 , used for the
companion knot K . Since this basepoint is absent in hd.DC.K; t//, we see that the
grading of Œfa1g�fx�k ;pg�2 bHFK .DC.K; t/; 1/ is the same as the grading it inherits
as a homology class in H�.F.K;�m� 1//.

This takes care of the absolute gradings for generators of bHFK .DC.K; t/; 1/ supported
in the winding region. In the proof of Theorem 4.1, however, bHFK�.S3

t .K/; �K ; sm/

was calculated for each Spinc structure separately, each time looking only at points
in the winding region. In the case of the Whitehead double all the Spinc structures
on S3

t .K/ are grouped into bHFK .DC.K; t/; 1/, and hence we must determine the
absolute gradings of the generators of bHFK .DC.K; t/; 1/ lying outside the winding
region.
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To handle these generators we argue as follows: by letting jt j � 0 be sufficiently large,
we can ensure that every Spinc structure on S3

t .K/ with

bHFK .S3
t .K/; �K ; sm/¤ Z

is generated by intersection points supported in the winding region. In other words, we
make the framing large enough so that the intersection points outside of the winding
region only lie in Spincstructures on S3

t .K/ for which the groups bHFK�.S3
t .K/;�K;sm/

have stabilized (we know that these groups must eventually all be Z, by the adjunction
inequality). For these Spinc structures, the map ˆrm

induces an isomorphism

bHFK�.S3
t .K/; �K ; sm/Š bHF .S3/D Z:

Now since the maps ˆrm
are invariants of the cobordism �W 0t and Spinc structure

rm , it follows that we can calculate them with an arbitrary Heegaard triple diagram.
Since ˆrm

is an isomorphism for the sm in the stable range, it follows that there
exists a pseudo-holomorphic Whitney triangle  with �. / D 0 connecting the
generator of bHFK .S3

t .K/; �K ; sm/ to the generator of bHF .S3/. This implies that
the multiplicities of the domain of  must all be positive and it follows that the
multiplicities of  in the domains to the right of the connect sum region must all be
zero (otherwise there would be negative multiplicity somewhere in the winding region,
see Figure 17). We can complete this  to a Whitney disk � with �.�/ D 1 as in
Lemma 4.5, thus completing the proof of Theorem 4.4.

5 Computation of 2HFK .DC.K; t/; 1/ and �.DC.K; t// for
all t

In this section the skein exact sequence for knot Floer homology is used to interpolate
between the case when t � 0 and the case when t � 0. This enables a calculation
of bHFK .DC.K; t/; 1/ for all values of t . We will also determine �.DC.K; t//. The
analysis of the skein sequence will be similar to the technique used in Hedden–Ording
[12] in the special case of Whitehead doubles of the .2; 2nC 1/ torus knots. The main
result of the section is the following Proposition.

Proposition 5.1 Let K � S3 be a knot with Seifert genus g.K/ D g . Then for
t � 2�.K/ we have:

bHFK�.DC.K; t/; 1/Š F
t�2g�2

.1/

gM
iD�g

ŒH��1.F.K; i//�2;
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g

ˇg

M 0

w

N CM C 1 N �2N �5N

M �N � 1 M 0 N �2N ˛g

Figure 17: Illustration of the domain of an arbitrary triangle,  , connecting a
generator supported away from the winding region to a generator of bHF .S3/ .
Since nw. / D 0 , we see that in order for  to be holomorphic, N D 0 .
Otherwise the domain of  would have negative multiplicity. With N D 0

we can complete  to a Whitney disk as in Lemma 4.5 and Lemma 4.6.

and �.DC.K; t//D 0. For t < 2�.K/ the following holds:

bHFK�.DC.K; t/; 1/Š F
2�.K /�2g�2

.1/
˚ F

2�.K /�t

.0/

gM
iD�g

ŒH��1.F.K; i//�2;

and �.DC.K; t//D 1:

Remark 5.2 This takes care of the top and bottom group for the Whitehead double,
by the symmetry of knot Floer homology about F D 0. It also proves Theorem 1.5
stated in the introduction.

5.1 Algebraic preliminaries

The present and succeeding sections rely heavily on some elementary, but perhaps
non-standard, homological algebra. For this reason, we find it convenient to recall
some definitions and results regarding filtered chain complexes and filtered chain maps.
First recall that a Z–filtered vector space is a vector space V (which for our purposes
will be finite dimensional), together with an exhausting family of subspaces, fVigi2Z ,
indexed by the integers and such that Vi � Vj if i � j . This endows vectors in V with
an ordering: v � v0 if v0 2 Vi implies v 2 Vi for all i .
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A filtered linear map between filtered vector spaces, V;W , is a linear transformation
F W V !W which respects the filtrations of V and W in the sense that F.Vi/�Wi

for all i .

Let V be a filtered vector space of dimension n. Given a basis fekg
kDn
kD1

for V , a
filtered change of basis is a filtered linear map, I W V ! V which is invertible as a
linear transformation. The collection fI.ek/g

kDn
kD1

provides a new basis for V . Note
the requirement that I is filtered implies that if ek 2 Vi then I.ek/ 2 Vi . Thus a basis
vector is sent to vectors with equal or lower order with respect to the filtration of V .
By ordering any given basis compatibly with the ordering on vectors from the filtration,
filtered changes of basis are equivalent to n� n invertible lower triangular matrices.
(To do this, we order the basis so that ei � ej if i < j - thus e1 is of highest order
with respect to the filtration and en is of lowest order).

