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Teichmüller geodesics that do not have a limit in PMF
ANNA LENZHEN

We construct a Teichmüller geodesic which does not have a limit on the Thurston
boundary of the Teichmüller space. We also show that for this construction the limit
set is contained in a one-dimensional simplex in PMF .

30F60, 32G15; 32F45, 57M50

1 Introduction

In this paper we consider a problem in Teichmüller geometry at infinity. Recall
that Teichmüller space Tg of a closed oriented surface of genus g equipped with
Teichmüller metric is a complete geodesic metric space. There is a natural way to
compactify Tg , by fixing a base point and considering all geodesic rays through that
point. However Kerckoff proved that the Teichmüller, or visual, compactification was
base point dependent by showing that the action of the mapping class group on Tg

does not extend to the boundary. Another natural compactification is due to Thurston,
by projective measured foliations PMF , to which the action of the mapping class
group does extend.

Teichmüller geodesic rays are associated with quadratic differentials which in turn are
closely related to measured foliations: geodesics are described by scaling horizontal
and vertical measured foliations of a quadratic differential. Therefore it is natural to
compare the two compactifications, in particular, to study the behavior of a Teichmüller
ray with respect to the Thurston compactification. The question is quite nontrivial.
A geodesic is defined by deforming the flat metric. On the other hand, the Thurston
compactification is defined using the hyperbolic metric, and there is no obvious way
to compare the two metrics. Masur [8] proved that in almost every direction through
every point, geodesic rays have a limit on the boundary. In particular Masur considered
geodesic rays given by quadratic differentials with uniquely ergodic vertical measured
foliation and showed that a ray defined by a differential q with vertical measured
foliation F converges to the class of F . Quadratic differentials with closed vertical
trajectories were considered in the same paper, and it was shown that corresponding
geodesic rays also converge. However the limit in this case might not be the class of F
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itself. It turned out that the ray approaches the barycenter of the simplex of measures
on F , ie in the limit all the leaves have the same weight.

In this paper we give a first example of a geodesic ray which does not have a limit on
the Thurston’s boundary. Our main result is the following:

Theorem 1 There exists a Teichmüller geodesic ray which does not converge in
Thurston’s compactification.

The proof is by construction of a divergent ray, which is found by gluing two copies of
a square torus cut along slits whose slopes satisfy certain conditions, to obtain a surface
of genus 2, and then scaling the vertical and horizontal foliations of the corresponding
quadratic differential. We also describe the limit set of the divergent ray. More precisely,
we show that it is contained in a one dimensional simplex on the boundary.

2 Preliminaries

We refer the reader to Imayoshi and Tanaguchi [4] and Travaux [3] for more information
on Teichmüller theory. Let M be a closed surface of genus g � 2. Recall that the
Teichmüller space Tg is the space of equivalence classes of conformal structures X

on M . The equivalence relation is defined by considering two structuresX1 and X2

equivalent if there is a biholomorphic map from X1 to X2 which is isotopic to the
identity on M .

Let X1 and X2 be two points in Tg . The Teichmüller distance between X1 and X2 is
defined to be

d.X1;X2/D
1

2
log K

where K is the smallest number such that there is a homeomorphism homotopic to the
identity on M which is a K–quasiconformal map between X1 and X2 . There is a
unique quasiconformal map from X1 to X2 realizing this distance, called Teichmüller
mapping.

A holomorphic quadratic differential q (see Strebel [11] for details) on a Riemann
surface X is an assignment to each chart .U˛; z˛/ of X a holomorphic function qz˛

with the property

qzˇ .zˇ/

�
dz˛

dzˇ

�2

D qz˛ .z˛/

in Uz˛ \Uzˇ . The norm or area of q is defined by kqk D
R
X jq.z/jjdzj2 . The vector

space Q0 of all holomorphic quadratic differentials on X is a 6g � 6 dimensional
vector space.
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In a neighborhood of every regular point P of q one can introduce a local parameter
w , in terms of which q is identically equal to 1. This parameter, called the natural
parameter of q near P , is determined by the integral

w D

Z
X

p
q.z/dz

uniquely up to a transformation w!˙wC const.

The vertical trajectories of q are the arcs along which q.z/dz2 < 0, and the horizontal
trajectories are the arcs where q.z/dz2 > 0. Hence every quadratic differential q

determines a pair of transverse measured foliations: the vertical foliation, where the
leaves are the vertical trajectories, and the horizontal foliation, with leaves being the
horizontal trajectories of q . One can also obtain the vertical and horizontal foliations by
pulling back the vertical and horizontal foliations of C via a natural parameter. Every
quadratic differential q determines a flat metric with the length element jq.z/j1=2jdzj.
Again, the flat metric can be obtained from the natural parameter of q by pulling back
the Euclidean metric from C .