A filtered chain complex is a chain complex .C; d/ where C is a filtered (graded)
vector space and the differential d is a filtered linear map. Concretely, a filtered chain
complex is a chain complex C , together with an exhausting sequence of subcomplexes:

C1 � C2 � � � � � Cm D C:

The notions of a filtered chain map, filtered chain homotopy, and filtered chain homotopy
equivalence are exactly the same as for ordinary chain complexes, with the added
requirement that every map involved is required to be filtered linear. The results of the
current and succeeding sections are about filtered chain complexes up to filtered chain
homotopy equivalence. The equivalence class of a filtered chain complex .C; d/ up to
filtered chain homotopy equivalence will be referred to as the filtered chain homotopy
type of .C; d/. A key observation is that a filtered change of basis of .C; d/ does not
change the filtered chain homotopy type (though it may change the appearance of the
differential).

It is well known that a filtered chain complex induces a spectral sequence, and each
term in this spectral sequence is itself a filtered chain complex, see McCleary [21]
for an introduction. Further, .E1; d1/ D .Ci=Ci�1; d

i
induced/ where d i

induced are the
differentials induced on the quotient complexes C i D Ci=Ci�1 . Then the homology
groups H�.C

i/ generate the E2 stage of the spectral sequence.

Given a filtered chain complex, C , it would often be convenient to replace C with
a filtered chain complex C 0 whose d1 differential is trivial and which is isomorphic
as a filtered graded vector space to the associated graded groups of C . Indeed this
can be done uniquely, up to filtered chain homotopy equivalence, using a concept
called the reduction of filtered chain complexes. This concept is explained in detail
in Rasmussen’s thesis [33, Sections 4 and 5]. More precisely we have the following
lemma.
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Lemma 5.3 (Rasmussen [33, Lemma 4.5]) Let C be a filtered complex with filtration

C1 � C2 � � � � � Cm;

and let C i D Ci=Ci�1 be the filtered quotients, so that the homology groups H�.C
i/

are the E2 terms of the spectral sequence associated to the filtration. Then, up to
filtered chain homotopy equivalence, there is a unique filtered complex C 0 with the
following properties.

(1) C 0 is filtered chain homotopy equivalent to C .

(2) .C 0/i ŠH�.C
i/.

(3) The spectral sequence of the filtration on C 0 has trivial first differential. Its
higher terms are the same as the higher terms of the spectral sequence of the
filtration on C .

Following Rasmussen, we will refer to the chain complex C 0 as the reduction of C .

The above lemma is very useful for our purposes. It allows us to treat the knot Floer
homology groups, which are the E2 term in the spectral sequence associated to the
knot filtration, as a filtered chain complex in their own right. As such, they have a
differential, d 0 , which strictly lowers the filtration (since, by Property .3/ the spectral
sequence of the reduction has trivial first differential). Note that while d 0 determines
the differentials in the spectral sequence of the reduction (and hence by Property .3/
the higher differentials for the original complex), in general it is not a differential in
the spectral sequence for the reduction. Instead, it is the differential on a filtered chain
complex which is filtered chain homotopy equivalent to the one we started with.

Recall that a filtered chain map induces a morphism of spectral sequences. The next
lemma shows that this morphism is well-behaved with respect to reduction.

Lemma 5.4 (See Rasmussen [33, Lemma 5.2]) Let C;D be filtered chain complexes,
and F W C ! D a filtered chain map. Then there is an induced filtered chain map
between the reductions F 0W C 0!D0 . The maps F;F 0 induce the same morphism of
spectral sequences. F 0 is unique up to pre- and post-composition with filtered chain
homotopy equivalences.

5.2 Proof of Proposition 5.1

It will be helpful to first rephrase Theorem 4.4.
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Theorem 5.5 Let K � S3 be a knot, and suppose g.K/ D g denotes the Seifert
genus of K . Then for all t > T > 0 there are isomorphisms of absolutely Z–graded
abelian groups:

bHFK�.DC.K; t/; 1/Š F
t�2g�2

.1/

gM
iD�g

ŒH��1.F.K; i//�2

bHFK�.DC.K;�t/; 1/Š F
t�2g

.0/

gM
iD�g

h
H�

�bCF .S3/

F.K; i/

�i2
:

Proof This follows from the adjunction inequality for knot Floer homology, which
implies that H�.F.K; i//Š 0 for i < g and H�.F.K; i//Š F.0/ for i � g .

By performing 2t successive crossing changes to the twisting region of the knot diagram
shown in Figure 1, we can change DC.K; t/ into DC.K;�t/. Each of these operations
changes a negative crossing to a positive crossing. Recall that [27, Theorem 10.2] (see
also Rasmussen [33]) asserts that associated to a crossing change there are skein exact
sequences for knot Floer homology (for each i ):

� � � �! bHFK .K�; i/
f1
�! bHFK .S1

�S2; �.K0/; i/
f2
�! bHFK .KC; i/

f3
�! � � � :

where the maps f1 and f2 lower homological grading by one-half and f3 is non-
increasing in the homological grading. Here K� is the knot with negative crossing,
KC is the knot with positive crossing, and K0 is the two-component link obtained
by resolving the crossing. More precisely, [27, Section 2] describes a well-defined
way to associate a knot .S1 �S2; �.L// to a two-component link .S3;L/ and .S1 �

S2; �.K0// is this “knotification” of the link obtained from resolving the crossing.

In the case at hand, these exact sequences relate the Floer homology groups of DC.K; t/,
DC.K; t �1/ and the two-component link obtained from the oriented resolution of the
crossing which we change. Regardless of t or K , this link is the positive Hopf link,
which we denote by H . The knotification of H is shown in Figure 3, and its Floer
homology is given by the following Proposition.

Proposition 5.6 (Ozsváth–Szabó [27, Proposition 9.2])

bHFK .S1
�S2; �.H /; i/Š

8̂̂̂̂
<̂
ˆ̂̂:

F. 1
2
/ if i D 1

F2

.� 1
2
/

if i D 0

F.� 3
2
/ if i D�1

0 otherwise
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In light of the above, we see that the exact sequence for the top filtration level takes the
following form:

� � � �! bHFK .DC.K; j /; 1/
f1
�! F. 1

2
/

f2
�! bHFK .DC.K; j � 1/; 1/

f3
�! � � � :

We wish to understand the maps in this sequence for each j D�t C 1; : : : ; t . This is
achieved through several algebraic lemmas. To simplify notation, it will be useful to
define:

r�.t/D rk bHFK�.DC.K; t/; 1/:

Our first lemma determines how the ranks of the groups in each homological dimension
differ between the cases when t > T > 0 and t < �T < 0.

Lemma 5.7 Let K � S3 be a knot with genus g , and let t > T > 0 be an integer so
that Theorem 5.5 holds. Then

r�.t/D r�.�t/ if � ¤ 0; 1

r�.t C 1/D r�.t/ if � ¤ 0; 1

r1.t/D r1.�t/C t � 2�.K/

r0.t/D r0.�t/� t � 2�.K/:

Proof The lemma follows from Theorem 5.5, the definition of �.K/, and the long
exact sequence in homology coming from the short exact sequence of chain complexes,

0 ����! F.K; j / i
����! bCF .S3/

p
����!

bCF .S3/
F.K ;j/ ����! 0:

Since bHF .S3/Š F.0/ , the long exact sequence shows that

H��1.F.K; j //ŠH�

�bCF .S3/

F.K; j /

�
if � ¤ 0; 1, from which the first part of the lemma follows (taking into account the
grading shift in the first part of Theorem 5.5). For the second two parts, recall that
�.K/ is defined as:

�.K/Dminfj 2 Zji� WH�.F.K; j // �! bHF .S3/ is non-trivialg:

In the long exact sequence we have:

0 �!H1

�bCF .S3/

F.K; j /

�
ı
�!H0.F.K; j //

i�
�! F.0/

p�
�!

H0

�bCF .S3/

F.K; j /

�
ı
�!H�1.F.K; j // �! 0;
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and the map i� is trivial precisely when j < �.K/ and non-trivial otherwise. Taking
the sum over each j from �g; : : : ;g , and examining ranks yields the second two parts
of the lemma.

Next, we observe that the map f3 in the Skein exact sequence, which a priori is
non-increasing in the absolute degree, in fact preserves degree.

Proposition 5.8 In the exact sequence relating bHFK .H; 1/, bHFK .DC.K; t/; 1/ and
bHFK .DC.K; t � 1/; 1/, the map f3 preserves degree.

Proof We first show thatf3 preserves degree, when restricted to bHFK�.DC.K; j /;1/
with � � 0. Define

m1.t/Dminf� 2 Zj�< 0; and bHFK�.DC.K; t/; 1/¤ 0g:

(This number is not well-defined if bHFK .DC.K; t// is supported in non-negative
homological grading. If this is the case, proceed to the latter section of the argument.)
By the preceding lemma, for all t > T we see that m1.t/ stabilizes:

m1.t/Dm1.�t/ WDm1:

Further, the ranks stabilize

rm1.t/D rm1.�t/ WD rm1 :

Begin with �t < �T and the exact sequence:

� � � �! bHFK .DC.K;�t C 1/; 1/
f1
�! F. 1

2
/

f2
�! bHFK .DC.K;�t/; 1/

f3
�! � � � :

If f3 lowers degree when restricted to bHFK m1.DC.K;�t/; 1/, then r�.�t C 1/ > 0

for some � < m1: Since f3 is non-increasing in degree and F. 1
2
/ doesn’t interact

with gradings �< 0 (by the degree shifts of f1; f2 ), we see that after 2t applications
of the skein sequence used to pass to DC.K; t/, r�.t/ > 0 for some � < m1 . This
contradicts the fact that m1.t/Dm1 . Thus f3 , restricted to bHFK m1.DC.K;�t/; 1/,
preserves degree. Inductively, this shows that f3 preserves degree for � Dm1 for all
t . Furthermore, it shows that m1.t/Dm1 for all t . Next define

m2.t/Dminf� 2 Zjm1 < �< 0; and bHFK�.DC.K; t/; 1/¤ 0g:

Lemma 5.7 again shows that for all t > T ,

m2.t/Dm2.�t/ WDm2
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and also that

(8) r�.t/D r�.�t/D r� for all � �m2:

Begin with �t < �T . If f3 restricted to bHFK m2.DC.K;�t/; 1/ lowers degree, then
r�.�t C 1/ > r�.�t/ for some � <m2 . As above, after 2t applications of the skein
sequence r�.t/ > r�.�t/ for some � < m2 , contradicting Equation (8). Inductively,
we see that f3 preserves degree for � � m2 . Repeating the whole argument with
m3.t/;m4.t/; : : : shows that f3 preserves degree for homological gradings � < 0.
Moreover, if f3 lowered degree when restricted to � D 0, then the above argument
would imply that r�.t/ > r�.�t/ for some �< 0 and t > T . Again, this contradicts
the fact that r�.jt j/ is independent of t for large enough jt j and � ¤ 0; 1. Thus f3

preserves degree for all gradings � � 0.

Next we show that f3 preserves degree for �> 1. Define

M1.t/Dmaxf� 2 Zj�> 1 and bHFK�.DC.K; t/; 1/¤ 0g:

By Lemma 5.7, for t > T we have

M1.t/DM1.�t/ WDM1

and
rM1.t/D rM1.�t/ WD rM1 :

Begin with �t < �T . If f3 lowers degree when restricted to bHFK M1.DC.K;�t/; 1/

then rM1.�t C 1/ < rM1.�t/. Since f3 is non-increasing in degree and F. 1
2
/ doesn’t

interact with gradings � > 1, we see rM1.t/ < rM1.�t/. This is a contradiction.
Inductively, we see that f3 , restricted to � DM1 , preserves degree. Then, as above,
repeat with

Mi.t/Dmaxf� 2 ZjMi�1 > �> 1; and bHFK�.DC.K; t/; 1/¤ 0g

in place of Mi�1.t/ for i D 2; 3; : : : to show that f3 preserves degree for �> 1.