Geodesic rays can be described as follows. Each direction at a point X in Tg is
associated to a quadratic differential q on X . For t 2R, let qt be 1–parameter family
of quadratic differentials obtained from q so that if z D xC iy are natural coordinates
for q away from zeroes then zt D e�t=2xC iet=2y are natural coordinates for qt . Let
Xt be the conformal structure corresponding to qt . Then fXtg is a geodesic.

Let S be the set of homotopy classes of essential simple closed curves on M with
the discrete topology. Here by essential we mean homotopically nontrivial and non-
peripheral. The space of functionals RS

C is given the product topology. Let PRS
C

be the corresponding projective space. Recall that the Teichmüller space Tg can be
identified with the space of equivalence classes of hyperbolic metrics � on M of
constant curvature �1, where �1 � �2 if there exists an isometry from .M; �1/ to
.M; �2/ isotopic to the identity. Thurston showed that the hyperbolic lengths of curves
can be approximated, as one goes to infinity in Tg , by their intersection numbers with
a measured foliation. Therefore one can define a compactification in terms of ratios
of hyperbolic lengths. The map Tg 7! PRS

C defined by �! . ! `�. //, where
`�. / is the length of the unique geodesic in the hyperbolic metric in the class of  ,
is injective. It is called the Thurston embedding of Teichmüller space. The boundary
of Tg in PRS

C is the sphere PMF of projective measured foliations on M . The
union of Tg and PMF is denoted by �Tg and is called Thurston compactification. It
is homeomorphic to a closed 6g � 6 dimensional ball, where PMF is the 6g � 7

dimensional sphere.
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3 Construction and idea of the proof

Start with a square torus, ie the unit square with lower left vertex at .0; 0/, with opposite
sides identified. Cut the torus along a line segment (call it a slit) of length 0< s < 1

and a slope �1 > 0. Take a second copy of the torus, cut it along a slit of same length
s and a slope �2 > 0. Rotate the squares counterclockwise so that the slits are vertical.
Now identify the left side of the slit on one copy with the right side on the other copy.
This defines a flat structure with a parallel line field which corresponds to a quadratic
differential q�1;�2

with 2 zeroes of order 2 on a surface X of genus 2. For more
details on this construction, flat structures and quadratic differentials see Masur and
Tabachnikov [9]. X is partitioned into 2 sheets S1 and S2 separated from each other
by the union of the two slits. If both �1 and �2 are irrational, then the vertical foliation
of q�1;�2

has one closed leaf, which is the union of the two slits, and all other leaves
are dense in S1 or S2 . Let fXtg be the Teichmüller geodesic ray from X determined
by the differential q�1;�2

.

Recall that each x 2R admits a continued fraction expansion of the form

x D a0C
1

a1C
1

a2C � � �

;

with a0 2 Z; ai 2N; i � 1 and that x 2R�Q iff infinitely many ai ’s are nonzero.
We will also use the notation x D Œa0I a1; a2; : : :�. We will call ai ’s the elements of x .

We will prove:

Theorem 2 Suppose �12R�Q has bounded elements a1;n�3; n�1, and �22R�Q
has unbounded elements a2;n � 3; n � 1. Let fXtg be the Teichmüller geodesic ray
constructed as above. Then fXtg does not converge in �T2 .

Theorem 1 follows immediately from Theorem 2.

Idea of the proof By the definition of Thurston compactification, a sequence fXng

in Teichmüller space converges to projective measured foliation F in PMF if there
exists a sequence frng such that rn! 0, such that for any nontrivial simple closed
curve ˛ we have rn � `n.˛/! i.˛;F / as n!1. Here `n.˛/ is the length of the
shortest curve in the hyperbolic metric of Xn which is homotopic to a curve ˛ , and
i.˛;F / denotes the measure of ˛ with respect to a representative F in F . Hence,
to prove that the geodesic does not have a limit in PMF , it suffices to find a pair
of simple closed curves ˛1 and ˛2 on M and, after ruling out the possibility that
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i. j̨ ;F /D 0 for both j D 1 and j D 2, show that the limit limt!1 `t .˛1/=`t .˛2/

does not exist. In our proof j̨ is the curve represented by the vector .1; 0/ before the
rotation on Si , j D 1; 2.

To prove the theorem, we need to be able to estimate hyperbolic lengths of simple
closed curves on Xt for large values of t . The geodesic ray fXtg is constructed
using the flat metric. However, in general there is no easy way to get a good estimate
of the hyperbolic length of a curve. Our method is to identify the shortest and the
second shortest curves in the flat metric on each torus (we think of the surface Xt as a
surface glued out of two tori S1 and S2 ), and estimate their hyperbolic length. This
information, together with the notion of intersection number, makes it possible to find
good lower and upper bounds on the lengths of the curves ˛1 and ˛2 .