Thus f3 preserves degree provided � ¤ 1. Suppose now that f3 lowers degree for
� D 1. Then f3 maps non-trivially from � D 1 to either �< 0 or � D 0. In the first
case, the argument above shows that r�.t/ > r�.�t/ for some � < 0, contradicting
Lemma 5.7. For the second case, note that in each application of the skein sequence
f2 is either trivial or non-trivial. If f2 D 0, then

Œr1.j /� r1.j � 1/�� 1 and Œr0.j � 1/� r0.j /�� 0;

while if f2 ¤ 0,

Œr1.j /� r1.j � 1/�� 0 and Œr0.j � 1/� r0.j /�� 1:
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In either case, we have

Œr1.j /� r1.j � 1/�C Œr0.j � 1/� r0.j /�� 1;

with equality if and only if f3 preserves degree for �D 1 (these inequalities implicitly
use the knowledge that f3 preserves degree for all � ¤ 1). Taking the sum,

†
jDt
jD�tC1

fŒr1.j /�r1.j�1/�CŒr0.j�1/�r0.j /�g D

Œr1.t/�r1.�t/�CŒr0.�t/�r0.t/�� 2t;

with equality if and only if f3 preserves degree for � D 1, and for all j . However,
Lemma 5.7 shows that

Œr1.t/� r1.�t/�C Œr0.�t/� r0.t/�D 2t;

completing the proof.

Lemma 5.9 In the 2t applications of the skein sequence connecting DC.K; t/ and
DC.K;�t/, the map

f2W bHFK .H; 1/Š F. 1
2
/!

bHFK .DC.K; j � 1/; 1/;

is trivial exactly t � 2�.K/ times.

Proof Proposition 5.8 indicates that f3 preserves degree, so bHFK .DC.K; j � 1/; 1/

is determined by bHFK .DC.K; j /; 1/ and whether or not f2 is trivial:

bHFK.DC.K; j � 1/; 1/Š bHFK.DC.K; j /; 1/=F.1/ if f2 D 0(9)

bHFK.DC.K; j � 1/; 1/Š bHFK.DC.K; j /; 1/˚ F.0/ if f2 ¤ 0(10)

In particular, we have

r1.j /D r1.j � 1/C 1 if f2 D 0

r1.j /D r1.j � 1/ if f2 ¤ 0:

Thus, on the one hand

†
jDt
jD�tC1

Œr1.j /� r1.j � 1/�D r1.t/� r1.�t/D #ftimes f2 is trivialg:

While on the other hand, Lemma 5.7 shows that for t > T > 0 and �t < �T < 0,

r1.t/� r1.�t/D t � 2�.K/:

Next, recall Hedden–Ording [12, Proposition 2.4].

Geometry & Topology, Volume 11 (2007)



Knot Floer homology of Whitehead doubles 2325

Proposition 5.10 In the exact sequence for filtration grading 1 above, f2 ¤ 0 if and
only if �.DC.K; t � 1//D 1. Otherwise �.DC.K; t � 1//D 0.

Proof The proposition will follow from the fact that f2 is the lowest order term in a
filtered chain map, zf2 , between filtered chain complexes which are chain homotopy
equivalent to bCF .S1 �S2/ and bCF .S3/, respectively.

To begin, recall from Lemma 5.3 that the Floer homology groups for H (respectively,
DC.K; t � 1/) can be endowed with a differential, d 0 , which gives them the structure
of a filtered chain complex. Moreover, d 0 strictly lowers the filtration index, and the
filtered chain homotopy type of . bHFK .H /; d 0/ (resp. . bHFK .DC.K; t � 1//; d 0/) is
the same as that of . bCFK .H /; d/ (resp. . bCFK .DC.K; t � 1//; d/). In the language
of Section 5.1, . bHFK .H /; d 0/ and . bHFK .DC.K; t�1//; d 0/ are the reductions of the
filtered chain complexes . bCFK .H /; d/ and . bCFK .DC.K; t � 1//; d/ coming from
the Heegaard diagrams. Since the knot Floer homology of H is the Floer homology
for the knotification, �.H /� S1 �S2 , we have

H�. bHFK .H /; d 0/Š bHF .S1
�S2/Š F.� 1

2
/˚ F. 1

2
/:

In the case of DC.K; t � 1/, we have

H�. bHFK .DC.K; t � 1//; d 0/Š bHF .S3/Š F.0/:

The filtration on the knot Floer homology of DC.K; t�1/ induces a filtration grading on
bHF .S3/ in the standard way, ie the filtration of any cycle, zD†nxx , is by definition
the maximum filtration of any chain x which comprises z . Now �.DC.K; t�1// can be
equivalently defined as the minimum filtration grading of any cycle z2 bHFK .DC.K; t�
1// which is homologous to a generator of bHF .S3/.

The proof of the skein sequence [27, Theorem 8.2] relies, in part, on the fact that there
is a filtered chain map

zf2W . bCFK .H /; d/! . bCFK .DC.K; t � 1//; d/:

This filtered chain map induces maps on the E2 terms of the spectral sequence (ie on
bHFK .K; i/), and these are the f2 maps in the skein sequence. Lemma 5.4 indicates

that there is an induced filtered chain map between the reduction complexes:

zf 02W .
bHFK .H /; d 0/! . bHFK .DC.K; t � 1//; d 0/;

and further that zf 0
2

induces the same morphism of spectral sequences as zf2 , provided
we start with the E2 stage of the spectral sequences for bCFK . From this point on,
we work exclusively with the reduced complexes and with zf 0

2
. We can do this since

working with the reduced objects is the same as working with the original chain
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complexes and chain maps, up to filtered chain homotopy equivalence (by Lemma 5.3
and Lemma 5.4).

The discussion above indicates that zf 0
2

decomposes as a sum of homogeneous pieces,
each of which lower the filtration by some fixed integer. Further, the f2 map in question
is the part of zf 0

2
which (a) preserves the filtration and (b) has domain bHFK .H; 1/.

It follows from Proposition 5.6 that the unique chain generating bHFK .H; 1/ŠF. 1
2
/ is a

cycle under d 0 , indeed rk bHF 1
2
.S1�S2/D1 and rk bHFK 1

2
.H; i/D0 unless iD1. Since

zf 0
2

is a chain map, it must map this chain to a cycle z in bHFK .DC.K; t �1//. Now if
f2 ¤ 0, z contains non-trivial chains with filtration index 1. Since bHFK .DC.K; t �
1/; i/ Š 0 for i > 1, z cannot be the boundary of any chain. This is because in the
reduced complex there are no chains in filtration levels with bHFK .DC.K; t�1/; i/D0.
Thus z is a generator for bHF .S3/ and contains non-trivial chains with filtration index
1. If z0 were a cycle homologous to z which only contained chains of filtration index
�1; 0, then there would have to exist a chain w , such that d 0.w/D zC z0 . However,
any such chain must have filtration greater than 1, since d 0 strictly lowers filtration
index. This contradicts the fact that bHFK .DC.K; t � 1/; i/D 0 for i > 1. Thus, the
filtration grading of z – which is 1 – is the minimum over all chains homologous to
the generator of bHF .S3/ ie �.DC.K; t � 1//D 1.

Having shown that f2 ¤ 0 implies �.DC.K; t � 1// D 1, we wish to show that
�.DC.K; t � 1//D 1 implies f2 ¤ 0. To show this, observe that since zf2

0 is a chain
map between the reductions, it induces a map on homology:

bHF .S1 �S2/Š F.� 1
2
/˚ F. 1

2
/

. zf 0
2
/�

����! bHF .S3/Š F.0/:

and this map sends the space supported in grading 1
2

to the generator. If �.D.t�1//D1,
any cycle representing the generator of bHF .S3/ contains non-trivial chains in filtration
level 1. Since the grading one-half space of bHF .S1 �S2/ is supported entirely in
filtration level equal to 1, it follows that f2 – the part of zf 0

2
which preserves the

filtration – maps non-trivially from bHFK .H; 1/ to bHFK .DC.K; t � 1/; 1/.

Finally, if �.DC.K; t// D �1 for some t , then any cycle generating bHF .S3/ is
supported entirely in bHFK .DC.K; t/;�1/. As above, there is a chain map

zf 01W .
bHFK .DC.K; t//; d 0/! . bHFK .H /; d 0/;

whose filtration-preserving pieces induce the f1 maps in the skein sequence. Further,
the induced map on homology

bHF .S3/Š F.0/
. zf 0

1
/�

����! bHF .S1 �S2/Š F.� 1
2
/˚ F. 1

2
/
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sends a generator of bHF .S3/ to the space supported in grading �1
2

. However, this
latter space is supported entirely in filtration level zero by Proposition 5.6, and thus zf 0

1

must raise the filtration grading, contradicting the fact that it is a filtered chain map.

To complete the proof of Proposition 5.1, note that Equations (9) and (10) indicate that
bHFK .DC.K; j � 1/; 1/ is determined by bHFK .DC.K; j /; 1/ and whether f2 ¤ 0.

Further, the previous proposition shows that �.DC.K; j � 1// is also determined by
whether f2¤ 0. Thus it remains to understand the behavior of f2 . Indeed, Lemma 5.9
showed that in the 2t applications of the skein sequence used to pass from DC.K; t/

to DC.K;�t/, f2 D 0 exactly t � 2�.K/ times – hence we need only determine
the j for which f2 D 0. Proposition 5.1 will follow if we can show that f2 D 0 for
j D t; t � 1; : : : ; 2�.K/C 1.

To this end, recall that Livingston [18] and Ozsváth–Szabó [26] prove that �.K/ satisfies
the following inequality under the operation of changing a crossing in a projection of
K :

�.KC/� 1� �.K�/� �.KC/:

Since each application of the skein sequence arose from changing a single negative
crossing to a positive crossing, the above inequality becomes (for k > 0):

�.DC.K; j � k//� k � �.DC.K; j //� �.DC.K; j � k//:

If f2 were non-trivial for some j and trivial for j � k , then Proposition 5.10 would
imply �.DC.K; j � 1//D 1 and �.DC.K; j � k � 1//D 0, violating the inequality.
Thus f2 D 0 for the first t � 2�.K/ applications of the skein sequence and f2 ¤ 0

thereafter ie f2 D 0 for j D t; t � 1; : : : ; 2�.K/C 1. This completes the proof of
Proposition 5.1.

6 Computation of 2HFK .DC.K; t/; 0/ and higher differen-
tials

In this section, we complete the calculation of the filtered chain homotopy type of
bHFK .DC.K; t//. Throughout the discussion, we will be making use of Lemma 5.3

which allows us to replace the knot Floer homology chain complex . bCFK .K/; d/
coming from the Heegaard diagram with a filtered chain complex . bHFK .K/; d 0/
called the reduction of . bCFK .K/; d/. The key properties we will use of the reduction
complex are as follows.

(1) It is filtered chain homotopy equivalent to . bCFK .K/; d/.

Geometry & Topology, Volume 11 (2007)



2328 Matthew Hedden

(2) Its chain groups are isomorphic, as filtered graded vector spaces, to the knot
Floer homology groups, ie to the associated graded groups of . bCFK .K/; d/.

(3) The d 0
0

differential is trivial for . bHFK .K/; d 0/ ie the associate graded groups
of . bHFK .K/; d 0/ are the same as the E0 groups.