The idea behind the choice of �1 and �2 is as follows. We will show (Lemma 1) that
at any time the shortest curve on Si is a curve whose slope is a convergent of �i .
Moreover, we will prove that the hyperbolic length of the shortest curve depends on the
elements of �i . More precisely, the smallest hyperbolic length of the curve whose slope
is n–th convergent of �i is roughly 1=ai;nC1 , where ai;nC1 is the .nC 1/–st element
of �i (Lemma 3). Hence assuming that elements of �2 are unbounded and those of
�1 are bounded we easily find a sequence of times when the hyperbolic length of the
shortest curve on S2 goes to 0, while on the other side the length of the shortest curve
stays bounded below. By the Collar Lemma, each time one intersects an extremely
short curve, one has to cross a collar of width approximately log.1=`.shortcurve//.
Hence one would think that the curve ˛2 must become exceedingly long compared to
the curve ˛1 . However, we will see that the curve ˛1 intersects a curve of bounded
length on S1 significantly more than the curve ˛2 crosses the long collar in S2 . As a
result, the ratio of the hyperbolic lengths along the sequence becomes arbitrarily large.
On the other hand, after a shortest curve on S2 reaches its minimal length, it has to
grow. As its length becomes compatible with the length of the next short curve, the
curve ˛2 grows faster and catches up with ˛1 . At that time the ratio of the hyperbolic
lengths is bounded above. We then conclude that the limit limt!1 `t .˛1/=`t .˛2/

does not exist.

The main result is proven in Section 6. In Section 4 we consider the shortest curves
in the flat metric. Estimates of the hyperbolic lengths of these curves are made in
Section 5.

Section 7 is dedicated to the limit set of the geodesic ray. More precisely, in Section 7
we show that it a connected subset of one-dimensional simplex L�1;�2

. Each point
in L�1;�2

is a projective class of measured foliations topologically equivalent to the
vertical foliation of q�1;�2

, with possibly different weights on S1 and S2 .
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4 Continued fractions and the flat metric on a torus

In this section we focus on one torus only, ignoring the slit and the other torus. Let
� D Œa0I a1; a2; a3; : : :� be any positive irrational number, with ai � 3. The k –th
convergent of � is the reduced fraction

pk

qk

D a0C
1

a1C
1

� � � C
1

ak

:

A few standard facts (see for example Khinchin [5]) about continued fractions are:

pnC1 D anC1pnCpn�1 and qnC1 D anC1qnC qn�1(1a)

1

qnC qnC1

� jpn� �qnj �
1

qnC1

(1b)

p2n

q2n

% � and
p2nC1

q2nC1

& �(1c)

jpnC1qn� qnC1pnj D 1(1d)

Consider a standard lattice Z2 in R2 . Let g�t be a map given by a matrix

1p
1C �2

�
�et=2 �et=2

e�t=2 �e�t=2

�
which is a rotation by an angle of �

2
� tan�1 � , followed by a horizontal stretch by

a factor of et=2 and vertical contraction by et=2 . For every t we get a new lattice
in R2 . We will refer to the image of any vector .q;p/ 2 Z2 under the map g�t as
.q;p/–vector or .q;p/–curve at time t .

Notation To simplify our presentation we use �; ‚ and O defined as follows: for
two sequences xn > 0;yn > 0, xn � yn means xn=yn!1 as n!1; xn D O.yn/

iff sup xn=yn <1; xn D‚.yn/ iff xn DO.yn/ and yn DO.xn/.

Lemma 1 Suppose a .q;p/–vector is the shortest vector in Euclidean length at some
time t . Suppose t � log

�
.1C a0�/=.� � a0/

�
. Then p=q is a convergent for � , ie
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p D pn and q D qn for some n. Also at time Tn D log
�
.pn� C qn/=jqn� �pnj

�
, the

.qn;pn/–vector is the shortest. For t 2 ŒTn;TnC1� the shortest vector is either .qn;pn/

or .qnC1;pnC1/.

Proof By taking reciprocals if needed we can assume that p=q < � . Suppose first
that p0=q0 < p=q . If p=q is not a convergent of � , then there is a unique n such that

(2)
pn

qn
<

p

q
<

pnC2

qnC2

:

We claim that the .qnC1;pnC1/–vector is always shorter than the vector .q;p/. At
time t the image of .q;p/ is

g�t .q;p/D
qC �p

et=2
p

1C �2
.0; 1/C

et=2.q� �p/p
1C �2

.1; 0/:

The Euclidean length of g�t .q;p/ satisfies

lt ..q;p//
2
D

1

1C �2

 
.qC �p/2

et
C et .p� �q/2

!
:

Since pnC1qn� qnC1pn D 1 and (2) implies

(3)
pn

qn
<

p

q
<

pnC1

qnC1

;

we can show that p � pnCpnC1 and q � qnC qnC1 . Indeed, (3) implies

pqn�pnq � 1

pnC1q�pqnC1 � 1:and

Multiplying the first inequality by pnC1 and the second by pn , and adding them we
obtain

pnC1qnp�pnqnC1p � pnCpnC1:

Therefore p � pnCpnC1 . Similar argument shows that q � qnC qnC1 .