Thus we replace the knot Floer homology chain complex with a filtered chain complex
whose generators (chains) are in one-to-one correspondence with a basis for the knot
Floer homology groups (which in the present case are filtered graded vector spaces
since we use field coefficients).

In the present situation, the adjunction inequality [27, Theorem 5.1] implies that
bHFK .DC.K; t/; i/Š 0 when ji j> 1, since DC.K; t/ has a genus one Seifert surface.

Hence Lemma 5.3 shows that the groups bHFK .DC.K; t// can be viewed as a filtered
chain complex whose differential is composed of three distinct homomorphisms:

d2W bHFK�.DC.K; t/; 1/ �! bHFK��1.DC.K; t/;�1/

d i
1W

bHFK�.DC.K; t/; i/ �! bHFK��1.DC.K; t/; i � 1/; i D 1; 0:

Furthermore, the maps d i
1

are induced by chain maps

@i
1W

bCFK�.DC.K; t/; i/ �! bCFK��1.DC.K; t/; i � 1/;

defined by counting holomorphic disks which satisfy nz.�/D 1; nw.�/D 0. Under the
differential d 0D d2Cd1

1
Cd0

1
, the homology of . bHFK .DC.K; t//; d 0/ is isomorphic

to bHF .S3/Š F.0/ .

The following is a useful algebraic lemma for the case at hand:

Lemma 6.1 Suppose g.K/D 1 and �.K/¤�1. Then the following are equivalent
up to filtered chain homotopy equivalence:

(1) d2 D 0,

(2) d0
1

is surjective.

Proof To see that .2/ implies .1/, assume that d0
1

is surjective and that dim(Im
d2/ > 0. Thus, there exists a one-dimensional vector subspace, V , of bHFK .K; 1/
mapped isomorphically to a one-dimensional subspace of bHFK .K;�1/. Let a be a
generator of V and c be a generator of its image, c D d2.a/. Since d0

1
is assumed to

be surjective, let b be a generator of a subspace V 0� bHFK .K; 0/ such that d0
1
.b/D c .

There are now two possibilities:

(1) d1
1
.a/D 0,
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(2) d1
1
.a/D d ¤ 0.

(See Figure 18 for an illustration). We claim that in both cases, the filtered subcomplex
consisting of the generators a; b; c (resp. a; b; c; d ) is filtered chain homotopy equiva-
lent to a chain complex for which d2 D 0. To see this, recall from Section 5.1 that a
filtered change of basis of a filtered vector space is a change of basis which maps each
basis element to a sum of basis elements of equal or lower order with respect to the
filtration. If a filtered vector space, C , has the structure of a filtered chain complex
(ie there exists a morphism, d W C ! C such that F.d.x// � F.x/ and such that
d ıd D 0) then any filtered change of basis is a filtered chain homotopy equivalence
between the original chain complex and the “new” chain complex with alternative
basis. Indeed both the change of basis transformation and its inverse are chain maps,
and the fact that the inverse map is is a filtered chain map (ie respects the filtration)
follows from the fact that the inverse of a lower diagonal matrix is lower diagonal.
Their composite is clearly filtered chain homotopic, in fact equal, to the identity. Thus,
for Case .1/, we use the change of basis:

a! a0 D aC b

b! b0 D b

c! c0 D c;

while for Case .2/ we use the same basis change and simply let d ! d 0 D d . In
each case, the differential in the new basis satisfies d2.a/D 0. See Figure 18 for an
illustration. Proceeding inductively, we arrive at a basis for which d2 D 0.

To see that .1/ implies .2/ assume that d2 D 0. The fact that �.K/¤�1 implies that
any generator of bHF .S3/ contains chains in either the middle or top filtration level.
This further implies that all the chains in bHFK .K;�1/ are the boundary of chains in
either bHFK .K; 0/ or bHFK .K; 1/ - if not, some cycle in bHFK .K;�1/ would generate
a non-trivial class in bHF .S3/. Since, d2 D 0, chains in bHFK .K;�1/ can only be
the boundary of chains in bHFK .K; 0/ under d0

1
, and hence d0

1
is surjective. Thus the

lemma is proved.

If we can show that d0
1

is surjective, then Theorem 1.2 will follow from Lemma 6.1
and the following proposition holds.

Proposition 6.2 Suppose g.K/D1 and �.K/D0 (resp. �.K/D1). Further, suppose
d2 D 0. Then

bHFK�.K; 0/Š F.0/˚ bHFK�C1.K; 1/˚ bHFK��1.K;�1/

.resp: Š bHFK�C1.K; 1/˚ bHFK��1.K;�1/=F.0//:
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F D 1

F D 0

F D�1

a

b

c

a0

b0

c0

'

'

F D 1

F D 0

F D�1

a

b

c

d

a0

b0

c0

d 0

Figure 18: Illustration of filtered chain homotopy equivalent chain com-
plexes discussed in the proof of Lemma 6.1. A dot represents a basis element
for a one-dimensional vector space (a chain), and an arrow represents an
isomorphism between one-dimensional vector spaces (a non-trivial differen-
tial). The filtration of chains is indicated by vertical height and the index
F D i , i D 1; 0;�1 . The chain complexes differ by the filtered change of
basis described in the text.

Remark 6.3 To avoid confusion, we note that in the above formula the F.0/ summand
only occurs when � D 0.

Proof The proposition follows from the fact that that the homology of . bHFK .K/; d 0/
is isomorphic to F.0/ , with �.K/ equal to the filtration grading of the generator of
this homology. Suppose that �.K/D 0. Then none of the generators in bHFK�.K; 1/
can be cycles (since bHF .S3/ is one-dimensional). Further, since d2 D 0, d1

1
must

map bHFK�.K; 1/ injectively into a summand V � bHFK��1.K; 0/ isomorphic to
bHFK .K; 1/. Similarly, since �.K/ ¤ �1, every generator of bHFK�.K;�1/ must

be the boundary of a chain in bHFK�C1.K; 0/ or bHFK�C1.K; 1/. Since d2 D 0,
bHFK�.K;�1/ must be the image of a summand W � bHFK�C1.K; 0/ isomorphic to
bHFK .K;�1/. The case for �.K/D 1 follows from similar considerations.
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Hence it remains to show that d0
1

is surjective. Recall from Section 3, that the chain
complex for the middle filtration level took the following form:

bCFK .DC.K; t/; 0/� Œfa2g�
bCF .S3

t .K//�˚Œfa4g�
bCF .S3

t .K//�˚Œfyg�
bCFK .K/�:

We first prove the following Proposition.