Going back to the proof of the lemma, we see that

qC �p > qnC1C �pnC1:

jp� �qj D qj
p

q
� � j> qj

p

q
�

pnC2

qnC2

j>
1

qnC2

� jpnC1� �qnC1j:Also

The claim now follows from these inequalities and we conclude that p=q is a convergent
of � . Now suppose p0=q0>p=q . Then we compute that lt ..q;p//

2> lt ..q0;p0//
2 if

t� log
�
.1Ca0�/.��a0/

�
. Hence taking t large enough guarantees that the claim holds.
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The function lt ..qn;pn//
2 reaches its minimum at Tn D log

�
.pn�Cqn/=jqn� �pnj

�
and

l2
Tn
..qn;pn//D 2

.qnCpn�/jqn� �pnj

1C �2
:

We have for all k < n

lTn
..qk ;pk//

2 >
.qk� �pk/

2eTn

1C �2
D
.qk� �pk/

2.pn� C qn/

.1C �2/jqn� �pnj

> 4
.pn� C qn/

qnC1.1C �2/
� 4

.pn� C qn/jqn� �pnj

1C �2
:

In the estimates above we used (1a), (1b) and the assumption that the elements of �
satisfy ak > 2. Similarly, for all k > n

lTn
..qk ;pk//

2 >
.qk Cpk�/

2

.1C �2/eTn
D
.qk Cpk�/

2jqn� �pnj

.1C �2/.pn� C qn/

> 4
.qnCpn�/

2jqn� �pnj

.1C �2/.pn� C qn/

D 4
.qnCpn�/jqn� �pnj

1C �2
:

We conclude that lTn
..qn;pn// <minflTn

..qk ;pk// W k ¤ ng. To verify the last claim

l2
t ..qn�1;pn�1// l2

t ..qn;pn//

l2
t ..qnC1;pnC1//

Tn�1 Tn TnC1

t

Figure 1
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of the lemma, we notice that the sequence fTng is strictly increasing and Tn!1.
Also we see that, for each n, the function l2

t ..qn;pn// is strictly convex and that the
graphs of l2

t ..qn;pn// and l2
t ..qk ;pk// intersect once (see Figure 1). Since n < k

implies l2
0
..qn;pn// < l2

0
..qk ;pk//, we see that at time t 2 ŒTn;TnC1� only .qn;pn/

or .qnC1;pnC1/ can be the shortest.

To find the second shortest vector is a more complicated task. There are more curves
which can become second shortest than those whose slopes are convergents of � .

Lemma 2 Suppose that a .q;p/–curve is second shortest at time t , and .qn;pn/ is the
shortest. Then either p=q is a convergent of � (namely, .qn�1;pn�1/ or .qnC1;pnC1/)
or the following holds:

qn�1C qn � q < qnC1

pn�1Cpn � p < pnC1and

Proof Suppose p=q is not a convergent of � . Assume that p=q < � . Then there is
a (unique) k such that pk�1=qk�1 < p=q < pkC1=qkC1 . Using the argument from
Lemma 1 we can show that the .qk ;pk/–curve is shorter then .q;p/. Therefore kD n.
Since the shortest and the second shortest curves intersect once, pnq�pqn D 1. Also
pnqn�1� qnpn�1 D 1. Putting these two things together we get

pn.q� qn�1/� qn.p�pn�1/D 0:

This implies that pn=qn D .p � pn�1/=.q � qn�1/. Hence p D apn C pn�1 and
q D aqnC qn�1 , where a 2Q. It is easy to see that a< anC1 : if a� anC1 then

p

q
�

pnC1

qnC1

D
apnCpn�1

aqnC qn�1

�
anC1pnCpn�1/

anC1qnC qn�1

D
.anC1� a/.pn�1qn� qn�1pn/

.aqnC qn�1/.anC1qnC qn�1/
� 0

which is impossible. Therefore p < pnC1 and q < qnC1 . Also pn�1=qn�1 < p=q <

pn=qn and pnqn�1�qnpn�1D 1 imply p�pn�1Cpn and q� qn�1Cqn . A similar
argument works if p=q > � .

If p=q is a convergent of � , then Lemma 1 implies that .q;p/ is either .qn�1;pn�1/

or .qnC1;pnC1/.

5 The comparison of the flat and the hyperbolic metrics on
the branched cover

In the previous section we considered shortest vectors on a torus. It follows from
Lemma 1 that the vectors on Si with smallest length in the flat metric are those whose
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slopes are n–th convergents of �i , which we denote by pi;n=qi;n . We claim that the
same result holds for the flat surface glued from the two tori S1 and S2 , each with a
slit .0; s/. Indeed, since the slope of the .pi;n; qi;n/–curve is a convergent, the curve
can be made disjoint from the slit.

Hence at any time we know the short curves in S1 and S2 . We want to estimate the
hyperbolic length of these curves. To do so, we first prove a claim about extremal
lengths of curves in Si which get short. We will denote by Extt .˛/ the extremal length
at time t of a family of curves homotopic to a curve ˛ . We refer the reader to Ahlfors
[1] for the basic facts concerning the extremal length.

Lemma 3 Let ˛ be a .qi;n;pi;n/ -curve on Si , i D 1; 2. Then the extremal length of
˛ at time t satisfies

Extt .˛/

l2
t .˛/

�����!
n;t!1

1

Proof By definition of extremal length, Ext.˛/� infˇ�˛
� R
ˇ �jdzj

�2
=A.�/ for any

metric of the form �jdzj where �� 0 is Borel measurable. Assume ˛ is a .p1;n; q1;n/–

1

ˇ

S2S1

Figure 2: �t jdzj coincides with the flat metric in the shaded area

curve on S1 . Let �t jdzj be the metric which coincides with the flat metric of S1 at
time t , and with the flat metric of S2 at time t on the set of points in S2 which are at
most se�t=2 (the length of the slit) away from the slit (see Figure 2). On the rest of the
S2 we define �t D 0. We need to find the shortest curve with respect to this metric in
the homotopy class of ˛ . We claim that a geodesic with respect to �t jdzj is contained
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in S1 , ie it does not cross the slit. The point is that any curve ˇ homotopic to ˛ which
crosses the slit will contain an arc in S2 with endpoints in the slit that is homotopic
relative to its endpoints into the slit. The arc is longer than the line segment connecting
the endpoints. Hence there is a curve in the class of ˛ which is shorter than ˇ . Since
˛ is a geodesic in the flat metric of S1 at time t , we conclude that it is a shortest curve
with respect to �t jdzj in its homotopy class. The length of ˛ in this metric iss

1

1C �2
1

�
.q1;nC �1p1;n/2

et
C et .p1;n� �1q1;n/2

�
:

We then have

(4) Extt .˛/�
1

1C �2
1

.q1;nC�1p1;n/
2

et C et .p1;n� �1q1;n/
2

1C .� C 2/s2e�t
:

˛
D
.q

i;
n
;p

i;
n
/

sl
it

cy
lin

de
r

Figure 3

On the other hand, the extremal length of a simple closed curve ˛ can be defined as
infC .1=Mod.C // where the infimum is taken over all cylinders C with ˛ a core curve,
and where Mod.C / denotes the modulus of a cylinder C .

Geometry & Topology, Volume 12 (2008)



188 Anna Lenzhen

So we need to find a cylinder for a good upper bound. We consider the largest cylinder
swept out by curves parallel to ˛ which avoid the slit (see Figure 3). Curves parallel to
˛ and crossing the slit make up a parallelogram spanned by the vectors representing
the slit and ˛ . At time t the slit is represented by a vector uD .0; s=et=2/, and ˛ is
represented by

v D
q1;nC �p1;n

et=2

q
1C �2

1

.0; 1/C
et=2jq1;n� �p1;njq

1C �2
1

.1; 0/:

Then the area of our cylinder is

1� ju� vj D 1�
s

et=2

et=2jq1;n�1�p1;njq
1C �2

1

D 1�
sjq1;n�1�p1;njq

1C �2
1

:

The length of the cylinder is kvk, and the height is

area
length

D

1�
sjq1;n��p1;njq

1C�2
1

kvk
:

Thus the modulus is
1�

sjq1;n��p1;njq
1C�2

1

kvk2
:

It follows that

(5) Extt .˛/�
1

1C �2
1

 
.q1;nC �1p1;n/

2

et
C et .p1;n� �1q1;n/

2

!
1

1�
sjq1;n��p1;njq

1C�2
1

:

The claim of the lemma now follows from (5), (4) and (1b).

Corollary 1 Suppose �i is such that ai;n!1 for i D 1 or i D 2. Then at time

Tn D log
pi;n�i C qi;n

jqi;n�i �pi;nj

the hyperbolic length of a curve ˛ D .qi;n;pi;n/ satisfies `Tn
.˛/D‚.1=ai;nC1/.

Proof By Lemma 3 we have ExtTn
.˛/� l2

Tn
.˛/. Furthermore, the assumption

ai;n!1 and (1b) imply l2
Tn
.˛/� .2qi;n/=qi;nC1 � 2=ai;nC1 . On the other hand, by

Proposition 1 and Corollary 3 in Maskit [7]

(6) 2e�`. /=2 �
`. /

Ext. /
� �
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where Ext. / is the extremal length and `. / the hyperbolic length of any simple
closed curve  . In particular, if the extremal length of ˛ becomes very small, then so
does the hyperbolic length, and their ratio is bounded above and below. Therefore, the
hyperbolic length of ˛ at time Tn satisfies `Tn

.˛/D‚.1=ai;nC1/.