Proposition 6.4 Under the splitting of the generators of bCFK .DC.K; t/; 0/ given
above, the generators Œfa2g �

bCF .S3
t .K//� form a subcomplex.

Proof We must show that the boundary of any generator of the form fa2g�p consists
of generators of the same form. Assume otherwise, that there exists a holomorphic
Whitney disk, � connecting fa2g�p to a generator of the form fa4g�q or fyg�q0

satisfying nz.�/ D nw.�/ D 0. In order for � to satisfy nz.�/ D nw.�/ D 0 and
simultaneously be a disk oriented from fa2g � q, it must have negative multiplicity in
one or both of the regions illustrated in Figure 19. This contradicts the fact that � is
holomorphic.

Since Œfa2g�
bCF .S3

t .K//� is a subcomplex, the restriction of the chain map @0
1

will
be a chain map:

.@0
1/jŒfa2g�

bCF .S3
t .K //�

W Œfa2g �
bCF .S3

t .K//� �!
bCFK .DC.K; t/;�1/:

Proposition 6.5 The restriction of @0
1

to Œfa2g�
bCF .S3

t .K//� induces an isomorphism
on homology.

Proof There is a canonical “small” Whitney disk connecting fa2g � p to fa3g � p
for any .gC 1/–tuple, p, and which satisfies nz.�/ D 1; nw.�/ D 0. See Figure 9.
The domain of this disk is topologically an annulus, and can be seen to admit a unique
holomorphic representative for a suitably generic choice of almost complex structure
on SymgC2.†gC2/, see [29; 28]. In the standard way (see [27; 28]), we can filter the
chain map @0

1
with respect to negative area of domains of disks. With respect to this

filtration, we have:

.@0
1/jŒfa2g�

bCF .S3
t .K //�

D I Cˆ;

where I is an isomorphism induced by the aforementioned small disks and Im.ˆ/
consists of terms with lower order filtration. Hence .@0

1
/j
Œfa2g�

bCF .S3
t .K //�

induces an
isomorphism on homology.
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DA

�P

ˇ1 a2 0
z ˇ2 D �

0

DB
w

a1

y

�P

Figure 19: Depiction of possible domains of Whitney disks, � , connecting
a generator fa2g � p to generators fa4g � q or fyg � q0 , restricted to the
Heegaard surface for the pattern. Since � is oriented to go from a2 , the
boundary of the domain of � must be oriented as shown by the arrows in
the figure. The requirement that � satisfies nz.�/ D nw.�/ D 0 implies
the domain of � must have non-zero multiplicity in one, or both, of the
domains, DA;DB . The orientation of the boundary of � and the inward
normal orientation of the Heegaard surface imply the multiplicity of � in DA

or DB is negative.

This completes our proof of Theorem 1.2: the restriction of @0
1

to Œfa2g�
bCF .S3

t .K//�

can be factored as @0
1
ı i , where i is the inclusion:

i W Œfa2g �
bCF .S3

t .K//� �!
bCFK .DC.K; t/; 0/:

Since the restriction induces an isomorphism on homology, the map induced by @0
1

, ie
d0

1
, is surjective.

7 Preliminary Applications

We conclude with two simple applications of Theorem 1.2 and some qualitative remarks.

7.1 Iterated Doubles of the figure eight knot

We have the following closed formula for the Floer homology of the iterated untwisted
Whitehead doubles of the figure eight knot.
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Proposition 7.1 Let 41 be the figure eight knot and let Dn denote the nth iterated
untwisted double of 41 ie D0 D 41;D

n DDC.D
n�1; 0/ Then we have:

bHFK�.Dn; i/Š

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Ln
kD0 F

2n.n
k/

.1�k/
i D 1

F.0/
Ln

kD0 F
2nC1.n

k/
.�k/

i D 0Ln
kD0 F

2n.n
k/

.�1�k/
i D�1

0 otherwise:

Furthermore, the induced differential d1
1

is injective, d0
1

is surjective, and d2 is zero.
Hence �.Dn/D 0:

Proof In order to apply Theorem 1.2 iteratively, we use our knowledge of the induced
differentials d1

1
; d0

1
; d2 acting on bHFK .DC.K; t// which was determined in the preced-

ing section. We proceed by induction on n. For nD 0, we have D0D 41DDC.U; 1/.
bHFK .41/ can be determined using various methods (see, for example [33; 25]) but we

choose to use Theorem 1.2. Recall that the unknot has Floer homology

bHFK�.U; 0/Š F.0/;

and that bHFK�.U; i/Š0 for i¤0. This immediately implies that H�.F.U; 0//ŠF.0/

and that �.U / D 0. Hence we see that
L0

iD�0ŒH�.F.U; i//� Š F.0/ . Plugging
this result into the formula of Theorem 1.2 for bHFK .DC.U; 1// (where we use the
parameters t D 1, �.U /D 0, and g.U /D 0), we see that

bHFK�.DC.U; 1/; i/Š

8̂̂̂̂
<̂
ˆ̂̂:

F�1
.1/
˚ F2

.1/
D F.1/ i D 1

F�1
.0/
˚ F4

.0/
D F3

.0/
i D 0

F�1
.�1/
˚ F2

.�1/
D F.�1/ i D�1

0 otherwise:

Furthermore, we know from the previous section and the fact that we are in the case
when t D 1 > 2�.U / that d1

1
is injective, d0

1
is surjective, and d2 is zero. This

completes the base case.