6 Proof of the main theorem

Proof We begin by choosing a subsequence fa2;nk
g such that a2;nk

!1. Let for
k 2 Z; k � 1,

t2k D log
p2;nk�1�2C q2;nk�1

jq2;nk�1�2�p2;nk�1j

t2kC1 D log
�
.1C �2

2 /.q2;nk
/2
�
:

We are going to show first that the limit limi!1 `ti
.˛1/=`ti

.˛2/ does not exist. By
˛1;1.i/ and ˛1;2.i/ (respectively ˛2;1.i/ and ˛2;2.i/) we denote curves on S1 (re-
spectively S2 ) which are the first and second shortest in the flat metric at time ti .

iD 2k We will show supk`t2k
.˛1/=`t2k

.˛2/D1. We have for sufficiently large k ,

(7) `t2k
.˛2/� `t2k

.˛2;1.2k//i.˛2;2.2k/; ˛2/C `t2k
.˛2;2.2k//i.˛2;1.2k/; ˛2/:

Lemma 1 implies that ˛2;1.2k/ is a .q2;nk�1;p2;nk�1/–curve. Thus

(8) i.˛2;1.2k/; ˛2/D p2;nk�1:

Corollary 1 implies that

(9) `t2k
.˛2;1.2k//D‚.1=a2;nk

/:

If the second shortest curve is a .q;p/–curve, then by Lemma 2 we have p � p2;nk
.

We can assume ˛2;2.2k/ is the .q2;nk
;p2;nk

/–curve. Therefore

(10) i.˛2;2.2k/; ˛2/D p D p2;nk
:

We need to estimate `t2k
.˛2;2.2k//, and for our purposes it is enough to show that

(11) `t2k
.˛2;2.2k//D‚.log.a2;nk

//:

An easy calculation shows that the flat length of ˛2;2.2k/ satisfies

l2
t2k
.˛2;2.2k//� a2;nk

:

By the Lemma 3, for t and n large enough, the extremal length

Extt2k
.˛2;2.2k//� l2

t2k
.˛2;2.2k//� a2;nk

:
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We will be using the well-known Collar Lemma (Theorem 4.1.1 in Buser [2]) several
times in this paper. The lemma implies that any simple closed geodesic ˇ on a closed
Riemann surface X of genus g � 2 has a collar of width

(12) w.ˇ/D arcsinh
1

sinh.1=2`X .ˇ//

where `X .ˇ/ is the hyperbolic length of ˇ . The collar is isometric to the cylinder

Œ�w.ˇ/; w.ˇ/��S1

with the Riemannian metric ds2 D d�2C `2
X
.ˇ/ cosh2 �dt2 . Hence the hyperbolic

length of any curve which intersects ˇ nontrivially is at least 2w.ˇ/.

Let ˛ be the shortest curve in the hyperbolic metric at time t2k such that

i.˛; ˛2;2.2k//D 1:

Its length by (12) is at least

2 � arcsinh
� 1

1
2

sinh.`t2k
.˛2;1.2k///

�
� log a2;nk

:

In fact, it is easy to see that outside the collar around ˛2;1.2k/ the curve ˛ is bounded.
Therefore `.˛/� log a2;nk

: By the estimate (6),

Ext.˛/�
1

2
`.˛/ exp`.˛/=2 :

Minsky has shown in [10] that

i2.˛; ˛2;2.2k//� Ext.˛/Ext.˛2;2.2k//:

i.˛; ˛2;2.2k//�‚.a2;nk
log1=2.a2;nk

//:Hence

Using (9), and the fact that i.˛2;1.2k/; ˛2;2.2k//D 1 we see that

(13) `t2k
.˛2;2.2k//D‚.log a2;nk

/

and using (7), (8), (9), (10) and (13) we conclude that

(14) `t2k
.˛2/DO.log.a2;nk

/p2;nk�1/:

Now we want to estimate `t2k
.˛1/. Recall that �1 is such that the elements satisfy

supi a1;i < 1. Then Lemma 1 and Lemma 3 imply that Extt2k
˛1;1.2k/ D ‚.1/.

Hence `t2k
.˛1;1.2k// D ‚.1/. By (12) the collar around ˛1;1.2k/ is of bounded
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width and therefore the hyperbolic length of .˛1/ is bounded below by the number of
its intersections with ˛1;1.2k/:

(15) `t2k
.˛1/�‚.i.˛1;1.2k/; ˛1//

If ˛1;1.2k/ is a .q1;jk
;p1;jk

/–curve, then i.˛1;1.2k/; ˛1/D p1;jk
� q1;jk

�1 . Since
˛1;1.2k/ is the shortest curve on S1 at time t2k , it follows from Lemma 1 that the
curve .q1;jkC1;p1;jkC1/ has not reached its minimal length yet, ie

t2k � log
p1;jkC1�1C q1;jkC1

jq1;jkC1�1�p1;jkC1j
:

Hence for sufficiently large k , using (1b), we get

q2;nk
q2;nk�1.1C �

2
2 /�

p2;nk�1� C q2;nk�1

jq2;nk�1� �p2;nk�1j

�
p1;jkC1�1C q1;jkC1

jq1;jkC1�1�p1;jkC1j

� .1C �2
1 /q1;jkC1.q1;jkC1C q1;jkC2/:

We then have q1;jk
�‚.q2;nk�1

p
a2;nk

/. It follows that

(16) `t2k
.˛1/�‚.q2;nk�1

p
a2;nk

/:

Putting together (14) and (16) we get

(17)
`t2k

.˛1/

`t2k
.˛2/

�
‚.q2;nk�1

p
a2;nk

/

‚.log.a2;nk
/p2;nk�1/

!
n!1

1:

iD 2kC 1 We will demonstrate that supk `t2kC1
.˛1/=`t2kC1

.˛2/ is bounded above.
Recall that t2kC1D log

�
.1C �2

2
/.q2;nk

/2
�
. Is is easy to see that t2k < t2kC1 < t2kC2 .

Hence by Lemma 1, ˛2;1.2k/ is either .q2;nk�1;p2;nk�1/– or .q2;nk
;p2;nk

/–curve.
By Lemma 3 both .q2;nk�1;p2;nk�1/ and .q2;nk

;p2;nk
/ have at time t2kC1 extremal

(and hyperbolic) length bounded above and below. Then

(18) `t2kC1
.˛2/�‚.p2;nk

/:

On the other hand ˛1;1.2kC 1/ and ˛1;2.2kC 1/ also have bounded extremal length,
and therefore

`t2kC1
.˛1/DO.i.˛1;1.2kC 1/; ˛1//CO.i.˛1;2.2kC 1/; ˛1//:
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To estimate i.˛1;1.2k C 1/; ˛1/ we argue similarly to the case when i D 2k . If
˛1;1.2kC 1/ is a .q1;jk

;p1;jk
/–curve, then Lemma 1 implies

t2kC1 � log
p1;jk�1�1C q1;jk�1

jq1;jk�1�1�pjk�1j
:

Hence, using (1b), for sufficiently large k we obtain

.1C �2
2 /q

2
2;nk
�

p1;jk�1�1C q1;jk�1

jq1;jk�1�1�pjk�1j
� q1;jk�1.1C �

2
1 /q1;jk

:

Thus i.˛1;1.2kC 1/; ˛1/D p1;jk
D‚.q1;jk

/DO.q2;nk
/. Lemma 2 implies that

i.˛1;2.2kC 1/; ˛1/� p1;jkC1 D‚.p1;jk
/:

We then have

(19) `t2kC1
.˛1/DO.q2;nk

/:

Putting (18) and (19) together we obtain

(20) sup
n

`t2kC1
.˛1/

`t2kC1
.˛2/

<1:

To finish the proof we need to rule out the possibility that the limit is a projective
measured foliation ŒF � so that i.˛1;F /D i.˛2;F /D 0. This could be the case if the
collar around � grew a lot faster than ˛1 and ˛2 . In this case ŒF �D Œ� �. By Theorem 3
this is impossible.

7 The limit set of Xt

In this section we say what the limit set of the geodesic ray is. Note that the only
condition we put on �1 and �2 is that they are both irrational.

Let fXtg be a Teichmüller ray constructed as in Section 1, with �1; �2 2R�Q. Let
F�1;�2

be the vertical measured foliation of the quadratic differential q�1;�2
. Let ƒ

be the simplex of all measures on the underlying foliation of F�1;�2
. Also denote by

L�1;�2
the limit set of fXtg in PMF .

Theorem 3 L�1;�2
is a connected subset of one dimensional simplex in Œƒ�. If

ŒF � 2L�1;�2
then the weight it puts on � is 0.

Suppose the slopes �1 and �2 are chosen so that one has bounded elements, and
the other unbounded. It follows from Theorem 2 and Theorem 3 that L�1;�2

is a
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one-dimensional simplex. Moreover, the proof of Theorem 2 shows that the ratio
`t .˛1/=`t .˛2/ gets arbitrary large, and hence L�1;�2

contains the projective class of
the measured foliation which puts all the weight on S1 . Hence we have the following:

Corollary 2 Let fXtgbe as above. Suppose also that the elements of �1 are bounded
and those of �2 are unbounded. Then L�1;�2

is a one-dimensional simplex. Further,
one of the two endpoints is such that the measure is supported on S1 .

Proof of Theorem 3 Recall that a sequence fXng in Teichmüller space converges to
a projective measured foliation ŒF � in PMF if there is rn!1 such that for any
˛ 2 S we have rn`n.˛/!i.˛;F / as n!1. The theorem claims that the limit points
are projective measured foliations which are the same as ŒF�1;�2

�, except for different
ratios of weights on S1 and S2 , which come from different accumulation points of
f`t .˛1/=`t .˛2/g as t !1.