Assume that the proposition holds for n. This implies that

H�.F.Dn;�1///Š bHFK .Dn;�1/Š

nM
kD0

F
2n.n

k/
.�1�k/

:
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As for H�.F.Dn; 0/// we have,

H�.F.Dn; 0///ŠH�. bHFK.Dn;�1/˚ bHFK.Dn; 0/; d0
1 /

ŠH�

� nM
kD0

F
2n.n

k/
.�1�k/

˚ F.0/

nM
kD0

F
2nC1.n

k/
.�k/

; d0
1

�
Š F.0/

nM
kD0

F
2n.n

k/
.�k/

;

where the first congruence is the definition of F.K; 0/ for a genus one knot, the second
follows from our inductive hypothesis, and the final follows from the fact that d0

1
is

assumed to be surjective.

For the final filtration, we clearly have H�.F.Dn; 1//Š F.0/: Thus, we see that

1M
iD�1

ŒH�.F.Dn; i//�Š
h nM

kD0

F
2n.n

k/
.�1�k/

i
˚

h
F.0/

nM
kD0

F
2n.n

k/
.�k/

i
˚ŒF.0/�DF2

.0/

nC1M
kD0

F
2n.nC1

k /
.�k/

:

Applying Theorem 1.2 with parameters t D 0, �.Dn/D 0, g.Dn/D 1, we have that:

bHFK�.DnC1; i/Š

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

F�4
.1/

L1
iD�1ŒH��1.F.Dn; i//�2

D F�4
.1/
˚ F4

.1/

LnC1
kD0 F

2nC1.nC1
k /

.�k/
i D 1

F�7
.0/

L1
iD�1ŒH�.F.Dn; i//�4

D F�7
.0/
˚ F8

.0/

LnC1
kD0 F

2nC2.nC1
k /

.�k/
i D 0

F�4
.�1/

L1
iD�1ŒH�C1.F.Dn; i//�2

D F�4
.�1/
˚ F4

.�1/

LnC1
kD0 F

2nC1.nC1
k /

.�k/
i D�1:

0 otherwise.

Quotienting by the negative exponents in the above equation yields the formula given
by Proposition 7.1 for DnC1 , thus completing the inductive step. Theorem 1.2 and
Lemma 6.1 show that d1

1
is injective, d0

1
is surjective and d2 D 0.

We found it notable that while the figure eight knot is an alternating knot and has
particularly simple Floer homology, by forming its iterated untwisted doubles we obtain
knot Floer homology groups which become incredibly complicated. In particular, the
width of the Floer homology (the number of diagonals on which knot Floer homology
is supported, plotted on a grid whose axes are the homological and filtration grading)
can be made arbitrarily large. Indeed, the width grows linearly with the number of
times we double. Also, the total rank of the Floer homology grows exponentially with
the number of times we double.
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7.2 Surgery on Whitehead doubles and gluing knot complements

As a final application, we determine the Floer homology of C1–surgery on the White-
head double of a knot, K . As mentioned in the introduction, some of these manifolds
can also be seen to arise from a gluing of knot complements. In particular, if we let
T denote the right-handed trefoil, then C1 surgery on DC.K;�1/ can alternately
be obtained from S3 �K and S3 �T by identifying the boundary tori through the
identification:

�K $ �T �K $ �T :

For a proof of this, we refer the interested reader to Auckly [3, Figure 6].

Proposition 7.2 Let S3
C1
.DC.K; t// denote the manifold obtained by C1–surgery

on DC.K; t/. Then for t � 2�.K/ we have:

bHF�.S
3
C1.DC.K; t///Š

F
t�2g�2

.�1/
˚ F

t�2g�1

.0/

gM
iD�g

ŒH�C1.F.K; i//�2
gM

iD�g

ŒH�.F.K; i//�2:

While for t < 2�.K/ we have:

bHF�.S
3
C1.DC.K; t///Š F

4�.K /�t�2g�2

.�1/
˚ F

2�.K /�t

.�2/

˚ F
2�.K /�2g�2

.0/

gM
iD�g

ŒH�C1.F.K; i//�2
gM

iD�g

ŒH�.F.K; i//�2:

Proof This is a straightforward application of [27, Theorem 4.4], together with
Theorem 1.2. For a genus one knot, K , [27, Theorem 4.4] identifies

bHF �.S
3
C1.K//ŠH�.C fmax.i; j /D 0g/:

And this latter group is equal to:

H�. bHFK�.K; 1/f�2g˚ bHFK�.K; 0/˚ bHFK�.K;�1/; d0
1 C
zd0
1 /;

where d0
1
W bHFK�.K; 0/! bHFK��1.K;�1/ is the map induced by the chain map

@0
1

discussed in Section 6. The map zd0
1
W bHFK�.K; 0/ ! bHFK�C1.K; 1/ is in-

duced by the chain map z@0
1
W bHFK�.K; 0/! bHFK�C1.K; 1/ which counts pseudo-

holomorphic Whitney disks satisfying nw.�/ D 1; nz.�/ D 0. The f�2g indicates
that we shift the grading of bHFK�.K; 1/ down by 2 (this is induced by the action
of U on CFK1.K/). In the present situation, Theorem 1.2 informs us of the groups
bHFK�.DC.K; t/; 1/f�2g ˚ bHFK�.DC.K; t/; 0/˚ bHFK�.DC.K; t/;�1/, and fur-

thermore that d0
1

is surjective. It follows from algebraic properties of CFK1.K/ that
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zd0
1

will also be surjective. Alternatively, this can be seen by the same method used in
Section 6 to show that d0

1
is surjective. The proposition follows.
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Topol. 8 (2004) 735–742 MR2057779
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