˛1
˛2



�

slit

Figure 4

The fact that L�1;�2
2 Œƒ� can be demonstrated as follows. Suppose Xtn

!ŒF � as
n!1. We recall first that the space of measured foliations MF.M / can be identified
with the space of measured laminations ML.M /. See G Levitt’s paper [6] for details.
In particular, if a foliation G 2MF corresponds to a lamination �G 2ML then
i.G; �/D i.�G ; �/. Let � and ��1;�2

be the measured laminations corresponding to F

and F�1;�2
. Then

rn`tn
.��1;�2

/! i.�; ��1;�2
/D i.F;F�1;�2

/:

Since `tn
.��1;�2

/! 0, we conclude that i.F;F�1;�2
/ D 0. Since F�1;�2

intersects
every simple closed curve except for � , and F is not minimal, F has one closed leaf
which is in the homotopy class of � . It is also easy to see that any other leaf of F is
dense in S1 or S2 and has a slope of �1 or �2 . Therefore F 2ƒ.
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To prove that L�1;�2
is contained in the one dimensional simplex in Œƒ� we consider

a curve  which crosses the dividing curve � (Figure 4) and estimate its hyperbolic
length along the geodesic ray. It suffices to demonstrate that

(21)
`t . /

`t .˛1/C `t .˛2/
! 1:

At any time t the image of the curve  can be thought of as a curve made of an arc
parallel to the image of ˛1 followed by an arc crossing the slit � and perhaps winding
around � for a while, then followed by an arc parallel to the image of ˛2 and then
by another arc crossing � . Hence the length of  in the hyperbolic metric at time t
satisfies

`t .˛1/C `t .˛2/�C � `t . /� `t .˛1/C `t .˛2/C 2ct CC

where ct is the hyperbolic length of an arc connecting the geodesic (in the flat metric)
representatives of ˛1 and ˛2 at time t and parallel to  , and C is some positive
constant independent of t . Therefore

(22) 1�
C

`t .˛1/C `t .˛2/
�

`t . /

`t .˛1/C `t .˛2/
� 1C

2ct CC

`t .˛1/C `t .˛2/
:

It suffices to show that

(23)
ct

`t .˛1/C `t .˛2/
! 0:

Consider the cylinder A 2 Xt with � the core curve which boundary components are
Euclidean circles C1 and C2 of radii R1 and R2 (see Figure 5). We want to have an
upper bound for its modulus. Since Mod.A/D 1=Ext.�/, where � is the family of
curves homotopic to a core curve of A, we first find a good lower bound for Ext.�/.

Let zj be the midpoint of the slit on Sj for j D 1; 2. Let Aj � Sj be the annulus
centered at zj , with inner radius rj D

1
2
se�t=2 and outer radius Rj . Define a metric

�t .z/ on A to be

�t .z/D

(
1

2�r
; if z 2Aj ; j D 1; 2

1
2�rj

; if z 2A n .[Aj /

)
:

Then it is easy to see that

A.�t /D
1

2�
log

R1R2

r1r2

C
1

2�
D

1

2�
.log

4R1R2

s2
C t C 1/

and inf
ˇ�˛

Z
ˇ

�jdzj D
1

2�r1

lt .�/D
1

2�se�t=2
2se�t=2

D
1

�
:
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C1

C2

˛1;1.t/ ˛2;1.t/

S1 S2

A1

A2z1

z2

R1

R2

Figure 5

Hence Ext.�/�
2

�.log 4R1R2

s2 C t C 1/

and noticing that Rj � lt . j̨ ;1.t// we now have

(24) Mod.A/�
.log 4R1R2

s2 C t C 1/

2
D‚.t/:

Now the cylinder is conformally equivalent to the annulus

AD fz 2Cje�2�Mod.A/ < jzj< 1g

with the hyperbolic metric [8, Lemma 3, p 188]

�t .z/D
��jdzj

jzj.2 Mod.A// sin.log jzj=.2 Mod.A///
:

Further, applying Lemma 4 in [8] we see that ct is approximately equal to the length
of the radius of A. More precisely, given � > 0 there is a ı > 0 such that

(25)
ˇ̌̌�Xt

.z/

�t .z/
� 1

ˇ̌̌
< �; z 2Aı D fe�2�m=ı < jzj< ıg
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where �Xt
is the hyperbolic metric of Xt . A simple calculation shows that a radius of

Aı in the metric �t .z/ is�
log

1C cos log 1=ı
2 Mod.A/

1� cos log 1=ı
2 Mod.A/

�
.1C �/D‚.log.Mod.A///:

Hence ct D‚.log.Mod.A///DO.log t/:

On the other hand, if j̨ ;1.t/ is a .qj ;nj ;pj ;nj / curve for some nj and j D 1; 2 then

et=2
DO

� 1

jqj ;nj � �j pj ;nj j

�
DO.qj ;nj C qj ;njC1/

and hence t DO.log.qj ;nj C qj ;njC1//DO.log aj ;njC1qj ;nj /:

Therefore we have ct DO.log log aj ;njC1qj ;nj //:

Since `t . j̨ /�‚.pj ;nj log.aj ;njC1//, it is clear that (23) holds.

The function `t .˛1/=`t .˛2/ is continuous, and therefore the limit set is an interval or
a point. This concludes the proof.
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